20S-MATH33A-3 Midterm 1

SHREYA CHATTERJEE

TOTAL POINTS

18 / 25

QUESTION 1

1 4/4

- ✓ + 1 pts Correct (a) (True)
- \checkmark + 1 pts Correct (b) (False)
- ✓ + 1 pts Correct (c) (True)
- ✓ + 1 pts Correct (d) (True)

QUESTION 2

2 3/5

 \checkmark - 2 pts Wrong row operations. Fixing the row operations the conclusions (ii and (iii))would be right, and (i) almost correct.

Unique solutions if a is different than -4.
 Infinitely many solutions if a=-4 and b=8. No solutions if a=-4 and b is different than 8.

QUESTION 3

3 5 / 5

 \checkmark - 0 pts (a) correct

✓ - 0 pts (b) correct

QUESTION 4

4 6/6

 \checkmark + 2 pts Part 1: The student gets that rank(A) = 2 and null(A) = 2

 \checkmark + 2 pts Part 2: The student uses rref(A) to get the first two columns of A are a basis for Im(A).

 \checkmark + 2 pts Part 3: The student correctly finds a basis for ker(A).

+ 0 pts Incorrect

QUESTION 5

50/5

- + 1 pts (i) Correct formula for projection
- + 1 pts (i) Correct answer (1, 2, 3)

- + 1 pts (ii) Correct answer (-2, -1, 6)
- + **1 pts** (iii) Correct method for finding a v (ex. cross product, solving system of equations)

+ **1 pts** (iii) Correct solution for v (any non-zero multiple of (-5, 4, -1))

- ✓ + 0 pts No points
 - Incorrect formula for projection...

1.	a. true b. false C. true d. true	SHREYA CHATTERDEE
2.	1 2 3 8 0 3 6 9 4 0 a 6 -41	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \begin{bmatrix} 1 & 2 & 3 & 8 & -2: \\ 0 & 1 & 2 & 3 & \\ 0 & -8 & 2 & -12 & -32 & +8 & -12 \end{bmatrix} $	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$
T	$ \begin{bmatrix} 1 & 0 & -1 & & 2 \\ 0 & 1 & 2 & & 3 \\ 0 & 0 & 1 & & b - 20 / a + \end{bmatrix} $	4
<u>i.</u>	the system has a $a = -4 = b = 2$	unique solution when 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	the system has in and 6=20, makin the system has r	g the bottom row EO OUJ=EOJ o solutions when
	a = -4 and b = 2 $i = 10 0 0 2$	EbJ, some real number

14/4

 \checkmark + 1 pts Correct (a) (True)

 \checkmark + 1 pts Correct (b) (False)

✓ + 1 pts Correct (c) (True)

 \checkmark + 1 pts Correct (d) (True)

1.	a. true b. false C. true d. true	SHREYA CHATTERDEE
2.	1 2 3 8 0 3 6 9 4 0 a 6 -41	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \begin{bmatrix} 1 & 2 & 3 & 8 & -2: \\ 0 & 1 & 2 & 3 & \\ 0 & -8 & 2 & -12 & -32 & +8 & -12 \end{bmatrix} $	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$
T	$ \begin{bmatrix} 1 & 0 & -1 & & 2 \\ 0 & 1 & 2 & & 3 \\ 0 & 0 & 1 & & b - 20 / a + \end{bmatrix} $	4
<u>i.</u>	the system has a $a = -4 = b = 2$	unique solution when 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	the system has in and 6=20, makin the system has r	g the bottom row EO OUJ=EOJ o solutions when
	a = -4 and b = 2 $i = 10 0 0 2$	EbJ, some real number

23/5

 \checkmark - 2 pts Wrong row operations. Fixing the row operations the conclusions (ii and (iii))would be right, and (i) almost correct.

Unique solutions if a is different than -4. Infinitely many solutions if a=-4 and b=8. No solutions if a=-4 and b is different than 8.

	3) (λ.	A	1	120	و د د		24	A						-							a (X		
		F) .	C (iss in	_5	o ng ror ent	thate	5 + :	th	is	r	na:	th	X	do	es	h	ar	c	0 2							
121	124	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8	205	3		12 0 5		100	0				- 2		F	1 0 5	3 3 0	2 9 15		1/2		0 0	0	-	51	
		1	12			3 3 - 19	6 6 5 - 2'	5	12 0 5/:		0 0 1		F			0	-1	5 0	6-28		0 5/:	2 -1	100	0	+	51		
						8000	0 50	0-5/	2	1 6 2	0	· · · · ·	-) - 0	3	-	00	C	2	5 - 1 0	0 - 5 0 -	N P D	10 10	01	2	5 -1-3	0	0	
				-hi	000	1 0	2 1 21)	×	0 1/2	2	1 er	1	0 1/5		be	ca	UST	0	ra	onk	1	(A		3.	1	1/5		
2		73 3	+	he	Y2 1	104	-1 5/3	C	2/	5																		+
					-1/	2																						
-	T	-	-		-			-		-				T		T	T	T	-	-		-			-		\square	

3 5/5

 \checkmark - 0 pts (a) correct

 \checkmark - 0 pts (b) correct

4 6/6

 \checkmark + 2 pts Part 1: The student gets that rank(A) = 2 and null(A) = 2

 $\sqrt{+2}$ pts Part 2: The student uses rref(A) to get the first two columns of A are a basis for Im(A).

 $\sqrt{+2}$ pts Part 3: The student correctly finds a basis for ker(A).

+ 0 pts Incorrect

50/5

- + 1 pts (i) Correct formula for projection
- + 1 pts (i) Correct answer (1, 2, 3)
- + **1 pts** (ii) Correct answer (-2, -1, 6)
- + 1 pts (iii) Correct method for finding a v (ex. cross product, solving system of equations)
- + 1 pts (iii) Correct solution for v (any non-zero multiple of (-5, 4, -1))

\checkmark + 0 pts No points

Incorrect formula for projection...