University of California, Los Angeles [nstructor: M. Hlushchanka
Winter 2020

- - Date: March 18, 2020
, ly . )
Name: Connef \/C\V% UCLA ID:M HT28&T Signature:,éab%wf,
“

MATH 33A-3: LINEAR ALGEBRA FINAL EXAM

This exam contains 18 pages (including this cover page) and 13 problems. The following rules apply:

You have 24 hours to submit this take home exam. The deadline for submission is
Thursday, March 19, 6:59am (PD'T). Plcase, note that this deadline applies to all students, including
those registered with CAE. No late submission of the exam will be possible.

Collaborations on the final are not allowed. You are under strict instructions not to discuss the
exam or questions related to the exam with anybody. Please. be reminded of the Student Condnct Code (it
can be found at www.deanofstudents.ucla.edu: see, in particular, Section 102.01 on academic dishonesty).
You are allowed to use the textbook and your notes (rom the class, as well as. the notes posted by
the instructor and/or TA's, while working on the exam. You should not use any other resources,
including online ones.

If you use a result from class, discussion session, the textbook, lecture notes, or a home-
work/midterm, you must indicate this, reference the source, and explain why the result may be

applied.
You should not use computing systems (c.g., Mathematica or Matlab) while working on the
problems.

Show your work on ecach problem. All answers must be justified, unless otherwise mentioned.
Mysterious or unsupported answers will not receive credit. A correct answer, unsupported by
calculations and/or explanation will receive no credit; an incorrect answer supported by substantially
correct calculations and explanations might still receive partial credit.

Organize your work, in a reasonably neat and coherent way. Work scattered all over the page without
a clear ordering will receive very little credit.

I reserve the right to contact the students after the exam and ask for additional explanations
of solutions for problems on the final.

Deviations from the announced rules may render the exam void.

You can choose one of the following two options for submission ol vour exaun. In both options. vou should
use regular size (preferably) white paper. Please. follow the instructions below precisely, as failing to do
so may resull in loosing parts of vour solutions!

Option 1 (if you have access to printer):

You print the pdf file with the exans (all pages. I-sided).

Fill in the information (Name and UID) and sign at the top of the cover page agrecing to the rules.

Write all vour solutions on the printed exam (using only the front side of the pages).

Scan all the pages ol the exam. The pdf file with vour solutions should have the same munber of pages as the
original pdf file (i.e.. your file should have I8 pages).

Submit the scanned pdf file to Gradescope via the course CCLIL webpage.

Option II (if you do not have access to printer):

Open the file with the exam on your clectronic device.

The first page ol your solution should include your name (printed) followed by your UCLA ID (also printed) on
the top of the page. Below. please include the following statement, followed by your signature and date (the first
page should not contain anything clse, i.c., no solutions on the first page):

“T assert, on my honor, that [ have not received assistance of any kind {rom any other person, and have not used
any non-permitted materials or technologies while working on the final. I agree with the rules summarized on the
exam assigniment cover page”

Ihe remaining part of vour solution should be formatted in the same way as the original pdf file with the exam.
This means. if the original lile have Problem X on page Y. then you should also have Problem X on page Y in
vour solution (even if you did not do i

Scan all the pages of the exam. The pdf file with vour solutions should have the sane munber of pages as the
original pdf file (i.c.. your file should have I8 pages).

Subnit the scanned pdf file to Gradescope via the comrse CCLE webpage.

Good Tuck!
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1. Provide answers to the following questions. No justification is required.

(a) (2 points) Suppose that @, i, @ are three linear independent vectors in B3, Let @) = 247,
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(b) (2 points) Find the matrix 0[ the rotation in ihe B ‘m e that't Iisfoxms 1nto 0'8}
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(¢) (2 points) Let A be a 3 x5 matrix. What are the possible values of dim(IKer(A))?
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2. Let A be a square matrix. For each of the following statements determine whether it is true or
false. No justification is required.

(a) (1 point) If A has orthonormal rows, then A is orthogonal.

(b) (1 point) If Ais (hagmmh/ahl( then A2 i diagonalizable as well.

(Tme

(¢) (1 point) If A? is diagonalizable, then A is diagonalizable as well.

T AZ-0 o8 A= V’"“ﬂ"

QFOJ %el\/ C — ML \\"& oS

() (1 point) A+ AT is always diagonalizable,

At AT 3 yw\ﬂdfw

(¢) (I point) A - AT is always diagonalizable.

o eXric
A - AV 7 dew VAR
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(1) (1 point) 16 A is symmetric. then the cigenvadues of A coincide with the singular values
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3. (3 points) Let A = [l g] and B be an orthogonal 2 x 2 matrix. Find det(A—2B3AT ABT A?).

Show work/Justify your answer to get full credit.
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I. (4 points) Let A be the matrix of the reflection about the plane x) — 2zg +3x3 = 0 in R3. Let

B =2A~ Iy (here, as ususal, I3 denotes the identity matrix of size 3 x 3). Is B diagonalizable?
If yes, hml a diagonal matrix /) that is similar to 3. Justify your answer!
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MATH 33A-3: Linear Algebra

03 3 0
- 0 0 2 2 . N .
2. Let A = 1 - for some real constant a. Answer the following questions. Show
a &
0 1 2 2

work/Justify your answers to get full credit.
(a) (3 points) Find rref(A).

(b) (3 points) Find det(A).
(¢) (2 points) Find all vectors 7 in RY that can be written in the form iy = AT for some r

in R1? .‘r\\&-b( o’% A
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...continue your solution of Problem 5 here if needed.
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MATH 33A-3: Linear Algebra

1 1 2 -4
} Answer the following questions. Show work/Justify your

6. Let A = |-1 -1 1 1
2 2 2 -6

answers to get full credit.
(a) (3 points) Iind a basis of Ker(A).
(b) (3 points) Find an orthonormal basis of Ker(A).

0]
(¢) (4 points) Find a vector i in Ker(A) minimizing the length of (1) — /. Is such a vector
0
unique?
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_continue your solution of Problem 6 here if needed ...
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7. (4 points) Use the method of least squares to find constants « and b so tlml, the function

f(@) = a + bsin(wa/2) gives an optimal it for the data points (0,3), (1,2), (5/3,0), and

(3,-2). Show work to get full credit. [ 3
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00 1
8. Let A = |:() 1 0 } Answer the following questions. Show work/Justify your answers
2 0 -1

to get full credit.
(a) (3 points) Find cigenvalues of A and determine their algebraic and geometric multiplici-
ties.

(b) (3 points) Is A diagonalizable? If so, find an invertible matrix .S and a diagonal matrix
B such that A = SBS—L

¢
(¢) (2 points) Does A have an orthonormial cieenbasis? \/(S 0/ n/O,JU }’((:‘(ﬂfﬂﬂ (WI{“N

{
(d) (4 points) Find A7 }
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...continue your solution of Problem 8 liere if needed

.
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00 1
9. (4 points) Let A = |0 1 0 |, that is, A is the matrix from Problem 8. Is A similar to
2 0 -1
10 0
B = {U -2 1}. Justify your answer!
0 0 1
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1 2
10. Let A = |0 —1]. Your goal is to compute the singular value decomposition A = Usvr,
10

Answer the following questions. Show work to get full credit.
(a) (3 points) Find the singular values of A.

(b) (1 point) Find .

(c) (3 points) Find V.

(d) (4 points) Find U.

0\> ATB > ;«‘*’MW\&%{W as (AT[:\')T—— T@YT)T:HTA

Aw[l’\o][ ] [

£ OO = der{ifpr) = aerlz*’* 2 J BN EN 470
(2-MEM 4 = 109NN = N\Z-TA+6=0
i} (/\’N/\’QID,)\M,@ 5=, = 7
6=V, 0,-0¢ | @ﬂﬁ\;r =

b)

f o axm (222 wokk whose fiet ¢ \%f%w@tﬂ el aee
5; T 57/

o m-n;{ m Lo'::‘z] w2 v ]
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= ‘&'g } O @)
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.continue your s()]ut ton of Pmbh m 10 here if needed. ..
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1 0

Wy = E} Answer the following questions. Show work/Justify your answers to get full

1 2 2
11. Lot 4 = [0 —1} that is. A is the same matrix as in Problem 10. Also let w; = [J and

credit.
(a) (2 points) Find the area of the triangle A between wy and ws.

(b) (3 points) What is the arca of the image of the triangle A (between @i and wo) under A?

Nt [ w3, ] / zq j/ e

/L}/[[ ’j A l,{_,'fcbb{’ﬂ M“f 'ft""’}' ‘”2 . )2,“ Heee Tfﬁ/‘ ’ ff(l/‘f',/'/"i’v-""'f""‘\“‘
2

—— <
- < ( {J’ un(ts

\\

Af ea ;7 pusallelogion = |
(T

/

_ 3 (n-10) j+ (FHS )k = 2K
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200
12, (6 points) Determine all real values ol a, b, ¢ for which the matrix A = hu 3 0} is diagonal-
b 1 ¢

izable. Show work/Justify your answer to get full credit.
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13. (6 points) Suppose A is a symmetric n x n matrix that satisfies A% = I,,, where I, is is the
identity matrix of size n x n. Prove that A = [,,.

Hint: If A3 = I,,, what are the possible eigenvalues of A?

A 73 Symmetic ) €O o vf#u‘ﬁwﬁlfg diegpaa| iz alole by the ;f;‘oed"r‘aal
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