Math 33A, Midterm 2 solutions

Question 1. Find a basis for the kernel of the matrix $A = \begin{pmatrix} -1 & 2 & -3 & 0 \\ 1 & 0 & 2 & -1 \end{pmatrix}$.

We have to find a basis for the space of solutions to the system $A\vec{x} = \vec{0}$. We first find the reduced row echelon form of the augmented coefficient matrix:

$$\begin{pmatrix} -1 & 2 & -3 & 0 & 0 \\ 1 & 0 & 2 & -1 & 0 \end{pmatrix} \xrightarrow{+R_1} \longrightarrow \begin{pmatrix} 0 & 2 & -1 & -1 & 0 \\ 1 & 0 & 2 & -1 & 0 \end{pmatrix} swap \longrightarrow \begin{pmatrix} 1 & 0 & 2 & -1 & 0 \\ 0 & 2 & -1 & -1 & 0 \end{pmatrix} \xrightarrow{+2} \longrightarrow \begin{pmatrix} 1 & 0 & 2 & -1 & 0 \\ 0 & 1 & \frac{-1}{2} & \frac{-1}{2} & 0 \end{pmatrix}$$

Using the reduced row echelon form we see that variables x_3 and x_4 remain unknown, and the general solution is

$$\begin{pmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{pmatrix} = \begin{pmatrix} -2s + t\\ \frac{1}{2}s + \frac{1}{2}t\\ s \\ t \end{pmatrix} = s \begin{pmatrix} -2\\ \frac{1}{2}\\ 1\\ 0 \end{pmatrix} + t \begin{pmatrix} 1\\ \frac{1}{2}\\ 0\\ 1 \end{pmatrix}.$$

The vectors $\begin{pmatrix} -2\\ \frac{1}{2}\\ 1\\ 0 \end{pmatrix}$, $\begin{pmatrix} 1\\ \frac{1}{2}\\ 0\\ 1 \end{pmatrix}$ form a basis for the kernel.

Question 2. Find k so that the matrices $\begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & -2 \\ 1 & 1 & -1 \end{pmatrix}$ and $\begin{pmatrix} 3 & 1 & 0 \\ 1 & -1 & -4 \\ 2 & 0 & k \end{pmatrix}$ have the S

For the system to have a solution, it must be that k + 2 = 0, in other words k = -2.

We know so far that k = -2 is the only candidate that could possibly make the matrices $\begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & -2 \\ 1 & 1 & -1 \end{pmatrix} \text{ and } \begin{pmatrix} 3 & 1 & 0 \\ 1 & -1 & -4 \\ 2 & 0 & k \end{pmatrix} \text{ have the same image. It remains to check that indeed}$ this k works, namely that with k = -2 the two matrices have the same image.

The vectors $\vec{v}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ span the image of $\begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & -2 \\ 1 & 1 & -1 \end{pmatrix}$, because the first column is $\vec{v}_1 + \vec{v}_2$, the second column is $2\vec{v}_1 + \vec{v}_2$, and the third column is $-\vec{v}_2$. The same vectors also span the image of $\begin{pmatrix} 3 & 1 & 0 \\ 1 & -1 & -4 \\ 2 & 0 & -2 \end{pmatrix}$, because the first column is $3\vec{v}_1 + 2\vec{v}_2$, the second columns is \vec{v}_1 , and the third columns is $-2\vec{v}_2$. So the two images are equal; both are equal to $span\{\vec{v}_1, \vec{v}_2\}$.

Question 3. Let T from \mathbb{R}^5 to \mathbb{R}^5 be orthogonal projection to $span\left\{ \begin{array}{c} 2\\1\\2 \end{array} \right\}$, $\left\{ \begin{array}{c} 1\\2\\1 \end{array} \right\}$. Find

the dimension of kernel(T).

The vectors $\begin{pmatrix} 2 \\ 1 \\ 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$ are linearly independent because they are not scalar multiples

of each other. Their span is precisely image(T), so rank(T) = dim(image(T)) = 2. By the rank-nullity theorem we conclude

$$nullity(T) = 5 - rank(T) = 5 - 2 = 3,$$

so dim(kernel(T)) = 3.

Question 4. Let
$$\vec{v}_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
, $\vec{v}_2 = \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}$, and $\vec{v}_3 = \begin{pmatrix} -1\\0\\1\\2 \end{pmatrix}$. Let $W = span\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$.
(a) Using Gram-Schmidt, find an orthonormal basis $\vec{w}_1, \vec{w}_2, \vec{w}_3$ for W .

١g

$$\vec{w}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|} = \frac{\vec{v}_1}{2} = \begin{pmatrix} 1/2\\ 1/2\\ 1/2\\ 1/2\\ 1/2 \end{pmatrix}$$
(1)

$$\vec{w}_{2} = \frac{\vec{v}_{2} - (\vec{v}_{2} \cdot \vec{w}_{1})\vec{w}_{1}}{\|\vec{v}_{2} - (\vec{v}_{2} \cdot \vec{w}_{1})\vec{w}_{1}\|} = \frac{\vec{v}_{2} - 0\vec{w}_{1}}{2} = \begin{pmatrix} 1/2\\ -1/2\\ 1/2\\ -1/2 \end{pmatrix}$$
(2)

$$\vec{w}_3 = \frac{\vec{v}_3 - (\vec{v}_3 \cdot \vec{w}_1)\vec{w}_1 - (\vec{v}_3 \cdot \vec{w}_2)\vec{w}_2}{\|\vec{v}_3 - (\vec{v}_3 \cdot \vec{w}_1)\vec{w}_1 - (\vec{v}_3 \cdot \vec{w}_2)\vec{w}_2\|} = \frac{\vec{v}_3 - 1\vec{w}_1 + 1\vec{w}_2}{2} = \begin{pmatrix} -1/2 \\ -1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$$
(3)

(b) Write each \vec{v}_i as a linear combination of $\vec{w}_1, \vec{w}_2, \vec{w}_3$, and find the QR decomposition of $\begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix}$.

From equation (1) above we see that $\vec{v}_1 = 2\vec{w}_1$. From equation (2) above we see that $\vec{v}_2 = 0\vec{w}_1 + 2\vec{w}_2$. From equation (3) above we see that $\vec{v}_3 = 1\vec{w}_1 - 1\vec{w}_2 + 2\vec{w}_3$.

Collecting these equations into matrix form we get $(\vec{v}_1 \vec{v}_2 \vec{v}_3) = (\vec{w}_1 \vec{w}_2 \vec{w}_3) \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 2 \end{pmatrix}$.

In other words

$$\begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 & -1/2 \\ 1/2 & -1/2 & -1/2 \\ 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \end{pmatrix} \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 2 \end{pmatrix}$$

This is the QR decomposition.

(c) Find a (non-zero) vector \vec{x} in W^{\perp} .

We need a vector \vec{x} so that $\begin{cases} \vec{w_1} \cdot \vec{x} = 0 \\ \vec{w_2} \cdot \vec{x} = 0 \end{cases}$. In matrix form this is the system $(\vec{w_1} \vec{w_2} \vec{w_3})^T \vec{x} = \vec{0}$, namely $\begin{pmatrix} 1/2 & 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 & 1/2 \\ -1/2 & -1/2 & 1/2 & 1/2 \end{pmatrix} \vec{x} = \vec{0}$. The general solution for this system is $\vec{x} = s \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$. So $\vec{x} = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$ (or any scalar multiple of this vector) works. Question 5. In this question, $\vec{v_1}$ and $\vec{v_2}$ are vectors in \mathbb{R}^2 , and you are told that $\vec{v_i} \cdot \vec{v_j}$ is the entry a_{ij} of the matrix $\begin{pmatrix} 3 & 5 \\ 5 & 7 \end{pmatrix}$. *L* is the line spanned by $\vec{v_1}$. (a) Find the $\{\vec{v_1}, \vec{v_2}\}$ coordinates of $proj_L(\vec{v_2})$.

From the matrix we read off $\vec{v}_2 \cdot \vec{v}_1 = 5$, and $\|\vec{v}_1\|^2 = \vec{v}_1 \cdot \vec{v}_1 = 3$. So

$$proj_{L}(\vec{v}_{2}) = \frac{1}{\|\vec{v}_{1}\|^{2}}(\vec{v}_{2}\cdot\vec{v}_{1})\vec{v}_{1} = \frac{5}{3}\vec{v}_{1} = \frac{5}{3}\vec{v}_{1} + 0\vec{v}_{2},$$

and the $\{\vec{v}_1, \vec{v}_2\}$ coordinate vector of $proj_L(\vec{v}_2)$ is $\begin{pmatrix} \frac{5}{3} \\ 0 \end{pmatrix}$.

(b) Find the $\{\vec{v}_1, \vec{v}_2\}$ coordinates of the reflection of \vec{v}_2 about L.

We have $refl_L(\vec{v}_2) = 2proj_L(\vec{v}_2) - \vec{v}_2 = 2\frac{5}{3}\vec{v}_1 - \vec{v}_2 = \frac{10}{3}\vec{v}_1 - \vec{v}_2$. The $\{\vec{v}_1, \vec{v}_2\}$ coordinate vector of $refl_L(\vec{v}_2)$ is $\begin{pmatrix} \frac{10}{3} \\ -1 \end{pmatrix}$.

(c) Find the $\{\vec{v_1}, \vec{v_2}\}$ matrix of reflection about L.

The first column of the matrix is the $\{\vec{v}_1, \vec{v}_2\}$ coordinate vector of $refl_L(\vec{v}_1)$, which is $\begin{pmatrix} 1\\0 \end{pmatrix}$, since the reflection of \vec{v}_1 is \vec{v}_1 itself. The second column of the matrix is the $\{\vec{v}_1, \vec{v}_2\}$ coordinate vector of $refl_L(\vec{v}_2)$, which by (b) is $\begin{pmatrix} \frac{10}{3}\\-1 \end{pmatrix}$. So the matrix is $\begin{pmatrix} 1 & \frac{10}{3}\\0 & -1 \end{pmatrix}$.

Question 6. Find the orthogonal projection of $\begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$ to the plane in \mathbb{R}^3 spanned by $\begin{pmatrix} 2\\ 1\\ 2 \end{pmatrix}, \begin{pmatrix} 0\\ 3\\ 3 \end{pmatrix}$.

Let us first "orthonormalize" the vectors $\vec{v}_1 = \begin{pmatrix} 2\\1\\2 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 0\\3\\3 \end{pmatrix}$, that is, find an orthonormal basis of the plane. The Gram-Schmidt process gives $\vec{w}_1 = \begin{pmatrix} 2/3\\1/3\\2/3 \end{pmatrix}$, $\vec{w}_2 = \begin{pmatrix} -2/3\\2/3\\1/3 \end{pmatrix}$.

We now compute
$$proj_{span(\vec{v}_1,\vec{v}_2)}\begin{pmatrix} 1\\2\\3 \end{pmatrix} = proj_{span(\vec{w}_1,\vec{w}_2)}\begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 1\\2\\3 \end{pmatrix} \cdot \vec{w}_1 \cdot \vec{w}_1 + \begin{pmatrix} 1\\2\\3 \end{pmatrix} \cdot \vec{w}_2 \cdot \vec{w}_2 = \frac{10}{3} \begin{pmatrix} 2/3\\1/3\\2/3 \end{pmatrix} + \frac{5}{3} \begin{pmatrix} -2/3\\2/3\\1/3 \end{pmatrix} = \begin{pmatrix} 10/9\\20/9\\25/9 \end{pmatrix}.$$

Question 7. Find the least square solution \vec{x}^* to the system $\begin{pmatrix} 1&2\\2&4\\1&4\\2&3 \end{pmatrix} \vec{x} = \begin{pmatrix} 0\\0\\3\\1 \end{pmatrix}$

The least squares solution to $A\vec{x} = \vec{b}$ is the vector \vec{x}^* so that $\vec{b} - A\vec{x}^*$ is perpendicular to image(A). This means $A^T(\vec{b} - A\vec{x}^*) = \vec{0}$. So $A^T\vec{b} - A^TA\vec{x}^* = \vec{0}$. This leads to the equations $(A^TA)\vec{x}^* = A^T\vec{b}$, and $\vec{x}^* = (A^TA)^{-1}A^T\vec{b}$. (If you remember the final equation, you can just use it directly.)

In our case
$$\vec{b} = \begin{pmatrix} 0\\0\\3\\1 \end{pmatrix}$$
, $A = \begin{pmatrix} 1&2\\2&4\\1&4\\2&3 \end{pmatrix}$, $A^T A = \begin{pmatrix} 1&2&1&2\\2&4&4&3 \end{pmatrix} \begin{pmatrix} 1&2\\2&4\\1&4\\2&3 \end{pmatrix} = \begin{pmatrix} 10&20\\20&45 \end{pmatrix}$,
and $(A^T A)^{-1} = \begin{pmatrix} 10&20\\20&45 \end{pmatrix}^{-1} = \frac{1}{10} \begin{pmatrix} 9&-4\\-4&2 \end{pmatrix}$.
So:

$$\vec{x}^* = (A^T A)^{-1} A^T \vec{b} = \frac{1}{10} \begin{pmatrix} 9 & -4 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 & 2 \\ 2 & 4 & 4 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 3 \\ 1 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 9 & -4 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ 15 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} -15 \\ 10 \end{pmatrix} = \begin{pmatrix} -1.5 \\ 1 \end{pmatrix}.$$

Question 8. Find a point on the plane $x_1 + x_2 + x_3 = 5$ which is closest possible to the origin.

The line through the origin perpendicular to the plane is $span\begin{pmatrix} 1\\1\\1 \end{pmatrix}$). We need a point $\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}$ which lies both on this line and on the plane. In other words we need $\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix} = c \begin{pmatrix} 1\\1\\1 \end{pmatrix}$ and $x_1 + x_2 + x_3 = 5$. Solving for c we get $c = \frac{5}{3}$, and $\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix} = \frac{5}{3} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$.