Fall 2021 33A-2 Second Midterm

Full Name:			
UIN:			
Circle the name of	your TA and the da	ov of your discussion	on:
Alec Leng	g Eli Sa	dovnik	Zeshun Zong
	-		~

Tuesday

Thursday

Instrucitons

- Read each problem carefully.
- To get credit for a problem, you must show all of your reasoning and calculations.
- Box your final answer.
- No calculators are allowed.
- You may use the blank pages 3, 5, 7, 9 for scratch work. Work found on those pages will not be graded unless clearly indicated in the exam.
- There will be 5 problems in the exam. Problem 5 is True or False.

Problem	Points	Scores
1	15	
2	15	
3	15	
4	15	
5	10	
Total	70	

Problem 1 (15 points). Consider a 3×3 matrix

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 4 & 15 \\ 2 & 0 & -2 \end{bmatrix}.$$

- 1. (5 points) Compute the reduced row echelon form of A by the Gauss-Jordan elimination method.
- 2. (5 points) Find a basis of im(A) and compute dim(im(A)).
- 3. (5 points) Find a basis of ker(A) and compute dim(ker(A)).

Problem 2 (15 points). Let

$$\vec{v_1} = \begin{bmatrix} 1\\\sqrt{3} \end{bmatrix}, \vec{v_2} = \begin{bmatrix} -\sqrt{3}\\1 \end{bmatrix}$$

and consider the basis $\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$ of \mathbb{R}^2 .

- 1. (5 points) If $\vec{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, compute $[\vec{x}]_{\mathcal{B}}$.
- 2. (5 points) If $[\vec{y}]_{\mathcal{B}} = \begin{bmatrix} -2\\ 3 \end{bmatrix}$, compute \vec{y} .
- 3. (5 points) If $A = \frac{1}{2} \begin{bmatrix} -1 & \sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix}$, compute the \mathcal{B} -matrix of A.

Problem 3 (15 points). Consider a 4×2 matrix

$$A = \begin{bmatrix} 1 & 1 \\ 7 & -5 \\ 1 & -3 \\ 7 & -9 \end{bmatrix}.$$

- 1. (5 points) Find an orthonormal basis of im(A) by the Gram-Schmidt process.
- 2. (5 points) Find the QR factorization of A.
- 3. (5 points) Compute $\operatorname{proj}_V \vec{b}$, where $V = \operatorname{im}(A)$ and $\vec{b} = \begin{bmatrix} 3\\0\\0\\1 \end{bmatrix}$.

Problem 4 (15 points). Compute the following determinants:

$$1. \det \begin{bmatrix} 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & -3 & 0 \\ 5 & 0 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} 2. \det \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} 3. \det \begin{bmatrix} 1 & 1 & -1 & -1 \\ 3 & 0 & 1 & 0 \\ -1 & -2 & 1 & 3 \\ 1 & 0 & 2 & 0 \end{bmatrix}.$$

Problem 5 (10 points). Answer True or False for each of the following statements. No justification is needed.

- 1. The standard basis $\{\vec{e_1}, \cdots, \vec{e_5}\}$ is a unique basis of \mathbb{R}^5 .
- 2. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation. Then $\dim(\ker(T)) \ge 1$.
- 3. An $n \times n$ matrix is orthogonal if the column vectors of the matrix are orthonormal.
- 4. The orthogonal complement of the orthogonal complement of a subspace V of \mathbb{R}^m is $V: (V^{\perp})^{\perp} = V.$
- 5. We have det(A + B) = det(A) + det(B) for any 2×2 matrices A, B.