MATH 33A LECTURE 3 MIDTERM I

Please note: Show your work. Correct answers not accompanied by sufficent explanations will receive little or no credit (except on multiple-choice problems). Please call one of the proctors if you have any questions about a problem. No calculators, computers, PDAs, cell phones, or other devices will be permitted. If you have a question about the grading or believe that a problem has been graded incorrectly, you must bring it to the attention of your professor within 2 weeks of the exam.

	#1	#2	#3	#4	#5	Total	
	0)	10	(0)	10		47	
	Tue	Your section meets (circle): Tuesday Thursday			TA name (circle): Ioannis Lagkas-Nikolos Jaehoon Lee Austin Christian		
)	Student ID:_					
	Name	Name:					
	Signature: By signing above I certify that I am the person whose name and student ID appears on this page.						

Copyright © 2016 UC Regents/Dimitri Shlyakhtenko. No part of this exam may be reproduced by any means, including electronically.

MATH 33A LECTURE 3 MIDTERM I Problem 1. (True/False, 1 pt each) Mark your answers by filling in the appropriate box next to each question (no explanations are necessary on this problem). (a TF) Let A and B be 5×5 matrices. If $\ker A = \operatorname{im} B$ then AB = 0. A grow of A is an invertible $n \times n$ matrix, then the rank of A is a (b) If A is an invertible $n \times n$ matrix, then the rank of A is n. (c There exists a 3×3 matrix A for which im $A = \mathbb{R}^3$. In the exists a 3 × 3 matrix A for which im $A = \mathbb{R}^3$. It is an $n \times m$ matrix and $\ker A = 0$, then $m \le n$. $\begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$ (e \bigcirc F) The matrix $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is in reduced row echelon form. \square F) If $A \cdot A \cdot A \cdot A$ is the identity matrix, then A is invertible. The matrix 1 2 is invertible. T F) If T is a counterclockwise rotation by 2.016 radians in the plane, then $\ker T = (0)$. The set $\{(x,y): xy=1\}$ is not a subspace of \mathbb{R}^2 . doesn't contain 0 7 All true ?? $\begin{bmatrix} 1 & 2 & | & 1 & 2 \\ 3 & 4 & - | & 0 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

AB=In (A·A)(A·A)=In AA=(A·A)-1

MATH 33A LECTURE 3

Problem 2. (10 pts) Let
$$A = \begin{bmatrix} 0 & 1 & 4 & 7 & 1 \\ 1 & 2 & 5 & 8 & 1 \\ 1 & 3 & 6 & 9 & 2 \end{bmatrix}$$

(a) Are the columns of A linearly independent?

MIDTERM I

A problem 1

$$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

(c) Find a basis for the kernel of A.

$$V_4 = 2V_3 - V_2 = 7 \quad V_4 - 2V_3 + V_2 = 0$$

$$V_5 = V_2 - V_1 = 7 V_5 - V_2 + V_1 = 0$$

$$\begin{bmatrix} 0 \\ -2 \\ -0 \\ \end{bmatrix}$$
, $\begin{bmatrix} -1 \\ -10 \\ 0 \\ 1 \end{bmatrix}$

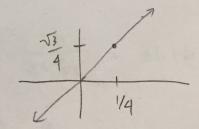
Problem 3. (10 pts) Let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation whose matrix is given by:

(a) Find ker A. $A = \begin{pmatrix} \frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \cdot b \quad 3a \qquad \omega_2 = \frac{\sqrt{3}}{2}$ $Ver(A) = \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{4}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{4}/4 & \sqrt{3}/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{4}/4 & \sqrt{3}$

$$\operatorname{Ker}(A) = \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ \sqrt{3}/4 & 3/4 & 0 \end{bmatrix} = 7 \begin{bmatrix} \sqrt{4} & \sqrt{3}/4 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 7 \begin{bmatrix} 1 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix} = 7 \begin{bmatrix} 1 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix}$$

$$t\begin{bmatrix} -\sqrt{3} \\ 1 \end{bmatrix} = 7 \quad \text{Span} \begin{bmatrix} -\sqrt{3} \\ 1 \end{bmatrix}$$

(b) Find im A.



(c) Describe the transformation S geometrically.

5 is a projection of onto the line
$$y=\sqrt{3}x$$
.

$$\begin{bmatrix} 1/4 & \sqrt{3}/4 \\ \sqrt{3}/4 & 3/4 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 1+\sqrt{3} \\ 3+\sqrt{3} \end{bmatrix}$$

Problem 4. (10 pts) Find an invertible 2×2 matrix A so that $A \cdot A = A^{-1}$ (in other words, $A^2 = A^{-1}$). Hint: try to find the corresponding transformation first.

$$A=I_2=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} a^{2}+bc & ab+bd \end{bmatrix}$$

$$\begin{bmatrix} c & d \end{bmatrix} \begin{bmatrix} c & d \end{bmatrix} = \begin{bmatrix} ac+dc & cb+d^{2} \end{bmatrix}$$

$$A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 9 & 0 \\ 0 & 9 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$

$$\begin{bmatrix} \frac{d}{ad-bc} & -\frac{b}{ad-bc} \\ -\frac{c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix} = \begin{bmatrix} a^2+bc & ab+bd \end{bmatrix} = \begin{bmatrix} a^2+bc & ab+bd \end{bmatrix}$$

$$\begin{bmatrix} a^2+bc & ab+dc \\ -\frac{c}{ad-bc} & ad-bc \end{bmatrix} = \begin{bmatrix} a^2+bc & ab+dc \\ -\frac{c}{ad-bc} & ad-bc \end{bmatrix} = \begin{bmatrix} a^2+bc & ab+dc \\ -\frac{c}{ad-bc} & ad-bc \end{bmatrix} = \begin{bmatrix} a^2+bc & ab+dc \\ -\frac{c}{ad-bc} & ad-bc \end{bmatrix}$$

1-0[01] 000

$$\frac{c}{ad-bc} = ac+dc$$

(3)
$$-\frac{c}{ad-bc} = ac+dc$$
 (4) $\frac{a}{ad-bc} = cb+d^2$

$$a = (a^2 + bc)(ad - bc)$$
 $b = -(ab + bd)(ad - bc)$
 $c = -(ad - bc)(ac + dc)$
 $a = (ad - bc)(cb + d^2)$

d= a3 d-a2bc+abcd- b2,2 d(1-abg) = a'd - a2bc- 62c2 d= d3d-a2bc-b2c2

$$A = I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

MATH 33A LECTURE 3

MIDTERM I

Problem 5. (10 pts) Let P be the plane x + y + z = 0 and Q be the plane x + 2y + 3z = 0. Their intersection is a subspace which is a line. Find a basis for that subspace.

$$\begin{array}{c} X + y + \overline{z} = 0 \\ - X + \lambda y + 3\overline{z} = 0 \end{array}$$

X+y+2=X+2ng+3 &

-y-27=0

y+27=0 = intersection. X=Z

Basis of intersection is any nonzero vector that is on the line, so one of them is

2+2(-1)=0

(thus, the entire subspace is span [3]).

12300 ~ [10-110] X= Z 01210] Y=-2Z