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I. Consider the matrix 4x3 matrix A with linearly independent columns
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(a) (5 points) Let A be the hasis of im(A) consisting of the columns of A. Find the orthonor-
mal basis B obtained by applyving Gram-Schmidt to A

e

(b) (5 points) Use the previous part to write down the QR factorization of A, being careful

to justify your work. | |
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1Question 110/10
v - 0 pts Correct answer: $$Q = \begin{bmatrix}
1N\sqrt{2} & O & O\\
0 &1& 0\
0&0&MN
MNsqrt{2) &0 & O
\end{bmatrix}$$, $$R = \begin{bmatrix}
\sqrt{2} & \sqrt{2} & \sqrt{2\\
0&1&1\
0&0&2
\end{bmatrix}$$
- 2 pts Error in computing the $$\vec{u}$$'s
- 2 pts Error in computing $$R$$
- 1 pts Normalization error
- 2 pts Multiple computational errors
- 3 pts Missing calculation of $$R$$
- 3 pts Computed $$RN-1)$$ instead of $$R$S
- 1 pts Minor calculation error

- 3 pts Lacking justification for computing $$R$$
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2. (a) (6 points) Suppose that A is a 323 matrix given by

- G |
1 g 1.0
1 0 2

Let B be the basis of R* given by

B={(1,0,1),(1,0,0),(0,1,0)}.

Find the B-matrix of A; that is find the matrix B satisfyving

T'(ih]s = Bl

for all ¥ in R®. Show all vour steps.
I

(b) (4 points) (Unrelated to part (a)
linear transformation that

Show that the least squares solution #* to the system AF=bis ©™ =0
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Suppose that A is an marn matrix corresponding to a
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2 Question 2 10/10

v + 6 pts a) full credit: compute B=(3, 1, 0; 0, 1, 0; 0, 0, 1], and as work compute \[T(v)]\_{\\beta} for each basis
vector v. Alternatively compute the change of basis matrix S and B=S"{-1]JAS

+ 4 pts a) partial credit: Attempted using change of basis but computed using the wrong change of basis matrix,
or alternatively wrote out the formula for B in terms of the \[T(v_i)]\_{\\beta} as column vectors but did not
compute the \[T(v_i)\_{\\beta} correctly

+ 4 pts a) Partial credit: Computed T(basis vectors) and used them as columns of matrix instead of computing
\[T(v)N_{\\beta}

+ 4 pts a) partial credit: other category - overall correct approach used but several steps where execution is
incorrect

+ 3 pts a) partial credit: correct answer but no justifying work]
v + 4 pts b) full credit: either use Ax\*=proj\_{im(A)}b or formula for least squares solution x\*. In the former case
may notice that b in im(A perp) implies the right hand side of the above is the O vector, and then A injective
implies x\*=0. If you are using the formula, need to note that A*Tb=0.

+ 2 pts b) partial credit: Proof has some correct statements in the right direction and some incorrect ones, or
alternatively proof is missing steps

+ 0 pts O points
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3. (a) (5 points) Let A be the 100x100 matrix that has all —1's below the diagonal, is 1 for every
entry in the first row, and is 0 for all diagonal entries except for the first, depicted below.
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Find the determinant of the matrix A, being sure to justify your work. (Hint: There is
a trick that makes this much easier. Are there certain things we can do to a matrix that
preserve determinants?)

(b) (5 points) Let A be an nxn matrix such that A™ = 0 for some positive integer m. (Here
the 0 denotes the zero matrix, i.e the nxn matrix that has 0 in every entry, and the notation
A" means m copies of A multiplied together.) Prove that A is noninvertible
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3 Question 310/10

v + 2 pts (a) The determinant is 1

v + 3 pts (a) Full justification
+ 2 pts (a) (partial) Some work towards a right answer
+ 1 pts (a) (partial) Some justification

v + 5 pts (b) Fully correct proof
+ 2 pts (b) (partial) Some work towards a solution
+1 pts (b) (partial) $$\det A*m=0%$$
+1 pts (b) (partial) $$\det A*m = (\det A" m$$
+1 pts (b) (partial) Therefore, $$\det A = 0$$

+ 0 pts Blank or incorrect
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4. Let A be the matrix

(a) (3 points) Find the eigenvalues of A.

(b) (3 points) Find the corresponding eigenspaces of A. List the algebraic and geometric
multiplicities of each vigenvalue.

(¢) (4 pomnts) Explain why part b) tells you that A is diagonalizable. Diagonalize A by finding
S,B so that A = SBS~! aud B is diagonal.
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4 Question 4 10/10
v + 10 pts Correct
- 2 pts Error in calculating characteristic polynomial
- 1 pts Diagonalizability justification wrong
-1 pts B’s columns in the wrong order
- 1 pts Small algebraic error
- 1 pts Eigenspace mistake (this and the next two items are deducted in proportion to the number and gravity of
mistakes in calculating the eigenspaces in part b)
- 1 pts Eigenspace mistake

- 1 pts Eigenspace mistake

o Not exactly; algebraic multiplicities only sum to the dimension if you use complex numbers
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