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1. Consider the following system of lincar equations
14+ 24+23=1
T+ x4+ 213 =2
IQ+ Iy = 2
(a) (4 points) Rewrite the system as a matrix equation AF = b and convert the augmented
matrix (A | 5] to reduced row echelon form
(b) (3 points) Is the linear transformation T corresponding to A injective? Surjective? In-
vertible?
(¢) (3 points) Write down the solution set to the linear system.
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1Question 110/10
+ 10 pts Correct
v + 4 pts (a) correct
+ 3 pts (a) one mistake
+ 2 pts (a) two or more mistakes, or a more serious mistake.
v + 1 pts (b) not injective
v + 1 pts (b) surjective
v + 1 pts (c) not invertible
- 1 pts (b) did not explain fully
it more difficult to get this deduction if full points were not otherwise awarded for (b)
v + 3 pts (c) correct
+ 2 pts (c) one mistake

+ 1 pts (c) two mistakes or more serious mistakes.
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2. Let A be the 3 x 3 matrix

2 1
A= |2 4 2],
g 3 1

(n) (4 points) Find a basis for the kernel of the corresponding linear transformation,
(b) (3 points) Find a basis for the image of the corresponding linear transformation.

(¢) (3 points) Geometrically describe the kernel and the image.
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2 Question 2 10/10
v +1 pts (a) Set up equation $$A\vec{x} = \vec{0}$$ or set up row reduction.
v +1 pts (a) Row reduced $$A$$ correctly, or solved system correctly
v + 1 pts (a) Given answer spans the kernel
v +1 pts (a) Given answer is linearly indepedent in $$\mathbb{R}*3$$
v + 1 pts (b) Said image is span of columns (or other correct formulation)
v +1pts (b) Given answer spans image
v + 1 pts (b) Given answer is linearly independent in $$\mathbb{R}*3$$
v + 1 pts (c) Kernel is a line in $$\mathbb{R}*3$$
v + 1 pts (c) Image is a plane in $$\mathbb{R}*3$$
v + 1 pts (c) Kernel and image pass through the origin, or an explicit description of which line and plane
correspond to the kernel and image.

+ 0 pts Blank or incorrect
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3. (a) (5 points) Let €7,€3,¢3 be the standard basis vectors in B, Let 7 : R* = B? be a lincar
transformation that maps ¢; to ez, maps ¢ to ey, and maps the vector (1,0,1) to es.

Write down a matrix A such that 7" acts by multiplication by A on the left, i.c. T(#) = A

for all v € B3,
(b) (5 points) (This part is unrelated to part (a).) Write down a basis for the solution set to
the linear system consisting of just the single equation

Iy + 21') $ 3z = 0.
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3 Question 310/10
v + 2 pts a) full credit: Starting approach of using linearity to deduce T(e_3), or finding TA{-1} to deduce T
v + 3 pts a) full credit: Putting T(e_j) into columns of matrix, or using Gaussian elimination to find T from TA{-1}
+ 1 pts a) partial credit: Some kind of approach given that leads to the right answer, but not clearly explained;
or, linearity appears to be used, but it is not completely clear
+ 1 pts a) partial credit: formula for A in terms of T(e_j) correct, but incorrectly executed
+ 1 pts a) partial credit, first two columns of matrix correct, but no clearly written correct reasoning
+ 1 pts a) partial credit: Some kind of attempt that vaguely makes sense, but is still incorrect and doesn't lead
anywhere near the correct answer
- 1 pts computation error
- 1 pts computation error
v + 3 pts b) full credit: correct answer
v + 2 pts b) full credit: justifying work
+ 1 pts b) partial credit: some but not sufficient justification

+ 1 pts b) partial credit: partially correct work that leads to the wrong answer
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4. Let A be an n x m matrix, and let 5 be a vector in R". Lot Vi denote the solution sct to
AF = b. That is, we let

Vi = (# € R™| A% = b).
(We read the above as “the set of all # contained in B™ such that A7 = b.")
(a) (3 points) Prove that V; fails all three criteria for being a subspace if b#0

(b) (3 points) Prove that if Vi is not the empty set, ie. if V; contains at least one vector
4 )
denoted 7, then
Vi =7+ ker(A),
where 7 4+ ker(A)

{7+ jlye ker(A)}. In other words, Vi is equal to ker(A) shifted by
the vector 1

(c) (2 points) If ker(A) is a line, what iy the size of a basis of il A)? That is, what is the

number of vectors in a basis for im(A)? (Hint: your answer could possibly depend on n
and/or m)

(d) (2 points) If ker(A) is a line, is A injective? Surjective? Invertible? For each of tlese
answer cither “always”, “sometimes” or “never.”
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4 Question 4 8/10
v + 3 pts (a):

(1): show $$V_{\vec{b}}$$ does not contain $$\vec{0}$$.
Proof: $$A\vec({0} = \vec{0}$$, but $$\vec{0} \neq \vec{b}$$ by assumption; so $$\vec{O)\notin V_{\vec{b}}$$ by
definition

(2): show $$V_{\vec{b}}$$ is not closed under vector addition.

Proof: pick $$\vec{v}\in V_{\vec{b}}$$; then $$A(\vec{V])) = \vec(b}$$; but $$A(\vec{v}+\vec{v})) =\vec(b}+\vec{b)=
2\vec(b}$$, which is not equal to $$\vec{b}$$ since $$\vec{b\neq \vec{0}$$ (by assumption); so
$$\vec{v}+\vec{v} \notin V_{\vec{b}}$$

(3): show $$V_{\vec(b}}$$ is not closed under scalar multiplication.
Proof: pick $$\vec{v}\in V_{\vec{b}}$$; then $$A(\vec(v)) = \vec(b}$$; but $$A(-1\vec{v)) = - \vec{b}$$, which is
not equal to $$\vec(b}$$ since $$\vec{bl\neq \vec{0}$$ (by assumption); so $$-1\vec{v} \notin V_{\vec{b}}$$

\[ We assume $$V_{\vec{b}}$$ is nonempty for (2) and (3); however, if the set $$V_{\vec{b}}$$ is empty, then it
is not a subspace in this case either ]

v + 1 pts (b): show $$(\vec{x}*\mathrm{ker}A) \subseteq V_{\vec(b}}$$, assuming $$\vec{x} \in V_{\vec(b}}$$.
Proof: let $$\vec{y} \in \mathrm{ker}]A$$ be given. Then $$A\vec{y)}=\vec{0}$$, and $$A\vec{x}=\vec(b}$$
already (by assumption);

so $$A(\ec{x}+\vec(y)) = Alvec{x}+Alvec{y} = \vec{O}+\vec{b)=\vec{b}$$,

so $$\vec{x}+\vec{y} \in V_{\vec({b}}$$.

+ 2 pts (b): show $$V_{\vec({b}} \subseteq(\vec{x}+\mathrm{ker}A)$$, assuming $$\vec{x} \in V_{\vec[b}}$$.
Proof: let $$\vec{u} \in V_{\vec(b}} $$ be given. Then $$A\Wvec{u}=\vec{b}$$, and already $$A\vec(x} = \vec(b}$$
(by assumption).

Define $$\vec{y} = \vec{u}-\vec{x}$$; now $$A\Wec{y} = A(\vec{u}-\vec{x))=A\vec{u}-A\vec{x}=\vec{b}-
\vec{b}=\vec{0}$$; therefore $$\vec{y} \in \mathrm{ker})A$$.

So now $$\vec{u} = \vec{x}+(\vec{u}-\vec{x))= \vec{x}+\vec{y}$$, and $$\vec{y} \in \mathrm{ker}A$$; therefore
$$\vec{u}\in \vec{x}*\mathrm{ker}A$$.

v + 2 pts (c): basis for $$\mathrm{im}A$$ has $$m-1$$ vectors (by e.g. Rank Theorem; no justification needed
in answer for this part)

v +1 pts (d): $$A$$ never injective (because kernel is nontrivial (since we are told the kernel is a line and
therefore has dimension $$1>0%$$));

so also never invertible (because invertible is equivalent to being injective and surjective simultaneously)
(no justification needed for this part)

v + 1 pts (d): $$A$S$ sometimes surjective. (no justification needed for this part)

In fact, in the case of this problem (if $$\mathrm{ker}]A$$ is a line and $$A$$ is an $$n\times m$$ matrix),
$$A$S$ will be surjective iff $$n=m-1$$.

@ technically here the assumption $$k\neq 1$$ is also needed
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