
20S-MATH33A-2 Final Exam
FRANK ZHENG

TOTAL POINTS

78 / 80

QUESTION 1

1 Question 1 10 / 10

✓ + 5 pts a) Full credit: Convert the augmented

system into rref form and get \[(1, 2, 3, 0); (0, 0, 0, 1);

(0, 0, 0, 0)| 5/3; 1/6, 0]. Two free variables, x_2:=t,

x_3:=s. Solution set is then {(5/3-2t-3s, t, s, 1/6)| s, t,

real numbers}.

✓ + 3 pts b) Full credit: The rank is 2 as there are 2

pivots. The solution set is a plane in R^4.

✓ + 2 pts c) Full credit: The solution set of the

combined system is the intersection of the two

planes; it could possibly be empty (if the planes don't

intersect) a point (for example, if the planes are in

R^4 for instance and orthogonal complements of

each other), a line, or a plane (if the two planes are

the same).

   + 3 pts a) partial credit: convert to rref

   + 1 pts a) partial credit: label free variables

   + 1 pts a) partial credit: express solution set in terms

of free variables (or alternatively find a basis)

   + 1.5 pts b) partial credit: only one of rank=2 and

plane given correctly

   + 1 pts c) Partial credit: part of the solution, or some

things correct and some incorrect

   + 0 pts c) Mostly incorrect

QUESTION 2

2 Question 2 10 / 10

✓ + 1 pts a) Injective but not surjective

✓ + 1 pts b) surjective but not injective

✓ + 3 pts c) Full credit: If x is a nonzero element of

Rm then T injective implies T(x) is nonzero, and then

S injective implies S(T(x)) is nonzero, and so R(x) is

nonzero. Therefore R is injective, as its kernel

contains only the zero vector. (Not needed as this

was already shown in class, but we know R is a

linear transformation since

R(x+y)=S(T(x)+T(y))=S(T(x))+S(T(y))=R(x)+R(y) by the

linearity of S and T, and also for any scalar c,

R(c(x))=S(c(T(x))=c(S(T(x))=x(R(x)) again by the

linearity of S and T.)

✓ + 5 pts d) Full credit: Correct answer given by (-2/3,

0, 0, 2/3; 1/3, 0, 1, -1/3; -1/3, 1, 0, 1/3; 0, 0, 0, 1). Show

work by either using change of basis matrix, or by

computing 3T(e_4)=T(1, 2, 3, 4)-T(1, 0, 0, 1)-2T(e_2)-

3T(e_3)=(2, 2, 3, 4)-e_4-2e_3-3e_2=(2, -1, 1, 3) which

implies T(e_4)=(2/3, -1/3, 1/3, 1) and by computing

T(e_1)=T(1, 0, 0, 1)-T(e_4)=e_4-(2/3, -1/3, 1/3, 1) =(-2/3,

1/3, -1/3, 0)

   + 2 pts c) Partial credit: Nearly correct proof that is

missing a minor justification

   + 1 pts c) Partial credit: A reasonable attempt that

does not give a valid proof, but still makes use of the

definition of injectivity of S and T to conclude

something about the injectivity of R.

   + 3 pts d) Partial credit: Correct answer with some

but insufficient justification

   + 0 pts 0 points

QUESTION 3

3 Question 3 10 / 10

✓ + 1 pts (a): show 0,+1 are possible eigenvalues of P.

Solution:

For nonzero $$\vec{x} \in V$$ (assuming $$V \neq

\{\vec{0}\}$$) we have $$P\vec{x} = \vec{x}$$ so

$$x$$ has eigenvalue 1 for $$P$$; so 1 is an

eigenvalue of $$P$$.

For nonzero $$\vec{x} \in V^{\perp}$$ (assuming

$$V^{\perp} \neq \{\vec{0}\}$$) we have $$P\vec{x} =

\vec{0}$$ so $$\vec{x}$$ has eigenvalue 0 for



$$P$$; so $$0$$ is an eigenvalue for $$P$$.

✓ + 1 pts (a): show no eigenvalues other than 0,+1

are possible for P.

Solution:

Let $$\lambda$$ be an eigenvalue of $$P$$; let

$$\vec{x}\neq\vec{0}$$ be an eigenvector of $$P$$

with eigenvalue $$\lambda$$; so $$\lambda\vec{x}

= P\vec{x}$$. Next, due to the decomposition

$$\mathbb{R}^n = V \oplus V^{\perp}$$ we can

(uniquely) pick $$\vec{v} \in V$$ and

$$\vec{v}_{\perp} \in V^{\perp}$$ such that $$\vec{x}

= \vec{v} + \vec{v}_{\perp}$$; then now $$P(\vec{x}) =

P(\vec{v} + \vec{v}_{\perp}) = \vec{v}$$.

So now $$\vec{v} = P\vec{x} = \lambda \vec{x} =

\lambda \vec{v} + \lambda \vec{v}_{\perp}$$, so $$(1-

\lambda)\vec{v} = \lambda \vec{v}_{\perp}$$. But now

the left-hand-side $$(1-\lambda)\vec{v}$$ lies in

$$V$$ while the right-hand-side $$\lambda

\vec{v}_{\perp}$$ lies in $$V^{\perp}$$; so both sides

are $$\vec{0}$$ (since $$V \cap V^{\perp} =

\{\vec{0}\}$$).

So now both $$(1-\lambda)\vec{v} = \vec{0}$$ and

$$\lambda \vec{v}_{\perp} = \vec{0}$$. 

Case 1: if $$\vec{v}_{\perp} \neq \vec{0}$$, we must

have $$\lambda = 0$$. Case 2: if $$\vec{v}_{\perp} =

\vec{0}$$ (which then implies

$$\vec{v}\neq\vec{0}$$ since

$$\vec{x}\neq\vec{0}$$ and $$\vec{x} =

\vec{v}+\vec{v}_{\perp}$$), then we must have $$1-

\lambda=0$$.

So $$\lambda \in \{0,+1\}$$ are the only possibilities.

\[Alternate method 1: use geometric argument. If

$$\vec{x}\neq\vec{0}$$ is an eigenvector of $$P$$

with eigenvalue not zero, then $$P\vec{x}$$ is both

nonzero and parallel to $$\vec{x}$$. Since $$P$$ is

an orthogonal projection, it is only possible for

$$\vec{x},P\vec{x}$$ to be nonzero and parallel to

each other if $$\vec{x} \in V$$.]

\[Alternate method 2: use the fact that $$P^2 = P$$

to argue eigenvalues must satisfy $$\lambda^2 =

\lambda$$, whose only solutions are $$\lambda =

0,+1$$]

\[Alternate method 3: show that the 0-eigenspace is

$$V$$ and the +1-eigenspace is $$V^{\perp}$$, so

the sum of these eigenspaces has dimension $$n$$,

and therefore is all of $$\mathbb{R}^n$$; therefore

no eigenvalues other than 0,+1 are possible.

This proof uses repeatedly the fact that any two

eigenspaces (for distinct eigenvalues) (of the same

matrix) intersect trivially (meaning their intersection

is $$\{\vec{0}\}$$), and so the dimension of their sum

is the sum of their dimensions]

✓ + 2 pts (b): conclude 0-eigenspace is

$$V^{\perp}$$ and +1-eigenspace is $$V$$.

Proof:

Let $$E_0$$ and $$E_1$$ denote the eigenspaces

of $$P$$ for eigenvalues $$0$$ and $$+1$$

respectively.

First, already $$P$$ acts as multiplication by 0 on

$$V^{\perp}$$ and as multiplication by 1 on $$V$$.

(Since if $$\vec{v} \in V$$ then $$P\vec{v} =

\vec{v}$$, and if $$\vec{v}^{\perp} \in V^{\perp}$$

then $$P\vec{v}^{\perp} = \vec{0}$$.) This proves

$$V^{\perp} \subseteq E_0$$ and $$V \subseteq

E_1$$.

It only remains to show the converse: that

eigenvectors of $$P$$ with eigenvalue 0 are in

$$V^{\perp}$$, and that eigenvectors of $$P$$ with

eigenvalue 1 are in $$V$$. (In other words, that

$$E_0 \subseteq V^{\perp}$$ and that $$E_1

\subseteq V$$.)

\[Method 1]

Let $$\vec{x} \in \mathbb{R}^n$$ be a given

eigenvector of $$P$$ (with $$\vec{x}\neq\vec{0}$$)

with eigenvalue $$\lambda$$; so $$\lambda \vec{x}

= P\vec{x}$$. Using $$\mathbb{R}^n = V \oplus



V^{\perp}$$ write $$\vec{x} = \vec{v} +

\vec{v}^{\perp}$$ for some $$\vec{v} \in V$$ and

some $$\vec{v}^{\perp}\in V^{\perp}$$. 

From part (a) we must have $$\lambda = 0$$ or

$$\lambda = 1$$.

We want to show that if $$\lambda = 0$$ then

$$\vec{x} \in V^{\perp}$$, and that if $$\lambda =

1$$ then $$\vec{x} \in V$$.

Note $$P\vec{x} = P(\vec{v}+\vec{v}^{\perp}) =

\vec{v}$$.

Case 1: if $$\lambda = 0$$, then $$\vec{0} = 0\vec{x}

= P\vec{x} = \vec{v}$$; so $$\vec{v}=\vec{0}$$,

therefore $$\vec{x} = \vec{v}^{\perp} \in V^{\perp}$$.

Case 2: if $$\lambda = 1$$, then $$\vec{x} = 1\vec{x}

= P\vec{x} = \vec{v}$$; so $$\vec{x} = \vec{v} \in V$$.

This completes the proof that $$V=E_1$$ and

$$V^{\perp} = E_0$$.

\[Method 2]

We have shown already that $$V^{\perp} \subseteq

E_0$$ and $$V \subseteq E_1$$. It follows that

$$V{\perp} + V \subseteq E_0 + E_1$$. But

$$V^{\perp}+V = \mathbb{R}^n$$; it must be the case

that $$E_0 + E_1 = \mathbb{R}^n$$. 

Next, we know $$E_0 \cap E_1 = \{\vec{0}\}$$ since

$$E_0,E_1$$ are eigenspaces with distinct

eigenvalues; it follows that

$$\mathrm{dim}(E_0+E_1) =

\mathrm{dim}E_0+\mathrm{dim}E_1$$. But $$E_0 +

E_1 = \mathbb{R}^n$$. So now we have $$n =

\mathrm{dim}E_0+\mathrm{dim}E_1$$.

Let $$k := \mathrm{dim}V^{\perp}$$; so

$$\mathrm{dim}V = n-k$$ (because $$V\oplus

V^{\perp} = \mathbb{R}^n$$). It follows that

$$\mathrm{dim}E_0 \geq k$$ and

$$\mathrm{dim}E_1 \geq n-k$$ (since $$E_0

\supseteq V^{\perp}$$ and $$E_1 \supseteq V$$).

Substituting $$\mathrm{dim}E_1 = n-

\mathrm{dim}E_0$$ in the second relation above

gives $$n-\mathrm{dim}E_0\geq n-k$$, which is

equivalent to $$\mathrm{dim}E_0 \leq k$$.

So we have found $$\mathrm{dim}E_0\geq k$$ and

$$\mathrm{dim}E_0 \leq k$$; it follows that

$$\mathrm{dim}E_0 = k$$. And since $$

\mathrm{dim}E_1 +\mathrm{dim}E_0=n$$ we then

have $$\mathrm{dim}E_1 = n-k$$.

Finally, since $$V^{\perp} \subseteq E_0$$ and

$$\mathrm{dim}V^{\perp} = k = \mathrm{dim}E_0$$

we must have $$E_0 = V^{\perp}$$; 

similarly, since  $$V\subseteq E_1$$ and

$$\mathrm{dim}V = n-k = \mathrm{dim}E_1$$ we

must have $$E_1 = V$$.

✓ + 1 pts (b): showing work/justification/proof

✓ + 1 pts (c): correctly say P can be diagonalized

✓ + 1 pts (c): provide sufficient justification for

diagonalizability.

(e.g. the eigenspaces of $$P$$ span all of

$$\mathbb{R}^n$$, since $$\mathbb{R}^n =

V^{\perp} \oplus V = E_0^{(P)} \oplus E_{+1}^{(P)}  $$)

(equivalently: the geometric multiplicities of the

eigenspaces add to n)

(more precisely: we can diagonalize $$P = SDS^{-

1}$$ where the columns of $$S$$ consist of a basis

for $$V$$ followed by a basis for $$V^{\perp}$$,

and $$D$$ is diagonal with first 1's for the $$V$$

basis and 0's for the $$V^{\perp}$$ basis.)

\[alternate method: show P is symmetric, then apply

spectral theorem]

✓ + 2 pts (d): argue that $$P^2 = P$$.

\[Method 1] 

We recall $$P$$ is diagonalizable (as shown in part

(c)), and its eigenvalues are only $$0,1$$.

It follows that we can write $$P = SDS^{-1}$$ where



$$S,D$$ are square matrices (of the same size as

$$P$$) with $$S$$ invertible, and $$D$$ diagonal

with all diagonal entries of $$D$$ being either 0 or

1.

In particular it follows that $$D^2 = D$$ (because

$$D$$ is diagonal, and each diagonal entry $$t$$

of $$D$$ is either 0 or 1 and therefore satisfies

$$t^2 = t$$).

Now $$P^2 = (SDS^{-1})^2 = (SDS^{-1})(SDS^{-1}) =

SD(S^{-1}S)DS^{-1} = SDIDS^{-1} = S(D^2)S^{-1} = SDS^{-

1} = P;$$ note we used $$D^2 = D$$.

\[Method 2] 

Recall that $$P\vec{a} \in V$$ for any vector

$$\vec{a} \in \mathbb{R}^n$$. Furthermore, we also

know $$P\vec{v} = \vec{v}$$ for any $$\vec{v} \in

V$$.

It follows that for any vector $$\vec{x} \in

\mathbb{R}^n$$ we have $$P(P\vec{x}) = P\vec{x}$$;

so $$P^2\vec{x} = P\vec{x}$$. 

Since $$P^2$$ and $$P$$ agree on all vectors

$$\vec{x} \in \mathbb{R}^n$$ it follows that $$P^2 =

P$$.

✓ + 1 pts (d): showing work/justification

QUESTION 4

4 Question 4 10 / 10

✓ + 1 pts (a): correct matrix $$A = \begin{bmatrix}

\cos45^{\circ} & -\sin45^{\circ}\\ 

\sin45^{\circ} & \cos45^{\circ}

\end{bmatrix} = \begin{bmatrix}

\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\\ 

\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}

\end{bmatrix}$$

✓ + 1 pts (a): correct change-of-basis formula:

$$[A]_{\mathcal{B}} = S^{-1}AS$$ where the columns

of $$S$$ are  the ordered basis vectors in

$$\mathcal{B}$$ 

(or other method)

✓ + 1 pts (a): correctly identify $$S = \begin{bmatrix}

1 & 0\\ 

1 & 1

\end{bmatrix}$$, and compute $$S^{-1} =

\begin{bmatrix}

1 & 0\\ 

-1 & 1

\end{bmatrix}$$

   + 0 pts temp

✓ + 1 pts (a): compute $$[A]_{\mathcal{B}} =

\begin{bmatrix}

0 & -\frac{1}{\sqrt{2}}\\ 

\sqrt{2} & \sqrt{2}

\end{bmatrix}$$

✓ + 1 pts (b): correct change-of-basis formulas for

$$[A]_{\mathcal{B}}$$, $$[B]_{\mathcal{B}}$$,

$$[AB]_{\mathcal{B}}$$

✓ + 2 pts (b): directly compute: 

$$[A]_{\mathcal{B}} [B]_{\mathcal{B}} = (S^{-1}AS)(S^{-

1}BS) = S^{-1}A(SS^{-1})BS = S^{-1}AIBS = S^{-1}(AB)S =

[AB]_{\mathcal{B}}.$$

Here $$S$$ is the matrix whose columns are the

vectors in $$\mathcal{B}$$ (in the same order as in

$$\mathcal{B}$$).

✓ + 1 pts (c): argue that a rotation matrix has

determinant $$\pm1$$. 

For example, a geometric argument can be used, by

applying the geometric definition of determinant.

Rotations preserve lengths (as well as angles and

volumes) so a rotation maps a cube to another cube

of the same volume.

\[Specifically, the determinant is +1 for orientation-

preserving rotations (known as proper rotations),

and -1 for orientation-reversing rotations (known as

improper rotations).]

\[Note: just +1 instead of ±1 will also be accepted, as

the textbook defines a rotation as having

determinant +1.]



Alternatively, we can argue rotation matrices are

orthogonal matrices (because they preserve length),

and orthogonal matrices must have determinant

$$\pm1$$.

✓ + 2 pts (c): argue that $$A$$ and

$$[A]_{\mathcal{B}}$$ have the same determinant.

Proof: $$\mathrm{det}([A]_{\mathcal{B}}) =

\mathrm{det}(S^{-1}AS) = \mathrm{det}(S^{-

1})\mathrm{det}(A)\mathrm{det}(S) = \mathrm{det}(A)

\,\mathrm{det}(S)^{-1}\mathrm{det}(S) =

\mathrm{det}(A).$$ Note here we used the

multiplicative properties of determinant (i.e.,

$$\mathrm{det}(CC') =

\mathrm{det}(C)\mathrm{det}(C')$$ for any square

matrices $$C,C'$$ of the same size).

\[More generally, any two similar square matrices

have the same determinant.]

Alternatively, we can argue that the determinant of a

linear operator (or square matrix) can be calculated

in a basis-independent way (i.e. the geometric

definition of determinant, which looks at how the

operator changes the volume of oriented

parallelepipeds, etc), and so the determinant should

be the same in any basis.

QUESTION 5

5 Question 5 8 / 10

✓ + 2 pts (a) Made a connection between areas and

determinants

   + 1 pts (a) Computed $$A =\left[ \begin{array}{cc} 4 &

-2/5 \\ 5 & -2/5\end{array}\right]$$ or $$A =\left[

\begin{array}{cc} 2 & 2/5 \\ 3 & 2/5\end{array}\right]$$,

or its determinant of $$\pm 2/5$$

✓ + 1 pts (a) Used $$\det A = \det A^T$$ or $$\det

A^{-1} = 1/\det A$$, or computed $$(A^TA)^{-1}$$

directly

   + 1 pts (a) Correct final answer:

$$\displaystyle\frac{25}{2}$$

✓ + 1 pts (b) Correct determinant: $$4$$

✓ + 1 pts (b) Showed work, or partial credit for work

towards a determinant

✓ + 1 pts (c) Correct determinant: $$0$$

✓ + 2 pts (c) Showed work, or partial credit for work

towards a determinant

1      This should be 2/5, not 5/2

QUESTION 6

6 Question 6 10 / 10

✓ + 2 pts (a) Correct matrix: $$A =

\left[\begin{array}{ccc} 3 & 0 & 2\\ 0 & 2 & 0\\ 2 & 0 &

3\end{array} \right]$$

✓ + 1 pts (b) Correct eigenvalues: $$\lambda =

1,2,5$$

✓ + 1 pts (b) Correct eigenvectors/eigenspaces: $$

E_1 = \left\{ \left[\begin{array}{c}t \\ 0 \\

-t\end{array}\right]: t \in \mathbb{R}\right\} $$ $$ E_2

= \left\{ \left[\begin{array}{c}0 \\ t \\0

\end{array}\right]: t \in \mathbb{R}\right\} $$ $$ E_5 =

\left\{ \left[\begin{array}{c}t \\ 0 \\t \end{array}\right]: t

\in \mathbb{R}\right\} $$

✓ + 1 pts (b) Correct diagonalization: $$ A = SDS^{T}

=SDS^{-1}$$ where $$ S = \left[\begin{array}{ccc}

\frac{-1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\\ 0 & 1 & 0\\

\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\end{array}

\right]$$ and $$D = \left[\begin{array}{ccc} 1 & 0 & 0\\

0 & 2 & 0\\ 0 & 0 & 5\end{array} \right]$$

✓ + 1 pts (c) $$q$$ is positive definite, or positive

semidefinite (or correct answer based on

eigenvalues from (b))

✓ + 2 pts (d) This level set is an ellipsoid (or correct

shape based on computations from (b))

✓ + 2 pts (d) Rewrote quadratic form as $$q(\vec{x}) =

c_1^2 + 2c_2^2 + 5c_3^2$$, or other justification

using computations from (b)

   + 1 pts (a) (partial) Gave a matrix that either satisfies

$$q(\vec{x}) = \vec{x} \cdot A\vec{x}$$, or is

symmetric, but not both

QUESTION 7

7 Question 7 10 / 10

✓ + 10 pts Correct



Part a correct
   + 1.5 pts T(1 2 3 4 5) = (1 2 3 4 5)

   + 1 pts T e_1 = -e_1

   + 1 pts T e_2 = 10 e_2

   + 1.5 pts dim ker T = 2

   + 2 pts state that diagonalization is the way to go

   + 3 pts complete diagonalization

   + 10 pts Did not simplify SDS^{-1}

   + 9 pts small error in (b) in finishing up; ie, arithmetic

or appropriate form

   - 2 pts 2 or more errors in (b), or more significant

error (like putting columns of S in the wrong order,

very incorrect characteristic polynomial)

   + 3 pts Make clear that you see a pattern

   + 2 pts correct statement of final answer. This

deduction is deemed appropriately, because if you

choose to do the problem by just looking for a pattern

and not carrying out the diagonalization, then

correctly discerning what exactly the pattern is much

of the difficulty of the problem.

   + 0 pts No work

QUESTION 8

8 Question 8 10 / 10

(a)
   + 2 pts compute B^T B

   + 2 pts get eigenvalues

   + 1 pts square root

(b)
   + 1 pts V matrix

   + 1 pts Sigma matrix (with dimensions and

placement matching U and V)

   + 1.5 pts First two columns of U

   + 0.5 pts U is square

   + 1 pts third column of U (this point is not award if U

is only given 2 columns, or if the third column is

incorrect)

   + 2 pts Awarded if reasonable effort is shown for

each part of (b), but fewer than 2 other points in (b)

are awarded. This is not awarded concurrently with

the other points but in lieu of them.

✓ + 10 pts Correct

Page 6





1 Question 1 10 / 10

✓ + 5 pts a) Full credit: Convert the augmented system into rref form and get \[(1, 2, 3, 0); (0, 0, 0, 1); (0, 0, 0, 0)|

5/3; 1/6, 0]. Two free variables, x_2:=t, x_3:=s. Solution set is then {(5/3-2t-3s, t, s, 1/6)| s, t, real numbers}.

✓ + 3 pts b) Full credit: The rank is 2 as there are 2 pivots. The solution set is a plane in R^4.

✓ + 2 pts c) Full credit: The solution set of the combined system is the intersection of the two planes; it could

possibly be empty (if the planes don't intersect) a point (for example, if the planes are in R^4 for instance and

orthogonal complements of each other), a line, or a plane (if the two planes are the same).

   + 3 pts a) partial credit: convert to rref

   + 1 pts a) partial credit: label free variables

   + 1 pts a) partial credit: express solution set in terms of free variables (or alternatively find a basis)

   + 1.5 pts b) partial credit: only one of rank=2 and plane given correctly

   + 1 pts c) Partial credit: part of the solution, or some things correct and some incorrect

   + 0 pts c) Mostly incorrect

Page 8







2 Question 2 10 / 10

✓ + 1 pts a) Injective but not surjective

✓ + 1 pts b) surjective but not injective

✓ + 3 pts c) Full credit: If x is a nonzero element of Rm then T injective implies T(x) is nonzero, and then S

injective implies S(T(x)) is nonzero, and so R(x) is nonzero. Therefore R is injective, as its kernel contains only

the zero vector. (Not needed as this was already shown in class, but we know R is a linear transformation since

R(x+y)=S(T(x)+T(y))=S(T(x))+S(T(y))=R(x)+R(y) by the linearity of S and T, and also for any scalar c,

R(c(x))=S(c(T(x))=c(S(T(x))=x(R(x)) again by the linearity of S and T.)

✓ + 5 pts d) Full credit: Correct answer given by (-2/3, 0, 0, 2/3; 1/3, 0, 1, -1/3; -1/3, 1, 0, 1/3; 0, 0, 0, 1). Show work

by either using change of basis matrix, or by computing 3T(e_4)=T(1, 2, 3, 4)-T(1, 0, 0, 1)-2T(e_2)-3T(e_3)=(2, 2,

3, 4)-e_4-2e_3-3e_2=(2, -1, 1, 3) which implies T(e_4)=(2/3, -1/3, 1/3, 1) and by computing T(e_1)=T(1, 0, 0, 1)-

T(e_4)=e_4-(2/3, -1/3, 1/3, 1) =(-2/3, 1/3, -1/3, 0)

   + 2 pts c) Partial credit: Nearly correct proof that is missing a minor justification

   + 1 pts c) Partial credit: A reasonable attempt that does not give a valid proof, but still makes use of the

definition of injectivity of S and T to conclude something about the injectivity of R.

   + 3 pts d) Partial credit: Correct answer with some but insufficient justification

   + 0 pts 0 points
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3 Question 3 10 / 10

✓ + 1 pts (a): show 0,+1 are possible eigenvalues of P. 

Solution:

For nonzero $$\vec{x} \in V$$ (assuming $$V \neq \{\vec{0}\}$$) we have $$P\vec{x} = \vec{x}$$ so $$x$$ has

eigenvalue 1 for $$P$$; so 1 is an eigenvalue of $$P$$.

For nonzero $$\vec{x} \in V^{\perp}$$ (assuming $$V^{\perp} \neq \{\vec{0}\}$$) we have $$P\vec{x} =

\vec{0}$$ so $$\vec{x}$$ has eigenvalue 0 for $$P$$; so $$0$$ is an eigenvalue for $$P$$.

✓ + 1 pts (a): show no eigenvalues other than 0,+1  are possible for P.

Solution:

Let $$\lambda$$ be an eigenvalue of $$P$$; let $$\vec{x}\neq\vec{0}$$ be an eigenvector of $$P$$ with

eigenvalue $$\lambda$$; so $$\lambda\vec{x} = P\vec{x}$$. Next, due to the decomposition $$\mathbb{R}^n =

V \oplus V^{\perp}$$ we can (uniquely) pick $$\vec{v} \in V$$ and $$\vec{v}_{\perp} \in V^{\perp}$$ such that

$$\vec{x} = \vec{v} + \vec{v}_{\perp}$$; then now $$P(\vec{x}) = P(\vec{v} + \vec{v}_{\perp}) = \vec{v}$$.

So now $$\vec{v} = P\vec{x} = \lambda \vec{x} = \lambda \vec{v} + \lambda \vec{v}_{\perp}$$, so $$(1-

\lambda)\vec{v} = \lambda \vec{v}_{\perp}$$. But now the left-hand-side $$(1-\lambda)\vec{v}$$ lies in $$V$$

while the right-hand-side $$\lambda \vec{v}_{\perp}$$ lies in $$V^{\perp}$$; so both sides are $$\vec{0}$$

(since $$V \cap V^{\perp} = \{\vec{0}\}$$).

So now both $$(1-\lambda)\vec{v} = \vec{0}$$ and $$\lambda \vec{v}_{\perp} = \vec{0}$$. 

Case 1: if $$\vec{v}_{\perp} \neq \vec{0}$$, we must have $$\lambda = 0$$. Case 2: if $$\vec{v}_{\perp} =

\vec{0}$$ (which then implies $$\vec{v}\neq\vec{0}$$ since $$\vec{x}\neq\vec{0}$$ and $$\vec{x} =

\vec{v}+\vec{v}_{\perp}$$), then we must have $$1-\lambda=0$$.

So $$\lambda \in \{0,+1\}$$ are the only possibilities.

\[Alternate method 1: use geometric argument. If $$\vec{x}\neq\vec{0}$$ is an eigenvector of $$P$$ with

eigenvalue not zero, then $$P\vec{x}$$ is both nonzero and parallel to $$\vec{x}$$. Since $$P$$ is an

orthogonal projection, it is only possible for $$\vec{x},P\vec{x}$$ to be nonzero and parallel to each other if

$$\vec{x} \in V$$.]

\[Alternate method 2: use the fact that $$P^2 = P$$ to argue eigenvalues must satisfy $$\lambda^2 =

\lambda$$, whose only solutions are $$\lambda = 0,+1$$]

\[Alternate method 3: show that the 0-eigenspace is $$V$$ and the +1-eigenspace is $$V^{\perp}$$, so the

sum of these eigenspaces has dimension $$n$$, and therefore is all of $$\mathbb{R}^n$$; therefore no

eigenvalues other than 0,+1 are possible.

This proof uses repeatedly the fact that any two eigenspaces (for distinct eigenvalues) (of the same matrix)

intersect trivially (meaning their intersection is $$\{\vec{0}\}$$), and so the dimension of their sum is the sum of

their dimensions]

✓ + 2 pts (b): conclude 0-eigenspace is $$V^{\perp}$$ and +1-eigenspace is $$V$$.

Proof:

Let $$E_0$$ and $$E_1$$ denote the eigenspaces of $$P$$ for eigenvalues $$0$$ and $$+1$$ respectively.



First, already $$P$$ acts as multiplication by 0 on $$V^{\perp}$$ and as multiplication by 1 on $$V$$. (Since if

$$\vec{v} \in V$$ then $$P\vec{v} = \vec{v}$$, and if $$\vec{v}^{\perp} \in V^{\perp}$$ then $$P\vec{v}^{\perp} =

\vec{0}$$.) This proves $$V^{\perp} \subseteq E_0$$ and $$V \subseteq E_1$$.

It only remains to show the converse: that eigenvectors of $$P$$ with eigenvalue 0 are in $$V^{\perp}$$, and

that eigenvectors of $$P$$ with eigenvalue 1 are in $$V$$. (In other words, that $$E_0 \subseteq V^{\perp}$$

and that $$E_1 \subseteq V$$.)

\[Method 1]

Let $$\vec{x} \in \mathbb{R}^n$$ be a given eigenvector of $$P$$ (with $$\vec{x}\neq\vec{0}$$) with

eigenvalue $$\lambda$$; so $$\lambda \vec{x} = P\vec{x}$$. Using $$\mathbb{R}^n = V \oplus V^{\perp}$$

write $$\vec{x} = \vec{v} + \vec{v}^{\perp}$$ for some $$\vec{v} \in V$$ and some $$\vec{v}^{\perp}\in

V^{\perp}$$. 

From part (a) we must have $$\lambda = 0$$ or $$\lambda = 1$$.

We want to show that if $$\lambda = 0$$ then $$\vec{x} \in V^{\perp}$$, and that if $$\lambda = 1$$ then

$$\vec{x} \in V$$.

Note $$P\vec{x} = P(\vec{v}+\vec{v}^{\perp}) = \vec{v}$$.

Case 1: if $$\lambda = 0$$, then $$\vec{0} = 0\vec{x} = P\vec{x} = \vec{v}$$; so $$\vec{v}=\vec{0}$$, therefore

$$\vec{x} = \vec{v}^{\perp} \in V^{\perp}$$. Case 2: if $$\lambda = 1$$, then $$\vec{x} = 1\vec{x} = P\vec{x} =

\vec{v}$$; so $$\vec{x} = \vec{v} \in V$$.

This completes the proof that $$V=E_1$$ and $$V^{\perp} = E_0$$.

\[Method 2]

We have shown already that $$V^{\perp} \subseteq E_0$$ and $$V \subseteq E_1$$. It follows that $$V{\perp}

+ V \subseteq E_0 + E_1$$. But $$V^{\perp}+V = \mathbb{R}^n$$; it must be the case that $$E_0 + E_1 =

\mathbb{R}^n$$. 

Next, we know $$E_0 \cap E_1 = \{\vec{0}\}$$ since $$E_0,E_1$$ are eigenspaces with distinct eigenvalues; it

follows that $$\mathrm{dim}(E_0+E_1) = \mathrm{dim}E_0+\mathrm{dim}E_1$$. But $$E_0 + E_1 =

\mathbb{R}^n$$. So now we have $$n = \mathrm{dim}E_0+\mathrm{dim}E_1$$.

Let $$k := \mathrm{dim}V^{\perp}$$; so $$\mathrm{dim}V = n-k$$ (because $$V\oplus V^{\perp} =

\mathbb{R}^n$$). It follows that $$\mathrm{dim}E_0 \geq k$$ and $$\mathrm{dim}E_1 \geq n-k$$ (since

$$E_0 \supseteq V^{\perp}$$ and $$E_1 \supseteq V$$).

Substituting $$\mathrm{dim}E_1 = n-\mathrm{dim}E_0$$ in the second relation above gives $$n-

\mathrm{dim}E_0\geq n-k$$, which is equivalent to $$\mathrm{dim}E_0 \leq k$$.



So we have found $$\mathrm{dim}E_0\geq k$$ and $$\mathrm{dim}E_0 \leq k$$; it follows that

$$\mathrm{dim}E_0 = k$$. And since $$ \mathrm{dim}E_1 +\mathrm{dim}E_0=n$$ we then have

$$\mathrm{dim}E_1 = n-k$$.

Finally, since $$V^{\perp} \subseteq E_0$$ and $$\mathrm{dim}V^{\perp} = k = \mathrm{dim}E_0$$ we must

have $$E_0 = V^{\perp}$$; 

similarly, since  $$V\subseteq E_1$$ and $$\mathrm{dim}V = n-k = \mathrm{dim}E_1$$ we must have $$E_1 =

V$$.

✓ + 1 pts (b): showing work/justification/proof

✓ + 1 pts (c): correctly say P can be diagonalized

✓ + 1 pts (c): provide sufficient justification for diagonalizability.

(e.g. the eigenspaces of $$P$$ span all of $$\mathbb{R}^n$$, since $$\mathbb{R}^n = V^{\perp} \oplus V =

E_0^{(P)} \oplus E_{+1}^{(P)}  $$)

(equivalently: the geometric multiplicities of the eigenspaces add to n)

(more precisely: we can diagonalize $$P = SDS^{-1}$$ where the columns of $$S$$ consist of a basis for

$$V$$ followed by a basis for $$V^{\perp}$$, and $$D$$ is diagonal with first 1's for the $$V$$ basis and 0's

for the $$V^{\perp}$$ basis.)

\[alternate method: show P is symmetric, then apply spectral theorem]

✓ + 2 pts (d): argue that $$P^2 = P$$.

\[Method 1] 

We recall $$P$$ is diagonalizable (as shown in part (c)), and its eigenvalues are only $$0,1$$.

It follows that we can write $$P = SDS^{-1}$$ where $$S,D$$ are square matrices (of the same size as $$P$$)

with $$S$$ invertible, and $$D$$ diagonal with all diagonal entries of $$D$$ being either 0 or 1.

In particular it follows that $$D^2 = D$$ (because $$D$$ is diagonal, and each diagonal entry $$t$$ of $$D$$

is either 0 or 1 and therefore satisfies $$t^2 = t$$).

Now $$P^2 = (SDS^{-1})^2 = (SDS^{-1})(SDS^{-1}) = SD(S^{-1}S)DS^{-1} = SDIDS^{-1} = S(D^2)S^{-1} = SDS^{-1} = P;$$

note we used $$D^2 = D$$.

\[Method 2] 

Recall that $$P\vec{a} \in V$$ for any vector $$\vec{a} \in \mathbb{R}^n$$. Furthermore, we also know

$$P\vec{v} = \vec{v}$$ for any $$\vec{v} \in V$$.

It follows that for any vector $$\vec{x} \in \mathbb{R}^n$$ we have $$P(P\vec{x}) = P\vec{x}$$; so $$P^2\vec{x}

= P\vec{x}$$. 

Since $$P^2$$ and $$P$$ agree on all vectors $$\vec{x} \in \mathbb{R}^n$$ it follows that $$P^2 = P$$.



✓ + 1 pts (d): showing work/justification
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4 Question 4 10 / 10

✓ + 1 pts (a): correct matrix $$A = \begin{bmatrix}

\cos45^{\circ} & -\sin45^{\circ}\\ 

\sin45^{\circ} & \cos45^{\circ}

\end{bmatrix} = \begin{bmatrix}

\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\\ 

\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}

\end{bmatrix}$$

✓ + 1 pts (a): correct change-of-basis formula: $$[A]_{\mathcal{B}} = S^{-1}AS$$ where the columns of $$S$$ are

the ordered basis vectors in $$\mathcal{B}$$ 

(or other method)

✓ + 1 pts (a): correctly identify $$S = \begin{bmatrix}

1 & 0\\ 

1 & 1

\end{bmatrix}$$, and compute $$S^{-1} = \begin{bmatrix}

1 & 0\\ 

-1 & 1

\end{bmatrix}$$

   + 0 pts temp

✓ + 1 pts (a): compute $$[A]_{\mathcal{B}} =  \begin{bmatrix}

0 & -\frac{1}{\sqrt{2}}\\ 

\sqrt{2} & \sqrt{2}

\end{bmatrix}$$

✓ + 1 pts (b): correct change-of-basis formulas for $$[A]_{\mathcal{B}}$$, $$[B]_{\mathcal{B}}$$,

$$[AB]_{\mathcal{B}}$$

✓ + 2 pts (b): directly compute: 

$$[A]_{\mathcal{B}} [B]_{\mathcal{B}} = (S^{-1}AS)(S^{-1}BS) = S^{-1}A(SS^{-1})BS = S^{-1}AIBS = S^{-1}(AB)S =

[AB]_{\mathcal{B}}.$$

Here $$S$$ is the matrix whose columns are the vectors in $$\mathcal{B}$$ (in the same order as in

$$\mathcal{B}$$).

✓ + 1 pts (c): argue that a rotation matrix has determinant $$\pm1$$. 

For example, a geometric argument can be used, by applying the geometric definition of determinant.

Rotations preserve lengths (as well as angles and volumes) so a rotation maps a cube to another cube of the

same volume.

\[Specifically, the determinant is +1 for orientation-preserving rotations (known as proper rotations), and -1 for

orientation-reversing rotations (known as improper rotations).]

\[Note: just +1 instead of ±1 will also be accepted, as the textbook defines a rotation as having determinant +1.]

Alternatively, we can argue rotation matrices are orthogonal matrices (because they preserve length), and



orthogonal matrices must have determinant $$\pm1$$.

✓ + 2 pts (c): argue that $$A$$ and $$[A]_{\mathcal{B}}$$ have the same determinant.

Proof: $$\mathrm{det}([A]_{\mathcal{B}}) = \mathrm{det}(S^{-1}AS) = \mathrm{det}(S^{-

1})\mathrm{det}(A)\mathrm{det}(S) = \mathrm{det}(A) \,\mathrm{det}(S)^{-1}\mathrm{det}(S) = \mathrm{det}(A).$$

Note here we used the multiplicative properties of determinant (i.e., $$\mathrm{det}(CC') =

\mathrm{det}(C)\mathrm{det}(C')$$ for any square matrices $$C,C'$$ of the same size).

\[More generally, any two similar square matrices have the same determinant.]

Alternatively, we can argue that the determinant of a linear operator (or square matrix) can be calculated in a

basis-independent way (i.e. the geometric definition of determinant, which looks at how the operator changes

the volume of oriented parallelepipeds, etc), and so the determinant should be the same in any basis.
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5 Question 5 8 / 10

✓ + 2 pts (a) Made a connection between areas and determinants

   + 1 pts (a) Computed $$A =\left[ \begin{array}{cc} 4 & -2/5 \\ 5 & -2/5\end{array}\right]$$ or $$A =\left[

\begin{array}{cc} 2 & 2/5 \\ 3 & 2/5\end{array}\right]$$, or its determinant of $$\pm 2/5$$

✓ + 1 pts (a) Used $$\det A = \det A^T$$ or $$\det A^{-1} = 1/\det A$$, or computed $$(A^TA)^{-1}$$ directly

   + 1 pts (a) Correct final answer: $$\displaystyle\frac{25}{2}$$

✓ + 1 pts (b) Correct determinant: $$4$$

✓ + 1 pts (b) Showed work, or partial credit for work towards a determinant

✓ + 1 pts (c) Correct determinant: $$0$$

✓ + 2 pts (c) Showed work, or partial credit for work towards a determinant

1      This should be 2/5, not 5/2
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6 Question 6 10 / 10

✓ + 2 pts (a) Correct matrix: $$A = \left[\begin{array}{ccc} 3 & 0 & 2\\ 0 & 2 & 0\\ 2 & 0 & 3\end{array} \right]$$

✓ + 1 pts (b) Correct eigenvalues: $$\lambda = 1,2,5$$

✓ + 1 pts (b) Correct eigenvectors/eigenspaces: $$ E_1 = \left\{ \left[\begin{array}{c}t \\ 0 \\ -t\end{array}\right]: t

\in \mathbb{R}\right\} $$ $$ E_2 = \left\{ \left[\begin{array}{c}0 \\ t \\0 \end{array}\right]: t \in \mathbb{R}\right\}

$$ $$ E_5 = \left\{ \left[\begin{array}{c}t \\ 0 \\t \end{array}\right]: t \in \mathbb{R}\right\} $$

✓ + 1 pts (b) Correct diagonalization: $$ A = SDS^{T} =SDS^{-1}$$ where $$ S = \left[\begin{array}{ccc} \frac{-

1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\\ 0 & 1 & 0\\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\end{array} \right]$$ and $$D

= \left[\begin{array}{ccc} 1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 5\end{array} \right]$$

✓ + 1 pts (c) $$q$$ is positive definite, or positive semidefinite (or correct answer based on eigenvalues from

(b))

✓ + 2 pts (d) This level set is an ellipsoid (or correct shape based on computations from (b))

✓ + 2 pts (d) Rewrote quadratic form as $$q(\vec{x}) = c_1^2 + 2c_2^2 + 5c_3^2$$, or other justification using

computations from (b)

   + 1 pts (a) (partial) Gave a matrix that either satisfies $$q(\vec{x}) = \vec{x} \cdot A\vec{x}$$, or is symmetric, but

not both

Page 25









7 Question 7 10 / 10

✓ + 10 pts Correct

Part a correct
   + 1.5 pts T(1 2 3 4 5) = (1 2 3 4 5)

   + 1 pts T e_1 = -e_1

   + 1 pts T e_2 = 10 e_2

   + 1.5 pts dim ker T = 2

   + 2 pts state that diagonalization is the way to go

   + 3 pts complete diagonalization

   + 10 pts Did not simplify SDS^{-1}

   + 9 pts small error in (b) in finishing up; ie, arithmetic or appropriate form

   - 2 pts 2 or more errors in (b), or more significant error (like putting columns of S in the wrong order, very

incorrect characteristic polynomial)

   + 3 pts Make clear that you see a pattern

   + 2 pts correct statement of final answer. This deduction is deemed appropriately, because if you choose to do

the problem by just looking for a pattern and not carrying out the diagonalization, then correctly discerning what

exactly the pattern is much of the difficulty of the problem.

   + 0 pts No work
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8 Question 8 10 / 10

(a)
   + 2 pts compute B^T B

   + 2 pts get eigenvalues

   + 1 pts square root

(b)
   + 1 pts V matrix

   + 1 pts Sigma matrix (with dimensions and placement matching U and V)

   + 1.5 pts First two columns of U

   + 0.5 pts U is square

   + 1 pts third column of U (this point is not award if U is only given 2 columns, or if the third column is incorrect)

   + 2 pts Awarded if reasonable effort is shown for each part of (b), but fewer than 2 other points in (b) are

awarded. This is not awarded concurrently with the other points but in lieu of them.

✓ + 10 pts Correct
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