20S-MATH33A-2 Final Exam

FRANK ZHENG

TOTAL POINTS

78 /80

QUESTION 1
1Question 110/10

v + 5 pts a) Full credit: Convert the augmented
system into rref form and get \[(1, 2, 3, 0); (O, O, O, 1);
(0, 0, 0, 0)I 5/3; 1/6, O]. Two free variables, x_2:=t,
x_3:=s. Solution set is then {(5/3-2t-3s, t, s, 1/6)I s, t,
real numbers).

v + 3 pts b) Full credit: The rank is 2 as there are 2
pivots. The solution set is a plane in R*4.

v + 2 pts c) Full credit: The solution set of the

combined system is the intersection of the two

planes; it could possibly be empty (if the planes don't

intersect) a point (for example, if the planes are in
R"4 for instance and orthogonal complements of
each other), a line, or a plane (if the two planes are
the same).

+ 3 pts a) partial credit: convert to rref

+ 1 pts a) partial credit: label free variables

+ 1 pts a) partial credit: express solution set in terms

of free variables (or alternatively find a basis)
+ 1.5 pts b) partial credit: only one of rank=2 and

plane given correctly

+ 1 pts ¢) Partial credit: part of the solution, or some

things correct and some incorrect

+ 0 pts c) Mostly incorrect

QUESTION 2

2 Question 2 10/10
v + 1 pts a) Injective but not surjective
v + 1 pts b) surjective but not injective

v + 3 pts ¢) Full credit: If x is a nonzero element of

Rm then T injective implies T(x) is nonzero, and then

S injective implies S(T(x)) is nonzero, and so R(x) is
nonzero. Therefore R is injective, as its kernel

contains only the zero vector. (Not needed as this

was already shown in class, but we know R is a
linear transformation since
R(x+y)=S(T(x)+ T(y))=S(T(x))+S(T(y))=R(x)+R(y) by the
linearity of S and T, and also for any scalar c,
R(c(x))=S(c(T(x))=c(S(T(x))=x(R(x)) again by the
linearity of S and T.)
v + 5 pts d) Full credit: Correct answer given by (-2/3,
0,0, 2/3;1/3,0,1,-1/3;-1/3,1, 0, 1/3; 0, 0, O, 1). Show
work by either using change of basis matrix, or by
computing 3T(e_4)=T(1, 2, 3, 4)-T(1, 0, 0, 1)-2T(e_2)-
3T(e_3)=(2, 2, 3, 4)-e_4-2e_3-3e_2=(2, -1, 1, 3) which
implies T(e_4)=(2/3, -1/3, 1/3, 1) and by computing
T(e_1)=T(1, 0, O, 1)-T(e_4)=e_4-(2/3, -1/3, 1/3, 1) =(-2/3,
1/3,-1/3, 0)

+ 2 pts c) Partial credit: Nearly correct proof that is
missing a minor justification

+ 1 pts c) Partial credit: A reasonable attempt that
does not give a valid proof, but still makes use of the
definition of injectivity of S and T to conclude
something about the injectivity of R.

+ 3 pts d) Partial credit: Correct answer with some
but insufficient justification

+ 0 pts O points

QUESTION 3
3 Question 310/10

v +1 pts (a): show 0,+1 are possible eigenvalues of P.

Solution:

For nonzero $$\vec{x} \in V$$ (assuming $$V \neq
\{\vec{O\}$$) we have $$P\vec(x} = \vec{x}$$ so
$$x$$ has eigenvalue 1 for $$P$$; so 1is an
eigenvalue of $$P$$.

For nonzero $$\vec{x} \in V*{\perp}$$ (assuming
$$V\perp} \neq \{\vec{ON\}$$) we have $$P\vec{x} =
\vec{0}$$ so $$\vec{x}$$ has eigenvalue O for



$$P$S$; so $$0%$ is an eigenvalue for $$P$$.

v + 1 pts (a): show no eigenvalues other than 0,+1
are possible for P.

Solution:

Let $$\lambda$$ be an eigenvalue of $$P$$; let
$$\vec{x\neq\vec{0}$$ be an eigenvector of $$P$$
with eigenvalue $$\lambda$$; so $$\lambda\vec(x}
= P\vec{x}$$. Next, due to the decomposition
$$\mathbb{R}*n = V \oplus V*{\perp}$$ we can
(uniquely) pick $$\vec{v}\in V$$ and

$$\vec{v} {\perp}\in VA\perp}$$ such that $$\vec{x}
=\vec{v} + \vec{v]_{\perp}$$; then now $$P(\vec(x)) =
P(\vec{v} + \vec{v}_{\perp)) = \vec{v}$$.

So now $$\vec{v} = P\vec{x} = \lambda \vec{x} =
\lambda \vec{v} + \lambda \vec{v]_{\perp}$$, so $$(1-
\lambda)\vec{v} = \lambda \vec{v}_{\perp}$$. But now
the left-hand-side $$(1-\lambda)\vec{v}$$ lies in
$$V$$ while the right-hand-side $$\lambda
\vec{v}_{\perp}$$ lies in $$V*{\perp}$$; so both sides
are $$\vec{0}$$ (since $$V \cap V {\perp} =
\[\vec{O\}$$).

So now both $$(1-\lambda)\vec{v} = \vec{0}$$ and
$$\lambda \vec{v)_{\perp) = \vec{0}$$.

Case 1 if $$\vec{v)_{\perp} \neq \vec{0}$$, we must
have $$\lambda = 0$$. Case 2: if $$\vec{v} {\perp}=
\vec{0}$$ (which then implies
$$\vec{vl\neq\vec{0}$$ since
$$\vec{x\neq\vec{0}$$ and $$\vec(x} =
\vec{v}+\vec{v]_{\perp}$$), then we must have $$1-
\lambda=0$$.

So $$\lambda \in \{0,+1\}$$ are the only possibilities.

\[Alternate method 1: use geometric argument. If
$$\vec{x\neq\vec{0}$$ is an eigenvector of $$P$$
with eigenvalue not zero, then $$P\vec{x}$$ is both
nonzero and parallel to $$\vec{x}$$. Since $$P$$ is
an orthogonal projection, it is only possible for
$$\vec(x},P\vec{x}$$ to be nonzero and parallel to
each other if $$\vec{x}\in V$$.]

\[Alternate method 2: use the fact that $$P"2 = P$$

to argue eigenvalues must satisfy $$\lambda”2 =
\lambda$$, whose only solutions are $$\lambda =

0,+1$$]

\[Alternate method 3: show that the O-eigenspace is
$$V$$ and the +1-eigenspace is $$V {\perp}$$, so
the sum of these eigenspaces has dimension $$n$$,
and therefore is all of $$\mathbb{R}'n$$; therefore
no eigenvalues other than 0,+1 are possible.

This proof uses repeatedly the fact that any two
eigenspaces (for distinct eigenvalues) (of the same
matrix) intersect trivially (meaning their intersection
is $$\[\vec{O\}$$), and so the dimension of their sum
is the sum of their dimensions]

v + 2 pts (b): conclude O-eigenspace is

$$V (\perp}$$ and +1-eigenspace is $$V$$.

Proof:

Let $$E_0%$$ and $$E_1$$ denote the eigenspaces
of $$P$$ for eigenvalues $$0$$ and $$+1$$

respectively.

First, already $$P$$ acts as multiplication by O on
$$V~{\perp}$$ and as multiplication by 1 on $$V$$.
(Since if $$\vec{v}\in V$$ then $$P\vec({v} =
\vec{v}$$, and if $$\vec{v}*{\perp} \in V*{\perp}$$
then $$P\vec{v}*{\perp} = \vec{0}$$.) This proves
$$VA{\perp} \subseteq E_0$$ and $$V \subseteq
E_1$$.

It only remains to show the converse: that
eigenvectors of $$P$$ with eigenvalue O are in
$$V{\perp}$$, and that eigenvectors of $$P$$ with
eigenvalue 1 are in $$V$$. (In other words, that
$$E_O \subseteq V{\perp}$$ and that $$E_1
\subseteq V$$.)

\[Method 1]

Let $$\vec(x} \in \mathbb{R}*n$$ be a given
eigenvector of $$P$$ (with $$\vec{x}\neq\vec{0}$$)
with eigenvalue $$\lambda$$; so $$\lambda \vec{x}
= P\vec{x}$$. Using $$\mathbb{R}"*n =V \oplus



VM{\perp}$$ write $$\vec(x} = \vec{v} +
\vec{v}*{\perp}$$ for some $$\vec{v}\in V$$ and
some $$\vec{v}{\perphin V*\perp}$$.

From part (a) we must have $$\lambda = 0$$ or
$$\lambda = 1$$.

We want to show that if $$\lambda = 0$$ then
$$\vec{x} \in VM\perp}$$, and that if $$\lambda =
1$$ then $$\vec{x} \in V$$.

Note $$P\vec{x} = P(\vec{v}+\vec{v}{\perp)) =
\vec{v}$$.

Case 1: if $$\lambda = 0$$, then $$\vec{0} = O\vec{x}
= P\vec{x} = \vec{v}$$; so $$\vec{vl=\vec{0}$$,
therefore $$\vec(x} = \vec{v}*{\perp} \in V*\perp}$$.
Case 2: if $$\lambda = 1$$, then $$\vec{x} = 1\vec{x}
= P\vec{x} = \vec{v}$$; so $$\vec{x} = \vec{v} \in V$$.

This completes the proof that $$V=E_1$$ and
$$V{\perp) = E_0$$.

\[Method 2]

We have shown already that $$V*{\perp} \subseteq
E_0%$$ and $$V \subseteq E_1$$. It follows that
$$V(\perp} + V \subseteq E_O + E_1$$. But

$$V (\perp}+V = \mathbb{R}*'n$$; it must be the case
that $$E_O + E_1=\mathbb{R}'n$$.

Next, we know $$E_O \cap E_1=\{\vec{O\}$$ since
$$E_O,E_1$$ are eigenspaces with distinct
eigenvalues; it follows that
$$\mathrm{dim}(E_O+E_1) =
\mathrm{dim}E_O+\mathrm{dim}E_1$$. But $$E_0O +
E_1=\mathbb{R}'n$$. So how we have $$n =
\mathrm{dim}E_O+\mathrm{dim}E_1$$.

Let $$k := \mathrm{dim}V"{\perp}$$; so
$$\mathrm{dim}V = n-k$$ (because $$V\oplus
VA{\perp} = \mathbb{R}'n$$). It follows that
$$\mathrm{dim}E_O \geq k$$ and
$$\mathrm{dim)E_1\geq n-k$$ (since $$E_O
\supseteq V{\perp}$$ and $$E_1\supseteq V$$).

Substituting $$\mathrm{dim}E_1= n-
\mathrm{dim}E_0$$ in the second relation above
gives $$n-\mathrm{dim}E_O\geq n-k$$, which is
equivalent to $$\mathrm{dim}E_O \leq k$$.

So we have found $$\mathrm{dim}E_O\geq k$$ and
$$\mathrm{dim}E_0O \leq k$$; it follows that
$$\mathrm{dim}E_O = k$$. And since $$
\mathrm{dim}E_1 +\mathrm{dim)}E_0=n$$ we then
have $$\mathrm{dim}E_1= n-k$$.

Finally, since $$V*{\perp} \subseteq E_0%$$ and
$$\mathrm{dim}V {\perp} = k = \mathrm{dim}E_0$$
we must have $$E_0 = V{\perp}$$;

similarly, since $$V\subseteq E_1$$ and
$$\mathrm{dim}V = n-k = \mathrm{dim}E_1$$ we
must have $$E_1=V$$.

v + 1 pts (b): showing work/justification/proof

v +1 pts (c): correctly say P can be diagonalized

v + 1 pts (c): provide sufficient justification for
diagonalizability.

(e.g. the eigenspaces of $$P$$ span all of
$$\mathbb{R}"n$$, since $$\mathbb{R}"n =
VA\perp} \oplus V = E_0*(P)} \oplus E_{+1}*{(P)} $$)
(equivalently: the geometric multiplicities of the
eigenspaces add to n)

(more precisely: we can diagonalize $$P = SDS{-
1}$$ where the columns of $$S$$ consist of a basis
for $$V$$ followed by a basis for $$V {\perp}$$,
and $$D$$ is diagonal with first 1's for the $$V$$
basis and 0's for the $$V {\perp}$$ basis.)

\[alternate method: show P is symmetric, then apply
spectral theorem]
v + 2 pts (d): argue that $$P"2 = P$$.

\[Method 1]

We recall $$P$$ is diagonalizable (as shown in part

(c)), and its eigenvalues are only $$0,1$$.

It follows that we can write $$P = SDSA-1}$$ where



$$S,D$$ are square matrices (of the same size as
$$P$$) with $$S$$ invertible, and $$D$$ diagonal
with all diagonal entries of $$D$$ being either O or
1

In particular it follows that $$D*2 = D$$ (because
$$D$$ is diagonal, and each diagonal entry $$t$$
of $$D$$ is either O or 1 and therefore satisfies
$$t°2 = t$$).

Now $$P2 = (SDSA-1))"2 = (SDSA-T))(SDSA-T)) =
SD(SM-1)S)DSA(-1} = SDIDSA-1} = S(D*2)SN-1} = SDSH(-
1} = P;$$ note we used $$D"2 = D$$.

\[Method 2]

Recall that $$P\vec{a} \in V$$ for any vector
$$\vec{a} \in \mathbb{R}*n$$. Furthermore, we also
know $$P\vec{v} = \vec{v}$$ for any $$\vec{v} \in
V$$.

It follows that for any vector $$\vec{x} \in
\mathbb{R}*n$$ we have $$P(P\vec{x}) = P\vec{x}$$;
so $$P2\vec{x} = P\vec{x}$$.

Since $$P"2%$$ and $$P$$ agree on all vectors
$$\vec{x} \in \mathbb{R}*n$$ it follows that $$P"2 =
P$$.

v + 1 pts (d): showing work/justification

QUESTION 4
4 Question 410/10

v + 1 pts (a): correct matrix $$A = \begin{bmatrix}
\cos45*{\circ} & -\sin45{\circ}\\

\sin45"{\circ} & \cos45"{\circ}

\end{bmatrix} = \begin{bmatrix}

\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}\\

\frac{1{\sqrt{2}} & \frac{1}{\sqrt{2}}

\end{bmatrix}$$

v + 1 pts (a): correct change-of-basis formula:
$$[A]_{\mathcal{B}} = S\(-1JAS$$ where the columns
of $$S$$ are the ordered basis vectors in

$$\mathcal(B}$$

(or other method)
v +1 pts (a): correctly identify $$S = \begin{bmatrix}
1& 0\
1&1
\end{bmatrix}$$, and compute $$S{-1} =
\begin{bmatrix}
1& 0\
1&1
\end{bmatrix}$$

+ 0 pts temp
v +1 pts (a): compute $$[A]_{\mathcal{B}} =
\begin{bmatrix}
0 & -\frac{1}{\sqrt{2}}\\
\sqrt{2} & \sqrt{2}
\end{bmatrix}$$
v + 1 pts (b): correct change-of-basis formulas for
$3$[A]_{\mathcal{B}}$$, $$[B]_{\mathcal{B}}$$,
$$[AB]_{\mathcal(B}}$$
v + 2 pts (b): directly compute:
$$[A]_{\mathcal(B}} [B]_{\mathcal{B}} = (S"{-1JAS)(S"\{-
1)BS) = SM-1JA(SS{-1})BS = S{-1JAIBS = SM-1}(AB)S =
[AB]_{\mathcal{B}}.$$
Here $$S$$ is the matrix whose columns are the
vectors in $$\mathcal{B}$$ (in the same order as in
$$\mathcal{B}$$).
v +1 pts (c): argue that a rotation matrix has
determinant $$\pm1$$.
For example, a geometric argument can be used, by
applying the geometric definition of determinant.
Rotations preserve lengths (as well as angles and
volumes) so a rotation maps a cube to another cube

of the same volume.

\[Specifically, the determinant is +1 for orientation-
preserving rotations (known as proper rotations),
and -1 for orientation-reversing rotations (known as

improper rotations).]

\[Note: just +1 instead of +1 will also be accepted, as
the textbook defines a rotation as having

determinant +1.]



Alternatively, we can argue rotation matrices are
orthogonal matrices (because they preserve length),
and orthogonal matrices must have determinant
$$\pm1$$.

v + 2 pts (c): argue that $$A$$ and
$$[A]_{\mathcal{B}}$$ have the same determinant.

Proof: $$\mathrm{det}([A]_{\mathcal{B}}) =
\mathrm{det}(S*{-1JAS) = \mathrm{det}(S*{-
1M\mathrm{det}(A)\mathrm{det}(S) = \mathrm{det}(A)
\,\mathrm{det}(S)*{-1\mathrm{det}(S) =
\mathrm{det}(A).$$ Note here we used the
multiplicative properties of determinant (i.e.,
$$\mathrm{det}(CC'") =
\mathrm{det}(C)\mathrm{det}(C")$$ for any square
matrices $$C,C'$$ of the same size).

\[More generally, any two similar square matrices

have the same determinant.]

Alternatively, we can argue that the determinant of a
linear operator (or square matrix) can be calculated
in a basis-independent way (i.e. the geometric
definition of determinant, which looks at how the
operator changes the volume of oriented
parallelepipeds, etc), and so the determinant should

be the same in any basis.

QUESTION 5

5 Question 58/10
v + 2 pts (a) Made a connection between areas and
determinants

+1 pts (a) Computed $$A =\left] \begin{array}{cc} 4 &
-2/5\\ 5 & -2/5\end{array]\right]$$ or $$A =\left]
\begin{array}{cc} 2 & 2/5 \\ 3 & 2/5\end{arrayj\right]$$,
or its determinant of $$\pm 2/5%$$
v +1pts (a) Used $$\det A = \det A*T$S$ or $$\det
AN-1} = 1\det A$$, or computed $S(ATAN-1)$$
directly

+ 1 pts (a) Correct final answer:
$$\displaystyle\frac{25)21$$
v +1 pts (b) Correct determinant: $$4$$

v +1 pts (b) Showed work, or partial credit for work

towards a determinant
v +1 pts (c) Correct determinant: $$0$$
v + 2 pts (c) Showed work, or partial credit for work

towards a determinant

@ This should be 2/5, not 5/2

QUESTION 6
6 Question 6 10/10

v + 2 pts (a) Correct matrix: $$A =
\left[\begin{array}{ccc} 3& 0 &2\ 0&2& 0\\2 & 0 &
3\end{array} \right]$$
v + 1 pts (b) Correct eigenvalues: $$\lambda =
1,2,5$$
v +1 pts (b) Correct eigenvectors/eigenspaces: $$
E_1=\left\{ \left[\begin{array}{c}t \\ O \\
-t\end{array)\right]: t \in \mathbb{R}\right\} $$ $$ E_2
=\left\{ \left[\begin{array}{c}O \\ t \O
\end{array}\right]: t \in \mathbb{R}\right\} $$ $$ E_5 =
\left\{ \left[\begin{array}{c}t \\ O \\t \end{array}\right]: t
\in \mathbb{R}\right\} $$
v +1 pts (b) Correct diagonalization: $$ A = SDSA(T)
=SDS"-1)$$ where $$ S = \left[\begin{array}{ccc}
\frac{-1){\sqrt{2}} & O & \frac{1}{\sqrt{2}}\\ O & 1 & O\\
\frac{1){\sqrt{2]} & O & \frac{1{\sqrt{2})\end{array}
\right]$$ and $$D = \left[\begin{array}{ccc}1& O & O\\
0 & 2 & 0\\ 0 & O & 5\end{array} \right]$$
v +1pts (c) $$9$$ is positive definite, or positive
semidefinite (or correct answer based on
eigenvalues from (b))
v + 2 pts (d) This level set is an ellipsoid (or correct
shape based on computations from (b))
v + 2 pts (d) Rewrote quadratic form as $$q(\vec{x}) =
c_1"2 +2c_2"2 + 5¢_3"2%$$, or other justification
using computations from (b)

+ 1 pts (a) (partial) Gave a matrix that either satisfies
$$q(\veclx)) = \vec(x} \cdot A\vec({x}$$, or is

symmetric, but not both

QUESTION 7
7 Question 710/10

v +10 pts Correct



Part a correct v +10 pts Correct
+15ptsT(12345)=(123405)
+1ptsTe_1=-e_1
+1pts Te_2=10e_2
+1.5 ptsdimker T=2

+ 2 pts state that diagonalization is the way to go

+ 3 pts complete diagonalization

+ 10 pts Did not simplify SDS"{(-1}

+ 9 pts small error in (b) in finishing up; ie, arithmetic
or appropriate form

- 2 pts 2 or more errors in (b), or more significant
error (like putting columns of S in the wrong order,
very incorrect characteristic polynomial)

+ 3 pts Make clear that you see a pattern

+ 2 pts correct statement of final answer. This
deduction is deemed appropriately, because if you
choose to do the problem by just looking for a pattern
and not carrying out the diagonalization, then
correctly discerning what exactly the pattern is much
of the difficulty of the problem.

+ 0 pts No work

QUESTION 8
8 Question 8 10/10
(a)
+ 2 pts compute BT B
+ 2 pts get eigenvalues

+ 1 pts square root

(b)

+ 1 pts V matrix

+ 1 pts Sigma matrix (with dimensions and
placement matching U and V)

+ 1.5 pts First two columns of U

+ 0.5 pts U is square

+ 1 pts third column of U (this point is not award if U
is only given 2 columns, or if the third column is
incorrect)

+ 2 pts Awarded if reasonable effort is shown for
each part of (b), but fewer than 2 other points in (b)
are awarded. This is not awarded concurrently with

the other points but in lieu of them.
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1Question 110/10

v + 5 pts a) Full credit: Convert the augmented system into rref form and get \[(1, 2, 3, 0); (0, 0, 0, 1); (0, 0, 0, O)|
5/3; 1/6, 0]. Two free variables, x_2:=t, x_3:=s. Solution set is then {(5/3-2t-3s, t, s, 1/6)I s, t, real numbers}.
v + 3 pts b) Full credit: The rank is 2 as there are 2 pivots. The solution set is a plane in R*4.
v + 2 pts c) Full credit: The solution set of the combined system is the intersection of the two planes; it could
possibly be empty (if the planes don't intersect) a point (for example, if the planes are in R*4 for instance and
orthogonal complements of each other), a line, or a plane (if the two planes are the same).

+ 3 pts a) partial credit: convert to rref

+ 1 pts a) partial credit: label free variables

+ 1 pts a) partial credit: express solution set in terms of free variables (or alternatively find a basis)

+ 1.5 pts b) partial credit: only one of rank=2 and plane given correctly

+ 1 pts ¢) Partial credit: part of the solution, or some things correct and some incorrect

+ 0 pts c) Mostly incorrect
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2 Question 2 10/10

v + 1 pts a) Injective but not surjective
v + 1 pts b) surjective but not injective
v + 3 pts ¢) Full credit: If x is a nonzero element of Rm then T injective implies T(x) is nonzero, and then S
injective implies S(T(x)) is nonzero, and so R(x) is nonzero. Therefore R is injective, as its kernel contains only
the zero vector. (Not needed as this was already shown in class, but we know R is a linear transformation since
R(x+y)=S(T(x)+T(y))=S(T(x))+S(T(y))=R(x)+R(y) by the linearity of S and T, and also for any scalar c,
R(c(x))=S(c(T(x))=c(S(T(x))=x(R(x)) again by the linearity of S and T.)
v + 5 pts d) Full credit: Correct answer given by (-2/3, 0, 0, 2/3; 1/3, 0, 1, -1/3; -1/3, 1, 0, 1/3; 0, 0, 0, 1). Show work
by either using change of basis matrix, or by computing 3T(e_4)=T(1, 2, 3, 4)-T(1, O, 0, 1)-2T(e_2)-3T(e_3)=(2, 2,
3, 4)-e_4-2e_3-3e_2=(2, -1, 1, 3) which implies T(e_4)=(2/3, -1/3, 1/3, 1) and by computing T(e_1)=T(1, O, O, 1)-
T(e_4)=e_4-(2/3, -1/3,1/3, 1) =(-2/3, 1/3, -1/3, 0)

+ 2 pts c) Partial credit: Nearly correct proof that is missing a minor justification

+ 1 pts ¢) Partial credit: A reasonable attempt that does not give a valid proof, but still makes use of the
definition of injectivity of S and T to conclude something about the injectivity of R.

+ 3 pts d) Partial credit: Correct answer with some but insufficient justification

+ 0 pts O points
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3 Question 310/10
v + 1 pts (a): show 0,+1 are possible eigenvalues of P.
Solution:
For nonzero $$\vec{x} \in V$$ (assuming $$V \neq \(\vec{ON\}$$) we have $$P\vec(x} = \vec{x}$$ so $$x$$ has
eigenvalue 1 for $$P$$; so 1is an eigenvalue of $$P$$.
For nonzero $$\vec{x} \in V{\perp}$$ (assuming $$V {\perp} \neq \{\vec{O}\}$$) we have $$P\vec(x} =
\vec{0}$$ so $$\vec{x}$$ has eigenvalue O for $$P$$; so $$0$$ is an eigenvalue for $$P$$.
v + 1 pts (a): show no eigenvalues other than 0,+1 are possible for P.
Solution:
Let $$\lambda$$ be an eigenvalue of $$P$$; let $$\vec{x}\neq\vec{0}$$ be an eigenvector of $$P$$ with
eigenvalue $$\lambda$$; so $$\lambda\vec{x} = P\vec{x}$$. Next, due to the decomposition $$\mathbb{R}"n =
V \oplus V*{\perp}$$ we can (uniquely) pick $$\vec{v}\in V$$ and $$\vec{v)_{\perp} \in V{\perp}$$ such that
$$\vec{x} = \vec{v} + \vec{v]_{\perp}$$; then now $$P(\vec{x)) = P(\vec{v} + \vec{v)_{\perp)) = \vec{v}$$.
So now $$\vec{v} = P\vec{x} = \lambda \vec{x} = \lambda \vec{v} + \lambda \vec{v}_{\perp}$$, so $$(1-
\lambda)\vec{v} = \lambda \vec{v}_{\perp}$$. But now the left-hand-side $$(1-\lambda)\vec{v}$$ lies in $$V$$
while the right-hand-side $$\lambda \vec{v}_{\perp}$$ lies in $$V (\perp}$$; so both sides are $$\vec(0)$$
(since $$V \cap V{\perp} = \(\vec{O)\}$$).

So now both $$(1-\lambda)\vec{v} = \vec{0}$$ and $$\lambda \vec{v}_{\perp} = \vec{0}$$.

Case 1: if $$\vec{v]_{\perp} \neq \vec{0}$$, we must have $$\lambda = 0$$. Case 2: if $$\vec{v}_{\perp} =
\vec{0}$$ (which then implies $$\vec{v)\neq\vec{0}$$ since $$\vec{x\neq\vec{0}$$ and $$\vec(x} =
\vec{v}+\vec{v]_{\perp}$$), then we must have $$1-\lambda=0$%$$.

So $$\lambda \in \{0,+1\}$$ are the only possibilities.

\[Alternate method 1: use geometric argument. If $$\vec{x}\neq\vec{0}$$ is an eigenvector of $$P$$ with
eigenvalue not zero, then $$P\vec{x}$$ is both nonzero and parallel to $$\vec{x}$$. Since $$P$$ is an
orthogonal projection, it is only possible for $$\vec{x},P\vec{x}$$ to be nonzero and parallel to each other if

$$\vec{x}\in V$$.]

\[Alternate method 2: use the fact that $$P"2 = P$$ to argue eigenvalues must satisfy $$\lambda”2 =
\lambda$$, whose only solutions are $$\lambda = 0,+1$$]

\[Alternate method 3: show that the O-eigenspace is $$V$$ and the +1-eigenspace is $$V{\perp}$$, so the
sum of these eigenspaces has dimension $$n$$, and therefore is all of $$\mathbb{R}*n$$; therefore no
eigenvalues other than 0,+1 are possible.

This proof uses repeatedly the fact that any two eigenspaces (for distinct eigenvalues) (of the same matrix)
intersect trivially (meaning their intersection is $$\(\vec{O\}$$), and so the dimension of their sum is the sum of
their dimensions]

v + 2 pts (b): conclude 0-eigenspace is $$V {\perp}$$ and +1-eigenspace is $$V$$.

Proof:

Let $$E_0%$$ and $$E_1$$ denote the eigenspaces of $$P$$ for eigenvalues $$0$$ and $$+1$$ respectively.



First, already $$P$$ acts as multiplication by 0 on $$V*{\perp}$$ and as multiplication by 1 on $$V$$. (Since if
$$\vec{v}\in V$$ then $$P\vec(v} = \vec{v}$$, and if $$\vec{v}{\perp}\in V{\perp}$$ then $$P\vec{v}*{\perp} =
\vec{0}$$.) This proves $$V*{\perp} \subseteq E_0%$$ and $$V \subseteq E_1$$.

It only remains to show the converse: that eigenvectors of $$P$$ with eigenvalue 0 are in $$V*{\perp}$$, and
that eigenvectors of $$P$$ with eigenvalue 1 are in $$V$$. (In other words, that $$E_0 \subseteq V*\perp}$$
and that $$E_1 \subseteq V$$.)

\[Method 1]

Let $$\vec{x} \in \mathbb{R}*'n$$ be a given eigenvector of $$P$$ (with $$\vec{x)\neq\vec{0}$$) with
eigenvalue $$\lambda$$; so $$\lambda \vec{x} = P\vec{x}$$. Using $$\mathbb{R}*n = V \oplus V {\perp}$$
write $$\vec{x} = \vec{v} + \vec{v}{\perp}$$ for some $$\vec{v}\in V$$ and some $$\vec{v}{\perppin
VM\perp}$$.

From part (a) we must have $$\lambda = 0$$ or $$\lambda = 1$$.

We want to show that if $$\lambda = 0$$ then $$\vec{x} \in V \perp}$$, and that if $$\lambda = 1$$ then
$$\vec{x}\in V$$.

Note $$P\vec{x} = P(\vec{v}+\vec{v}*{\perp)) = \vec{v}$$.

Case 1: if $$\lambda = 0$$, then $$\vec{0} = O\vec{x} = P\vec{x} = \vec{v}$$; so $$\vec{v}=\vec{0}$$, therefore
$$\vec{x} = \vec{v}{\perp} \in VM{\perp}$$. Case 2: if $$\lambda = 1$$, then $$\vec(x} = 1\vec{x} = P\vec{x} =
\vec{v}$$; so $$\vec(x} = \vec{v} \in V$$.

This completes the proof that $$V=E_1$$ and $$V*{\perp} = E_0%$$.

\[Method 2]

We have shown already that $$V*{\perp} \subseteq E_0$$ and $$V \subseteq E_1$$. It follows that $$V{\perp}
+V \subseteq E_O + E_1$$. But $$V {\perp}+V = \mathbb{R}*'n$$; it must be the case that $$E_0 +E_1=
\mathbb{R)}*n$$.

Next, we know $$E_O \cap E_1=\{\vec{O\}$$ since $$E_O,E_1$$ are eigenspaces with distinct eigenvalues; it
follows that $$\mathrm{dim}(E_O+E_1) = \mathrm{dim)E_O+\mathrm{dim}E_1$$. But $$E_O0 + E_1=
\mathbb{R}*n$$. So now we have $$n = \mathrm{dim}E_O+\mathrm{dim}E_1$$.

Let $$k := \mathrm{dim}V*{\perp}$$; so $$\mathrm{dim}V = n-k$$ (because $$V\oplus V*{\perp} =
\mathbb{R}*n$$). It follows that $$\mathrm{dim}E_O0 \geq k$$ and $$\mathrm{dim}E_1\geq n-k$$ (since
$$E_O0 \supseteq V{\perp}$$ and $$E_1\supseteq V$$).

Substituting $$\mathrm{dim}E_1 = n-\mathrm{dim}E_0%$$ in the second relation above gives $$n-
\mathrm{dim}E_O\geq n-k$$, which is equivalent to $$\mathrm{dim}E_O0 \leq k$$.



So we have found $$\mathrm{dim}E_O\geq k$$ and $$\mathrm{dim}E_O \leq k$$; it follows that
$$\mathrm{dim}E_O = k$$. And since $$ \mathrm{dim}E_1 +\mathrm{dim}E_0=n$$ we then have
$$\mathrm{dim}E_1 = n-k$$.

Finally, since $$V*{\perp} \subseteq E_0%$$ and $$\mathrm{dim}V*{\perp} = k = \mathrm{dim}E_0$$ we must
have $$E_0 = V \perp}$$;

similarly, since $$V\subseteq E_1$$ and $$\mathrm{dim}V = n-k = \mathrm{dim}E_1$$ we must have $$E_1=
V$$.

v + 1 pts (b): showing work/justification/proof

v +1 pts (c): correctly say P can be diagonalized

v + 1 pts (c): provide sufficient justification for diagonalizability.

(e.g. the eigenspaces of $$P$$ span all of $$\mathbb{R}*n$$, since $$\mathbb{R}*n = V*\perp} \oplus V =
E_O{(P)} \oplus E_{+1}*{(P)} $$)

(equivalently: the geometric multiplicities of the eigenspaces add to n)

(more precisely: we can diagonalize $$P = SDS*{-1}$$ where the columns of $$S$$ consist of a basis for
$$V$$ followed by a basis for $$V {\perp}$$, and $$D$$ is diagonal with first 1's for the $$V$$ basis and O's
for the $$V {\perp}$$ basis.)

\[alternate method: show P is symmetric, then apply spectral theorem]
v + 2 pts (d): argue that $$P"2 = P$$.

\[Method 1]

We recall $$P$$ is diagonalizable (as shown in part (c)), and its eigenvalues are only $$0,1$$.

It follows that we can write $$P = SDS"-1}$$ where $$S,D$$ are square matrices (of the same size as $$P$$)
with $$S$$ invertible, and $$D$$ diagonal with all diagonal entries of $$D$$ being either O or 1.

In particular it follows that $$D"2 = D$$ (because $$D$$ is diagonal, and each diagonal entry $$t$$ of $$D$$

is either O or 1 and therefore satisfies $$t*2 = t$$).

Now $$P"2 = (SDS(-1))*2 = (SDS{-1})(SDS"{-1)) = SD(S(-1)S)DS{-1} = SDIDS{-1} = S(D*2)S"(-1} = SDS-1} = P;$$
note we used $$D"2 = D$$.

\[Method 2]

Recall that $$P\vec{a} \in V$$ for any vector $$\vec{a} \in \mathbb{R}*n$$. Furthermore, we also know
$$P\vec{v} = \vec{v}$$ for any $$\vec{v}\in V$$.

It follows that for any vector $$\vec{x} \in \mathbb{R}*n$$ we have $$P(P\vec(x}) = P\vec{x}$$; so $$P"2\vec{x}
= P\vec{x}$$.

Since $$P"2$$ and $$P$$ agree on all vectors $$\vec{x} \in \mathbb{R}'n$$ it follows that $$P"2 = P$$.



v + 1 pts (d): showing work/justification
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4 Question 4 10/10
v +1 pts (a): correct matrix $$A = \begin{bmatrix}
\cos45*{\circ} & -\sin45"{\circ}\\
\sin45"{\circ} & \cos45"{\circ}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}\\
\frac{1){\sqrt{2]} & \frac{1}{\sqrt{2}}
\end{bmatrix}$$
v +1 pts (a): correct change-of-basis formula: $$[A]_{\mathcal{B}} = S-1JAS$$ where the columns of $$S$$ are
the ordered basis vectors in $$\mathcal{B}$$
(or other method)
v + 1 pts (a): correctly identify $$S = \begin{bmatrix}
1& 0O\
1&1
\end{bmatrix}$$, and compute $$S{-1} = \begin{bmatrix}
1& 0\
1&1
\end{bmatrix}$$
+ 0 pts temp
v +1 pts (a): compute $$[A]_{\mathcal(B}} = \begin{bmatrix}
0 & -\frac{1}{\sqrt{2}}\\
\sqrt{2} & \sqrt{2}
\end{bmatrix}$$
v + 1 pts (b): correct change-of-basis formulas for $$[A]_{\mathcal{B}}$$, $$[B]_{\mathcal{B}}$$,
$$[AB]_{\mathcal(B}}$$
v + 2 pts (b): directly compute:
$$[A]_(\mathcal(B)} [B]_{\mathcal(B}} = (S{-1})AS)(S{-1}BS) = SN-T}JA(SS"(-1))BS = SA-1JAIBS = SA{-T{AB)S =
[AB]_{\mathcal{B}}.$$
Here $$S$$ is the matrix whose columns are the vectors in $$\mathcal{B}$$ (in the same order as in
$$\mathcal{B}$$).
v + 1 pts (c): argue that a rotation matrix has determinant $$\pm1$$.
For example, a geometric argument can be used, by applying the geometric definition of determinant.
Rotations preserve lengths (as well as angles and volumes) so a rotation maps a cube to another cube of the

same volume.

\[Specifically, the determinant is +1 for orientation-preserving rotations (known as proper rotations), and -1 for

orientation-reversing rotations (known as improper rotations).]

\[Note: just +1 instead of +1 will also be accepted, as the textbook defines a rotation as having determinant +1.]

Alternatively, we can argue rotation matrices are orthogonal matrices (because they preserve length), and



orthogonal matrices must have determinant $$\pm1$$.
v + 2 pts (c): argue that $$A$$ and $$[A]_{\mathcal{B}}$$ have the same determinant.

Proof: $$\mathrm{det}([A]_{\mathcal{B}}) = \mathrm{det}(S{-1JAS) = \mathrm{det}(S"{-
1))\mathrm{det}(A)\mathrm{det}(S) = \mathrm{det}(A) \,\mathrm{det}(S)"{-1}\mathrm{det}(S) = \mathrm{det}(A).$$
Note here we used the multiplicative properties of determinant (i.e., $$\mathrm{det)(CC') =
\mathrm{det}(C)\mathrm{det}(C')$$ for any square matrices $$C,C'$$ of the same size).

\[More generally, any two similar square matrices have the same determinant.]
Alternatively, we can argue that the determinant of a linear operator (or square matrix) can be calculated in a

basis-independent way (i.e. the geometric definition of determinant, which looks at how the operator changes

the volume of oriented parallelepipeds, etc), and so the determinant should be the same in any basis.
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5 Question 58/10

v + 2 pts (a) Made a connection between areas and determinants
+1 pts (a) Computed $$A =\left] \begin{array}{cc} 4 & -2/5 \\ 5 & -2/5\end{arrayf\right]$$ or $$A =\left

\begin{array){cc} 2 & 2/5 \\ 3 & 2/5\end{arrayj\right]$$, or its determinant of $$\pm 2/5$$

v + 1 pts (a) Used $$\det A = \det A*T$$ or $$\det AM-1} = 1/\det A$S$, or computed $$(ATA)-1)$$ directly
+1 pts (a) Correct final answer: $$\displaystyle\frac{25)2}$$

v + 1 pts (b) Correct determinant: $$4$$

v + 1 pts (b) Showed work, or partial credit for work towards a determinant

v +1 pts (c) Correct determinant: $$0$$

v + 2 pts (c) Showed work, or partial credit for work towards a determinant

@ This should be 2/5, not 5/2
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6 Question 6 10/10

v + 2 pts (a) Correct matrix: $$A = \left[\begin{array}{ccc} 3 & 0 & 2\\ 0 & 2 & O\\ 2 & 0 & 3\end{array} \right]$$
v + 1 pts (b) Correct eigenvalues: $$\lambda = 1,2,5$$
v + 1 pts (b) Correct eigenvectors/eigenspaces: $$ E_1 = \left\{ \left[\begin{array}{c)t \\ O \\ -t\end{array}\right]: t
\in \mathbb{R}\right\} $$ $$ E_2 = \left\{ \left\begin{array)}{c}O \\ t \\O \end{array}\right]: t \in \mathbb{R}\right\}
$$ $$ E_5 = \left\{ \left[\begin{array}{c}t \\ 0 \\t \end{array}\right]: t \in \mathbb{R}\right\} $$
v + 1 pts (b) Correct diagonalization: $$ A = SDS*{T} =SDS"{-1}$$ where $$ S = \left\begin{array}{ccc} \frac{-
1M\sqrt{2)} & 0 & \frac{1}{\sqrt{2]\\ O & 1 & O\\ \frac{1}{\sqrt{2])} & O & \frac{1}{\sqrt{2}}\end{array} \right]$$ and $$D
=\left[\begin{array}{ccc}1& 0 & O\\ 0 & 2 & O\\ 0 & O & 5\end{array} \right]$$
v +1pts (c) $$q$$ is positive definite, or positive semidefinite (or correct answer based on eigenvalues from
(b))
v + 2 pts (d) This level set is an ellipsoid (or correct shape based on computations from (b))
v + 2 pts (d) Rewrote quadratic form as $$q(\vec{x}) = c_1"2 + 2¢_2"2 + 5¢_3"2$$, or other justification using
computations from (b)

+1 pts (a) (partial) Gave a matrix that either satisfies $$q(\vec{x)) = \vec{x} \cdot A\vec{x}$$, or is symmetric, but
not both
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7 Question 710/10
v + 10 pts Correct

Part a correct
+15pts T12345)=(123405)
+1ptsTe_1=-e_1
+1pts Te_2=10e_2
+1.5 ptsdimker T=2

+ 2 pts state that diagonalization is the way to go

+ 3 pts complete diagonalization

+ 10 pts Did not simplify SDS"{(-1}

+ 9 pts small error in (b) in finishing up; ie, arithmetic or appropriate form

- 2 pts 2 or more errors in (b), or more significant error (like putting columns of S in the wrong order, very
incorrect characteristic polynomial)

+ 3 pts Make clear that you see a pattern

+ 2 pts correct statement of final answer. This deduction is deemed appropriately, because if you choose to do
the problem by just looking for a pattern and not carrying out the diagonalization, then correctly discerning what
exactly the pattern is much of the difficulty of the problem.

+ 0 pts No work
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8 Question 8 10/10
(a)
+ 2 pts compute BT B
+ 2 pts get eigenvalues

+ 1 pts square root

(b)
+ 1 pts V matrix
+ 1 pts Sigma matrix (with dimensions and placement matching U and V)
+ 1.5 pts First two columns of U
+ 0.5 pts U is square
+ 1 pts third column of U (this point is not award if U is only given 2 columns, or if the third column is incorrect)
+ 2 pts Awarded if reasonable effort is shown for each part of (b), but fewer than 2 other points in (b) are

awarded. This is not awarded concurrently with the other points but in lieu of them.

v +10 pts Correct
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