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| 1. (a) (5 points) Find the sct of sclutions of the linear systeir
Ty« 2y 437y~ iy =1
7y + 209 4 Yy + 224 = 2
22 bry 4 Brs 4 42y = 4
b) (3 points) Write the above linear system in matrix form AZ = b and compute rank(A)
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1Question 110/10

v + 5 pts a) Full credit: Convert the augmented system into rref form and get \[(1, 2, 3, 0); (0, 0, 0, 1); (0, 0, 0, O)|
5/3; 1/6, 0]. Two free variables, x_2:=t, x_3:=s. Solution set is then {(5/3-2t-3s, t, s, 1/6)I s, t, real numbers}.
v + 3 pts b) Full credit: The rank is 2 as there are 2 pivots. The solution set is a plane in R*4.
v + 2 pts c) Full credit: The solution set of the combined system is the intersection of the two planes; it could
possibly be empty (if the planes don't intersect) a point (for example, if the planes are in R*4 for instance and
orthogonal complements of each other), a line, or a plane (if the two planes are the same).

+ 3 pts a) partial credit: convert to rref

+ 1 pts a) partial credit: label free variables

+ 1 pts a) partial credit: express solution set in terms of free variables (or alternatively find a basis)

+ 1.5 pts b) partial credit: only one of rank=2 and plane given correctly

+ 1 pts ¢) Partial credit: part of the solution, or some things correct and some incorrect

+ 0 pts c) Mostly incorrect

Page 9



Math 33A __ Final Exam - Page 4 of 17

2. (a) (1 point) Give an example of a linear transformation that is injective but not surjective

(b) (1 point) Give an example of a linear transformation that is surjective but not injecrive.

(¢) (3 points) Suppose that T is an injective linear transformation from R™ to R™ and that
S is an injective linear transformation from R” to B”. Prove that composition R = So T
defined by R(F) = S(T(#)) is an injective linear transformation from B™ to RP,

(d) (5 points) Find the matrix for the linear t ransformation from R* to R that maps (1,2, 3. 4)
to (2,2,3,4), maps ey to €3. maps ey to e, and maps (1,0,0,1) to es.
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2 Question 2 10/10

v + 1 pts a) Injective but not surjective
v + 1 pts b) surjective but not injective
v + 3 pts ¢) Full credit: If x is a nonzero element of Rm then T injective implies T(x) is nonzero, and then S
injective implies S(T(x)) is nonzero, and so R(x) is nonzero. Therefore R is injective, as its kernel contains only
the zero vector. (Not needed as this was already shown in class, but we know R is a linear transformation since
R(x+y)=S(T(x)+T(y))=S(T(x))+S(T(y))=R(x)+R(y) by the linearity of S and T, and also for any scalar c,
R(c(x))=S(c(T(x))=c(S(T(x))=x(R(x)) again by the linearity of S and T.)
v + 5 pts d) Full credit: Correct answer given by (-2/3, 0, 0, 2/3; 1/3, 0, 1, -1/3; -1/3, 1, 0, 1/3; 0, 0, 0, 1). Show work
by either using change of basis matrix, or by computing 3T(e_4)=T(1, 2, 3, 4)-T(1, O, 0, 1)-2T(e_2)-3T(e_3)=(2, 2,
3, 4)-e_4-2e_3-3e_2=(2, -1, 1, 3) which implies T(e_4)=(2/3, -1/3, 1/3, 1) and by computing T(e_1)=T(1, O, O, 1)-
T(e_4)=e_4-(2/3, -1/3,1/3, 1) =(-2/3, 1/3, -1/3, 0)

+ 2 pts c) Partial credit: Nearly correct proof that is missing a minor justification

+ 1 pts ¢) Partial credit: A reasonable attempt that does not give a valid proof, but still makes use of the
definition of injectivity of S and T to conclude something about the injectivity of R.

+ 3 pts d) Partial credit: Correct answer with some but insufficient justification

+ 0 pts O points
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3. Let V be a subspace of R™, and let P be the orthogona! projection matrix onto V. That
satisfies
PZ = projZ, for ail # in R".
(a) (2 points) What are the cigenvalues of P? Justify vour answer.
(b) (3 points) What are the corresponding cigens paces? Justify your answer.

(¢) (2 points) Can P be diagonalized? Justify your answer
(d) (3 points) Prove that P? = p
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3 Question 3 9/10
v + 1 pts (a): show 0,+1 are possible eigenvalues of P.
Solution:
For nonzero $$\vec{x} \in V$$ (assuming $$V \neq \(\vec{ON\}$$) we have $$P\vec(x} = \vec{x}$$ so $$x$$ has
eigenvalue 1 for $$P$$; so 1is an eigenvalue of $$P$$.
For nonzero $$\vec{x} \in V{\perp}$$ (assuming $$V {\perp} \neq \{\vec{O}\}$$) we have $$P\vec(x} =
\vec{0}$$ so $$\vec{x}$$ has eigenvalue O for $$P$$; so $$0$$ is an eigenvalue for $$P$$.
v + 1 pts (a): show no eigenvalues other than 0,+1 are possible for P.
Solution:
Let $$\lambda$$ be an eigenvalue of $$P$$; let $$\vec{x}\neq\vec{0}$$ be an eigenvector of $$P$$ with
eigenvalue $$\lambda$$; so $$\lambda\vec{x} = P\vec{x}$$. Next, due to the decomposition $$\mathbb{R}"n =
V \oplus V*{\perp}$$ we can (uniquely) pick $$\vec{v}\in V$$ and $$\vec{v)_{\perp} \in V{\perp}$$ such that
$$\vec{x} = \vec{v} + \vec{v]_{\perp}$$; then now $$P(\vec{x)) = P(\vec{v} + \vec{v)_{\perp)) = \vec{v}$$.
So now $$\vec{v} = P\vec{x} = \lambda \vec{x} = \lambda \vec{v} + \lambda \vec{v}_{\perp}$$, so $$(1-
\lambda)\vec{v} = \lambda \vec{v}_{\perp}$$. But now the left-hand-side $$(1-\lambda)\vec{v}$$ lies in $$V$$
while the right-hand-side $$\lambda \vec{v}_{\perp}$$ lies in $$V (\perp}$$; so both sides are $$\vec(0)$$
(since $$V \cap V{\perp} = \(\vec{O)\}$$).

So now both $$(1-\lambda)\vec{v} = \vec{0}$$ and $$\lambda \vec{v}_{\perp} = \vec{0}$$.

Case 1: if $$\vec{v]_{\perp} \neq \vec{0}$$, we must have $$\lambda = 0$$. Case 2: if $$\vec{v}_{\perp} =
\vec{0}$$ (which then implies $$\vec{v)\neq\vec{0}$$ since $$\vec{x\neq\vec{0}$$ and $$\vec(x} =
\vec{v}+\vec{v]_{\perp}$$), then we must have $$1-\lambda=0$%$$.

So $$\lambda \in \{0,+1\}$$ are the only possibilities.

\[Alternate method 1: use geometric argument. If $$\vec{x}\neq\vec{0}$$ is an eigenvector of $$P$$ with
eigenvalue not zero, then $$P\vec{x}$$ is both nonzero and parallel to $$\vec{x}$$. Since $$P$$ is an
orthogonal projection, it is only possible for $$\vec{x},P\vec{x}$$ to be nonzero and parallel to each other if

$$\vec{x}\in V$$.]

\[Alternate method 2: use the fact that $$P"2 = P$$ to argue eigenvalues must satisfy $$\lambda”2 =
\lambda$$, whose only solutions are $$\lambda = 0,+1$$]

\[Alternate method 3: show that the O-eigenspace is $$V$$ and the +1-eigenspace is $$V{\perp}$$, so the
sum of these eigenspaces has dimension $$n$$, and therefore is all of $$\mathbb{R}*n$$; therefore no
eigenvalues other than 0,+1 are possible.

This proof uses repeatedly the fact that any two eigenspaces (for distinct eigenvalues) (of the same matrix)
intersect trivially (meaning their intersection is $$\(\vec{O\}$$), and so the dimension of their sum is the sum of
their dimensions]

v + 2 pts (b): conclude 0-eigenspace is $$V {\perp}$$ and +1-eigenspace is $$V$$.

Proof:

Let $$E_0%$$ and $$E_1$$ denote the eigenspaces of $$P$$ for eigenvalues $$0$$ and $$+1$$ respectively.



First, already $$P$$ acts as multiplication by 0 on $$V*{\perp}$$ and as multiplication by 1 on $$V$$. (Since if
$$\vec{v}\in V$$ then $$P\vec(v} = \vec{v}$$, and if $$\vec{v}{\perp}\in V{\perp}$$ then $$P\vec{v}*{\perp} =
\vec{0}$$.) This proves $$V*{\perp} \subseteq E_0%$$ and $$V \subseteq E_1$$.

It only remains to show the converse: that eigenvectors of $$P$$ with eigenvalue 0 are in $$V*{\perp}$$, and
that eigenvectors of $$P$$ with eigenvalue 1 are in $$V$$. (In other words, that $$E_0 \subseteq V*\perp}$$
and that $$E_1 \subseteq V$$.)

\[Method 1]

Let $$\vec{x} \in \mathbb{R}*'n$$ be a given eigenvector of $$P$$ (with $$\vec{x)\neq\vec{0}$$) with
eigenvalue $$\lambda$$; so $$\lambda \vec{x} = P\vec{x}$$. Using $$\mathbb{R}*n = V \oplus V {\perp}$$
write $$\vec{x} = \vec{v} + \vec{v}{\perp}$$ for some $$\vec{v}\in V$$ and some $$\vec{v}{\perppin
VM\perp}$$.

From part (a) we must have $$\lambda = 0$$ or $$\lambda = 1$$.

We want to show that if $$\lambda = 0$$ then $$\vec{x} \in V \perp}$$, and that if $$\lambda = 1$$ then
$$\vec{x}\in V$$.

Note $$P\vec{x} = P(\vec{v}+\vec{v}*{\perp)) = \vec{v}$$.

Case 1: if $$\lambda = 0$$, then $$\vec{0} = O\vec{x} = P\vec{x} = \vec{v}$$; so $$\vec{v}=\vec{0}$$, therefore
$$\vec{x} = \vec{v}{\perp} \in VM{\perp}$$. Case 2: if $$\lambda = 1$$, then $$\vec(x} = 1\vec{x} = P\vec{x} =
\vec{v}$$; so $$\vec(x} = \vec{v} \in V$$.

This completes the proof that $$V=E_1$$ and $$V*{\perp} = E_0%$$.

\[Method 2]

We have shown already that $$V*{\perp} \subseteq E_0$$ and $$V \subseteq E_1$$. It follows that $$V{\perp}
+V \subseteq E_O + E_1$$. But $$V {\perp}+V = \mathbb{R}*'n$$; it must be the case that $$E_0 +E_1=
\mathbb{R)}*n$$.

Next, we know $$E_O \cap E_1=\{\vec{O\}$$ since $$E_O,E_1$$ are eigenspaces with distinct eigenvalues; it
follows that $$\mathrm{dim}(E_O+E_1) = \mathrm{dim)E_O+\mathrm{dim}E_1$$. But $$E_O0 + E_1=
\mathbb{R}*n$$. So now we have $$n = \mathrm{dim}E_O+\mathrm{dim}E_1$$.

Let $$k := \mathrm{dim}V*{\perp}$$; so $$\mathrm{dim}V = n-k$$ (because $$V\oplus V*{\perp} =
\mathbb{R}*n$$). It follows that $$\mathrm{dim}E_O0 \geq k$$ and $$\mathrm{dim}E_1\geq n-k$$ (since
$$E_O0 \supseteq V{\perp}$$ and $$E_1\supseteq V$$).

Substituting $$\mathrm{dim}E_1 = n-\mathrm{dim}E_0%$$ in the second relation above gives $$n-
\mathrm{dim}E_O\geq n-k$$, which is equivalent to $$\mathrm{dim}E_O0 \leq k$$.



So we have found $$\mathrm{dim}E_O\geq k$$ and $$\mathrm{dim}E_O \leq k$$; it follows that
$$\mathrm{dim}E_O = k$$. And since $$ \mathrm{dim}E_1 +\mathrm{dim}E_0=n$$ we then have
$$\mathrm{dim}E_1 = n-k$$.

Finally, since $$V*{\perp} \subseteq E_0%$$ and $$\mathrm{dim}V*{\perp} = k = \mathrm{dim}E_0$$ we must
have $$E_0 = V \perp}$$;
similarly, since $$V\subseteq E_1$$ and $$\mathrm{dim}V = n-k = \mathrm{dim}E_1$$ we must have $$E_1=
V$$.

+ 1 pts (b): showing work/justification/proof
v +1 pts (c): correctly say P can be diagonalized
v + 1 pts (c): provide sufficient justification for diagonalizability.
(e.g. the eigenspaces of $$P$$ span all of $$\mathbb{R}*n$$, since $$\mathbb{R}*n = V*\perp} \oplus V =
E_O{(P)} \oplus E_{+1}*{(P)} $$)
(equivalently: the geometric multiplicities of the eigenspaces add to n)
(more precisely: we can diagonalize $$P = SDS*{-1}$$ where the columns of $$S$$ consist of a basis for
$$V$$ followed by a basis for $$V {\perp}$$, and $$D$$ is diagonal with first 1's for the $$V$$ basis and O's
for the $$V {\perp}$$ basis.)

\[alternate method: show P is symmetric, then apply spectral theorem]
v + 2 pts (d): argue that $$P"2 = P$$.

\[Method 1]

We recall $$P$$ is diagonalizable (as shown in part (c)), and its eigenvalues are only $$0,1$$.

It follows that we can write $$P = SDS"-1}$$ where $$S,D$$ are square matrices (of the same size as $$P$$)
with $$S$$ invertible, and $$D$$ diagonal with all diagonal entries of $$D$$ being either O or 1.

In particular it follows that $$D"2 = D$$ (because $$D$$ is diagonal, and each diagonal entry $$t$$ of $$D$$

is either O or 1 and therefore satisfies $$t*2 = t$$).

Now $$P"2 = (SDS(-1))*2 = (SDS{-1})(SDS"{-1)) = SD(S(-1)S)DS{-1} = SDIDS{-1} = S(D*2)S"(-1} = SDS-1} = P;$$
note we used $$D"2 = D$$.

\[Method 2]

Recall that $$P\vec{a} \in V$$ for any vector $$\vec{a} \in \mathbb{R}*n$$. Furthermore, we also know
$$P\vec{v} = \vec{v}$$ for any $$\vec{v}\in V$$.

It follows that for any vector $$\vec{x} \in \mathbb{R}*n$$ we have $$P(P\vec(x}) = P\vec{x}$$; so $$P"2\vec{x}
= P\vec{x}$$.

Since $$P"2$$ and $$P$$ agree on all vectors $$\vec{x} \in \mathbb{R}'n$$ it follows that $$P"2 = P$$.



v + 1 pts (d): showing work/justification
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1.

(a) (4 points) Let A be the 2 x 2 matrix of rotation by 45 degrees counterclockwise in the
plane. Let [A]g denote the B-matrix of A with respect to the basis {(1.1
[A]s.

,(0,1)}. Fine
(b) (3 points) Let B be a basis of R

" Prove that

-'x“f]y x i-".iB:B]B'
' of B.
| 3

That is, prove that the B-matrix of AB is eqqual to the B-matrix of A times the B-matrix

(¢) (3 points) Suppose that A is a rotation matrix in ®
R*. What is the determinant of the
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4 Question 4 9/10
v +1 pts (a): correct matrix $$A = \begin{bmatrix}
\cos45*{\circ} & -\sin45"{\circ}\\
\sin45"{\circ} & \cos45"{\circ}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}\\
\frac{1){\sqrt{2]} & \frac{1}{\sqrt{2}}
\end{bmatrix}$$
v +1 pts (a): correct change-of-basis formula: $$[A]_{\mathcal{B}} = S-1JAS$$ where the columns of $$S$$ are
the ordered basis vectors in $$\mathcal{B}$$
(or other method)
v + 1 pts (a): correctly identify $$S = \begin{bmatrix}
1& O\
1&1
\end{bmatrix}$$, and compute $$S{-1} = \begin{bmatrix}
1& O\
1&1
\end{bmatrix}$$
+ 0 pts temp
v +1 pts (a): compute $$[A]_{\mathcal{B}} = \begin{bmatrix}
0 & -\frac{1){\sqrt{2}\\
\sqrt{2} & \sqrt{2}
\end{bmatrix}$$
v + 1 pts (b): correct change-of-basis formulas for $$[A]_{\mathcal{B}}$$, $$[B]_{\mathcal{B}}$$,
$$[AB]_(\mathcal(B})$$
v + 2 pts (b): directly compute:
$$[A]_(\mathcal(B)} [B]_{\mathcal(B}} = (S{-1})AS)(S{-1}BS) = SN-T}JA(SS"(-1))BS = SA-1JAIBS = SA{-T{AB)S =
[AB]_{\mathcal{B}}.$$
Here $$S$$ is the matrix whose columns are the vectors in $$\mathcal{B}$$ (in the same order as in
$$\mathcal{B}$$).
+1 pts (c): argue that a rotation matrix has determinant $$\pm1$$.
For example, a geometric argument can be used, by applying the geometric definition of determinant. Rotations

preserve lengths (as well as angles and volumes) so a rotation maps a cube to another cube of the same volume.

\[Specifically, the determinant is +1 for orientation-preserving rotations (known as proper rotations), and -1 for

orientation-reversing rotations (known as improper rotations).]

\[Note: just +1 instead of 1 will also be accepted, as the textbook defines a rotation as having determinant +1.]

Alternatively, we can argue rotation matrices are orthogonal matrices (because they preserve length), and

orthogonal matrices must have determinant $$\pm1$$.



v + 2 pts (c): argue that $$A$$ and $$[A]_{\mathcal{B}}$$ have the same determinant.

Proof: $$\mathrm{det}([A]_{\mathcal{B}}) = \mathrm{det}(S"{-1JAS) = \mathrm{det}(S"{-
1))\mathrm{det}(A)\mathrm{det}(S) = \mathrm{det}(A) \,\mathrm{det}(S)*{-1\mathrm{det}(S) = \mathrm{det}(A).$$
Note here we used the multiplicative properties of determinant (i.e., $$\mathrm{det}(CC') =
\mathrm{det}(C)\mathrm{det}(C")$$ for any square matrices $$C,C'$$ of the same size).

\[More generally, any two similar square matrices have the same determinant.]

Alternatively, we can argue that the determinant of a linear operator (or square matrix) can be calculated in a
basis-independent way (i.e. the geometric definition of determinant, which looks at how the operator changes

the volume of oriented parallelepipeds, etc), and so the determinant should be the same in any basis.

o need justification for why rotation matrix has determinant 1
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Math 33A Final Exam - Page 10 of 17

5. (a) (5 points) Suppose that a lincar transformation 7' : R2 — R? with matrix A maps the
parallelogram formed Ly the vectors

{(1.5),(1,0)}
to the parallelogram formed by the vectors
{(2,3). (4,5)}.

If @ is a square of sidelength /2, what is the area of the image of Q under the linear
h "o L0y transformation (A7 A)"1? (That is. what is the area of (ATA)-YQ)?)

(b) (2 points) Find the determinant of the 4 % 4 matrix

(s (s
2 90
¥ 040
S U

Be sure to show vour work. An answer without the relevant work shown will receive very
little credit.

(¢) (3 points) Find the determinant of the 7 x 7 matrix

Y =253 7
2 3 | H b 7 o)
9 4 B8{l=-8. 9
i R A Rl |
9 8 R AOWE0 W]
B s 9 10 01T 12

e A I L0 S B P | s LY

Be sure to show your work. An answer without the relevant work shown will receive very
little credit.
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5 Question 510/10
v + 2 pts (a) Made a connection between areas and determinants
v +1 pts (a) Computed $$A =\left[ \begin{array}{cc} 4 & -2/5 \\ 5 & -2/5\end{array}\right]$$ or $$A =\left[
\begin{array){cc} 2 & 2/5 \\ 3 & 2/5\end(array)\right]$$, or its determinant of $$\pm 2/5%$$
v + 1 pts (a) Used $$\det A = \det A*T$$ or $$\det AM-1} = 1/\det A$S$, or computed $$(ATA)-1)$$ directly
v + 1 pts (a) Correct final answer: $$\displaystyle\frac{25){2}$$
v + 1 pts (b) Correct determinant: $$4$$
v + 1 pts (b) Showed work, or partial credit for work towards a determinant
v +1 pts (c) Correct determinant: $$0$$

v + 2 pts (c) Showed work, or partial credit for work towards a determinant
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6. Define a quadratic form ¢ : R? — R by
. Ul D] 2 [ B { o
qlxy. Ty, @3) = 3Ty + 205 + 3x; + Adryry
(a) (2 points) Find the associated 3 x 3 symumetric matrix A such that ¢(F) = 7 - (A

)

r
0

(b) (3 points) Find an orthogonal dingonalization of A.

(c) (1 point) What is the definiteness of ¢?

(d) (4 points) Use the information from part(b) 10 geometrically

read as “the set of all vectors 7
use the informatiou from part(b
required.

281\

b) det

=

E‘ = keC

3-x © *

{(FeR?: q(7) = 10}.

in ®? such that ¢(F) = 10.” Be sure to explain }

You can
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6 Question 6 10/10

v + 2 pts (a) Correct matrix: $$A = \left[\begin{array}{ccc} 3 & 0 & 2\\ 0 & 2 & O\\ 2 & 0 & 3\end{array} \right]$$
v + 1 pts (b) Correct eigenvalues: $$\lambda = 1,2,5$$
v + 1 pts (b) Correct eigenvectors/eigenspaces: $$ E_1 = \left\{ \left[\begin{array}{c)t \\ O \\ -t\end{array}\right]: t
\in \mathbb{R}\right\} $$ $$ E_2 = \left\{ \left\begin{array)}{c}O \\ t \\O \end{array}\right]: t \in \mathbb{R}\right\}
$$ $$ E_5 = \left\{ \left[\begin{array}{c}t \\ 0 \\t \end{array}\right]: t \in \mathbb{R}\right\} $$
v + 1 pts (b) Correct diagonalization: $$ A = SDS*{T} =SDS"{-1}$$ where $$ S = \left\begin{array}{ccc} \frac{-
1M\sqrt{2)} & 0 & \frac{1}{\sqrt{2]\\ O & 1 & O\\ \frac{1}{\sqrt{2])} & O & \frac{1}{\sqrt{2}}\end{array} \right]$$ and $$D
=\left[\begin{array}{ccc}1& 0 & O\\ 0 & 2 & O\\ 0 & O & 5\end{array} \right]$$
v +1pts (c) $$q$$ is positive definite, or positive semidefinite (or correct answer based on eigenvalues from
(b))
v + 2 pts (d) This level set is an ellipsoid (or correct shape based on computations from (b))
v + 2 pts (d) Rewrote quadratic form as $$q(\vec{x}) = c_1"2 + 2¢_2"2 + 5¢_3"2$$, or other justification using
computations from (b)

+1 pts (a) (partial) Gave a matrix that either satisfies $$q(\vec{x)) = \vec{x} \cdot A\vec{x}$$, or is symmetric, but
not both

Page 28



W‘——"—

Math 33A Final Exam - Page 14 of 17 e e
7. (a) (5 points) Find a 35 matvix .1 whese corresponding linear transformation 7 : R”
satisfies all of the followine four critesia, (4) (ed), (e ), (ie):

(i) T((1.2.3,4.5)) = (1,2.3.4.5).

(i) T(e}) = -6}

ér,
(i) T(€3) = 1063,

iv) dim(ker(T)) = dirn(ker(A)) = 2. i.e.. the diraension of the kernel of A is 2.

i (b) (5 points) Compnte A by ing sure to show your work.
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7 Question 710/10
v + 10 pts Correct

Part a correct
+15pts T12345)=(123405)
+1ptsTe_1=-e_1
+1pts Te_2=10e_2
+1.5 ptsdimker T=2

+ 2 pts state that diagonalization is the way to go

+ 3 pts complete diagonalization

+ 10 pts Did not simplify SDS"{(-1}

+ 9 pts small error in (b) in finishing up; ie, arithmetic or appropriate form

- 2 pts 2 or more errors in (b), or more significant error (like putting columns of S in the wrong order, very
incorrect characteristic polynomial)

+ 3 pts Make clear that you see a pattern

+ 2 pts correct statement of final answer. This deduction is deemed appropriately, because if you choose to do
the problem by just looking for a pattern and not carrying out the diagonalization, then correctly discerning what
exactly the pattern is much of the difficulty of the problem.

+ 0 pts No work
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(a) (5 points) Find the singular values of the matrix B
answer given without the 1

8. Let

given above. Show all vour stops

elevant work will receive verv little credit.

(b) (5 points) Find a singular value decomposition B = (/Y1

your steps. An answer given without the relevant work will receive verv little credit
b
o \
(X) B i \ -\ O

&T%: 3 O
8 2

deg | 3-A
Fe) Z‘/\

E3 wz:rfi
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8 Question 8 10/10
(a)
+ 2 pts compute BT B
+ 2 pts get eigenvalues

+ 1 pts square root

(b)
+ 1 pts V matrix
+ 1 pts Sigma matrix (with dimensions and placement matching U and V)
+ 1.5 pts First two columns of U
+ 0.5 pts U is square
+ 1 pts third column of U (this point is not award if U is only given 2 columns, or if the third column is incorrect)
+ 2 pts Awarded if reasonable effort is shown for each part of (b), but fewer than 2 other points in (b) are

awarded. This is not awarded concurrently with the other points but in lieu of them.

v +10 pts Correct
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