MATH 33A – SECTION 2 MIDTERM #1

OCTOBER 23, 2015

Full Name	
Student ID	
Discussion Section	

Problem 1	/20
Problem 2	/30
Problem 3	/20
Problem 4	/30
Total	/100

Problem 1. Determine whether there exists a polynomial of the form

$$f(t) = a + bt + ct^2 + dt^3$$

whose graph goes through the points (0,1), (1,0), (-1,0), (2,-15), (-2,9) and (3,-56). In the affirmative case, give f(t).

Problem 2. Consider the matrix

$$A_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Recall that the linear transformation $R_{\theta} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ given by $R_{\theta}(\vec{x}) = A_{\theta}\vec{x}$ is a counter-clockwise rotation through an angle θ .

(a) Show that

$$R_{\alpha} \circ R_{\beta} = R_{\beta} \circ R_{\alpha} = R_{\alpha+\beta}$$

by calculation.

(b) Using the result of (a), show that R_{α} is invertible and describe R_{α}^{-1} . *Hint:* For (a), you may use the trigonometric identities

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta.$$

Problem 3. Determine all the values (if any) of the constants B and C for which the following matrix is invertible:

0	1	В
-1	0	C
$\left\lfloor -B \right\rfloor$	-C	0

Problem 4. Let
$$A = \begin{bmatrix} 4 & 8 & 1 & 1 & 4 \\ 3 & 6 & 1 & 2 & 5 \\ 2 & 4 & 1 & 9 & 10 \\ 1 & 2 & 3 & 2 & 0 \end{bmatrix}$$
.

- (a) Find a basis for ker(A).
- (b) Find a basis for im(A).