Math 33A-2 Exams

John Arthur Minhquan Dang

TOTAL POINTS

23 / 24

QUESTION 1

15/6

- 0 pts Correct
- 1 pts Minor error in matrix like miscopying number
- **2 pts** Major error like flipping row and column or row reducing A
- 3 pts No matrix written in part a

√ - 1 pts Error in row reduction

- **2 pts** Major error in row reduction, tried to find inverse instead of solving system directly, or deduced inconsistent
 - 3 pts No row reduction

QUESTION 2

6 pts

2.1 3/3

√ - 0 pts Correct

- 1 pts rows in wrong order
- 1 pts there are non-zeros above/below leading ones
 - 1 pts leading entries aren't 1

2.2 3/3

√ - 0 pts Correct

- 2 pts invalid row operation
- 3 pts matrix is not in rref
- 2 pts rref is not calculated
- 1 pts dropped entry (possible typo)
- 1 pts arithmetic error

QUESTION 3

6 pts

3.1 3/3

- 2 pts Incorrect answer

- 1 pts without doing row operations
- √ 0 pts correct
 - 1 pts computational error
 - 1 pts computational error

3.2 3/3

√ - 0 pts Correct

- 1 pts without rref or incorrect rref or without a matrix with 0 row
 - 1 pts without explanation or incorrect explanation
 - 3 pts incorrect answer

QUESTION 4

4 6/6

√ - 0 pts Correct

- 2 pts order wrong
- 1 pts proj not computed/computed incorrectly
- 1 pts order not shown
- 0.5 pts order half shown
- 1 pts ref not computed/computed incorrectly
- 1 pts ref formula missing
- 1 pts proj formula missing
- 6 pts incorrect
- 0 pts perfect!

MATH 33A-2, 1. MIDTERM (A)

For this exam the only permitted assistance is a handwritten 4×6 index card. Books, lecture $notes,\ or\ any\ technical\ devices\ such\ as\ calculators,\ computers\ or\ phones\ are\ strictly\ prohibited!$

Please, write your name, student ID number, and discussion section. ame: John Arthur Dane

Name: John

UID:

Section:

Problems	Points	Score
1	6	
2	6	
3	6	
4	6	
Total	24	

It is important that you show your work.

Problem 1 (6 points). Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be a linear transformation defined by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 - 2x_3 + x_4\\x_2 + 4x_3\\\frac{1}{2}x_1 - \frac{1}{2}x_3 + 5x_4\\x_1 + 3x_2 \end{bmatrix}$$

- a.) (3 points) Find the matrix A such that $T(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^4$.
- b.) (3 points) Let

$$\vec{b} = \begin{bmatrix} 1\\2\\-1\\-\frac{1}{2} \end{bmatrix}$$

be a vector in \mathbb{R}^4 . Find the solution to $T(\vec{x}) = \vec{b}$, in other words, find a vector \vec{x} in \mathbb{R}^4 such that $A\vec{x} = \vec{b}$.

Such that
$$A\overline{z} = b$$
.

$$T(X) = A \overline{f} = \begin{bmatrix} 2x_1 + 0 - 2x_2 + x_4 \\ 0 + x_2 + 0 \\ x_1/x + 0 - x_3/x + 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 + x_2 - x_3/x + x_4 \\ x_1 + x_2x_2 + 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 & 1 \\ 1/x & 3 & -1/x \\ 1/x & 3 & -1/x \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 & 1 \\ 1/x & 3 & -1/x \\ 1/x & 3 & -1/x \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 & 1 \\ 1/x & 3 & -1/x \\ 1/x & 3 & -1/x \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 & 1 \\ 1/x & 3 & -1/x \\ 1/x & 3 & -1/x \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 & 1 \\ 1/x & 3 & -1/x \\ 1/x & 3 & -1/x \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 & 1 \\ 1/x & 3 & -1/x \\ 1/x & 3 & -1/x \\ 1/x & 3 & -1/x \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 & 1 \\ 1/x & 3 & -1/x \\ 1/x & 3 & -1/x \\ 1/x & 3 & -1/x \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 & 1 \\ 1/x & 3 & -1/x \\ 1/$$

$$\begin{array}{c} 3 \\ -1/2$$

7-120(S) 3+120(S) 1-120(S) 1-120(

Problem 2 (6 points). Are the following matrices in reduced row echelon form? If not, find the reduced row echelon form.

a.) (3 points)
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 4 & \frac{1}{2} \end{bmatrix}$$

A $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 4 & \frac{1}{2} \end{bmatrix}$

A $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

b.) (3 points)
$$B = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 8 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Problem 3 (6 points). For each of the matrices below, either find an inverse or explain why no inverse exists.

$$\begin{array}{c} \text{a.) (3 points) } A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \\ -2(H) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \\ -3(H) \begin{bmatrix} 0 & 0 \\ 0 & 2 \\ 1 & -3 \\ 0 & 1 \end{bmatrix} \\ -2(H) \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 1 & -2 \\ 1 & -2 \\ 1 \end{bmatrix} \end{array}$$

$$F(B) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 2$$

Problem 4 (6 points). Find a matrix which describes the projection on the horizontal line combined with a reflection about the vertical line in \mathbb{R}^2 . Does the order of these transformations matter?

Projection on horizontal line is
Projection on vector $\vec{u} = <1,0>$ described by matrix A= [0 Reflection about the vertical the described by matrix B= [0]] $AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ The transformation matrix is [-1 0]
The order does not watter because $AB = 13A = \begin{bmatrix} 7/2 & 9 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} 1/2 & 9 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 7/2 & 9 \\ 0 & 0 \end{bmatrix}$

.

SCRATCH WORK

SCRATCH WORK