1. (10 points)

(a) Which of the following is the QR-factorization of the matrix
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You do not have to show your work (if you need more roow, use Pdge ) £
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2. (10 points) Consider the matrix
e
P [3 O} .
(a) Suppose that 7 is any nonzero vector in R?. Explain why the vectors ¥, A%, and A*J must

be linearly dependent. (Note: do not use any numerical examples in your answer; your
reasoning must be valid no matter what ¥ is.)
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{b) Let 7 = P} Part (a) shows that there are scalars ¢y, ¢1, and ¢y such that
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' Fxplain why ﬂns shows that the matrix ¢gl + c1.A + coA® is not invertible.
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) Let ¥ = [1] . Find scalars ¢g, ¢1, and 23 such that (1) holds. i Box your answer!
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3. (10 points) [You do not need to show work on this page. | Consider the matrix

3R S S )
A= Miessdongd i) <)
1 X =gt e

: m&uﬂdﬂﬂf r@dum\arﬁ
(a) Find a basis for the image of A. lBox your answerl
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(b) What does the rank-nullity theorem say in this case?
(Your answer should be a simple equation of the form 1 + 1 = 2).
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(c) Find a basis for the kernel of A. |Bo:x your a,nswer'l
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4. (10 points) True/False (circle the correct answer). You do not need to justify your answer.
Remember that True means always true. If a statement is sometimes true, but sometimes false, /

mark it False.

ve((A) = e 0

X (a) If A is an invertible matrix then ker(A) = ker(A™).
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(b) If A is an orthogonal matrix then AT A is also an orthogonal matrix. -
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True False

(c) There exists a subspace V' of R® such that dim(V) = dim(V*), where V+ denotes the

orthogonal complement of V.
| True

/’\(d) If V is a two-dimensional subspace of R? (a plane) then there is a basis B such that the

B-matrix of the linear transformation 7" = projy : R® -» R? has the form
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(e) If A is a symmetric » X n matrix and S is an orthogonal n X n matrix then the matrix

S—L1AS is symmetric.
False
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5. (10 points) The following statements are the possible answers to questions (a) and (b) below.

(A) The linear system AZ = 0 has a unique solution
(B) dim(im A) + dim(ker A) =n

(C) rank(A) =n

(

D) A is upper triangular

By ATA=1T, }\ I8 0, =2 i et -
(G) rank(A ) = rank(AT)
(H) A" =

)
)
) T2
)
(E) The column vectors of A span R™
(F)
)
)
1) i|Az|] = ||Z|| for all ¥ in R* A iSonh. = A WOVeit:

(a) Which of the statements above implies that the n x n matrix A is invertible?
There are five correct answers.

(b) Suppose that A is an invertible n X n matrix. Which of the properties above does A satisfy?
There are five correct answers.
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