
March 30, 2011

1 PRECALCULUS REVIEW

1.1 Real Numbers, Functions, and Graphs

Preliminary Questions
1. Give an example of numbers a and b such that a < b and |a| > |b|.

solution Take a = −3 and b = 1. Then a < b but |a| = 3 > 1 = |b|.

2. Which numbers satisfy |a| = a? Which satisfy |a| = −a? What about |−a| = a?

solution The numbers a ≥ 0 satisfy |a| = a and | − a| = a. The numbers a ≤ 0 satisfy |a| = −a.

3. Give an example of numbers a and b such that |a + b| < |a| + |b|.

solution Take a = −3 and b = 1. Then

|a + b| = | − 3 + 1| = | − 2| = 2, but |a| + |b| = | − 3| + |1| = 3 + 1 = 4.

Thus, |a + b| < |a| + |b|.

4. What are the coordinates of the point lying at the intersection of the lines x = 9 and y = −4?

solution The point (9, −4) lies at the intersection of the lines x = 9 and y = −4.

5. In which quadrant do the following points lie?

(a) (1, 4) (b) (−3, 2) (c) (4, −3) (d) (−4, −1)

solution

(a) Because both the x- and y-coordinates of the point (1, 4) are positive, the point (1, 4) lies in the first quadrant.

(b) Because the x-coordinate of the point (−3, 2) is negative but the y-coordinate is positive, the point (−3, 2) lies in
the second quadrant.

(c) Because the x-coordinate of the point (4, −3) is positive but the y-coordinate is negative, the point (4, −3) lies in
the fourth quadrant.

(d) Because both the x- and y-coordinates of the point (−4, −1) are negative, the point (−4, −1) lies in the third quadrant.

6. What is the radius of the circle with equation (x − 9)2 + (y − 9)2 = 9?

solution The circle with equation (x − 9)2 + (y − 9)2 = 9 has radius 3.

7. The equation f (x) = 5 has a solution if (choose one):

(a) 5 belongs to the domain of f .

(b) 5 belongs to the range of f .

solution The correct response is (b): the equation f (x) = 5 has a solution if 5 belongs to the range of f .

8. What kind of symmetry does the graph have if f (−x) = −f (x)?

solution If f (−x) = −f (x), then the graph of f is symmetric with respect to the origin.

Exercises
1. Use a calculator to find a rational number r such that |r − π2| < 10−4.

solution r must satisfy π2 − 10−4 < r < π2 + 10−4, or 9.869504 < r < 9.869705. r = 9.8696 = 12337
1250 would

be one such number.
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2. Which of (a)–(f) are true for a = −3 and b = 2?

(a) a < b (b) |a| < |b| (c) ab > 0

(d) 3a < 3b (e) −4a < −4b (f)
1

a
<

1

b

solution

(a) True. (b) False, |a| = 3 > 2 = |b|.
(c) False, (−3)(2) = −6 < 0. (d) True.

(e) False, (−4)(−3) = 12 > −8 = (−4)(2). (f) True.

In Exercises 3–8, express the interval in terms of an inequality involving absolute value.

3. [−2, 2]
solution |x| ≤ 2

4. (−4, 4)

solution |x| < 4

5. (0, 4)

solution The midpoint of the interval is c = (0 + 4)/2 = 2, and the radius is r = (4 − 0)/2 = 2; therefore, (0, 4)

can be expressed as |x − 2| < 2.

6. [−4, 0]
solution The midpoint of the interval is c = (−4 + 0)/2 = −2, and the radius is r = (0 − (−4))/2 = 2; therefore,
the interval [−4, 0] can be expressed as |x + 2| ≤ 2.

7. [1, 5]
solution The midpoint of the interval is c = (1 + 5)/2 = 3, and the radius is r = (5 − 1)/2 = 2; therefore, the
interval [1, 5] can be expressed as |x − 3| ≤ 2.

8. (−2, 8)

solution The midpoint of the interval is c = (8 − 2)/2 = 3, and the radius is r = (8 − (−2))/2 = 5; therefore, the
interval (−2, 8) can be expressed as |x − 3| < 5

In Exercises 9–12, write the inequality in the form a < x < b.

9. |x| < 8

solution −8 < x < 8

10. |x − 12| < 8

solution −8 < x − 12 < 8 so 4 < x < 20

11. |2x + 1| < 5

solution −5 < 2x + 1 < 5 so −6 < 2x < 4 and −3 < x < 2

12. |3x − 4| < 2

solution −2 < 3x − 4 < 2 so 2 < 3x < 6 and 2
3 < x < 2

In Exercises 13–18, express the set of numbers x satisfying the given condition as an interval.

13. |x| < 4

solution (−4, 4)

14. |x| ≤ 9

solution [−9, 9]
15. |x − 4| < 2

solution The expression |x − 4| < 2 is equivalent to −2 < x − 4 < 2. Therefore, 2 < x < 6, which represents the
interval (2, 6).

16. |x + 7| < 2

solution The expression |x + 7| < 2 is equivalent to −2 < x + 7 < 2. Therefore, −9 < x < −5, which represents
the interval (−9, −5).
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17. |4x − 1| ≤ 8

solution The expression |4x − 1| ≤ 8 is equivalent to −8 ≤ 4x − 1 ≤ 8 or −7 ≤ 4x ≤ 9. Therefore, − 7
4 ≤ x ≤ 9

4 ,

which represents the interval [− 7
4 , 9

4 ].
18. |3x + 5| < 1

solution The expression |3x + 5| < 1 is equivalent to −1 < 3x + 5 < 1 or −6 < 3x < −4. Therefore, −2 < x < − 4
3

which represents the interval (−2, − 4
3 )

In Exercises 19–22, describe the set as a union of finite or infinite intervals.

19. {x : |x − 4| > 2}
solution x − 4 > 2 or x − 4 < −2 ⇒ x > 6 or x < 2 ⇒ (−∞, 2) ∪ (6, ∞)

20. {x : |2x + 4| > 3}
solution 2x + 4 > 3 or 2x + 4 < −3 ⇒ 2x > −1 or 2x < −7 ⇒ (−∞, − 7

2 ) ∪ (− 1
2 , ∞)

21. {x : |x2 − 1| > 2}
solution x2 − 1 > 2 or x2 − 1 < −2 ⇒ x2 > 3 or x2 < −1 (this will never happen) ⇒ x >

√
3 or x < −√

3 ⇒
(−∞, −√

3) ∪ (
√

3, ∞).

22. {x : |x2 + 2x| > 2}
solution x2 + 2x > 2 or x2 + 2x < −2 ⇒ x2 + 2x − 2 > 0 or x2 + 2x + 2 < 0. For the first case, the zeroes are

x = −1 ± √
3 ⇒ (−∞, −1 − √

3) ∪ (−1 + √
3, ∞).

For the second case, note there are no real zeros. Because the parabola opens upward and its vertex is located above the
x-axis, there are no values of x for which x2 + 2x + 2 < 0. Hence, the solution set is (−∞, −1 − √

3) ∪ (−1 + √
3, ∞).

23. Match (a)–(f) with (i)–(vi).

(a) a > 3 (b) |a − 5| <
1

3

(c)

∣∣∣∣a − 1

3

∣∣∣∣ < 5 (d) |a| > 5

(e) |a − 4| < 3 (f) 1 ≤ a ≤ 5

(i) a lies to the right of 3.

(ii) a lies between 1 and 7.

(iii) The distance from a to 5 is less than 1
3 .

(iv) The distance from a to 3 is at most 2.

(v) a is less than 5 units from 1
3 .

(vi) a lies either to the left of −5 or to the right of 5.

solution

(a) On the number line, numbers greater than 3 appear to the right; hence, a > 3 is equivalent to the numbers to the right
of 3: (i).

(b) |a − 5| measures the distance from a to 5; hence, |a − 5| < 1
3 is satisfied by those numbers less than 1

3 of a unit from
5: (iii).

(c) |a − 1
3 | measures the distance from a to 1

3 ; hence, |a − 1
3 | < 5 is satisfied by those numbers less than 5 units from

1
3 : (v).

(d) The inequality |a| > 5 is equivalent to a > 5 or a < −5; that is, either a lies to the right of 5 or to the left of −5: (vi).

(e) The interval described by the inequality |a − 4| < 3 has a center at 4 and a radius of 3; that is, the interval consists
of those numbers between 1 and 7: (ii).

(f) The interval described by the inequality 1 < x < 5 has a center at 3 and a radius of 2; that is, the interval consists of
those numbers less than 2 units from 3: (iv).

24. Describe

{
x : x

x + 1
< 0

}
as an interval.

solution Case 1: x < 0 and x + 1 > 0. This implies that x < 0 and x > −1 ⇒ −1 < x < 0.
Case 2: x > 0 and x < −1 for which there is no such x. Thus, solution set is therefore (−1, 0).
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25. Describe {x : x2 + 2x < 3} as an interval. Hint: Plot y = x2 + 2x − 3.

solution The inequality x2 + 2x < 3 is equivalent to x2 + 2x − 3 < 0. In the figure below, we see that the graph of

y = x2 + 2x − 3 falls below the x-axis for −3 < x < 1. Thus, the set {x : x2 + 2x < 3} corresponds to the interval
−3 < x < 1.

−4 −3 −2 −2

2
4
6
8

10

y

x
1 2

y = x2 + 2x − 3

26. Describe the set of real numbers satisfying |x − 3| = |x − 2| + 1 as a half-infinite interval.

solution We will break the problem into three cases: x ≥ 3, 2 ≤ x < 3 and x < 2. For x ≥ 3, both x − 3 and x − 2
are greater than or equal to 0, so |x − 3| = x − 3 and |x − 2| = x − 2. The equation |x − 3| = |x − 2| + 1 then becomes
x − 3 = x − 2 + 1, which is equivalent to −1 = 1. Thus, for x ≥ 3, there are no solutions. Next, we consider 2 ≤ x < 3.
Now, x − 3 < 0, so |x − 3| = 3 − x, but x − 2 ≥ 0, so |x − 2| = x − 2. The equation |x − 3| = |x − 2| + 1 then
becomes 3 − x = x − 2 + 1, which is equivalent to x = 2. Thus, x = 2 is a solution. Finally, consider x < 2. Both x − 3
and x − 2 are negative, so |x − 3| = 3 − x and |x − 2| = 2 − x. The equation |x − 3| = |x − 2| + 1 then becomes
3 − x = 2 − x + 1, which is equivalent to 1 = 1. Hence, every x < 2 is a solution. Bringing all three cases together, it
follows that |x − 3| = |x − 2| + 1 is satisfied for all x ≤ 2, or for all x on the half-infinite interval (−∞, 2].
27. Show that if a > b, then b−1 > a−1, provided that a and b have the same sign. What happens if a > 0 and b < 0?

solution Case 1a: If a and b are both positive, then a > b ⇒ 1 > b
a ⇒ 1

b
> 1

a .

Case 1b: If a and b are both negative, then a > b ⇒ 1 < b
a (since a is negative) ⇒ 1

b
> 1

a (again, since b is negative).

Case 2: If a > 0 and b < 0, then 1
a > 0 and 1

b
< 0 so 1

b
< 1

a . (See Exercise 2f for an example of this).

28. Which x satisfy both |x − 3| < 2 and |x − 5| < 1?

solution |x − 3| < 2 ⇒ −2 < x − 3 < 2 ⇒ 1 < x < 5. Also |x − 5| < 1 ⇒ 4 < x < 6. Since we want an x that
satisfies both of these, we need the intersection of the two solution sets, that is, 4 < x < 5.

29. Show that if |a − 5| < 1
2 and |b − 8| < 1

2 , then |(a + b) − 13| < 1. Hint: Use the triangle inequality.

solution

|a + b − 13| = |(a − 5) + (b − 8)|
≤ |a − 5| + |b − 8| (by the triangle inequality)

<
1

2
+ 1

2
= 1.

30. Suppose that |x − 4| ≤ 1.

(a) What is the maximum possible value of |x + 4|?
(b) Show that |x2 − 16| ≤ 9.

solution
(a) |x − 4| ≤ 1 guarantees 3 ≤ x ≤ 5. Thus, 7 ≤ x + 4 ≤ 9, so |x + 4| ≤ 9.
(b) |x2 − 16| = |x − 4| · |x + 4| ≤ 1 · 9 = 9.

31. Suppose that |a − 6| ≤ 2 and |b| ≤ 3.

(a) What is the largest possible value of |a + b|?
(b) What is the smallest possible value of |a + b|?
solution |a − 6| ≤ 2 guarantees that 4 ≤ a ≤ 8, while |b| ≤ 3 guarantees that −3 ≤ b ≤ 3. Therefore 1 ≤ a + b ≤ 11.
It follows that

(a) the largest possible value of |a + b| is 11; and
(b) the smallest possible value of |a + b| is 1.

32. Prove that |x| − |y| ≤ |x − y|. Hint: Apply the triangle inequality to y and x − y.

solution First note

|x| = |x − y + y| ≤ |x − y| + |y|
by the triangle inequality. Subtracting |y| from both sides of this inequality yields

|x| − |y| ≤ |x − y|.
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33. Express r1 = 0.27 as a fraction. Hint: 100r1 − r1 is an integer. Then express r2 = 0.2666 . . . as a fraction.

solution Let r1 = .27. We observe that 100r1 = 27.27. Therefore, 100r1 − r1 = 27.27 − .27 = 27 and

r1 = 27

99
= 3

11
.

Now, let r2 = 0.2666. Then 10r2 = 2.666 and 100r2 = 26.666. Therefore, 100r2 − 10r2 = 26.666 − 2.666 = 24 and

r2 = 24

90
= 4

15
.

34. Represent 1/7 and 4/27 as repeating decimals.

solution
1

7
= 0.142857;

4

27
= 0.148

35. The text states: If the decimal expansions of numbers a and b agree to k places, then |a − b| ≤ 10−k . Show that the
converse is false: For all k there are numbers a and b whose decimal expansions do not agree at all but |a − b| ≤ 10−k .

solution Let a = 1 and b = 0.9 (see the discussion before Example 1). The decimal expansions of a and b do not

agree, but |1 − 0.9| < 10−k for all k.

36. Plot each pair of points and compute the distance between them:

(a) (1, 4) and (3, 2) (b) (2, 1) and (2, 4)

(c) (0, 0) and (−2, 3) (d) (−3, −3) and (−2, 3)

solution

(a) The points (1, 4) and (3, 2) are plotted in the figure below. The distance between the points is

d =
√

(3 − 1)2 + (2 − 4)2 =
√

22 + (−2)2 = √
8 = 2

√
2.

y

1

2

3

4

x
1 2 3

(b) The points (2, 1) and (2, 4) are plotted in the figure below. The distance between the points is

d =
√

(2 − 2)2 + (4 − 1)2 = √
9 = 3.

y

1

2

3

4

x
1 2 3

(c) The points (0, 0) and (−2, 3) are plotted in the figure below. The distance between the points is

d =
√

(−2 − 0)2 + (3 − 0)2 = √
4 + 9 = √

13.

y

1

2

3

4

x
−2 −1
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(d) The points (−3, −3) and (−2, 3) are plotted in the figure below. The distance between the points is

d =
√

(−3 − (−2))2 + (−3 − 3)2 = √
1 + 36 = √

37.

1
2
3

−3
−2
−1

x

y

−2−3 −1

37. Find the equation of the circle with center (2, 4):

(a) with radius r = 3.

(b) that passes through (1, −1).

solution

(a) The equation of the indicated circle is (x − 2)2 + (y − 4)2 = 32 = 9.

(b) First determine the radius as the distance from the center to the indicated point on the circle:

r =
√

(2 − 1)2 + (4 − (−1))2 = √
26.

Thus, the equation of the circle is (x − 2)2 + (y − 4)2 = 26.

38. Find all points with integer coordinates located at a distance 5 from the origin. Then find all points with integer
coordinates located at a distance 5 from (2, 3).

solution

• To be located a distance 5 from the origin, the points must lie on the circle x2 + y2 = 25. This leads to 12 points
with integer coordinates:

(5, 0) (−5, 0) (0, 5) (0, −5)

(3, 4) (−3, 4) (3, −4) (−3, −4)

(4, 3) (−4, 3) (4, −3) (−4, −3)

• To be located a distance 5 from the point (2, 3), the points must lie on the circle (x − 2)2 + (y − 3)2 = 25, which
implies that we must shift the points listed above two units to the right and three units up. This gives the 12 points:

(7, 3) (−3, 3) (2, 8) (2, −2)

(5, 7) (−1, 7) (5, −1) (−1, −1)

(6, 6) (−2, 6) (6, 0) (−2, 0)

39. Determine the domain and range of the function

f : {r, s, t, u} → {A, B, C, D, E}
defined by f (r) = A, f (s) = B, f (t) = B, f (u) = E.

solution The domain is the set D = {r, s, t, u}; the range is the set R = {A, B, E}.
40. Give an example of a function whose domain D has three elements and whose range R has two elements. Does a
function exist whose domain D has two elements and whose range R has three elements?

solution Define f by f : {a, b, c} → {1, 2} where f (a) = 1, f (b) = 1, f (c) = 2.
There is no function whose domain has two elements and range has three elements. If that happened, one of the domain

elements would get assigned to more than one element of the range, which would contradict the definition of a function.

In Exercises 41–48, find the domain and range of the function.

41. f (x) = −x

solution D : all reals; R : all reals

42. g(t) = t4

solution D : all reals; R : {y : y ≥ 0}
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43. f (x) = x3

solution D : all reals; R : all reals

44. g(t) = √
2 − t

solution D : {t : t ≤ 2}; R : {y : y ≥ 0}
45. f (x) = |x|
solution D : all reals; R : {y : y ≥ 0}

46. h(s) = 1

s

solution D : {s : s 	= 0}; R : {y : y 	= 0}

47. f (x) = 1

x2

solution D : {x : x 	= 0}; R : {y : y > 0}

48. g(t) = cos
1

t

solution D : {t : t 	= 0}; R : {y : −1 ≤ y ≤ 1}

In Exercises 49–52, determine where f (x) is increasing.

49. f (x) = |x + 1|
solution A graph of the function y = |x + 1| is shown below. From the graph, we see that the function is increasing
on the interval (−1, ∞).

x
−3 −2 −1

1

2

1

y

50. f (x) = x3

solution A graph of the function y = x3 is shown below. From the graph, we see that the function is increasing for
all real numbers.

−5

5

y

x
−2 −1 1 2

51. f (x) = x4

solution A graph of the function y = x4 is shown below. From the graph, we see that the function is increasing on
the interval (0, ∞).

x
−2 −1 1 2

12

4

8

y



March 30, 2011

8 C H A P T E R 1 PRECALCULUS REVIEW

52. f (x) = 1

x4 + x2 + 1

solution A graph of the function y = 1

x4 + x2 + 1
is shown below. From the graph, we see that the function is

increasing on the interval (−∞, 0).

−3 −2 −1

1

y

x
1 2 3

In Exercises 53–58, find the zeros of f (x) and sketch its graph by plotting points. Use symmetry and increase/decrease
information where appropriate.

53. f (x) = x2 − 4

solution Zeros: ±2
Increasing: x > 0
Decreasing: x < 0
Symmetry: f (−x) = f (x) (even function). So, y-axis symmetry.

2

−2

−4

4

y

x
−2 −1 1 2

54. f (x) = 2x2 − 4

solution Zeros: ±√
2

Increasing: x > 0
Decreasing: x < 0
Symmetry: f (−x) = f (x) (even function). So, y-axis symmetry.

5

10

y

x
−2 −1 1 2

55. f (x) = x3 − 4x

solution Zeros: 0, ±2; Symmetry: f (−x) = −f (x) (odd function). So origin symmetry.

5

−5
−10

10

y

x
−2 −1 1 2

56. f (x) = x3

solution Zeros: 0; Increasing for all x; Symmetry: f (−x) = −f (x) (odd function). So origin symmetry.

−20
−10

20
10

y

x
−3 −1−2 1 2 3
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57. f (x) = 2 − x3

solution This is an x-axis reflection of x3 translated up 2 units. There is one zero at x = 3√2.

10

−10
−20

20

y

x
−2 −1 1 2

58. f (x) = 1

(x − 1)2 + 1

solution This is the graph of
1

x2 + 1
translated to the right 1 unit. The function has no zeros.

0.4

0.2

0.6

0.8

1

y

x
−4 −2 2 4

59. Which of the curves in Figure 26 is the graph of a function?

(A)

x

y

(B)

x

y

(C)

x

y

(D)

x

y

FIGURE 26

solution (B) is the graph of a function. (A), (C), and (D) all fail the vertical line test.

60. Determine whether the function is even, odd, or neither.

(a) f (x) = x5 (b) g(t) = t3 − t2

(c) F(t) = 1

t4 + t2

solution

(a) f (−x) = (−x)5 = −x5 = −f (x), so this function is odd.

(b) g(−t) = (−t)3 − (−t)2 = −t3 − t2 which is equal to neither g(t) nor −g(t), so this function is neither odd nor
even.

(c) This function is even because

F(−t) = 1

(−t)4 + (−t)2
= 1

t4 + t2
= F(t).
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61. Determine whether the function is even, odd, or neither.

(a) f (t) = 1

t4 + t + 1
− 1

t4 − t + 1
(b) g(t) = 2t − 2−t

(c) G(θ) = sin θ + cos θ (d) H(θ) = sin(θ2)

solution

(a) This function is odd because

f (−t) = 1

(−t)4 + (−t) + 1
− 1

(−t)4 − (−t) + 1

= 1

t4 − t + 1
− 1

t4 + t + 1
= −f (t).

(b) g(−t) = 2−t − 2−(−t) = 2−t − 2t = −g(t), so this function is odd.

(c) G(−θ) = sin(−θ) + cos(−θ) = − sin θ + cos θ which is equal to neither G(θ) nor −G(θ), so this function is
neither odd nor even.

(d) H(−θ) = sin((−θ)2) = sin(θ2) = H(θ), so this function is even.

62. Write f (x) = 2x4 − 5x3 + 12x2 − 3x + 4 as the sum of an even and an odd function.

solution Let g(x) = 2x4 + 12x2 + 4 and h(x) = −5x3 − 3x, so that f (x) = g(x) + h(x). Observe

g(−x) = 2(−x)4 + 12(−x)2 + 4 = 2x4 + 12x2 + 4 = g(x),

while

h(−x) = −5(−x)3 − 3(−x) = 5x3 + 3x = −h(x).

Thus, g(x) is an even function, and h(x) is an odd function.

63. Show that f (x) = ln

(
1 − x

1 + x

)
is an odd function.

solution

f (−x) = ln

(
1 − (−x)

1 + (−x)

)

= ln

(
1 + x

1 − x

)
= − ln

(
1 − x

1 + x

)
= −f (x),

so this is an odd function.

64. State whether the function is increasing, decreasing, or neither.

(a) Surface area of a sphere as a function of its radius

(b) Temperature at a point on the equator as a function of time

(c) Price of an airline ticket as a function of the price of oil

(d) Pressure of the gas in a piston as a function of volume

solution

(a) Increasing (b) Neither (c) Increasing (d) Decreasing

In Exercises 65–70, let f (x) be the function shown in Figure 27.

1 2 3 4
0

1

2

3

4

x

y

FIGURE 27

65. Find the domain and range of f (x)?

solution D : [0, 4]; R : [0, 4]
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66. Sketch the graphs of f (x + 2) and f (x) + 2.

solution The graph of y = f (x + 2) is obtained by shifting the graph of y = f (x) two units to the left (see the graph
below on the left). The graph of y = f (x) + 2 is obtained by shifting the graph of y = f (x) two units up (see the graph
below on the right).
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67. Sketch the graphs of f (2x), f
( 1

2x
)
, and 2f (x).

solution The graph of y = f (2x) is obtained by compressing the graph of y = f (x) horizontally by a factor of 2 (see

the graph below on the left). The graph of y = f ( 1
2x) is obtained by stretching the graph of y = f (x) horizontally by a

factor of 2 (see the graph below in the middle). The graph of y = 2f (x) is obtained by stretching the graph of y = f (x)

vertically by a factor of 2 (see the graph below on the right).

y

x

1

2

3

4

1 2 3 4

f (2x)

y

x

1

2

3

4

2 4 6 8

f (x/2)

y

x

2

4

6

8

1 2 3 4

2 f (x)

68. Sketch the graphs of f (−x) and −f (−x).

solution The graph of y = f (−x) is obtained by reflecting the graph of y = f (x) across the y-axis (see the graph
below on the left). The graph of y = −f (−x) is obtained by reflecting the graph of y = f (x) across both the x- and
y-axes, or equivalently, about the origin (see the graph below on the right).
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69. Extend the graph of f (x) to [−4, 4] so that it is an even function.

solution To continue the graph of f (x) to the interval [−4, 4] as an even function, reflect the graph of f (x) across
the y-axis (see the graph below).
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70. Extend the graph of f (x) to [−4, 4] so that it is an odd function.

solution To continue the graph of f (x) to the interval [−4, 4] as an odd function, reflect the graph of f (x) through
the origin (see the graph below).
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71. Suppose that f (x) has domain [4, 8] and range [2, 6]. Find the domain and range of:

(a) f (x) + 3 (b) f (x + 3)

(c) f (3x) (d) 3f (x)

solution

(a) f (x) + 3 is obtained by shifting f (x) upward three units. Therefore, the domain remains [4, 8], while the range
becomes [5, 9].
(b) f (x + 3) is obtained by shifting f (x) left three units. Therefore, the domain becomes [1, 5], while the range remains
[2, 6].
(c) f (3x) is obtained by compressing f (x) horizontally by a factor of three. Therefore, the domain becomes [ 4

3 , 8
3 ],

while the range remains [2, 6].
(d) 3f (x) is obtained by stretching f (x) vertically by a factor of three. Therefore, the domain remains [4, 8], while the
range becomes [6, 18].
72. Let f (x) = x2. Sketch the graph over [−2, 2] of:

(a) f (x + 1) (b) f (x) + 1

(c) f (5x) (d) 5f (x)

solution

(a) The graph of y = f (x + 1) is obtained by shifting the graph of y = f (x) one unit to the left.
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(b) The graph of y = f (x) + 1 is obtained by shifting the graph of y = f (x) one unit up.
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(c) The graph of y = f (5x) is obtained by compressing the graph of y = f (x) horizontally by a factor of 5.
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(d) The graph of y = 5f (x) is obtained by stretching the graph of y = f (x) vertically by a factor of 5.

20

40

60

80

100

y

x
−2 −1 1 2

5f (x)

73. Suppose that the graph of f (x) = sin x is compressed horizontally by a factor of 2 and then shifted 5 units to the
right.

(a) What is the equation for the new graph?

(b) What is the equation if you first shift by 5 and then compress by 2?

(c) Verify your answers by plotting your equations.

solution

(a) Let f (x) = sin x. After compressing the graph of f horizontally by a factor of 2, we obtain the function g(x) =
f (2x) = sin 2x. Shifting the graph 5 units to the right then yields

h(x) = g(x − 5) = sin 2(x − 5) = sin(2x − 10).

(b) Let f (x) = sin x. After shifting the graph 5 units to the right, we obtain the function g(x) = f (x − 5) = sin(x − 5).
Compressing the graph horizontally by a factor of 2 then yields

h(x) = g(2x) = sin(2x − 5).

(c) The figure below at the top left shows the graphs of y = sin x (the dashed curve), the sine graph compressed
horizontally by a factor of 2 (the dash, double dot curve) and then shifted right 5 units (the solid curve). Compare this last
graph with the graph of y = sin(2x − 10) shown at the bottom left.

The figure below at the top right shows the graphs of y = sin x (the dashed curve), the sine graph shifted to the right
5 units (the dash, double dot curve) and then compressed horizontally by a factor of 2 (the solid curve). Compare this last
graph with the graph of y = sin(2x − 5) shown at the bottom right.
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74. Figure 28 shows the graph of f (x) = |x| + 1. Match the functions (a)–(e) with their graphs (i)–(v).

(a) f (x − 1) (b) −f (x) (c) −f (x) + 2

(d) f (x − 1) − 2 (e) f (x + 1)
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y = f (x) = |x | + 1 (i) (ii)
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FIGURE 28

solution

(a) Shift graph to the right one unit: (v)

(b) Reflect graph across x-axis: (iv)

(c) Reflect graph across x-axis and then shift up two units: (iii)

(d) Shift graph to the right one unit and down two units: (ii)

(e) Shift graph to the left one unit: (i)

75. Sketch the graph of f (2x) and f
( 1

2x
)
, where f (x) = |x| + 1 (Figure 28).

solution The graph of y = f (2x) is obtained by compressing the graph of y = f (x) horizontally by a factor of 2

(see the graph below on the left). The graph of y = f ( 1
2x) is obtained by stretching the graph of y = f (x) horizontally

by a factor of 2 (see the graph below on the right).
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76. Find the function f (x) whose graph is obtained by shifting the parabola y = x2 three units to the right and four units
down, as in Figure 29.
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FIGURE 29

solution The new function is f (x) = (x − 3)2 − 4

77. Define f (x) to be the larger of x and 2 − x. Sketch the graph of f (x). What are its domain and range? Express f (x)

in terms of the absolute value function.

solution
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The graph of y = f (x) is shown above. Clearly, the domain of f is the set of all real numbers while the range is {y | y ≥ 1}.
Notice the graph has the standard V-shape associated with the absolute value function, but the base of the V has been
translated to the point (1, 1). Thus, f (x) = |x − 1| + 1.

78. For each curve in Figure 30, state whether it is symmetric with respect to the y-axis, the origin, both, or neither.

(D)

(B)

(C)

(A)

yy

yy

xx

x
x

FIGURE 30

solution

(A) Both

(B) Neither

(C) y-axis

(D) Origin

79. Show that the sum of two even functions is even and the sum of two odd functions is odd.

solution Even: (f + g)(−x) = f (−x) + g(−x)
even= f (x) + g(x) = (f + g)(x)

Odd: (f + g)(−x) = f (−x) + g(−x)
odd= −f (x) + −g(x) = −(f + g)(x)

80. Suppose that f (x) and g(x) are both odd. Which of the following functions are even? Which are odd?

(a) f (x)g(x) (b) f (x)3

(c) f (x) − g(x) (d)
f (x)

g(x)

solution

(a) f (−x)g(−x) = (−f (x))(−g(x)) = f (x)g(x) ⇒ Even

(b) f (−x)3 = [−f (x)]3 = −f (x)3 ⇒ Odd

(c) f (−x) − g(−x) = −f (x) + g(x) = −(f (x) − g(x)) ⇒ Odd

(d)
f (−x)

g(−x)
= −f (x)

−g(x)
= f (x)

g(x)
⇒ Even

81. Prove that the only function whose graph is symmetric with respect to both the y-axis and the origin is the function
f (x) = 0.

solution Suppose f is symmetric with respect to the y-axis. Then f (−x) = f (x). If f is also symmetric with respect
to the origin, then f (−x) = −f (x). Thus f (x) = −f (x) or 2f (x) = 0. Finally, f (x) = 0.

Further Insights and Challenges
82. Prove the triangle inequality by adding the two inequalities

−|a| ≤ a ≤ |a|, −|b| ≤ b ≤ |b|

solution Adding the indicated inequalities gives

−(|a| + |b|) ≤ a + b ≤ |a| + |b|

and this is equivalent to |a + b| ≤ |a| + |b|.
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83. Show that a fraction r = a/b in lowest terms has a finite decimal expansion if and only if

b = 2n5m for some n, m ≥ 0.

Hint: Observe that r has a finite decimal expansion when 10Nr is an integer for some N ≥ 0 (and hence b divides 10N ).

solution Suppose r has a finite decimal expansion. Then there exists an integer N ≥ 0 such that 10Nr is an integer,

call it k. Thus, r = k/10N . Because the only prime factors of 10 are 2 and 5, it follows that when r is written in lowest
terms, its denominator must be of the form 2n5m for some integers n, m ≥ 0.

Conversely, suppose r = a/b in lowest with b = 2n5m for some integers n, m ≥ 0. Then r = a

b
= a

2n5m
or

2n5mr = a. If m ≥ n, then 2m5mr = a2m−n or r = a2m−n

10m
and thus r has a finite decimal expansion (less than or

equal to m terms, to be precise). On the other hand, if n > m, then 2n5nr = a5n−m or r = a5n−m

10n
and once again r has

a finite decimal expansion.

84. Let p = p1 . . . ps be an integer with digits p1, . . . , ps . Show that

p

10s − 1
= 0.p1 . . . ps

Use this to find the decimal expansion of r = 2
11 . Note that

r = 2

11
= 18

102 − 1

solution Let p = p1 . . . ps be an integer with digits p1, . . . , ps , and let p = .p1 . . . ps . Then

10sp − p = p1 . . . ps .p1 . . . ps − .p1 . . . ps = p1 . . . ps = p.

Thus,

p

10s − 1
= p = .p1 . . . ps .

Consider the rational number r = 2/11. Because

r = 2

11
= 18

99
= 18

102 − 1
,

it follows that the decimal expansion of r is 0.18.

85. A function f (x) is symmetric with respect to the vertical line x = a if f (a − x) = f (a + x).

(a) Draw the graph of a function that is symmetric with respect to x = 2.
(b) Show that if f (x) is symmetric with respect to x = a, then g(x) = f (x + a) is even.

solution
(a) There are many possibilities, one of which is

x
−1

1

2

54321

y

y = |x − 2|

(b) Let g(x) = f (x + a). Then

g(−x) = f (−x + a) = f (a − x)

= f (a + x) symmetry with respect to x = a

= g(x)

Thus, g(x) is even.

86. Formulate a condition for f (x) to be symmetric with respect to the point (a, 0) on the x-axis.

solution In order for f (x) to be symmetrical with respect to the point (a, 0), the value of f at a distance x units to
the right of a must be opposite the value of f at a distance x units to the left of a. In other words, f (x) is symmetrical
with respect to (a, 0) if f (a + x) = −f (a − x).
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1.2 Linear and Quadratic Functions

Preliminary Questions
1. What is the slope of the line y = −4x − 9?

solution The slope of the line y = −4x − 9 is −4, given by the coefficient of x.

2. Are the lines y = 2x + 1 and y = −2x − 4 perpendicular?

solution The slopes of perpendicular lines are negative reciprocals of one another. Because the slope of y = 2x + 1
is 2 and the slope of y = −2x − 4 is −2, these two lines are not perpendicular.

3. When is the line ax + by = c parallel to the y-axis? To the x-axis?

solution The line ax + by = c will be parallel to the y-axis when b = 0 and parallel to the x-axis when a = 0.

4. Suppose y = 3x + 2. What is �y if x increases by 3?

solution Because y = 3x + 2 is a linear function with slope 3, increasing x by 3 will lead to �y = 3(3) = 9.

5. What is the minimum of f (x) = (x + 3)2 − 4?

solution Because (x + 3)2 ≥ 0, it follows that (x + 3)2 − 4 ≥ −4. Thus, the minimum value of (x + 3)2 − 4 is −4.

6. What is the result of completing the square for f (x) = x2 + 1?

solution Because there is no x term in x2 + 1, completing the square on this expression leads to (x − 0)2 + 1.

Exercises
In Exercises 1–4, find the slope, the y-intercept, and the x-intercept of the line with the given equation.

1. y = 3x + 12

solution Because the equation of the line is given in slope-intercept form, the slope is the coefficient of x and the
y-intercept is the constant term: that is, m = 3 and the y-intercept is 12. To determine the x-intercept, substitute y = 0
and then solve for x: 0 = 3x + 12 or x = −4.

2. y = 4 − x

solution Because the equation of the line is given in slope-intercept form, the slope is the coefficient of x and the
y-intercept is the constant term: that is, m = −1 and the y-intercept is 4. To determine the x-intercept, substitute y = 0
and then solve for x: 0 = 4 − x or x = 4.

3. 4x + 9y = 3

solution To determine the slope and y-intercept, we first solve the equation for y to obtain the slope-intercept form.

This yields y = − 4
9x + 1

3 . From here, we see that the slope is m = − 4
9 and the y-intercept is 1

3 . To determine the

x-intercept, substitute y = 0 and solve for x: 4x = 3 or x = 3
4 .

4. y − 3 = 1
2 (x − 6)

solution The equation is in point-slope form, so we see that m = 1
2 . Substituting x = 0 yields y − 3 = −3 or y = 0.

Thus, the x- and y-intercepts are both 0.

In Exercises 5–8, find the slope of the line.

5. y = 3x + 2

solution m = 3

6. y = 3(x − 9) + 2

solution m = 3

7. 3x + 4y = 12

solution First solve the equation for y to obtain the slope-intercept form. This yields y = − 3
4x + 3. The slope of the

line is therefore m = − 3
4 .

8. 3x + 4y = −8

solution First solve the equation for y to obtain the slope-intercept form. This yields y = − 3
4x − 2. The slope of the

line is therefore m = − 3
4 .
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In Exercises 9–20, find the equation of the line with the given description.

9. Slope 3, y-intercept 8

solution Using the slope-intercept form for the equation of a line, we have y = 3x + 8.

10. Slope −2, y-intercept 3

solution Using the slope-intercept form for the equation of a line, we have y = −2x + 3.

11. Slope 3, passes through (7, 9)

solution Using the point-slope form for the equation of a line, we have y − 9 = 3(x − 7) or y = 3x − 12.

12. Slope −5, passes through (0, 0)

solution Using the point-slope form for the equation of a line, we have y − 0 = −5(x − 0) or y = −5x.

13. Horizontal, passes through (0, −2)

solution A horizontal line has a slope of 0. Using the point-slope form for the equation of a line, we have y − (−2) =
0(x − 0) or y = −2.

14. Passes through (−1, 4) and (2, 7)

solution The slope of the line that passes through (−1, 4) and (2, 7) is

m = 7 − 4

2 − (−1)
= 1.

Using the point-slope form for the equation of a line, we have y − 7 = 1(x − 2) or y = x + 5.

15. Parallel to y = 3x − 4, passes through (1, 1)

solution Because the equation y = 3x − 4 is in slope-intercept form, we can readily identify that it has a slope of 3.
Parallel lines have the same slope, so the slope of the requested line is also 3. Using the point-slope form for the equation
of a line, we have y − 1 = 3(x − 1) or y = 3x − 2.

16. Passes through (1, 4) and (12, −3)

solution The slope of the line that passes through (1, 4) and (12, −3) is

m = −3 − 4

12 − 1
= −7

11
.

Using the point-slope form for the equation of a line, we have y − 4 = − 7
11 (x − 1) or y = − 7

11x + 51
11 .

17. Perpendicular to 3x + 5y = 9, passes through (2, 3)

solution We start by solving the equation 3x + 5y = 9 for y to obtain the slope-intercept form for the equation of a
line. This yields

y = −3

5
x + 9

5
,

from which we identify the slope as − 3
5 . Perpendicular lines have slopes that are negative reciprocals of one another, so

the slope of the desired line is m⊥ = 5
3 . Using the point-slope form for the equation of a line, we have y − 3 = 5

3 (x − 2)

or y = 5
3x − 1

3 .

18. Vertical, passes through (−4, 9)

solution A vertical line has the equation x = c for some constant c. Because the line needs to pass through the point
(−4, 9), we must have c = −4. The equation of the desired line is then x = −4.

19. Horizontal, passes through (8, 4)

solution A horizontal line has slope 0. Using the point slope form for the equation of a line, we have y − 4 = 0(x − 8)

or y = 4.

20. Slope 3, x-intercept 6

solution If the x-intercept is 6, then the line passes through the point (6, 0). Using the point-slope form for the equation
of a line, we have y − 0 = 3(x − 6) or y = 3x − 18.
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21. Find the equation of the perpendicular bisector of the segment joining (1, 2) and (5, 4) (Figure 11). Hint: The midpoint

Q of the segment joining (a, b) and (c, d) is

(
a + c

2
,
b + d

2

)
.

Q

(1, 2)

(5, 4)

Perpendicular
bisector

x

y

FIGURE 11

solution The slope of the segment joining (1, 2) and (5, 4) is

m = 4 − 2

5 − 1
= 1

2

and the midpoint of the segment (Figure 11) is

midpoint =
(

1 + 5

2
,

2 + 4

2

)
= (3, 3)

The perpendicular bisector has slope −1/m = −2 and passes through (3, 3), so its equation is: y − 3 = −2(x − 3) or
y = −2x + 9.

22. Intercept-Intercept Form Show that if a, b 	= 0, then the line with x-intercept x = a and y-intercept y = b has
equation (Figure 12)

x

a
+ y

b
= 1

b

a
x

y

FIGURE 12

solution The line passes through the points (a, 0) and (0, b). Thus m = − b
a . Using the point-slope form for the

equation of a line yields y − 0 = − b
a (x − a) ⇒ y = − b

a x + b ⇒ b
a x + y = b ⇒ x

a + y
b

= 1.

23. Find an equation of the line with x-intercept x = 4 and y-intercept y = 3.

solution From Exercise 22, x
4 + y

3 = 1 or 3x + 4y = 12.

24. Find y such that (3, y) lies on the line of slope m = 2 through (1, 4).

solution In order for the point (3, y) to lie on the line through (1, 4) of slope 2, the slope of the segment connecting
(1, 4) and (3, y) must have slope 2. Therefore,

m = y − 4

3 − 1
= y − 4

2
= 2 ⇒ y − 4 = 4 ⇒ y = 8.

25. Determine whether there exists a constant c such that the line x + cy = 1:

(a) Has slope 4 (b) Passes through (3, 1)

(c) Is horizontal (d) Is vertical

solution

(a) Rewriting the equation of the line in slope-intercept form gives y = − x
c + 1

c . To have slope 4 requires − 1
c = 4 or

c = − 1
4 .

(b) Substituting x = 3 and y = 1 into the equation of the line gives 3 + c = 1 or c = −2.

(c) From (a), we know the slope of the line is − 1
c . There is no value for c that will make this slope equal to 0.

(d) With c = 0, the equation becomes x = 1. This is the equation of a vertical line.
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26. Assume that the number N of concert tickets that can be sold at a price of P dollars per ticket is a linear function
N(P ) for 10 ≤ P ≤ 40. Determine N(P ) (called the demand function) if N(10) = 500 and N(40) = 0. What is the
decrease �N in the number of tickets sold if the price is increased by �P = 5 dollars?

solution We first determine the slope of the line:

m = 500 − 0

10 − 40
= 500

−30
= −50

3
.

Knowing that N(40) = 0, it follows that

N(P ) = −50

3
(P − 40) = −50

3
P + 2000

3
.

Because the slope of the demand function is − 50
3 , a 5 dollar increase in price will lead to a decrease in the number of

tickets sold of 50
3 (5) = 250

3 = 83 1
3 , or about 83 tickets.

27. Materials expand when heated. Consider a metal rod of length L0 at temperature T0. If the temperature is changed
by an amount �T , then the rod’s length changes by �L = αL0�T , where α is the thermal expansion coefficient. For
steel, α = 1.24 × 10−5 ◦C−1.

(a) A steel rod has length L0 = 40 cm at T0 = 40◦C. Find its length at T = 90◦C.

(b) Find its length at T = 50◦C if its length at T0 = 100◦C is 65 cm.

(c) Express length L as a function of T if L0 = 65 cm at T0 = 100◦C.

solution

(a) With T = 90◦C and T0 = 40◦C, �T = 50◦C. Therefore,

�L = αL0�T = (1.24 × 10−5)(40)(50) = .0248 and L = L0 + �L = 40.0248 cm.

(b) With T = 50◦C and T0 = 100◦C, �T = −50◦C. Therefore,

�L = αL0�T = (1.24 × 10−5)(65)(−50) = −.0403 and L = L0 + �L = 64.9597 cm.

(c) L = L0 + �L = L0 + αL0�T = L0(1 + α�T ) = 65(1 + α(T − 100))

28. Do the points (0.5, 1), (1, 1.2), (2, 2) lie on a line?

solution Examine the slope between consecutive data points. The first pair of data points yields a slope of

1.2 − 1

1 − 0.5
= 0.2

0.5
= 0.4,

while the second pair of data points yields a slope of

2 − 1.2

2 − 1
= 0.8

1
= 0.8.

Because the slopes are not equal, the three points do not lie on a line.

29. Find b such that (2, −1), (3, 2), and (b, 5) lie on a line.

solution The slope of the line determined by the points (2, −1) and (3, 2) is

2 − (−1)

3 − 2
= 3.

To lie on the same line, the slope between (3, 2) and (b, 5) must also be 3. Thus, we require

5 − 2

b − 3
= 3

b − 3
= 3,

or b = 4.

30. Find an expression for the velocity v as a linear function of t that matches the following data.

t (s) 0 2 4 6

v (m/s) 39.2 58.6 78 97.4
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solution Examine the slope between consecutive data points. The first pair of data points yields a slope of

58.6 − 39.2

2 − 0
= 9.7,

while the second pair of data points yields a slope of

78 − 58.6

4 − 2
= 9.7,

and the last pair of data points yields a slope of

97.4 − 78

6 − 4
= 9.7

Thus, the data suggests a linear function with slope 9.7. Finally,

v − 39.2 = 9.7(t − 0) ⇒ v = 9.7t + 39.2

31. The period T of a pendulum is measured for pendulums of several different lengths L. Based on the following data,
does T appear to be a linear function of L?

L (cm) 20 30 40 50

T (s) 0.9 1.1 1.27 1.42

solution Examine the slope between consecutive data points. The first pair of data points yields a slope of

1.1 − 0.9

30 − 20
= 0.02,

while the second pair of data points yields a slope of

1.27 − 1.1

40 − 30
= 0.017,

and the last pair of data points yields a slope of

1.42 − 1.27

50 − 40
= 0.015

Because the three slopes are not equal, T does not appear to be a linear function of L.

32. Show that f (x) is linear of slope m if and only if

f (x + h) − f (x) = mh (for all x and h)

solution First, suppose f (x) is linear. Then the slope between (x, f (x)) and (x + h, f (x + h)) is

m = f (x + h) − f (x)

h
⇒ mh = f (x + h) − f (x).

Conversely, suppose f (x + h) − f (x) = mh for all x and for all h. Then

m = f (x + h) − f (x)

h
= f (x + h) − f (x)

x + h − x
,

which is the slope between (x, f (x)) and (x + h, f (x + h)). Since this is true for all x and h, f must be linear (it has
constant slope).

33. Find the roots of the quadratic polynomials:

(a) 4x2 − 3x − 1 (b) x2 − 2x − 1

solution

(a) x = 3 ± √
9 − 4(4)(−1)

2(4)
= 3 ± √

25

8
= 1 or −1

4

(b) x = 2 ± √
4 − (4)(1)(−1)

2
= 2 ± √

8

2
= 1 ± √

2
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In Exercises 34–41, complete the square and find the minimum or maximum value of the quadratic function.

34. y = x2 + 2x + 5

solution y = x2 + 2x + 1 − 1 + 5 = (x + 1)2 + 4; therefore, the minimum value of the quadratic polynomial is 4,
and this occurs at x = −1.

35. y = x2 − 6x + 9

solution y = (x − 3)2; therefore, the minimum value of the quadratic polynomial is 0, and this occurs at x = 3.

36. y = −9x2 + x

solution y = −9(x2 − x/9) = −9(x2 − x
9 + 1

324 ) + 9
324 = −9(x − 1

18 )2 + 1
36 ; therefore, the maximum value of

the quadratic polynomial is 1
36 , and this occurs at x = 1

18 .

37. y = x2 + 6x + 2

solution y = x2 + 6x + 9 − 9 + 2 = (x + 3)2 − 7; therefore, the minimum value of the quadratic polynomial is
−7, and this occurs at x = −3.

38. y = 2x2 − 4x − 7

solution y = 2(x2 − 2x + 1 − 1) − 7 = 2(x2 − 2x + 1) − 7 − 2 = 2(x − 1)2 − 9; therefore, the minimum value
of the quadratic polynomial is −9, and this occurs at x = 1.

39. y = −4x2 + 3x + 8

solution y = −4x2 + 3x + 8 = −4(x2 − 3
4x + 9

64 ) + 8 + 9
16 = −4(x − 3

8 )2 + 137
16 ; therefore, the maximum value

of the quadratic polynomial is 137
16 , and this occurs at x = 3

8 .

40. y = 3x2 + 12x − 5

solution y = 3(x2 + 4x + 4) − 5 − 12 = 3(x + 2)2 − 17; therefore, the minimum value of the quadratic polynomial
is −17, and this occurs at x = −2.

41. y = 4x − 12x2

solution y = −12(x2 − x
3 ) = −12(x2 − x

3 + 1
36 ) + 1

3 = −12(x − 1
6 )2 + 1

3 ; therefore, the maximum value of the

quadratic polynomial is 1
3 , and this occurs at x = 1

6 .

42. Sketch the graph of y = x2 − 6x + 8 by plotting the roots and the minimum point.

solution y = x2 − 6x + 9 − 9 + 8 = (x − 3)2 − 1 so the vertex is located at (3, −1) and the roots are x = 2 and

x = 4. This is the graph of x2 moved right 3 units and down 1 unit.

1
2
3
4
5
6
7
8

y

x
−1 1 32 4 5 6

43. Sketch the graph of y = x2 + 4x + 6 by plotting the minimum point, the y-intercept, and one other point.

solution y = x2 + 4x + 4 − 4 + 6 = (x + 2)2 + 2 so the minimum occurs at (−2, 2). If x = 0, then y = 6 and if

x = −4, y = 6. This is the graph of x2 moved left 2 units and up 2 units.

−4 −3 −2 −1

2

4

6

8

10

y

x

44. If the alleles A and B of the cystic fibrosis gene occur in a population with frequencies p and 1 − p (where p is a
fraction between 0 and 1), then the frequency of heterozygous carriers (carriers with both alleles) is 2p(1 − p). Which
value of p gives the largest frequency of heterozygous carriers?
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solution Let

f = 2p − 2p2 = −2

(
p2 − p + 1

4

)
+ 1

2
= −2

(
p − 1

2

)2
+ 1

2
.

Then p = 1
2 yields a maximum.

45. For which values of c does f (x) = x2 + cx + 1 have a double root? No real roots?

solution A double root occurs when c2 − 4(1)(1) = 0 or c2 = 4. Thus, c = ±2.

There are no real roots when c2 − 4(1)(1) < 0 or c2 < 4. Thus, −2 < c < 2.

46. Let f (x) be a quadratic function and c a constant. Which of the following statements is correct? Explain
graphically.

(a) There is a unique value of c such that y = f (x) − c has a double root.

(b) There is a unique value of c such that y = f (x − c) has a double root.

solution First note that because f (x) is a quadratic function, its graph is a parabola.

(a) This is true. Because f (x) − c is a vertical translation of the graph of f (x), there is one and only one value of c that
will move the vertex of the parabola to the x-axis.

(b) This is false. Observe that f (x − c) is a horizontal translation of the graph of f (x). If f (x) has a double root, then
f (x − c) will have a double root for any value of c; on the other hand, if f (x) does not have a double root, then there is
no value of c for which f (x − c) will have a double root.

47. Prove that x + 1
x ≥ 2 for all x > 0. Hint: Consider (x1/2 − x−1/2)2.

solution Let x > 0. Then

(
x1/2 − x−1/2

)2 = x − 2 + 1

x
.

Because (x1/2 − x−1/2)2 ≥ 0, it follows that

x − 2 + 1

x
≥ 0 or x + 1

x
≥ 2.

48. Let a, b > 0. Show that the geometric mean
√

ab is not larger than the arithmetic mean (a + b)/2. Hint: Use a
variation of the hint given in Exercise 47.

solution Let a, b > 0 and note

0 ≤
(√

a − √
b
)2 = a − 2

√
ab + b.

Therefore,

√
ab ≤ a + b

2
.

49. If objects of weights x and w1 are suspended from the balance in Figure 13(A), the cross-beam is horizontal if
bx = aw1. If the lengths a and b are known, we may use this equation to determine an unknown weight x by selecting w1
such that the cross-beam is horizontal. If a and b are not known precisely, we might proceed as follows. First balance x

by w1 on the left as in (A). Then switch places and balance x by w2 on the right as in (B). The average x̄ = 1
2 (w1 + w2)

gives an estimate for x. Show that x̄ is greater than or equal to the true weight x.

w1

(A)

a

x

b

(B)

w2x

a b

FIGURE 13

solution First note bx = aw1 and ax = bw2. Thus,

x̄ = 1

2
(w1 + w2)
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= 1

2

(
bx

a
+ ax

b

)

= x

2

(
b

a
+ a

b

)

≥ x

2
(2) by Exercise 47

= x

50. Find numbers x and y with sum 10 and product 24. Hint: Find a quadratic polynomial satisfied by x.

solution Let x and y be numbers whose sum is 10 and product is 24. Then x + y = 10 and xy = 24. From the

second equation, y = 24
x . Substituting this expression for y in the first equation gives x + 24

x = 10 or x2 − 10x + 24 =
(x − 4)(x − 6) = 0, whence x = 4 or x = 6. If x = 4, then y = 24

4 = 6. On the other hand, if x = 6, then y = 24
6 = 4.

Thus, the two numbers are 4 and 6.

51. Find a pair of numbers whose sum and product are both equal to 8.

solution Let x and y be numbers whose sum and product are both equal to 8. Then x + y = 8 and xy = 8. From the

second equation, y = 8
x . Substituting this expression for y in the first equation gives x + 8

x = 8 or x2 − 8x + 8 = 0. By
the quadratic formula,

x = 8 ± √
64 − 32

2
= 4 ± 2

√
2.

If x = 4 + 2
√

2, then

y = 8

4 + 2
√

2
= 8

4 + 2
√

2
· 4 − 2

√
2

4 − 2
√

2
= 4 − 2

√
2.

On the other hand, if x = 4 − 2
√

2, then

y = 8

4 − 2
√

2
= 8

4 − 2
√

2
· 4 + 2

√
2

4 + 2
√

2
= 4 + 2

√
2.

Thus, the two numbers are 4 + 2
√

2 and 4 − 2
√

2.

52. Show that the parabola y = x2 consists of all points P such that d1 = d2, where d1 is the distance from P to
(

0, 1
4

)
and d2 is the distance from P to the line y = − 1

4 (Figure 14).

d1

d2

P = (x, x2)

y = x2

1
4

1
4

−

x

y

FIGURE 14

solution Let P be a point on the graph of the parabola y = x2. Then P has coordinates (x, x2) for some real number

x. Now d2 = x2 + 1
4 and

d1 =
√

(x − 0)2 +
(

x2 − 1

4

)2
=

√
x2 + x4 − 1

2
x2 + 1

16
=

√(
x2 + 1

4

)2
= x2 + 1

4
= d2.

Further Insights and Challenges
53. Show that if f (x) and g(x) are linear, then so is f (x) + g(x). Is the same true of f (x)g(x)?

solution If f (x) = mx + b and g(x) = nx + d, then

f (x) + g(x) = mx + b + nx + d = (m + n)x + (b + d),

which is linear. f (x)g(x) is not generally linear. Take, for example, f (x) = g(x) = x. Then f (x)g(x) = x2.
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54. Show that if f (x) and g(x) are linear functions such that f (0) = g(0) and f (1) = g(1), then f (x) = g(x).

solution Suppose f (x) = mx + b and g(x) = nx + d. Then f (0) = b and g(0) = d, which implies b = d. Thus
f (x) = mx + b and g(x) = nx + b. Now, f (1) = m + b and g(1) = n + b so m + b = n + b and m = n. Thus
f (x) = g(x).

55. Show that �y/�x for the function f (x) = x2 over the interval [x1, x2] is not a constant, but depends on the interval.
Determine the exact dependence of �y/�x on x1 and x2.

solution For x2,
�y

�x
= x2

2 − x2
1

x2 − x1
= x2 + x1.

56. Use Eq. (2) to derive the quadratic formula for the roots of ax2 + bx + c = 0.

solution Consider the equation ax2 + bx + c = 0. First, complete the square to obtain

a

(
x + b

2a

)2
+ 4ac − b2

4a
= 0.

Then

(
x + b

2a

)2
= b2 − 4ac

4a2
and

∣∣∣∣x + b

2a

∣∣∣∣ =
√

b2 − 4ac

4a2
=

√
b2 − 4ac

2a
.

Dropping the absolute values yields

x + b

2a
= ±

√
b2 − 4ac

2a
or x = −b

2a
±

√
b2 − 4ac

2a
= −b ±

√
b2 − 4ac

2a

57. Let a, c 	= 0. Show that the roots of

ax2 + bx + c = 0 and cx2 + bx + a = 0

are reciprocals of each other.

solution Let r1 and r2 be the roots of ax2 + bx + c and r3 and r4 be the roots of cx2 + bx + a. Without loss of
generality, let

r1 = −b +
√

b2 − 4ac

2a
⇒ 1

r1
= 2a

−b +
√

b2 − 4ac
· −b −

√
b2 − 4ac

−b −
√

b2 − 4ac

= 2a(−b −
√

b2 − 4ac)

b2 − b2 + 4ac
= −b −

√
b2 − 4ac

2c
= r4.

Similarly, you can show
1

r2
= r3.

58. Show, by completing the square, that the parabola

y = ax2 + bx + c

is congruent to y = ax2 by a vertical and horizontal translation.

solution

y = a

(
x2 + b

a
x + b2

4a2

)
+ c − b2

4a
= a

(
x + b

2a

)2
+ 4ac − b2

4a
.

Thus, the first parabola is just the second translated horizontally by − b
2a

and vertically by 4ac−b2

4a
.

59. Prove Viète’s Formulas: The quadratic polynomial with α and β as roots is x2 + bx + c, where b = −α − β and
c = αβ.

solution If a quadratic polynomial has roots α and β, then the polynomial is

(x − α)(x − β) = x2 − αx − βx + αβ = x2 + (−α − β)x + αβ.

Thus, b = −α − β and c = αβ.
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1.3 The Basic Classes of Functions

Preliminary Questions
1. Give an example of a rational function.

solution One example is
3x2 − 2

7x3 + x − 1
.

2. Is |x| a polynomial function? What about |x2 + 1|?
solution |x| is not a polynomial; however, because x2 + 1 > 0 for all x, it follows that |x2 + 1| = x2 + 1, which is
a polynomial.

3. What is unusual about the domain of the composite function f ◦ g for the functions f (x) = x1/2 and g(x) = −1 − |x|?
solution Recall that (f ◦ g)(x) = f (g(x)). Now, for any real number x, g(x) = −1 − |x| ≤ −1 < 0. Because we
cannot take the square root of a negative number, it follows that f (g(x)) is not defined for any real number. In other
words, the domain of f (g(x)) is the empty set.

4. Is f (x) = ( 1
2

)x increasing or decreasing?

solution The function f (x) = ( 1
2 )x is an exponential function with base b = 1

2 < 1. Therefore, f is a decreasing
function.

5. Give an example of a transcendental function.

solution One possibility is f (x) = ex − sin x.

Exercises
In Exercises 1–12, determine the domain of the function.

1. f (x) = x1/4

solution x ≥ 0

2. g(t) = t2/3

solution All reals

3. f (x) = x3 + 3x − 4

solution All reals

4. h(z) = z3 + z−3

solution z 	= 0

5. g(t) = 1

t + 2

solution t 	= −2

6. f (x) = 1

x2 + 4

solution All reals

7. G(u) = 1

u2 − 4

solution u 	= ±2

8. f (x) =
√

x

x2 − 9

solution x ≥ 0, x 	= 3

9. f (x) = x−4 + (x − 1)−3

solution x 	= 0, 1

10. F(s) = sin

(
s

s + 1

)

solution s 	= −1
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11. g(y) = 10
√

y+y−1

solution y > 0

12. f (x) = x + x−1

(x − 3)(x + 4)

solution x 	= 0, 3, −4

In Exercises 13–24, identify each of the following functions as polynomial, rational, algebraic, or transcendental.

13. f (x) = 4x3 + 9x2 − 8

solution Polynomial

14. f (x) = x−4

solution Rational

15. f (x) = √
x

solution Algebraic

16. f (x) =
√

1 − x2

solution Algebraic

17. f (x) = x2

x + sin x

solution Transcendental

18. f (x) = 2x

solution Transcendental

19. f (x) = 2x3 + 3x

9 − 7x2

solution Rational

20. f (x) = 3x − 9x−1/2

9 − 7x2

solution Algebraic

21. f (x) = sin(x2)

solution Transcendental

22. f (x) = x√
x + 1

solution Algebraic

23. f (x) = x2 + 3x−1

solution Rational

24. f (x) = sin(3x)

solution Transcendental

25. Is f (x) = 2x2
a transcendental function?

solution Yes.

26. Show that f (x) = x2 + 3x−1 and g(x) = 3x3 − 9x + x−2 are rational functions—that is, quotients of polynomials.

solution f (x) = x2 + 3x−1 = x2 + 3

x
= x3 + 3

x

g(x) = 3x3 − 9x + x−2 = 3x5 − 9x3 + 1

x2

In Exercises 27–34, calculate the composite functions f ◦ g and g ◦ f , and determine their domains.

27. f (x) = √
x, g(x) = x + 1

solution f (g(x)) = √
x + 1; D: x ≥ −1, g(f (x)) = √

x + 1; D: x ≥ 0
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28. f (x) = 1

x
, g(x) = x−4

solution f (g(x)) = x4; D: x 	= 0, g(f (x)) = x4: D: x 	= 0

29. f (x) = 2x , g(x) = x2

solution f (g(x)) = 2x2
; D: R, g(f (x)) = (2x)2 = 22x ; D: R

30. f (x) = |x|, g(θ) = sin θ

solution f (g(θ)) = |sin θ |; D: R, g(f (x)) = sin |x|; D: R

31. f (θ) = cos θ , g(x) = x3 + x2

solution f (g(x)) = cos(x3 + x2); D: R, g(f (θ)) = cos3 θ + cos2 θ ; D: R

32. f (x) = 1

x2 + 1
, g(x) = x−2

solution f (g(x)) = 1

(x−2)2 + 1
= 1

x−4 + 1
; D: x 	= 0, g(f (x)) =

(
1

x2 + 1

)−2
= (x2 + 1)2; D: R

33. f (t) = 1√
t

, g(t) = −t2

solution f (g(t)) = 1√
−t2

; D: Not valid for any t , g(f (t)) = −
(

1√
t

)2 = − 1
t ; D: t > 0

34. f (t) = √
t , g(t) = 1 − t3

solution f (g(t)) =
√

1 − t3; D: t ≤ 1, g(f (t)) = 1 − t3/2; D: t ≥ 0

35. The population (in millions) of a country as a function of time t (years) is P(t) = 30.20.1t . Show that the population
doubles every 10 years. Show more generally that for any positive constants a and k, the function g(t) = a2kt doubles
after 1/k years.

solution Let P(t) = 30 · 20.1t . Then

P(t + 10) = 30 · 20.1(t+10) = 30 · 20.1t+1 = 2(30 · 20.1t ) = 2P(t).

Hence, the population doubles in size every 10 years. In the more general case, let g(t) = a2kt . Then

g

(
t + 1

k

)
= a2k(t+1/k) = a2kt+1 = 2a2kt = 2g(t).

Hence, the function g doubles after 1/k years.

36. Find all values of c such that f (x) = x + 1

x2 + 2cx + 4
has domain R.

solution The domain of f will consist of all real numbers provided the denominator has no real roots. The roots of

x2 + 2cx + 4 = 0 are

x = −2c ±
√

4c2 − 16

2
= −c ±

√
c2 − 4.

There will be no real roots when c2 < 4 or when −2 < c < 2.

Further Insights and Challenges
In Exercises 37–43, we define the first difference δf of a function f (x) by δf (x) = f (x + 1) − f (x).

37. Show that if f (x) = x2, then δf (x) = 2x + 1. Calculate δf for f (x) = x and f (x) = x3.

solution f (x) = x2: δf (x) = f (x + 1) − f (x) = (x + 1)2 − x2 = 2x + 1
f (x) = x: δf (x) = x + 1 − x = 1
f (x) = x3: δf (x) = (x + 1)3 − x3 = 3x2 + 3x + 1

38. Show that δ(10x) = 9 · 10x and, more generally, that δ(bx) = (b − 1)bx .

solution δ(10x) = 10x+1 − 10x = 10 · 10x − 10x = 10x(10 − 1) = 9 · 10x

δ(bx) = bx+1 − bx = bx(b − 1)
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39. Show that for any two functions f and g, δ(f + g) = δf + δg and δ(cf ) = cδ(f ), where c is any constant.

solution δ(f + g) = (f (x + 1) + g(x + 1)) − (f (x) − g(x))

= (f (x + 1) − f (x)) + (g(x + 1) − g(x)) = δf (x) + δg(x)

δ(cf ) = cf (x + 1) − cf (x) = c(f (x + 1) − f (x)) = cδf (x).

40. Suppose we can find a function P(x) such that δP = (x + 1)k and P(0) = 0. Prove that P(1) = 1k , P(2) = 1k + 2k ,
and, more generally, for every whole number n,

P(n) = 1k + 2k + · · · + nk 1

solution Suppose we have found a function P(x) such that δP (x) = (x + 1)k and P(0) = 0. Taking x = 0,

we have δP (0) = P(1) − P(0) = (0 + 1)k = 1k . Therefore, P(1) = P(0) + 1k = 1k . Next, take x = 1. Then
δP (1) = P(2) − P(1) = (1 + 1)k = 2k , and P(2) = P(1) + 2k = 1k + 2k .

To prove the general result, we will proceed by induction. The basis step, proving that P(1) = 1k is given above,
so we move on to the induction step. Assume that, for some integer j , P(j) = 1k + 2k + · · · + jk . Then δP (j) =
P(j + 1) − P(j) = (j + 1)k and

P(j + 1) = P(j) + (j + 1)k = 1k + 2k + · · · + jk + (j + 1)k.

Therefore, by mathematical induction, for every whole number n, P(n) = 1k + 2k + · · · + nk .

41. First show that

P(x) = x(x + 1)

2

satisfies δP = (x + 1). Then apply Exercise 40 to conclude that

1 + 2 + 3 + · · · + n = n(n + 1)

2

solution Let P(x) = x(x + 1)/2. Then

δP (x) = P(x + 1) − P(x) = (x + 1)(x + 2)

2
− x(x + 1)

2
= (x + 1)(x + 2 − x)

2
= x + 1.

Also, note that P(0) = 0. Thus, by Exercise 40, with k = 1, it follows that

P(n) = n(n + 1)

2
= 1 + 2 + 3 + · · · + n.

42. Calculate δ(x3), δ(x2), and δ(x). Then find a polynomial P(x) of degree 3 such that δP = (x + 1)2 and P(0) = 0.
Conclude that P(n) = 12 + 22 + · · · + n2.

solution From Exercise 37, we know

δx = 1, δx2 = 2x + 1, and δx3 = 3x2 + 3x + 1.

Therefore,

1

3
δx3 + 1

2
δx2 + 1

6
δx = x2 + 2x + 1 = (x + 1)2.

Now, using the properties of the first difference from Exercise 39, it follows that

1

3
δx3 + 1

2
δx2 + 1

6
δx = δ

(
1

3
x3

)
+ δ

(
1

2
x2

)
+ δ

(
1

6
x

)
= δ

(
1

3
x3 + 1

2
x2 + 1

6
x

)
= δ

(
2x3 + 3x2 + x

6

)
.

Finally, let

P(x) = 2x3 + 3x2 + x

6
.

Then δP (x) = (x + 1)2 and P(0) = 0, so by Exercise 40, with k = 2, it follows that

P(n) = 2n3 + 3n2 + n

6
= 12 + 22 + 32 + · · · + n2.
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43. This exercise combined with Exercise 40 shows that for all whole numbers k, there exists a polynomial P(x) satisfying
Eq. (1). The solution requires the Binomial Theorem and proof by induction (see Appendix C).

(a) Show that δ(xk+1) = (k + 1) xk + · · · , where the dots indicate terms involving smaller powers of x.
(b) Show by induction that there exists a polynomial of degree k + 1 with leading coefficient 1/(k + 1):

P(x) = 1

k + 1
xk+1 + · · ·

such that δP = (x + 1)k and P(0) = 0.

solution
(a) By the Binomial Theorem:

δ(xn+1) = (x + 1)n+1 − xn+1 =
(

xn+1 +
(

n + 1
1

)
xn +

(
n + 1

2

)
xn−1 + · · · + 1

)
− xn+1

=
(

n + 1
1

)
xn +

(
n + 1

2

)
xn−1 + · · · + 1

Thus,

δ(xn+1) = (n + 1) xn + · · ·
where the dots indicate terms involving smaller powers of x.
(b) For k = 0, note that P(x) = x satisfies δP = (x + 1)0 = 1 and P(0) = 0.

Now suppose the polynomial

P(x) = 1

k
xk + pk−1xk−1 + · · · + p1x

which clearly satisfies P(0) = 0 also satisfies δP = (x + 1)k−1. We try to prove the existence of

Q(x) = 1

k + 1
xk+1 + qkx

k + · · · + q1x

such that δQ = (x + 1)k . Observe that Q(0) = 0.
If δQ = (x + 1)k and δP = (x + 1)k−1, then

δQ = (x + 1)k = (x + 1)δP = xδP (x) + δP

By the linearity of δ (Exercise 39), we find δQ − δP = xδP or δ(Q − P) = xδP . By definition,

Q − P = 1

k + 1
xk+1 +

(
qk − 1

k

)
xk + · · · + (q1 − p1)x,

so, by the linearity of δ,

δ(Q − P) = 1

k + 1
δ(xk+1) +

(
qk − 1

k

)
δ(xk) + · · · + (q1 − p1) = x(x + 1)k−1 1

By part (a),

δ(xk+1) = (k + 1)xk + Lk−1,k−1xk−1 + . . . + Lk−1,1x + 1

δ(xk) = kxk−1 + Lk−2,k−2xk−2 + . . . + Lk−2,1x + 1

...

δ(x2) = 2x + 1

where the Li,j are real numbers for each i, j .
To construct Q, we have to group like powers of x on both sides of Eq. (1). This yields the system of equations

1

k + 1

(
(k + 1)xk

)
= xk

1

k + 1
Lk−1,k−1xk−1 +

(
qk − 1

k

)
kxk−1 = (k − 1)xk−1

...

1

k + 1
+

(
qk − 1

k

)
+ (qk−1 − pk−1) + · · · + (q1 − p1) = 0.
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The first equation is identically true, and the second equation can be solved immediately for qk . Substituting the value
of qk into the third equation of the system, we can then solve for qk−1. We continue this process until we substitute the
values of qk, qk−1, . . . q2 into the last equation, and then solve for q1.

1.4 Trigonometric Functions

Preliminary Questions
1. How is it possible for two different rotations to define the same angle?

solution Working from the same initial radius, two rotations that differ by a whole number of full revolutions will
have the same ending radius; consequently, the two rotations will define the same angle even though the measures of the
rotations will be different.

2. Give two different positive rotations that define the angle π/4.

solution The angle π/4 is defined by any rotation of the form π
4 + 2πk where k is an integer. Thus, two different

positive rotations that define the angle π/4 are

π

4
+ 2π(1) = 9π

4
and

π

4
+ 2π(5) = 41π

4
.

3. Give a negative rotation that defines the angle π/3.

solution The angle π/3 is defined by any rotation of the form π
3 + 2πk where k is an integer. Thus, a negative rotation

that defines the angle π/3 is

π

3
+ 2π(−1) = −5π

3
.

4. The definition of cos θ using right triangles applies when (choose the correct answer):

(a) 0 < θ <
π

2
(b) 0 < θ < π (c) 0 < θ < 2π

solution The correct response is (a): 0 < θ < π
2 .

5. What is the unit circle definition of sin θ?

solution Let O denote the center of the unit circle, and let P be a point on the unit circle such that the radius OP

makes an angle θ with the positive x-axis. Then, sin θ is the y-coordinate of the point P .

6. How does the periodicity of sin θ and cos θ follow from the unit circle definition?

solution Let O denote the center of the unit circle, and let P be a point on the unit circle such that the radius OP

makes an angle θ with the positive x-axis. Then, cos θ and sin θ are the x- and y-coordinates, respectively, of the point
P . The angle θ + 2π is obtained from the angle θ by making one full revolution around the circle. The angle θ + 2π will
therefore have the radius OP as its terminal side. Thus

cos(θ + 2π) = cos θ and sin(θ + 2π) = sin θ.

In other words, sin θ and cos θ are periodic functions.

Exercises
1. Find the angle between 0 and 2π equivalent to 13π/4.

solution Because 13π/4 > 2π , we repeatedly subtract 2π until we arrive at a radian measure that is between 0 and
2π . After one subtraction, we have 13π/4 − 2π = 5π/4. Because 0 < 5π/4 < 2π , 5π/4 is the angle measure between
0 and 2π that is equivalent to 13π/4.

2. Describe θ = π/6 by an angle of negative radian measure.

solution If we subtract 2π from π/6, we obtain θ = −11π/6. Thus, the angle θ = π/6 is equivalent to the angle
θ = −11π/6.

3. Convert from radians to degrees:

(a) 1 (b)
π

3
(c)

5

12
(d) −3π

4
solution

(a) 1

(
180◦
π

)
= 180◦

π
≈ 57.3◦ (b)

π

3

(
180◦
π

)
= 60◦

(c)
5

12

(
180◦
π

)
= 75◦

π
≈ 23.87◦ (d) −3π

4

(
180◦
π

)
= −135◦
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4. Convert from degrees to radians:

(a) 1◦ (b) 30◦ (c) 25◦ (d) 120◦

solution

(a) 1◦ ( π

180◦
)

= π

180
(b) 30◦ ( π

180◦
)

= π

6
(c) 25◦ ( π

180◦
)

= 5π

36
(d) 120◦ ( π

180◦
)

= 2π

3

5. Find the lengths of the arcs subtended by the angles θ and φ radians in Figure 20.

4
q = 0.9

f = 2

FIGURE 20 Circle of radius 4.

solution s = rθ = 4(.9) = 3.6; s = rφ = 4(2) = 8

6. Calculate the values of the six standard trigonometric functions for the angle θ in Figure 21.

15

8
17

q

FIGURE 21

solution Using the definition of the six trigonometric functions in terms of the ratio of sides of a right triangle, we
find sin θ = 8/17; cos θ = 15/17; tan θ = 8/15; csc θ = 17/8; sec θ = 17/15; cot θ = 15/8.

7. Fill in the remaining values of (cos θ, sin θ) for the points in Figure 22.

p
2

0 (0, 0)p

5p
6

7p
6

11p
6

3p
4

5p
4

7p
44p

3
5p
33p

2

2p
3

(     ,    )p
6

 
2
3 1

2

(    ,      ) 
2
31

2
p
3

(     ,      )p
4

 
2
2  

2
2

FIGURE 22

solution

θ π
2

2π
3

3π
4

5π
6 π 7π

6

(cos θ, sin θ) (0, 1)
(−1

2 ,

√
3

2

) (−√
2

2 ,

√
2

2

) (−√
3

2 , 1
2

)
(−1, 0)

(−√
3

2 , −1
2

)

θ 5π
4

4π
3

3π
2

5π
3

7π
4

11π
6

(cos θ, sin θ)
(−√

2
2 , −√

2
2

) (−1
2 , −√

3
2

)
(0, −1)

(
1
2 , −√

3
2

) (√
2

2 , −√
2

2

) (√
3

2 , −1
2

)

8. Find the values of the six standard trigonometric functions at θ = 11π/6.

solution From Figure 22, we see that

sin
11π

6
= −1

2
and cos

11π

6
=

√
3

2
.

Then,

tan
11π

6
= sin 11π

6

cos 11π
6

= −
√

3

3
;
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cot
11π

6
= cos 11π

6

sin 11π
6

= −√
3;

csc
11π

6
= 1

sin 11π
6

= −2;

sec
11π

6
= 1

cos 11π
6

= 2
√

3

3
.

In Exercises 9–14, use Figure 22 to find all angles between 0 and 2π satisfying the given condition.

9. cos θ = 1

2

solution θ = π
3 , 5π

3

10. tan θ = 1

solution θ = π
4 , 5π

4

11. tan θ = −1

solution θ = 3π
4 , 7π

4

12. csc θ = 2

solution θ = π
6 , 5π

6

13. sin x =
√

3

2

solution x = π
3 , 2π

3

14. sec t = 2

solution t = π
3 , 5π

3

15. Fill in the following table of values:

θ
π

6

π

4

π

3

π

2

2π

3

3π

4

5π

6

tan θ

sec θ

solution

θ
π

6

π

4

π

3

π

2

2π

3

3π

4

5π

6

tan θ
1√
3

1
√

3 und −√
3 −1 − 1√

3

sec θ
2√
3

√
2 2 und −2 −√

2 − 2√
3

16. Complete the following table of signs:

θ sin θ cos θ tan θ cot θ sec θ csc θ

0 < θ <
π

2
+ +

π

2
< θ < π

π < θ <
3π

2

3π

2
< θ < 2π
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solution

θ sin cos tan cot sec csc

0 < θ <
π

2
+ + + + + +

π

2
< θ < π + − − − − +

π < θ <
3π

2
− − + + − −

3π

2
< θ < 2π − + − − + −

17. Show that if tan θ = c and 0 ≤ θ < π/2, then cos θ = 1/
√

1 + c2. Hint: Draw a right triangle whose opposite and
adjacent sides have lengths c and 1.

solution Because 0 ≤ θ < π/2, we can use the definition of the trigonometric functions in terms of right triangles.
tan θ is the ratio of the length of the side opposite the angle θ to the length of the adjacent side. With c = c

1 , we label
the length of the opposite side as c and the length of the adjacent side as 1 (see the diagram below). By the Pythagorean

theorem, the length of the hypotenuse is
√

1 + c2. Finally, we use the fact that cos θ is the ratio of the length of the adjacent
side to the length of the hypotenuse to obtain

cos θ = 1√
1 + c2

.

q

1 + c2
c

1

18. Suppose that cos θ = 1
3 .

(a) Show that if 0 ≤ θ < π/2, then sin θ = 2
√

2/3 and tan θ = 2
√

2.

(b) Find sin θ and tan θ if 3π/2 ≤ θ < 2π .

solution

(a) Because 0 ≤ θ < π/2, we can use the definition of the trigonometric functions in terms of right triangles. cos θ is
the ratio of the length of the side adjacent to the angle θ to the length of the hypotenuse, so we label the length of the
adjacent side as 1 and the length of the hypotenuse as 3 (see the diagram below). By the Pythagorean theorem, the length

of the side opposite the angle θ is
√

32 − 12 = 2
√

2. Finally, we use the definitions of sin θ as the ratio of the length of
the opposite side to the length of the hypotenuse and of tan θ as the ratio of the length of the opposite side to the length
of the adjacent side to obtain

sin θ = 2
√

2

3
and tan θ = 2

√
2

1
= 2

√
2.

3

q

22

1

(b) If 3π/2 ≤ θ < 2π , then θ is in the fourth quadrant and sin θ and tan θ are negative but have the same magnitude as
found in part (a). Thus,

sin θ = −2
√

2

3
and tan θ = −2

√
2.
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In Exercises 19–24, assume that 0 ≤ θ < π/2.

19. Find sin θ and tan θ if cos θ = 5
13 .

solution Consider the triangle below. The lengths of the side adjacent to the angle θ and the hypotenuse have been

labeled so that cos θ = 5
13 . The length of the side opposite the angle θ has been calculated using the Pythagorean theorem:√

132 − 52 = 12. From the triangle, we see that

sin θ = 12

13
and tan θ = 12

5
.

θ
5

1213

20. Find cos θ and tan θ if sin θ = 3
5 .

solution Consider the triangle below. The lengths of the side opposite the angle θ and the hypotenuse have been

labeled so that sin θ = 3
5 . The length of the side adjacent to the angle θ has been calculated using the Pythagorean

theorem:
√

52 − 32 = 4. From the triangle, we see that

cos θ = 4

5
and tan θ = 3

4
.

5

4

3

q

21. Find sin θ , sec θ , and cot θ if tan θ = 2
7 .

solution If tan θ = 2
7 , then cot θ = 7

2 . For the remaining trigonometric functions, consider the triangle below. The

lengths of the sides opposite and adjacent to the angle θ have been labeled so that tan θ = 2
7 . The length of the hypotenuse

has been calculated using the Pythagorean theorem:
√

22 + 72 = √
53. From the triangle, we see that

sin θ = 2√
53

= 2
√

53

53
and sec θ =

√
53

7
.

2
q

53

7

22. Find sin θ , cos θ , and sec θ if cot θ = 4.

solution Consider the triangle below. The lengths of the sides opposite and adjacent to the angle θ have been labeled so

that cot θ = 4 = 4
1 . The length of the hypotenuse has been calculated using the Pythagorean theorem:

√
42 + 12 = √

17.
From the triangle, we see that

sin θ = 1√
17

=
√

17

17
, cos θ = 4√

17
= 4

√
17

17
and sec θ =

√
17

4
.

4

1
q

17

23. Find cos 2θ if sin θ = 1
5 .

solution Using the double angle formula cos 2θ = cos2 θ − sin2 θ and the fundamental identity sin2 θ + cos2 θ = 1,

we find that cos 2θ = 1 − 2 sin2 θ . Thus, cos 2θ = 1 − 2(1/25) = 23/25.
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24. Find sin 2θ and cos 2θ if tan θ = √
2.

solution By the double angle formulas, sin 2θ = 2 sin θ cos θ and cos 2θ = cos2 θ − sin2 θ . We can determine sin θ

and cos θ using the triangle shown below. The lengths of the sides opposite and adjacent to the angle θ have been labeled

so that tan θ = √
2. The hypotenuse was calculated using the Pythagorean theorem:

√
12 + (

√
2)2 = √

3. Thus,

sin θ =
√

2√
3

=
√

6

3
and cos θ = 1√

3
=

√
3

3
.

Finally,

sin 2θ = 2

√
6

3
·
√

3

3
= 2

√
2

3

cos 2θ = 1

3
− 2

3
= −1

3
.

1
q

3 2

25. Find cos θ and tan θ if sin θ = 0.4 and π/2 ≤ θ < π .

solution We can determine the “magnitude” of cos θ and tan θ using the triangle shown below. The lengths of the

side opposite the angle θ and the hypotenuse have been labeled so that sin θ = 0.4 = 2
5 . The length of the side adjacent

to the angle θ was calculated using the Pythagorean theorem:
√

52 − 22 = √
21. From the triangle, we see that

|cos θ | =
√

21

5
and |tan θ | = 2√

21
= 2

√
21

21
.

Because π/2 ≤ θ < π , both cos θ and tan θ are negative; consequently,

cos θ = −
√

21

5
and tan θ = −2

√
21

21
.

2
5

q

21

26. Find cos θ and sin θ if tan θ = 4 and π ≤ θ < 3π/2.

solution We can determine the “magnitude” of cos θ and sin θ using the triangle shown below. The lengths of the

sides opposite and adjacent to the angle θ have been labeled so that tan θ = 4 = 4
1 . The length of the hypotenuse was

calculated using the Pythagorean theorem:
√

12 + 42 = √
17. From the triangle, we see that

|cos θ | = 1√
17

=
√

17

17
and |sin θ | = 4√

14
= 4

√
17

17
.

Because π ≤ θ < 3π/2, both cos θ and sin θ are negative; consequently,

cos θ = −
√

17

17
and sin θ = −4

√
17

17
.

1

4

q

17
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27. Find cos θ if cot θ = 4
3 and sin θ < 0.

solution We can determine the “magnitude” of cos θ using the triangle shown below. The lengths of the sides opposite

and adjacent to the angle θ have been labeled so that cot θ = 4
3 . The length of the hypotenuse was calculated using the

Pythagorean theorem:
√

32 + 42 = 5. From the triangle, we see that

|cos θ | = 4

5
.

Because cot θ = 4
3 > 0 and sin θ < 0, the angle θ must be in the third quadrant; consequently, cos θ will be negative and

cos θ = −4

5
.

4

3
5

 
θ

28. Find tan θ if sec θ = √
5 and sin θ < 0.

solution We can determine the “magnitude” of tan θ using the triangle shown below. The lengths of the side adjacent

to the angle θ and the hypotenuse have been labeled so that sec θ = √
5. The length of the side opposite the angle θ was

calculated using the Pythagorean theorem:
√

(
√

5)2 − 12 = 2. From the triangle, we see that

|tan θ | = 2.

Because sec θ = √
5 > 0 and sin θ < 0, the angle θ must be in the fourth quadrant; consequently, tan θ will be negative

and

tan θ = −2.

1

2

θ

5

29. Find the values of sin θ , cos θ , and tan θ for the angles corresponding to the eight points in Figure 23(A) and (B).

(0.3965, 0.918)

(A) (B)

(0.3965, 0.918)

FIGURE 23

solution Let’s start with the four points in Figure 23(A).

• The point in the first quadrant has coordinates (0.3965, 0.918). Therefore,

sin θ = 0.918, cos θ = 0.3965, and tan θ = 0.918

0.3965
= 2.3153.

• The coordinates of the point in the second quadrant are (−0.918, 0.3965). Therefore,

sin θ = 0.3965, cos θ = −0.918, and tan θ = 0.3965

−0.918
= −0.4319.
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• Because the point in the third quadrant is symmetric to the point in the first quadrant with respect to the origin, its
coordinates are (−0.3965, −0.918). Therefore,

sin θ = −0.918, cos θ = −0.3965, and tan θ = −0.918

−0.3965
= 2.3153.

• Because the point in the fourth quadrant is symmetric to the point in the second quadrant with respect to the origin,
its coordinates are (0.918, −0.3965). Therefore,

sin θ = −0.3965, cos θ = 0.918, and tan θ = −0.3965

0.918
= −0.4319.

Now consider the four points in Figure 23(B).

• The point in the first quadrant has coordinates (0.3965, 0.918). Therefore,

sin θ = 0.918, cos θ = 0.3965, and tan θ = 0.918

0.3965
= 2.3153.

• The point in the second quadrant is a reflection through the y-axis of the point in the first quadrant. Its coordinates
are therefore (−0.3965, 0.918) and

sin θ = 0.918, cos θ = −0.3965, and tan θ = 0.918

0.3965
= −2.3153.

• Because the point in the third quadrant is symmetric to the point in the first quadrant with respect to the origin, its
coordinates are (−0.3965, −0.918). Therefore,

sin θ = −0.918, cos θ = −0.3965, and tan θ = −0.918

−0.3965
= 2.3153.

• Because the point in the fourth quadrant is symmetric to the point in the second quadrant with respect to the origin,
its coordinates are (0.3965, −0.918). Therefore,

sin θ = −0.918, cos θ = 0.3965, and tan θ = −0.918

0.3965
= −2.3153.

30. Refer to Figure 24(A). Express the functions sin θ , tan θ , and csc θ in terms of c.

c1

(A)

0.3

1

(B)

0.3

FIGURE 24

solution By the Pythagorean theorem, the length of the side adjacent to the angle θ in Figure 24(A) is
√

1 − c2.
Consequently,

sin θ = c

1
= c, cos θ =

√
1 − c2

1
=

√
1 − c2, and tan θ = c√

1 − c2
.

31. Refer to Figure 24(B). Compute cos ψ , sin ψ , cot ψ , and csc ψ .

solution By the Pythagorean theorem, the length of the side opposite the angle ψ in Figure 24(B) is
√

1 − 0.32 =√
0.91. Consequently,

cos ψ = 0.3

1
= 0.3, sin ψ =

√
0.91

1
= √

0.91, cot ψ = 0.3√
0.91

and csc ψ = 1√
0.91

.
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32. Express cos
(
θ + π

2

)
and sin

(
θ + π

2

)
in terms of cos θ and sin θ . Hint: Find the relation between the coordinates

(a, b) and (c, d) in Figure 25.

(c, d)

(a, b)

1

q

FIGURE 25

solution Note the triangle in the second quadrant in Figure 25 is congruent to the triangle in the first quadrant rotated
90◦ clockwise. Thus, c = −b and d = a. But a = cos θ , b = sin θ , c = cos

(
θ + π

2

)
and d = sin

(
θ + π

2

)
; therefore,

cos
(
θ + π

2

)
= − sin θ and sin

(
θ + π

2

)
= cos θ.

33. Use the addition formula to compute cos
(
π
3 + π

4

)
exactly.

solution

cos
(π

3
+ π

4

)
= cos

π

3
cos

π

4
− sin

π

3
sin

π

4

= 1

2
·
√

2

2
−

√
3

2
·
√

2

2
=

√
2 − √

6

4
.

34. Use the addition formula to compute sin
(
π
3 − π

4

)
exactly.

solution

sin
(π

3
− π

4

)
= sin

π

3
cos

π

4
− cos

π

3
sin

π

4

=
√

3

2
·
√

2

2
− 1

2
·
√

2

2
=

√
6 − √

2

4
.

In Exercises 35–38, sketch the graph over [0, 2π ].
35. 2 sin 4θ

solution

−2

−1

2

1

y

x
654321

36. cos
(

2
(
θ − π

2

))
solution

0.5

1

−0.5

−1

y

x
1 2 3 4 5 6

37. cos
(

2θ − π

2

)
solution

−1

−0.5

1

0.5

y

x
654321
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38. sin
(

2
(
θ − π

2

)
+ π

)
+ 2

solution

0.5

1

1.5

2

2.5

3

y

x
1 2 3 4 5 6

39. How many points lie on the intersection of the horizontal line y = c and the graph of y = sin x for 0 ≤ x < 2π?
Hint: The answer depends on c.

solution Recall that for any x, −1 ≤ sin x ≤ 1. Thus, if |c| > 1, the horizontal line y = c and the graph of y = sin x

never intersect. If c = +1, then y = c and y = sin x intersect at the peak of the sine curve; that is, they intersect at
x = π

2 . On the other hand, if c = −1, then y = c and y = sin x intersect at the bottom of the sine curve; that is, they

intersect at x = 3π
2 . Finally, if |c| < 1, the graphs of y = c and y = sin x intersect twice.

40. How many points lie on the intersection of the horizontal line y = c and the graph of y = tan x for 0 ≤ x < 2π?

solution Recall that the graph of y = tan x consists of an infinite collection of “branches,” each between two
consecutive vertical asymptotes. Because each branch is increasing and has a range of all real numbers, the graph of the
horizontal line y = c will intersect each branch of the graph of y = tan x once, regardless of the value of c. The interval
0 ≤ x < 2π covers the equivalent of two branches of the tangent function, so over this interval there are two points of
intersection for each value of c.

In Exercises 41–44, solve for 0 ≤ θ < 2π (see Example 4).

41. sin 2θ + sin 3θ = 0

solution sin α = − sin β when α = −β + 2πk or α = π + β + 2πk. Substituting α = 2θ and β = 3θ , we have

either 2θ = −3θ + 2πk or 2θ = π + 3θ + 2πk. Solving each of these equations for θ yields θ = 2
5πk or θ = −π − 2πk.

The solutions on the interval 0 ≤ θ < 2π are then

θ = 0,
2π

5
,

4π

5
, π,

6π

5
,

8π

5
.

42. sin θ = sin 2θ

solution Using the double angle formula for the sine function, we rewrite the equation as sin θ = 2 sin θ cos θ or

sin θ(1 − 2 cos θ) = 0. Thus, either sin θ = 0 or cos θ = 1
2 . The solutions on the interval 0 ≤ θ < 2π are then

θ = 0,
π

3
, π,

5π

3
.

43. cos 4θ + cos 2θ = 0

solution cos α = − cos β when α + β = π + 2πk or α = β + π + 2πk. Substituting α = 4θ and β = 2θ , we have
either 6θ = π + 2πk or 4θ = 2θ + π + 2πk. Solving each of these equations for θ yields θ = π

6 + π
3 k or θ = π

2 + πk.
The solutions on the interval 0 ≤ θ < 2π are then

θ = π

6
,
π

2
,

5π

6
,

7π

6
,

3π

2
,

11π

6
.

44. sin θ = cos 2θ

solution Solving the double angle formula sin2 θ = 1
2 (1 − cos 2θ) for cos 2θ yields cos 2θ = 1 − 2 sin2 θ . We can

therefore rewrite the original equation as sin θ = 1 − 2 sin2 θ or 2 sin2 θ + sin θ − 1 = 0. The left-hand side of this latter
equation factors as (2 sin θ − 1)(sin θ + 1), so we have either sin θ = 1

2 or sin θ = −1. The solutions on the interval
0 ≤ θ < 2π are

θ = π

6
,

5π

6
,

3π

2
.

In Exercises 45–54, derive the identity using the identities listed in this section.

45. cos 2θ = 2 cos2 θ − 1

solution Starting from the double angle formula for cosine, cos2 θ = 1
2 (1 + cos 2θ), we solve for cos 2θ . This gives

2 cos2 θ = 1 + cos 2θ and then cos 2θ = 2 cos2 θ − 1.
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46. cos2 θ

2
= 1 + cos θ

2

solution Substitute x = θ/2 into the double angle formula for cosine, cos2 x = 1
2 (1 + cos 2x) to obtain cos2

(
θ

2

)
=

1 + cos θ

2
.

47. sin
θ

2
=

√
1 − cos θ

2

solution Substitute x = θ/2 into the double angle formula for sine, sin2 x = 1
2 (1 − cos 2x) to obtain sin2

(
θ

2

)
=

1 − cos θ

2
. Taking the square root of both sides yields sin

(
θ

2

)
=

√
1 − cos θ

2
.

48. sin(θ + π) = − sin θ

solution From the addition formula for the sine function, we have

sin(θ + π) = sin θ cos π + cos θ sin π = − sin θ

49. cos(θ + π) = − cos θ

solution From the addition formula for the cosine function, we have

cos(θ + π) = cos θ cos π − sin θ sin π = cos θ(−1) = − cos θ

50. tan x = cot
(π

2
− x

)
solution Using the Complementary Angle Identity,

cot
(π

2
− x

)
= cos(π/2 − x)

sin(π/2 − x)
= sin x

cos x
= tan x.

51. tan(π − θ) = − tan θ

solution Using Exercises 48 and 49,

tan(π − θ) = sin(π − θ)

cos(π − θ)
= sin(π + (−θ))

cos(π + (−θ))
= − sin(−θ)

− cos(−θ)
= sin θ

− cos θ
= − tan θ.

The second to last equality occurs because sin x is an odd function and cos x is an even function.

52. tan 2x = 2 tan x

1 − tan2 x

solution Using the definition of the tangent function and the double angle formulas for sine and cosine, we find

tan 2x = sin 2x

cos 2x
= 2 sin x cos x

cos2 x − sin2 x
· 1/ cos2 x

1/ cos2 x
= 2 tan x

1 − tan2 x
.

53. tan x = sin 2x

1 + cos 2x

solution Using the addition formula for the sine function, we find

sin 2x = sin(x + x) = sin x cos x + cos x sin x = 2 sin x cos x.

By Exercise 45, we know that cos 2x = 2 cos2 x − 1. Therefore,

sin 2x

1 + cos 2x
= 2 sin x cos x

1 + 2 cos2 x − 1
= 2 sin x cos x

2 cos2 x
= sin x

cos x
= tan x.

54. sin2 x cos2 x = 1 − cos 4x

8

solution Using the double angle formulas for sine and cosine, we find

sin2 x cos2 x = 1

2
(1 − cos 2x) · 1

2
(1 + cos 2x) = 1

4
(1 − cos2 2x)

= 1

4

(
1 − 1

2
− 1

2
cos 4x

)
= 1

8
(1 − cos 4x).
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55. Use Exercises 48 and 49 to show that tan θ and cot θ are periodic with period π .

solution By Exercises 48 and 49,

tan(θ + π) = sin(θ + π)

cos(θ + π)
= − sin θ

− cos θ
= tan θ,

and

cot(θ + π) = cos(θ + π)

sin(θ + π)
= − cos θ

− sin θ
= cot θ.

Thus, both tan θ and cot θ are periodic with period π .

56. Use the identity of Exercise 45 to show that cos
π

8
is equal to

√
1

2
+

√
2

4
.

solution Upon substituting θ = π

8
into the identity

cos 2θ = 2 cos2 θ − 1

we have
√

2

2
= cos

π

4
= 2 cos2 π

8
− 1.

Thus,

2 cos2 π

8
= 1 +

√
2

2
or cos2 π

8
= 1

2
+

√
2

4
.

Taking the square root of both sides of this last expression and recognizing that cos
π

8
> 0 because 0 <

π

8
<

π

2
, it follows

that

cos
π

8
=

√
1

2
+

√
2

4
.

57. Use the Law of Cosines to find the distance from P to Q in Figure 26.

P

Q

8

10
7π/9

FIGURE 26

solution By the Law of Cosines, the distance from P to Q is√
102 + 82 − 2(10)(8) cos

7π

9
= 16.928.

Further Insights and Challenges
58. Use Figure 27 to derive the Law of Cosines from the Pythagorean Theorem.

a

θ

b c

a − b cos θ

FIGURE 27

solution First note that the length of the altitude in Figure 27 is b sin θ . Applying the Pythagorean Theorem to the
right triangle on the right in the figure, it then follows that

c2 = (a − b cos θ)2 + b2 sin2 θ

= a2 − 2ab cos θ + b2 cos2 θ + b2 sin2 θ

= a2 + b2 − 2ab cos θ.
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59. Use the addition formula to prove

cos 3θ = 4 cos3 θ − 3 cos θ

solution

cos 3θ = cos(2θ + θ) = cos 2θ cos θ − sin 2θ sin θ = (2 cos2 θ − 1) cos θ − (2 sin θ cos θ) sin θ

= cos θ(2 cos2 θ − 1 − 2 sin2 θ) = cos θ(2 cos2 θ − 1 − 2(1 − cos2 θ))

= cos θ(2 cos2 θ − 1 − 2 + 2 cos2 θ) = 4 cos3 θ − 3 cos θ

60. Use the addition formulas for sine and cosine to prove

tan(a + b) = tan a + tan b

1 − tan a tan b

cot(a − b) = cot a cot b + 1

cot b − cot a

solution

tan(a + b) = sin(a + b)

cos(a + b)
= sin a cos b + cos a sin b

cos a cos b − sin a sin b
=

sin a cos b
cos a cos b

+ cos a sin b
cos a cos b

cos a cos b
cos a cos b

− sin a sin b
cos a cos b

= tan a + tan b

1 − tan a tan b

cot(a − b) = cos(a − b)

sin(a − b)
= cos a cos b + sin a sin b

sin a cos b − cos a sin b
=

cos a cos b
sin a sin b

+ sin a sin b
sin a sin b

sin a cos b
sin a sin b

− cos a sin b
sin a sin b

= cot a cot b + 1

cot b − cot a

61. Let θ be the angle between the line y = mx + b and the x-axis [Figure 28(A)]. Prove that m = tan θ .

y = mx + b

q x

r

s

(A)

y

q
x

(B)

y L2

L1

FIGURE 28

solution Using the distances labeled in Figure 28(A), we see that the slope of the line is given by the ratio r/s. The
tangent of the angle θ is given by the same ratio. Therefore, m = tan θ .

62. Let L1 and L2 be the lines of slope m1 and m2 [Figure 28(B)]. Show that the angle θ between L1 and L2 satisfies

cot θ = m2m1 + 1

m2 − m1
.

solution Measured from the positive x-axis, let α and β satisfy tan α = m1 and tan β = m2. Without loss of generality,
let β ≥ α. Then the angle between the two lines will be θ = β − α. Then from Exercise 60,

cot θ = cot(β − α) = cot β cot α + 1

cot α − cot β
= ( 1

m1
)( 1

m2
) + 1

1
m1

− 1
m2

= 1 + m1m2

m2 − m1

63. Perpendicular Lines Use Exercise 62 to prove that two lines with nonzero slopes m1 and m2 are perpendicular if
and only if m2 = −1/m1.

solution If lines are perpendicular, then the angle between them is θ = π/2 ⇒

cot(π/2) = 1 + m1m2

m1 − m2

0 = 1 + m1m2

m1 − m2

⇒ m1m2 = −1 ⇒ m1 = − 1

m2
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64. Apply the double-angle formula to prove:

(a) cos
π

8
= 1

2

√
2 + √

2

(b) cos
π

16
= 1

2

√
2 +

√
2 + √

2

Guess the values of cos
π

32
and of cos

π

2n
for all n.

solution

(a) cos
π

8
= cos

π/4

2
=

√
1 + cos π

4
2

=
√

1 +
√

2
2

2
= 1

2

√
2 + √

2.

(b) cos
π

16
=

√
1 + cos π

8
2

=
√

1 + 1
2

√
2 + √

2

2
= 1

2

√
2 +

√
2 + √

2.

(c) Observe that 8 = 23 and cos π
8 involves two nested square roots of 2; further, 16 = 24 and cos π

16 involves three

nested square roots of 2. Since 32 = 25, it seems plausible that

cos
π

32
= 1

2

√
2 +

√
2 +

√
2 + √

2,

and that cos π
2n involves n − 1 nested square roots of 2. Note that the general case can be proven by induction.

1.5 Inverse Functions

Preliminary Questions
1. Which of the following satisfy f −1(x) = f (x)?

(a) f (x) = x (b) f (x) = 1 − x

(c) f (x) = 1 (d) f (x) = √
x

(e) f (x) = |x| (f) f (x) = x−1

solution The functions (a) f (x) = x, (b) f (x) = 1 − x and (f) f (x) = x−1 satisfy f −1(x) = f (x).

2. The graph of a function looks like the track of a roller coaster. Is the function one-to-one?

solution Because the graph looks like the track of a roller coaster, there will be several locations at which the graph
has the same height. The graph will therefore fail the horizontal line test, meaning that the function is not one-to-one.

3. The function f maps teenagers in the United States to their last names. Explain why the inverse function f −1 does
not exist.

solution Many different teenagers will have the same last name, so this function will not be one-to-one. Consequently,
the function does not have an inverse.

4. The following fragment of a train schedule for the New Jersey Transit System defines a function f from towns to
times. Is f one-to-one? What is f −1(6:27)?

Trenton 6:21

Hamilton Township 6:27

Princeton Junction 6:34

New Brunswick 6:38

solution This function is one-to-one, and f −1(6:27) = Hamilton Township.

5. A homework problem asks for a sketch of the graph of the inverse of f (x) = x + cos x. Frank, after trying but failing
to find a formula for f −1(x), says it’s impossible to graph the inverse. Bianca hands in an accurate sketch without solving
for f −1. How did Bianca complete the problem?

solution The graph of the inverse function is the reflection of the graph of y = f (x) through the line y = x.

6. Which of the following quantities is undefined?

(a) sin−1(− 1
2

)
(b) cos−1(2)

(c) csc−1( 1
2

)
(d) csc−1(2)

solution (b) and (c) are undefined. sin−1(− 1
2

) = −π
6 and csc−1(2) = π

6 .

7. Give an example of an angle θ such that cos−1(cos θ) 	= θ . Does this contradict the definition of inverse function?

solution Any angle θ < 0 or θ > π will work. No, this does not contradict the definition of inverse function.
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Exercises
1. Show that f (x) = 7x − 4 is invertible and find its inverse.

solution Solving y = 7x − 4 for x yields x = y + 4

7
. Thus, f −1(x) = x + 4

7
.

2. Is f (x) = x2 + 2 one-to-one? If not, describe a domain on which it is one-to-one.

solution f is not one-to-one because f (−1) = f (1) = 3. However, if the domain is restricted to x ≥ 0 or x ≤ 0,
then f is one-to-one.

3. What is the largest interval containing zero on which f (x) = sin x is one-to-one?

solution Looking at the graph of sin x, the function is one-to-one on the interval [−π/2, π/2].
4. Show that f (x) = x − 2

x + 3
is invertible and find its inverse.

(a) What is the domain of f (x)? The range of f −1(x)?
(b) What is the domain of f −1(x)? The range of f (x)?

solution We solve y = f (x) for x as follows:

y = x − 2

x + 3

yx + 3y = x − 2

yx − x = −3y − 2

x = −3y − 2

y − 1
= 3y + 2

1 − y
.

Therefore,

f −1(x) = 3x + 2

1 − x
.

(a) Domain of f (x) = {x|x 	= −3} = Range of f −1(x).
(b) Domain of f −1(x) = {x|x 	= 1} = Range of f (x).

5. Verify that f (x) = x3 + 3 and g(x) = (x − 3)1/3 are inverses by showing that f (g(x)) = x and g(f (x)) = x.

solution

• f (g(x)) =
(
(x − 3)1/3

)3 + 3 = x − 3 + 3 = x.

• g(f (x)) =
(
x3 + 3 − 3

)1/3 =
(
x3

)1/3 = x.

6. Repeat Exercise 5 for f (t) = t + 1

t − 1
and g(t) = t + 1

t − 1
.

solution

f (g(t)) =
t+1
t−1 + 1
t+1
t−1 − 1

= t + 1 + t − 1

t + 1 − (t − 1)
= t.

The calculations for g(f (t)) are identical.

7. The escape velocity from a planet of radius R is v(R) =
√

2GM

R
, where G is the universal gravitational constant

and M is the mass. Find the inverse of v(R) expressing R in terms of v.

solution To find the inverse, we solve

y =
√

2GM

R

for R. This yields

R = 2GM

y2
.

Therefore,

v−1(R) = 2GM

R2
.
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In Exercises 8–15, find a domain on which f is one-to-one and a formula for the inverse of f restricted to this domain.
Sketch the graphs of f and f −1.

8. f (x) = 3x − 2

solution The linear function f (x) = 3x − 2 is one-to-one for all real numbers. Solving y = 3x − 2 for x gives
x = (y + 2)/3. Thus,

f −1(x) = x + 2

3
.

f (x) = 3x − 2

−2

−1

1

y

x
−2 −1 1

f −1(x) = x + 2
3

9. f (x) = 4 − x

solution The linear function f (x) = 4 − x is one-to-one for all real numbers. Solving y = x − 4 for x gives

x = 4 − y. Thus, f −1(x) = 4 − x.

1 2 3 4
x

2

1

3

4

y

f(x) = f −1(x) = 4 − x

10. f (x) = 1

x + 1

solution The graph of f (x) = 1/(x + 1) given below shows that f passes the horizontal line test, and is therefore

one-to-one, on its entire domain {x : x 	= −1}. Solving y = 1

x + 1
for x gives x = 1

y
− 1. Thus, f −1(x) = 1

x
− 1.

4

y

x
−4 2 4

y = f (x)

−4

4

2

y

x
−4 −2

y = f −1(x)

11. f (x) = 1

7x − 3

solution The graph of f (x) = 1/(7x − 3) given below shows that f passes the horizontal line test, and is therefore

one-to-one, on its entire domain {x : x 	= 3
7 }. Solving y = 1/(7x − 3) for x gives

x = 1

7y
+ 3

7
; thus, f −1(x) = 1

7x
+ 3

7
.

4

2

−4

−2
−2−4 2 4

x

y

4

2

−4

−2
−2−4 2 4

x

y

y = f(x) y = f −1(x)
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12. f (s) = 1

s2

solution To make f (s) = s−2 one-to-one, we must restrict the domain to either {s : s > 0} or {s : s < 0}. If we

choose the domain {s : s > 0}, then solving y = 1

s2
for s yields s = 1√

y
. Hence, f −1(s) = 1√

s
. Had we chosen the

domain {s : s < 0}, the inverse would have been f −1(s) = − 1√
s

.

s
−1−2 1 2

4

2

y

y = f (s)

s
1 2 3 4

4

2

8

6

y

y = f −1(s)

13. f (x) = 1√
x2 + 1

solution To make the function f (x) = 1√
x2 + 1

one-to-one, we must restrict the domain to either {x : x ≥ 0} or

{x : x ≤ 0}. If we choose the domain {x : x ≥ 0}, then solving y = 1√
x2 + 1

for x yields

x =
√

1 − y2

y
; hence, f −1(x) =

√
1 − x2

x
.

Had we chosen the domain {x : x ≤ 0}, the inverse would have been

f −1(x) = −
√

1 − x2

x
.

x
−1−2 1 2

1

0.5

1.5

y

y = f −1(x)

y = f(x)

14. f (z) = z3

solution The function f (z) = z3 is one-to-one over its entire domain (see the graph below). Solving y = z3 for z

yields y1/3 = z. Thus, f −1(z) = z1/3.

−1

−2

−3

1

2

3

y

z
−1−2−3 1 2 3

y = f (z)

y = f −1(z)

15. f (x) =
√

x3 + 9

solution The graph of f (x) =
√

x3 + 9 given below shows that f passes the horizontal line test, and therefore

is one-to-one, on its entire domain {x : x ≥ −91/3}. Solving y =
√

x3 + 9 for x yields x = (y2 − 9)1/3. Thus,
f −1(x) = (x2 − 9)1/3.
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−2
−2

4

2

6

8

y

x
842 6

y = f −1(x)

y = f(x)

16. For each function shown in Figure 19, sketch the graph of the inverse (restrict the function’s domain if necessary).

(A)

x

y

(B)

x

y

(C)

x

y

(F)

x

y

(D)

x

y

(E)

x

y

FIGURE 19

solution Here, we apply the rule that the graph of f −1 is obtained by reflecting the graph of f across the line y = x.
For (C) and (D), we must restrict the domain of f to make f one-to-one.

(a)

(A)

x

y (b)

(B)

x

y (c)

x

y

(C)

(d)

(D)

x

y (e)

x

y

(E)

(f)

(F)

x

y

17. Which of the graphs in Figure 20 is the graph of a function satisfying f −1 = f ?

(A)

x

(B)

y

x

(D)

y

(C)

x

y

x

y

FIGURE 20

solution Figures (B) and (C) would not change when reflected around the line y = x. Therefore, these two satisfy

f −1 = f .
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18. Let n be a nonzero integer. Find a domain on which f (x) = (1 − xn)1/n coincides with its inverse. Hint: The answer
depends on whether n is even or odd.

solution First note

f (f (x)) =
(

1 − (
(1 − xn)1/n

)n)1/n = (
1 − (1 − xn)

)1/n = (xn)1/n = x,

so f (x) coincides with its inverse. For the domain and range of f , let’s first consider the case when n > 0. If n is even,
then f (x) is defined only when 1 − xn ≥ 0. Hence, the domain is −1 ≤ x ≤ 1. The range is 0 ≤ y ≤ 1. If n is odd, then
f (x) is defined for all real numbers, and the range is also all real numbers. Now, suppose n < 0. Then −n > 0, and

f (x) =
(

1 − 1

x−n

)−1/−n

=
(

x−n

x−n − 1

)1/−n

.

If n is even, then f (x) is defined only when x−n − 1 > 0. Hence, the domain is |x| > 1. The range is y > 1. If n is odd,
then f (x) is defined for all real numbers except x = 1. The range is all real numbers except y = 1.

19. Let f (x) = x7 + x + 1.

(a) Show that f −1 exists (but do not attempt to find it). Hint: Show that f is increasing.
(b) What is the domain of f −1?
(c) Find f −1(3).

solution

(a) The graph of f (x) = x7 + x + 1 is shown below. From this graph, we see that f (x) is a strictly increasing function;
by Example 3, it is therefore one-to-one. Because f is one-to-one, by Theorem 3, f −1 exists.

–1 1

–20

–10

10

20

(b) The domain of f −1(x) is the range of f (x) : (−∞, ∞).
(c) Note that f (1) = 17 + 1 + 1 = 3; therefore, f −1(3) = 1.

20. Show that f (x) = (x2 + 1)−1 is one-to-one on (−∞, 0], and find a formula for f −1 for this domain of f .

solution

1

0.4

0.2

0.8

0.6

y

x
−3 −2 −1−4

y = (x2 + 1)−1

Notice that the graph of f (x) = (x2 + 1)−1 over the interval (−∞, 0] (shown above) passes the horizontal line test.
Thus, f (x) is one-to-one on (−∞, 0]. To find a formula for f −1, we solve y = (x2 + 1)−1 for x, which yields

x = ±
√

1
y − 1. Because the domain of f was restricted to x ≤ 0, we choose the negative sign in front of the radical.

Therefore, f −1(x) = −
√

1
x − 1.

21. Let f (x) = x2 − 2x. Determine a domain on which f −1 exists, and find a formula for f −1 for this domain of f .

solution From the graph of y = x2 − 2x shown below, we see that if the domain of f is restricted to either x ≤ 1 or

x ≥ 1, then f is one-to-one and f −1 exists. To find a formula for f −1, we solve y = x2 − 2x for x as follows:

y + 1 = x2 − 2x + 1 = (x − 1)2

x − 1 = ±√
y + 1

x = 1 ± √
y + 1

If the domain of f is restricted to x ≤ 1, then we choose the negative sign in front of the radical and f −1(x) = 1 − √
x + 1.

If the domain of f is restricted to x ≥ 1, we choose the positive sign in front of the radical and f −1(x) = 1 + √
x + 1.
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y = x2 − 2x

x
−1 2 3

4

2

6

y

22. Show that f (x) = x + x−1 is one-to-one on [1, ∞), and find the corresponding inverse f −1. What is the domain of
f −1?

solution The graph of f (x) = x + x−1 on [1, ∞) is shown below. From this graph, we see that for x > 1 the
function is increasing, which implies that the function is one-to-one. Also, note that since f is increasing for x > 1,
f (x) ≥ f (1) = 2 for x > 1.

1 2 3 4 5 6 7 8 9

2

4

6

8

To find a formula for f −1, let y = x + x−1. Then xy = x2 + 1 or x2 − xy + 1 = 0. Using the quadratic formula, we
find

x = y ±
√

y2 − 4

2
.

To have x ≥ 1 for y ≥ 2, we must choose the positive sign in front of the radical. Thus,

f −1(x) = x +
√

x2 − 4

2

for x ≥ 2.

In Exercises 23–28, evaluate without using a calculator.

23. cos−1 1

solution cos−1 1 = 0.

24. sin−1 1

2

solution sin−1 1
2 = π

6 .

25. cot−1 1

solution cot−1 1 = π
4 .

26. sec−1 2√
3

solution sec−1 2√
3

= π
6 .

27. tan−1
√

3

solution tan−1
√

3 = tan−1(√
3/2

1/2

) = π
3 .

28. sin−1(−1)

solution sin−1(−1) = −π
2 .

In Exercises 29–38, compute without using a calculator.

29. sin−1
(

sin
π

3

)
solution sin−1(sin π

3 ) = π
3 .
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30. sin−1
(

sin
4π

3

)

solution sin−1(sin 4π
3 ) = sin−1(−

√
3

2 ) = −π
3 . The answer is not 4π

3 because 4π
3 is not in the range of the inverse

sine function.

31. cos−1
(

cos
3π

2

)

solution cos−1(cos 3π
2 ) = cos−1(0) = π

2 . The answer is not 3π
2 because 3π

2 is not in the range of the inverse cosine
function.

32. sin−1
(

sin

(
−5π

6

))

solution sin−1(sin(− 5π
6 )) = sin−1(− 1

2 ) = −π
6 . The answer is not − 5π

6 because − 5π
6 is not in the range of the

inverse sine function.

33. tan−1
(

tan
3π

4

)

solution tan−1(tan 3π
4 ) = tan−1(−1) = −π

4 . The answer is not 3π
4 because 3π

4 is not in the range of the inverse
tangent function.

34. tan−1(tan π)

solution tan−1(tan π) = tan−1(0) = 0. The answer is not π because π is not in the range of the inverse tangent
function.

35. sec−1(sec 3π)

solution sec−1(sec 3π) = sec−1(−1) = π . The answer is not 3π because 3π is not in the range of the inverse secant
function.

36. sec−1
(

sec
3π

2

)

solution No inverse since sec 3π
2 = 1

cos 3π
2

= 1
0 −→ ∞.

37. csc−1(
csc(−π)

)
solution No inverse since csc(−π) = 1

sin(−π)
= 1

0 −→ ∞.

38. cot−1
(

cot
(
−π

4

))
solution cot−1 (

cot(−π
4 )

) = cot−1(−1) = 3π
4 . The answer is not −π

4 because −π
4 is not in the range of the inverse

cotangent function.

In Exercises 39–42, simplify by referring to the appropriate triangle or trigonometric identity.

39. tan(cos−1 x)

solution Let θ = cos−1 x. Then cos θ = x and we generate the triangle shown below. From the triangle,

tan(cos−1 x) = tan θ =
√

1 − x2

x
.

1

x

θ

1 − x2

40. cos(tan−1 x)

solution Let θ = tan−1 x. Then tan θ = x and we generate the triangle shown below. From the triangle,

cos(tan−1 x) = cos θ = 1√
x2 + 1

.

1

θ

1 + x2

x
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41. cot(sec−1 x)

solution Let θ = sec−1 x. Then sec θ = x and we generate the triangle shown below. From the triangle,

cot(sec−1 x) = cot θ = 1√
x2 − 1

.

x

1

θ

x2 − 1

42. cot(sin−1 x)

solution Let θ = sin−1 x. Then sin θ = x and we generate the triangle shown below. From the triangle,

cot(sin−1 x) = cot θ =
√

1 − x2

x
.

1

θ

x

1 − x2

In Exercises 43–50, refer to the appropriate triangle or trigonometric identity to compute the given value.

43. cos
(
sin−1 2

3

)
solution Let θ = sin−1 2

3 . Then sin θ = 2
3 and we generate the triangle shown below. From the triangle,

cos

(
sin−1 2

3

)
= cos θ =

√
5

3
.

3

θ

2

5

44. tan
(
cos−1 2

3

)
solution Let θ = cos−1 2

3 . Then cos θ = 2
3 and we generate the triangle shown below. From the triangle,

tan

(
cos−1 2

3

)
= tan θ =

√
5

2
.

3

2

θ

5

45. tan
(
sin−1 0.8

)
solution Let θ = sin−1 0.8. Then sin θ = 0.8 = 4

5 and we generate the triangle shown below. From the triangle,

tan(sin−1 0.8) = tan θ = 4

3
.

5

θ

4

3
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46. cos
(
cot−1 1

)
solution cot−1 1 = π

4 . Hence, cos(cot−1 1) = cos π
4 =

√
2

2 .

47. cot
(
csc−1 2

)
solution csc−1 2 = π

6 . Hence, cot(csc−1 2) = cot π
6 = √

3.

48. tan
(
sec−1(−2)

)
solution sec−1(−2) = 2π

3 . Hence tan(sec−1(−2)) = tan 2π
3 = −√

3.

49. cot
(
tan−1 20

)
solution Let θ = tan−1 20. Then tan θ = 20, so cot(tan−1 20) = cot θ = 1

tan θ = 1
20 .

50. sin
(
csc−1 20

)
solution Let θ = csc−1 20. Then csc θ = 20, so sin(csc−1 20) = sin θ = 1

csc θ = 1
20 .

Further Insights and Challenges
51. Show that if f (x) is odd and f −1(x) exists, then f −1(x) is odd. Show, on the other hand, that an even function does
not have an inverse.

solution Suppose f (x) is odd and f −1(x) exists. Because f (x) is odd, f (−x) = −f (x). Let y = f −1(x), then

f (y) = x. Since f (x) is odd, f (−y) = −f (y) = −x. Thus f −1(−x) = −y = −f −1(x). Hence, f −1 is odd.
On the other hand, if f (x) is even, then f (−x) = f (x). Hence, f is not one-to-one and f −1 does not exist.

52. A cylindrical tank of radius R and length L lying horizontally as in Figure 21 is filled with oil to height h. Show that
the volume V (h) of oil in the tank as a function of height h is

V (h) = L

(
R2 cos−1

(
1 − h

R

)
− (R − h)

√
2hR − h2

)

h

L

R

FIGURE 21 Oil in the tank has level h.

solution From Figure 21, we see that the volume of oil in the tank, V (h), is equal to L times A(h), the area of that
portion of the circular cross section occupied by the oil. Now,

A(h) = area of sector − area of triangle = R2θ

2
− R2 sin θ

2
,

where θ is the central angle of the sector. Referring to the diagram below,

cos
θ

2
= R − h

R
and sin

θ

2
=

√
2hR − h2

R
.

2hR − h2

/2
R − h

R

Thus,

θ = 2 cos−1
(

1 − h

R

)
,

sin θ = 2 sin
θ

2
cos

θ

2
= 2

(R − h)
√

2hR − h2

R2
,

and

V (h) = L

(
R2 cos−1

(
1 − h

R

)
− (R − h)

√
2hR − h2

)
.
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1.6 Exponential and Logarithmic Functions

Preliminary Questions
1. Which of the following equations is incorrect?

(a) 32 · 35 = 37 (b) (
√

5)4/3 = 52/3

(c) 32 · 23 = 1 (d) (2−2)−2 = 16

solution

(a) This equation is correct: 32 · 35 = 32+5 = 37.

(b) This equation is correct: (
√

5)4/3 = (51/2)4/3 = 5(1/2)·(4/3) = 52/3.

(c) This equation is incorrect: 32 · 23 = 9 · 8 = 72 	= 1.

(d) this equation is correct: (2−2)−2 = 2(−2)·(−2) = 24 = 16.

2. Compute logb2(b
4).

solution Because b4 = (b2)2, logb2(b
4) = 2.

3. When is ln x negative?

solution ln x is negative for 0 < x < 1.

4. What is ln(−3)? Explain.

solution ln(−3) is not defined.

5. Explain the phrase “The logarithm converts multiplication into addition.”

solution This phrase is a verbal description of the general property of logarithms that states

log(ab) = log a + log b.

6. What are the domain and range of ln x?

solution The domain of ln x is x > 0 and the range is all real numbers.

7. Which hyperbolic functions take on only positive values?

solution cosh x and sech x take on only positive values.

8. Which hyperbolic functions are increasing on their domains?

solution sinh x and tanh x are increasing on their domains.

9. Describe three properties of hyperbolic functions that have trigonometric analogs.

solution Hyperbolic functions have the following analogs with trigonometric functions: parity, identities and deriva-
tive formulas.

Exercises
1. Rewrite as a whole number (without using a calculator):

(a) 70 (b) 102(2−2 + 5−2)

(c)

(
43)5(
45

)3
(d) 274/3

(e) 8−1/3 · 85/3 (f) 3 · 41/4 − 12 · 2−3/2
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solution

(a) 70 = 1.

(b) 102(2−2 + 5−2) = 100(1/4 + 1/25) = 25 + 4 = 29.

(c) (43)5/(45)3 = 415/415 = 1.

(d) (27)4/3 = (271/3)4 = 34 = 81.

(e) 8−1/3 · 85/3 = (81/3)5/81/3 = 25/2 = 24 = 16.

(f) 3 · 41/4 − 12 · 2−3/2 = 3 · 21/2 − 3 · 22 · 2−3/2 = 0.

In Exercises 2–10, solve for the unknown variable.

2. 92x = 98

solution If 92x = 98, then 2x = 8, and x = 4.

3. e2x = ex+1

solution If e2x = ex+1 then 2x = x + 1, and x = 1.

4. et2 = e4t−3

solution If et2 = e4t−3, then t2 = 4t − 3 or t2 − 4t + 3 = (t − 3)(t − 1) = 0. Thus, t = 1 or t = 3.

5. 3x = ( 1
3

)x+1

solution Rewrite ( 1
3 )x+1 as (3−1)x+1 = 3−x−1. Then 3x = 3−x−1, which requires x = −x − 1. Thus, x = −1/2.

6. (
√

5)x = 125

solution Rewrite (
√

5)x as (51/2)x = 5x/2 and 125 as 53. Then 5x/2 = 53, so x/2 = 3 and x = 6.

7. 4−x = 2x+1

solution Rewrite 4−x as (22)−x = 2−2x . Then 2−2x = 2x+1, which requires −2x = x + 1. Solving for x gives
x = −1/3.

8. b4 = 1012

solution b4 = 1012 is equivalent to b4 = (103)4 so b = 103. Alternately, raise both sides of the equation to the

one-fourth power. This gives b = (1012)1/4 = 103.

9. k3/2 = 27

solution Raise both sides of the equation to the two-thirds power. This gives k = (27)2/3 = (271/3)2 = 32 = 9.

10.
(
b2)x+1 = b−6

solution Rewrite (b2)x+1 as b2(x+1). Then 2(x + 1) = −6, and x = −4.

In Exercises 11–26, calculate without using a calculator.

11. log3 27

solution log3 27 = log3 33 = 3 log3 3 = 3.

12. log5
1

25

solution log5
1

25
= log5 5−2 = −2 log5 5 = −2.

13. ln 1

solution ln 1 = 0.

14. log5(54)

solution log5(54) = 4 log5 5 = 4.

15. log2(25/3)

solution log2 25/3 = 5

3
log2 2 = 5

3
.

16. log2(85/3)

solution log2(85/3) = 5

3
log2 23 = 5 log2 2 = 5.
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17. log64 4

solution log64 4 = log64 641/3 = 1

3
log64 64 = 1

3
.

18. log7(492)

solution log7 492 = 2 log7 72 = 2 · 2 · log7 7 = 4.

19. log8 2 + log4 2

solution log8 2 + log4 2 = log8 81/3 + log4 41/2 = 1

3
+ 1

2
= 5

6
.

20. log25 30 + log25
5
6

solution log25 30 + log25
5

6
= log25

(
30 · 5

6

)
= log25 25 = 1.

21. log4 48 − log4 12

solution log4 48 − log4 12 = log4
48

12
= log4 4 = 1.

22. ln(
√

e · e7/5)

solution ln(
√

e · e7/5) = ln(e1/2 · e7/5) = ln(e1/2+7/5) = ln(e19/10) = 19

10
.

23. ln(e3) + ln(e4)

solution ln(e3) + ln(e4) = 3 + 4 = 7.

24. log2
4
3 + log2 24

solution log2
4

3
+ log2 24 = log2

(
4

3
· 24

)
= log2 32 = log2 25 = 5 log2 2 = 5.

25. 7log7(29)

solution 7log7(29) = 29.

26. 83 log8(2)

solution 83 log8(2) = 8log8(2
3) = 8log8(8) = 81 = 8.

27. Write as the natural log of a single expression:

(a) 2 ln 5 + 3 ln 4 (b) 5 ln(x1/2) + ln(9x)

solution

(a) 2 ln 5 + 3 ln 4 = ln 52 + ln 43 = ln 25 + ln 64 = ln(25 · 64) = ln 1600.

(b) 5 ln x1/2 + ln 9x = ln x5/2 + ln 9x = ln(x5/2 · 9x) = ln(9x7/2).

28. Solve for x: ln(x2 + 1) − 3 ln x = ln(2).

solution Combining terms on the left-hand side gives

ln(x2 + 1) − 3 ln x = ln(x2 + 1) − ln x3 = ln
x2 + 1

x3
.

Therefore,
x2 + 1

x3
= 2 or 2x3 − x2 − 1 = 0; x = 1 is the only real root to this equation. Substituting x = 1 into the

original equation, we find

ln 2 − 3 ln 1 = ln 2 − 0 = ln 2

as needed. Hence, x = 1 is the only solution.

In Exercises 29–34, solve for the unknown.

29. 7e5t = 100

solution Divide the equation by 7 and then take the natural logarithm of both sides. This gives

5t = ln

(
100

7

)
or t = 1

5
ln

(
100

7

)
.
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30. 6e−4t = 2

solution Divide the equation by 6 and then take the natural logarithm of both sides. This gives

−4t = ln

(
1

3

)
or t = ln 3

4
.

31. 2x2−2x = 8

solution Since 8 = 23, we have x2 − 2x − 3 = 0 or (x − 3)(x + 1) = 0. Thus, x = −1 or x = 3.

32. e2t+1 = 9e1−t

solution Taking the natural logarithm of both sides of the equation gives

2t + 1 = ln
(

9e1−t
)

= ln 9 + ln e1−t = ln 9 + (1 − t).

Thus, 3t = ln 9 or t = 1
3 ln 9.

33. ln(x4) − ln(x2) = 2

solution ln(x4) − ln(x2) = ln

(
x4

x2

)
= ln(x2) = 2 ln x. Thus, 2 ln x = 2 or ln x = 1. Hence, x = e.

34. log3 y + 3 log3(y2) = 14

solution 14 = log3 y + 3 log3(y2) = log3 y + log3 y6 = log3 y7. Thus, y7 = 314 or y = 32 = 9.

35. Use a calculator to compute sinh x and cosh x for x = −3, 0, 5.

solution

x −3 0 5

sinh x = ex − e−x

2

e−3 − e3

2
= −10.0179

e0 − e0

2
= 0

e5 − e−5

2
= 74.203

cosh x = ex + e−x

2

e−3 + e3

2
= 10.0677

e0 + e0

2
= 1

e5 + e−5

2
= 74.210

36. Compute sinh(ln 5) and tanh(3 ln 5) without using a calculator.

solution

sinh(ln 5) = eln 5 − e− ln 5

2
= 5 − 1/5

2
= 24/5

2
= 12/5;

tanh(3 ln 5) = sinh(3 ln 5)

cosh(3 ln 5)
=

e3 ln 5−e−3 ln 5

2
e3 ln 5+e−3 ln 5

2

= 53 − 1/53

53 + 1/53
= 56 − 1

56 + 1
.

37. Show, by producing a counterexample, that ln(ab) is not equal to (ln a)(ln b).

solution Let a = e2 and b = e3. Then ab = e5 and ln(ab) = ln(e5) = 5; however,

(ln a)(ln b) = (ln e2)(ln e3) = 2(3) = 6.

38. For which values of x are y = sinh x and y = cosh x increasing and decreasing?

solution The graph of y = sinh x is shown below on the left. From this graph, we see that sinh x is increasing for all
x. On the other hand, from the graph of y = cosh x shown below on the right, we see that cosh x is decreasing for x < 0
and is increasing for x > 0.

–2 2

–20

–10

10

20
y = sinh x

–2 2

5

10

15

20

25 y = cosh x
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39. Show that y = tanh x is an odd function.

solution tanh(−x) = e−x − e−(−x)

e−x + e−(−x)
= e−x − ex

e−x + ex
= − ex − e−x

ex + e−x
= − tanh x.

40. The population of a city (in millions) at time t (years) is P(t) = 2.4e0.06t , where t = 0 is the year 2000. When will
the population double from its size at t = 0?

solution Population doubles when 4.8 = 2.4e0.06t . Thus, 0.06t = ln 2 or t = ln 2

0.06
≈ 11.55 years.

41. The Gutenberg–Richter Law states that the number N of earthquakes per year worldwide of Richter magnitude
at least M satisfies an approximate relation log10 N = a − M for some constant a. Find a, assuming that there is one
earthquake of magnitude M ≥ 8 per year. How many earthquakes of magnitude M ≥ 5 occur per year?

solution Substituting N = 1 and M = 8 into the Gutenberg–Richter law and solving for a yields

a = 8 + log10 1 = 8.

The number N of earthquakes of Richter magnitude M ≥ 5 then satisfies

log10 N = 8 − 5 = 3.

Finally, N = 103 = 1000 earthquakes.

42. The energy E (in joules) radiated as seismic waves from an earthquake of Richter magnitude M is given by the
formula log10 E = 4.8 + 1.5M .

(a) Express E as a function of M .
(b) Show that when M increases by 1, the energy increases by a factor of approximately 31.6.

solution
(a) Solving log10 E = 4.8 + 1.5M for E yields

E = 104.8+1.5M.

(b) Using the formula from part (a), we find

E(M + 1)

E(M)
= 104.8+1.5(M+1)

104.8+1.5M
= 106.3+1.5M

104.8+1.5M
= 101.5 ≈ 31.6228.

43. Refer to the graphs to explain why the equation sinh x = t has a unique solution for every t and why
cosh x = t has two solutions for every t > 1.

solution From its graph we see that sinh x is a one-to-one function with lim
x→−∞ sinh x = −∞ and lim

x→∞ sinh x = ∞.

Thus, for every real number t , the equation sinh x = t has a unique solution. On the other hand, from its graph, we see
that cosh x is not one-to-one. Rather, it is an even function with a minimum value of cosh 0 = 1. Thus, for every t > 1,
the equation cosh x = t has two solutions: one positive, the other negative.

44. Compute cosh x and tanh x, assuming that sinh x = 0.8.

solution Using the identity cosh2 x − sinh2 x = 1, it follows that cosh2 x − ( 4
5 )2 = 1, so that cosh2 x = 41

25 and

cosh x =
√

41

5
.

Then, by definition,

tanh x = sinh x

cosh x
=

4
5√
41
5

= 4√
41

.

45. Prove the addition formula for cosh x.

solution

cosh(x + y) = ex+y + e−(x+y)

2
= 2ex+y + 2e−(x+y)

4

= ex+y + e−x+y + ex−y + e−(x+y)

4
+ ex+y − e−x+y − ex−y + e−(x+y)

4

=
(

ex + e−x

2

) (
ey + e−y

2

)
+

(
ex − e−x

2

) (
ey − e−y

2

)

= cosh x cosh y + sinh x sinh y.
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46. Use the addition formulas to prove

sinh(2x) = 2 cosh x sinh x

cosh(2x) = cosh2 x + sinh2 x

solution sinh(2x) = sinh(x + x) = sinh x cosh x + cosh x sinh x = 2 cosh x sinh x and cosh(2x) = cosh(x + x) =
cosh x cosh x + sinh x sinh x = cosh2 x + sinh2 x.

47. An (imaginary) train moves along a track at velocity v. Bionica walks down the aisle of the train with velocity u

in the direction of the train’s motion. Compute the velocity w of Bionica relative to the ground using the laws of both
Galileo and Einstein in the following cases.

(a) v = 500 m/s and u = 10 m/s. Is your calculator accurate enough to detect the difference between the two laws?
(b) v = 107 m/s and u = 106 m/s.

solution Recall that the speed of light is c ≈ 3 × 108 m/s.

(a) By Galileo’s law, w = 500 + 10 = 510 m/s. Using Einstein’s law and a calculator,

tanh−1 w

c
= tanh−1 500

c
+ tanh−1 10

c
= 1.7 × 10−6;

so w = c · tanh(1.7 × 10−6) ≈ 510 m/s. No, the calculator was not accurate enough to detect the difference between the
two laws.
(b) By Galileo’s law, u + v = 107 + 106 = 1.1 × 107 m/s. By Einstein’s law,

tanh−1 w

c
= tanh−1 107

3 × 108
+ tanh−1 106

3 × 108
≈ 0.036679,

so w ≈ c · tanh(0.036679) ≈ 1.09988 × 107 m/s.

Further Insights and Challenges
48. Show that loga b logb a = 1.

solution loga b = ln b

ln a
and logb a = ln a

ln b
. Thus loga b · logb a = ln b

ln a
· ln a

ln b
= 1.

49. Verify the formula logb x = loga x

loga b
for a, b > 0.

solution Let y = logb x. Then x = by and loga x = loga by = y loga b. Thus, y = loga x

loga b
.

50. (a) Use the addition formulas for sinh x and cosh x to prove

tanh(u + v) = tanh u + tanh v

1 + tanh u tanh v

(b) Use (a) to show that Einstein’s Law of Velocity Addition [Eq. (3)] is equivalent to

w = u + v

1 + uv

c2

solution
(a)

tanh(u + v) = sinh(u + v)

cosh(u + v)
= sinh u cosh v + cosh u sinh v

cosh u cosh v + sinh u sinh v

= sinh u cosh v + cosh u sinh v

cosh u cosh v + sinh u sinh v
· 1/(cosh u cosh v)

1/(cosh u cosh v)
= tanh u + tanh v

1 + tanh u tanh v

(b) Einstein’s law states: tanh−1(w/c) = tanh−1(u/c) + tanh−1(v/c). Thus

w

c
= tanh

(
tanh−1(u/c) + tanh−1(v/c)

)
= tanh(tanh−1(v/c)) + tanh(tanh−1(u/c))

1 + tanh(tanh−1(v/c)) tanh(tanh−1(u/c))

=
v
c + u

c

1 + v
c

u
c

= (1/c)(u + v)

1 + uv
c2

.

Hence,

w = u + v

1 + uv
c2

.
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51. Prove that every function f (x) can be written as a sum f (x) = f+(x) + f−(x) of an even function f+(x) and an
odd function f−(x). Express f (x) = 5ex + 8e−x in terms of cosh x and sinh x.

solution Let f+(x) = f (x)+f (−x)
2 and f−(x) = f (x)−f (−x)

2 . Then f+ + f− = 2f (x)
2 = f (x). Moreover,

f+(−x) = f (−x) + f (−(−x))

2
= f (−x) + f (x)

2
= f+(x),

so f+(x) is an even function, while

f−(−x) = f (−x) − f (−(−x))

2

= f (−x) − f (x)

2
= − (f (x) − f (−x))

2
= −f−(x),

so f−(x) is an odd function.
For f (x) = 5ex + 8e−x , we have

f+(x) = 5ex + 8e−x + 5e−x + 8ex

2
= 8 cosh x + 5 cosh x = 13 cosh x

and

f−(x) = 5ex + 8e−x − 5e−x − 8ex

2
= 5 sinh x − 8 sinh x = −3 sinh x.

Therefore, f (x) = f+(x) + f−(x) = 13 cosh x − 3 sinh x.

1.7 Technology: Calculators and Computers

Preliminary Questions
1. Is there a definite way of choosing the optimal viewing rectangle, or is it best to experiment until you find a viewing

rectangle appropriate to the problem at hand?

solution It is best to experiment with the window size until one is found that is appropriate for the problem at hand.

2. Describe the calculator screen produced when the function y = 3 + x2 is plotted with viewing rectangle:

(a) [−1, 1] × [0, 2] (b) [0, 1] × [0, 4]
solution

(a) Using the viewing rectangle [−1, 1] by [0, 2], the screen will display nothing as the minimum value of y = 3 + x2

is y = 3.

(b) Using the viewing rectangle [0, 1] by [0, 4], the screen will display the portion of the parabola between the points
(0, 3) and (1, 4).

3. According to the evidence in Example 4, it appears that f (n) = (1 + 1/n)n never takes on a value greater than 3 for
n > 0. Does this evidence prove that f (n) ≤ 3 for n > 0?

solution No, this evidence does not constitute a proof that f (n) ≤ 3 for n ≥ 0.

4. How can a graphing calculator be used to find the minimum value of a function?

solution Experiment with the viewing window to zoom in on the lowest point on the graph of the function. The
y-coordinate of the lowest point on the graph is the minimum value of the function.

Exercises
The exercises in this section should be done using a graphing calculator or computer algebra system.

1. Plot f (x) = 2x4 + 3x3 − 14x2 − 9x + 18 in the appropriate viewing rectangles and determine its roots.

solution Using a viewing rectangle of [−4, 3] by [−20, 20], we obtain the plot below.

−10

−20

20

10

y

x
−4 −2−3 −1 1 2 3
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Now, the roots of f (x) are the x-intercepts of the graph of y = f (x). From the plot, we can identify the x-intercepts as
−3, −1.5, 1, and 2. The roots of f (x) are therefore x = −3, x = −1.5, x = 1, and x = 2.

2. How many solutions does x3 − 4x + 8 = 0 have?

solution Solutions to the equation x3 − 4x + 8 = 0 are the x-intercepts of the graph of y = x3 − 4x + 8. From the
figure below, we see that the graph has one x-intercept (between x = −4 and x = −2), so the equation has one solution.

−20
−40

−4 −2

−60

20
40
60
80

y

x
2 4

3. How many positive solutions does x3 − 12x + 8 = 0 have?

solution The graph of y = x3 − 12x + 8 shown below has two x-intercepts to the right of the origin; therefore the

equation x3 − 12x + 8 = 0 has two positive solutions.

−20
−40
−60

60
40
20

y

x
−4 −2 42

4. Does cos x + x = 0 have a solution? A positive solution?

solution The graph of y = cos x + x shown below has one x-intercept; therefore, the equation cos x + x = 0 has
one solution. The lone x-intercept is to the left of the origin, so the equation has no positive solutions.

−2
−4 −2

−4

2

4

y

x
2 4

5. Find all the solutions of sin x = √
x for x > 0.

solution Solutions to the equation sin x = √
x correspond to points of intersection between the graphs of y = sin x

and y = √
x. The two graphs are shown below; the only point of intersection is at x = 0. Therefore, there are no solutions

of sin x = √
x for x > 0.

x

1

2

54321

y

−1

6. How many solutions does cos x = x2 have?

solution Solutions to the equation cos x = x2 correspond to points of intersection between the graphs of y = cos x

and y = x2. The two graphs are shown below; there are two points of intersection. Thus, the equation cos x = x2 has
two solutions.

−1
−3 −1−2

2

1

3

y

x
1 2 3
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7. Let f (x) = (x − 100)2 + 1000. What will the display show if you graph f (x) in the viewing rectangle [−10, 10]
by [−10, 10]? Find an appropriate viewing rectangle.

solution Because (x − 100)2 ≥ 0 for all x, it follows that f (x) = (x − 100)2 + 1000 ≥ 1000 for all x. Thus, using
a viewing rectangle of [−10, 10] by [−10, 10] will display nothing. The minimum value of the function occurs when
x = 100, so an appropriate viewing rectangle would be [50, 150] by [1000, 2000].

8. Plot f (x) = 8x + 1

8x − 4
in an appropriate viewing rectangle. What are the vertical and horizontal asymptotes?

solution From the graph of y = 8x + 1

8x − 4
shown below, we see that the vertical asymptote is x = 1

2 and the horizontal

asymptote is y = 1.

−2

−4

−1−2

2

4

y

x
1 2

9. Plot the graph of f (x) = x/(4 − x) in a viewing rectangle that clearly displays the vertical and horizontal asymptotes.

solution From the graph of y = x

4 − x
shown below, we see that the vertical asymptote is x = 4 and the horizontal

asymptote is y = −1.

−2

2

y

x
−8 −4

4 8 12 16

10. Illustrate local linearity for f (x) = x2 by zooming in on the graph at x = 0.5 (see Example 6).

solution The following three graphs display f (x) = x2 over the intervals [−1, 3], [0.3, 0.7] and [0.45, 0.55]. The
final graph looks like a straight line.

−1

2

4

6

8

y

x
1 2

0.1
0

0.2
0.3
0.4
0.5

y

x
0.35 0.45 0.55 0.65

0.15

0.1

0.2

0.25

0.3

y

x
0.46 0.48 0.5 0.52 0.54

11. Plot f (x) = cos(x2) sin x for 0 ≤ x ≤ 2π . Then illustrate local linearity at x = 3.8 by choosing appropriate viewing
rectangles.

solution The following three graphs display f (x) = cos(x2) sin x over the intervals [0, 2π ], [3.5, 4.1] and
[3.75, 3.85]. The final graph looks like a straight line.

x

1

−1

1 2 3 4 5 6

y

x

1

−1

3.5 3.6 3.7 3.8 3.9 4

y

x

−0.2

0.4

0.2

3.76 3.83.78 3.82 3.84

y

12. If P0 dollars are deposited in a bank account paying 5% interest compounded monthly, then the account has value

P0

(
1 + 0.05

12

)N
after N months. Find, to the nearest integer N , the number of months after which the account value

doubles.
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solution P(N) = P0(1 + 0.05
12 )N . This doubles when P(N) = 2P0, or when 2 = (1 + 0.05

12 )N . The graphs of y = 2

and y = (1 + 0.05
12 )N are shown below; they appear to intersect at N = 167. Thus, it will take approximately 167 months

for money earning r = 5% interest compounded monthly to double in value.

1.6

1.8

2

2.2

1.4

y

x
155150 160 165 170 175

In Exercises 13–18, investigate the behavior of the function as n or x grows large by making a table of function values
and plotting a graph (see Example 4). Describe the behavior in words.

13. f (n) = n1/n

solution The table and graphs below suggest that as n gets large, n1/n approaches 1.

n n1/n

10 1.258925412
102 1.047128548
103 1.006931669
104 1.000921458
105 1.000115136
106 1.000013816

x

y

1

0 2 4 6 8 10
x

y

1

0 200 400 600 800 1000

14. f (n) = 4n + 1

6n − 5

solution The table and graphs below suggest that as n gets large,
4n + 1

6n − 5
approaches

2

3
.

n
4n + 1

6n − 5

10 0.7454545455
102 0.6739495798
103 0.6673894912
104 0.6667388949
105 0.6666738889
106 0.6666673889

1

2

3

4

0

y

x
20 4 6 8 10

1

2

3

4

0

y

x
200 40 60 80 100
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15. f (n) =
(

1 + 1

n

)n2

solution The table and graphs below suggest that as n gets large, f (n) tends toward ∞.

n

(
1 + 1

n

)n2

10 13780.61234
102 1.635828711 × 1043

103 1.195306603 × 10434

104 5.341783312 × 104342

105 1.702333054 × 1043429

106 1.839738749 × 10434294

x

y

10,000

0 2 4 6 8 10
x

y

1 × 1043

0 20 40 60 80 100

16. f (x) =
(

x + 6

x − 4

)x

solution The table and graphs below suggest that as x gets large, f (x) roughly tends toward 22026.

x

(
x + 6

x − 4

)x

10 18183.91210
102 20112.36934
103 21809.33633
104 22004.43568
105 22024.26311
106 22025.36451
107 22026.35566

17000
18000
19000
20000
21000

16000

y

x
0 50 100 150 200

18000

20000

22000
21000

19000

17000
16000

y

x
0 200 400 600 800 1000

17. f (x) =
(

x tan
1

x

)x

solution The table and graphs below suggest that as x gets large, f (x) approaches 1.

x

(
x tan

1

x

)x

10 1.033975759
102 1.003338973
103 1.000333389
104 1.000033334
105 1.000003333
106 1.000000333

x

y

1
1.1
1.2
1.3
1.4
1.5

5 10 15 20
x

20 40 60 80 100

y

1
1.1
1.2
1.3
1.4
1.5
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18. f (x) =
(

x tan
1

x

)x2

solution The table and graphs below suggest that as x gets large, f (x) approaches 1.39561.

x

(
x tan

1

x

)x2

10 1.396701388
102 1.395623280
103 1.395612534
104 1.395612426
105 1.395612425
106 1.395612425

y

x
20 4 6 8 10

1.4
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y

x
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19. The graph of f (θ) = A cos θ + B sin θ is a sinusoidal wave for any constants A and B. Confirm this for (A, B) =
(1, 1), (1, 2), and (3, 4) by plotting f (θ).

solution The graphs of f (θ) = cos θ + sin θ , f (θ) = cos θ + 2 sin θ and f (θ) = 3 cos θ + 4 sin θ are shown below.
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−2
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4 6 8

4

2

−4

−2

20. Find the maximum value of f (θ) for the graphs produced in Exercise 19. Can you guess the formula for the maximum
value in terms of A and B?

solution For A = 1 and B = 1, max ≈ 1.4 ≈ √
2

For A = 1 and B = 2, max ≈ 2.25 ≈ √
5

For A = 3 and B = 4, max ≈ 5 =
√

32 + 42

Max =
√

A2 + B2

21. Find the intervals on which f (x) = x(x + 2)(x − 3) is positive by plotting a graph.

solution The function f (x) = x(x + 2)(x − 3) is positive when the graph of y = x(x + 2)(x − 3) lies above the
x-axis. The graph of y = x(x + 2)(x − 3) is shown below. Clearly, the graph lies above the x-axis and the function is
positive for x ∈ (−2, 0) ∪ (3, ∞).
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22. Find the set of solutions to the inequality (x2 − 4)(x2 − 1) < 0 by plotting a graph.

solution To solve the inequality (x2 − 4)(x2 − 1) < 0, we can plot the graph of y = (x2 − 4)(x2 − 1) and identify

when the graph lies below the x-axis. The graph of y = (x2 − 4)(x2 − 1) is shown below. The solution set for the
inequality (x2 − 4)(x2 − 1) < 0 is clearly x ∈ (−2, −1) ∪ (1, 2).
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20

y
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Further Insights and Challenges
23. Let f1(x) = x and define a sequence of functions by fn+1(x) = 1

2 (fn(x) + x/fn(x)). For example,

f2(x) = 1
2 (x + 1). Use a computer algebra system to compute fn(x) for n = 3, 4, 5 and plot fn(x) together with

√
x for

x ≥ 0. What do you notice?

solution With f1(x) = x and f2(x) = 1
2 (x + 1), we calculate

f3(x) = 1

2

(
1

2
(x + 1) + x

1
2 (x + 1)

)
= x2 + 6x + 1

4(x + 1)

f4(x) = 1

2

⎛
⎝x2 + 6x + 1

4(x + 1)
+ x

x2+6x+1
4(x+1)

⎞
⎠ = x4 + 28x3 + 70x2 + 28x + 1

8(1 + x)(1 + 6x + x2)

and

f5(x) = 1 + 120x + 1820x2 + 8008x3 + 12870x4 + 8008x5 + 1820x6 + 120x7 + x8

16(1 + x)(1 + 6x + x2)(1 + 28x + 70x2 + 28x3 + x4)
.

A plot of f1(x), f2(x), f3(x), f4(x), f5(x) and
√

x is shown below, with the graph of
√

x shown as a dashed curve. It
seems as if the fn are asymptotic to

√
x.
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12

4020 60 80 100

24. Set P0(x) = 1 and P1(x) = x. The Chebyshev polynomials (useful in approximation theory) are defined inductively
by the formula Pn+1(x) = 2xPn(x) − Pn−1(x).

(a) Show that P2(x) = 2x2 − 1.

(b) Compute Pn(x) for 3 ≤ n ≤ 6 using a computer algebra system or by hand, and plot Pn(x) over [−1, 1].
(c) Check that your plots confirm two interesting properties: (a) Pn(x) has n real roots in [−1, 1] and (b) for x ∈ [−1, 1],
Pn(x) lies between −1 and 1.

solution

(a) With P0(x) = 1 and P1(x) = x, we calculate

P2(x) = 2x(P1(x)) − P0(x) = 2x(x) − 1 = 2x2 − 1.

(b) Using the formula Pn+1(x) = 2xPn(x) − Pn−1(x) with n = 2, 3, 4 and 5, we find

P3(x) = 2x(2x2 − 1) − x = 4x3 − 3x

P4(x) = 2x(4x3 − 3x) − (2x2 − 1) = 8x4 − 8x2 + 1

P5(x) = 16x5 − 20x3 + 5x

P6(x) = 32x6 − 48x4 + 18x2 − 1

The graphs of the functions Pn(x) for 0 ≤ n ≤ 6 are shown below.
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(c) From the graphs shown above, it is clear that for each n, the polynomial Pn(x) has precisely n roots on the interval
[−1, 1] and that −1 ≤ Pn(x) ≤ 1 for x ∈ [−1, 1].

CHAPTER REVIEW EXERCISES

1. Express (4, 10) as a set {x : |x − a| < c} for suitable a and c.

solution The center of the interval (4, 10) is 4+10
2 = 7 and the radius is 10−4

2 = 3. Therefore, the interval (4, 10) is
equivalent to the set {x : |x − 7| < 3}.

2. Express as an interval:

(a) {x : |x − 5| < 4} (b) {x : |5x + 3| ≤ 2}
solution

(a) Upon dropping the absolute value, the inequality |x − 5| < 4 becomes −4 < x − 5 < 4 or 1 < x < 9. The set
{x : |x − 5| < 4} can therefore be expressed as the interval (1, 9).

(b) Upon dropping the absolute value, the inequality |5x + 3| ≤ 2 becomes −2 ≤ 5x + 3 ≤ 2 or −1 ≤ x ≤ − 1
5 . The

set {x : |5x + 3| ≤ 2} can therefore be expressed as the interval [−1, − 1
5 ].

3. Express {x : 2 ≤ |x − 1| ≤ 6} as a union of two intervals.

solution The set {x : 2 ≤ |x − 1| ≤ 6} consists of those numbers that are at least 2 but at most 6 units from 1. The
numbers larger than 1 that satisfy these conditions are 3 ≤ x ≤ 7, while the numbers smaller than 1 that satisfy these
conditions are −5 ≤ x ≤ −1. Therefore {x : 2 ≤ |x − 1| ≤ 6} = [−5, −1] ∪ [3, 7].

4. Give an example of numbers x, y such that |x| + |y| = x − y.

solution Let x = 3 and y = −1. Then |x| + |y| = 3 + 1 = 4 and x − y = 3 − (−1) = 4.

5. Describe the pairs of numbers x, y such that |x + y| = x − y.

solution First consider the case when x + y ≥ 0. Then |x + y| = x + y and we obtain the equation x + y = x − y.
The solution of this equation is y = 0. Thus, the pairs (x, 0) with x ≥ 0 satisfy |x + y| = x − y. Next, consider the case
when x + y < 0. Then |x + y| = −(x + y) = −x − y and we obtain the equation −x − y = x − y. The solution of this
equation is x = 0. Thus, the pairs (0, y) with y < 0 also satisfy |x + y| = x − y.
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6. Sketch the graph of y = f (x + 2) − 1, where f (x) = x2 for −2 ≤ x ≤ 2.

solution The graph of y = f (x + 2) − 1 is obtained by shifting the graph of y = f (x) two units to the left and one
unit down. In the figure below, the graph of y = f (x) is shown as the dashed curve, and the graph of y = f (x + 2) − 1
is shown as the solid curve.
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In Exercises 7–10, let f (x) be the function shown in Figure 1.

1 2 3 4
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y

FIGURE 1

7. Sketch the graphs of y = f (x) + 2 and y = f (x + 2).

solution The graph of y = f (x) + 2 is obtained by shifting the graph of y = f (x) up 2 units (see the graph below
at the left). The graph of y = f (x + 2) is obtained by shifting the graph of y = f (x) to the left 2 units (see the graph
below at the right).
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8. Sketch the graphs of y = 1
2f (x) and y = f

( 1
2x

)
.

solution The graph of y = 1
2f (x) is obtained by compressing the graph of y = f (x) vertically by a factor of 2 (see

the graph below at the left). The graph of y = f ( 1
2x) is obtained by stretching the graph of y = f (x) horizontally be a

factor of 2 (see the graph below at the right).

y

1

2

3

x
2 4

f (x)/2

6 8

y

1

2

3

x
2 4

f (x/2)

6 8

9. Continue the graph of f (x) to the interval [−4, 4] as an even function.

solution To continue the graph of f (x) to the interval [−4, 4] as an even function, reflect the graph of f (x) across
the y-axis (see the graph below).

−1−4 −2−3
x

1 2 3 4

y

1

2

3
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10. Continue the graph of f (x) to the interval [−4, 4] as an odd function.

solution To continue the graph of f (x) to the interval [−4, 4] as an odd function, reflect the graph of f (x) through
the origin (see the graph below).

y

−3
−2

1
2
3

x
1 2 3 4−4 −3 −2 −1

In Exercises 11–14, find the domain and range of the function.

11. f (x) = √
x + 1

solution The domain of the function f (x) = √
x + 1 is {x : x ≥ −1} and the range is {y : y ≥ 0}.

12. f (x) = 4

x4 + 1

solution The domain of the function f (x) = 4

x4 + 1
is the set of all real numbers and the range is {y : 0 < y ≤ 4}.

13. f (x) = 2

3 − x

solution The domain of the function f (x) = 2

3 − x
is {x : x 	= 3} and the range is {y : y 	= 0}.

14. f (x) =
√

x2 − x + 5

solution Because

x2 − x + 5 =
(

x2 − x + 1

4

)
+ 5 − 1

4
=

(
x − 1

2

)2
+ 19

4
,

x2 − x + 5 ≥ 19
4 for all x. It follows that the domain of the function f (x) =

√
x2 − x + 5 is all real numbers and the

range is {y : y ≥ √
19/2}.

15. Determine whether the function is increasing, decreasing, or neither:

(a) f (x) = 3−x (b) f (x) = 1

x2 + 1
(c) g(t) = t2 + t (d) g(t) = t3 + t

solution

(a) The function f (x) = 3−x can be rewritten as f (x) = ( 1
3 )x . This is an exponential function with a base less than 1;

therefore, this is a decreasing function.
(b) From the graph of y = 1/(x2 + 1) shown below, we see that this function is neither increasing nor decreasing for all
x (though it is increasing for x < 0 and decreasing for x > 0).

x
−3 −2 −1 1 2 3

y

0.2

0.4

0.6

0.8

1

(c) The graph of y = t2 + t is an upward opening parabola; therefore, this function is neither increasing nor decreasing
for all t . By completing the square we find y = (t + 1

2 )2 − 1
4 . The vertex of this parabola is then at t = − 1

2 , so the

function is decreasing for t < − 1
2 and increasing for t > − 1

2 .

(d) From the graph of y = t3 + t shown below, we see that this is an increasing function.

−20

20

y

x
−1 1 2 3−2−3
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16. Determine whether the function is even, odd, or neither:

(a) f (x) = x4 − 3x2

(b) g(x) = sin(x + 1)

(c) f (x) = 2−x2

solution

(a) f (−x) = (−x)4 − 3(−x)2 = x4 − 3x2 = f (x), so this function is even.

(b) g(−x) = sin(−x + 1), which is neither equal to g(x) nor to −g(x), so this function is neither even nor odd.

(c) f (−x) = 2−(−x)2 = 2−x2 = f (x), so this function is even.

In Exercises 17–22, find the equation of the line.

17. Line passing through (−1, 4) and (2, 6)

solution The slope of the line passing through (−1, 4) and (2, 6) is

m = 6 − 4

2 − (−1)
= 2

3
.

The equation of the line passing through (−1, 4) and (2, 6) is therefore y − 4 = 2
3 (x + 1) or 2x − 3y = −14.

18. Line passing through (−1, 4) and (−1, 6)

solution The line passing through (−1, 4) and (−1, 6) is vertical with an x-coordinate of −1. Therefore, the equation
of the line is x = −1.

19. Line of slope 6 through (9, 1)

solution Using the point-slope form for the equation of a line, the equation of the line of slope 6 and passing through
(9, 1) is y − 1 = 6(x − 9) or 6x − y = 53.

20. Line of slope − 3
2 through (4, −12)

solution Using the point-slope form for the equation of a line, the equation of the line of slope − 3
2 and passing through

(4, −12) is y + 12 = − 3
2 (x − 4) or 3x + 2y = −12.

21. Line through (2, 3) parallel to y = 4 − x

solution The equation y = 4 − x is in slope-intercept form; it follows that the slope of this line is −1. Any line
parallel to y = 4 − x will have the same slope, so we are looking for the equation of the line of slope −1 and passing
through (2, 3). The equation of this line is y − 3 = −(x − 2) or x + y = 5.

22. Horizontal line through (−3, 5)

solution A horizontal line has a slope of 0; the equation of the specified line is therefore y − 5 = 0(x + 3) or y = 5.

23. Does the following table of market data suggest a linear relationship between price and number of homes sold during
a one-year period? Explain.

Price (thousands of $) 180 195 220 240

No. of homes sold 127 118 103 91

solution Examine the slope between consecutive data points. The first pair of data points yields a slope of

118 − 127

195 − 180
= − 9

15
= −3

5
,

while the second pair of data points yields a slope of

103 − 118

220 − 195
= −15

25
= −3

5

and the last pair of data points yields a slope of

91 − 103

240 − 220
= −12

20
= −3

5
.

Because all three slopes are equal, the data does suggest a linear relationship between price and the number of homes
sold.
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24. Does the following table of revenue data for a computer manufacturer suggest a linear relation between revenue and
time? Explain.

Year 2001 2005 2007 2010

Revenue (billions of $) 13 18 15 11

solution Examine the slope between consecutive data points. The first pair of data points yields a slope of

18 − 13

2005 − 2001
= 5

4
,

while the second pair of data points yields a slope of

15 − 18

2007 − 2005
= −3

2

and the last pair of data points yields a slope of

11 − 15

2010 − 2007
= −4

3
.

Because the three slopes are not equal, the data does not suggest a linear relationship between revenue and time.

25. Find the roots of f (x) = x4 − 4x2 and sketch its graph. On which intervals is f (x) decreasing?

solution The roots of f (x) = x4 − 4x2 are obtained by solving the equation x4 − 4x2 = x2(x − 2)(x + 2) = 0,
which yields x = −2, x = 0 and x = 2. The graph of y = f (x) is shown below. From this graph we see that f (x) is
decreasing for x less than approximately −1.4 and for x between 0 and approximately 1.4.

10

20

y

x
−1 1

2 3−2−3

26. Let h(z) = 2z2 + 12z + 3. Complete the square and find the minimum value of h(z).

solution Let h(z) = 2z2 + 12z + 3. Completing the square yields

h(z) = 2(z2 + 6z) + 3 = 2(z2 + 6z + 9) + 3 − 18 = 2(z + 3)2 − 15.

Because (z + 3)2 ≥ 0 for all z, it follows that h(z) = 2(z + 3)2 − 15 ≥ −15 for all z. Thus, the minimum value of h(z)

is −15.

27. Let f (x) be the square of the distance from the point (2, 1) to a point (x, 3x + 2) on the line y = 3x + 2. Show that
f (x) is a quadratic function, and find its minimum value by completing the square.

solution Let f (x) denote the square of the distance from the point (2, 1) to a point (x, 3x + 2) on the line y = 3x + 2.
Then

f (x) = (x − 2)2 + (3x + 2 − 1)2 = x2 − 4x + 4 + 9x2 + 6x + 1 = 10x2 + 2x + 5,

which is a quadratic function. Completing the square, we find

f (x) = 10

(
x2 + 1

5
x + 1

100

)
+ 5 − 1

10
= 10

(
x + 1

10

)2
+ 49

10
.

Because (x + 1
10 )2 ≥ 0 for all x, it follows that f (x) ≥ 49

10 for all x. Hence, the minimum value of f (x) is 49
10 .

28. Prove that x2 + 3x + 3 ≥ 0 for all x.

solution Observe that

x2 + 3x + 3 =
(

x2 + 3x + 9

4

)
+ 3 − 9

4
=

(
x + 3

2

)2
+ 3

4
.

Thus, x2 + 3x + 3 ≥ 3
4 > 0 for all x.
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In Exercises 29–34, sketch the graph by hand.

29. y = t4

solution

x
−1 −0.5 10.5

y

0.2

0.4

0.6

0.8

1

30. y = t5

solution

−1 −0.5
−0.5

0.5

−1

1

y

t
0.5 1

31. y = sin
θ

2

solution y

x
−5 5 10

0.5

1

−0.5

−1

32. y = 10−x

solution

−1 −0.5

2

4

6

8

10

y

x
0.5 1

33. y = x1/3

solution

x
−1−2−3−4 1 2 3 4

y

1

2

−1

−2

34. y = 1

x2

solution

−1 −0.5

20

40

60

80

100

y

x
0.5 1

35. Show that the graph of y = f
( 1

3x − b
)

is obtained by shifting the graph of y = f
( 1

3x
)

to the right 3b units. Use this

observation to sketch the graph of y = ∣∣ 1
3x − 4

∣∣.
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solution Let g(x) = f ( 1
3x). Then

g(x − 3b) = f

(
1

3
(x − 3b)

)
= f

(
1

3
x − b

)
.

Thus, the graph of y = f ( 1
3x − b) is obtained by shifting the graph of y = f ( 1

3x) to the right 3b units.

The graph of y = | 1
3x − 4| is the graph of y = | 1

3x| shifted right 12 units (see the graph below).

y

x

1

2

3

4

0 5 10 15 20

36. Let h(x) = cos x and g(x) = x−1. Compute the composite functions h(g(x)) and g(h(x)), and find their domains.

solution Let h(x) = cos x and g(x) = x−1. Then

h(g(x)) = h(x−1) = cos x−1.

The domain of this function is x 	= 0. On the other hand,

g(h(x)) = g(cos x) = 1

cos x
= sec x.

The domain of this function is

x 	= (2n + 1)π

2
for any integer n.

37. Find functions f and g such that the function

f (g(t)) = (12t + 9)4

solution One possible choice is f (t) = t4 and g(t) = 12t + 9. Then

f (g(t)) = f (12t + 9) = (12t + 9)4

as desired.

38. Sketch the points on the unit circle corresponding to the following three angles, and find the values of the six standard
trigonometric functions at each angle:

(a)
2π

3
(b)

7π

4
(c)

7π

6
solution

(a)
θ = 2π/3

sin
2π

3
=

√
3

2
cos

2π

3
= −1

2

tan
2π

3
= −√

3 cot
2π

3
= −

√
3

3

sec
2π

3
= −2 csc

2π

3
= 2

√
3

3

(b)
θ = 7π/4

sin
7π

4
= −

√
2

2
cos

7π

4
=

√
2

2

tan
7π

4
= −1 cot

7π

4
= −1

sec
7π

4
= √

2 csc
7π

4
= −√

2

(c)
θ = 7π/6

sin
7π

6
= −1

2
cos

7π

6
= −

√
3

2

tan
7π

6
=

√
3

3
cot

7π

6
= √

3

sec
7π

6
= −2

√
3

2
csc

7π

6
= −2
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39. What is the period of the function g(θ) = sin 2θ + sin θ
2 ?

solution The function sin 2θ has a period of π , and the function sin(θ/2) has a period of 4π . Because 4π is a multiple
of π , the period of the function g(θ) = sin 2θ + sin θ/2 is 4π .

40. Assume that sin θ = 4
5 , where π/2 < θ < π . Find:

(a) tan θ (b) sin 2θ (c) csc
θ

2

solution If sin θ = 4/5, then by the fundamental trigonometric identity,

cos2 θ = 1 − sin2 θ = 1 −
(

4

5

)2
= 9

25
.

Because π/2 < θ < π , it follows that cos θ must be negative. Hence, cos θ = −3/5.

(a) tan θ = sin θ

cos θ
= 4/5

−3/5
= −4

3
.

(b) sin(2θ) = 2 sin θ cos θ = 2 · 4

5
· −3

5
= −24

25
.

(c) We first note that

sin

(
θ

2

)
=

√
1 − cos θ

2
=

√
1 − (−3/5)

2
= 2

√
5

5
.

Thus,

csc

(
θ

2

)
=

√
5

2
.

41. Give an example of values a, b such that

(a) cos(a + b) 	= cos a + cos b (b) cos
a

2
	= cos a

2

solution

(a) Take a = b = π/2. Then cos(a + b) = cos π = −1 but

cos a + cos b = cos
π

2
+ cos

π

2
= 0 + 0 = 0.

(b) Take a = π . Then

cos
(a

2

)
= cos

(π

2

)
= 0

but

cos a

2
= cos π

2
= −1

2
= −1

2
.

42. Let f (x) = cos x. Sketch the graph of y = 2f
(

1
3x − π

4

)
for 0 ≤ x ≤ 6π .

solution

−1

−2

2

1

y

x
5 10 15

43. Solve sin 2x + cos x = 0 for 0 ≤ x < 2π .

solution Using the double angle formula for the sine function, we rewrite the equation as 2 sin x cos x + cos x =
cos x(2 sin x + 1) = 0. Thus, either cos x = 0 or sin x = −1/2. From here we see that the solutions are x = π/2,
x = 7π/6, x = 3π/2 and x = 11π/6.
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44. How does h(n) = n2/2n behave for large whole-number values of n? Does h(n) tend to infinity?

solution The table below suggests that for large whole number values of n, h(n) = n2

2n
tends toward 0.

n h(n) = n2/2n

10 0.09765625000
102 7.888609052 × 10−27

103 9.332636185 × 10−296

104 5.012372749 × 10−3003

105 1.000998904 × 10−30093

106 1.010034059 × 10−301018

45. Use a graphing calculator to determine whether the equation cos x = 5x2 − 8x4 has any solutions.

solution The graphs of y = cos x and y = 5x2 − 8x4 are shown below. Because the graphs do not intersect, there

are no solutions to the equation cos x = 5x2 − 8x4.

x
−1 1

y

y = cos x

y = 5x2 − 8x4

1

−1

46. Using a graphing calculator, find the number of real roots and estimate the largest root to two decimal places:

(a) f (x) = 1.8x4 − x5 − x

(b) g(x) = 1.7x4 − x5 − x

solution

(a) The graph of y = 1.8x4 − x5 − x is shown below at the left. Because the graph has three x-intercepts, the function
f (x) = 1.8x4 − x5 − x has three real roots. From the graph shown below at the right, we see that the largest root of
f (x) = 1.8x4 − x5 − x is approximately x = 1.51.

−1
−2

2
1

y

x
1 2

x
1.511.505

1.515

(b) The graph of y = 1.7x4 − x5 − x is shown below. Because the graph has only one x-intercept, the function
f (x) = 1.7x4 − x5 − x has only one real root. From the graph, we see that the largest root of f (x) = 1.7x4 − x5 − x

is approximately x = 0.

−1
−2

2
1

y

x
1 2

47. Match each quantity (a)–(d) with (i), (ii), or (iii) if possible, or state that no match exists.

(a) 2a3b (b)
2a

3b

(c) (2a)b (d) 2a−b3b−a

(i) 2ab (ii) 6a+b (iii)
( 2

3

)a−b

solution

(a) No match. (b) No match. (c) (i): (2a)b = 2ab.

(d) (iii): 2a−b3b−a = 2a−b

(
1

3

)a−b

=
(

2

3

)a−b

.
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48. Match each quantity (a)–(d) with (i), (ii), or (iii) if possible, or state that no match exists.

(a) ln
(a

b

)
(b)

ln a

ln b

(c) eln a−ln b (d) (ln a)(ln b)

(i) ln a + ln b (ii) ln a − ln b (iii)
a

b

solution

(a) (ii): ln
(a

b

)
= ln a − ln b.

(b) No match.

(c) (iii): eln a−ln b = eln a 1

eln b
= a

b
.

(d) No match.

49. Find the inverse of f (x) =
√

x3 − 8 and determine its domain and range.

solution To find the inverse of f (x) =
√

x3 − 8, we solve y =
√

x3 − 8 for x as follows:

y2 = x3 − 8

x3 = y2 + 8

x = 3
√

y2 + 8.

Therefore, f −1(x) = 3
√

x2 + 8. The domain of f −1 is the range of f , namely {x : x ≥ 0}; the range of f −1 is the
domain of f , namely {y : y ≥ 2}.
50. Find the inverse of f (x) = x − 2

x − 1
and determine its domain and range.

solution To find the inverse of f (x) = x−2
x−1 , we solve y = x−2

x−1 for x as follows:

x − 2 = y(x − 1) = yx − y

x − yx = 2 − y

x = 2 − y

1 − y
.

Therefore,

f −1(x) = 2 − x

1 − x
= x − 2

x − 1
.

The domain of f −1 is the range of f , namely {x : x 	= 1}; the range of f −1 is the domain of f , namely {y : y 	= 1}.
51. Find a domain on which h(t) = (t − 3)2 is one-to-one and determine the inverse on this domain.

solution From the graph of h(t) = (t − 3)2 shown below, we see that h is one-to-one on each of the intervals t ≥ 3
and t ≤ 3.

1

2

4

6

8

10

y

h(t) = (t − 3)2

t
2 3 4 5 6

We find the inverse of h(t) = (t − 3)2 on the domain {t : t ≤ 3} by solving y = (t − 3)2 for t . First, we find

√
y =

√
(t − 3)2 = |t − 3|.

Having restricted the domain to {t : t ≤ 3}, |t − 3| = −(t − 3) = 3 − t . Thus,
√

y = 3 − t

t = 3 − √
y.

The inverse function is h−1(t) = 3 − √
t . For t ≥ 3, h−1(t) = 3 + √

t .
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52. Show that g(x) = x

x − 1
is equal to its inverse on the domain {x : x 	= 1}.

solution To show that g(x) = x
x−1 is equal to its inverse, we need to show that for x 	= 1,

g (g(x)) = x.

First, we notice that for x 	= 1, g(x) 	= 1. Therefore,

g (g(x)) = g

(
x

x − 1

)
=

x
x−1

x
x−1 − 1

= x

x − (x − 1)
= x

1
= x.

53. Suppose that g(x) is the inverse of f (x). Match the functions (a)–(d) with their inverses (i)–(iv).

(a) f (x) + 1 (b) f (x + 1) (c) 4f (x) (d) f (4x)

(i) g(x)/4 (ii) g(x/4) (iii) g(x − 1) (iv) g(x) − 1

solution

(a) (iii): f (x) + 1 and g(x − 1) are inverse functions:

f (g(x − 1)) + 1 = (x − 1) + 1 = x;
g(f (x) + 1 − 1) = g(f (x)) = x.

(b) (iv): f (x + 1) and g(x) − 1 are inverse functions:

f (g(x) − 1 + 1) = f (g(x)) = x;
g(f (x + 1)) − 1 = (x + 1) − 1 = x.

(c) (ii): 4f (x) and g(x/4) are inverse functions:

4f (g(x/4)) = 4(x/4) = x;
g(4f (x)/4) = g(f (x)) = x.

(d) (i): f (4x) and g(x)/4 are inverse functions:

f (4 · g(x)/4) = f (g(x)) = x;
1

4
g(f (4x)) = 1

4
(4x) = x.

54. Plot f (x) = xe−x and use the zoom feature to find two solutions of f (x) = 0.3.

solution The graph of f (x) = xe−x is shown below. Based on this graph, we should zoom in near x = 0.5 and near
x = 1.75 to find solutions of f (x) = 0.3.

0.5

−0.6

−0.4

−0.2

0.2

y

x
1.0 1.5 2.0

From the figure below at the left, we see that one solution of f (x) = 0.3 is approximately x = 0.49; from the figure
below at the right, we see that a second solution of f (x) = 0.3 is approximately x = 1.78.

0.32

0.31

0.30

0.29

0.28

0.27

0.40 0.45 0.50 0.55

0.315

0.310

0.305

0.300

0.295

0.290

1.65 1.70 1.75 1.80
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2 LIMITS

2.1 Limits, Rates of Change, and Tangent Lines

Preliminary Questions
1. Average velocity is equal to the slope of a secant line through two points on a graph. Which graph?

solution Average velocity is the slope of a secant line through two points on the graph of position as a function of
time.

2. Can instantaneous velocity be defined as a ratio? If not, how is instantaneous velocity computed?

solution Instantaneous velocity cannot be defined as a ratio. It is defined as the limit of average velocity as time
elapsed shrinks to zero.

3. What is the graphical interpretation of instantaneous velocity at a moment t = t0?

solution Instantaneous velocity at time t = t0 is the slope of the line tangent to the graph of position as a function of
time at t = t0.

4. What is the graphical interpretation of the following statement? The average rate of change approaches the instanta-
neous rate of change as the interval [x0, x1] shrinks to x0.

solution The slope of the secant line over the interval [x0, x1] approaches the slope of the tangent line at x = x0.

5. The rate of change of atmospheric temperature with respect to altitude is equal to the slope of the tangent line to a
graph. Which graph? What are possible units for this rate?

solution The rate of change of atmospheric temperature with respect to altitude is the slope of the line tangent to the
graph of atmospheric temperature as a function of altitude. Possible units for this rate of change are ◦F/ft or ◦C/m.

Exercises
1. A ball dropped from a state of rest at time t = 0 travels a distance s(t) = 4.9t2 m in t seconds.

(a) How far does the ball travel during the time interval [2, 2.5]?
(b) Compute the average velocity over [2, 2.5].
(c) Compute the average velocity for the time intervals in the table and estimate the ball’s instantaneous velocity at t = 2.

Interval [2, 2.01] [2, 2.005] [2, 2.001] [2, 2.00001]
Average
velocity

solution

(a) During the time interval [2, 2.5], the ball travels �s = s(2.5) − s(2) = 4.9(2.5)2 − 4.9(2)2 = 11.025 m.

(b) The average velocity over [2, 2.5] is

�s

�t
= s(2.5) − s(2)

2.5 − 2
= 11.025

0.5
= 22.05 m/s.

(c)
time interval [2, 2.01] [2, 2.005] [2, 2.001] [2, 2.00001]

average velocity 19.649 19.6245 19.6049 19.600049

The instantaneous velocity at t = 2 is 19.6 m/s.

2. A wrench released from a state of rest at time t = 0 travels a distance s(t) = 4.9t2 m in t seconds. Estimate the
instantaneous velocity at t = 3.

solution To find the instantaneous velocity, we compute the average velocities:

time interval [3, 3.01] [3, 3.005] [3, 3.001] [3, 3.00001]
average velocity 29.449 29.4245 29.4049 29.400049

The instantaneous velocity is approximately 29.4 m/s.

78
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3. Let v = 20
√

T as in Example 2. Estimate the instantaneous rate of change of v with respect to T when T = 300 K.

solution

T interval [300, 300.01] [300, 300.005]
average rate of change 0.577345 0.577348

T interval [300, 300.001] [300, 300.00001]
average rate of change 0.57735 0.57735

The instantaneous rate of change is approximately 0.57735 m/(s · K).

4. Compute �y/�x for the interval [2, 5], where y = 4x − 9. What is the instantaneous rate of change of y with respect
to x at x = 2?

solution �y/�x = ((4(5) − 9) − (4(2) − 9))/(5 − 2) = 4. Because the graph of y = 4x − 9 is a line with slope 4,
the average rate of change of y calculated over any interval will be equal to 4; hence, the instantaneous rate of change at
any x will also be equal to 4.

In Exercises 5 and 6, a stone is tossed vertically into the air from ground level with an initial velocity of 15 m/s. Its height
at time t is h(t) = 15t − 4.9t2 m.

5. Compute the stone’s average velocity over the time interval [0.5, 2.5] and indicate the corresponding secant line on
a sketch of the graph of h(t).

solution The average velocity is equal to

h(2.5) − h(0.5)

2
= 0.3.

The secant line is plotted with h(t) below.

2

0.5 1 1.5 2 2.5 3

4
6
8

10

t

h

6. Compute the stone’s average velocity over the time intervals [1, 1.01], [1, 1.001], [1, 1.0001] and [0.99, 1], [0.999, 1],
[0.9999, 1], and then estimate the instantaneous velocity at t = 1.

solution With h(t) = 15t − 4.9t2, the average velocity over the time interval [t1, t2] is given by

�h

�t
= h (t2) − h (t1)

t2 − t1
.

time interval [1, 1.01] [1, 1.001] [1, 1.0001] [0.99, 1] [0.999, 1] [0.9999, 1]
average velocity 5.151 5.1951 5.1995 5.249 5.2049 5.2005

The instantaneous velocity at t = 1 second is 5.2 m/s.

7. With an initial deposit of $100, the balance in a bank account after t years is f (t) = 100(1.08)t dollars.

(a) What are the units of the rate of change of f (t)?
(b) Find the average rate of change over [0, 0.5] and [0, 1].
(c) Estimate the instantaneous rate of change at t = 0.5 by computing the average rate of change over intervals to the
left and right of t = 0.5.

solution
(a) The units of the rate of change of f (t) are dollars/year or $/yr.
(b) The average rate of change of f (t) = 100(1.08)tover the time interval [t1, t2] is given by

�f

�t
= f (t2) − f (t1)

t2 − t1
.

time interval [0, .5] [0, 1]
average rate of change 7.8461 8
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(c)

time interval [0.5, 0.51] [0.5, 0.501] [0.5, 0.5001]
average rate of change 8.0011 7.9983 7.9981

time interval [0.49, 0.5] [0.499, 0.5] [0.4999, 0.5]
average rate of change 7.9949 7.9977 7.998

The rate of change at t = 0.5 is approximately $8/yr.

8. The position of a particle at time t is s(t) = t3 + t . Compute the average velocity over the time interval [1, 4] and
estimate the instantaneous velocity at t = 1.

solution The average velocity over the time interval [1, 4] is

s(4) − s(1)

4 − 1
= 68 − 2

3
= 22.

To estimate the instantaneous velocity at t = 1, we examine the following table.

time interval [1, 1.01] [1, 1.001] [1, 1.0001] [0.99, 1] [0.999, 1] [0.9999, 1]
average rate of change 4.0301 4.0030 4.0003 3.9701 3.9970 3.9997

The rate of change at t = 1 is approximately 4.

9. Figure 8 shows the estimated number N of Internet users in Chile, based on data from the United Nations
Statistics Division.

(a) Estimate the rate of change of N at t = 2003.5.

(b) Does the rate of change increase or decrease as t increases? Explain graphically.

(c) Let R be the average rate of change over [2001, 2005]. Compute R.

(d) Is the rate of change at t = 2002 greater than or less than the average rate R? Explain graphically.

2001 2002 2003 2004 2005

3.5

4.0

4.5

N (Internet users in Chile in millions)

t (years)

FIGURE 8

solution

(a) The tangent line shown in Figure 8 appears to pass through the points (2002, 3.75) and (2005, 4.6). Thus, the rate of
change of N at t = 2003.5 is approximately

4.6 − 3.75

2005 − 2002
= 0.283

million Internet users per year.

(b) As t increases, we move from left to right along the graph in Figure 8. Moreover, as we move from left to right along
the graph, the slope of the tangent line decreases. Thus, the rate of change decreases as t increases.

(c) The graph of N(t) appear to pass through the points (2001, 3.1) and (2005, 4.5). Thus, the average rate of change
over [2001, 2005] is approximately

R = 4.5 − 3.1

2005 − 2001
= 0.35

million Internet users per year.

(d) For the figure below, we see that the slope of the tangent line at t = 2002 is larger than the slope of the secant line
through the endpoints of the graph of N(t). Thus, the rate of change at t = 2002 is greater than the average rate of
change R.
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3.0
2001 2002 2003 2004 2005

x

y

3.5

4.0

4.5

10. The atmospheric temperature T (in ◦C) at altitude h meters above a certain point on earth is T = 15 − 0.0065h for
h ≤ 12,000 m. What are the average and instantaneous rates of change of T with respect to h? Why are they the same?
Sketch the graph of T for h ≤ 12,000.

solution The average and instantaneous rates of change of T with respect to h are both −0.0065◦C/m. The rates of
change are the same because T is a linear function of h with slope −0.0065.

2000
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−40

−20

20
4000
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x
6000

8000

10,000

12,000

Temp (˚C)
Altitude (m)

In Exercises 11–18, estimate the instantaneous rate of change at the point indicated.

11. P(x) = 3x2 − 5; x = 2

solution

x interval [2, 2.01] [2, 2.001] [2, 2.0001] [1.99, 2] [1.999, 2] [1.9999, 2]
average rate of change 12.03 12.003 12.0003 11.97 11.997 11.9997

The rate of change at x = 2 is approximately 12.

12. f (t) = 12t − 7; t = −4

solution

t interval [−4, −3.99] [−4, −3.999] [−4, −3.9999]
average rate of change 12 12 12

t interval [−4.01, −4] [−4.001, −4] [−4.0001, −4]
average rate of change 12 12 12

The rate of change at t = −4 is 12, as the graph of y = f (t) is a line with slope 12.

13. y(x) = 1

x + 2
; x = 2

solution

x interval [2, 2.01] [2, 2.001] [2, 2.0001] [1.99, 2] [1.999, 2] [1.9999, 2]
average rate of change −0.0623 −0.0625 −0.0625 −0.0627 −0.0625 −0.0625

The rate of change at x = 2 is approximately −0.06.

14. y(t) = √
3t + 1; t = 1

solution

t interval [1, 1.01] [1, 1.001] [1, 1.0001] [0.99, 1] [0.999, 1] [0.9999, 1]
average rate of change 0.7486 0.7499 0.7500 0.7514 0.7501 0.7500

The rate of change at t = 1 is approximately 0.75.
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15. f (x) = ex ; x = 0

solution

x interval [−0.01, 0] [−0.001, 0] [−0.0001, 0] [0, 0.01] [0, 0.001] [0, 0.0001]
average rate of change 0.9950 0.9995 0.99995 1.0050 1.0005 1.00005

The rate of change at x = 0 is approximately 1.00.

16. f (x) = ex ; x = e

solution

x interval [e − 0.01, e] [e − 0.001, e] [e − 0.0001, e] [e, e + 0.01] [e, e + 0.001] [e, e + 0.0001]
average rate of change 15.0787 15.1467 15.1535 15.2303 15.1618 15.1550

The rate of change at x = e is approximately 15.15.

17. f (x) = ln x; x = 3

solution

x interval [2.99, 3] [2.999, 3] [2.9999, 3] [3, 3.01] [3, 3.001] [3, 3.0001]
average rate of change 0.33389 0.33339 0.33334 0.33278 0.33328 0.33333

The rate of change at x = 3 is approximately 0.333.

18. f (x) = tan−1 x; x = π

4
solution

x interval
[
π
4 − 0.01, π

4

] [
π
4 − 0.001, π

4

] [
π
4 − 0.0001, π

4

] [
π
4 , π

4 + 0.01
] [

π
4 , π

4 + 0.001
] [

π
4 , π

4 + 0.0001
]

average rate of change 0.6215 0.6188 0.6185 0.6155 0.6182 0.6185

The rate of change at x = π
4 is approximately 0.619.

19. The height (in centimeters) at time t (in seconds) of a small mass oscillating at the end of a spring is h(t) = 8 cos(12πt).

(a) Calculate the mass’s average velocity over the time intervals [0, 0.1] and [3, 3.5].
(b) Estimate its instantaneous velocity at t = 3.

solution

(a) The average velocity over the time interval [t1, t2] is given by
�h

�t
= h (t2) − h (t1)

t2 − t1
.

time interval [0, 0.1] [3, 3.5]
average velocity −144.721 cm/s 0 cm/s

(b)

time interval [3, 3.0001] [3, 3.00001] [3, 3.000001] [2.9999, 3] [2.99999, 3] [2.999999, 3]
average velocity −0.5685 −0.05685 −0.005685 0.5685 0.05685 0.005685

The instantaneous velocity at t = 3 seconds is approximately 0 cm/s.

20. The number P(t) of E. coli cells at time t (hours) in a petri dish is plotted in Figure 9.

(a) Calculate the average rate of change of P(t) over the time interval [1, 3] and draw the corresponding secant line.
(b) Estimate the slope m of the line in Figure 9. What does m represent?

t (hours)
321

10,000

8,000

6,000

4,000

2,000
1,000

P (t)

FIGURE 9 Number of E. coli cells at time t .
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solution

(a) Looking at the graph, we can estimate P(1) = 2000 and P(3) = 8000. Assuming these values of P(t), the average
rate of change is

P(3) − P(1)

3 − 1
= 6000

2
= 3000 cells/hour.

The secant line is here:

t (hours)
321

10,000

8,000

6,000

4,000

2,000
1,000

P (t)

(b) The line in Figure 9 goes through two points with approximate coordinates (1, 2000) and (2.5, 4000). This line has
approximate slope

m = 4000 − 2000

2.5 − 1
= 4000

3
cells/hour.

m is close to the slope of the line tangent to the graph of P(t) at t = 1, and so m represents the instantaneous rate of
change of P(t) at t = 1 hour.

21. Assume that the period T (in seconds) of a pendulum (the time required for a complete back-and-forth cycle)

is T = 3
2

√
L, where L is the pendulum’s length (in meters).

(a) What are the units for the rate of change of T with respect to L? Explain what this rate measures.

(b) Which quantities are represented by the slopes of lines A and B in Figure 10?

(c) Estimate the instantaneous rate of change of T with respect to L when L = 3 m.

Pe
ri

od
 (

s)

Length (m)
1 3

AB

2

FIGURE 10 The period T is the time required for a pendulum to swing back and forth.

solution

(a) The units for the rate of change of T with respect to L are seconds per meter. This rate measures the sensitivity of
the period of the pendulum to a change in the length of the pendulum.

(b) The slope of the line B represents the average rate of change in T from L = 1 m to L = 3 m. The slope of the line
A represents the instantaneous rate of change of T at L = 3 m.

(c)

time interval [3, 3.01] [3, 3.001] [3, 3.0001] [2.99, 3] [2.999, 3] [2.9999, 3]
average velocity 0.4327 0.4330 0.4330 0.4334 0.4330 0.4330

The instantaneous rate of change at L = 1 m is approximately 0.4330 s/m.

22. The graphs in Figure 11 represent the positions of moving particles as functions of time.

(a) Do the instantaneous velocities at times t1, t2, t3 in (A) form an increasing or a decreasing sequence?

(b) Is the particle speeding up or slowing down in (A)?

(c) Is the particle speeding up or slowing down in (B)?



April 5, 2011

84 C H A P T E R 2 LIMITS
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FIGURE 11

solution

(a) As the value of the independent variable increases, we note that the slope of the tangent lines decreases. Since
Figure 11(A) displays position as a function of time, the slope of each tangent line is equal to the velocity of the particle;
consequently, the velocities at t1, t2, t3 form a decreasing sequence.

(b) Based on the solution to part (a), the velocity of the particle is decreasing; hence, the particle is slowing down.

(c) If we were to draw several lines tangent to the graph in Figure 11(B), we would find that the slopes would be increasing.
Accordingly, the velocity of the particle associated with Figure 11(B) is increasing, and the particle is speeding up.

23. An advertising campaign boosted sales of Crunchy Crust frozen pizza to a peak level of S0 dollars per month.
A marketing study showed that after t months, monthly sales declined to

S(t) = S0g(t), where g(t) = 1√
1 + t

.

Do sales decline more slowly or more rapidly as time increases? Answer by referring to a sketch the graph of g(t) together
with several tangent lines.

solution We notice from the figure below that, as time increases, the slopes of the tangent lines to the graph of g(t)

become less negative. Thus, sales decline more slowly as time increases.

2
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24. The fraction of a city’s population infected by a flu virus is plotted as a function of time (in weeks) in Figure 12.

(a) Which quantities are represented by the slopes of lines A and B? Estimate these slopes.

(b) Is the flu spreading more rapidly at t = 1, 2, or 3?

(c) Is the flu spreading more rapidly at t = 4, 5, or 6?

Fraction infected

Weeks

B

A

1 2 3 4 5 6

0.3

0.2

0.1

FIGURE 12

solution

(a) The slope of line A is the average rate of change over the interval [4, 6], whereas the slope of the line B is the
instantaneous rate of change at t = 6. Thus, the slope of the line A ≈ (0.28 − 0.19)/2 = 0.045/week, whereas the slope
of the line B ≈ (0.28 − 0.15)/6 = 0.0217/week.

(b) Among times t = 1, 2, 3, the flu is spreading most rapidly at t = 3 since the slope is greatest at that instant; hence,
the rate of change is greatest at that instant.

(c) Among times t = 4, 5, 6, the flu is spreading most rapidly at t = 4 since the slope is greatest at that instant; hence,
the rate of change is greatest at that instant.
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25. The graphs in Figure 13 represent the positions s of moving particles as functions of time t . Match each graph with
a description:

(a) Speeding up

(b) Speeding up and then slowing down

(c) Slowing down

(d) Slowing down and then speeding up

(B)(A) (D)(C)

t

s

t

s

t

s

t

s

FIGURE 13

solution When a particle is speeding up over a time interval, its graph is bent upward over that interval. When a
particle is slowing down, its graph is bent downward over that interval. Accordingly,

• In graph (A), the particle is (c) slowing down.
• In graph (B), the particle is (b) speeding up and then slowing down.
• In graph (C), the particle is (d) slowing down and then speeding up.
• In graph (D), the particle is (a) speeding up.

26. An epidemiologist finds that the percentage N(t) of susceptible children who were infected on day t during the first
three weeks of a measles outbreak is given, to a reasonable approximation, by the formula (Figure 14)

N(t) = 100t2

t3 + 5t2 − 100t + 380

% Infected

Time (days)

2 6 10 14 184 8 12 16 20

20

15

10

5

FIGURE 14 Graph of N(t).

(a) Draw the secant line whose slope is the average rate of change in infected children over the intervals [4, 6] and
[12, 14]. Then compute these average rates (in units of percent per day).

(b) Is the rate of decline greater at t = 8 or t = 16?

(c) Estimate the rate of change of N(t) on day 12.

solution

(a) % Infected

Time (days)

5 1510 20

20

15

10

5

The average rate of change of N(t) over the interval between day 4 and day 6 is given by

�N

�t
= N(6) − N(4)

6 − 4
= 3.776%/day.

Similarly, we calculate the average rate of change of N(t) over the interval between day 12 and day 14 as

�N

�t
= N(14) − N(12)

14 − 12
= −0.7983%/day.
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(b) The slope of the tangent line at t = 8 would be more negative than the slope of the tangent line at t = 16. Thus, the
rate of decline is greater at t = 8 than at t = 16.

(c)

time interval [12, 12.5] [12, 12.2] [12, 12.01] [12, 12.001]
average rate of change −0.9288 −0.9598 −0.9805 −0.9815

time interval [11.5, 12] [11.8, 12] [11.99, 12] [11.999, 12]
average rate of change −1.0402 −1.0043 −0.9827 −0.9817

The instantaneous rate of change of N(t) on day 12 is −0.9816%/day.

27. The fungus Fusarium exosporium infects a field of flax plants through the roots and causes the plants to wilt. Eventually,
the entire field is infected. The percentage f (t) of infected plants as a function of time t (in days) since planting is shown
in Figure 15.

(a) What are the units of the rate of change of f (t) with respect to t? What does this rate measure?

(b) Use the graph to rank (from smallest to largest) the average infection rates over the intervals [0, 12], [20, 32], and
[40, 52].
(c) Use the following table to compute the average rates of infection over the intervals [30, 40], [40, 50], [30, 50].

Days 0 10 20 30 40 50 60
Percent infected 0 18 56 82 91 96 98

(d) Draw the tangent line at t = 40 and estimate its slope.

Percent infected

Days after planting

10 20 30 40 50 60

100

80

60

40

20

FIGURE 15

solution

(a) The units of the rate of change of f (t) with respect to t are percent /day or %/d. This rate measures how quickly the
population of flax plants is becoming infected.

(b) From smallest to largest, the average rates of infection are those over the intervals [40, 52], [0, 12], [20, 32]. This is
because the slopes of the secant lines over these intervals are arranged from smallest to largest.

(c) The average rates of infection over the intervals [30, 40], [40, 50], [30, 50] are 0.9, 0.5, 0.7 %/d, respectively.

(d) The tangent line sketched in the graph below appears to pass through the points (20, 80) and (40, 91). The estimate
of the instantaneous rate of infection at t = 40 days is therefore

91 − 80

40 − 20
= 11

20
= 0.55%/d.

10 20 30 40 50 60

100

80

60

40

20

28. Let v = 20
√

T as in Example 2. Is the rate of change of v with respect to T greater at low temperatures or
high temperatures? Explain in terms of the graph.
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solution

350
300
250
200
150
100
50

50 100 150 200 250 300
T (K)

(m/s)

As the graph progresses to the right, the graph bends progressively downward, meaning that the slope of the tangent lines
becomes smaller. This means that the rate of change of v with respect to T is lower at high temperatures.

29. If an object in linear motion (but with changing velocity) covers �s meters in �t seconds, then its average
velocity is v0 = �s/�t m/s. Show that it would cover the same distance if it traveled at constant velocity v0 over the
same time interval. This justifies our calling �s/�t the average velocity.

solution At constant velocity, the distance traveled is equal to velocity times time, so an object moving at constant
velocity v0 for �t seconds travels v0δt meters. Since v0 = �s/�t , we find

distance traveled = v0δt =
(

�s

�t

)
�t = �s

So the object covers the same distance �s by traveling at constant velocity v0.

30. Sketch the graph of f (x) = x(1 − x) over [0, 1]. Refer to the graph and, without making any computations,
find:

(a) The average rate of change over [0, 1]
(b) The (instantaneous) rate of change at x = 1

2
(c) The values of x at which the rate of change is positive

solution

0.2 0.4 0.6 0.8 1

0.25

0.2

0.15

0.1

0.05

x

y

(a) f (0) = f (1), so there is no change between x = 0 and x = 1. The average rate of change is zero.

(b) The tangent line to the graph of f (x) is horizontal at x = 1
2 ; the instantaneous rate of change is zero at this point.

(c) The rate of change is positive at all points where the graph is rising, because the slope of the tangent line is positive
at these points. This is so for all x between x = 0 and x = 0.5.

31. Which graph in Figure 16 has the following property: For all x, the average rate of change over [0, x] is
greater than the instantaneous rate of change at x. Explain.

(B)

x

y

(A)

x

y

FIGURE 16

solution

(a) The average rate of change over [0, x] is greater than the instantaneous rate of change at x: (B).

(b) The average rate of change over [0, x] is less than the instantaneous rate of change at x: (A)

The graph in (B) bends downward, so the slope of the secant line through (0, 0) and (x, f (x)) is larger than the slope
of the tangent line at (x, f (x)). On the other hand, the graph in (A) bends upward, so the slope of the tangent line at
(x, f (x)) is larger than the slope of the secant line through (0, 0) and (x, f (x)).
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Further Insights and Challenges
32. The height of a projectile fired in the air vertically with initial velocity 25 m/s is

h(t) = 25t − 4.9t2 m.

(a) Compute h(1). Show that h(t) − h(1) can be factored with (t − 1) as a factor.

(b) Using part (a), show that the average velocity over the interval [1, t] is 20.1 − 4.9t .

(c) Use this formula to find the average velocity over several intervals [1, t] with t close to 1. Then estimate the instan-
taneous velocity at time t = 1.

solution

(a) With h(t) = 25t − 4.9t2, we have h(1) = 20.1 m, so

h(t) − h(1) = −4.9t2 + 25t − 20.1.

Factoring the quadratic, we obtain

h(t) − h(1) = (t − 1)(−4.9t + 20.1).

(b) The average velocity over the interval [1, t] is

h(t) − h(1)

t − 1
= (t − 1)(−4.9t + 20.1)

t − 1
= 20.1 − 4.9t.

(c) t 1.01 1.001 1.0001 1.00001

average velocity over [1, t] 15.151 15.1951 15.19951 15.199951

The instantaneous velocity is approximately 15.2 m/s. Plugging t = 1 second into the formula in (b) yields 20.1 − 4.9(1) =
15.2 m/s exactly.

33. Let Q(t) = t2. As in the previous exercise, find a formula for the average rate of change of Q over the interval [1, t]
and use it to estimate the instantaneous rate of change at t = 1. Repeat for the interval [2, t] and estimate the rate of
change at t = 2.

solution The average rate of change is

Q(t) − Q(1)

t − 1
= t2 − 1

t − 1
.

Applying the difference of squares formula gives that the average rate of change is ((t + 1)(t − 1))/(t − 1) = (t + 1) for
t �= 1. As t gets closer to 1, this gets closer to 1 + 1 = 2. The instantaneous rate of change is 2.

For t0 = 2, the average rate of change is

Q(t) − Q(2)

t − 2
= t2 − 4

t − 2
,

which simplifies to t + 2 for t �= 2. As t approaches 2, the average rate of change approaches 4. The instantaneous rate
of change is therefore 4.

34. Show that the average rate of change of f (x) = x3 over [1, x] is equal to

x2 + x + 1.

Use this to estimate the instantaneous rate of change of f (x) at x = 1.

solution The average rate of change is

f (x) − f (1)

x − 1
= x3 − 1

x − 1
.

Factoring the numerator as the difference of cubes means the average rate of change is

(x − 1)(x2 + x + 1)

x − 1
= x2 + x + 1

(for all x �= 1). The closer x gets to 1, the closer the average rate of change gets to 12 + 1 + 1 = 3. The instantaneous
rate of change is 3.
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35. Find a formula for the average rate of change of f (x) = x3 over [2, x] and use it to estimate the instantaneous rate
of change at x = 2.

solution The average rate of change is

f (x) − f (2)

x − 2
= x3 − 8

x − 2
.

Applying the difference of cubes formula to the numerator, we find that the average rate of change is

(x2 + 2x + 4)(x − 2)

x − 2
= x2 + 2x + 4

for x �= 2. The closer x gets to 2, the closer the average rate of change gets to 22 + 2(2) + 4 = 12.

36. Let T = 3
2

√
L as in Exercise 21. The numbers in the second column of Table 1 are increasing, and those in

the last column are decreasing. Explain why in terms of the graph of T as a function of L. Also, explain graphically why
the instantaneous rate of change at L = 3 lies between 0.4329 and 0.4331.

TABLE 1 Average Rates of Change of T with Respect to L

Average rate Average rate
Interval of change Interval of change

[3, 3.2] 0.42603 [2.8, 3] 0.44048
[3, 3.1] 0.42946 [2.9, 3] 0.43668
[3, 3.001] 0.43298 [2.999, 3] 0.43305
[3, 3.0005] 0.43299 [2.9995, 3] 0.43303

solution Since the average rate of change is increasing on the intervals [3, L] as L get close to 3, we know that the
slopes of the secant lines between points on the graph over these intervals are increasing. The more rows we add with
smaller intervals, the greater the average rate of change. This means that the instantaneous rate of change is probably
greater than all of the numbers in this column.

Likewise, since the average rate of change is decreasing on the intervals [L, 3] as L gets closer to 3, we know that
the slopes of the secant lines between points over these intervals are decreasing. This means that the instantaneous rate
of change is probably less than all the numbers in this column.

The tangent slope is somewhere between the greatest value in the first column and the least value in the second column.
Hence, it is between 0.43299 and 0.43303. The first column underestimates the instantaneous rate of change by secant
slopes; this estimate improves as L decreases toward L = 3. The second column overestimates the instantaneous rate of
change by secant slopes; this estimate improves as L increases toward L = 3.

2.2 Limits: A Numerical and Graphical Approach

Preliminary Questions
1. What is the limit of f (x) = 1 as x → π?

solution limx→π 1 = 1.

2. What is the limit of g(t) = t as t → π?

solution limt→π t = π.

3. Is lim
x→10

20 equal to 10 or 20?

solution limx→10 20 = 20.

4. Can f (x) approach a limit as x → c if f (c) is undefined? If so, give an example.

solution Yes. The limit of a function f as x → c does not depend on what happens at x = c, only on the behavior of
f as x → c. As an example, consider the function

f (x) = x2 − 1

x − 1
.
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The function is clearly not defined at x = 1 but

lim
x→1

f (x) = lim
x→1

x2 − 1

x − 1
= lim

x→1
(x + 1) = 2.

5. What does the following table suggest about lim
x→1− f (x) and lim

x→1+ f (x)?

x 0.9 0.99 0.999 1.1 1.01 1.001

f (x) 7 25 4317 3.0126 3.0047 3.00011

solution The values in the table suggest that limx→1− f (x) = ∞ and limx→1+ f (x) = 3.

6. Can you tell whether lim
x→5

f (x) exists from a plot of f (x) for x > 5? Explain.

solution No. By examining values of f (x) for x close to but greater than 5, we can determine whether the one-sided
limit limx→5+ f (x) exists. To determine whether limx→5 f (x) exists, we must examine value of f (x) on both sides of
x = 5.

7. If you know in advance that lim
x→5

f (x) exists, can you determine its value from a plot of f (x) for all x > 5?

solution Yes. If limx→5 f (x) exists, then both one-sided limits must exist and be equal.

Exercises
In Exercises 1–4, fill in the tables and guess the value of the limit.

1. lim
x→1

f (x), where f (x) = x3 − 1

x2 − 1
.

x f (x) x f (x)

1.002 0.998

1.001 0.999

1.0005 0.9995

1.00001 0.99999

solution

x 0.998 0.999 0.9995 0.99999 1.00001 1.0005 1.001 1.002

f (x) 1.498501 1.499250 1.499625 1.499993 1.500008 1.500375 1.500750 1.501500

The limit as x → 1 is 3
2 .

2. lim
t→0

h(t), where h(t) = cos t − 1

t2
. Note that h(t) is even; that is, h(t) = h(−t).

t ±0.002 ±0.0001 ±0.00005 ±0.00001

h(t)

solution

t ±0.002 ±0.0001

h(t) −0.499999833333 −0.499999999583

t ±0.00005 ±0.00001

h(t) −0.499999999896 −0.500000000000

The limit as t → 0 is − 1
2 .
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3. lim
y→2

f (y), where f (y) = y2 − y − 2

y2 + y − 6
.

y f (y) y f (y)

2.002 1.998

2.001 1.999

2.0001 1.9999

solution

y 1.998 1.999 1.9999 2.0001 2.001 2.02

f (y) 0.59984 0.59992 0.599992 0.600008 0.60008 0.601594

The limit as y → 2 is 3
5 .

4. lim
x→0+ f (x), where f (x) = x ln x.

x 1 0.5 0.1 0.05 0.01 0.005 0.001

f (x)

solution

x 1.0 0.5 0.1 0.05 0.01 0.005 0.001

f (x) 0 −0.34657 −0.23026 −0.14979 −0.04605 −0.02649 −0.00691

The limit as x → 0+ is 0.

5. Determine lim
x→0.5

f (x) for f (x) as in Figure 9.

0.5

1.5

x

y

1
f (x)

FIGURE 9

solution The graph suggests that f (x) → 1.5 as x → 0.5.

6. Determine lim
x→0.5

g(x) for g(x) as in Figure 10.

0.5

1.5

x

y

1 g(x)

FIGURE 10

solution The graph suggests that g(x) → 1.5 as x → 0.5. The value g(0.5), which happens to be 1, does not affect
the limit.

In Exercises 7 and 8, evaluate the limit.

7. lim
x→21

x

solution As x → 21, f (x) = x → 21. You can see this, for example, on the graph of f (x) = x.
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8. lim
x→4.2

√
3

solution The graph of f (x) = √
3 is a horizontal line. f (x) = √

3 for all values of x, so the limit is also equal to
√

3.

In Exercises 9–16, verify each limit using the limit definition. For example, in Exercise 9, show that |3x − 12| can be
made as small as desired by taking x close to 4.

9. lim
x→4

3x = 12

solution |3x − 12| = 3|x − 4|. |3x − 12| can be made arbitrarily small by making x close enough to 4, thus making
|x − 4| small.

10. lim
x→5

3 = 3

solution |f (x) − 3| = |3 − 3| = 0 for all values of x so f (x) − 3 is already smaller than any positive number as
x → 5.

11. lim
x→3

(5x + 2) = 17

solution |(5x + 2) − 17| = |5x − 15| = 5|x − 3|. Therefore, if you make |x − 3| small enough, you can make
|(5x + 2) − 17| as small as desired.

12. lim
x→2

(7x − 4) = 10

solution As x → 2, note that |(7x − 4) − 10| = |7x − 14| = 7 |x − 2|. If you make |x − 2| small enough, you can
make |(7x − 4) − 10| as small as desired.

13. lim
x→0

x2 = 0

solution As x → 0, we have |x2 − 0| = |x + 0||x − 0|. To simplify things, suppose that |x| < 1, so that |x + 0||x −
0| = |x||x| < |x|. By making |x| sufficiently small, so that |x + 0||x − 0| = x2 is even smaller, you can make |x2 − 0|
as small as desired.

14. lim
x→0

(3x2 − 9) = −9

solution |3x2 − 9 − (−9)| = |3x2| = 3|x2|. If you make |x| < 1, |x2| < |x|, so that making |x − 0| small enough

can make |3x2 − 9 − (−9)| as small as desired.

15. lim
x→0

(4x2 + 2x + 5) = 5

solution As x → 0, we have |4x2 + 2x + 5 − 5| = |4x2 + 2x| = |x||4x + 2|. If |x| < 1, |4x + 2| can be no bigger

than 6, so |x||4x + 2| < 6|x|. Therefore, by making |x − 0| = |x| sufficiently small, you can make |4x2 + 2x + 5 − 5| =
|x||4x + 2| as small as desired.

16. lim
x→0

(x3 + 12) = 12

solution |(x3 + 12) − 12| = |x3|. If we make |x| < 1, then |x3| < |x|. Therefore, by making |x − 0| = |x|
sufficiently small, we can make |(x3 + 12) − 12| as small as desired.

In Exercises 17–36, estimate the limit numerically or state that the limit does not exist. If infinite, state whether the
one-sided limits are ∞ or −∞.

17. lim
x→1

√
x − 1

x − 1

solution

x 0.9995 0.99999 1.00001 1.0005

f (x) 0.500063 0.500001 0.49999 0.499938

The limit as x → 1 is 1
2 .

18. lim
x→−4

2x2 − 32

x + 4

solution

x −4.001 −4.0001 −3.9999 −3.999

f (x) −16.002 −16.0002 −15.9998 −15.998

The limit as x → −4 is −16.
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19. lim
x→2

x2 + x − 6

x2 − x − 2

solution

x 1.999 1.99999 2.00001 2.001

f (x) 1.666889 1.666669 1.666664 1.666445

The limit as x → 2 is 5
3 .

20. lim
x→3

x3 − 2x2 − 9

x2 − 2x − 3

solution

x 2.99 2.995 3.005 3.01

f (x) 3.741880 3.745939 3.754064 3.758130

The limit as x → 3 is 3.75.

21. lim
x→0

sin 2x

x

solution

x −0.01 −0.005 0.005 0.01

f (x) 1.999867 1.999967 1.999967 1.999867

The limit as x → 0 is 2.

22. lim
x→0

sin 5x

x

solution

x −0.01 −0.005 0.005 0.01

f (x) 4.997917 4.999479 4.999479 4.997917

The limit as x → 0 is 5.

23. lim
θ→0

cos θ − 1

θ

solution

x −0.05 −0.001 0.001 0.05

f (x) 0.0249948 0.0005 −0.0005 −0.0249948

The limit as x → 0 is 0.

24. lim
x→0

sin x

x2

solution

x −0.01 −0.001 −0.0001 0.0001 0.001 0.01

f (x) −99.9983 −999.9998 −10000.0 10000.0 999.9998 99.9983

The limit does not exist. As x → 0−, f (x) → −∞; similarly, as x → 0+, f (x) → ∞.

25. lim
x→4

1

(x − 4)3

solution

x 3.99 3.999 3.9999 4.0001 4.001 4.01

f (x) −106 −109 −1012 1012 109 106

The limit does not exist. As x → 4−, f (x) → −∞; similarly, as x → 4+, f (x) → ∞.
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26. lim
x→1−

3 − x

x − 1

solution

x 0.99 0.999 0.9999 0.99999

f (x) −201 −2001 −20001 −200001

As x → 1−, f (x) → −∞.

27. lim
x→3+

x − 4

x2 − 9

solution

x 3.01 3.001 3.0001 3.00001

f (x) −16.473 −166.473 −1666.473 −16666.473

As x → 3+, f (x) → −∞.

28. lim
h→0

3h − 1

h

solution

h −0.05 −0.001 −0.0001 0.0001 0.001 0.05

f (h) 1.06898 1.09801 1.09855 1.09867 1.09922 1.12935

The limit as x → 0 is approximately 1.099. (The exact answer is ln 3.)

29. lim
h→0

sin h cos
1

h

solution

h −0.01 −0.001 −0.0001 0.0001 0.001 0.01

f (h) −0.008623 −0.000562 0.000095 −0.000095 0.000562 0.008623

The limit as x → 0 is 0.

30. lim
h→0

cos
1

h

solution

h ±0.1 ±0.01 ±0.001 ±0.0001

f (h) −0.839072 0.862319 0.562379 −0.952155

The limit does not exist since cos (1/h) oscillates infinitely often as h → 0.

31. lim
x→0

|x|x

solution

x −0.05 −0.001 −0.00001 0.00001 0.001 0.05

f (x) 1.161586 1.006932 1.000115 0.999885 0.993116 0.860892

The limit as x → 0 is 1.

32. lim
x→1+

sec−1 x√
x − 1

solution

x 1.05 1.01 1.005 1.001

f (x) 1.3857 1.4084 1.4113 1.4136

The limit as x → 1+ is approximately 1.414. (The exact answer is
√

2.)
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33. lim
t→e

t − e

ln t − 1

solution

r e − 0.01 e − 0.001 e − 0.0001 e + 0.0001 e + 0.001 e + 0.01

f (t) 2.713279 2.717782 2.718232 2.718332 2.718782 2.723279

The limit as t → 0 is approximately 2.718. (The exact answer is e.)

34. lim
r→0

(1 + r)1/r

solution

r −0.01 −0.001 −0.0001 0.0001 0.001 0.01

f (r) 2.731999 2.719642 2.718418 2.718146 2.716924 2.704814

The limit as r → 0 is approximately 2.718. (The exact answer is e.)

35. lim
x→1−

tan−1 x

cos−1 x

solution

x 0.999 0.9999 0.99999 0.999999 0.9999999

f (x) 17.549 55.532 175.619 555.360 1756.204

The limit as x → 1− does not exist.

36. lim
x→0

tan−1 x − x

sin−1 x − x

solution

x −0.01 −0.001 0.001 0.01

f (x) −1.999791 −2.000066 −2.000066 −1.999791

The limit as x → 0 is approximately −2.00. (The exact answer is −2.)

37. The greatest integer function is defined by [x] = n, where n is the unique integer such that n ≤ x < n + 1. Sketch
the graph of y = [x]. Calculate, for c an integer:

(a) lim
x→c−[x] (b) lim

x→c+[x]

solution Here is a graph of the greatest integer function:

2

1

1 2 3−1
x

y

(a) From the graph, we see that, for c an integer,

lim
x→c−[x] = c − 1.

(b) From the graph, we see that, for c an integer,

lim
x→c+[x] = c.
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38. Determine the one-sided limits at c = 1, 2, and 4 of the function g(x) shown in Figure 11, and state whether the limit
exists at these points.

1 2 3 4 5

1

2

3

x

y

FIGURE 11

solution

• At c = 1, the left-hand limit is lim
x→1− g(x) = 3, whereas the right-hand limit is lim

x→1+ g(x) = 1. Accordingly, the

two-sided limit does not exist at c = 1.
• At c = 2, the left-hand limit is lim

x→2− g(x) = 2, whereas the right-hand limit is lim
x→2+ g(x) = 1. Accordingly, the

two-sided limit does not exist at c = 2.
• At c = 4, the left-hand limit is lim

x→4− g(x) = 2, whereas the right-hand limit is lim
x→4+ g(x) = 2. Accordingly, the

two-sided limit exists at c = 4 and equals 2.

In Exercises 39–46, determine the one-sided limits numerically or graphically. If infinite, state whether the one-sided limits
are ∞ or −∞, and describe the corresponding vertical asymptote. In Exercise 46, [x] is the greatest integer function
defined in Exercise 37.

39. lim
x→0±

sin x

|x|
solution

x −0.2 −0.02 0.02 0.2

f (x) −0.993347 −0.999933 0.999933 0.993347

The left-hand limit is lim
x→0− f (x) = −1, whereas the right-hand limit is lim

x→0+ f (x) = 1.

40. lim
x→0± |x|1/x

solution

x −0.2 −0.1 0.15 0.2

f (x) 3125.0 1010 0.000003 0.000320

The left-hand limit is lim
x→0− f (x) = ∞, whereas the right-hand limit is lim

x→0+ f (x) = 0. Thus, the line x = 0 is a vertical

asymptote from the left for the graph of y = |x|1/x .

41. lim
x→0±

x − sin |x|
x3

solution

x −0.1 −0.01 0.01 0.1

f (x) 199.853 19999.8 0.166666 0.166583

The left-hand limit is lim
x→0− f (x) = ∞, whereas the right-hand limit is lim

x→0+ f (x) = 1

6
. Thus, the line x = 0 is a vertical

asymptote from the left for the graph of y = x−sin |x|
x3 .

42. lim
x→4±

x + 1

x − 4

solution The graph of y = x+1
x−4 for x near 4 is shown below. From this graph, we see that

lim
x→4−

x + 1

x − 4
= −∞ while lim

x→4+
x + 1

x − 4
= ∞.

Thus, the line x = 4 is a vertical asymptote for the graph of y = x+1
x−4 .
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3.0 3.5
x

4.0 4.5 5.0

43. lim
x→−2±

4x2 + 7

x3 + 8

solution The graph of y = 4x2+7
x3+8

for x near −2 is shown below. From this graph, we see that

lim
x→−2−

4x2 + 7

x3 + 8
= −∞ while lim

x→−2+
4x2 + 7

x3 + 8
= ∞.

Thus, the line x = −2 is a vertical asymptote for the graph of y = 4x2+7
x3+8

.

−3.0 −2.5 −2.0 −1.5 −1.0
x

44. lim
x→−3±

x2

x2 − 9

solution The graph of y = x2

x2−9
for x near −3 is shown below. From this graph, we see that

lim
x→−3−

x2

x2 − 9
= ∞ while lim

x→−3+
x2

x2 − 9
= −∞.

Thus, the line x = −3 is a vertical asymptote for the graph of y = x2

x2−9
.

−4.0 −3.5 −2.5 −2.0
x

−3.0

45. lim
x→1±

x5 + x − 2

x2 + x − 2

solution The graph of y = x5+x−2
x2+x−2

for x near 1 is shown below. From this graph, we see that

lim
x→1±

x5 + x − 2

x2 + x − 2
= 2.

2

0.5 1.0 1.5
x

y

4

6

46. lim
x→2± cos

(π

2
(x − [x])

)
solution The graph of y = cos

(
π
2 (x − [x])) for x near 2 is shown below. From this graph, we see that

lim
x→2− cos

(π

2
(x − [x])

)
= 0 while lim

x→2+ cos
(π

2
(x − [x])

)
= 1.
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0.5

0.2

0.4

0.6

0.8

1.0

y

x
1.0 1.5 2.0 2.5

47. Determine the one-sided limits at c = 2, 4 of the function f (x) in Figure 12. What are the vertical asymptotes of
f (x)?

−5
42

15

5

10

x

y

FIGURE 12

solution

• For c = 2, we have lim
x→2− f (x) = ∞ and lim

x→2+ f (x) = ∞.

• For c = 4, we have lim
x→4− f (x) = −∞ and lim

x→4+ f (x) = 10.

The vertical asymptotes are the vertical lines x = 2 and x = 4.

48. Determine the infinite one- and two-sided limits in Figure 13.

x

y

−1 3 5

FIGURE 13

solution

• lim
x→−1− f (x) = −∞

• lim
x→−1+ f (x) = ∞

• lim
x→3

f (x) = ∞
• lim

x→5
f (x) = −∞

The vertical asymptotes are the vertical lines x = 1, x = 3, and x = 5.

In Exercises 49–52, sketch the graph of a function with the given limits.

49. lim
x→1

f (x) = 2, lim
x→3− f (x) = 0, lim

x→3+ f (x) = 4

solution

2

4

6

1 2 3 4

y

x
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50. lim
x→1

f (x) = ∞, lim
x→3− f (x) = 0, lim

x→3+ f (x) = −∞
solution

−30

−20

−10

30

20

10

4321
x

y

51. lim
x→2+ f (x) = f (2) = 3, lim

x→2− f (x) = −1, lim
x→4

f (x) = 2 �= f (4)

solution

1

−1

2

3

1 2 3 4 5

y

x

52. lim
x→1+ f (x) = ∞, lim

x→1− f (x) = 3, lim
x→4

f (x) = −∞
solution

4321
x

y

10

5

−5

−10

53. Determine the one-sided limits of the function f (x) in Figure 14, at the points c = 1, 3, 5, 6.

−1

−2

−3

−4

1

2

3

4

5

y

x
1 2 3 4 5 6 7 8

FIGURE 14 Graph of f (x)

solution

• lim
x→1− f (x) = lim

x→1+ f (x) = 3

• lim
x→3− f (x) = −∞

• lim
x→3+ f (x) = 4

• lim
x→5− f (x) = 2

• lim
x→5+ f (x) = −3

• lim
x→6− f (x) = lim

x→6+ f (x) = ∞
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54. Does either of the two oscillating functions in Figure 15 appear to approach a limit as x → 0?

(A) (B)

xx

y
y

FIGURE 15

solution (A) does not appear to approach a limit as x → 0; the values of the function oscillate wildly as x → 0. The
values of the function graphed in (B) seem to settle to 0 as x → 0, so the limit seems to exist.

In Exercises 55–60, plot the function and use the graph to estimate the value of the limit.

55. lim
θ→0

sin 5θ

sin 2θ

solution

2.42

2.44

2.46

2.48

2.50

y

From the graph of y = sin 5θ

sin 2θ
shown above, we see that the limit as θ → 0 is 5

2 .

56. lim
x→0

12x − 1

4x − 1

solution

1.788

1.790

1.792

1.794

y

From the graph of y = 12x − 1

4x − 1
shown above, we see that the limit as x → 0 is approximately 1.7925. (The exact answer

is ln 12/ ln 4.)

57. lim
x→0

2x − cos x

x

solution

0.6935

0.6940

0.6930

0.6925

0.6920

y

y = 2
x − cos x

x

The limit as x → 0 is approximately 0.693. (The exact answer is ln 2.)
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58. lim
θ→0

sin2 4θ

cos θ − 1

solution

−30.0

−30.5

−31.0

−31.5

−32.0

y

y = sin2 4q
cosq − 1

The limit as θ → 0 is −32.

59. lim
θ→0

cos 7θ − cos 5θ

θ2

solution

−12.0

−11.8

−11.6

−11.4

y

From the graph of y = cos 7θ − cos 5θ

θ2
shown above, we see that the limit as θ → 0 is −12.

60. lim
θ→0

sin2 2θ − θ sin 4θ

θ4

solution

5.325

5.330

5.335

5.340

y

From the graph of y = sin2 2θ − θ sin 4θ

θ4
shown above, we see that the limit as θ → 0 is approximately 5.333. (The

exact answer is 16
3 .)

61. Let n be a positive integer. For which n are the two infinite one-sided limits lim
x→0± 1/xn equal?

solution First, suppose that n is even. Then xn ≥ 0 for all x, and 1
xn > 0 for all x �= 0. Hence,

lim
x→0−

1

xn
= lim

x→0+
1

xn
= ∞.

Next, suppose that n is odd. Then 1
xn > 0 for all x > 0 but 1

xn < 0 for all x < 0. Thus,

lim
x→0−

1

xn
= −∞ but lim

x→0+
1

xn
= ∞.

Finally, the two infinite one-sided limits are equal whenever n is even.

62. Let L(n) = lim
x→1

(
n

1 − xn
− 1

1 − x

)
for n a positive integer. Investigate L(n) numerically for several values of n,

and then guess the value of of L(n) in general.

solution

• We first notice that for n = 1,

1

1 − x
− 1

1 − x
= 0,

so L(1) = 0.
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• Next, let’s try n = 3. From the table below, it appears that L(3) = 1.

x 0.99 0.999 1.001 1.01

f (x) 1.006700 1.000667 0.999334 0.993367

• For n = 6, we find

x 0.99 0.999 0.9999 1.0001 1.001 1.01

f (x) 2.529312 2.502919 2.500392 2.499375 2.497082 2.470980

Thus, L(6) = 2.5 = 5
2

From these values, we conjecture that L(n) = n−1
2 .

63. In some cases, numerical investigations can be misleading. Plot f (x) = cos π
x .

(a) Does lim
x→0

f (x) exist?

(b) Show, by evaluating f (x) at x = 1
2 , 1

4 , 1
6 , . . . , that you might be able to trick your friends into believing that the

limit exists and is equal to L = 1.
(c) Which sequence of evaluations might trick them into believing that the limit is L = −1.

solution Here is the graph of f (x).

−0.05
−0.5

0.5

y

x
0.05

(a) From the graph of f (x), which shows that the value of f (x) oscillates more and more rapidly as x → 0, it follows
that lim

x→0
f (x) does not exist.

(b) Notice that

f

(
1

2

)
= cos

π

1/2
= cos 2π = 1;

f

(
1

4

)
= cos

π

1/4
= cos 4π = 1;

f

(
1

6

)
= cos

π

1/6
= cos 6π = 1;

and, in general, f ( 1
2n

) = 1 for all integers n.

(c) At x = 1, 1
3 , 1

5 , . . ., the value of f (x) is always −1.

Further Insights and Challenges
64. Light waves of frequency λ passing through a slit of width a produce a Fraunhofer diffraction pattern of light and
dark fringes (Figure 16). The intensity as a function of the angle θ is

I (θ) = Im

(
sin(R sin θ)

R sin θ

)2

where R = πa/λ and Im is a constant. Show that the intensity function is not defined at θ = 0. Then choose any two
values for R and check numerically that I (θ) approaches Im as θ → 0.

a

Intensity
pattern

Viewing
screen

Slit

Incident 
light waves

FIGURE 16 Fraunhofer diffraction pattern.
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solution If you plug in θ = 0, you get a division by zero in the expression

sin
(
R sin θ

)
R sin θ

;

thus, I (0) is undefined. If R = 2, a table of values as θ → 0 follows:

θ −0.01 −0.005 0.005 0.01

I (θ) 0.998667 Im 0.9999667 Im 0.9999667 Im 0.9998667 Im

The limit as θ → 0 is 1 · Im = Im.

If R = 3, the table becomes:

θ −0.01 −0.005 0.005 0.01

I (θ) 0.999700 Im 0.999925 Im 0.999925 Im 0.999700 Im

Again, the limit as θ → 0 is 1Im = Im.

65. Investigate lim
θ→0

sin nθ

θ
numerically for several values of n. Then guess the value in general.

solution

• For n = 3, we have

θ −0.1 −0.01 −0.001 0.001 0.01 0.1

sin nθ

θ
2.955202 2.999550 2.999996 2.999996 2.999550 2.955202

The limit as θ → 0 is 3.

• For n = −5, we have

θ −0.1 −0.01 −0.001 0.001 0.01 0.1

sin nθ

θ
−4.794255 −4.997917 −4.999979 −4.999979 −4.997917 −4.794255

The limit as θ → 0 is −5.

• We surmise that, in general, lim
θ→0

sin nθ

θ
= n.

66. Show numerically that lim
x→0

bx − 1

x
for b = 3, 5 appears to equal ln 3, ln 5, where ln x is the natural logarithm. Then

make a conjecture (guess) for the value in general and test your conjecture for two additional values of b.

solution

•
x −0.1 −0.01 −0.001 0.001 0.01 0.1

5x − 1

x
1.486601 1.596556 1.608144 1.610734 1.622459 1.746189

We have ln 5 ≈ 1.6094.
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•

x −0.1 −0.01 −0.001 0.001 0.01 0.1

3x − 1

x
1.040415 1.092600 1.098009 1.099216 1.104669 1.161232

We have ln 3 ≈ 1.0986.

• We conjecture that lim
x→0

bx − 1

x
= ln b for any positive number b. Here are two additional test cases.

x −0.1 −0.01 −0.001 0.001 0.01 0.1

( 1
2

)x − 1

x
−0.717735 −0.695555 −0.693387 −0.692907 −0.690750 −0.669670

We have ln 1
2 ≈ −0.69315.

x −0.1 −0.01 −0.001 0.001 0.01 0.1

7x − 1

x
1.768287 1.927100 1.944018 1.947805 1.964966 2.148140

We have ln 7 ≈ 1.9459.

67. Investigate lim
x→1

xn − 1

xm − 1
for (m, n) equal to (2, 1), (1, 2), (2, 3), and (3, 2). Then guess the value of the limit in

general and check your guess for two additional pairs.

solution

•

x 0.99 0.9999 1.0001 1.01

x − 1

x2 − 1
0.502513 0.500025 0.499975 0.497512

The limit as x → 1 is 1
2 .

x 0.99 0.9999 1.0001 1.01

x2 − 1

x − 1
1.99 1.9999 2.0001 2.01

The limit as x → 1 is 2.

x 0.99 0.9999 1.0001 1.01

x2 − 1

x3 − 1
0.670011 0.666700 0.666633 0.663344

The limit as x → 1 is 2
3 .

x 0.99 0.9999 1.0001 1.01

x3 − 1

x2 − 1
1.492513 1.499925 1.500075 1.507512

The limit as x → 1 is 3
2 .
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• For general m and n, we have lim
x→1

xn − 1

xm − 1
= n

m
.

•

x 0.99 0.9999 1.0001 1.01

x − 1

x3 − 1
0.336689 0.333367 0.333300 0.330022

The limit as x → 1 is 1
3 .

x 0.99 0.9999 1.0001 1.01

x3 − 1

x − 1
2.9701 2.9997 3.0003 3.0301

The limit as x → 1 is 3.

x 0.99 0.9999 1.0001 1.01

x3 − 1

x7 − 1
0.437200 0.428657 0.428486 0.420058

The limit as x → 1 is 3
7 ≈ 0.428571.

68. Find by numerical experimentation the positive integers k such that lim
x→0

sin(sin2 x)

xk
exists.

solution

• For k = 1, we have lim
x→0

f (x) = lim
x→0

sin(sin2 x)

x
= 0.

x −0.01 −0.0001 0.0001 0.01

f (x) −0.01 −0.0001 0.0001 0.01

• For k = 2, we have lim
x→0

f (x) = lim
x→0

sin(sin2 x)

x2
= 1.

x −0.01 −0.0001 0.0001 0.01

f (x) 0.999967 1.000000 1.000000 0.999967

• For k = 3, the limit does not exist.

x −0.01 −0.0001 0.0001 0.01

f (x) −102 −104 104 102

Indeed, as x → 0−, f (x) = sin(sin2 x)

x3
→ −∞, whereas as x → 0+, f (x) = sin(sin2 x)

x3
→ ∞.

• For k = 4, we have lim
x→0

f (x) = lim
x→0

sin(sin2 x)

x4
= ∞.

x −0.01 −0.0001 0.0001 0.01

f (x) 104 108 108 104

• For k = 5, the limit does not exist.

x −0.01 −0.0001 0.0001 0.01

f (x) −106 −1012 1012 106

Indeed, as x → 0−, f (x) = sin(sin2 x)

x5 → −∞, whereas as x → 0+, f (x) = sin(sin2 x)

x5 → ∞.
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• For k = 6, we have lim
x→0

f (x) = lim
x→0

sin(sin2 x)

x6
= ∞.

x −0.01 −0.0001 0.0001 0.01

f (x) 108 1016 1016 108

• SUMMARY

– For k = 1, the limit is 0.
– For k = 2, the limit is 1.
– For odd k > 2, the limit does not exist.
– For even k > 2, the limit is ∞.

69. Plot the graph of f (x) = 2x − 8

x − 3
.

(a) Zoom in on the graph to estimate L = lim
x→3

f (x).

(b) Explain why

f (2.99999) ≤ L ≤ f (3.00001)

Use this to determine L to three decimal places.

solution
(a)

5.555

5.565

5.545

5.535

5.525

y

x = 3

y = 2
x − 8

x − 3

(b) It is clear that the graph of f rises as we move to the right. Mathematically, we may express this observation as:
whenever u < v, f (u) < f (v). Because

2.99999 < 3 = lim
x→3

f (x) < 3.00001,

it follows that

f (2.99999) < L = lim
x→3

f (x) < f (3.00001).

With f (2.99999) ≈ 5.54516 and f (3.00001) ≈ 5.545195, the above inequality becomes 5.54516 < L < 5.545195;
hence, to three decimal places, L = 5.545.

70. The function f (x) = 21/x − 2−1/x

21/x + 2−1/x
is defined for x �= 0.

(a) Investigate lim
x→0+ f (x) and lim

x→0− f (x) numerically.

(b) Plot the graph of f and describe its behavior near x = 0.

solution
(a)

x −0.3 −0.2 −0.1 0.1 0.2 0.3

f (x) −0.980506 −0.998049 −0.999998 0.999998 0.998049 0.980506

(b) As x → 0−, f (x) → −1, whereas as x → 0+, f (x) → 1.

−0.5

0.5

−1

1

y

0.5 1−1 −0.5
x
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2.3 Basic Limit Laws

Preliminary Questions
1. State the Sum Law and Quotient Law.

solution Suppose limx→c f (x) and limx→c g(x) both exist. The Sum Law states that

lim
x→c

(f (x) + g(x)) = lim
x→c

f (x) + lim
x→c

g(x).

Provided limx→c g(x) �= 0, the Quotient Law states that

lim
x→c

f (x)

g(x)
= limx→c f (x)

limx→c g(x)
.

2. Which of the following is a verbal version of the Product Law (assuming the limits exist)?

(a) The product of two functions has a limit.

(b) The limit of the product is the product of the limits.

(c) The product of a limit is a product of functions.

(d) A limit produces a product of functions.

solution The verbal version of the Product Law is (b): The limit of the product is the product of the limits.

3. Which statement is correct? The Quotient Law does not hold if:

(a) The limit of the denominator is zero.

(b) The limit of the numerator is zero.

solution Statements (a) is correct. The Quotient Law does not hold if the limit of the denominator is zero.

Exercises
In Exercises 1–24, evaluate the limit using the Basic Limit Laws and the limits lim

x→c
xp/q = cp/q and lim

x→c
k = k.

1. lim
x→9

x

solution lim
x→9

x = 9.

2. lim
x→−3

14

solution lim
x→−3

14 = 14.

3. lim
x→ 1

2

x4

solution lim
x→ 1

2

x4 =
(

1

2

)4
= 1

16
.

4. lim
z→27

z2/3

solution lim
z→27

z2/3 = 272/3 = 9.

5. lim
t→2

t−1

solution lim
t→2

t−1 = 2−1 = 1

2
.

6. lim
x→5

x−2

solution lim
x→5

x−2 = 5−2 = 1

25
.

7. lim
x→0.2

(3x + 4)

solution Using the Sum Law and the Constant Multiple Law:

lim
x→0.2

(3x + 4) = lim
x→0.2

3x + lim
x→0.2

4

= 3 lim
x→0.2

x + lim
x→0.2

4 = 3(0.2) + 4 = 4.6.
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8. lim
x→ 1

3

(3x3 + 2x2)

solution Using the Sum Law, the Constant Multiple Law and the Powers Law:

lim
x→ 1

3

(3x3 + 2x2) = lim
x→ 1

3

3x3 + lim
x→ 1

3

2x2

= 3 lim
x→ 1

3

x3 + 2 lim
x→ 1

3

x2

= 3

(
1

3

)3
+ 2

(
1

3

)2
= 1

3
.

9. lim
x→−1

(3x4 − 2x3 + 4x)

solution Using the Sum Law, the Constant Multiple Law and the Powers Law:

lim
x→−1

(3x4 − 2x3 + 4x) = lim
x→−1

3x4 − lim
x→−1

2x3 + lim
x→−1

4x

= 3 lim
x→−1

x4 − 2 lim
x→−1

x3 + 4 lim
x→−1

x

= 3(−1)4 − 2(−1)3 + 4(−1) = 3 + 2 − 4 = 1.

10. lim
x→8

(3x2/3 − 16x−1)

solution Using the Sum Law, the Constant Multiple Law and the Powers Law:

lim
x→8

(3x2/3 − 16x−1) = lim
x→8

3x2/3 − lim
x→8

16x−1

= 3 lim
x→8

x2/3 − 16 lim
x→8

x−1

= 3(8)2/3 − 16(8)−1 = 3(4) − 2 = 10.

11. lim
x→2

(x + 1)(3x2 − 9)

solution Using the Product Law, the Sum Law and the Constant Multiple Law:

lim
x→2

(x + 1)
(

3x2 − 9
)

=
(

lim
x→2

x + lim
x→2

1

) (
lim
x→2

3x2 − lim
x→2

9

)

= (2 + 1)

(
3 lim

x→2
x2 − 9

)

= 3(3(2)2 − 9) = 9.

12. lim
x→ 1

2

(4x + 1)(6x − 1)

solution Using the Product Law, the Sum Law and the Constant Multiple Law:

lim
x→1/2

(4x + 1)(6x − 1) =
(

lim
x→1/2

(4x + 1)

) (
lim

x→1/2
(6x − 1)

)

=
(

lim
x→1/2

4x + lim
x→1/2

1

) (
lim

x→1/2
6x − lim

x→1/2
1

)

=
(

4 lim
x→1/2

x + lim
x→1/2

1

) (
6 lim

x→1/2
x − lim

x→1/2
1

)

=
(

4 · 1

2
+ 1

) (
6 · 1

2
− 1

)
= 3(2) = 6.

13. lim
t→4

3t − 14

t + 1

solution Using the Quotient Law, the Sum Law and the Constant Multiple Law:

lim
t→4

3t − 14

t + 1
=

lim
t→4

(3t − 14)

lim
t→4

(t + 1)
=

3 lim
t→4

t − lim
t→4

14

lim
t→4

t + lim
t→4

1
= 3 · 4 − 14

4 + 1
= −2

5
.
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14. lim
z→9

√
z

z − 2

solution Using the Quotient Law, the Powers Law and the Sum Law:

lim
z→9

√
z

z − 2
=

lim
z→9

√
z

lim
z→9

(z − 2)
=

lim
z→9

√
z

lim
z→9

z − lim
z→9

2
= 3

7
.

15. lim
y→ 1

4

(16y + 1)(2y1/2 + 1)

solution Using the Product Law, the Sum Law, the Constant Multiple Law and the Powers Law:

lim
y→ 1

4

(16y + 1)(2y1/2 + 1) =
(

lim
y→ 1

4

(16y + 1)

) (
lim

y→ 1
4

(2y1/2 + 1)

)

=
(

16 lim
y→ 1

4

y + lim
y→ 1

4

1

) (
2 lim

y→ 1
4

y1/2 + lim
y→ 1

4

1

)

=
(

16

(
1

4

)
+ 1

) (
2

(
1

2

)
+ 1

)
= 10.

16. lim
x→2

x(x + 1)(x + 2)

solution Using the Product Law and Sum Law:

lim
x→2

x(x + 1)(x + 2) =
(

lim
x→2

x

) (
lim
x→2

(x + 1)

) (
lim
x→2

(x + 2)

)

= 2

(
lim
x→2

x + lim
x→2

1

) (
lim
x→2

x + lim
x→2

2

)

= 2(2 + 1)(2 + 2) = 24

17. lim
y→4

1√
6y + 1

solution Using the Quotient Law, the Powers Law, the Sum Law and the Constant Multiple Law:

lim
y→4

1√
6y + 1

= 1

lim
y→4

√
6y + 1

= 1√
6 lim

y→4
y + 1

= 1√
6(4) + 1

= 1

5
.

18. lim
w→7

√
w + 2 + 1√
w − 3 − 1

solution Using the Quotient Law, the Sum Law and the Powers Law:

lim
w→7

√
w + 2 + 1√
w − 3 − 1

=
lim

w→7
(
√

w + 2 + 1)

lim
w→7

(
√

w − 3 − 1)

=
√

lim
w→7

(w + 2) + 1√
lim

w→7
(w − 3) − 1

=
√

9 + 1√
4 − 1

= 4.

19. lim
x→−1

x

x3 + 4x

solution Using the Quotient Law, the Sum Law, the Powers Law and the Constant Multiple Law:

lim
x→−1

x

x3 + 4x
=

lim
x→−1

x

lim
x→−1

x3 + 4 lim
x→−1

x
= −1

(−1)3 + 4(−1)
= 1

5
.
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20. lim
t→−1

t2 + 1

(t3 + 2)(t4 + 1)

solution Using the Quotient Law, the Product Law, the Sum Law and the Powers Law:

lim
x→−1

t2 + 1

(t3 + 2)(t4 + 1)
=

lim
x→−1

t2 + lim
x→−1

1(
lim

x→−1
t3 + lim

x→−1
2

) (
lim

x→−1
t4 + lim

x→−1
1

)

= (−1)2 + 1

((−1)3 + 2)((−1)4 + 1)
= 2

(1)(2)
= 1.

21. lim
t→25

3
√

t − 1
5 t

(t − 20)2

solution Using the Quotient Law, the Sum Law, the Constant Multiple Law and the Powers Law:

lim
t→25

3
√

t − 1
5 t

(t − 20)2
=

3
√

lim
t→25

t − 1
5 lim

t→25
t

(
lim

t→25
t − 20

)2
= 3(5) − 1

5 (25)

52
= 2

5
.

22. lim
y→ 1

3

(18y2 − 4)4

solution Using the Powers Law, the Sum Law and the Constant Multiple Law:

lim
y→ 1

3

(18y2 − 4)4 =
(

18 lim
y→ 1

3

y2 − 4

)4

= (2 − 4)4 = 16.

23. lim
t→ 3

2

(4t2 + 8t − 5)3/2

solution Using the Powers Law, the Sum Law and the Constant Multiple Law:

lim
t→ 3

2

(4t2 + 8t − 5)3/2 =
(

4 lim
t→ 3

2

t2 + 8 lim
t→ 3

2

t − 5

)3/2

= (9 + 12 − 5)3/2 = 64.

24. lim
t→7

(t + 2)1/2

(t + 1)2/3

solution Using the Quotient Law, the Powers Law and the Sum Law:

lim
t→7

(t + 2)1/2

(t + 1)2/3
=

(
lim
t→7

t + 2

)1/2

(
lim
t→7

t + 1

)2/3
= 91/2

82/3
= 3

4
.

25. Use the Quotient Law to prove that if lim
x→c

f (x) exists and is nonzero, then

lim
x→c

1

f (x)
= 1

lim
x→c

f (x)

solution Since lim
x→c

f (x) is nonzero, we can apply the Quotient Law:

lim
x→c

(
1

f (x)

)
=

(
lim
x→c

1
)

(
lim
x→c

f (x)
) = 1

lim
x→c

f (x)
.

26. Assuming that lim
x→6

f (x) = 4, compute:

(a) lim
x→6

f (x)2 (b) lim
x→6

1

f (x)
(c) lim

x→6
x
√

f (x)
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solution
(a) Using the Powers Law:

lim
x→6

f (x)2 =
(

lim
x→6

f (x)

)2
= 42 = 16.

(b) Since lim
x→6

f (x) �= 0, we may apply the Quotient Law:

lim
x→6

1

f (x)
= 1

lim
x→6

f (x)
= 1

4
.

(c) Using the Product Law and Powers Law:

lim
x→6

x
√

f (x) =
(

lim
x→6

x

) (
lim
x→6

f (x)

)1/2
= 6(4)1/2 = 12.

In Exercises 27–30, evaluate the limit assuming that lim
x→−4

f (x) = 3 and lim
x→−4

g(x) = 1.

27. lim
x→−4

f (x)g(x)

solution lim
x→−4

f (x)g(x) = lim
x→−4

f (x) lim
x→−4

g(x) = 3 · 1 = 3.

28. lim
x→−4

(2f (x) + 3g(x))

solution

lim
x→−4

(2f (x) + 3g(x)) = 2 lim
x→−4

f (x) + 3 lim
x→−4

g(x)

= 2 · 3 + 3 · 1 = 6 + 3 = 9.

29. lim
x→−4

g(x)

x2

solution Since lim
x→−4

x2 �= 0, we may apply the Quotient Law, then applying the Powers Law:

lim
x→−4

g(x)

x2
=

lim
x→−4

g(x)

lim
x→−4

x2
= 1(

lim
x→−4

x

)2
= 1

16
.

30. lim
x→−4

f (x) + 1

3g(x) − 9

solution

lim
x→−4

f (x) + 1

3g(x) − 9
=

lim
x→−4

f (x) + lim
x→−4

1

3 lim
x→−4

g(x) − lim
x→−4

9
= 3 + 1

3 · 1 − 9
= 4

−6
= −2

3
.

31. Can the Quotient Law be applied to evaluate lim
x→0

sin x

x
? Explain.

solution The limit Quotient Law cannot be applied to evaluate lim
x→0

sin x

x
since lim

x→0
x = 0. This violates a condition

of the Quotient Law. Accordingly, the rule cannot be employed.

32. Show that the Product Law cannot be used to evaluate the limit lim
x→π/2

(
x − π

2

)
tan x.

solution The limit Product Law cannot be applied to evaluate lim
x→π/2

(x − π/2) tan x since lim
x→π/2

tan x does not

exist (for example, as x → π/2−, tan x → ∞). This violates a hypothesis of the Product Law. Accordingly, the rule
cannot be employed.

33. Give an example where lim
x→0

(f (x) + g(x)) exists but neither lim
x→0

f (x) nor lim
x→0

g(x) exists.

solution Let f (x) = 1/x and g(x) = −1/x. Then lim
x→0

(f (x) + g(x)) = lim
x→0

0 = 0 However, lim
x→0

f (x) = lim
x→0

1/x

and lim
x→0

g(x) = lim
x→0

−1/x do not exist.
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Further Insights and Challenges
34. Show that if both lim

x→c
f (x) g(x) and lim

x→c
g(x) exist and lim

x→c
g(x) �= 0, then lim

x→c
f (x) exists. Hint: Write f (x) =

f (x) g(x)

g(x)
.

solution Given that lim
x→c

f (x)g(x) = L and lim
x→c

g(x) = M �= 0 both exist, observe that

lim
x→c

f (x) = lim
x→c

f (x)g(x)

g(x)
=

lim
x→c

f (x)g(x)

lim
x→c

g(x)
= L

M

also exists.

35. Suppose that lim
t→3

tg(t) = 12. Show that lim
t→3

g(t) exists and equals 4.

solution We are given that lim
t→3

tg(t) = 12. Since lim
t→3

t = 3 �= 0, we may apply the Quotient Law:

lim
t→3

g(t) = lim
t→3

tg(t)

t
=

lim
t→3

tg(t)

lim
t→3

t
= 12

3
= 4.

36. Prove that if lim
t→3

h(t)
t = 5, then lim

t→3
h(t) = 15.

solution Given that lim
t→3

h(t)

t
= 5, observe that lim

t→3
t = 3. Now use the Product Law:

lim
t→3

h(t) = lim
t→3

t
h(t)

t
=

(
lim
t→3

t

) (
lim
t→3

h(t)

t

)
= 3 · 5 = 15.

37. Assuming that lim
x→0

f (x)
x = 1, which of the following statements is necessarily true? Why?

(a) f (0) = 0 (b) lim
x→0

f (x) = 0

solution

(a) Given that lim
x→0

f (x)

x
= 1, it is not necessarily true that f (0) = 0. A counterexample is provided by f (x) ={

x, x �= 0

5, x = 0
.

(b) Given that lim
x→0

f (x)

x
= 1, it is necessarily true that lim

x→0
f (x) = 0. For note that lim

x→0
x = 0, whence

lim
x→0

f (x) = lim
x→0

x
f (x)

x
=

(
lim
x→0

x

) (
lim
x→0

f (x)

x

)
= 0 · 1 = 0.

38. Prove that if lim
x→c

f (x) = L �= 0 and lim
x→c

g(x) = 0, then the limit lim
x→c

f (x)
g(x)

does not exist.

solution Suppose that lim
x→c

f (x)

g(x)
exists. Then

L = lim
x→c

f (x) = lim
x→c

g(x) · f (x)

g(x)
= lim

x→c
g(x) · lim

x→c

f (x)

g(x)
= 0 · lim

x→c

f (x)

g(x)
= 0.

But, we were given that L �= 0, so we have arrived at a contradiction. Thus, lim
x→c

f (x)

g(x)
does not exist.

39. Suppose that lim
h→0

g(h) = L.

(a) Explain why lim
h→0

g(ah) = L for any constant a �= 0.

(b) If we assume instead that lim
h→1

g(h) = L, is it still necessarily true that lim
h→1

g(ah) = L?

(c) Illustrate (a) and (b) with the function f (x) = x2.

solution
(a) As h → 0, ah → 0 as well; hence, if we make the change of variable w = ah, then

lim
h→0

g(ah) = lim
w→0

g(w) = L.
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(b) No. As h → 1, ah → a, so we should not expect lim
h→1

g(ah) = lim
h→1

g(h).

(c) Let g(x) = x2. Then

lim
h→0

g(h) = 0 and lim
h→0

g(ah) = lim
h→0

(ah)2 = 0.

On the other hand,

lim
h→1

g(h) = 1 while lim
h→1

g(ah) = lim
h→1

(ah)2 = a2,

which is equal to the previous limit if and only if a = ±1.

40. Assume that L(a) = lim
x→0

ax − 1

x
exists for all a > 0. Assume also that lim

x→0
ax = 1.

(a) Prove that L(ab) = L(a) + L(b) for a, b > 0. Hint: (ab)x − 1 = ax(bx − 1) + (ax − 1). This shows that L(a)

“behaves” like a logarithm. We will see that L(a) = ln a in Section 3.10.

(b) Verify numerically that L(12) = L(3) + L(4).

solution

(a) Let a, b > 0. Then

L(ab) = lim
x→0

(ab)x − 1

x
= lim

x→0

ax(bx − 1) + (ax − 1)

x

= lim
x→0

ax · lim
x→0

bx − 1

x
+ lim

x→0

ax − 1

x

= 1 · L(b) + L(a) = L(a) + L(b).

(b) From the table below, we estimate that, to three decimal places, L(3) = 1.099, L(4) = 1.386 and L(12) = 2.485.
Thus,

L(12) = 2.485 = 1.099 + 1.386 = L(3) + L(4).

x −0.01 −0.001 −0.0001 0.0001 0.001 0.01

(3x − 1)/x 1.092600 1.098009 1.098552 1.098673 1.099216 1.104669

(4x − 1)/x 1.376730 1.385334 1.386198 1.386390 1.387256 1.395948

(12x − 1)/x 2.454287 2.481822 2.484600 2.485215 2.488000 2.516038

2.4 Limits and Continuity

Preliminary Questions
1. Which property of f (x) = x3 allows us to conclude that lim

x→2
x3 = 8?

solution We can conclude that limx→2 x3 = 8 because the function x3 is continuous at x = 2.

2. What can be said about f (3) if f is continuous and lim
x→3

f (x) = 1
2 ?

solution If f is continuous and limx→3 f (x) = 1
2 , then f (3) = 1

2 .

3. Suppose that f (x) < 0 if x is positive and f (x) > 1 if x is negative. Can f be continuous at x = 0?

solution Since f (x) < 0 when x is positive and f (x) > 1 when x is negative, it follows that

lim
x→0+ f (x) ≤ 0 and lim

x→0− f (x) ≥ 1.

Thus, limx→0 f (x) does not exist, so f cannot be continuous at x = 0.

4. Is it possible to determine f (7) if f (x) = 3 for all x < 7 and f is right-continuous at x = 7? What if f is
left-continuous?

solution No. To determine f (7), we need to combine either knowledge of the values of f (x) for x < 7 with left-
continuity or knowledge of the values of f (x) for x > 7 with right-continuity.
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5. Are the following true or false? If false, state a correct version.

(a) f (x) is continuous at x = a if the left- and right-hand limits of f (x) as x → a exist and are equal.

(b) f (x) is continuous at x = a if the left- and right-hand limits of f (x) as x → a exist and equal f (a).

(c) If the left- and right-hand limits of f (x) as x → a exist, then f has a removable discontinuity at x = a.

(d) If f (x) and g(x) are continuous at x = a, then f (x) + g(x) is continuous at x = a.

(e) If f (x) and g(x) are continuous at x = a, then f (x)/g(x) is continuous at x = a.

solution
(a) False. The correct statement is “f (x) is continuous at x = a if the left- and right-hand limits of f (x) as x → a exist
and equal f (a).”

(b) True.

(c) False. The correct statement is “If the left- and right-hand limits of f (x) as x → a are equal but not equal to f (a),
then f has a removable discontinuity at x = a.”

(d) True.

(e) False. The correct statement is “If f (x) and g(x) are continuous at x = a and g(a) �= 0, then f (x)/g(x) is continuous
at x = a.”

Exercises
1. Referring to Figure 14, state whether f (x) is left- or right-continuous (or neither) at each point of discontinuity. Does

f (x) have any removable discontinuities?

1 2 3 4 5 6
x

5

4

3

2

1

y

FIGURE 14 Graph of y = f (x)

solution

• The function f is discontinuous at x = 1; it is right-continuous there.
• The function f is discontinuous at x = 3; it is neither left-continuous nor right-continuous there.
• The function f is discontinuous at x = 5; it is left-continuous there.

However, these discontinuities are not removable.

Exercises 2–4 refer to the function g(x) in Figure 15.

1 2 3 4 5 6
x

5

4

3

2

1

y

FIGURE 15 Graph of y = g(x)

2. State whether g(x) is left- or right-continuous (or neither) at each of its points of discontinuity.

solution

• The function g is discontinuous at x = 1; it is left-continuous there.
• The function g is discontinuous at x = 3; it is neither left-continuous nor right-continuous there.
• The function g is discontinuous at x = 5; it is right-continuous there.

3. At which point c does g(x) have a removable discontinuity? How should g(c) be redefined to make g continuous at
x = c?

solution Because limx→3 g(x) exists, the function g has a removable discontinuity at x = 3. Assigning g(3) = 4
makes g continuous at x = 3.
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4. Find the point c1 at which g(x) has a jump discontinuity but is left-continuous. How should g(c1) be redefined to
make g right-continuous at x = c1?

solution The function g has a jump discontinuity at x = 1, but is left-continuous there. Assigning g(1) = 3 makes g

right-continuous at x = 1 (but no longer left-continuous).

5. In Figure 16, determine the one-sided limits at the points of discontinuity. Which discontinuity is removable and how
should f be redefined to make it continuous at this point?

42−2

6

x

y

FIGURE 16

solution The function f is discontinuous at x = 0, at which lim
x→0− f (x) = ∞ and lim

x→0+ f (x) = 2. The function f

is also discontinuous at x = 2, at which lim
x→2− f (x) = 6 and lim

x→2+ f (x) = 6. Because the two one-sided limits exist

and are equal at x = 2, the discontinuity at x = 2 is removable. Assigning f (2) = 6 makes f continuous at x = 2.

6. Suppose that f (x) = 2 for x < 3 and f (x) = −4 for x > 3.

(a) What is f (3) if f is left-continuous at x = 3?

(b) What is f (3) if f is right-continuous at x = 3?

solution f (x) = 2 for x < 3 and f (x) = −4 for x > 3.

• If f is left-continuous at x = 3, then f (3) = limx→3− f (x) = 2.
• If f is right-continuous at x = 3, then f (3) = limx→0+ f (x) = −4.

In Exercises 7–16, use the Laws of Continuity and Theorems 2 and 3 to show that the function is continuous.

7. f (x) = x + sin x

solution Since x and sin x are continuous, so is x + sin x by Continuity Law (i).

8. f (x) = x sin x

solution Since x and sin x are continuous, so is x sin x by Continuity Law (iii).

9. f (x) = 3x + 4 sin x

solution Since x and sin x are continuous, so are 3x and 4 sin x by Continuity Law (ii). Thus 3x + 4 sin x is continuous
by Continuity Law (i).

10. f (x) = 3x3 + 8x2 − 20x

solution

• Since x is continuous, so are x3 and x2 by repeated applications of Continuity Law (iii).
• Hence 3x3, 8x2, and −20x are continuous by Continuity Law (ii).
• Finally, 3x3 + 8x2 − 20x is continuous by Continuity Law (i).

11. f (x) = 1

x2 + 1

solution

• Since x is continuous, so is x2 by Continuity Law (iii).
• Recall that constant functions, such as 1, are continuous. Thus x2 + 1 is continuous.

• Finally,
1

x2 + 1
is continuous by Continuity Law (iv) because x2 + 1 is never 0.

12. f (x) = x2 − cos x

3 + cos x

solution

• Since x is continuous, so is x2 by Continuity Law (iii).
• Since cos x is continuous, so is − cos x by Continuity Law (ii).
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• Accordingly, x2 − cos x is continuous by Continuity Law (i).
• Since 3 (a constant function) and cos x are continuous, so is 3 + cos x by Continuity Law (i).

• Finally,
x2 − cos x

3 + cos x
is continuous by Continuity Law (iv) because 3 + cos x is never 0.

13. f (x) = cos(x2)

solution The function f (x) is a composite of two continuous functions: cos x and x2, so f (x) is continuous by
Theorem 5, which states that a composite of continuous functions is continuous.

14. f (x) = tan−1(4x)

solution The function f (x) is a composite of two continuous functions: tan−1 x and 4x , so f (x) is continuous by
Theorem 5, which states that a composite of continuous functions is continuous.

15. f (x) = ex cos 3x

solution ex and cos 3x are continuous, so ex cos 3x is continuous by Continuity Law (iii).

16. f (x) = ln(x4 + 1)

solution

• Since x is continuous, so is x4 by repeated application of Continuity Law (iii).
• Since 1 (a constant function) and x4 are continuous, so is x4 + 1 by Continuity Law (i).
• Finally, because x4 + 1 > 0 for all x and ln x is continuous for x > 0, the composite function ln(x4 + 1) is

continuous.

In Exercises 17–34, determine the points of discontinuity. State the type of discontinuity (removable, jump, infinite, or
none of these) and whether the function is left- or right-continuous.

17. f (x) = 1

x

solution The function 1/x is discontinuous at x = 0, at which there is an infinite discontinuity. The function is neither
left- nor right-continuous at x = 0.

18. f (x) = |x|
solution The function f (x) = |x| is continuous everywhere.

19. f (x) = x − 2

|x − 1|
solution The function

x − 2

|x − 1| is discontinuous at x = 1, at which there is an infinite discontinuity. The function is

neither left- nor right-continuous at x = 1.

20. f (x) = [x]
solution This function has a jump discontinuity at x = n for every integer n. It is continuous at all other values of x.
For every integer n,

lim
x→n+[x] = n

since [x] = n for all x between n and n + 1. This shows that [x] is right-continuous at x = n. On the other hand,

lim
x→n−[x] = n − 1

since [x] = n − 1 for all x between n − 1 and n. Thus [x] is not left-continuous.

21. f (x) =
[

1

2
x

]

solution The function
[

1
2x

]
is discontinuous at even integers, at which there are jump discontinuities. Because

lim
x→2n+

[
1

2
x

]
= n

but

lim
x→2n−

[
1

2
x

]
= n − 1,

it follows that this function is right-continuous at the even integers but not left-continuous.
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22. g(t) = 1

t2 − 1

solution The function f (t) = 1

t2 − 1
= 1

(t − 1)(t + 1)
is discontinuous at t = −1 and t = 1, at which there are

infinite discontinuities. The function is neither left- nor right- continuous at either point of discontinuity.

23. f (x) = x + 1

4x − 2

solution The function f (x) = x + 1

4x − 2
is discontinuous at x = 1

2 , at which there is an infinite discontinuity. The

function is neither left- nor right-continuous at x = 1
2 .

24. h(z) = 1 − 2z

z2 − z − 6

solution The function f (z) = 1 − 2z

z2 − z − 6
= 1 − 2z

(z + 2)(z − 3)
is discontinuous at z = −2 and z = 3, at which there

are infinite discontinuities. The function is neither left- nor right- continuous at either point of discontinuity.

25. f (x) = 3x2/3 − 9x3

solution The function f (x) = 3x2/3 − 9x3 is defined and continuous for all x.

26. g(t) = 3t−2/3 − 9t3

solution The function g(t) = 3t−2/3 − 9t3 is discontinuous at t = 0, at which there is an infinite discontinuity. The
function is neither left- nor right-continuous at t = 0.

27. f (x) =
⎧⎨
⎩

x − 2

|x − 2| x �= 2

−1 x = 2

solution For x > 2, f (x) = x − 2

(x − 2)
= 1. For x < 2, f (x) = (x − 2)

(2 − x)
= −1. The function has a jump discontinuity

at x = 2. Because

lim
x→2− f (x) = −1 = f (2)

but

lim
x→2+ f (x) = 1 �= f (2),

it follows that this function is left-continuous at x = 2 but not right-continuous.

28. f (x) =
{

cos
1

x
x �= 0

1 x = 0

solution The function cos
(

1
x

)
is discontinuous at x = 0, at which there is an oscillatory discontinuity. Because

neither

lim
x→0− f (x) nor lim

x→0+ f (x)

exist, the function is neither left- nor right-continuous at x = 0.

29. g(t) = tan 2t

solution The function g(t) = tan 2t = sin 2t

cos 2t
is discontinuous whenever cos 2t = 0; i.e., whenever

2t = (2n + 1)π

2
or t = (2n + 1)π

4
,

where n is an integer. At every such value of t there is an infinite discontinuity. The function is neither left- nor right-
continuous at any of these points of discontinuity.

30. f (x) = csc(x2)

solution The function f (x) = csc(x2) = 1

sin(x2)
is discontinuous whenever sin(x2) = 0; i.e., whenever x2 = nπ

or x = ±√
nπ , where n is a positive integer. At every such value of x there is an infinite discontinuity. The function is

neither left- nor right-continuous at any of these points of discontinuity.

31. f (x) = tan(sin x)

solution The function f (x) = tan(sin x) is continuous everywhere. Reason: sin x is continuous everywhere and tan u

is continuous on
(−π

2 , π
2

)
—and in particular on −1 ≤ u = sin x ≤ 1. Continuity of tan(sin x) follows by the continuity

of composite functions.
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32. f (x) = cos(π [x])
solution The function f (x) = cos(π [x]) has a jump discontinuity at x = n for every integer n. The function is
right-continuous but not left-continuous at each of these points of discontinuity.

33. f (x) = 1

ex − e−x

solution The function f (x) = 1

ex − e−x
is discontinuous at x = 0, at which there is an infinite discontinuity. The

function is neither left- nor right-continuous at x = 0.

34. f (x) = ln |x − 4|
solution The function f (x) = ln |x − 4| is discontinuous at x = 4, at which there is an infinite discontinuity. The
function is neither left- nor right-continuous at x = 4.

In Exercises 35–48, determine the domain of the function and prove that it is continuous on its domain using the Laws of
Continuity and the facts quoted in this section.

35. f (x) = 2 sin x + 3 cos x

solution The domain of 2 sin x + 3 cos x is all real numbers. Both sin x and cos x are continuous on this domain, so
2 sin x + 3 cos x is continuous by Continuity Laws (i) and (ii).

36. f (x) =
√

x2 + 9

solution The domain of
√

x2 + 9 is all real numbers, as x2 + 9 > 0 for all x. Since
√

x and the polynomial x2 + 9

are both continuous, so is the composite function
√

x2 + 9.

37. f (x) = √
x sin x

solution This function is defined as long as x ≥ 0. Since
√

x and sin x are continuous, so is
√

x sin x by Continuity
Law (iii).

38. f (x) = x2

x + x1/4

solution This function is defined as long as x ≥ 0 and x + x1/4 �= 0, and so the domain is all x > 0. Since x is

continuous, so are x2 and x + x1/4 by Continuity Laws (iii) and (i); hence, by Continuity Law (iv), so is
x2

x + x1/4
.

39. f (x) = x2/32x

solution The domain of x2/32x is all real numbers as the denominator of the rational exponent is odd. Both x2/3 and

2x are continuous on this domain, so x2/32x is continuous by Continuity Law (iii).

40. f (x) = x1/3 + x3/4

solution The domain of x1/3 + x3/4 is x ≥ 0. On this domain, both x1/3 and x3/4 are continuous, so x1/3 + x3/4 is
continuous by Continuity Law (i).

41. f (x) = x−4/3

solution This function is defined for all x �= 0. Because the function x4/3 is continuous and not equal to zero for
x �= 0, it follows that

x−4/3 = 1

x4/3

is continuous for x �= 0 by Continuity Law (iv).

42. f (x) = ln(9 − x2)

solution The domain of ln(9 − x2) is all x such that 9 − x2 > 0, or |x| < 3. The polynomial 9 − x2 is continuous for

all real numbers and ln x is continuous for x > 0; therefore, the composite function ln(9 − x2) is continuous for |x| < 3.

43. f (x) = tan2 x

solution The domain of tan2 x is all x �= ±(2n − 1)π/2 where n is a positive integer. Because tan x is continuous on

this domain, it follows from Continuity Law (iii) that tan2 x is also continuous on this domain.

44. f (x) = cos(2x)

solution The domain of cos(2x) is all real numbers. Because the functions cos x and 2x are continuous on this domain,
so is the composite function cos(2x).
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45. f (x) = (x4 + 1)3/2

solution The domain of (x4 + 1)3/2 is all real numbers as x4 + 1 > 0 for all x. Because x3/2 and the polynomial

x4 + 1 are both continuous, so is the composite function (x4 + 1)3/2.

46. f (x) = e−x2

solution The domain of e−x2
is all real numbers. Because ex and the polynomial −x2 are both continuous for all real

numbers, so is the composite function e−x2
.

47. f (x) = cos(x2)

x2 − 1

solution The domain for this function is all x �= ±1. Because the functions cos x and x2 are continuous on this

domain, so is the composite function cos(x2). Finally, because the polynomial x2 − 1 is continuous and not equal to zero

for x �= ±1, the function
cos(x2)

x2 − 1
is continuous by Continuity Law (iv).

48. f (x) = 9tan x

solution The domain of 9tan x is all x �= ±(2n − 1)π/2 where n is a positive integer. Because tan x and 9x are
continuous on this domain, it follows that the composite function 9tan x is also continuous on this domain.

49. Show that the function

f (x) =

⎧⎪⎨
⎪⎩

x2 + 3 for x < 1

10 − x for 1 ≤ x ≤ 2

6x − x2 for x > 2

is continuous for x �= 1, 2. Then compute the right- and left-hand limits at x = 1, 2, and determine whether f (x) is
left-continuous, right-continuous, or continuous at these points (Figure 17).

621

9

y = 10 − x

y = 6x − x2

y = x2 + 3
x

y

FIGURE 17

solution Let’s start with x �= 1, 2.

• Because x is continuous, so is x2 by Continuity Law (iii). The constant function 3 is also continuous, so x2 + 3 is
continuous by Continuity Law (i). Therefore, f (x) is continuous for x < 1.

• Because x and the constant function 10 are continuous, the function 10 − x is continuous by Continuity Law (i).
Therefore, f (x) is continuous for 1 < x < 2.

• Because x is continuous, x2 is continuous by Continuity Law (iii) and 6x is continuous by Continuity Law (ii).
Therefore, 6x − x2 is continuous by Continuity Law (i), so f (x) is continuous for x > 2.

At x = 1, f (x) has a jump discontinuity because the one-sided limits exist but are not equal:

lim
x→1− f (x) = lim

x→1−(x2 + 3) = 4, lim
x→1+ f (x) = lim

x→1+(10 − x) = 9.

Furthermore, the right-hand limit equals the function value f (1) = 9, so f (x) is right-continuous at x = 1. At x = 2,

lim
x→2− f (x) = lim

x→2−(10 − x) = 8, lim
x→2+ f (x) = lim

x→2+(6x − x2) = 8.

The left- and right-hand limits exist and are equal to f (2), so f (x) is continuous at x = 2.

50. Sawtooth Function Draw the graph of f (x) = x − [x]. At which points is f discontinuous? Is it left- or right-
continuous at those points?

solution Two views of the sawtooth function f (x) = x − [x] appear below. The first is the actual graph. In the second,
the jumps are “connected” so as to better illustrate its “sawtooth” nature. The function is right-continuous at integer values
of x.

11

31 2−3 −2 −1
x

y

31 2−3 −2 −1
x

y
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In Exercises 51–54, sketch the graph of f (x). At each point of discontinuity, state whether f is left- or right-continuous.

51. f (x) =
{

x2 for x ≤ 1

2 − x for x > 1

solution

−1

1

−1

x

y

1 2 3

The function f is continuous everywhere.

52. f (x) =
⎧⎨
⎩

x + 1 for x < 1

1

x
for x ≥ 1

solution

2

1

1 2 3−2 −1

−1

x

y

The function f is right-continuous at x = 1.

53. f (x) =
⎧⎨
⎩

x2 − 3x + 2

|x − 2| x �= 2

0 x = 2

solution

1

−1−2 4 6

2
3
4
5

y

x

The function f is neither left- nor right-continuous at x = 2.

54. f (x) =

⎧⎪⎨
⎪⎩

x3 + 1 for −∞ < x ≤ 0

−x + 1 for 0 < x < 2

−x2 + 10x − 15 for x ≥ 2

solution

10

5

5

−5

x

y

The function f is right-continuous at x = 2.
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55. Show that the function

f (x) =
⎧⎨
⎩

x2 − 16

x − 4
x �= 4

10 x = 4

has a removable discontinuity at x = 4.

solution To show that f (x) has a removable discontinuity at x = 4, we must establish that

lim
x→4

f (x)

exists but does not equal f (4). Now,

lim
x→4

x2 − 16

x − 4
= lim

x→4
(x + 4) = 8 �= 10 = f (4);

thus, f (x) has a removable discontinuity at x = 4. To remove the discontinuity, we must redefine f (4) = 8.

56. Define f (x) = x sin 1
x + 2 for x �= 0. Plot f (x). How should f (0) be defined so that f is continuous at

x = 0?

solution

3.0

2.5

2.0

1.5

1.0

0.5

y

x
−3 −2 −1 1 2 3

From the graph, it appears that f (0) should be defined equal to 2 to make f continuous at x = 0.

In Exercises 57–59, find the value of the constant (a, b, or c) that makes the function continuous.

57. f (x) =
{

x2 − c for x < 5

4x + 2c for x ≥ 5

solution As x → 5−, we have x2 − c → 25 − c = L. As x → 5+, we have 4x + 2c → 20 + 2c = R. Match the

limits: L = R or 25 − c = 20 + 2c implies c = 5
3 .

58. f (x) =
{

2x + 9x−1 for x ≤ 3

−4x + c for x > 3

solution As x → 3−, we have 2x + 9x−1 → 9 = L. As x → 3+, we have −4x + c → c − 12 = R. Match the
limits: L = R or 9 = c − 12 implies c = 21.

59. f (x) =

⎧⎪⎨
⎪⎩

x−1 for x < −1

ax + b for − 1 ≤ x ≤ 1
2

x−1 for x > 1
2

solution As x → −1−, x−1 → −1 while as x → −1+, ax + b → b − a. For f to be continuous at x = −1, we

must therefore have b − a = −1. Now, as x → 1
2−, ax + b → 1

2a + b while as x → 1
2+, x−1 → 2. For f to be

continuous at x = 1
2 , we must therefore have 1

2a + b = 2. Solving these two equations for a and b yields a = 2 and
b = 1.

60. Define

g(x) =

⎧⎪⎨
⎪⎩

x + 3 for x < −1

cx for − 1 ≤ x ≤ 2

x + 2 for x > 2

Find a value of c such that g(x) is

(a) left-continuous (b) right-continuous

In each case, sketch the graph of g(x).
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solution

(a) In order for g(x) to be left-continuous, we need

lim
x→−1− g(x) = lim

x→−1−(x + 3) = 2

to be equal to

lim
x→−1+ g(x) = lim

x→−1+ cx = −c.

Therefore, we must have c = −2. The graph of g(x) with c = −2 is shown below.

6

y

x

4

2

−2
−4 −3 −2 −1 1 2 3 4 5

(b) In order for g(x) to be right-continuous, we need

lim
x→2− g(x) = lim

x→2− cx = 2c

to be equal to

lim
x→2+ g(x) = lim

x→2+(x + 2) = 4.

Therefore, we must have c = 2. The graph of g(x) with c = 2 is shown below.

6

y

x

4

2

−4 −3 −2 −1 1 2 3 4 5

61. Define g(t) = tan−1
(

1

t − 1

)
for t �= 1. Answer the following questions, using a plot if necessary.

(a) Can g(1) be defined so that g(t) is continuous at t = 1?

(b) How should g(1) be defined so that g(t) is left-continuous at t = 1?

solution

(a) From the graph of g(t) shown below, we see that g has a jump discontinuity at t = 1; therefore, g(a) cannot be
defined so that g is continuous at t = 1.

y

x

−1

1

0.5 1.0 1.5 2.0

(b) To make g left-continuous at t = 1, we should define

g(1) = lim
t→1− tan−1

(
1

t−1

)
= −π

2
.

62. Each of the following statements is false. For each statement, sketch the graph of a function that provides a coun-
terexample.

(a) If lim
x→a

f (x) exists, then f (x) is continuous at x = a.

(b) If f (x) has a jump discontinuity at x = a, then f (a) is equal to either lim
x→a− f (x) or lim

x→a+ f (x).

solution Refer to the four figures shown below.

(a) The figure at the top left shows a function for which lim
x→a

f (x) exists, but the function is not continuous at x = a

because the function is not defined at x = a.
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(b) The figure at the top right shows a function that has a jump discontinuity at x = a but f (a) is not equal to either
lim

x→a− f (x) or lim
x→a− f (x).

(c) This statement can be false either when the two one-sided limits exist and are equal or when one or both of the
one-sided limits does not exist. The figure at the top left shows a function that has a discontinuity at x = a with both
one-sided limits being equal; the figure at the bottom left shows a function that has a discontinuity at x = a with a
one-sided limit that does not exist.

(d) The figure at the bottom left shows a function for which lim
x→a

f (x) does not exist and one of the one-sided limits

also does not exist; the figure at the bottom right shows a function for which lim
x→a

f (x) does not exist and neither of the

one-sided limits exists.

y yyy

xx
a a aa

xx

In Exercises 63–66, draw the graph of a function on [0, 5] with the given properties.

63. f (x) is not continuous at x = 1, but lim
x→1+ f (x) and lim

x→1− f (x) exist and are equal.

solution

54321

1

2

3

4

y

x

64. f (x) is left-continuous but not continuous at x = 2 and right-continuous but not continuous at x = 3.

solution

2

1

3

4

1 2 3 4 5

y

x

65. f (x) has a removable discontinuity at x = 1, a jump discontinuity at x = 2, and

lim
x→3− f (x) = −∞, lim

x→3+ f (x) = 2

solution

54321

1

2

3

4

y

x



April 5, 2011

124 C H A P T E R 2 LIMITS

66. f (x) is right- but not left-continuous at x = 1, left- but not right-continuous at x = 2, and neither left- nor right-
continuous at x = 3.

solution

2

1

3

4

1 2 3 4 5

y

x

In Exercises 67–80, evaluate using substitution.

67. lim
x→−1

(2x3 − 4)

solution lim
x→−1

(2x3 − 4) = 2(−1)3 − 4 = −6.

68. lim
x→2

(5x − 12x−2)

solution lim
x→2

(5x − 12x−2) = 5(2) − 12(2−2) = 10 − 12( 1
4 ) = 7.

69. lim
x→3

x + 2

x2 + 2x

solution lim
x→3

x + 2

x2 + 2x
= 3 + 2

32 + 2 · 3
= 5

15
= 1

3

70. lim
x→π

sin
(x

2
− π

)
solution lim

x→π
sin( x

2 − π) = sin(−π
2 ) = −1.

71. lim
x→ π

4

tan(3x)

solution lim
x→ π

4

tan(3x) = tan(3 · π
4 ) = tan( 3π

4 ) = −1

72. lim
x→π

1

cos x

solution lim
x→π

1

cos x
= 1

cos π
= 1

−1
= −1.

73. lim
x→4

x−5/2

solution lim
x→4

x−5/2 = 4−5/2 = 1

32
.

74. lim
x→2

√
x3 + 4x

solution lim
x→2

√
x3 + 4x =

√
23 + 4(2) = 4.

75. lim
x→−1

(1 − 8x3)3/2

solution lim
x→−1

(1 − 8x3)3/2 = (1 − 8(−1)3)3/2 = 27.

76. lim
x→2

(7x + 2

4 − x

)2/3

solution lim
x→2

(
7x + 2

4 − x

)2/3
=

(
7(2) + 2

4 − 2

)2/3
= 4.

77. lim
x→3

10x2−2x

solution lim
x→3

10x2−2x = 1032−2(3) = 1000.
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78. lim
x→− π

2

3sin x

solution lim
x→− π

2

3− sin x = 3− sin(π/2) = 1

3
.

79. lim
x→4

sin−1
(x

4

)

solution lim
x→4

sin−1
(x

4

)
= sin−1

(
lim
x→4

x

4

)
= sin−1

(
4

4

)
= π

2

80. lim
x→0

tan−1(ex)

solution lim
x→0

tan−1(ex) = tan−1
(

lim
x→0

ex

)
= tan−1(e0) = tan−1 1 = π

4

81. Suppose that f (x) and g(x) are discontinuous at x = c. Does it follow that f (x) + g(x) is discontinuous at x = c?
If not, give a counterexample. Does this contradict Theorem 1 (i)?

solution Even if f (x) and g(x) are discontinuous at x = c, it is not necessarily true that f (x) + g(x) is discontinuous

at x = c. For example, suppose f (x) = −x−1 and g(x) = x−1. Both f (x) and g(x) are discontinuous at x = 0; however,
the function f (x) + g(x) = 0, which is continuous everywhere, including x = 0. This does not contradict Theorem 1 (i),
which deals only with continuous functions.

82. Prove that f (x) = |x| is continuous for all x. Hint: To prove continuity at x = 0, consider the one-sided limits.

solution Let c < 0. Then

lim
x→c

|x| = lim
x→c

−x = −c = |c|.

Next, let c > 0. Then

lim
x→c

|x| = lim
x→c

x = c = |c|.

Finally,

lim
x→0− |x| = lim

x→0− −x = 0,

lim
x→0+ |x| = lim

x→0+ x = 0

and we recall that |0| = 0. Thus, |x| is continuous for all x.

83. Use the result of Exercise 82 to prove that if g(x) is continuous, then f (x) = |g(x)| is also continuous.

solution Recall that the composition of two continuous functions is continuous. Now, f (x) = |g(x)| is a composition
of the continuous functions g(x) and |x|, so is also continuous.

84. Which of the following quantities would be represented by continuous functions of time and which would have one
or more discontinuities?

(a) Velocity of an airplane during a flight

(b) Temperature in a room under ordinary conditions

(c) Value of a bank account with interest paid yearly

(d) The salary of a teacher

(e) The population of the world

solution

(a) The velocity of an airplane during a flight from Boston to Chicago is a continuous function of time.

(b) The temperature of a room under ordinary conditions is a continuous function of time.

(c) The value of a bank account with interest paid yearly is not a continuous function of time. It has discontinuities when
deposits or withdrawals are made and when interest is paid.

(d) The salary of a teacher is not a continuous function of time. It has discontinuities whenever the teacher gets a raise
(or whenever his or her salary is lowered).

(e) The population of the world is not a continuous function of time since it changes by a discrete amount with each birth
or death. Since it takes on such large numbers (many billions), it is often treated as a continuous function for the purposes
of mathematical modeling.



April 5, 2011

126 C H A P T E R 2 LIMITS

85. In 2009, the federal income tax T (x) on income of x dollars (up to $82,250) was determined by the formula

T (x) =

⎧⎪⎨
⎪⎩

0.10x for 0 ≤ x < 8350

0.15x − 417.50 for 8350 ≤ x < 33,950

0.25x − 3812.50 for 33,950 ≤ x < 82,250

Sketch the graph of T (x). Does T (x) have any discontinuities? Explain why, if T (x) had a jump discontinuity, it might
be advantageous in some situations to earn less money.

solution T (x), the amount of federal income tax owed on an income of x dollars in 2009, might be a discontinuous
function depending upon how the tax tables are constructed (as determined by that year’s regulations). Here is a graph of
T (x) for that particular year.

20,000

5000

10,000

15,000

40,000 60,000 80,000
x

y

If T (x) had a jump discontinuity (say at x = c), it might be advantageous to earn slightly less income than c (say c − ε)
and be taxed at a lower rate than to earn c or more and be taxed at a higher rate. Your net earnings may actually be more
in the former case than in the latter one.

Further Insights and Challenges
86. If f (x) has a removable discontinuity at x = c, then it is possible to redefine f (c) so that f (x) is continuous
at x = c. Can this be done in more than one way?

solution In order for f (x) to have a removable discontinuity at x = c, lim
x→c

f (x) = L must exist. To remove the

discontinuity, we define f (c) = L. Then f is continuous at x = c since lim
x→c

f (x) = L = f (c). Now assume that we

may define f (c) = M �= L and still have f continuous at x = c. Then lim
x→c

f (x) = f (c) = M . Therefore M = L, a

contradiction. Roughly speaking, there’s only one way to fill in the hole in the graph of f !

87. Give an example of functions f (x) and g(x) such that f (g(x)) is continuous but g(x) has at least one discontinuity.

solution Answers may vary. The simplest examples are the functions f (g(x)) where f (x) = C is a constant function,
and g(x) is defined for all x. In these cases, f (g(x)) = C. For example, if f (x) = 3 and g(x) = [x], g is discontinuous
at all integer values x = n, but f (g(x)) = 3 is continuous.

88. Continuous at Only One Point Show that the following function is continuous only at x = 0:

f (x) =
{

x for x rational

−x for x irrational

solution Let f (x) = x for x rational and f (x) = −x for x irrational.

• Now f (0) = 0 since 0 is rational. Moreover, as x → 0, we have |f (x) − f (0)| = |f (x) − 0| = |x| → 0. Thus
lim
x→0

f (x) = f (0) and f is continuous at x = 0.

• Let c �= 0 be any nonzero rational number. Let {x1, x2, . . .} be a sequence of irrational points that approach c;
i.e., as n → ∞, the xn get arbitrarily close to c. Notice that as n → ∞, we have |f (xn) − f (c)| = |−xn − c| =
|xn + c| → |2c| �= 0. Therefore, it is not true that lim

x→c
f (x) = f (c). Accordingly, f is not continuous at x = c.

Since c was arbitrary, f is discontinuous at all rational numbers.
• Let c �= 0 be any nonzero irrational number. Let {x1, x2, . . .} be a sequence of rational points that approach c; i.e.,

as n → ∞, the xn get arbitrarily close to c. Notice that as n → ∞, we have |f (xn) − f (c)| = |xn − (−c)| =
|xn + c| → |2c| �= 0. Therefore, it is not true that lim

x→c
f (x) = f (c). Accordingly, f is not continuous at x = c.

Since c was arbitrary, f is discontinuous at all irrational numbers.
• CONCLUSION: f is continuous at x = 0 and is discontinuous at all points x �= 0.

89. Show that f (x) is a discontinuous function for all x where f (x) is defined as follows:

f (x) =
{

1 for x rational

−1 for x irrational

Show that f (x)2 is continuous for all x.



April 5, 2011

S E C T I O N 2.5 Evaluating Limits Algebraically 127

solution lim
x→c

f (x) does not exist for any c. If c is irrational, then there is always a rational number r arbitrarily close

to c so that |f (c) − f (r)| = 2. If, on the other hand, c is rational, there is always an irrational number z arbitrarily close
to c so that |f (c) − f (z)| = 2.

On the other hand, f (x)2 is a constant function that always has value 1, which is obviously continuous.

2.5 Evaluating Limits Algebraically

Preliminary Questions
1. Which of the following is indeterminate at x = 1?

x2 + 1

x − 1
,

x2 − 1

x + 2
,

x2 − 1√
x + 3 − 2

,
x2 + 1√
x + 3 − 2

solution At x = 1, x2−1√
x+3−2

is of the form 0
0 ; hence, this function is indeterminate. None of the remaining functions

is indeterminate at x = 1: x2+1
x−1 and x2+1√

x+3−2
are undefined because the denominator is zero but the numerator is not,

while x2−1
x+2 is equal to 0.

2. Give counterexamples to show that these statements are false:

(a) If f (c) is indeterminate, then the right- and left-hand limits as x → c are not equal.

(b) If lim
x→c

f (x) exists, then f (c) is not indeterminate.

(c) If f (x) is undefined at x = c, then f (x) has an indeterminate form at x = c.

solution

(a) Let f (x) = x2−1
x−1 . At x = 1, f is indeterminate of the form 0

0 but

lim
x→1−

x2 − 1

x − 1
= lim

x→1−(x + 1) = 2 = lim
x→1+(x + 1) = lim

x→1+
x2 − 1

x − 1
.

(b) Again, let f (x) = x2−1
x−1 . Then

lim
x→1

f (x) = lim
x→1

x2 − 1

x − 1
= lim

x→1
(x + 1) = 2

but f (1) is indeterminate of the form 0
0 .

(c) Let f (x) = 1
x . Then f is undefined at x = 0 but does not have an indeterminate form at x = 0.

3. The method for evaluating limits discussed in this section is sometimes called “simplify and plug in.” Explain how it
actually relies on the property of continuity.

solution If f is continuous at x = c, then, by definition, limx→c f (x) = f (c); in other words, the limit of a
continuous function at x = c is the value of the function at x = c. The “simplify and plug-in" strategy is based on
simplifying a function which is indeterminate to a continuous function. Once the simplification has been made, the limit
of the remaining continuous function is obtained by evaluation.

Exercises
In Exercises 1–4, show that the limit leads to an indeterminate form. Then carry out the two-step procedure: Transform
the function algebraically and evaluate using continuity.

1. lim
x→6

x2 − 36

x − 6

solution When we substitute x = 6 into x2−36
x−6 , we obtain the indeterminate form 0

0 . Upon factoring the numerator
and simplifying, we find

lim
x→6

x2 − 36

x − 6
= lim

x→6

(x − 6)(x + 6)

x − 6
= lim

x→6
(x + 6) = 12.
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2. lim
h→3

9 − h2

h − 3

solution When we substitute h = 3 into 9−h2

h−3 , we obtain the indeterminate form 0
0 . Upon factoring the denominator

and simplifying, we find

lim
h→3

9 − h2

h − 3
= lim

h→3

(3 − h)(3 + h)

h − 3
= lim

h→3
−(3 + h) = −6.

3. lim
x→−1

x2 + 2x + 1

x + 1

solution When we substitutex = −1 into x2+2x+1
x+1 , we obtain the indeterminate form 0

0 . Upon factoring the numerator
and simplifying, we find

lim
x→−1

x2 + 2x + 1

x + 1
= lim

x→−1

(x + 1)2

x + 1
= lim

x→−1
(x + 1) = 0.

4. lim
t→9

2t − 18

5t − 45

solution When we substitute t = 9 into 2t−18
5t−45 , we obtain the indeterminate form 0

0 . Upon dividing out the common
factor of t − 9 from both the numerator and denominator, we find

lim
t→9

2t − 18

5t − 45
= lim

t→9

2(t − 9)

5(t − 9)
= lim

t→9

2

5
= 2

5
.

In Exercises 5–34, evaluate the limit, if it exists. If not, determine whether the one-sided limits exist (finite or infinite).

5. lim
x→7

x − 7

x2 − 49

solution lim
x→7

x − 7

x2 − 49
= lim

x→7

x − 7

(x − 7)(x + 7)
= lim

x→7

1

x + 7
= 1

14
.

6. lim
x→8

x2 − 64

x − 9

solution lim
x→8

x2 − 64

x − 9
= 0

−1
= 0

7. lim
x→−2

x2 + 3x + 2

x + 2

solution lim
x→−2

x2 + 3x + 2

x + 2
= lim

x→−2

(x + 1)(x + 2)

x + 2
= lim

x→−2
(x + 1) = −1.

8. lim
x→8

x3 − 64x

x − 8

solution lim
x→8

x3 − 64x

x − 8
= lim

x→8

x(x − 8)(x + 8)

x − 8
= lim

x→8
x(x + 8) = 8(16) = 128.

9. lim
x→5

2x2 − 9x − 5

x2 − 25

solution lim
x→5

2x2 − 9x − 5

x2 − 25
= lim

x→5

(x − 5)(2x + 1)

(x − 5)(x + 5)
= lim

x→5

2x + 1

x + 5
= 11

10
.
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10. lim
h→0

(1 + h)3 − 1

h

solution

lim
h→0

(1 + h)3 − 1

h
= lim

h→0

1 + 3h + 3h2 + h3 − 1

h
= lim

h→0

3h + 3h2 + h3

h

= lim
h→0

(3 + 3h + h2) = 3 + 3(0) + 02 = 3.

11. lim
x→− 1

2

2x + 1

2x2 + 3x + 1

solution lim
x→− 1

2

2x + 1

2x2 + 3x + 1
= lim

x→− 1
2

2x + 1

(2x + 1)(x + 1)
= lim

x→− 1
2

1

x + 1
= 2.

12. lim
x→3

x2 − x

x2 − 9

solution As x → 3, the numerator x2 − x → 6 while the denominator x2 − 9 → 0; thus, this limit does not exist.
Checking the one-sided limits, we find

lim
x→3−

x2 − x

x2 − 9
= lim

x→3−
x(x − 1)

(x − 3)(x + 3)
= −∞

while

lim
x→3+

x2 − x

x2 − 9
= lim

x→3+
x(x − 1)

(x − 3)(x + 3)
= ∞.

13. lim
x→2

3x2 − 4x − 4

2x2 − 8

solution lim
x→2

3x2 − 4x − 4

2x2 − 8
= lim

x→2

(3x + 2)(x − 2)

2(x − 2)(x + 2)
= lim

x→2

3x + 2

2(x + 2)
= 8

8
= 1.

14. lim
h→0

(3 + h)3 − 27

h

solution

lim
h→0

(3 + h)3 − 27

h
= lim

h→0

27 + 27h + 9h2 + h3 − 27

h
= lim

h→0

27h + 9h2 + h3

h

= lim
h→0

(27 + 9h + h2) = 27 + 9(0) + 02 = 27.

15. lim
t→0

42t − 1

4t − 1

solution lim
t to0

42t − 1

4t − 1
= lim

t to0

(4t − 1)(4t + 1)

4t − 1
= lim

t→0
(4t + 1) = 2.

16. lim
h→4

(h + 2)2 − 9h

h − 4

solution lim
h→4

(h + 2)2 − 9h

h − 4
= lim

h→4

h2 − 5h + 4

h − 4
= lim

h→4

(h − 1)(h − 4)

h − 4
= lim

h→4
(h − 1) = 3.

17. lim
x→16

√
x − 4

x − 16

solution lim
x→16

√
x − 4

x − 16
= lim

x→16

√
x − 4(√

x + 4
) (√

x − 4
) = lim

x→16

1√
x + 4

= 1

8
.

18. lim
t→−2

2t + 4

12 − 3t2

solution lim
t→−2

2t + 4

12 − 3t2
= lim

t→−2

2(t + 2)

−3(t − 2)(t + 2)
= lim

t→−2

2

−3(t − 2)
= 1

6
.
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19. lim
y→3

y2 + y − 12

y3 − 10y + 3

solution lim
y→3

y2 + y − 12

y3 − 10y + 3
= lim

y→3

(y − 3)(y + 4)

(y − 3)(y2 + 3y − 1)
= lim

y→3

(y + 4)

(y2 + 3y − 1)
= 7

17
.

20. lim
h→0

1

(h + 2)2
− 1

4
h

solution

lim
h→0

1
(h+2)2 − 1

4

h
= lim

h→0

4−(h+2)2

4(h+2)2

h
= lim

h→0

4−(h2+4h+4)

4(h+2)2

h
= lim

h→0

−h2−4h
4(h+2)2

h

= lim
h→0

h −h−4
4(h+2)2

h
= lim

h→0

−h − 4

4(h + 2)2
= −4

16
= −1

4
.

21. lim
h→0

√
2 + h − 2

h

solution lim
h→0

√
h + 2 − 2

h
does not exist.

• As h → 0+, we have

√
h + 2 − 2

h
=

(√
h + 2 − 2

)
(
√

h + 2 + 2)

h(
√

h + 2 + 2)
= h − 2

h(
√

h + 2 + 2)
→ −∞.

• As h → 0−, we have

√
h + 2 − 2

h
=

(√
h + 2 − 2

)
(
√

h + 2 + 2)

h(
√

h + 2 + 2)
= h − 2

h(
√

h + 2 + 2)
→ ∞.

22. lim
x→8

√
x − 4 − 2

x − 8

solution

lim
x→8

√
x − 4 − 2

x − 8
= lim

x→8

(
√

x − 4 − 2)(
√

x − 4 + 2)

(x − 8)(
√

x − 4 + 2)
= lim

x→8

x − 4 − 4

(x − 8)(
√

x − 4 + 2)

= lim
x→8

1√
x − 4 + 2

= 1√
4 + 2

= 1

4
.

23. lim
x→4

x − 4√
x − √

8 − x

solution

lim
x→4

x − 4√
x − √

8 − x
= lim

x→4

(x − 4)(
√

x + √
8 − x)

(
√

x − √
8 − x)(

√
x + √

8 − x)
= lim

x→4

(x − 4)(
√

x + √
8 − x)

x − (8 − x)

= lim
x→4

(x − 4)(
√

x + √
8 − x)

2x − 8
= lim

x→4

(x − 4)(
√

x + √
8 − x)

2(x − 4)

= lim
x→4

(
√

x + √
8 − x)

2
=

√
4 + √

4

2
= 2.

24. lim
x→4

√
5 − x − 1

2 − √
x

solution

lim
x→4

√
5 − x − 1

2 − √
x

= lim
x→4

(√
5 − x − 1

2 − √
x

·
√

5 − x + 1√
5 − x + 1

)
= lim

x→4

4 − x

(2 − √
x)(

√
5 − x + 1)

= lim
x→4

(2 − √
x)(2 + √

x)

(2 − √
x)(

√
5 − x + 1)

= lim
x→4

2 + √
x√

5 − x + 1
= 2.
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25. lim
x→4

(
1√

x − 2
− 4

x − 4

)

solution lim
x→4

(
1√

x − 2
− 4

x − 4

)
= lim

x→4

√
x + 2 − 4(√

x − 2
) (√

x + 2
) = lim

x→4

√
x − 2(√

x − 2
) (√

x + 2
) = 1

4
.

26. lim
x→0+

(
1√
x

− 1√
x2 + x

)

solution

lim
x→0+

(
1√
x

− 1√
x2 + x

)
= lim

x→0+

√
x + 1 − 1√
x
√

x + 1
= lim

x→0+

(√
x + 1 − 1

) (√
x + 1 + 1

)
√

x
√

x + 1
(√

x + 1 + 1
)

= lim
x→0+

x√
x
√

x + 1
(√

x + 1 + 1
) = lim

x→0+

√
x√

x + 1
(√

x + 1 + 1
) = 0.

27. lim
x→0

cot x

csc x

solution lim
x→0

cot x

csc x
= lim

x→0

cos x

sin x
· sin x = cos 0 = 1.

28. lim
θ→ π

2

cot θ

csc θ

solution lim
θ→ π

2

cot θ

csc θ
= lim

θ→ π
2

cos θ

sin θ
· sin θ = cos

π

2
= 0.

29. lim
t→2

22t + 2t − 20

2t − 4

solution lim
t→2

22t + 2t − 20

2t − 4
= lim

t→2

(2t + 5)(2t − 4)

2t − 4
= lim

t→2
(2t + 5) = 9.

30. lim
x→1

(
1

1 − x
− 2

1 − x2

)

solution lim
x→1

(
1

1 − x
− 2

1 − x2

)
= lim

x→1

(1 + x) − 2

(1 − x)(1 + x)
= lim

x→1

−1

1 + x
= −1

2
.

31. lim
x→ π

4

sin x − cos x

tan x − 1

solution lim
x→ π

4

sin x − cos x

tan x − 1
· cos x

cos x
= lim

x→ π
4

(sin x − cos x) cos x

sin x − cos x
= cos

π

4
=

√
2

2
.

32. lim
θ→ π

2

(
sec θ − tan θ

)
solution

lim
θ→ π

2

(
sec θ − tan θ

) = lim
θ→ π

2

1 − sin θ

cos θ
· 1 + sin θ

1 + sin θ
= lim

θ→ π
2

1 − sin2 θ

cos θ (1 + sin θ)
= lim

θ→ π
2

cos θ

1 + sin θ
= 0

2
= 0.

33. lim
θ→ π

4

(
1

tan θ − 1
− 2

tan2 θ − 1

)

solution lim
θ→ π

4

(
1

tan θ − 1
− 2

tan2 θ − 1

)
= lim

θ→ π
4

(tan θ + 1) − 2

(tan θ + 1)(tan θ − 1)
= lim

θ→ π
4

1

tan θ + 1
= 1

2
.

34. lim
x→ π

3

2 cos2 x + 3 cos x − 2

2 cos x − 1

solution

lim
x→ π

3

2 cos2 x + 3 cos x − 2

2 cos x − 1
= lim

x→ π
3

(2 cos x − 1) (cos x + 2)

2 cos x − 1
= lim

x→ π
3

cos x + 2 = cos
π

3
+ 2 = 5

2
.
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35. Use a plot of f (x) = x − 4√
x − √

8 − x
to estimate lim

x→4
f (x) to two decimal places. Compare with the answer

obtained algebraically in Exercise 23.

solution Let f (x) = x−4√
x−√

8−x
. From the plot of f (x) shown below, we estimate lim

x→4
f (x) ≈ 2.00; to two decimal

places, this matches the value of 2 obtained in Exercise 23.

1.996

1.997

1.998

1.999

2.000

2.001

1.995
3.6

y

x
3.8 4.0 4.2 4.4

36. Use a plot of f (x) = 1√
x − 2

− 4

x − 4
to estimate lim

x→4
f (x) numerically. Compare with the answer obtained

algebraically in Exercise 25.

solution Let f (x) = 1√
x−2

− 4
x−4 . From the plot of f (x) shown below, we estimate lim

x→4
f (x) ≈ 0.25; to two

decimal places, this matches the value of 1
4 obtained in Exercise 25.

3.6 3.8 4 4.2 4.4

0.256
0.254
0.252
0.25

0.248
0.246
0.244
0.242 x

y

In Exercises 37–42, evaluate using the identity

a3 − b3 = (a − b)(a2 + ab + b2)

37. lim
x→2

x3 − 8

x − 2

solution lim
x→2

x3 − 8

x − 2
= lim

x→2

(x − 2)
(
x2 + 2x + 4

)
x − 2

= lim
x→2

(
x2 + 2x + 4

)
= 12.

38. lim
x→3

x3 − 27

x2 − 9

solution lim
x→3

x3 − 27

x2 − 9
= lim

x→3

(x − 3)
(
x2 + 3x + 9

)
(x − 3)(x + 3)

= lim
x→3

(
x2 + 3x + 9

)
x + 3

= 27

6
= 9

2
.

39. lim
x→1

x2 − 5x + 4

x3 − 1

solution lim
x→1

x2 − 5x + 4

x3 − 1
= lim

x→1

(x − 1)(x − 4)

(x − 1)
(
x2 + x + 1

) = lim
x→1

x − 4

x2 + x + 1
= −1.

40. lim
x→−2

x3 + 8

x2 + 6x + 8

solution lim
x→−2

x3 + 8

x2 + 6x + 8
= lim

x→−2

(x + 2)(x2 − 2x + 4)

(x + 2)(x + 4)
= lim

x→−2

(x2 − 2x + 4)

x + 4
= 12

2
= 6.

41. lim
x→1

x4 − 1

x3 − 1

solution

lim
x→1

x4 − 1

x3 − 1
= lim

x→1

(x2 − 1)(x2 + 1)

(x − 1)(x2 + x + 1)
= lim

x→1

(x − 1)(x + 1)(x2 + 1)

(x − 1)(x2 + x + 1)
= lim

x→1

(x + 1)(x2 + 1)

(x2 + x + 1)
= 4

3
.
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42. lim
x→27

x − 27

x1/3 − 3

solution lim
x→27

x − 27

x1/3 − 3
= lim

x→27

(x1/3 − 3)(x2/3 + 3x1/3 + 9)

x1/3 − 3
= lim

x→27
(x2/3 + 3x1/3 + 9) = 27

43. Evaluate lim
h→0

4√1 + h − 1

h
. Hint: Set x = 4√1 + h and rewrite as a limit as x → 1.

solution Let x = 4√1 + h. Then h = x4 − 1 = (x − 1)(x + 1)(x2 + 1), x → 1 as h → 0 and

lim
h→0

4√1 + h − 1

h
= lim

x→1

x − 1

(x − 1)(x + 1)(x2 + 1)
= lim

x→1

1

(x + 1)(x2 + 1)
= 1

4
.

44. Evaluate lim
h→0

3√1 + h − 1
2√1 + h − 1

. Hint: Set x = 6√1 + h and rewrite as a limit as x → 1.

solution Let x = 6√1 + h. Then 3√1 + h − 1 = x2 − 1 = (x − 1)(x + 1),
√

1 + h − 1 = x3 − 1 = (x − 1)(x2 +
x + 1), x → 1 as h → 0 and

lim
h→0

3√1 + h − 1
2√1 + h − 1

= lim
x→1

(x − 1)(x + 1)

(x − 1)(x2 + x + 1)
= lim

x→1

x + 1

x2 + x + 1
= 2

3
.

In Exercises 45–54, evaluate in terms of the constant a.

45. lim
x→0

(2a + x)

solution lim
x→0

(2a + x) = 2a.

46. lim
h→−2

(4ah + 7a)

solution lim
h→−2

(4ah + 7a) = −a.

47. lim
t→−1

(4t − 2at + 3a)

solution lim
t→−1

(4t − 2at + 3a) = −4 + 5a.

48. lim
h→0

(3a + h)2 − 9a2

h

solution lim
h→0

(3a + h)2 − 9a2

h
= lim

h→0

6ah + h2

h
= lim

h→0
(6a + h) = 6a.

49. lim
h→0

2(a + h)2 − 2a2

h

solution lim
h→0

2(a + h)2 − 2a2

h
= lim

h→0

4ha + 2h2

h
= lim

h→0
(4a + 2h) = 4a.

50. lim
x→a

(x + a)2 − 4x2

x − a

solution

lim
x→a

(x + a)2 − 4x2

x − a
= lim

x→a

(x2 + 2ax + a2) − 4x2

x − a
= lim

x→a

−3x2 + 2ax + a2

x − a

= lim
x→a

(a − x)(a + 3x)

x − a
= lim

x→a
(−(a + 3x)) = −4a.

51. lim
x→a

√
x − √

a

x − a

solution lim
x→a

√
x − √

a

x − a
= lim

x→a

√
x − √

a(√
x − √

a
) (√

x + √
a
) = lim

x→a

1√
x + √

a
= 1

2
√

a
.
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52. lim
h→0

√
a + 2h − √

a

h

solution

lim
h→0

√
a + 2h − √

a

h
= lim

h→0

(√
a + 2h − √

a
) (√

a + 2h + √
a
)

h
(√

a + 2h + √
a
)

= lim
h→0

2h

h
(√

a + 2h + √
a
) = lim

h→0

2√
a + 2h + √

a
= 1√

a
.

53. lim
x→0

(x + a)3 − a3

x

solution lim
x→0

(x + a)3 − a3

x
= lim

x→0

x3 + 3x2a + 3xa2 + a3 − a3

x
= lim

x→0
(x2 + 3xa + 3a2) = 3a2.

54. lim
h→a

1

h
− 1

a

h − a

solution lim
h→a

1
h

− 1
a

h − a
= lim

h→a

a−h
ah

h − a
= lim

h→a

a − h

ah

1

h − a
= lim

h→a

−1

ah
= − 1

a2

Further Insights and Challenges
In Exercises 55–58, find all values of c such that the limit exists.

55. lim
x→c

x2 − 5x − 6

x − c

solution lim
x→c

x2 − 5x − 6

x − c
will exist provided that x − c is a factor of the numerator. (Otherwise there will be an

infinite discontinuity at x = c.) Since x2 − 5x − 6 = (x + 1)(x − 6), this occurs for c = −1 and c = 6.

56. lim
x→1

x2 + 3x + c

x − 1

solution lim
x→1

x2 + 3x + c

x − 1
exists as long as (x − 1) is a factor of x2 + 3x + c. If x2 + 3x + c = (x − 1)(x + q),

then q − 1 = 3 and −q = c. Hence q = 4 and c = −4.

57. lim
x→1

(
1

x − 1
− c

x3 − 1

)

solution Simplifying, we find

1

x − 1
− c

x3 − 1
= x2 + x + 1 − c

(x − 1)(x2 + x + 1)
.

In order for the limit to exist as x → 1, the numerator must evaluate to 0 at x = 1. Thus, we must have 3 − c = 0, which
implies c = 3.

58. lim
x→0

1 + cx2 −
√

1 + x2

x4

solution Rationalizing the numerator, we find

1 + cx2 −
√

1 + x2

x4
= (1 + cx2 −

√
1 + x2)(1 + cx2 +

√
1 + x2)

x4(1 + cx2 +
√

1 + x2)
= (1 + cx2)2 − (1 + x2)

x4(1 + cx2 +
√

1 + x2)

= (2c − 1)x2 + c2x4

x4(1 + cx2 +
√

1 + x2)
.

In order for the limit to exist as x → 0, the coefficient of x2 in the numerator must be zero. Thus, we need 2c − 1 = 0,
which implies c = 1

2 .

59. For which sign ± does the following limit exist?

lim
x→0

(
1

x
± 1

x(x − 1)

)
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solution

• The limit lim
x→0

(
1

x
+ 1

x(x − 1)

)
= lim

x→0

(x − 1) + 1

x(x − 1)
= lim

x→0

1

x − 1
= −1.

• The limit lim
x→0

(
1

x
− 1

x(x − 1)

)
does not exist.

– As x → 0+, we have
1

x
− 1

x(x − 1)
= (x − 1) − 1

x(x − 1)
= x − 2

x(x − 1)
→ ∞.

– As x → 0−, we have
1

x
− 1

x(x − 1)
= (x − 1) − 1

x(x − 1)
= x − 2

x(x − 1)
→ −∞.

2.6 Trigonometric Limits

Preliminary Questions
1. Assume that −x4 ≤ f (x) ≤ x2. What is lim

x→0
f (x)? Is there enough information to evaluate lim

x→ 1
2

f (x)? Explain.

solution Since limx→0 −x4 = limx→0 x2 = 0, the squeeze theorem guarantees that limx→0 f (x) = 0. Since

lim
x→ 1

2
−x4 = − 1

16 �= 1
4 = lim

x→ 1
2

x2, we do not have enough information to determine lim
x→ 1

2
f (x).

2. State the Squeeze Theorem carefully.

solution Assume that for x �= c (in some open interval containing c),

l(x) ≤ f (x) ≤ u(x)

and that lim
x→c

l(x) = lim
x→c

u(x) = L. Then lim
x→c

f (x) exists and

lim
x→c

f (x) = L.

3. If you want to evaluate lim
h→0

sin 5h

3h
, it is a good idea to rewrite the limit in terms of the variable (choose one):

(a) θ = 5h (b) θ = 3h (c) θ = 5h

3

solution To match the given limit to the pattern of

lim
θ→0

sin θ

θ
,

it is best to substitute for the argument of the sine function; thus, rewrite the limit in terms of (a): θ = 5h.

Exercises
1. State precisely the hypothesis and conclusions of the Squeeze Theorem for the situation in Figure 6.

1 2

2

u(x)

l(x)

f (x)

x

y

FIGURE 6

solution For all x �= 1 on the open interval (0, 2) containing x = 1, �(x) ≤ f (x) ≤ u(x). Moreover,

lim
x→1

�(x) = lim
x→1

u(x) = 2.

Therefore, by the Squeeze Theorem,

lim
x→1

f (x) = 2.
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2. In Figure 7, is f (x) squeezed by u(x) and l(x) at x = 3? At x = 2?

1 2 3 4

1.5

x

l (x)

f(x)

u(x)
y

FIGURE 7

solution Because there is an open interval containing x = 3 on which l(x) ≤ f (x) ≤ u(x) and lim
x→3

l(x) = lim
x→3

u(x),

f (x) is squeezed by u(x) and l(x) at x = 3. Because there is an open interval containing x = 2 on which l(x) ≤ f (x) ≤
u(x) but lim

x→2
l(x) �= lim

x→2
u(x), f (x) is trapped by u(x) and l(x) at x = 2 but not squeezed.

3. What does the Squeeze Theorem say about lim
x→7

f (x) if lim
x→7

l(x) = lim
x→7

u(x) = 6 and f (x), u(x), and l(x) are related

as in Figure 8? The inequality f (x) ≤ u(x) is not satisfied for all x. Does this affect the validity of your conclusion?

7

6

x

u(x)

f(x)

l(x)

y

FIGURE 8

solution The Squeeze Theorem does not require that the inequalities l(x) ≤ f (x) ≤ u(x) hold for all x, only that the
inequalities hold on some open interval containing x = c. In Figure 8, it is clear that l(x) ≤ f (x) ≤ u(x) on some open
interval containing x = 7. Because lim

x→7
u(x) = lim

x→7
l(x) = 6, the Squeeze Theorem guarantees that lim

x→7
f (x) = 6.

4. Determine lim
x→0

f (x) assuming that cos x ≤ f (x) ≤ 1.

solution Because lim
x→0

cos x = lim
x→0

1 = 1, it follows that lim
x→0

f (x) = 1 by the Squeeze Theorem.

5. State whether the inequality provides sufficient information to determine lim
x→1

f (x), and if so, find the limit.

(a) 4x − 5 ≤ f (x) ≤ x2

(b) 2x − 1 ≤ f (x) ≤ x2

(c) 4x − x2 ≤ f (x) ≤ x2 + 2

solution

(a) Because lim
x→1

(4x − 5) = −1 �= 1 = lim
x→1

x2, the given inequality does not provide sufficient information to determine

limx→1 f (x).
(b) Because lim

x→1
(2x − 1) = 1 = lim

x→1
x2, it follows from the Squeeze Theorem that limx→1 f (x) = 1.

(c) Because lim
x→1

(4x − x2) = 3 = lim
x→1

(x2 + 2), it follows from the Squeeze Theorem that limx→1 f (x) = 3.

6. Plot the graphs of u(x) = 1 + ∣∣x − π
2

∣∣ and l(x) = sin x on the same set of axes. What can you say about
lim

x→ π
2

f (x) if f (x) is squeezed by l(x) and u(x) at x = π
2 ?

solution

1

x

u(x) = 1 + | x −    /2 |

   /2

l(x) = sin x

y

lim
x→π/2

u(x) = 1 and lim
x→π/2

l(x) = 1, so any function f (x) satisfying l(x) ≤ f (x) ≤ u(x) for all x near π/2 will satisfy

lim
x→π/2

f (x) = 1.
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In Exercises 7–16, evaluate using the Squeeze Theorem.

7. lim
x→0

x2 cos
1

x

solution Multiplying the inequality −1 ≤ cos 1
x ≤ 1, which holds for all x �= 0, by x2 yields −x2 ≤ x2 cos 1

x ≤ x2.
Because

lim
x→0

−x2 = lim
x→0

x2 = 0,

it follows by the Squeeze Theorem that

lim
x→0

x2 cos
1

x
= 0.

8. lim
x→0

x sin
1

x2

solution Multiplying the inequality
∣∣∣sin 1

x2

∣∣∣ ≤ 1, which holds for x �= 0, by |x| yields
∣∣∣x sin 1

x2

∣∣∣ ≤ |x| or −|x| ≤
x sin 1

x2 ≤ |x|. Because

lim
x→0

−|x| = lim
x→0

|x| = 0,

it follows by the Squeeze Theorem that

lim
x→0

x sin
1

x2
= 0.

9. lim
x→1

(x − 1) sin
π

x − 1

solution Multiplying the inequality
∣∣∣sin π

x−1

∣∣∣ ≤ 1, which holds for x �= 1, by |x − 1| yields
∣∣∣(x − 1) sin π

x−1

∣∣∣ ≤
|x − 1| or −|x − 1| ≤ (x − 1) sin π

x−1 ≤ |x − 1|. Because

lim
x→1

−|x − 1| = lim
x→1

|x − 1| = 0,

it follows by the Squeeze Theorem that

lim
x→1

(x − 1) sin
π

x − 1
= 0.

10. lim
x→3

(x2 − 9)
x − 3

|x − 3|
solution For x �= 3, x−3

|x−3| = ±1; thus

−|x2 − 9| ≤ (x2 − 9)
x − 3

|x − 3| ≤ |x2 − 9|.

Because

lim
x→3

−|x2 − 9| = lim
x→3

|x2 − 9| = 0,

it follows by the Squeeze Theorem that

lim
x→3

(x2 − 9)
x − 3

|x − 3| = 0.

11. lim
t→0

(2t − 1) cos
1

t

solution Multiplying the inequality
∣∣∣cos 1

t

∣∣∣ ≤ 1, which holds for t �= 0, by |2t − 1| yields
∣∣∣(2t − 1) cos 1

t

∣∣∣ ≤ |2t − 1|
or −|2t − 1| ≤ (2t − 1) cos 1

t ≤ |2t − 1|. Because

lim
t→0

−|2t − 1| = lim
t→0

|2t − 1| = 0,

it follows by the Squeeze Theorem that

lim
t→0

(2t − 1) cos
1

t
= 0.
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12. lim
x→0+

√
x ecos(π/x)

solution Since −1 ≤ cos π
x ≤ 1 and ex is an increasing function, it follows that

1

e
≤ ecos(π/x) ≤ e and

1

e

√
x ≤ √

xecos(π/x) ≤ e
√

x.

Because

lim
x→0+

1

e

√
x = lim

x→0+ e
√

x = 0,

it follows from the Squeeze Theorem that

lim
x→0+

√
xecos(π/x) = 0.

13. lim
t→2

(t2 − 4) cos
1

t − 2

solution Multiplying the inequality
∣∣∣cos 1

t−2

∣∣∣ ≤ 1, which holds for t �= 2, by |t2 − 4| yields
∣∣∣(t2 − 4) cos 1

t−2

∣∣∣ ≤
|t2 − 4| or −|t2 − 4| ≤ (t2 − 4) cos 1

t−2 ≤ |t2 − 4|. Because

lim
t→2

−|t2 − 4| = lim
t→2

|t2 − 4| = 0,

it follows by the Squeeze Theorem that

lim
t→2

(t2 − 4) cos
1

t − 2
= 0.

14. lim
x→0

tan x cos

(
sin

1

x

)

solution Multiplying the inequality
∣∣∣cos

(
sin 1

x

)∣∣∣ ≤ 1, which holds for x �= 0, by | tan x| yields
∣∣∣tan x cos

(
sin 1

x

)∣∣∣ ≤
| tan x| or −| tan x| ≤ tan x cos

(
sin 1

x

)
≤ | tan x|. Because

lim
x→0

−| tan x| = lim
x→0

| tan x| = 0,

it follows by the Squeeze Theorem that

lim
x→0

tan x cos

(
sin

1

x

)
= 0.

15. lim
θ→ π

2

cos θ cos(tan θ)

solution Multiplying the inequality | cos(tan θ)| ≤ 1, which holds for all θ near π
2 but not equal to π

2 , by | cos θ |
yields | cos θ cos(tan θ)| ≤ | cos θ | or −| cos θ | ≤ cos θ cos(tan θ) ≤ | cos θ |. Because

lim
θ→ π

2

−| cos θ | = lim
θ→ π

2

| cos θ | = 0,

it follows from the Squeeze Theorem that

lim
θ→ π

2

cos θ cos(tan θ) = 0.

16. lim
t→0+ sin t tan−1(ln t)

solution Multiplying the inequality | tan−1(ln t)| ≤ π
2 , which holds for all t > 0, by | sin t | yields | sin t tan−1(ln t)| ≤

π
2 | sin t | or −π

2 | sin t | ≤ sin t tan−1(ln t) ≤ π
2 | sin t |. Because

lim
t→0+ −| sin t | = lim

t→0+ | sin t | = 0,

it follows from the Squeeze Theorem that

lim
t→0+ sin t tan−1(ln t) = 0.
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In Exercises 17–26, evaluate using Theorem 2 as necessary.

17. lim
x→0

tan x

x

solution lim
x→0

tan x

x
= lim

x→0

sin x

x

1

cos x
= lim

x→0

sin x

x
· lim
x→0

1

cos x
= 1 · 1 = 1.

18. lim
x→0

sin x sec x

x

solution lim
x→0

sin x sec x

x
= lim

x→0

sin x

x
· lim
x→0

sec x = 1 · 1 = 1.

19. lim
t→0

√
t3 + 9 sin t

t

solution lim
t→0

√
t3 + 9 sin t

t
= lim

t→0

√
t3 + 9 · lim

t→0

sin t

t
= √

9 · 1 = 3.

20. lim
t→0

sin2 t

t

solution lim
t→0

sin2 t

t
= lim

t→0

sin t

t
sin t = lim

t→0

sin t

t
· lim
t→0

sin t = 1 · 0 = 0.

21. lim
x→0

x2

sin2 x

solution lim
x→0

x2

sin2 x
= lim

x→0

1
sin x

x
sin x

x

= lim
x→0

1
sin x

x

· lim
x→0

1
sin x

x

= 1

1
· 1

1
= 1.

22. lim
t→ π

2

1 − cos t

t

solution The function
1 − cos t

t
is continuous at π

2 ; evaluate using substitution:

lim
t→ π

2

1 − cos t

t
= 1 − 0

π
2

= 2

π
.

23. lim
θ→0

sec θ − 1

θ

solution lim
θ→0

sec θ − 1

θ
= lim

θ→0

1 − cos θ

θ cos θ
= lim

θ→0

1 − cos θ

θ
· lim
θ→0

1

cos θ
= 0 · 1 = 0.

24. lim
θ→0

1 − cos θ

sin θ

solution

lim
θ→0

1 − cos θ

sin θ
= lim

θ→0

1 − cos θ

θ
· lim
θ→0

θ

sin θ
= 0 · 1 = 0.

25. lim
t→ π

4

sin t

t

solution
sin t

t
is continuous at t = π

4
. Hence, by substitution

lim
t→ π

4

sin t

t
=

√
2

2
π
4

= 2
√

2

π
.

26. lim
t→0

cos t − cos2 t

t

solution By factoring and applying the Product Law:

lim
t→0

cos t − cos2 t

t
= lim

t→0
cos t · lim

t→0

1 − cos t

t
= 1(0) = 0.
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27. Let L = lim
x→0

sin 14x

x
.

(a) Show, by letting θ = 14x, that L = lim
θ→0

14
sin θ

θ
.

(b) Compute L.

solution

(a) Let θ = 14x. Then x = θ
14 and θ → 0 as x → 0, so

L = lim
x→0

sin 14x

x
= lim

θ→0

sin θ

(θ/14)
= lim

θ→0
14

sin θ

θ
.

(b) Based on part (a),

L = 14 lim
θ→0

· sin θ

θ
= 14.

28. Evaluate lim
h→0

sin 9h

sin 7h
. Hint:

sin 9h

sin 7h
=

(
9

7

) (
sin 9h

9h

) (
7h

sin 7h

)
.

solution

lim
h→0

sin 9h

sin 7h
= lim

h→0

9

7

(sin 9h) / (9h)

(sin 7h) / (7h)
= 9

7

limh→0(sin 9h)/(9h)

limh→0(sin 7h)/(7h)
= 9

7
· 1

1
= 9

7
.

In Exercises 29–48, evaluate the limit.

29. lim
h→0

sin 9h

h

solution lim
h→0

sin 9h

h
= lim

h→0
9

sin 9h

9h
= 9.

30. lim
h→0

sin 4h

4h

solution Let x = 4h. Then x → 0 as h → 0 and

lim
h→0

sin 4h

4h
= lim x → 0

sin x

x
= 1.

31. lim
h→0

sin h

5h

solution lim
h→0

sin h

5h
= lim

h→0

1

5

sin h

h
= 1

5
.

32. lim
x→ π

6

x

sin 3x

solution lim
x→ π

6

x

sin 3x
= π/6

sin(π/2)
= π

6
.

33. lim
θ→0

sin 7θ

sin 3θ

solution We have

sin 7θ

sin 3θ
= 7

3

(
sin 7θ

7θ

) (
3θ

sin 3θ

)

Therefore,

lim
θ→0

sin 7θ

3θ
= 7

3

(
lim
θ→0

sin 7θ

7θ

) (
lim
θ→0

3θ

sin 3θ

)
= 7

3
(1)(1) = 7

3

34. lim
x→0

tan 4x

9x

solution lim
x→0

tan 4x

9x
= lim

x→0

1

9
· sin 4x

4x
· 4

cos 4x
= 4

9
.
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35. lim
x→0

x csc 25x

solution Let h = 25x. Then

lim
x→0

x csc 25x = lim
h→0

h

25
csc h = 1

25
lim
h→0

h

sin h
= 1

25
.

36. lim
t→0

tan 4t

t sec t

solution lim
t→0

tan 4t

t sec t
= lim

t→0

4 sin 4t

4t cos(4t) sec(t)
= lim

t→0

4 cos t

cos 4t
· sin 4t

4t
= 4.

37. lim
h→0

sin 2h sin 3h

h2

solution

lim
h→0

sin 2h sin 3h

h2
= lim

h→0

sin 2h sin 3h

h · h
= lim

h→0

sin 2h

h

sin 3h

h

= lim
h→0

2
sin 2h

2h
3

sin 3h

3h
= lim

h→0
2

sin 2h

2h
lim
h→0

3
sin 3h

3h
= 2 · 3 = 6.

38. lim
z→0

sin(z/3)

sin z

solution lim
z→0

sin(z/3)

sin z
· z/3

z/3
= lim

z→0

1

3
· z

sin z
· sin(z/3)

z/3
= 1

3
.

39. lim
θ→0

sin(−3θ)

sin(4θ)

solution lim
θ→0

sin(−3θ)

sin(4θ)
= lim

θ→0

− sin(3θ)

3θ
· 3

4
· 4θ

sin(4θ)
= −3

4
.

40. lim
x→0

tan 4x

tan 9x

solution lim
x→0

tan 4x

tan 9x
= lim

x→0

cos 9x

cos 4x
· sin 4x

4x
· 4

9
· 9x

sin 9x
= 4

9
.

41. lim
t→0

csc 8t

csc 4t

solution lim
t→0

csc 8t

csc 4t
= lim

t→0

sin 4t

sin 8t
· 8t

4t
· 1

2
= 1

2
.

42. lim
x→0

sin 5x sin 2x

sin 3x sin 5x

solution lim
x→0

sin 5x sin 2x

sin 3x sin 5x
= lim

x→0

sin 2x

2x
· 2

3
· 3x

sin 3x
= 2

3
.

43. lim
x→0

sin 3x sin 2x

x sin 5x

solution lim
x→0

sin 3x sin 2x

x sin 5x
= lim

x→0

(
3

sin 3x

3x
· 2

5

(sin 2x) / (2x)

(sin 5x) / (5x)

)
= 6

5
.

44. lim
h→0

1 − cos 2h

h

solution lim
h→0

1 − cos 2h

h
= lim

h→0
2

1 − cos 2h

2h
= 2 lim

h→0

1 − cos 2h

2h
= 2 · 0 = 0.

45. lim
h→0

sin(2h)(1 − cos h)

h2

solution lim
h→0

sin(2h)(1 − cos h)

h2
= lim

h→0

sin(2h)

h
lim
h→0

1 − cos h

h
= 1 · 0 = 0.
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46. lim
t→0

1 − cos 2t

sin2 3t

solution Using the identity cos 2t = 1 − 2 sin2 t , we find

1 − cos 2t

sin2 3t
= 2 sin2 t

sin2 3t
= 2

9

(
sin t

t

)2 (
3t

sin 3t

)2
.

Thus,

lim
t→0

1 − cos 2t

sin2 3t
= lim

t→0

2

9

(
sin t

t

)2 (
3t

sin 3t

)2
= 2

9
.

47. lim
θ→0

cos 2θ − cos θ

θ

solution

lim
θ→0

cos 2θ − cos θ

θ
= lim

θ→0

(cos 2θ − 1) + (1 − cos θ)

θ
= lim

θ→0

cos 2θ − 1

θ
+ lim

θ→0

1 − cos θ

θ

= −2 lim
θ→0

1 − cos 2θ

2θ
+ lim

θ→0

1 − cos θ

θ
= −2 · 0 + 0 = 0.

48. lim
h→ π

2

1 − cos 3h

h

solution The function is continuous at π
2 , so we may use substitution:

lim
h→ π

2

1 − cos 3h

h
= 1 − cos 3 π

2
π
2

= 1 − 0
π
2

= 2

π
.

49. Calculate lim
x→0−

sin x

|x| .

solution

lim
x→0−

sin x

|x| = lim
x→0−

sin x

−x
= −1

50. Use the identity sin 3θ = 3 sin θ − 4 sin3 θ to evaluate the limit lim
θ→0

sin 3θ − 3 sin θ

θ3
.

solution Using the identity sin 3θ = 3 sin θ − 4 sin3 θ , we find

sin 3θ − 3 sin θ

θ3
= −4

(
sin θ

θ

)3
.

Therefore,

lim
θ→0

sin 3θ − 3 sin θ

θ3
= −4 lim

θ→0

(
sin θ

θ

)3
= −4(1)3 = −4.

51. Prove the following result stated in Theorem 2:

lim
θ→0

1 − cos θ

θ
= 0 7

Hint:
1 − cos θ

θ
= 1

1 + cos θ
· 1 − cos2 θ

θ
.

solution

lim
θ→0

1 − cos θ

θ
= lim

θ→0

1

1 + cos θ
· 1 − cos2 θ

θ
= lim

θ→0

1

1 + cos θ
· sin2 θ

θ

= lim
θ→0

1

1 + cos θ
· lim
θ→0

sin2 θ

θ
= lim

θ→0

1

1 + cos θ
· lim
θ→0

sin θ
sin θ

θ

= lim
θ→0

1

1 + cos θ
· lim
θ→0

sin θ · lim
θ→0

sin θ

θ
= 1

2
· 0 · 1 = 0.
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52. Investigate lim
h→0

1 − cos h

h2
numerically (and graphically if you have a graphing utility). Then prove that the

limit is equal to 1
2 . Hint: See the hint for Exercise 51.

solution

•

h −0.1 −0.01 0.01 0.1

1 − cos h

h2
0.499583 0.499996 0.499996 0.499583

The limit is 1
2 .

•

21−2 −1

0.1

0.2

0.3

0.4

0.5

x

y

• lim
h→0

1 − cos h

h2
= lim

h→0

1 − cos2 h

h2(1 + cos h)
= lim

h→0

(
sin h

h

)2 1

1 + cos h
= 1

2
.

In Exercises 53–55, evaluate using the result of Exercise 52.

53. lim
h→0

cos 3h − 1

h2

solution We make the substitution θ = 3h. Then h = θ/3, and

lim
h→0

cos 3h − 1

h2
= lim

θ→0

cos θ − 1

(θ/3)2
= −9 lim

θ→0

1 − cos θ

θ2
= −9

2
.

54. lim
h→0

cos 3h − 1

cos 2h − 1

solution Write

cos 3h − 1

cos 2h − 1
= 1 − cos 3h

(3h)2
· (2h)2

1 − cos 2h
· 9h2

4h2
.

Then

lim
h→0

cos 3h − 1

cos 2h − 1
= 9

4
lim
h→0

1 − cos 3h

(3h)2
· lim
h→0

(2h)2

1 − cos 2h
= 9

4
· 1

2
· 1

1/2
= 9

4
.

55. lim
t→0

√
1 − cos t

t

solution lim
t→0+

√
1 − cos t

t
=

√
lim

t→0+
1 − cos t

t2
=

√
1

2
=

√
2

2
; on the other hand, lim

t→0−

√
1 − cos t

t
=

−
√

lim
t→0−

1 − cos t

t2
= −

√
1

2
= −

√
2

2
.

56. Use the Squeeze Theorem to prove that if lim
x→c

|f (x)| = 0, then lim
x→c

f (x) = 0.

solution Suppose lim
x→c

|f (x)| = 0. Then

lim
x→c

−|f (x)| = − lim
x→c

|f (x)| = 0.

Now, for all x, the inequalities

−|f (x)| ≤ f (x) ≤ |f (x)|
hold. Because lim

x→c
|f (x)| = 0 and lim

x→c
−|f (x)| = 0, it follows from the Squeeze Theorem that lim

x→c
f (x) = 0.
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Further Insights and Challenges
57. Use the result of Exercise 52 to prove that for m �= 0,

lim
x→0

cos mx − 1

x2
= −m2

2

solution Substitute u = mx into
cos mx − 1

x2
. We obtain x = u

m . As x → 0, u → 0; therefore,

lim
x→0

cos mx − 1

x2
= lim

u→0

cos u − 1

(u/m)2
= lim

u→0
m2 cos u − 1

u2
= m2

(
−1

2

)
= −m2

2
.

58. Using a diagram of the unit circle and the Pythagorean Theorem, show that

sin2 θ ≤ (1 − cos θ)2 + sin2 θ ≤ θ2

Conclude that sin2 θ ≤ 2(1 − cos θ) ≤ θ2 and use this to give an alternative proof of Eq. (7) in Exercise 51. Then give
an alternative proof of the result in Exercise 52.

solution

• Consider the unit circle shown below. The triangle BDA is a right triangle. It has base 1 − cos θ , altitude sin θ , and
hypotenuse h. Observe that the hypotenuse h is less than the arc length AB = radius · angle = 1 · θ = θ . Apply the
Pythagorean Theorem to obtain (1 − cos θ)2 + sin2 θ = h2 ≤ θ2. The inequality sin2 θ ≤ (1 − cos θ)2 + sin2 θ

follows from the fact that (1 − cos θ)2 ≥ 0.

A
D

B

O

• Note that

(1 − cos θ)2 + sin2 θ = 1 − 2 cos θ + cos2 θ + sin2 θ = 2 − 2 cos θ = 2(1 − cos θ).

Therefore,

sin2 θ ≤ 2(1 − cos θ) ≤ θ2.

• Divide the previous inequality by 2θ to obtain

sin2 θ

2θ
≤ 1 − cos θ

θ
≤ θ

2
.

Because

lim
θ→0

sin2 θ

2θ
= 1

2
lim
θ→0

sin θ

θ
· lim
θ→0

sin θ = 1

2
(1)(0) = 0,

and lim
h→0

θ

2
= 0, it follows by the Squeeze Theorem that

lim
θ→0

1 − cos θ

θ
= 0.

• Divide the inequality

sin2 θ ≤ 2(1 − cos θ) ≤ θ2

by 2θ2 to obtain

sin2 θ

2θ2
≤ 1 − cos θ

θ2
≤ 1

2
.
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Because

lim
θ→0

sin2 θ

2θ2
= 1

2
lim
θ→0

(
sin θ

θ

)2
= 1

2
(12) = 1

2
,

and lim
h→0

1

2
= 1

2
, it follows by the Squeeze Theorem that

lim
θ→0

1 − cos θ

θ2
= 1

2
.

59. (a) Investigate lim
x→c

sin x − sin c

x − c
numerically for the five values c = 0, π

6 , π
4 , π

3 , π
2 .

(b) Can you guess the answer for general c?
(c) Check that your answer to (b) works for two other values of c.

solution
(a)

x c − 0.01 c − 0.001 c + 0.001 c + 0.01

sin x − sin c

x − c
0.999983 0.99999983 0.99999983 0.999983

Here c = 0 and cos c = 1.

x c − 0.01 c − 0.001 c + 0.001 c + 0.01

sin x − sin c

x − c
0.868511 0.866275 0.865775 0.863511

Here c = π
6 and cos c =

√
3

2 ≈ 0.866025.

x c − 0.01 c − 0.001 c + 0.001 c + 0.01

sin x − sin c

x − c
0.504322 0.500433 0.499567 0.495662

Here c = π
3 and cos c = 1

2 .

x c − 0.01 c − 0.001 c + 0.001 c + 0.01

sin x − sin c

x − c
0.710631 0.707460 0.706753 0.703559

Here c = π
4 and cos c =

√
2

2 ≈ 0.707107.

x c − 0.01 c − 0.001 c + 0.001 c + 0.01

sin x − sin c

x − c
0.005000 0.000500 −0.000500 −0.005000

Here c = π
2 and cos c = 0.

(b) lim
x→c

sin x − sin c

x − c
= cos c.

(c)

x c − 0.01 c − 0.001 c + 0.001 c + 0.01

sin x − sin c

x − c
−0.411593 −0.415692 −0.416601 −0.420686

Here c = 2 and cos c = cos 2 ≈ −0.416147.

x c − 0.01 c − 0.001 c + 0.001 c + 0.01

sin x − sin c

x − c
0.863511 0.865775 0.866275 0.868511

Here c = −π
6 and cos c =

√
3

2 ≈ 0.866025.
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2.7 Limits at Infinity

Preliminary Questions
1. Assume that

lim
x→∞ f (x) = L and lim

x→L
g(x) = ∞

Which of the following statements are correct?

(a) x = L is a vertical asymptote of g(x).

(b) y = L is a horizontal asymptote of g(x).

(c) x = L is a vertical asymptote of f (x).

(d) y = L is a horizontal asymptote of f (x).

solution

(a) Because lim
x→L

g(x) = ∞, x = L is a vertical asymptote of g(x). This statement is correct.

(b) This statement is not correct.

(c) This statement is not correct.

(d) Because lim
x→∞ f (x) = L, y = L is a horizontal asymptote of f (x). This statement is correct.

2. What are the following limits?

(a) lim
x→∞ x3 (b) lim

x→−∞ x3 (c) lim
x→−∞ x4

solution

(a) limx→∞ x3 = ∞
(b) limx→−∞ x3 = −∞
(c) limx→−∞ x4 = ∞
3. Sketch the graph of a function that approaches a limit as x → ∞ but does not approach a limit (either finite or infinite)

as x → −∞.

solution

y

x

4. What is the sign of a if f (x) = ax3 + x + 1 satisfies
lim

x→−∞ f (x) = ∞?

solution Because lim
x→−∞ x3 = −∞, a must be negative to have lim

x→−∞ f (x) = ∞.

5. What is the sign of the leading coefficient a7 if f (x) is a polynomial of degree 7 such that lim
x→−∞ f (x) = ∞?

solution The behavior of f (x) as x → −∞ is controlled by the leading term; that is, limx→−∞ f (x) =
limx→−∞ a7x7. Because x7 → −∞ as x → −∞, a7 must be negative to have limx→−∞ f (x) = ∞.

6. Explain why lim
x→∞ sin 1

x exists but lim
x→0

sin 1
x does not exist. What is lim

x→∞ sin 1
x ?

solution As x → ∞, 1
x → 0, so

lim
x→∞ sin

1

x
= sin 0 = 0.

On the other hand, 1
x → ±∞ as x → 0, and as 1

x → ±∞, sin 1
x oscillates infinitely often. Thus

lim
x→0

sin
1

x

does not exist.
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Exercises
1. What are the horizontal asymptotes of the function in Figure 6?

−20 20 40 60 80
x

1

2

y

y = f (x)

FIGURE 6

solution Because

lim
x→−∞ f (x) = 1 and lim

x→∞ f (x) = 2,

the function f (x) has horizontal asymptotes of y = 1 and y = 2.

2. Sketch the graph of a function f (x) that has both y = −1 and y = 5 as horizontal asymptotes.

solution

−1
−10 −5 5 10

1

2
3
4
5

y

x

3. Sketch the graph of a function f (x) with a single horizontal asymptote y = 3.

solution

−13

−9

−5

−1−4 −2 2

3

y

x

4. Sketch the graphs of two functions f (x) and g(x) that have both y = −2 and y = 4 as horizontal asymptotes but
lim

x→∞ f (x) �= lim
x→∞ g(x).

solution

−1
−2

−10 −5 5 10

1
2
3
4

y

x

y = f (x)

−1
−2

−10 −5 5 10

1
2
3

y

x

y = g(x)

5. Investigate the asymptotic behavior of f (x) = x3

x3 + x
numerically and graphically:

(a) Make a table of values of f (x) for x = ±50, ±100, ±500, ±1000.

(b) Plot the graph of f (x).

(c) What are the horizontal asymptotes of f (x)?
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solution

(a) From the table below, it appears that

lim
x→±∞

x3

x3 + x
= 1.

x ±50 ±100 ±500 ±1000

f (x) 0.999600 0.999900 0.999996 0.999999

(b) From the graph below, it also appears that

lim
x→±∞

x3

x3 + x
= 1.

−5 5

0.2

0.4

0.6

0.8

1.0

y

x

(c) The horizontal asymptote of f (x) is y = 1.

6. Investigate lim
x→±∞

12x + 1√
4x2 + 9

numerically and graphically:

(a) Make a table of values of f (x) = 12x + 1√
4x2 + 9

for x = ±100, ±500, ±1000, ±10,000.

(b) Plot the graph of f (x).

(c) What are the horizontal asymptotes of f (x)?

solution

(a) From the tables below, it appears that

lim
x→∞

12x + 1√
4x2 + 9

= 6 and lim
x→−∞

12x + 1√
4x2 + 9

= −6.

x −100 −500 −1000 −10000

f (x) −5.994326 −5.998973 −5.999493 −5.999950

x 100 500 1000 10000

f (x) 6.004325 6.000973 6.000493 6.000050

(b) From the graph below, it also appears that

lim
x→∞

12x + 1√
4x2 + 9

= 6 and lim
x→−∞

12x + 1√
4x2 + 9

= −6.

−6
−4
−2

2
4
6

−5 5

y

x

(c) The horizontal asymptotes of f (x) are y = −6 and y = 6.
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In Exercises 7–16, evaluate the limit.

7. lim
x→∞

x

x + 9

solution

lim
x→∞

x

x + 9
= lim

x→∞
x−1(x)

x−1(x + 9)
= lim

x→∞
1

1 + 9
x

= 1

1 + 0
= 1.

8. lim
x→∞

3x2 + 20x

4x2 + 9

solution

lim
x→∞

3x2 + 20x

4x2 + 9
= lim

x→∞
x−2(3x2 + 20x)

x−2(4x2 + 9)
= lim

x→∞
3 + 20

x

4 + 9
x2

= 3 + 0

4 + 0
= 3

4
.

9. lim
x→∞

3x2 + 20x

2x4 + 3x3 − 29

solution

lim
x→∞

3x2 + 20x

2x4 + 3x3 − 29
= lim

x→∞
x−4(3x2 + 20x)

x−4(2x4 + 3x3 − 29)
= lim

x→∞
3
x2 + 20

x3

2 + 3
x − 29

x4

= 0

2
= 0.

10. lim
x→∞

4

x + 5

solution

lim
x→∞

4

x + 5
= lim

x→∞
x−1(4)

x−1(x + 5)
= lim

x→∞
4
x

1 + 5
x

= 0

1
= 0.

11. lim
x→∞

7x − 9

4x + 3

solution

lim
x→∞

7x − 9

4x + 3
= lim

x→∞
x−1(7x − 9)

x−1(4x + 3)
= lim

x→∞
7 − 9

x

4 + 3
x

= 7

4
.

12. lim
x→∞

9x2 − 2

6 − 29x

solution

lim
x→∞

9x2 − 2

6 − 29x
= lim

x→∞
x−1(9x2 − 2)

x−1(6 − 29x)
= lim

x→∞
9x − 2

x
6
x − 29

= ∞
−29

= −∞.

13. lim
x→−∞

7x2 − 9

4x + 3

solution

lim
x→−∞

7x2 − 9

4x + 3
= lim

x→−∞
x−1(7x2 − 9)

x−1(4x + 3)
= lim

x→−∞
7x − 9

x

4 + 3
x

= −∞.

14. lim
x→−∞

5x − 9

4x3 + 2x + 7

solution

lim
x→−∞

5x − 9

4x3 + 2x + 7
= lim

x→−∞
x−3(5x − 9)

x−3(4x3 + 2x + 7)
= lim

x→−∞

5
x2 − 9

x3

4 + 2
x2 + 7

x3

= 0

4
= 0.
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15. lim
x→−∞

3x3 − 10

x + 4

solution

lim
x→−∞

3x3 − 10

x + 4
= lim

x→−∞
x−1(3x3 − 10)

x−1(x + 4)
= lim

x→−∞
3x2 − 10

x

1 + 4
x

= ∞
1

= ∞.

16. lim
x→−∞

2x5 + 3x4 − 31x

8x4 − 31x2 + 12

solution

lim
x→−∞

2x5 + 3x4 − 31x

8x4 − 31x2 + 12
= lim

x→−∞
x−4(2x5 + 3x4 − 31x)

x−4(8x4 − 31x2 + 12)
= lim

x→−∞
2x + 3 − 31

x3

8 − 31
x2 + 12

x4

= −∞
8

= −∞.

In Exercises 17–22, find the horizontal asymptotes.

17. f (x) = 2x2 − 3x

8x2 + 8

solution First calculate the limits as x → ±∞. For x → ∞,

lim
x→∞

2x2 − 3x

8x2 + 8
= lim

x→∞
2 − 3

x

8 + 8
x2

= 2

8
= 1

4
.

Similarly,

lim
x→−∞

2x2 − 3x

8x2 + 8
= lim

x→−∞
2 − 3

x

8 + 8
x2

= 2

8
= 1

4
.

Thus, the horizontal asymptote of f (x) is y = 1
4 .

18. f (x) = 8x3 − x2

7 + 11x − 4x4

solution First calculate the limits as x → ±∞. For x → ∞,

lim
x→∞

8x3 − x2

7 + 11x − 4x4
= lim

x→∞
8
x − 1

x2

7
x4 + 11

x3 − 4
= 0.

Similarly,

lim
x→−∞

8x3 − x2

7 + 11x − 4x4
= lim

x→−∞

8
x − 1

x2

7
x4 + 11

x3 − 4
= 0.

Thus, the horizontal asymptote of f (x) is y = 0.
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19. f (x) =
√

36x2 + 7

9x + 4

solution For x > 0, x−1 = |x−1| =
√

x−2, so

lim
x→∞

√
36x2 + 7

9x + 4
= lim

x→∞

√
36 + 7

x2

9 + 4
x

=
√

36

9
= 2

3
.

On the other hand, for x < 0, x−1 = −|x−1| = −
√

x−2, so

lim
x→−∞

√
36x2 + 7

9x + 4
= lim

x→−∞
−

√
36 + 7

x2

9 + 4
x

= −√
36

9
= −2

3
.

Thus, the horizontal asymptotes of f (x) are y = 2
3 and y = − 2

3 .

20. f (x) =
√

36x4 + 7

9x2 + 4

solution For all x �= 0, x−2 = |x−2| =
√

x−4, so

lim
x→∞

√
36x4 + 7

9x2 + 4
= lim

x→∞

√
36 + 7

x4

9 + 4
x2

=
√

36

9
= 2

3
.

Similarly,

lim
x→−∞

√
36x4 + 7

9x2 + 4
= lim

x→−∞

√
36 + 7

x4

9 + 4
x2

=
√

36

9
= 2

3
.

Thus, the horizontal asymptote of f (x) is y = 2
3 .

21. f (t) = et

1 + e−t

solution With

lim
t→∞

et

1 + e−t
= ∞

1
= ∞

and

lim
t→−∞

et

1 + e−t
= 0,

the function f (t) has one horizontal asymptote, y = 0.

22. f (t) = t1/3

(64t2 + 9)1/6

solution For t > 0, t−1/3 = |t−1/3| = (t−2)1/6, so

lim
t→∞

t1/3

(64t2 + 9)1/6
= lim

t→∞
1

(64 + 9
t2 )1/6

= 1

2
.

On the other hand, for t < 0, t−1/3 = −|t−1/3| = −(t−2)1/6, so

lim
t→−∞

t1/3

(64t2 + 9)1/6
= lim

t→−∞
1

−(64 + 9
t2 )1/6

= −1

2
.

Thus, the horizontal asymptotes for f (t) are y = 1
2 and y = − 1

2 .
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In Exercises 23–30, evaluate the limit.

23. lim
x→∞

√
9x4 + 3x + 2

4x3 + 1

solution For x > 0, x−3 = |x−3| =
√

x−6, so

lim
x→∞

√
9x4 + 3x + 2

4x3 + 1
= lim

x→∞

√
9
x2 + 3

x5 + 2
x6

4 + 1
x3

= 0.

24. lim
x→∞

√
x3 + 20x

10x − 2

solution For x > 0, x−1 = |x−1| =
√

x−2, so

lim
x→∞

√
x3 + 20x

10x − 2
= lim

x→∞

√
x + 20

x

10 − 2
x

= ∞
10

= ∞.

25. lim
x→−∞

8x2 + 7x1/3√
16x4 + 6

solution For x < 0, x−2 = |x−2| =
√

x−4, so

lim
x→−∞

8x2 + 7x1/3√
16x4 + 6

= lim
x→−∞

8 + 7
x5/3√

16 + 6
x4

= 8√
16

= 2.

26. lim
x→−∞

4x − 3√
25x2 + 4x

solution For x < 0, x−1 = −|x−1| = −
√

x−2, so

lim
x→−∞

4x − 3√
25x2 + 4x

= lim
x→−∞

4 − 3
x

−
√

25 + 4
x

= 4

−√
25

= −4

5
.

27. lim
t→∞

t4/3 + t1/3

(4t2/3 + 1)2

solution lim
t→∞

t4/3 + t1/3

(4t2/3 + 1)2
= lim

t→∞
1 + 1

t

(4 + 1
t2/3 )2

= 1

16
.

28. lim
t→∞

t4/3 − 9t1/3

(8t4 + 2)1/3

solution lim
t→∞

t4/3 − 9t1/3

(8t4 + 2)1/3
= lim

t→∞
1 − 9

t

(8 + 2
t4 )1/3

= 1

2
.

29. lim
x→−∞

|x| + x

x + 1

solution For x < 0, |x| = −x. Therefore, for all x < 0,

|x| + x

x + 1
= −x + x

x + 1
= 0;

consequently,

lim
x→−∞

|x| + x

x + 1
= 0.
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30. lim
t→−∞

4 + 6e2t

5 − 9e3t

solution Because

lim
t→−∞ e2t = lim

t→−∞ e3t = 0,

it follows that

lim
t→−∞

4 + 6e2t

5 − 9e3t
= 4 + 0

5 − 0
= 4

5
.

31. Determine lim
x→∞ tan−1 x. Explain geometrically.

solution As an angle θ increases from 0 to π
2 , its tangent x = tan θ approaches ∞. Therefore,

lim
x→∞ tan−1 x = π

2
.

Geometrically, this means that the graph of y = tan−1 x has a horizontal asymptote at y = π
2 .

32. Show that lim
x→∞(

√
x2 + 1 − x) = 0. Hint: Observe that

√
x2 + 1 − x = 1√

x2 + 1 + x

solution Rationalizing the "numerator," we find

√
x2 + 1 − x = (

√
x2 + 1 − x)

√
x2 + 1 + x√
x2 + 1 + x

= (x2 + 1) − x2√
x2 + 1 + x

= 1√
x2 + 1 + x

.

Thus,

lim
x→∞(

√
x2 + 1 − x) = lim

x→∞
1√

x2 + 1 + x
= 0.

33. According to the Michaelis–Menten equation (Figure 7), when an enzyme is combined with a substrate of concen-
tration s (in millimolars), the reaction rate (in micromolars/min) is

R(s) = As

K + s
(A, K constants)

(a) Show, by computing lim
s→∞ R(s), that A is the limiting reaction rate as the concentration s approaches ∞.

(b) Show that the reaction rate R(s) attains one-half of the limiting value A when s = K .

(c) For a certain reaction, K = 1.25 mM and A = 0.1. For which concentration s is R(s) equal to 75% of its limiting
value?

Leonor Michaelis
1875−1949

Maud Menten
1879−1960

FIGURE 7 Canadian-born biochemist Maud Menten is best known for her fundamental work on enzyme kinetics with
German scientist Leonor Michaelis. She was also an accomplished painter, clarinetist, mountain climber, and master of
numerous languages.
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solution

(a) lim
s→∞ R(s) = lim

s→∞
As

K + s
= lim

s→∞
A

1 + K
s

= A.

(b) Observe that

R(K) = AK

K + K
= AK

2K
= A

2
,

have of the limiting value.
(c) By part (a), the limiting value is 0.1, so we need to determine the value of s that satisfies

R(s) = 0.1s

1.25 + s
= 0.075.

Solving this equation for s yields

s = (1.25)(0.075)

0.025
= 3.75 mM.

34. Suppose that the average temperature of the earth is T (t) = 283 + 3(1 − e−0.03t ) kelvins, where t is the number of
years since 2000.

(a) Calculate the long-term average L = lim
t→∞ T (t).

(b) At what time is T (t) within one-half a degree of its limiting value?

solution

(a) L = lim
t→∞ T (t) = lim

t→∞(283 + 3(1 − e−0.03t )) = 286 kelvins.

(b) We need to solve the equation

T (t) = 283 + 3(1 − e−0.03t ) = 285.5.

This yields

t = 1

0.03
ln 6 ≈ 59.73.

The average temperature of the earth will be within one-half a degree of its limiting value in roughly 2060.

In Exercises 35–42, calculate the limit.

35. lim
x→∞

(√
4x4 + 9x − 2x2)

solution Write

√
4x4 + 9x − 2x2 =

(√
4x4 + 9x − 2x2

)√
4x4 + 9x + 2x2√
4x4 + 9x + 2x2

= (4x4 + 9x) − 4x4√
4x4 + 9x + 2x2

= 9x√
4x4 + 9x + 2x2

.

Thus,

lim
x→∞(

√
4x4 + 9x − 2x2) = lim

x→∞
9x√

4x4 + 9x + 2x2
= 0.

36. lim
x→∞(

√
9x3 + x − x3/2)

solution Write

√
9x3 + x − x3/2 =

(√
9x3 + x − x3/2

)√
9x3 + x + x3/2√
9x3 + x + x3/2

= (9x3 + x) − x3√
9x3 + x + x3/2

= 8x3 + x√
9x3 + x + x3/2

.

Thus,

lim
x→∞(

√
9x3 + x − x3/2) = lim

t→∞
8x3 + x√

9x3 + x + x3/2
= ∞.
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37. lim
x→∞

(
2
√

x − √
x + 2

)
solution Write

2
√

x − √
x + 2 = (

2
√

x − √
x + 2

)2
√

x + √
x + 2

2
√

x + √
x + 2

= 4x − (x + 2)

2
√

x + √
x + 2

= 3x − 2

2
√

x + √
x + 2

.

Thus,

lim
x→∞(2

√
x − √

x + 2) = lim
x→∞

3x − 2

2
√

x + √
x + 2

= ∞.

38. lim
x→∞

(
1

x
− 1

x + 2

)

solution lim
x→∞

(
1

x
− 1

x + 2

)
= lim

x→∞
2

x(x + 2)
= 0.

39. lim
x→∞ (ln(3x + 1) − ln(2x + 1))

solution Because

ln(3x + 1) − ln(2x + 1) = ln
3x + 1

2x + 1

and

lim
x→∞

3x + 1

2x + 1
= 3

2
,

it follows that

lim
x→∞ (ln(3x + 1) − ln(2x + 1)) = ln

3

2
.

40. lim
x→∞

(
ln(

√
5x2 + 2) − ln x

)
solution Because

ln(
√

5x2 + 2) − ln x = ln

√
5x2 + 2

x

and

lim
x→∞

√
5x2 + 2

x
= lim

x→∞

√
5 + 2

x2

1
= √

5,

it follows that

lim
x→∞

(
ln(

√
5x2 + 2) − ln x

)
= ln

√
5 = 1

2
ln 5.

41. lim
x→∞ tan−1

(
x2 + 9

9 − x

)

solution Because

lim
x→∞

x2 + 9

9 − x
= lim

x→∞
x + 9

x
9
x − 1

= ∞
−1

= −∞,

it follows that

lim
x→∞ tan−1

(
x2 + 9

9 − x

)
= −π

2
.
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42. lim
x→∞ tan−1

(
1 + x

1 − x

)
solution Because

lim
x→∞

1 + x

1 − x
= −1,

it follows that

lim
x→∞ tan−1

(
1 + x

1 − x

)
= tan−1(−1) = −π

4
.

43. Let P(n) be the perimeter of an n-gon inscribed in a unit circle (Figure 8).

(a) Explain, intuitively, why P(n) approaches 2π as n → ∞.
(b) Show that P(n) = 2n sin

(
π
n

)
.

(c) Combine (a) and (b) to conclude that lim
n→∞

n
π sin

(
π
n

) = 1.

(d) Use this to give another argument that lim
θ→0

sin θ

θ
= 1.

n = 6 n = 9 n = 12

FIGURE 8

solution
(a) As n → ∞, the n-gon approaches a circle of radius 1. Therefore, the perimeter of the n-gon approaches the circum-
ference of the unit circle as n → ∞. That is, P(n) → 2π as n → ∞.
(b) Each side of the n-gon is the third side of an isosceles triangle with equal length sides of length 1 and angle θ = 2π

n
between the equal length sides. The length of each side of the n-gon is therefore√

12 + 12 − 2 cos
2π

n
=

√
2(1 − cos

2π

n
) =

√
4 sin2 π

n
= 2 sin

π

n
.

Finally,

P(n) = 2n sin
π

n
.

(c) Combining parts (a) and (b),

lim
n→∞ P(n) = lim

n→∞ 2n sin
π

n
= 2π.

Dividing both sides of this last expression by 2π yields

lim
n→∞

n

π
sin

π

n
= 1.

(d) Let θ = π
n . Then θ → 0 as n → ∞,

n

π
sin

π

n
= 1

θ
sin θ = sin θ

θ
,

and

lim
n→∞

n

π
sin

π

n
= lim

θ→0

sin θ

θ
= 1.

44. Physicists have observed that Einstein’s theory of special relativity reduces to Newtonian mechanics in the limit as
c → ∞, where c is the speed of light. This is illustrated by a stone tossed up vertically from ground level so that it returns
to earth one second later. Using Newton’s Laws, we find that the stone’s maximum height is h = g/8 meters (g = 9.8
m/s2). According to special relativity, the stone’s mass depends on its velocity divided by c, and the maximum height is

h(c) = c

√
c2/g2 + 1/4 − c2/g

Prove that lim
c→∞ h(c) = g/8.
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solution Write

h(c) = c

√
c2/g2 + 1/4 − c2/g =

(
c

√
c2/g2 + 1/4 − c2/g

) c
√

c2/g2 + 1/4 + c2/g

c
√

c2/g2 + 1/4 + c2/g

= c2(c2/g2 + 1/4) − c4/g2

c
√

c2/g2 + 1/4 + c2/g
= c2/4

c
√

c2/g2 + 1/4 + c2/g
.

Thus,

lim
c→∞ h(c) = lim

c→∞
c2/4

c
√

c2/g2 + 1/4 + c2/g
= c2/4

2c2/g
= g

8
.

Further Insights and Challenges
45. Every limit as x → ∞ can be rewritten as a one-sided limit as t → 0+, where t = x−1. Setting g(t) = f (t−1), we
have

lim
x→∞ f (x) = lim

t→0+ g(t)

Show that lim
x→∞

3x2 − x

2x2 + 5
= lim

t→0+
3 − t

2 + 5t2
, and evaluate using the Quotient Law.

solution Let t = x−1. Then x = t−1, t → 0+ as x → ∞, and

3x2 − x

2x2 + 5
= 3t−2 − t−1

2t−2 + 5
= 3 − t

2 + 5t2
.

Thus,

lim
x→∞

3x2 − x

2x2 + 5
= lim

t→0+
3 − t

2 + 5t2
= 3

2
.

46. Rewrite the following as one-sided limits as in Exercise 45 and evaluate.

(a) lim
x→∞

3 − 12x3

4x3 + 3x + 1
(b) lim

x→∞ e1/x

(c) lim
x→∞ x sin

1

x
(d) lim

x→∞ ln

(
x + 1

x − 1

)

solution

(a) Let t = x−1. Then x = t−1, t → 0+ as x → ∞, and

3 − 12x3

4x3 + 3x + 1
= 3 − 12t−3

4t−3 + 3t−1 + 1
= 3t3 − 12

4 + 3t2 + t3
.

Thus,

lim
x→∞

3 − 12x3

4x3 + 3x + 1
= lim

t→0+
3t3 − 12

4 + 3t2 + t3
= −12

4
= −3.

(b) Let t = x−1. Then x = t−1, t → 0+ as x → ∞, and e1/x = et . Thus,

lim
x→∞ e1/x = lim

t→0+ et = e0 = 1.

(c) Let t = x−1. Then x = t−1, t → 0+ as x → ∞, and

x sin
1

x
= 1

t
sin t = sin t

t
.

Thus,

lim
x→∞ x sin

1

x
= lim

t→0+
sin t

t
= 1.
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(d) Let t = x−1. Then x = t−1, t → 0+ as x → ∞, and

x + 1

x − 1
= t−1 + 1

t−1 − 1
= 1 + t

1 − t
.

Thus,

lim
x→∞ ln

(
x + 1

x − 1

)
= lim

t→0+ ln

(
1 + t

1 − t

)
= ln 1 = 0.

47. Let G(b) = lim
x→∞(1 + bx)1/x for b ≥ 0. Investigate G(b) numerically and graphically for b = 0.2, 0.8, 2, 3, 5

(and additional values if necessary). Then make a conjecture for the value of G(b) as a function of b. Draw a graph
of y = G(b). Does G(b) appear to be continuous? We will evaluate G(b) using L’Hôpital’s Rule in Section 4.5 (see
Exercise 69 in Section 4.5).

solution

• b = 0.2:

x 5 10 50 100

f (x) 1.000064 1.000000 1.000000 1.000000

It appears that G(0.2) = 1.

• b = 0.8:

x 5 10 50 100

f (x) 1.058324 1.010251 1.000000 1.000000

It appears that G(0.8) = 1.

• b = 2:

x 5 10 50 100

f (x) 2.012347 2.000195 2.000000 2.000000

It appears that G(2) = 2.

• b = 3:

x 5 10 50 100

f (x) 3.002465 3.000005 3.000000 3.000000

It appears that G(3) = 3.

• b = 5:

x 5 10 50 100

f (x) 5.000320 5.000000 5.000000 5.000000

It appears that G(5) = 5.

Based on these observations we conjecture that G(b) = 1 if 0 ≤ b ≤ 1 and G(b) = b for b > 1. The graph of y = G(b)

is shown below; the graph does appear to be continuous.

1

0
0 1 2 3 4

2

3

4

y

x
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2.8 Intermediate Value Theorem

Preliminary Questions
1. Prove that f (x) = x2 takes on the value 0.5 in the interval [0, 1].
solution Observe that f (x) = x2 is continuous on [0, 1] with f (0) = 0 and f (1) = 1. Because f (0) < 0.5 < f (1),
the Intermediate Value Theorem guarantees there is a c ∈ [0, 1] such that f (c) = 0.5.

2. The temperature in Vancouver was 8◦C at 6 am and rose to 20◦C at noon. Which assumption about temperature allows
us to conclude that the temperature was 15◦C at some moment of time between 6 am and noon?

solution We must assume that temperature is a continuous function of time.

3. What is the graphical interpretation of the IVT?

solution If f is continuous on [a, b], then the horizontal line y = k for every k between f (a) and f (b) intersects the
graph of y = f (x) at least once.

4. Show that the following statement is false by drawing a graph that provides a counterexample:

If f (x) is continuous and has a root in [a, b], then f (a) and f (b) have opposite signs.

solution

f (a)

f (b)

a

y

x
b

5. Assume that f (t) is continuous on [1, 5] and that f (1) = 20, f (5) = 100. Determine whether each of the following
statements is always true, never true, or sometimes true.

(a) f (c) = 3 has a solution with c ∈ [1, 5].
(b) f (c) = 75 has a solution with c ∈ [1, 5].
(c) f (c) = 50 has no solution with c ∈ [1, 5].
(d) f (c) = 30 has exactly one solution with c ∈ [1, 5].
solution

(a) This statement is sometimes true.

(b) This statement is always true.

(c) This statement is never true.

(d) This statement is sometimes true.

Exercises
1. Use the IVT to show that f (x) = x3 + x takes on the value 9 for some x in [1, 2].

solution Observe that f (1) = 2 and f (2) = 10. Since f is a polynomial, it is continuous everywhere; in particular
on [1, 2]. Therefore, by the IVT there is a c ∈ [1, 2] such that f (c) = 9.

2. Show that g(t) = t

t + 1
takes on the value 0.499 for some t in [0, 1].

solution g(0) = 0 and g(1) = 1
2 . Since g(t) is continuous for all x �= −1, and since 0 < 0.4999 < 1

2 , the IVT states
that g(t) = 0.4999 for some t between 0 and 1.

3. Show that g(t) = t2 tan t takes on the value 1
2 for some t in

[
0, π

4

]
.

solution g(0) = 0 and g(π
4 ) = π2

16 . g(t) is continuous for all t between 0 and π
4 , and 0 < 1

2 < π2

16 ; therefore, by the

IVT, there is a c ∈ [0, π
4 ] such that g(c) = 1

2 .

4. Show that f (x) = x2

x7 + 1
takes on the value 0.4.

solution f (0) = 0 < 0.4. f (1) = 1
2 > 0.4. f (x) is continuous at all points x where x �= −1, therefore f (x) = 0.4

for some x between 0 and 1.
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5. Show that cos x = x has a solution in the interval [0, 1]. Hint: Show that f (x) = x − cos x has a zero in [0, 1].
solution Let f (x) = x − cos x. Observe that f is continuous with f (0) = −1 and f (1) = 1 − cos 1 ≈ 0.46.
Therefore, by the IVT there is a c ∈ [0, 1] such that f (c) = c − cos c = 0. Thus c = cos c and hence the equation
cos x = x has a solution c in [0, 1].

6. Use the IVT to find an interval of length 1
2 containing a root of f (x) = x3 + 2x + 1.

solution Let f (x) = x3 + 2x + 1. Observe that f (−1) = −2 and f (0) = 1. Since f is continuous, we may conclude

by the IVT that f has a root in [−1, 0]. Now, f (− 1
2 ) = − 1

8 so f (− 1
2 ) and f (0) are of opposite sign. Therefore, the IVT

guarantees that f has a root on [− 1
2 , 0].

In Exercises 7–16, prove using the IVT.

7.
√

c + √
c + 2 = 3 has a solution.

solution Let f (x) = √
x + √

x + 2 − 3. Note that f is continuous on
[

1
4 , 2

]
with f ( 1

4 ) =
√

1
4 +

√
9
4 − 3 = −1

and f (2) = √
2 − 1 ≈ 0.41. Therefore, by the IVT there is a c ∈

[
1
4 , 2

]
such that f (c) = √

c + √
c + 2 − 3 = 0. Thus

√
c + √

c + 2 = 3 and hence the equation
√

x + √
x + 2 = 3 has a solution c in

[
1
4 , 2

]
.

8. For all integers n, sin nx = cos x for some x ∈ [0, π ].
solution For each integer n, let f (x) = sin nx − cos x. Observe that f is continuous with f (0) = −1 and f (π) = 1.
Therefore, by the IVT there is a c ∈ [0, π] such that f (c) = sin nc − cos c = 0. Thus sin nc = cos c and hence the
equation sin nx = cos x has a solution c in the interval [0, π ].

9.
√

2 exists. Hint: Consider f (x) = x2.

solution Let f (x) = x2. Observe that f is continuous with f (1) = 1 and f (2) = 4. Therefore, by the IVT there is a

c ∈ [1, 2] such that f (c) = c2 = 2. This proves the existence of
√

2, a number whose square is 2.

10. A positive number c has an nth root for all positive integers n.

solution If c = 1, then n
√

c = 1. Now, suppose c �= 1. Let f (x) = xn − c, and let b = max{1, c}. Then, if c > 1,
bn = cn > c, and if c < 1, bn = 1 > c. So bn > c. Now observe that f (0) = −c < 0 and f (b) = bn − c > 0. Since f
is continuous on [0, b], by the intermediate value theorem, there is some d ∈ [0, b] such that f (d) = 0. We can refer to
d as n

√
c.

11. For all positive integers k, cos x = xk has a solution.

solution For each positive integer k, let f (x) = xk − cos x. Observe that f is continuous on
[
0, π

2

]
with f (0) = −1

and f (π
2 ) = (

π
2

)k
> 0. Therefore, by the IVT there is a c ∈ [

0, π
2

]
such that f (c) = ck − cos(c) = 0. Thus cos c = ck

and hence the equation cos x = xk has a solution c in the interval
[
0, π

2

]
.

12. 2x = bx has a solution if b > 2.

solution Let f (x) = 2x − bx. Observe that f is continuous on [0, 1] with f (0) = 1 > 0 and f (1) = 2 − b < 0.
Therefore, by the IVT, there is a c ∈ [0, 1] such that f (c) = 2c − bc = 0.

13. 2x + 3x = 4x has a solution.

solution Let f (x) = 2x + 3x − 4x . Observe that f is continuous on [0, 2] with f (0) = 1 > 0 and f (2) = −3 < 0.
Therefore, by the IVT, there is a c ∈ (0, 2) such that f (c) = 2c + 3c − 4c = 0.

14. cos x = cos−1 x has a solution in (0, 1).

solution Let f (x) = cos x − cos−1 x. Observe that f is continuous on [0, 1] with f (0) = 1 − π
2 < 0 and f (1) =

cos 1 − 0 ≈ 0.54 > 0. Therefore, by the IVT, there is a c ∈ (0, 1) such that f (c) = cos c − cos−1 c = 0.

15. ex + ln x = 0 has a solution.

solution Let f (x) = ex + ln x. Observe that f is continuous on [e−2, 1] with f (e−2) = ee−2 − 2 < 0 and

f (1) = e > 0. Therefore, by the IVT, there is a c ∈ (e−2, 1) ⊂ (0, 1) such that f (c) = ec + ln c = 0.

16. tan−1 x = cos−1 x has a solution.

solution Let f (x) = tan−1 x − cos−1 x. Observe that f is continuous on [0, 1] with f (0) = tan−1 0 − cos−1 0 =
−π

2 < 0 and f (1) = tan−1 1 − cos−1 1 = π
4 > 0. Therefore, by the IVT, there is a c ∈ (0, 1) such that f (c) =

tan−1 c − cos−1 c = 0.

17. Carry out three steps of the Bisection Method for f (x) = 2x − x3 as follows:

(a) Show that f (x) has a zero in [1, 1.5].
(b) Show that f (x) has a zero in [1.25, 1.5].
(c) Determine whether [1.25, 1.375] or [1.375, 1.5] contains a zero.
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solution Note that f (x) is continuous for all x.

(a) f (1) = 1, f (1.5) = 21.5 − (1.5)3 < 3 − 3.375 < 0. Hence, f (x) = 0 for some x between 1 and 1.5.

(b) f (1.25) ≈ 0.4253 > 0 and f (1.5) < 0. Hence, f (x) = 0 for some x between 1.25 and 1.5.

(c) f (1.375) ≈ −0.0059. Hence, f (x) = 0 for some x between 1.25 and 1.375.

18. Figure 4 shows that f (x) = x3 − 8x − 1 has a root in the interval [2.75, 3]. Apply the Bisection Method twice to
find an interval of length 1

16 containing this root.

1 2 3
x

y

FIGURE 4 Graph of y = x3 − 8x − 1.

solution Let f (x) = x3 − 8x − 1. Observe that f is continuous with f (2.75) = −2.203125 and f (3) = 2.
Therefore, by the IVT there is a c ∈ [2.75, 3] such that f (c) = 0. The midpoint of the interval [2.75, 3] is 2.875 and
f (2.875) = −0.236. Hence, f (x) = 0 for some x between 2.875 and 3. The midpoint of the interval [2.875, 3] is 2.9375
and f (2.9375) = 0.84. Thus, f (x) = 0 for some x between 2.875 and 2.9375.

19. Find an interval of length 1
4 in [1, 2] containing a root of the equation x7 + 3x − 10 = 0.

solution Let f (x) = x7 + 3x − 10. Observe that f is continuous with f (1) = −6 and f (2) = 124. Therefore,
by the IVT there is a c ∈ [1, 2] such that f (c) = 0. f (1.5) ≈ 11.59 > 0, so f (c) = 0 for some c ∈ [1, 1.5].
f (1.25) ≈ −1.48 < 0, and so f (c) = 0 for some c ∈ [1.25, 1.5]. This means that [1.25, 1.5] is an interval of length 0.25
containing a root of f (x).

20. Show that tan3 θ − 8 tan2 θ + 17 tan θ − 8 = 0 has a root in [0.5, 0.6]. Apply the Bisection Method twice to find an
interval of length 0.025 containing this root.

solution Let f (x) = tan3 θ − 8 tan2 θ + 17 tan θ − 8. Since f (0.5) = −0.937387 < 0 and f (0.6) = 0.206186 > 0,
we conclude that f (x) = 0 has a root in [0.5, 0.6]. Since f (0.55) = −0.35393 < 0 and f (0.6) > 0, we can conclude that
f (x) = 0 has a root in [0.55, 0.6]. Since f (0.575) = −0.0707752 < 0, we can conclude that f has a root on [0.575, 0.6].
In Exercises 21–24, draw the graph of a function f (x) on [0, 4] with the given property.

21. Jump discontinuity at x = 2 and does not satisfy the conclusion of the IVT.

solution The function graphed below has a jump discontinuity at x = 2. Note that while f (0) = 2 and f (4) = 4,
there is no point c in the interval [0, 4] such that f (c) = 3. Accordingly, the conclusion of the IVT is not satisfied.

4321

1

3

2

4

y

x

22. Jump discontinuity at x = 2 and satisfies the conclusion of the IVT on [0, 4].
solution The function graphed below has a jump discontinuity at x = 2. Note that for every value M between
f (0) = 2 and f (4) = 4, there is a point c in the interval [0, 4] such that f (c) = M . Accordingly, the conclusion of the
IVT is satisfied.

2 4

4

2

x

y
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23. Infinite one-sided limits at x = 2 and does not satisfy the conclusion of the IVT.

solution The function graphed below has infinite one-sided limits at x = 2. Note that while f (0) = 2 and f (4) = 4,
there is no point c in the interval [0, 4] such that f (c) = 3. Accordingly, the conclusion of the IVT is not satisfied.

4321

1

−1

3

2

4

5

6

y

x

24. Infinite one-sided limits at x = 2 and satisfies the conclusion of the IVT on [0, 4].
solution The function graphed below has infinite one-sided limits at x = 2. Note that for every value M between
f (0) = 0 and f (4) = 4, there is a point c in the interval [0, 4] such that f (c) = M . Accordingly, the conclusion of the
IVT is satisfied.

2 4

6

2

4

x

y

25. Can Corollary 2 be applied to f (x) = x−1 on [−1, 1]? Does f (x) have any roots?

solution No, because f (x) = x−1 is not continuous on [−1, 1]. Even though f (−1) = −1 < 0 and f (1) = 1 > 0,
the function has no roots between x = −1 and x = 1. In fact, this function has no roots at all.

Further Insights and Challenges
26. Take any map and draw a circle on it anywhere (Figure 5). Prove that at any moment in time there exists a pair of
diametrically opposite points A and B on that circle corresponding to locations where the temperatures at that moment are
equal. Hint: Let θ be an angular coordinate along the circle and let f (θ) be the difference in temperatures at the locations
corresponding to θ and θ + π .

θ

B

A

FIGURE 5 f (θ) is the difference between the temperatures at A and B.

solution Say the circle has (fixed but arbitrary) radius r and use polar coordinates with the pole at the center of the
circle. For 0 ≤ θ ≤ 2π , let T (θ) be the temperature at the point (r cos θ, r sin θ). We assume this temperature varies
continuously. For 0 ≤ θ ≤ π , define f as the difference f (θ) = T (θ) − T (θ + π). Then f is continuous on [0, π].
There are three cases.

• If f (0) = T (0) − T (π) = 0, then T (0) = T (π) and we have found a pair of diametrically opposite points on the
circle at which the temperatures are equal.
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• If f (0) = T (0) − T (π) > 0, then

f (π) = T (π) − T (2π) = T (π) − T (0) < 0.

[Note that the angles 0 and 2π correspond to the same point, (x, y) = (r, 0).] Since f is continuous on [0, π], we
have by the IVT that f (c) = T (c) − T (c + π) = 0 for some c ∈ [0, π]. Accordingly, T (c) = T (c + π) and we
have again found a pair of diametrically opposite points on the circle at which the temperatures are equal.

• If f (0) = T (0) − T (π) < 0, then

f (π) = T (π) − T (2π) = T (π) − T (0) > 0.

Since f is continuous on [0, π ], we have by the IVT that f (d) = T (d) − T (d + π) = 0 for some d ∈ [0, π].
Accordingly, T (d) = T (d + π) and once more we have found a pair of diametrically opposite points on the circle
at which the temperatures are equal.

CONCLUSION: There is always a pair of diametrically opposite points on the circle at which the temperatures are equal.

27. Show that if f (x) is continuous and 0 ≤ f (x) ≤ 1 for 0 ≤ x ≤ 1, then f (c) = c for some c in [0, 1]
(Figure 6).

1

1

y  = f (x)

y  = x

c
x

y

FIGURE 6 A function satisfying 0 ≤ f (x) ≤ 1 for 0 ≤ x ≤ 1.

solution If f (0) = 0, the proof is done with c = 0. We may assume that f (0) > 0. Let g(x) = f (x) − x.
g(0) = f (0) − 0 = f (0) > 0. Since f (x) is continuous, the Rule of Differences dictates that g(x) is continuous. We
need to prove that g(c) = 0 for some c ∈ [0, 1]. Since f (1) ≤ 1, g(1) = f (1) − 1 ≤ 0. If g(1) = 0, the proof is done
with c = 1, so let’s assume that g(1) < 0.

We now have a continuous function g(x) on the interval [0, 1] such that g(0) > 0 and g(1) < 0. From the IVT, there
must be some c ∈ [0, 1] so that g(c) = 0, so f (c) − c = 0 and so f (c) = c.

This is a simple case of a very general, useful, and beautiful theorem called the Brouwer fixed point theorem.

28. Use the IVT to show that if f (x) is continuous and one-to-one on an interval [a, b], then f (x) is either an increasing
or a decreasing function.

solution Let f (x) be a continuous, one-to-one function on the interval [a, b]. Suppose for sake of contradiction that
f (x) is neither increasing nor decreasing on [a, b]. Now, f (x) cannot be constant for that would contradict the condition
that f (x) is one-to-one. It follows that somewhere on [a, b], f (x) must transition from increasing to decreasing or from
decreasing to increasing. To be specific, suppose f (x) is increasing for x1 < x < x2 and decreasing for x2 < x < x3. Let
k be any number between max{f (x1), f (x3)} and f (x2). Because f (x) is continuous, the IVT guarantees there exists a
c1 ∈ (x1, x2) such that f (c1) = k; moreover, there exists a c2 ∈ (x2, x3) such that f (c2) = k. However, this contradicts
the condition that f (x) is one-to-one. A similar analysis for the case when f (x) is decreasing for x1 < x < x2 and
increasing for x2 < x < x3 again leads to a contradiction. Therefore, f (x) must either be increasing or decreasing on
[a, b].
29. Ham Sandwich Theorem Figure 7(A) shows a slice of ham. Prove that for any angle θ (0 ≤ θ ≤ π ), it
is possible to cut the slice in half with a cut of incline θ . Hint: The lines of inclination θ are given by the equations
y = (tan θ)x + b, where b varies from −∞ to ∞. Each such line divides the slice into two pieces (one of which may be
empty). Let A(b) be the amount of ham to the left of the line minus the amount to the right, and let A be the total area of
the ham. Show that A(b) = −A if b is sufficiently large and A(b) = A if b is sufficiently negative. Then use the IVT.
This works if θ �= 0 or π

2 . If θ = 0, define A(b) as the amount of ham above the line y = b minus the amount below.
How can you modify the argument to work when θ = π

2 (in which case tan θ = ∞)?

Cutting a slice of ham
at an angle   .

L (0) = L(   )

L (  )L (    ) 
2

(A) (B) A slice of ham on top
of a slice of bread.

x

y

x

y

FIGURE 7
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solution Let θ be such that θ �= π
2 . For any b, consider the line L(θ) drawn at angle θ to the x axis starting at (0, b).

This line has formula y = (tan θ)x + b. Let A(b) be the amount of ham above the line minus that below the line.
Let A > 0 be the area of the ham. We have to accept the following (reasonable) assumptions:

• For low enough b = b0, the line L(θ) lies entirely below the ham, so that A(b0) = A − 0 = A.

• For high enough b1, the line L(θ) lies entirely above the ham, so that A(b1) = 0 − A = −A.

• A(b) is continuous as a function of b.

Under these assumptions, we see A(b) is a continuous function satisfying A(b0) > 0 and A(b1) < 0 for some b0 < b1.
By the IVT, A(b) = 0 for some b ∈ [b0, b1].

Suppose that θ = π
2 . Let the line L(c) be the vertical line through (c, 0) (x = c). Let A(c) be the area of ham to the

left of L(c) minus that to the right of L(c). Since L(0) lies entirely to the left of the ham, A(0) = 0 − A = −A. For
some c = c1 sufficiently large, L(c) lies entirely to the right of the ham, so that A(c1) = A − 0 = A. Hence A(c) is a
continuous function of c such that A(0) < 0 and A(c1) > 0. By the IVT, there is some c ∈ [0, c1] such that A(c) = 0.

30. Figure 7(B) shows a slice of ham on a piece of bread. Prove that it is possible to slice this open-faced sandwich
so that each part has equal amounts of ham and bread. Hint: By Exercise 29, for all 0 ≤ θ ≤ π there is a line L(θ) of
incline θ (which we assume is unique) that divides the ham into two equal pieces. Let B(θ) denote the amount of bread
to the left of (or above) L(θ) minus the amount to the right (or below). Notice that L(π) and L(0) are the same line, but
B(π) = −B(0) since left and right get interchanged as the angle moves from 0 to π . Assume that B(θ) is continuous and
apply the IVT. (By a further extension of this argument, one can prove the full “Ham Sandwich Theorem,” which states
that if you allow the knife to cut at a slant, then it is possible to cut a sandwich consisting of a slice of ham and two slices
of bread so that all three layers are divided in half.)

solution For each angle θ , 0 ≤ θ < π , let L(θ) be the line at angle θ to the x-axis that slices the ham exactly in half,
as shown in Figure 7. Let L(0) = L(π) be the horizontal line cutting the ham in half, also as shown. For θ and L(θ) thus
defined, let B(θ) = the amount of bread to the left of L(θ) minus that to the right of L(θ).

To understand this argument, one must understand what we mean by “to the left” or “to the right”. Here, we mean to
the left or right of the line as viewed in the direction θ . Imagine you are walking along the line in direction θ (directly
right if θ = 0, directly left if θ = π , etc).

We will further accept the fact that B is continuous as a function of θ , which seems intuitively obvious. We need to
prove that B(c) = 0 for some angle c.

Since L(0) and L(π) are drawn in opposite direction, B(0) = −B(π). If B(0) > 0, we apply the IVT on [0, π] with
B(0) > 0, B(π) < 0, and B continuous on [0, π ]; by IVT, B(c) = 0 for some c ∈ [0, π ]. On the other hand, if B(0) < 0,
then we apply the IVT with B(0) < 0 and B(π) > 0. If B(0) = 0, we are also done; L(0) is the appropriate line.

2.9 The Formal Definition of a Limit

Preliminary Questions
1. Given that lim

x→0
cos x = 1, which of the following statements is true?

(a) If |cos x − 1| is very small, then x is close to 0.

(b) There is an ε > 0 such that |x| < 10−5 if 0 < |cos x − 1| < ε.

(c) There is a δ > 0 such that |cos x − 1| < 10−5 if 0 < |x| < δ.

(d) There is a δ > 0 such that |cos x| < 10−5 if 0 < |x − 1| < δ.

solution The true statement is (c): There is a δ > 0 such that |cos x − 1| < 10−5 if 0 < |x| < δ.

2. Suppose it is known that for a given ε and δ, |f (x) − 2| < ε if 0 < |x − 3| < δ. Which of the following statements
must also be true?

(a) |f (x) − 2| < ε if 0 < |x − 3| < 2δ

(b) |f (x) − 2| < 2ε if 0 < |x − 3| < δ

(c) |f (x) − 2| <
ε

2
if 0 < |x − 3| <

δ

2

(d) |f (x) − 2| < ε if 0 < |x − 3| <
δ

2

solution Statements (b) and (d) are true.
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Exercises
1. Based on the information conveyed in Figure 5(A), find values of L, ε, and δ > 0 such that the following statement

holds: |f (x) − L| < ε if |x| < δ.

3 3.12.9

10

10.4

9.8

x

y

y  = f (x) y  = f (x)

(A) (B)

0.1−0.1

4

4.8

3.5

x

y

FIGURE 5

solution We see −0.1 < x < 0.1 forces 3.5 < f (x) < 4.8. Rewritten, this means that |x − 0| < 0.1 implies that
|f (x) − 4| < 0.8. Replacing numbers where appropriate in the definition of the limit |x − c| < δ implies |f (x) − L| < ε,
we get L = 4, ε = 0.8, c = 0, and δ = 0.1.

2. Based on the information conveyed in Figure 5(B), find values of c, L, ε, and δ > 0 such that the following statement
holds: |f (x) − L| < ε if |x − c| < δ.

solution From the shaded region in the graph, we can see that 9.8 < f (x) < 10.4 whenever 2.9 < x < 3.1. Rewriting
these double inequalities as absolute value inequalities, we get |f (x) − 10| < 0.4 whenever |x − 3| < 0.1. Replacing
numbers where appropriate in the definition of the limit |x − c| < δ implies |f (x) − L| < ε, we get L = 10, ε = 0.4,
c = 3, and δ = 0.1.

3. Consider lim
x→4

f (x), where f (x) = 8x + 3.

(a) Show that |f (x) − 35| = 8|x − 4|.
(b) Show that for any ε > 0, |f (x) − 35| < ε if |x − 4| < δ, where δ = ε

8 . Explain how this proves rigorously that
lim
x→4

f (x) = 35.

solution

(a) |f (x) − 35| = |8x + 3 − 35| = |8x − 32| = |8(x − 4)| = 8 |x − 4|. (Remember that the last step is justified because
8 > 0).

(b) Let ε > 0. Let δ = ε/8 and suppose |x − 4| < δ. By part (a), |f (x) − 35| = 8|x − 4| < 8δ. Substituting δ = ε/8,
we see |f (x) − 35| < 8ε/8 = ε. We see that, for any ε > 0, we found an appropriate δ so that |x − 4| < δ implies
|f (x) − 35| < ε. Hence lim

x→4
f (x) = 35.

4. Consider lim
x→2

f (x), where f (x) = 4x − 1.

(a) Show that |f (x) − 7| < 4δ if |x − 2| < δ.

(b) Find a δ such that

|f (x) − 7| < 0.01 if |x − 2| < δ

(c) Prove rigorously that lim
x→2

f (x) = 7.

solution

(a) If 0 < |x − 2| < δ, then |(4x − 1) − 7| = 4|x − 2| < 4δ.

(b) If 0 < |x − 2| < δ = 0.0025, then |(4x − 1) − 7| = 4|x − 2| < 4δ = 0.01.

(c) Let ε > 0 be given. Then whenever 0 < |x − 2| < δ = ε/4, we have |(4x − 1) − 7| = 4|x − 2| < 4δ = ε. Since ε

was arbitrary, we conclude that lim
x→2

(4x − 1) = 7.

5. Consider lim
x→2

x2 = 4 (refer to Example 2).

(a) Show that |x2 − 4| < 0.05 if 0 < |x − 2| < 0.01.

(b) Show that |x2 − 4| < 0.0009 if 0 < |x − 2| < 0.0002.

(c) Find a value of δ such that |x2 − 4| is less than 10−4 if
0 < |x − 2| < δ.

solution

(a) If 0 < |x − 2| < δ = 0.01, then |x| < 3 and
∣∣∣x2 − 4

∣∣∣ = |x − 2||x + 2| ≤ |x − 2| (|x| + 2) < 5|x − 2| < 0.05.
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(b) If 0 < |x − 2| < δ = 0.0002, then |x| < 2.0002 and∣∣∣x2 − 4
∣∣∣ = |x − 2||x + 2| ≤ |x − 2| (|x| + 2) < 4.0002|x − 2| < 0.00080004 < 0.0009.

(c) Note that
∣∣∣x2 − 4

∣∣∣ = |(x + 2)(x − 2)| ≤ |x + 2| |x − 2|. Since |x − 2| can get arbitrarily small, we can require

|x − 2| < 1 so that 1 < x < 3. This ensures that |x + 2| is at most 5. Now we know that
∣∣∣x2 − 4

∣∣∣ ≤ 5|x − 2|. Let

δ = 10−5. Then, if |x − 2| < δ, we get
∣∣∣x2 − 4

∣∣∣ ≤ 5|x − 2| < 5 × 10−5 < 10−4 as desired.

6. With regard to the limit lim
x→5

x2 = 25,

(a) Show that |x2 − 25| < 11|x − 5| if 4 < x < 6. Hint: Write |x2 − 25| = |x + 5| · |x − 5|.
(b) Find a δ such that |x2 − 25| < 10−3 if |x − 5| < δ.
(c) Give a rigorous proof of the limit by showing that |x2 − 25| < ε if 0 < |x − 5| < δ, where δ is the smaller of ε

11 and
1.

solution

(a) If 4 < x < 6, then |x − 5| < δ = 1 and
∣∣∣x2 − 25

∣∣∣ = |x − 5||x + 5| ≤ |x − 5| (|x| + 5) < 11|x − 5|.
(b) If 0 < |x − 5| < δ = 0.001

11 , then x < 6 and
∣∣∣x2 − 25

∣∣∣ = |x − 5||x + 5| ≤ |x − 5| (|x| + 5) < 11|x − 5| < 0.001.

(c) Let 0 < |x − 5| < δ = min
{
1, ε

11

}
. Since δ < 1, |x − 5| < δ < 1 implies 4 < x < 6. Specifically, x < 6 and∣∣∣x2 − 25

∣∣∣ = |x − 5||x + 5| ≤ |x − 5| (|x| + 5) < |x − 5|(6 + 5) = 11|x − 5|.
Since δ is also less than ε/11, we can conclude 11|x − 5| < 11(ε/11) = ε, thus completing the rigorous proof that
|x2 − 25| < ε if |x − 5| < δ.

7. Refer to Example 3 to find a value of δ > 0 such that∣∣∣∣ 1

x
− 1

3

∣∣∣∣ < 10−4 if 0 < |x − 3| < δ

solution The Example shows that for any ε > 0 we have∣∣∣∣ 1

x
− 1

3

∣∣∣∣ ≤ ε if |x − 3| < δ

where δ is the smaller of the numbers 6ε and 1. In our case, we may take δ = 6 × 10−4.

8. Use Figure 6 to find a value of δ > 0 such that the following statement holds:
∣∣1/x2 − 1

4

∣∣ < ε if |x − 2| < δ for
ε = 0.03. Then find a value of δ that works for ε = 0.01.

0.05

0.10

0.15

0.20

0.25

0.30

1.9 2.0 2.1

y

x

1
x2y =

FIGURE 6

solution From Figure 6, we see that 0.22 < 1
x2 < 0.28 for 1.9 < x < 2.1. Rewriting these expressions using absolute

values yields ∣∣∣∣ 1

x2
− 1

4

∣∣∣∣ < 0.03

for |x − 2| < 0.1. Thus, for ε = 0.03, we may take δ = 0.1. Additionally, we see that 0.24 < 1
x2 < 0.26 for

1.96 < x < 2.04. Rewriting these expressions using absolute values yields∣∣∣∣ 1

x2
− 1

4

∣∣∣∣ < 0.01

for |x − 2| < 0.04. Thus, for ε = 0.01, we may take δ = 0.04.



April 5, 2011

S E C T I O N 2.9 The Formal Definition of a Limit 167

9. Plot f (x) = √
2x − 1 together with the horizontal lines y = 2.9 and y = 3.1. Use this plot to find a value of

δ > 0 such that |√2x − 1 − 3| < 0.1 if |x − 5| < δ.

solution From the plot below, we see that δ = 0.25 will guarantee that |√2x − 1 − 3| < 0.1 whenever |x − 5| ≤ δ.

4.6 4.8 5 5.2 5.4

2.9

2.8

3

3.1

x

y

10. Plot f (x) = tan x together with the horizontal lines y = 0.99 and y = 1.01. Use this plot to find a value of
δ > 0 such that |tan x − 1| < 0.01 if

∣∣x − π
4

∣∣ < δ.

solution From the plot below, we see that δ = 0.005 will guarantee that |tan x − 1| < 0.01 whenever |x − π
4 | ≤ δ.

0.775

0.98

0.99

1

1.01

1.02

0.78 0.785 0.79 0.795
x

y

11. The number e has the following property: lim
x→0

ex − 1

x
= 1. Use a plot of f (x) = ex − 1

x
to find a value of

δ > 0 such that |f (x) − 1| < 0.01 if |x − 1| < δ.

solution From the plot below, we see that δ = 0.02 will guarantee that

∣∣∣∣ ex − 1

x
− 1

∣∣∣∣ < 0.01

whenever |x| < δ.

−0.04 −0.02 0 0.02 0.04
0.97
0.98
0.99
1.00
1.01
1.02

x

y

12. Let f (x) = 4

x2 + 1
and ε = 0.5. Using a plot of f (x), find a value of δ > 0 such that

∣∣∣f (x) − 16
5

∣∣∣ < ε for∣∣∣x − 1
2

∣∣∣ < δ. Repeat for ε = 0.2 and 0.1.

solution From the plot below, we see that δ = 0.18 will guarantee that |f (x) − 16
5 | < 0.5 whenever |x − 1

2 | < δ.

0.2 0.40.3 0.5 0.6 0.7

2.4

3.8
3.6
3.4
3.2

3
2.8
2.6

x

y

When ε = 0.2, we see that δ = 0.075 will guarantee |f (x) − 16
5 | < ε whenever |x − 1

2 | < δ (examine the plot below at

the left); when ε = 0.1, δ = 0.035 will guarantee |f (x) − 16
5 | < ε whenever |x − 1

2 | < δ (examine the plot below at the
right).
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0.4 0.50.45 0.55 0.6
2.9

3.4

3.3

3.2

3.1

3
x

y

0.50.46 0.48 0.52 0.54
3.05

3.3

3.25

3.2

3.15

3.1
x

y

13. Consider lim
x→2

1

x
.

(a) Show that if |x − 2| < 1, then ∣∣∣∣ 1

x
− 1

2

∣∣∣∣ <
1

2
|x − 2|

(b) Let δ be the smaller of 1 and 2ε. Prove:∣∣∣∣ 1

x
− 1

2

∣∣∣∣ < ε if 0 < |x − 2| < δ

(c) Find a δ > 0 such that
∣∣∣ 1
x − 1

2

∣∣∣ < 0.01 if |x − 2| < δ.

(d) Prove rigorously that lim
x→2

1

x
= 1

2
.

solution

(a) Since |x − 2| < 1, it follows that 1 < x < 3, in particular that x > 1. Because x > 1, then
1

x
< 1 and

∣∣∣∣ 1

x
− 1

2

∣∣∣∣ =
∣∣∣∣2 − x

2x

∣∣∣∣ = |x − 2|
2x

<
1

2
|x − 2|.

(b) Let δ = min{1, 2ε} and suppose that |x − 2| < δ. Then by part (a) we have∣∣∣∣ 1

x
− 1

2

∣∣∣∣ <
1

2
|x − 2| <

1

2
δ <

1

2
· 2ε = ε.

(c) Choose δ = 0.02. Then

∣∣∣∣ 1

x
− 1

2

∣∣∣∣ <
1

2
δ = 0.01 by part (b).

(d) Let ε > 0 be given. Then whenever 0 < |x − 2| < δ = min {1, 2ε}, we have∣∣∣∣ 1

x
− 1

2

∣∣∣∣ <
1

2
δ ≤ ε.

Since ε was arbitrary, we conclude that lim
x→2

1

x
= 1

2
.

14. Consider lim
x→1

√
x + 3.

(a) Show that |√x + 3 − 2| < 1
2 |x − 1| if |x − 1| < 4. Hint: Multiply the inequality by |√x + 3 + 2| and observe that

|√x + 3 + 2| > 2.

(b) Find δ > 0 such that |√x + 3 − 2| < 10−4 for |x − 1| < δ.

(c) Prove rigorously that the limit is equal to 2.

solution

(a) |x − 1| < 4 implies that −3 < x < 5. Since x > −3, then
√

x + 3 is defined (and positive), whence

∣∣√x + 3 − 2
∣∣ =

∣∣∣∣∣
(√

x + 3 − 2
)

1

(√
x + 3 + 2

)
(√

x + 3 + 2
)
∣∣∣∣∣ = |x − 1|√

x + 3 + 2
<

|x − 1|
2

.

(b) Choose δ = 0.0002. Then provided 0 < |x − 1| < δ, we have x > −3 and therefore

∣∣√x + 3 − 2
∣∣ <

|x − 1|
2

<
δ

2
= 0.0001

by part (a).
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(c) Let ε > 0 be given. Then whenever 0 < |x − 1| < δ = min {2ε, 4}, we have x > −3 and thus

∣∣√x + 3 − 2
∣∣ =

∣∣∣∣∣
(√

x + 3 − 2
)

1

(√
x + 3 + 2

)
(√

x + 3 + 2
)
∣∣∣∣∣ = |x − 1|√

x + 3 + 2
<

2ε

2
= ε.

Since ε was arbitrary, we conclude that lim
x→1

√
x + 3 = 2.

15. Let f (x) = sin x. Using a calculator, we find:

f
(π

4
− 0.1

)
≈ 0.633, f

(π

4

)
≈ 0.707, f

(π

4
+ 0.1

)
≈ 0.774

Use these values and the fact that f (x) is increasing on
[
0, π

2

]
to justify the statement

∣∣∣f (x) − f
(π

4

)∣∣∣ < 0.08 if
∣∣∣x − π

4

∣∣∣ < 0.1

Then draw a figure like Figure 3 to illustrate this statement.

solution Since f (x) is increasing on the interval, the three f (x) values tell us that 0.633 ≤ f (x) ≤ 0.774 for all x

between π
4 − 0.1 and π

4 + 0.1. We may subtract f (π
4 ) from the inequality for f (x). This show that, for π

4 − 0.1 < x <
π
4 + 0.1, 0.633 − f (π

4 ) ≤ f (x) − f (π
4 ) ≤ 0.774 − f (π

4 ). This means that, if |x − π
4 | < 0.1, then 0.633 − 0.707 ≤

f (x) − f (π
4 ) ≤ 0.774 − 0.707, so −0.074 ≤ f (x) − f (π

4 ) ≤ 0.067. Then −0.08 < f (x) − f (π
4 ) < 0.08 follows

from this, so |x − π
4 | < 0.1 implies |f (x) − f (π

4 )| < 0.08. The figure below illustrates this.

0.25 0.5 0.75 1 1.25 1.5

1

0.8

0.6

0.4

0.2

x

y

16. Adapt the argument in Example 1 to prove rigorously that lim
x→c

(ax + b) = ac + b, where a, b, c are arbitrary.

solution |f (x) − (ac + b)| = |(ax + b) − (ac + b)| = |a(x − c)| = |a| |x − c|. This says the gap is |a| times as
large as |x − c|. Let ε > 0. Let δ = ε/|a|. If |x − c| < δ, we get |f (x) − (ac + b)| = |a| |x − c| < |a|ε/|a| = ε, which
is what we had to prove.

17. Adapt the argument in Example 2 to prove rigorously that lim
x→c

x2 = c2 for all c.

solution To relate the gap to |x − c|, we take

∣∣∣x2 − c2
∣∣∣ = |(x + c)(x − c)| = |x + c| |x − c| .

We choose δ in two steps. First, since we are requiring |x − c| to be small, we require δ < |c|, so that x lies between 0

and 2c. This means that |x + c| < 3|c|, so |x − c||x + c| < 3|c|δ. Next, we require that δ <
ε

3|c| , so

|x − c||x + c| <
ε

3|c|3|c| = ε,

and we are done.
Therefore, given ε > 0, we let

δ = min

{
|c|, ε

3|c|
}

.

Then, for |x − c| < δ, we have

|x2 − c2| = |x − c| |x + c| < 3|c|δ < 3|c| ε

3|c| = ε.
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18. Adapt the argument in Example 3 to prove rigorously that lim
x→c

x−1 = 1
c for all c �= 0.

solution Suppose that c �= 0. To relate the gap to |x − c|, we find:∣∣∣∣x−1 − 1

c

∣∣∣∣ =
∣∣∣∣ c − x

cx

∣∣∣∣ = |x − c|
|cx|

Since |x − c| is required to be small, we may assume from the outset that |x − c| < |c|/2, so that x is between |c|/2 and
3|c|/2. This forces |cx| > |c|/2, from which

|x − c|
|cx| <

2

|c| |x − c|.

If δ < ε(
|c|
2 ), ∣∣∣∣x−1 − 1

c

∣∣∣∣ <
2

|c| |x − c| <
2

|c|
|c|
2

ε = ε.

Therefore, given ε > 0 we let

δ = min

( |c|
2

, ε

( |c|
2

))
.

We have shown that |x−1 − 1
c | < ε if 0 < |x − c| < δ.

In Exercises 19–24, use the formal definition of the limit to prove the statement rigorously.

19. lim
x→4

√
x = 2

solution Let ε > 0 be given. We bound |√x − 2| by multiplying

√
x + 2√
x + 2

.

|√x − 2| =
∣∣∣∣√x − 2

(√
x + 2√
x + 2

)∣∣∣∣ =
∣∣∣∣ x − 4√

x + 2

∣∣∣∣ = |x − 4|
∣∣∣∣ 1√

x + 2

∣∣∣∣ .
We can assume δ < 1, so that |x − 4| < 1, and hence

√
x + 2 >

√
3 + 2 > 3. This gives us

|√x − 2| = |x − 4|
∣∣∣∣ 1√

x + 2

∣∣∣∣ < |x − 4|1

3
.

Let δ = min(1, 3ε). If |x − 4| < δ,

|√x − 2| = |x − 4|
∣∣∣∣ 1√

x + 2

∣∣∣∣ < |x − 4|1

3
< δ

1

3
< 3ε

1

3
= ε,

thus proving the limit rigorously.

20. lim
x→1

(3x2 + x) = 4

solution Let ε > 0 be given. We bound
∣∣∣(3x2 + x) − 4

∣∣∣ using quadratic factoring.

∣∣∣(3x2 + x) − 4
∣∣∣ =

∣∣∣3x2 + x − 4
∣∣∣ = |(3x + 4)(x − 1)| = |x − 1||3x + 4|.

Let δ = min(1, ε
10 ). Since δ < 1, we get |3x + 4| < 10, so that∣∣∣(3x2 + x) − 4

∣∣∣ = |x − 1||3x + 4| < 10|x − 1|.

Since δ < ε
10 , we get ∣∣∣(3x2 + x) − 4

∣∣∣ < 10|x − 1| < 10
ε

10
= ε.

21. lim
x→1

x3 = 1

solution Let ε > 0 be given. We bound
∣∣∣x3 − 1

∣∣∣ by factoring the difference of cubes:

∣∣∣x3 − 1
∣∣∣ =

∣∣∣(x2 + x + 1)(x − 1)

∣∣∣ = |x − 1|
∣∣∣x2 + x + 1

∣∣∣ .



April 5, 2011

S E C T I O N 2.9 The Formal Definition of a Limit 171

Let δ = min(1, ε
7 ), and assume |x − 1| < δ. Since δ < 1, 0 < x < 2. Since x2 + x + 1 increases as x increases for

x > 0, x2 + x + 1 < 7 for 0 < x < 2, and so∣∣∣x3 − 1
∣∣∣ = |x − 1|

∣∣∣x2 + x + 1
∣∣∣ < 7|x − 1| < 7

ε

7
= ε

and the limit is rigorously proven.

22. lim
x→0

(x2 + x3) = 0

solution Let ε > 0 be given. Now,

|(x2 + x3) − 0| = |x| |x| |x + 1|.

Let δ = min(1, 1
2 ε), and suppose |x| < δ. Since δ < 1, |x| < 1, so −1 < x < 1. This means |1 + x| < 2, so that

|x| |x + 1| < 2. Thus,

∣∣∣(x2 + x3) − 0
∣∣∣ = |x| |x| |x + 1| < 2|x| < 2 · 1

2
ε = ε.

and the limit is rigorously proven.

23. lim
x→2

x−2 = 1

4

solution Let ε > 0 be given. First, we bound x−2 − 1
4 :

∣∣∣∣x−2 − 1

4

∣∣∣∣ =
∣∣∣∣∣4 − x2

4x2

∣∣∣∣∣ = |2 − x|
∣∣∣∣2 + x

4x2

∣∣∣∣ .
Let δ = min(1, 4

5 ε), and suppose |x − 2| < δ. Since δ < 1, |x − 2| < 1, so 1 < x < 3. This means that 4x2 > 4 and

|2 + x| < 5, so that
2 + x

4x2
< 5

4 . We get:

∣∣∣∣x−2 − 1

4

∣∣∣∣ = |2 − x|
∣∣∣∣2 + x

4x2

∣∣∣∣ <
5

4
|x − 2| <

5

4
· 4

5
ε = ε.

and the limit is rigorously proven.

24. lim
x→0

x sin
1

x
= 0

solution Let ε > 0 be given. Let δ = ε, and assume |x − 0| = |x| < δ. We bound x sin 1
x .

∣∣∣∣x sin
1

x
− 0

∣∣∣∣ = |x|
∣∣∣∣sin

1

x

∣∣∣∣ < |x| < δ = ε.

25. Let f (x) = x

|x| . Prove rigorously that lim
x→0

f (x) does not exist. Hint: Show that for any L, there always exists some

x such that |x| < δ but |f (x) − L| ≥ 1
2 , no matter how small δ is taken.

solution Let L be any real number. Let δ > 0 be any small positive number. Let x = δ
2 , which satisfies |x| < δ, and

f (x) = 1. We consider two cases:

• (|f (x) − L| ≥ 1
2 ) : we are done.

• (|f (x) − L| < 1
2 ): This means 1

2 < L < 3
2 . In this case, let x = − δ

2 . f (x) = −1, and so 3
2 < L − f (x).

In either case, there exists an x such that |x| < δ
2 , but |f (x) − L| ≥ 1

2 .

26. Prove rigorously that lim
x→0

|x| = 0.

solution Let ε > 0 be given and take δ = ε. Then, whenever |x| < δ,

||x| − 0| = |x| < δ = ε,

thus proving the limit rigorously.
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27. Let f (x) = min(x, x2), where min(a, b) is the minimum of a and b. Prove rigorously that lim
x→1

f (x) = 1.

solution Let ε > 0 and let δ = min(1, ε
2 ). Then, whenever |x − 1| < δ, it follows that 0 < x < 2. If 1 < x < 2,

then min(x, x2) = x and

|f (x) − 1| = |x − 1| < δ <
ε

2
< ε.

On the other hand, if 0 < x < 1, then min(x, x2) = x2, |x + 1| < 2 and

|f (x) − 1| = |x2 − 1| = |x − 1| |x + 1| < 2δ < ε.

Thus, whenever |x − 1| < δ, |f (x) − 1| < ε.

28. Prove rigorously that lim
x→0

sin 1
x does not exist.

solution Let δ > 0 be a given small positive number, and let L be any real number. We will prove that
∣∣∣sin 1

x − L

∣∣∣ ≥ 1
2

for some x such that |x| < δ.
Let N > 0 be a positive integer large enough so that 2

(4N+1)π
< δ. Let

x1 = 2

(4N + 1)π
,

x2 = 2

(4N + 3)π
.

x2 < x1 < δ.

sin
1

x1
= sin

(4N + 1)π

2
= 1 and sin

1

x2
= sin

(4N + 3)π

2
= −1.

If |sin 1
x1

− L| ≥ 1
2 , we are done. Therefore, let’s assume that |sin 1

x1
− L| < 1

2 . − 1
2 < sin 1

x1
− L < 1

2 , so

L − 1
2 < sin 1

x1
= 1 < L + 1

2 . This means L > 1
2 , so that |sin 1

x2
− L| = |−1 − L| > 3

2 . In either case, there is an x

such that |x| < δ but |sin 1
x − L| ≥ 1

2 , so no limit L can exist.

29. First, use the identity

sin x + sin y = 2 sin

(
x + y

2

)
cos

(
x − y

2

)

to verify the relation

sin(a + h) − sin a = h
sin(h/2)

h/2
cos

(
a + h

2

)
6

Then use the inequality

∣∣∣∣ sin x

x

∣∣∣∣ ≤ 1 for x �= 0 to show that |sin(a + h) − sin a| < |h| for all a. Finally, prove rigorously

that lim
x→a

sin x = sin a.

solution We first write

sin(a + h) − sin a = sin(a + h) + sin(−a).

Applying the identity with x = a + h, y = −a, yields:

sin(a + h) − sin a = sin(a + h) + sin(−a) = 2 sin

(
a + h − a

2

)
cos

(
2a + h

2

)

= 2 sin

(
h

2

)
cos

(
a + h

2

)
= 2

(
h

h

)
sin

(
h

2

)
cos

(
a + h

2

)
= h

sin(h/2)

h/2
cos

(
a + h

2

)
.

Therefore,

|sin(a + h) − sin a| = |h|
∣∣∣∣ sin(h/2)

h/2

∣∣∣∣
∣∣∣∣cos

(
a + h

2

)∣∣∣∣ .
Using the fact that

∣∣∣∣ sin θ

θ

∣∣∣∣ < 1 and that |cos θ | ≤ 1, and making the substitution h = x − a, we see that this last relation

is equivalent to

|sin x − sin a| < |x − a|.



April 5, 2011

S E C T I O N 2.9 The Formal Definition of a Limit 173

Now, to prove the desired limit, let ε > 0, and take δ = ε. If |x − a| < δ, then

|sin x − sin a| < |x − a| < δ = ε,

Therefore, a δ was found for arbitrary ε, and the proof is complete.

Further Insights and Challenges
30. Uniqueness of the Limit Prove that a function converges to at most one limiting value. In other words, use the
limit definition to prove that if lim

x→c
f (x) = L1 and lim

x→c
f (x) = L2, then L1 = L2.

solution Let ε > 0 be given. Since lim
x→c

f (x) = L1, there exists δ1 such that if |x − c| < δ1 then |f (x) − L1| < ε.

Similarly, since lim
x→c

f (x) = L2, there exists δ2 such that if |x − c| < δ2 then |f (x) − L2| < ε. Now let |x − c| <

min(δ1, δ2) and observe that

|L1 − L2| = |L1 − f (x) + f (x) − L2|
≤ |L1 − f (x)| + |f (x) − L2|
= |f (x) − L1| + |f (x) − L2| < 2ε.

So, |L1 − L2| < 2ε for any ε > 0. We have |L1 − L2| = lim
ε→0

|L1 − L2| < lim
ε→0

2ε = 0. Therefore, |L1 − L2| = 0 and,

hence, L1 = L2.

In Exercises 31–33, prove the statement using the formal limit definition.

31. The Constant Multiple Law [Theorem 1, part (ii) in Section 2.3, p. 77]

solution Suppose that lim
x→c

f (x) = L. We wish to prove that lim
x→c

af (x) = aL.

Let ε > 0 be given. ε/|a| is also a positive number. Since lim
x→c

f (x) = L, we know there is a δ > 0 such that

|x − c| < δ forces |f (x) − L| < ε/|a|. Suppose |x − c| < δ. |af (x) − aL| = |a||f (x) − aL| < |a|(ε/|a|) = ε, so the
rule is proven.

32. The Squeeze Theorem. (Theorem 1 in Section 2.6, p. 96)

solution Proof of the Squeeze Theorem. Suppose that (i) the inequalities h(x) ≤ f (x) ≤ g(x) hold for all x near (but
not equal to) a and (ii) lim

x→a
h(x) = lim

x→a
g(x) = L. Let ε > 0 be given.

• By (i), there exists a δ1 > 0 such that h(x) ≤ f (x) ≤ g(x) whenever 0 < |x − a| < δ1.
• By (ii), there exist δ2 > 0 and δ3 > 0 such that |h(x) − L| < ε whenever 0 < |x − a| < δ2 and |g(x) − L| < ε

whenever 0 < |x − a| < δ3.
• Choose δ = min {δ1, δ2, δ3}. Then whenever 0 < |x − a| < δ we have L − ε < h(x) ≤ f (x) ≤ g(x) < L + ε;

i.e., |f (x) − L| < ε. Since ε was arbitrary, we conclude that lim
x→a

f (x) = L.

33. The Product Law [Theorem 1, part (iii) in Section 2.3, p. 77]. Hint: Use the identity

f (x)g(x) − LM = (f (x) − L) g(x) + L(g(x) − M)

solution Before we can prove the Product Law, we need to establish one preliminary result. We are given that
limx→c g(x) = M . Consequently, if we set ε = 1, then the definition of a limit guarantees the existence of a δ1 > 0
such that whenever 0 < |x − c| < δ1, |g(x) − M| < 1. Applying the inequality |g(x)| − |M| ≤ |g(x) − M|, it follows
that |g(x)| < 1 + |M|. In other words, because limx→c g(x) = M , there exists a δ1 > 0 such that |g(x)| < 1 + |M|
whenever 0 < |x − c| < δ1.

We can now prove the Product Law. Let ε > 0. As proven above, because limx→c g(x) = M , there exists a δ1 > 0
such that |g(x)| < 1 + |M| whenever 0 < |x − c| < δ1. Furthermore, by the definition of a limit, limx→c g(x) = M

implies there exists a δ2 > 0 such that |g(x) − M| < ε
2(1+|L|) whenever 0 < |x − c| < δ2. We have included the “1+”

in the denominator to avoid division by zero in case L = 0. The reason for including the factor of 2 in the denominator
will become clear shortly. Finally, because limx→c f (x) = L, there exists a δ3 > 0 such that |f (x) − L| < ε

2(1+|M|)
whenever 0 < |x − c| < δ3. Now, let δ = min(δ1, δ2, δ3). Then, for all x satisfying 0 < |x − c| < δ, we have

|f (x)g(x) − LM| = |(f (x) − L)g(x) + L(g(x) − M)|
≤ |f (x) − L| |g(x)| + |L| |g(x) − M|
<

ε

2(1 + |M|) (1 + |M|) + |L| ε

2(1 + |L|)
<

ε

2
+ ε

2
= ε.
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Hence,

lim
x→c

f (x)g(x) = LM = lim
x→c

f (x) · lim
x→c

g(x).

34. Let f (x) = 1 if x is rational and f (x) = 0 if x is irrational. Prove that lim
x→c

f (x) does not exist for any c.

solution Let c be any number, and let δ > 0 be an arbitrary small number. We will prove that there is an x such that

|x − c| < δ, but |f (x) − f (c)| > 1
2 . c must be either irrational or rational. If c is rational, then f (c) = 1. Since the

irrational numbers are dense, there is at least one irrational number z such that |z − c| < δ. |f (z) − f (c)| = 1 > 1
2 , so

the function is discontinuous at x = c. On the other hand, if c is irrational, then there is a rational number q such that
|q − c| < δ. |f (q) − f (c)| = |1 − 0| = 1 > 1

2 , so the function is discontinuous at x = c.

35. Here is a function with strange continuity properties:

f (x) =

⎧⎪⎨
⎪⎩

1

q

if x is the rational number p/q in
lowest terms

0 if x is an irrational number

(a) Show that f (x) is discontinuous at c if c is rational. Hint: There exist irrational numbers arbitrarily close to c.

(b) Show that f (x) is continuous at c if c is irrational. Hint: Let I be the interval {x : |x − c| < 1}. Show that for any
Q > 0, I contains at most finitely many fractions p/q with q < Q. Conclude that there is a δ such that all fractions in
{x : |x − c| < δ} have a denominator larger than Q.

solution

(a) Let c be any rational number and suppose that, in lowest terms, c = p/q, where p and q are integers. To prove the
discontinuity of f at c, we must show there is an ε > 0 such that for any δ > 0 there is an x for which |x − c| < δ, but
that |f (x) − f (c)| > ε. Let ε = 1

2q
and δ > 0. Since there is at least one irrational number between any two distinct real

numbers, there is some irrational x between c and c + δ. Hence, |x − c| < δ, but |f (x) − f (c)| = |0 − 1
q | = 1

q > 1
2q

= ε.

(b) Let c be irrational, let ε > 0 be given, and let N > 0 be a prime integer sufficiently large so that 1
N

< ε. Let
p1
q1

, . . . ,
pm
qm

be all rational numbers p
q in lowest terms such that |pq − c| < 1 and q < N . Since N is finite, this is a

finite list; hence, one number pi
qi

in the list must be closest to c. Let δ = 1
2 |pi

qi
− c|. By construction, |pi

qi
− c| > δ for all

i = 1 . . . m. Therefore, for any rational number p
q such that |pq − c| < δ, q > N , so 1

q < 1
N

< ε.
Therefore, for any rational number x such that |x − c| < δ, |f (x) − f (c)| < ε. |f (x) − f (c)| = 0 for any irrational

number x, so |x − c| < δ implies that |f (x) − f (c)| < ε for any number x.

CHAPTER REVIEW EXERCISES

1. The position of a particle at time t (s) is s(t) =
√

t2 + 1 m. Compute its average velocity over [2, 5] and estimate its
instantaneous velocity at t = 2.

solution Let s(t) =
√

t2 + 1. The average velocity over [2, 5] is

s(5) − s(2)

5 − 2
=

√
26 − √

5

3
≈ 0.954 m/s.

From the data in the table below, we estimate that the instantaneous velocity at t = 2 is approximately 0.894 m/s.

interval [1.9, 2] [1.99, 2] [1.999, 2] [2, 2.001] [2, 2.01] [2, 2.1]
average ROC 0.889769 0.893978 0.894382 0.894472 0.894873 0.898727

2. The “wellhead” price p of natural gas in the United States (in dollars per 1000 ft3) on the first day of each month in
2008 is listed in the table below.

J F M A M J

6.99 7.55 8.29 8.94 9.81 10.82

J A S O N D

10.62 8.32 7.27 6.36 5.97 5.87
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Compute the average rate of change of p (in dollars per 1000 ft3 per month) over the quarterly periods January–March,
April–June, and July–September.

solution To determine the average rate of change in price over the first quarter, divide the difference between the
April and January prices by the three-month duration of the quarter. This yields

8.94 − 6.99

3
= 0.65 dollars per 1000 ft3 per month.

In a similar manner, we calculate the average rates of change for the second and third quarters of the year to be

10.62 − 8.94

3
= 0.56 dollars per 1000 ft3 per month.

and

6.36 − 10.62

3
= −1.42 dollars per 1000 ft3 per month.

3. For a whole number n, let P(n) be the number of partitions of n, that is, the number of ways of writing n as a sum
of one or more whole numbers. For example, P(4) = 5 since the number 4 can be partitioned in five different ways: 4,
3 + 1, 2 + 2, 2 + 1 + 1, and 1 + 1 + 1 + 1. Treating P(n) as a continuous function, use Figure 1 to estimate the rate of
change of P(n) at n = 12.

n

P(n)

14121086420
0

40

80

120

160

FIGURE 1 Graph of P(n).

solution The tangent line drawn in the figure appears to pass through the points (15, 140) and (10.5, 40). We therefore
estimate that the rate of change of P(n) at n = 12 is

140 − 40

15 − 10.5
= 100

4.5
= 200

9
.

4. The average velocity v (m/s) of an oxygen molecule in the air at temperature T (◦C) is v = 25.7
√

273.15 + T . What
is the average speed at T = 25◦ (room temperature)? Estimate the rate of change of average velocity with respect to
temperature at T = 25◦. What are the units of this rate?

solution Let v(T ) = 25.7
√

273.15 + T . The average velocity at T = 25◦C is

v(25) = 25.7
√

273.15 + 25 ≈ 443.76 m/s.

From the data in the table below, we estimate that the rate of change of velocity with respect to temperature when T = 25◦C
is 0.7442 m/s2.

interval [24.9, 25] [24.99, 25] [24.999, 25] [25, 25.001] [25, 25.01] [25, 25.1]
average ROC 0.744256 0.744199 0.744193 0.744195 0.744187 0.744131

In Exercises 5–10, estimate the limit numerically to two decimal places or state that the limit does not exist.

5. lim
x→0

1 − cos3(x)

x2

solution Let f (x) = 1−cos3 x
x2 . The data in the table below suggests that

lim
x→0

1 − cos3 x

x2
≈ 1.50.

In constructing the table, we take advantage of the fact that f is an even function.

x ±0.001 ±0.01 ±0.1

f (x) 1.500000 1.499912 1.491275

(The exact value is 3
2 .)
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6. lim
x→1

x1/(x−1)

solution Let f (x) = x1/(x−1). The data in the table below suggests that

lim
x→1

x1/(x−1) ≈ 2.72.

x 0.9 0.99 0.999 1.001 1.01 1.1

f (x) 2.867972 2.731999 2.719642 2.716924 2.704814 2.593742

(The exact value is e.)

7. lim
x→2

xx − 4

x2 − 4

solution Let f (x) = xx−4
x2−4

. The data in the table below suggests that

lim
x→2

xx − 4

x2 − 4
≈ 1.69.

x 1.9 1.99 1.999 2.001 2.01 2.1

f (x) 1.575461 1.680633 1.691888 1.694408 1.705836 1.828386

(The exact value is 1 + ln 2.)

8. lim
x→2

x − 2

ln(3x − 5)

solution Let f (x) = x−2
ln(3x−5)

. The data in the table below suggests that

lim
x→2

x − 2

ln(3x − 5)
≈ 0.33.

x 1.9 1.99 1.999 2.001 2.01 2.1

f (x) 0.280367 0.328308 0.332833 0.333833 0.338309 0.381149

(The exact value is 1/3.)

9. lim
x→1

(
7

1 − x7 − 3

1 − x3

)

solution Let f (x) =
(

7
1−x7 − 3

1−x3

)
. The data in the table below suggests that

lim
x→1

(
7

1 − x7 − 3

1 − x3

)
≈ 2.00.

x 0.9 0.99 0.999 1.001 1.01 1.1

f (x) 2.347483 2.033498 2.003335 1.996668 1.966835 1.685059

(The exact value is 2.)

10. lim
x→2

3x − 9

5x − 25

solution Let f (x) = 3x−9
5x−25 . The data in the table below suggests that

lim
x→2

3x − 9

5x − 25
≈ 0.246.

x 1.9 1.99 1.999 2.001 2.01 2.1

f (x) 0.251950 0.246365 0.245801 0.245675 0.245110 0.239403

(The exact value is 9
25

ln 3
ln 5 .)
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In Exercises 11–50, evaluate the limit if it exists. If not, determine whether the one-sided limits exist (finite or infinite).

11. lim
x→4

(3 + x1/2)

solution lim
x→4

(3 + x1/2) = 3 + √
4 = 5.

12. lim
x→1

5 − x2

4x + 7

solution lim
x→1

5 − x2

4x + 7
= 5 − 12

4(1) + 7
= 4

11
.

13. lim
x→−2

4

x3

solution lim
x→−2

4

x3
= 4

(−2)3
= −1

2
.

14. lim
x→−1

3x2 + 4x + 1

x + 1

solution lim
x→−1

3x2 + 4x + 1

x + 1
= lim

x→−1

(3x + 1)(x + 1)

x + 1
= lim

x→−1
(3x + 1) = 3(−1) + 1 = −2.

15. lim
t→9

√
t − 3

t − 9

solution lim
t→9

√
t − 3

t − 9
= lim

t→9

√
t − 3

(
√

t − 3)(
√

t + 3)
= lim

t→9

1√
t + 3

= 1√
9 + 3

= 1

6
.

16. lim
x→3

√
x + 1 − 2

x − 3

solution

lim
x→3

√
x + 1 − 2

x − 3
= lim

x→3

√
x + 1 − 2

x − 3
·
√

x + 1 + 2√
x + 1 + 2

= lim
x→3

(x + 1) − 4

(x − 3)(
√

x + 1 + 2)

= lim
x→3

1√
x + 1 + 2

= 1√
3 + 1 + 2

= 1

4
.

17. lim
x→1

x3 − x

x − 1

solution lim
x→1

x3 − x

x − 1
= lim

x→1

x(x − 1)(x + 1)

x − 1
= lim

x→1
x(x + 1) = 1(1 + 1) = 2.

18. lim
h→0

2(a + h)2 − 2a2

h

solution

lim
h→0

2(a + h)2 − 2a2

h
= lim

h→0

2a2 + 4ah + 2h2 − 2a2

h
= lim

h→0

h(4a + 2h)

h
= lim

h→0
(4a + 2h) = 4a + 2(0) = 4a.

19. lim
t→9

t − 6√
t − 3

solution Because the one-sided limits

lim
t→9−

t − 6√
t − 3

= −∞ and lim
t→9+

t − 6√
t − 3

= ∞,

are not equal, the two-sided limit

lim
t→9

t − 6√
t − 3

does not exist.
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20. lim
s→0

1 −
√

s2 + 1

s2

solution

lim
s→0

1 −
√

s2 + 1

s2
= lim

s→0

1 −
√

s2 + 1

s2
· 1 +

√
s2 + 1

1 +
√

s2 + 1
= lim

s→0

1 − (s2 + 1)

s2(1 +
√

s2 + 1)

= lim
s→0

−1

1 +
√

s2 + 1
= −1

1 +
√

02 + 1
= −1

2
.

21. lim
x→−1+

1

x + 1

solution For x > −1, x + 1 > 0. Therefore,

lim
x→−1+

1

x + 1
= ∞.

22. lim
y→ 1

3

3y2 + 5y − 2

6y2 − 5y + 1

solution

lim
y→ 1

3

3y2 + 5y − 2

6y2 − 5y + 1
= lim

y→ 1
3

(3y − 1)(y + 2)

(3y − 1)(2y − 1)
= lim

y→ 1
3

y + 2

2y − 1
= −7.

23. lim
x→1

x3 − 2x

x − 1

solution Because the one-sided limits

lim
x→1−

x3 − 2x

x − 1
= ∞ and lim

x→1+
x3 − 2x

x − 1
= −∞,

are not equal, the two-sided limit

lim
x→1

x3 − 2x

x − 1
does not exist.

24. lim
a→b

a2 − 3ab + 2b2

a − b

solution lim
a→b

a2 − 3ab + 2b2

a − b
= lim

a→b

(a − b)(a − 2b)

a − b
= lim

a→b
(a − 2b) = b − 2b = −b.

25. lim
x→0

e3x − ex

ex − 1

solution

lim
x→0

e3x − ex

ex − 1
= lim

x→0

ex(ex − 1)(ex + 1)

ex − 1
= lim

x→0
ex(ex + 1) = 1 · 2 = 2.

26. lim
θ→0

sin 5θ

θ

solution

lim
θ→0

sin 5θ

θ
= 5 lim

θ→0

sin 5θ

5θ
= 5(1) = 5.

27. lim
x→1.5

[x]
x

solution lim
x→1.5

[x]
x

= [1.5]
1.5

= 1

1.5
= 2

3
.

28. lim
θ→ π

4

sec θ

solution

lim
θ→ π

4

sec θ = sec
π

4
= √

2.
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29. lim
z→−3

z + 3

z2 + 4z + 3

solution

lim
z→−3

z + 3

z2 + 4z + 3
= lim

z→−3

z + 3

(z + 3)(z + 1)
= lim

z→−3

1

z + 1
= −1

2
.

30. lim
x→1

x3 − ax2 + ax − 1

x − 1

solution Using

x3 − ax2 + ax − 1 = (x − 1)(x2 + x + 1) − ax(x − 1) = (x − 1)(x2 + x − ax + 1)

we find

lim
x→1

x3 − ax2 + ax − 1

x − 1
= lim

x→1

(x − 1)(x2 + x − ax + 1)

x − 1
= lim

x→1
(x2 + x − ax + 1)

= 12 + 1 − a(1) + 1 = 3 − a.

31. lim
x→b

x3 − b3

x − b

solution lim
x→b

x3 − b3

x − b
= lim

x→b

(x − b)(x2 + xb + b2)

x − b
= lim

x→b
(x2 + xb + b2) = b2 + b(b) + b2 = 3b2.

32. lim
x→0

sin 4x

sin 3x

solution

lim
x→0

sin 4x

sin 3x
= 4

3
lim
x→0

sin 4x

4x
· 3x

sin 3x
= 4

3
lim
x→0

sin 4x

4x
· lim
x→0

3x

sin 3x
= 4

3
(1)(1) = 4

3
.

33. lim
x→0

(
1

3x
− 1

x(x + 3)

)

solution lim
x→0

(
1

3x
− 1

x(x + 3)

)
= lim

x→0

(x + 3) − 3

3x(x + 3)
= lim

x→0

1

3(x + 3)
= 1

3(0 + 3)
= 1

9
.

34. lim
θ→ 1

4

3tan(πθ)

solution

lim
θ→ 1

4

3tan(πθ) = 3tan(π/4) = 31 = 3.

35. lim
x→0−

[x]
x

solution For x sufficiently close to zero but negative, [x] = −1. Therefore,

lim
x→0−

[x]
x

= lim
x→0−

−1

x
= ∞.

36. lim
x→0+

[x]
x

solution For x sufficiently close to zero but positive, [x] = 0. Therefore,

lim
x→0+

[x]
x

= lim
x→0+

0

x
= 0.

37. lim
θ→ π

2

θ sec θ

solution Because the one-sided limits

lim
θ→ π

2 −
θ sec θ = ∞ and lim

θ→ π
2 +

θ sec θ = −∞
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are not equal, the two-sided limit

lim
θ→ π

2

θ sec θ does not exist.

38. lim
y→2

ln

(
sin

π

y

)

solution

lim
y→2

ln

(
sin

π

y

)
= ln

(
sin

π

2

)
= ln 1 = 0.

39. lim
θ→0

cos θ − 2

θ

solution Because the one-sided limits

lim
θ→0−

cos θ − 2

θ
= ∞ and lim

θ→0+
cos θ − 2

θ
= −∞

are not equal, the two-sided limit

lim
θ→0

cos θ − 2

θ
does not exist.

40. lim
x→4.3

1

x − [x]
solution lim

x→4.3

1

x − [x] = 1

4.3 − [4.3] = 1

0.3
= 10

3
.

41. lim
x→2−

x − 3

x − 2

solution For x close to 2 but less than 2, x − 3 < 0 and x − 2 < 0. Therefore,

lim
x→2−

x − 3

x − 2
= ∞.

42. lim
t→0

sin2 t

t3

solution Note that

sin2 t

t3
= sin t

t
· sin t

t
· 1

t
.

As t → 0, each factor of sin t
t approaches 1; however, the factor 1

t tends to −∞ as t → 0− and tends to ∞ as t → 0+.
Consequently,

lim
t→0−

sin2 t

t3
= −∞, lim

t→0+
sin2 t

t3
= ∞

and

lim
t→0

sin2 t

t3
does not exist.

43. lim
x→1+

(
1√

x − 1
− 1√

x2 − 1

)

solution lim
x→1+

(
1√

x − 1
− 1√

x2 − 1

)
= lim

x→1+

√
x + 1 − 1√
x2 − 1

= ∞.

44. lim
t→e

√
t(ln t − 1)

solution

lim
t→e

√
t(ln t − 1) = lim

t→e

√
t · lim

t→e
(ln t − 1) = √

e(ln e − 1) = 0.
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45. lim
x→ π

2

tan x

solution Because the one-sided limits

lim
x→ π

2 −
tan x = ∞ and lim

x→ π
2 +

tan x = −∞

are not equal, the two-sided limit

lim
x→ π

2

tan x does not exist.

46. lim
t→0

cos
1

t

solution As t → 0, 1
t grows without bound and cos( 1

t ) oscillates faster and faster. Consequently,

lim
t→0

cos

(
1

t

)
does not exist.

The same is true for both one-sided limits.

47. lim
t→0+

√
t cos

1

t

solution For t > 0,

−1 ≤ cos

(
1

t

)
≤ 1,

so

−√
t ≤ √

t cos

(
1

t

)
≤ √

t .

Because

lim
t→0+ −√

t = lim
t→0+

√
t = 0,

it follows from the Squeeze Theorem that

lim
t→0+

√
t cos

(
1

t

)
= 0.

48. lim
x→5+

x2 − 24

x2 − 25

solution For x close to 5 but larger than 5, x2 − 24 > 0 and x2 − 25 > 0. Therefore,

lim
x→5+

x2 − 24

x2 − 25
= ∞.

49. lim
x→0

cos x − 1

sin x

solution

lim
x→0

cos x − 1

sin x
= lim

x→0

cos x − 1

sin x
· cos x + 1

cos x + 1
= lim

x→0

− sin2 x

sin x(cos x + 1)
= − lim

x→0

sin x

cos x + 1
= − 0

1 + 1
= 0.

50. lim
θ→0

tan θ − sin θ

sin3 θ

solution

lim
θ→0

tan θ − sin θ

sin3 θ
= lim

θ→0

sec θ − 1

sin2 θ
= lim

θ→0

sec θ − 1

sin2 θ
· sec θ + 1

sec θ + 1
= lim

θ→0

tan2 θ

sin2 θ(sec θ + 1)

= lim
θ→0

sec2 θ

sec θ + 1
= 1

1 + 1
= 1

2
.
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51. Find the left- and right-hand limits of the function f (x) in Figure 2 at x = 0, 2, 4. State whether f (x) is left- or
right-continuous (or both) at these points.

x

y

1 3 52 4

1

2

FIGURE 2

solution According to the graph of f (x),

lim
x→0− f (x) = lim

x→0+ f (x) = 1

lim
x→2− f (x) = lim

x→2+ f (x) = ∞

lim
x→4− f (x) = −∞

lim
x→4+ f (x) = ∞.

The function is both left- and right-continuous at x = 0 and neither left- nor right-continuous at x = 2 and x = 4.

52. Sketch the graph of a function f (x) such that

(a) lim
x→2− f (x) = 1, lim

x→2+ f (x) = 3

(b) lim
x→4

f (x) exists but does not equal f (4).

solution

2

1

3

4

1 2 3 4 5 6

y

x

53. Graph h(x) and describe the discontinuity:

h(x) =
{

ex for x ≤ 0

ln x for x > 0

Is h(x) left- or right-continuous?

solution The graph of h(x) is shown below. At x = 0, the function has an infinite discontinuity but is left-continuous.

–4 –2 2 4

–1

1

54. Sketch the graph of a function g(x) such that

lim
x→−3− g(x) = ∞, lim

x→−3+ g(x) = −∞, lim
x→4

g(x) = ∞
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solution

x

y

10

5

−5

−10

−2 2 4 6−4

55. Find the points of discontinuity of

g(x) =

⎧⎪⎨
⎪⎩

cos
(πx

2

)
for |x| < 1

|x − 1| for |x| ≥ 1

Determine the type of discontinuity and whether g(x) is left- or right-continuous.

solution First note that cos
(
πx
2

)
is continuous for −1 < x < 1 and that |x − 1| is continuous for x ≤ −1 and for

x ≥ 1. Thus, the only points at which g(x) might be discontinuous are x = ±1. At x = 1, we have

lim
x→1− g(x) = lim

x→1− cos
(πx

2

)
= cos

(π

2

)
= 0

and

lim
x→1+ g(x) = lim

x→1+ |x − 1| = |1 − 1| = 0,

so g(x) is continuous at x = 1. On the other hand, at x = −1,

lim
x→−1+ g(x) = lim

x→−1+ cos
(πx

2

)
= cos

(
−π

2

)
= 0

and

lim
x→−1− g(x) = lim

x→−1− |x − 1| = | − 1 − 1| = 2,

so g(x) has a jump discontinuity at x = −1. Since g(−1) = 2, g(x) is left-continuous at x = −1.

56. Show that f (x) = xesin x is continuous on its domain.

solution Because ex and sin x are continuous for all real numbers, their composition, esin x is continuous for all real

numbers. Moreover, x is continuous for all real numbers, so the product xesin x is continuous for all real numbers. Thus,
f (x) = xesin x is continuous for all real numbers.

57. Find a constant b such that h(x) is continuous at x = 2, where

h(x) =
{

x + 1 for |x| < 2

b − x2 for |x| ≥ 2

With this choice of b, find all points of discontinuity.

solution To make h(x) continuous at x = 2, we must have the two one-sided limits as x approaches 2 be equal. With

lim
x→2− h(x) = lim

x→2−(x + 1) = 2 + 1 = 3

and

lim
x→2+ h(x) = lim

x→2+(b − x2) = b − 4,

it follows that we must choose b = 7. Because x + 1 is continuous for −2 < x < 2 and 7 − x2 is continuous for x ≤ −2
and for x ≥ 2, the only possible point of discontinuity is x = −2. At x = −2,

lim
x→−2+ h(x) = lim

x→−2+(x + 1) = −2 + 1 = −1

and

lim
x→−2− h(x) = lim

x→−2−(7 − x2) = 7 − (−2)2 = 3,

so h(x) has a jump discontinuity at x = −2.
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In Exercises 58–63, find the horizontal asymptotes of the function by computing the limits at infinity.

58. f (x) = 9x2 − 4

2x2 − x

solution Because

lim
x→∞

9x2 − 4

2x2 − x
= lim

x→∞
9 − 4/x2

2 − 1/x
= 9

2

and

lim
x→−∞

9x2 − 4

2x2 − x
= lim

x→−∞
9 − 4/x2

2 − 1/x
= 9

2
,

it follows that the graph of y = 9x2 − 4

2x2 − x
has a horizontal asymptote of 9

2 .

59. f (x) = x2 − 3x4

x − 1

solution Because

lim
x→∞

x2 − 3x4

x − 1
= lim

x→∞
1/x2 − 3

1/x3 − 1/x4
= −∞

and

lim
x→−∞

x2 − 3x4

x − 1
= lim

x→−∞
1/x2 − 3

1/x3 − 1/x4
= ∞,

it follows that the graph of y = x2 − 3x4

x − 1
does not have any horizontal asymptotes.

60. f (u) = 8u − 3√
16u2 + 6

solution Because

lim
u→∞

8u − 3√
16u2 + 6

= lim
u→∞

8 − 3/u√
16 + 6/u2

= 8√
16

= 2

and

lim
u→−∞

8u − 3√
16u2 + 6

= lim
u→−∞

8 − 3/u

−
√

16 + 6/u2
= 8

−√
16

= −2,

it follows that the graph of y = 8u − 3√
16u2 + 6

has horizontal asymptotes of y = ±2.

61. f (u) = 2u2 − 1√
6 + u4

solution Because

lim
u→∞

2u2 − 1√
6 + u4

= lim
u→∞

2 − 1/u2√
6/u4 + 1

= 2√
1

= 2

and

lim
u→−∞

2u2 − 1√
6 + u4

= lim
u→−∞

2 − 1/u2√
6/u4 + 1

= 2√
1

= 2,

it follows that the graph of y = 2u2 − 1√
6 + u4

has a horizontal asymptote of y = 2.
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62. f (x) = 3x2/3 + 9x3/7

7x4/5 − 4x−1/3

solution Because

lim
x→∞

3x2/3 + 9x3/7

7x4/5 − 4x−1/3
= lim

x→∞
3x−2/15 + 9x−13/35

7 − x−17/15
= 0

and

lim
x→−∞

3x2/3 + 9x3/7

7x4/5 − 4x−1/3
= lim

x→−∞
3x−2/15 + 9x−13/35

7 − x−17/15
= 0,

it follows that the graph of y = 3x2/3 + 9x3/7

7x4/5 − 4x−1/3
has a horizontal asymptote of y = 0.

63. f (t) = t1/3 − t−1/3

(t − t−1)1/3

solution Because

lim
t→∞

t1/3 − t−1/3

(t − t−1)1/3
= lim

t→∞
1 − t−2/3

(1 − t−2)1/3
= 1

11/3
= 1

and

lim
t→−∞

t1/3 − t−1/3

(t − t−1)1/3
= lim

t→−∞
1 − t−2/3

(1 − t−2)1/3
= 1

11/3
= 1,

it follows that the graph of y = t1/3 − t−1/3

(t − t−1)1/3
has a horizontal asymptote of y = 1.

64. Calculate (a)–(d), assuming that

lim
x→3

f (x) = 6, lim
x→3

g(x) = 4

(a) lim
x→3

(f (x) − 2g(x)) (b) lim
x→3

x2f (x)

(c) lim
x→3

f (x)

g(x) + x
(d) lim

x→3
(2g(x)3 − g(x)3/2)

solution
(a) lim

x→3
(f (x) − 2g(x)) = lim

x→3
f (x) − 2 lim

x→3
g(x) = 6 − 2(4) = −2.

(b) lim
x→3

x2f (x) = lim
x→3

x2 · lim
x→3

f (x) = 32 · 6 = 54.

(c) lim
x→3

f (x)

g(x) + x
= limx→3 f (x)

limx→3(g(x) + x)
= 6

limx→3 g(x) + limx→3 x
= 6

4 + 3
= 6

7
.

(d) lim
x→3

(2g(x)3 − g(x)3/2) = 2

(
lim
x→3

g(x)

)3
−

(
lim
x→3

g(x)

)3/2
= 2(4)3 − 43/2 = 120.

65. Assume that the following limits exist:

A = lim
x→a

f (x), B = lim
x→a

g(x), L = lim
x→a

f (x)

g(x)

Prove that if L = 1, then A = B. Hint: You cannot use the Quotient Law if B = 0, so apply the Product Law to L and B

instead.

solution Suppose the limits A, B, and L all exist and L = 1. Then

B = B · 1 = B · L = lim
x→a

g(x) · lim
x→a

f (x)

g(x)
= lim

x→a
g(x)

f (x)

g(x)
= lim

x→a
f (x) = A.

66. Define g(t) = (1 + 21/t )−1 for t �= 0. How should g(0) be defined to make g(t) left-continuous at t = 0?

solution Because

lim
t→0−(1 + 21/t )−1 =

[
lim

t→0−(1 + 21/t )

]−1
= 1−1 = 1,

we should define g(0) = 1 to make g(t) left-continuous at t = 0.
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67. In the notation of Exercise 65, give an example where L exists but neither A nor B exists.

solution Suppose

f (x) = 1

(x − a)3
and g(x) = 1

(x − a)5 .

Then, neither A nor B exists, but

L = lim
x→a

(x − a)−3

(x − a)−5 = lim
x→a

(x − a)2 = 0.

68. True or false?

(a) If lim
x→3

f (x) exists, then lim
x→3

f (x) = f (3).

(b) If lim
x→0

f (x)

x
= 1, then f (0) = 0.

(c) If lim
x→−7

f (x) = 8, then lim
x→−7

1

f (x)
= 1

8
.

(d) If lim
x→5+ f (x) = 4 and lim

x→5− f (x) = 8, then lim
x→5

f (x) = 6.

(e) If lim
x→0

f (x)

x
= 1, then lim

x→0
f (x) = 0.

(f) If lim
x→5

f (x) = 2, then lim
x→5

f (x)3 = 8.

solution

(a) False. The limit lim
x→3

f (x) may exist and need not equal f (3). The limit is equal to f (3) if f (x) is continuous at

x = 3.

(b) False. The value of the limit lim
x→0

f (x)

x
= 1 does not depend on the value f (0), so f (0) can have any value.

(c) True, by the Limit Laws.

(d) False. If the two one-sided limits are not equal, then the two-sided limit does not exist.

(e) True. Apply the Product Law to the functions
f (x)

x
and x.

(f) True, by the Limit Laws.

69. Let f (x) = x
[

1
x

]
, where [x] is the greatest integer function. Show that for x �= 0,

1

x
− 1 <

[
1

x

]
≤ 1

x

Then use the Squeeze Theorem to prove that

lim
x→0

x

[
1

x

]
= 1

Hint: Treat the one-sided limits separately.

solution

(a) The graph of f (x) = x
[

1
x

]
over [ 1

4 , 2] is shown below.

0.5 1 21.5

1

0.8

0.6

0.4

0.2

x

y

(b) Let y be any real number. From the definition of the greatest integer function, it follows that y − 1 < [y] ≤ y, with
equality holding if and only if y is an integer. If x �= 0, then 1

x is a real number, so

1

x
− 1 <

[
1

x

]
≤ 1

x
.
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Upon multiplying this inequality through by x, we find

1 − x < x

[
1

x

]
≤ 1.

Because

lim
x→0

(1 − x) = lim
x→0

1 = 1,

it follows from the Squeeze Theorem that

lim
x→0

x

[
1

x

]
= 1.

70. Let r1 and r2 be the roots of f (x) = ax2 − 2x + 20. Observe that f (x) “approaches” the linear function L(x) =
−2x + 20 as a → 0. Because r = 10 is the unique root of L(x), we might expect one of the roots of f (x) to approach
10 as a → 0 (Figure 3). Prove that the roots can be labeled so that lim

a→0
r1 = 10 and lim

a→0
r2 = ∞.

x

y

100 200

Root tending to ∞
as a → 0

Root
near 10

300 400

200

−200
y = −2x + 20

a = 0.002
a = 0.008

FIGURE 3 Graphs of f (x) = ax2 − 2x + 20.

solution Using the quadratic formula, we find that the roots of the quadratic polynomial f (x) = ax2 − 2x + 20 are

2 ± √
4 − 80a

2a
= 1 ± √

1 − 20a

a
= 20

1 ± √
1 − 20a

.

Now let

r1 = 20

1 + √
1 − 20a

and r2 = 20

1 − √
1 − 20a

.

It is straightforward to calculate that

lim
a→0

r1 = lim
a→0

20

1 + √
1 − 20a

= 20

2
= 10

and that

lim
a→0

r2 = lim
a→0

20

1 − √
1 − 20a

= ∞

as desired.

71. Use the IVT to prove that the curves y = x2 and y = cos x intersect.

solution Let f (x) = x2 − cos x. Note that any root of f (x) corresponds to a point of intersection between the curves

y = x2 and y = cos x. Now, f (x) is continuous over the interval [0, π
2 ], f (0) = −1 < 0 and f (π

2 ) = π2

4 > 0.
Therefore, by the Intermediate Value Theorem, there exists a c ∈ (0, π

2 ) such that f (c) = 0; consequently, the curves

y = x2 and y = cos x intersect.

72. Use the IVT to prove that f (x) = x3 − x2 + 2

cos x + 2
has a root in the interval [0, 2].

solution Let f (x) = x3 − x2+2
cos x+2 . Because cos x + 2 is never zero, f (x) is continuous for all real numbers. Because

f (0) = −2

3
< 0 and f (2) = 8 − 6

cos 2 + 2
≈ 4.21 > 0,

the Intermediate Value Theorem guarantees there exists a c ∈ (0, 2) such that f (c) = 0.
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73. Use the IVT to show that e−x2 = x has a solution on (0, 1).

solution Let f (x) = e−x2 − x. Observe that f is continuous on [0, 1] with f (0) = e0 − 0 = 1 > 0 and f (1) =
e−1 − 1 < 0. Therefore, the IVT guarantees there exists a c ∈ (0, 1) such that f (c) = e−c2 − c = 0.

74. Use the Bisection Method to locate a solution of x2 − 7 = 0 to two decimal places.

solution Let f (x) = x2 − 7. By trial and error, we find that f (2.6) = −0.24 < 0 and f (2.7) = 0.29 > 0. Because
f (x) is continuous on [2.6, 2.7], it follows from the Intermediate Value Theorem that f (x) has a root on (2.6, 2.7). We
approximate the root by the midpoint of the interval: x = 2.65. Now, f (2.65) = 0.0225 > 0. Because f (2.6) and f (2.65)

are of opposite sign, the root must lie on (2.6, 2.65). The midpoint of this interval is x = 2.625 and f (2.625) < 0; hence,
the root must be on the interval (2.625, 2.65). Continuing in this fashion, we construct the following sequence of intervals
and midpoints.

interval midpoint

(2.625, 2.65) 2.6375
(2.6375, 2.65) 2.64375
(2.64375, 2.65) 2.646875

(2.64375, 2.646875) 2.6453125
(2.6453125, 2.646875) 2.64609375

At this point, we note that, to two decimal places, one root of x2 − 7 = 0 is 2.65.

75. Give an example of a (discontinuous) function that does not satisfy the conclusion of the IVT on [−1, 1].
Then show that the function

f (x) =
⎧⎨
⎩sin

1

x
x �= 0

0 x = 0

satisfies the conclusion of the IVT on every interval [−a, a], even though f is discontinuous at x = 0.

solution Let g(x) = [x]. This function is discontinuous on [−1, 1] with g(−1) = −1 and g(1) = 1. For all c �= 0,
there is no x such that g(x) = c; thus, g(x) does not satisfy the conclusion of the Intermediate Value Theorem on [−1, 1].

Now, let

f (x) =
{

sin
(

1
x

)
for x �= 0

0 for x = 0

and let a > 0. On the interval

x ∈
[

a

2 + 2πa
,
a

2

]
⊂ [−a, a],

1
x runs from 2

a to 2
a + 2π , so the sine function covers one full period and clearly takes on every value from − sin a through

sin a.

76. Let f (x) = 1

x + 2
.

(a) Show that
∣∣∣f (x) − 1

4

∣∣∣ <
|x − 2|

12
if |x − 2| < 1. Hint: Observe that |4(x + 2)| > 12 if |x − 2| < 1.

(b) Find δ > 0 such that
∣∣∣f (x) − 1

4

∣∣∣ < 0.01 for |x − 2| < δ.

(c) Prove rigorously that lim
x→2

f (x) = 1
4 .

solution

(a) Let f (x) = 1
x+2 . Then

∣∣∣∣f (x) − 1

4

∣∣∣∣ =
∣∣∣∣ 1

x + 2
− 1

4

∣∣∣∣ =
∣∣∣∣4 − (x + 2)

4(x + 2)

∣∣∣∣ = |x − 2|
|4(x + 2)| .

If |x − 2| < 1, then 1 < x < 3, so 3 < x + 2 < 5 and 12 < 4(x + 2) < 20. Hence,

1

|4(x + 2)| <
1

12
and

∣∣∣∣f (x) − 1

4

∣∣∣∣ <
|x − 2|

12
.
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(b) If |x − 2| < δ, then by part (a), ∣∣∣∣f (x) − 1

4

∣∣∣∣ <
δ

12
.

Choosing δ = 0.12 will then guarantee that |f (x) − 1
4 | < 0.01.

(c) Let ε > 0 and take δ = min{1, 12ε}. Then, whenever |x − 2| < δ,∣∣∣∣f (x) − 1

4

∣∣∣∣ =
∣∣∣∣ 1

x + 2
− 1

4

∣∣∣∣ = |2 − x|
4|x + 2| ≤ |x − 2|

12
<

δ

12
= ε.

77. Plot the function f (x) = x1/3. Use the zoom feature to find a δ > 0 such that |x1/3 − 2| < 0.05 for
|x − 8| < δ.

solution The graphs of y = f (x) = x1/3 and the horizontal lines y = 1.95 and y = 2.05 are shown below. From

this plot, we see that δ = 0.55 guarantees that |x1/3 − 2| < 0.05 whenever |x − 8| < δ.

7 7.5 8 8.5

1.95

1.9

2

2.05

x

y

78. Use the fact that f (x) = 2x is increasing to find a value of δ such that |2x − 8| < 0.001 if |x − 2| < δ. Hint: Find
c1 and c2 such that 7.999 < f (c1) < f (c2) < 8.001.

solution From the graph below, we see that

7.999 < f (2.99985) < f (3.00015) < 8.001.

Thus, with δ = 0.00015, it follows that |2x − 8| < 0.001 if |x − 3| < δ.

2.9996

7.997

7.998

7.999

8

8.001

8.002

2.9998 3 3.0002 3.0004

79. Prove rigorously that lim
x→−1

(4 + 8x) = −4.

solution Let ε > 0 and take δ = ε/8. Then, whenever |x − (−1)| = |x + 1| < δ,

|f (x) − (−4)| = |4 + 8x + 4| = 8|x + 1| < 8δ = ε.

80. Prove rigorously that lim
x→3

(x2 − x) = 6.

solution Let ε > 0 and take δ = min{1, ε/6}. Because δ ≤ 1, |x − 3| < δ guarantees |x + 2| < 6. Therefore,
whenever |x − 3| < δ,

|f (x) − 6| = |x2 − x − 6| = |x − 3| |x + 2| < 6|x − 3| < 6δ ≤ ε.
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3.1 Definition of the Derivative

Preliminary Questions
1. Which of the lines in Figure 10 are tangent to the curve?

A

B

C

D

FIGURE 10

solution Lines B and D are tangent to the curve.

2. What are the two ways of writing the difference quotient?

solution The difference quotient may be written either as

f (x) − f (a)

x − a

or as

f (a + h) − f (a)

h
.

3. Find a and h such that
f (a + h) − f (a)

h
is equal to the slope of the secant line between (3, f (3)) and (5, f (5)).

solution With a = 3 and h = 2,
f (a + h) − f (a)

h
is equal to the slope of the secant line between the points (3, f (3))

and (5, f (5)) on the graph of f (x).

4. Which derivative is approximated by
tan

(
π
4 + 0.0001

) − 1

0.0001
?

solution
tan( π

4 + 0.0001) − 1

0.0001
is a good approximation to the derivative of the function f (x) = tan x at x = π

4 .

5. What do the following quantities represent in terms of the graph of f (x) = sin x?

(a) sin 1.3 − sin 0.9 (b)
sin 1.3 − sin 0.9

0.4
(c) f ′(0.9)

solution Consider the graph of y = sin x.

(a) The quantity sin 1.3 − sin 0.9 represents the difference in height between the points (0.9, sin 0.9) and (1.3, sin 1.3).

(b) The quantity
sin 1.3 − sin 0.9

0.4
represents the slope of the secant line between the points (0.9, sin 0.9) and (1.3, sin 1.3)

on the graph.

(c) The quantity f ′(0.9) represents the slope of the tangent line to the graph at x = 0.9.

Exercises
1. Let f (x) = 5x2. Show that f (3 + h) = 5h2 + 30h + 45. Then show that

f (3 + h) − f (3)

h
= 5h + 30

and compute f ′(3) by taking the limit as h → 0.

190
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solution With f (x) = 5x2, it follows that

f (3 + h) = 5(3 + h)2 = 5(9 + 6h + h2) = 45 + 30h + 5h2.

Using this result, we find

f (3 + h) − f (3)

h
= 45 + 30h + 5h2 − 5 · 9

h
= 45 + 30h + 5h2 − 45

h
= 30h + 5h2

h
= 30 + 5h.

As h → 0, 30 + 5h → 30, so f ′(3) = 30.

2. Let f (x) = 2x2 − 3x − 5. Show that the secant line through (2, f (2)) and (2 + h, f (2 + h)) has slope 2h + 5. Then
use this formula to compute the slope of:

(a) The secant line through (2, f (2)) and (3, f (3))

(b) The tangent line at x = 2 (by taking a limit)

solution The formula for the slope of the secant line is

f (2 + h) − f (2)

2 + h − 2
= [2(2 + h)2 − 3(2 + h) − 5] − (8 − 6 − 5)

h
= 2h2 + 5h

h
= 2h + 5

(a) To find the slope of the secant line through (2, f (2)) and (3, f (3)), we take h = 1, so the slope is 2(1) + 5 = 7.

(b) As h → 0, the slope of the secant line approaches 2(0) + 5 = 5. Hence, the slope of the tangent line at x = 2 is 5.

In Exercises 3–6, compute f ′(a) in two ways, using Eq. (1) and Eq. (2).

3. f (x) = x2 + 9x, a = 0

solution Let f (x) = x2 + 9x. Then

f ′(0) = lim
h→0

f (0 + h) − f (0)

h
= lim

h→0

(0 + h)2 + 9(0 + h) − 0

h
= lim

h→0

9h + h2

h
= lim

h→0
(9 + h) = 9.

Alternately,

f ′(0) = lim
x→0

f (x) − f (0)

x − 0
= lim

x→0

x2 + 9x − 0

x
= lim

x→0
(x + 9) = 9.

4. f (x) = x2 + 9x, a = 2

solution Let f (x) = x2 + 9x. Then

f ′(2) = lim
h→0

f (2 + h) − f (2)

h
= lim

h→0

(2 + h)2 + 9(2 + h) − 22

h
= lim

h→0

13h + h2

h
= lim

h→0
(13 + h) = 13.

Alternately,

f ′(2) = lim
x→2

f (x) − f (2)

x − 2
= lim

x→2

x2 + 9x − (22 + 9(2))

x − 2
= lim

x→2

(x − 2)(x + 11)

x − 2
= lim

x→2
(x + 11) = 13.
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5. f (x) = 3x2 + 4x + 2, a = −1

solution Let f (x) = 3x2 + 4x + 2. Then

f ′(−1) = lim
h→0

f (−1 + h) − f (−1)

h
= lim

h→0

3(−1 + h)2 + 4(−1 + h) + 2 − 1

h

= lim
h→0

3h2 − 2h

h
= lim

h→0
(3h − 2) = −2.

Alternately,

f ′(−1) = lim
x→−1

f (x) − f (−1)

x − (−1)
= lim

x→−1

3x2 + 4x + 2 − 1

x + 1

= lim
x→−1

(3x + 1)(x + 1)

x + 1
= lim

x→−1
(3x + 1) = −2.

6. f (x) = x3, a = 2

solution Let f (x) = x3. Then

f ′(2) = lim
h→0

f (2 + h) − f (2)

h
= lim

h→0

(2 + h)3 − 8

h

= lim
h→0

8 + 12h + 6h2 + h3 − 8

h
= lim

h→0
(12 + 6h + h2) = 12.

Alternately,

f ′(2) = lim
x→2

f (x) − f (2)

x − 2
= lim

x→2

x3 − 8

x − 2

= lim
x→2

(x − 2)(x2 + 2x + 4)

x − 2
= lim

x→2
(x2 + 2x + 4) = 12.

In Exercises 7–10, refer to Figure 11.

0.5

1.0

1.5

2.0

2.5

3.0
f (x)

1.0 2.0 3.00.5 1.5 2.5
x

y

FIGURE 11

7. Find the slope of the secant line through (2, f (2)) and (2.5, f (2.5)). Is it larger or smaller than f ′(2)?
Explain.

solution From the graph, it appears that f (2.5) = 2.5 and f (2) = 2. Thus, the slope of the secant line through
(2, f (2)) and (2.5, f (2.5)) is

f (2.5) − f (2)

2.5 − 2
= 2.5 − 2

2.5 − 2
= 1.

From the graph, it is also clear that the secant line through (2, f (2)) and (2.5, f (2.5)) has a larger slope than the tangent
line at x = 2. In other words, the slope of the secant line through (2, f (2)) and (2.5, f (2.5)) is larger than f ′(2).

8. Estimate
f (2 + h) − f (2)

h
for h = −0.5. What does this quantity represent? Is it larger or smaller than

f ′(2)? Explain.

solution With h = −0.5, 2 + h = 1.5. Moreover, from the graph it appears that f (1.5) = 1.7 and f (2) = 2. Thus,

f (2 + h) − f (2)

h
= 1.7 − 2

−0.5
= 0.6.

This quantity represents the slope of the secant line through the points (2, f (2)) and (1.5, f (1.5)). It is clear from the
graph that the secant line through the points (2, f (2)) and (1.5, f (1.5)) has a smaller slope than the tangent line at x = 2.

In other words,
f (2 + h) − f (2)

h
for h = −0.5 is smaller than f ′(2).
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9. Estimate f ′(1) and f ′(2).

solution From the graph, it appears that the tangent line at x = 1 would be horizontal. Thus, f ′(1) ≈ 0. The tangent
line at x = 2 appears to pass through the points (0.5, 0.8) and (2, 2). Thus

f ′(2) ≈ 2 − 0.8

2 − 0.5
= 0.8.

10. Find a value of h for which
f (2 + h) − f (2)

h
= 0.

solution In order for

f (2 + h) − f (2)

h

to be equal to zero, we must have f (2 + h) = f (2). Now, f (2) = 2, and the only other point on the graph with a
y-coordinate of 2 is f (0) = 2. Thus, 2 + h = 0, or h = −2.

In Exercises 11–14, refer to Figure 12.

1

2

3

5

4

1 2 3 4 5 6 7 8 9
x

y

FIGURE 12 Graph of f (x).

11. Determine f ′(a) for a = 1, 2, 4, 7.

solution Remember that the value of the derivative of f at x = a can be interpreted as the slope of the line tangent
to the graph of y = f (x) at x = a. From Figure 12, we see that the graph of y = f (x) is a horizontal line (that is, a line
with zero slope) on the interval 0 ≤ x ≤ 3. Accordingly, f ′(1) = f ′(2) = 0. On the interval 3 ≤ x ≤ 5, the graph of
y = f (x) is a line of slope 1

2 ; thus, f ′(4) = 1
2 . Finally, the line tangent to the graph of y = f (x) at x = 7 is horizontal,

so f ′(7) = 0.

12. For which values of x is f ′(x) < 0?

solution If f ′(x) < 0, then the slope of the tangent line at x is negative. Graphically, this would mean that the value
of the function was decreasing for increasing x. From the graph, it follows that f ′(x) < 0 for 7 < x < 9.

13. Which is larger, f ′(5.5) or f ′(6.5)?

solution The line tangent to the graph of y = f (x) at x = 5.5 has a larger slope than the line tangent to the graph of
y = f (x) at x = 6.5. Therefore, f ′(5.5) is larger than f ′(6.5).

14. Show that f ′(3) does not exist.

solution Because

lim
h→0−

f (3 + h) − f (3)

h
= 0 but lim

h→0+
f (3 + h) − f (3)

h
= 1

2
,

it follows that

f ′(3) = lim
h→0

f (3 + h) − f (3)

h

does not exist.
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In Exercises 15–18, use the limit definition to calculate the derivative of the linear function.

15. f (x) = 7x − 9

solution

lim
h→0

f (a + h) − f (a)

h
= lim

h→0

7(a + h) − 9 − (7a − 9)

h
= lim

h→0
7 = 7.

16. f (x) = 12

solution

lim
h→0

f (a + h) − f (a)

h
= lim

h→0

12 − 12

h
= lim

h→0
0 = 0.

17. g(t) = 8 − 3t

solution

lim
h→0

g(a + h) − g(a)

h
= lim

h→0

8 − 3(a + h) − (8 − 3a)

h
= lim

h→0

−3h

h
= lim

h→0
(−3) = −3.

18. k(z) = 14z + 12

solution

lim
h→0

k(a + h) − k(a)

h
= lim

h→0

14(a + h) + 12 − (14a + 12)

h
= lim

h→0

14h

h
= lim

h→0
14 = 14.

19. Find an equation of the tangent line at x = 3, assuming that f (3) = 5 and f ′(3) = 2?

solution By definition, the equation of the tangent line to the graph of f (x) at x = 3 is y = f (3) + f ′(3)(x − 3) =
5 + 2(x − 3) = 2x − 1.

20. Find f (3) and f ′(3), assuming that the tangent line to y = f (x) at a = 3 has equation y = 5x + 2.

solution The slope of the tangent line to y = f (x) at a = 3 is f ′(3) by definition, therefore f ′(3) = 5. Also by
definition, the tangent line to y = f (x) at a = 3 goes through (3, f (3)), so f (3) = 17.

21. Describe the tangent line at an arbitrary point on the “curve” y = 2x + 8.

solution Since y = 2x + 8 represents a straight line, the tangent line at any point is the line itself, y = 2x + 8.

22. Suppose that f (2 + h) − f (2) = 3h2 + 5h. Calculate:

(a) The slope of the secant line through (2, f (2)) and (6, f (6))

(b) f ′(2)

solution Let f be a function such that f (2 + h) − f (2) = 3h2 + 5h.

(a) We take h = 4 to compute the slope of the secant line through (2, f (2)) and (6, f (6)):

f (4 + 2) − f (2)

(4 + 2) − 2
= 3(4)2 + 5(4)

4
= 17

(b) f ′(2) = lim
h→0

f (2 + h) − f (2)

h
= lim

h→0

3h2 + 5h

h
= lim

h→0
(3h + 5) = 5.

23. Let f (x) = 1

x
. Does f (−2 + h) equal

1

−2 + h
or

1

−2
+ 1

h
? Compute the difference quotient at a = −2 with

h = 0.5.

solution Let f (x) = 1
x . Then

f (−2 + h) = 1

−2 + h
.

With a = −2 and h = 0.5, the difference quotient is

f (a + h) − f (a)

h
= f (−1.5) − f (−2)

0.5
=

1
−1.5 − 1

−2

0.5
= −1

3
.
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24. Let f (x) = √
x. Does f (5 + h) equal

√
5 + h or

√
5 + √

h? Compute the difference quotient at a = 5 with h = 1.

solution Let f (x) = √
x. Then f (5 + h) = √

5 + h. With a = 5 and h = 1, the difference quotient is

f (a + h) − f (a)

h
= f (5 + 1) − f (5)

1
=

√
6 − √

5

1
= √

6 − √
5.

25. Let f (x) = 1/
√

x. Compute f ′(5) by showing that

f (5 + h) − f (5)

h
= − 1√

5
√

5 + h(
√

5 + h + √
5)

solution Let f (x) = 1/
√

x. Then

f (5 + h) − f (5)

h
=

1√
5+h

− 1√
5

h
=

√
5 − √

5 + h

h
√

5
√

5 + h

=
√

5 − √
5 + h

h
√

5
√

5 + h

(√
5 + √

5 + h√
5 + √

5 + h

)

= 5 − (5 + h)

h
√

5
√

5 + h(
√

5 + h + √
5)

= − 1√
5
√

5 + h(
√

5 + h + √
5)

.

Thus,

f ′(5) = lim
h→0

f (5 + h) − f (5)

h
= lim

h→0
− 1√

5
√

5 + h(
√

5 + h + √
5)

= − 1√
5

√
5(

√
5 + √

5)
= − 1

10
√

5
.

26. Find an equation of the tangent line to the graph of f (x) = 1/
√

x at x = 9.

solution Let f (x) = 1/
√

x. Then

f (9 + h) − f (9)

h
=

1√
9+h

− 1
3

h
= 3 − √

9 + h

3h
√

9 + h

= 3 − √
9 + h

3h
√

9 + h

(
3 + √

9 + h

3 + √
9 + h

)

= 9 − (9 + h)

3h
√

9 + h(
√

9 + h + 3)
= − 1

3
√

9 + h(
√

9 + h + 3)
.

Thus,

f ′(9) = lim
h→0

f (9 + h) − f (9)

h
= lim

h→0
− 1

3
√

9 + h(
√

9 + h + 3)

= − 1

9(3 + 3)
= − 1

54
.

Because f (9) = 1
3 , it follows that an equation of the tangent line to the graph of f (x) = 1/

√
x at x = 9 is

y = f ′(9)(x − 9) + f (9) = − 1

54
(x − 9) + 1

3
.
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In Exercises 27–44, use the limit definition to compute f ′(a) and find an equation of the tangent line.

27. f (x) = 2x2 + 10x, a = 3

solution Let f (x) = 2x2 + 10x. Then

f ′(3) = lim
h→0

f (3 + h) − f (3)

h
= lim

h→0

2(3 + h)2 + 10(3 + h) − 48

h

= lim
h→0

18 + 12h + 2h2 + 30 + 10h − 48

h
= lim

h→0
(22 + 2h) = 22.

At a = 3, the tangent line is

y = f ′(3)(x − 3) + f (3) = 22(x − 3) + 48 = 22x − 18.

28. f (x) = 4 − x2, a = −1

solution Let f (x) = 4 − x2. Then

f ′(−1) = lim
h→0

f (−1 + h) − f (−1)

h
= lim

h→0

4 − (−1 + h)2 − 3

h

= lim
h→0

4 − (1 − 2h + h2) − 3

h

= lim
h→0

(2 − h) = 2.

At a = −1, the tangent line is

y = f ′(−1)(x + 1) + f (−1) = 2(x + 1) + 3 = 2x + 5.

29. f (t) = t − 2t2, a = 3

solution Let f (t) = t − 2t2. Then

f ′(3) = lim
h→0

f (3 + h) − f (3)

h
= lim

h→0

(3 + h) − 2(3 + h)2 − (−15)

h

= lim
h→0

3 + h − 18 − 12h − 2h2 + 15

h

= lim
h→0

(−11 − 2h) = −11.

At a = 3, the tangent line is

y = f ′(3)(t − 3) + f (3) = −11(t − 3) − 15 = −11t + 18.

30. f (x) = 8x3, a = 1

solution Let f (x) = 8x3. Then

f ′(1) = lim
h→0

f (1 + h) − f (1)

h
= lim

h→0

8(1 + h)3 − 8

h

= lim
h→0

8 + 24h + 24h2 + 8h3 − 8

h

= lim
h→0

(24 + 24h + 8h2) = 24.

At a = 1, the tangent line is

y = f ′(1)(x − 1) + f (1) = 24(x − 1) + 8 = 24x − 16.
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31. f (x) = x3 + x, a = 0

solution Let f (x) = x3 + x. Then

f ′(0) = lim
h→0

f (h) − f (0)

h
= lim

h→0

h3 + h − 0

h

= lim
h→0

(h2 + 1) = 1.

At a = 0, the tangent line is

y = f ′(0)(x − 0) + f (0) = x.

32. f (t) = 2t3 + 4t , a = 4

solution Let f (t) = 2t3 + 4t . Then

f ′(4) = lim
h→0

f (4 + h) − f (4)

h
= lim

h→0

2(4 + h)3 + 4(4 + h) − 144

h

= lim
h→0

128 + 96h + 24h2 + 2h3 + 16 + 4h − 144

h

= lim
h→0

(100 + 24h + 2h2) = 100.

At a = 4, the tangent line is

y = f ′(4)(t − 4) + f (4) = 100(t − 4) + 144 = 100t − 256.

33. f (x) = x−1, a = 8

solution Let f (x) = x−1. Then

f ′(8) = lim
h→0

f (8 + h) − f (8)

h
= lim

h→0

1
8+h

−
(

1
8

)
h

= lim
h→0

8−8−h
8(8+h)

h
= lim

h→0

−h

(64 + 8h)h
= − 1

64

The tangent at a = 8 is

y = f ′(8)(x − 8) + f (8) = − 1

64
(x − 8) + 1

8
= − 1

64
x + 1

4
.

34. f (x) = x + x−1, a = 4

solution Let f (x) = x + x−1. Then

f ′(4) = lim
h→0

f (4 + h) − f (4)

h
= lim

h→0

4 + h + 1
4+h

− 4 − 1
4

h
= lim

h→0

h + 4−4−h
4(4+h)

h
= lim

h→0

(
1 − 1

16 + 4h

)
= 15

16

The tangent at a = 4 is

y = f ′(4)(x − 4) + f (4) = 15

16
(x − 4) + 17

4
= 15

16
x + 1

2
.

35. f (x) = 1

x + 3
, a = −2

solution Let f (x) = 1
x+3 . Then

f ′(−2) = lim
h→0

f (−2 + h) − f (−2)

h
= lim

h→0

1
−2+h+3 − 1

h
= lim

h→0

1
1+h

− 1

h
= lim

h→0

−h

h(1 + h)
= lim

h→0

−1

1 + h
= −1.

The tangent line at a = −2 is

y = f ′(−2)(x + 2) + f (−2) = −1(x + 2) + 1 = −x − 1.
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36. f (t) = 2

1 − t
, a = −1

solution Let f (t) = 2
1−t

. Then

f ′(−1) = lim
h→0

f (−1 + h) − f (−1)

h
= lim

h→0

2
1−(−1+h)

− 1

h
= lim

h→0

2 − (2 − h)

h(2 − h)
= lim

h→0

1

2 − h
= 1

2
.

At a = −1, the tangent line is

y = f ′(−1)(x + 1) + f (−1) = 1

2
(x + 1) + 1 = 1

2
x + 3

2
.

37. f (x) = √
x + 4, a = 1

solution Let f (x) = √
x + 4. Then

f ′(1) = lim
h→0

f (1 + h) − f (1)

h
= lim

h→0

√
h + 5 − √

5

h
= lim

h→0

√
h + 5 − √

5

h
·
√

h + 5 + √
5√

h + 5 + √
5

= lim
h→0

h

h(
√

h + 5 + √
5)

= lim
h→0

1√
h + 5 + √

5
= 1

2
√

5
.

The tangent line at a = 1 is

y = f ′(1)(x − 1) + f (1) = 1

2
√

5
(x − 1) + √

5 = 1

2
√

5
x + 9

2
√

5
.

38. f (t) = √
3t + 5, a = −1

solution Let f (t) = √
3t + 5. Then

f ′(−1) = lim
h→0

f (−1 + h) − f (−1)

h
= lim

h→0

√
3h + 2 − √

2

h
= lim

h→0

√
3h + 2 − √

2

h
·
√

3h + 2 + √
2√

3h + 2 + √
2

= lim
h→0

3h

h(
√

3h + 2 + √
2)

= lim
h→0

3√
3h + 2 + √

2
= 3

2
√

2
.

The tangent line at a = −1 is

y = f ′(−1)(t + 1) + f (−1) = 3

2
√

2
(t + 1) + √

2 = 3

2
√

2
t + 7

2
√

2
.

39. f (x) = 1√
x

, a = 4

solution Let f (x) = 1√
x

. Then

f ′(4) = lim
h→0

f (4 + h) − f (4)

h
= lim

h→0

1√
4+h

− 1
2

h
= lim

h→0

2−√
4+h

2
√

4+h
· 2+√

4+h

2+√
4+h

h
= lim

h→0

4−4−h

4
√

4+h+2(4+h)

h

= lim
h→0

−1

4
√

4 + h + 2(4 + h)
= − 1

16
.

At a = 4 the tangent line is

y = f ′(4)(x − 4) + f (4) = − 1

16
(x − 4) + 1

2
= − 1

16
x + 3

4
.

40. f (x) = 1√
2x + 1

, a = 4

solution Let f (x) = 1√
2x + 1

. Then

f ′(4) = lim
h→0

f (4 + h) − f (4)

h
= lim

h→0

1√
2h+9

− 1
3

h
= lim

h→0

3−√
2h+9

3
√

2h+9
· 3+√

2h+9
3+√

2h+9

h
= lim

h→0

9−2h−9
9
√

2h+9+3(2h+9)

h

= lim
h→0

−2

9
√

2h + 9 + 3(2h + 9)
= − 1

27
.
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At a = 4 the tangent line is

y = f ′(4)(x − 4) + f (4) = − 1

27
(x − 4) + 1

3
= − 1

27
x + 13

27
.

41. f (t) =
√

t2 + 1, a = 3

solution Let f (t) =
√

t2 + 1. Then

f ′(3) = lim
h→0

f (3 + h) − f (3)

h
= lim

h→0

√
10 + 6h + h2 − √

10

h

= lim
h→0

√
10 + 6h + h2 − √

10

h
·
√

10 + 6h + h2 + √
10√

10 + 6h + h2 + √
10

= lim
h→0

6h + h2

h(
√

10 + 6h + h2 + √
10)

= lim
h→0

6 + h√
10 + 6h + h2 + √

10
= 3√

10
.

The tangent line at a = 3 is

y = f ′(3)(t − 3) + f (3) = 3√
10

(t − 3) + √
10 = 3√

10
t + 1√

10
.

42. f (x) = x−2, a = −1

solution Let f (x) = 1
x2 . Then

f ′(−1) = lim
h→0

f (−1 + h) − f (−1)

h
= lim

h→0

1
(−1+h)2 − 1

h
= lim

h→0

h(2−h)

(−1+h)2

h
= lim

h→0

2 − h

(−1 + h)2
= 2.

The tangent line at a = −1 is

y = f ′(−1)(x + 1) + f (−1) = 2(x + 1) + 1 = 2x + 3.

43. f (x) = 1

x2 + 1
, a = 0

solution Let f (x) = 1

x2 + 1
. Then

f ′(0) = lim
h→0

f (0 + h) − f (0)

h
= lim

h→0

1
(0+h)2+1

− 1

h
= lim

h→0

−h2

h2+1

h
= lim

h→0

−h

h2 + 1
= 0.

The tangent line at a = 0 is

y = f (0) + f ′(0)(x − 0) = 1 + 0(x − 1) = 1.

44. f (t) = t−3, a = 1

solution Let f (t) = 1

t3
. Then

f ′(1) = lim
h→0

f (1 + h) − f (h)

h
= lim

h→0

1
(1+h)3 − 1

h
= lim

h→0

−h
(
3+3h+h2

)
(1+h)3

h
= lim

h→0

−(3 + 3h + h2)

(1 + h)3
= −3.

The tangent line at a = 1 is

y = f ′(1)(t − 1) + f (1) = −3(t − 1) + 1 = −3t + 4.

45. Figure 13 displays data collected by the biologist Julian Huxley (1887–1975) on the average antler weight W of male
red deer as a function of age t . Estimate the derivative at t = 4. For which values of t is the slope of the tangent line equal
to zero? For which values is it negative?

2 40 6 8 10 12 14

Age (years)

Antler
Weight

(kg)

0
1
2
3
4
5
6
7
8

FIGURE 13
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solution Let W(t) denote the antler weight as a function of age. The “tangent line” sketched in the figure below passes
through the points (1, 1) and (6, 5.5). Therefore

W ′(4) ≈ 5.5 − 1

6 − 1
= 0.9 kg/year.

If the slope of the tangent is zero, the tangent line is horizontal. This appears to happen at roughly t = 10 and at t = 11.6.
The slope of the tangent line is negative when the height of the graph decreases as we move to the right. For the graph in
Figure 13, this occurs for 10 < t < 11.6.

2 40 6 8 10 12 14
0
1
2
3
4
5
6
7
8

y

x

46. Figure 14(A) shows the graph of f (x) = √
x. The close-up in Figure 14(B) shows that the graph is nearly a straight

line near x = 16. Estimate the slope of this line and take it as an estimate for f ′(16). Then compute f ′(16) and compare
with your estimate.

3.9

4.1

(B) Zoom view near (16, 4)

16.1

15.9
x

y

1
2

5
4
3

2 4 6 8 10 12 14 16 18
x

y

(A) Graph of y = √x

FIGURE 14

solution From the close-up in Figure 14(B), the line appears to pass through the points (15.92, 3.99) and (16.08, 4.01).
Thus,

f ′(16) ≈ 4.01 − 3.99

16.08 − 15.92
= 0.02

0.16
= 0.125.

With f (x) = √
x,

f ′(16) = lim
h→0

√
16 + h − 4

h
·
√

16 + h + 4√
16 + h + 4

= lim
h→0

16 + h − 16

h(
√

16 + h + 4)
= lim

h→0

1√
16 + h + 4

= 1

8
= 0.125,

which is consistent with the approximation obtained from the close-up graph.

47. Let f (x) = 4

1 + 2x
.

(a) Plot f (x) over [−2, 2]. Then zoom in near x = 0 until the graph appears straight, and estimate the slope f ′(0).

(b) Use (a) to find an approximate equation to the tangent line at x = 0. Plot this line and f (x) on the same set of axes.

solution

(a) The figure below at the left shows the graph of f (x) = 4
1+2x over [−2, 2]. The figure below at the right is a close-up

near x = 0. From the close-up, we see that the graph is nearly straight and passes through the points (−0.22, 2.15) and
(0.22, 1.85). We therefore estimate

f ′(0) ≈ 1.85 − 2.15

0.22 − (−0.22)
= −0.3

0.44
= −0.68

y

x
−2 −1 1 2

y

x
−0.2 −0.1 0.1 0.2

0.5 1.8

2.0
2.2

2.4

1
1.5
2

3
2.5
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(b) Using the estimate for f ′(0) obtained in part (a), the approximate equation of the tangent line is

y = f ′(0)(x − 0) + f (0) = −0.68x + 2.

The figure below shows the graph of f (x) and the approximate tangent line.

y

x
−2 −1 1 2

0.5
1

1.5
2

3
2.5

48. Let f (x) = cot x. Estimate f ′(π
2

)
graphically by zooming in on a plot of f (x) near x = π

2 .

solution The figure below shows a close-up of the graph of f (x) = cot x near x = π
2 ≈ 1.5708. From the close-up,

we see that the graph is nearly straight and passes through the points (1.53, 0.04) and (1.61, −0.04). We therefore estimate

f ′ (π

2

)
≈ −0.04 − 0.04

1.61 − 1.53
= −0.08

0.08
= −1

y

x
1.54 1.56

1.58 1.6

−0.05

−1

0.05

1

49. Determine the intervals along the x-axis on which the derivative in Figure 15 is positive.

1.0 1.5 2.0 2.5 3.0 3.5 4.00.5

1.0

0.5

1.5

2.0

2.5

3.0

3.5

4.0

x

y

FIGURE 15

solution The derivative (that is, the slope of the tangent line) is positive when the height of the graph increases as we
move to the right. From Figure 15, this appears to be true for 1 < x < 2.5 and for x > 3.5.

50. Sketch the graph of f (x) = sin x on [0, π ] and guess the value of f ′(π
2

)
. Then calculate the difference quotient at

x = π
2 for two small positive and negative values of h. Are these calculations consistent with your guess?

solution Here is the graph of y = sin x on [0, π ].
y

x
0.5 1 1.5 2 2.5 3

0.2
0.4
0.6
0.8

1

At x = π
2 , we’re at the peak of the sine graph. The tangent line appears to be horizontal, so the slope is 0; hence, f ′( π

2 )

appears to be 0.

h −0.01 −0.001 −0.0001 0.0001 0.001 0.01

sin( π
2 + h) − 1

h
0.005 0.0005 0.00005 −0.00005 −0.0005 −0.005

These numerical calculations are consistent with our guess.
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In Exercises 51–56, each limit represents a derivative f ′(a). Find f (x) and a.

51. lim
h→0

(5 + h)3 − 125

h

solution The difference quotient
(5 + h)3 − 125

h
has the form

f (a + h) − f (a)

h
where f (x) = x3 and a = 5.

52. lim
x→5

x3 − 125

x − 5

solution The difference quotient
x3 − 125

x − 5
has the form

f (x) − f (a)

x − a
where f (x) = x3 and a = 5.

53. lim
h→0

sin
(
π
6 + h

) − 0.5

h

solution The difference quotient
sin( π

6 + h) − .5

h
has the form

f (a + h) − f (a)

h
where f (x) = sin x and a = π

6 .

54. lim
x→ 1

4

x−1 − 4

x − 1
4

solution The difference quotient
1
x − 4

x − 1
4

has the form
f (x) − f (a)

x − a
where f (x) = 1

x and a = 1
4 .

55. lim
h→0

52+h − 25

h

solution The difference quotient
5(2+h) − 25

h
has the form

f (a + h) − f (a)

h
where f (x) = 5x and a = 2.

56. lim
h→0

5h − 1

h

solution The difference quotient
5h − 1

h
has the form

f (a + h) − f (a)

h
where f (x) = 5x and a = 0.

57. Apply the method of Example 6 to f (x) = sin x to determine f ′ (π
4

)
accurately to four decimal places.

solution We know that

f ′(π/4) = lim
h→0

f (π/4 + h) − f (π/4)

h
= lim

h→0

sin(π/4 + h) − √
2/2

h
.

Creating a table of values of h close to zero:

h −0.001 −0.0001 −0.00001 0.00001 0.0001 0.001

sin( π
4 + h) − (

√
2/2)

h
0.7074602 0.7071421 0.7071103 0.7071033 0.7070714 0.7067531

Accurate up to four decimal places, f ′( π
4 ) ≈ 0.7071.

58. Apply the method of Example 6 to f (x) = cos x to determine f ′(π
5

)
accurately to four decimal places. Use

a graph of f (x) to explain how the method works in this case.

solution We know that

f ′ (π

5

)
= lim

h→0

f (π/5 + h) − f (π/5)

h
= lim

h→0

cos( π
5 + h) − cos( π

5 )

h
.

We make a chart using values of h close to zero:

h −0.001 −0.0001 −0.00001

cos( π
5 + h) − cos( π

5 )

h
−0.587381 −0.587745 −0.587781

h 0.001 0.0001 0.00001

cos( π
5 + h) − cos( π

5 )

h
−0.588190 −0.587826 −0.587789

f ′( π
5 ) ≈ −0.5878.
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The figures shown below illustrate why this procedure works. From the figure on the left, we see that for h < 0, the
slope of the secant line is greater (less negative) than the slope of the tangent line. On the other hand, from the figure on
the right, we see that for h > 0, the slope of the secant line is less (more negative) than the slope of the tangent line. Thus,
the slope of the tangent line must fall between the slope of a secant line with h > 0 and the slope of a secant line with
h < 0.

Tangent line

y

x

h = −1

1
2

h = −
Tangent line

y

x

y = cos x

h = 0.4
h = 0.8

y = cos x

59. For each graph in Figure 16, determine whether f ′(1) is larger or smaller than the slope of the secant line
between x = 1 and x = 1 + h for h > 0. Explain.

1 1

(A) (B)

y

x

y

x

y = f (x)
y = f (x)

FIGURE 16

solution

• On curve (A),f ′(1) is larger than

f (1 + h) − f (1)

h
;

the curve is bending downwards, so that the secant line to the right is at a lower angle than the tangent line. We say
such a curve is concave down, and that its derivative is decreasing.

• On curve (B), f ′(1) is smaller than

f (1 + h) − f (1)

h
;

the curve is bending upwards, so that the secant line to the right is at a steeper angle than the tangent line. We say
such a curve is concave up, and that its derivative is increasing.

60. Refer to the graph of f (x) = 2x in Figure 17.

(a) Explain graphically why, for h > 0,

f (−h) − f (0)

−h
≤ f ′(0) ≤ f (h) − f (0)

h

(b) Use (a) to show that 0.69314 ≤ f ′(0) ≤ 0.69315.

(c) Similarly, compute f ′(x) to four decimal places for x = 1, 2, 3, 4.

(d) Now compute the ratios f ′(x)/f ′(0) for x = 1, 2, 3, 4. Can you guess an approximate formula for f ′(x)?

321−1

1
x

y

FIGURE 17 Graph of f (x) = 2x .
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solution

(a) In the graph, the inequality

f ′(0) ≤ f (h) − f (0)

h

holds for positive values of h, since the difference quotient

f (h) − f (0)

h

is an increasing function of h. (The slopes of the secant lines between (0, f (0)) and a nearby point increase as the
nearby point moves from left to right.) Hence the slopes of the secant lines between (0, f (0)) and a nearby point to the
right, (h, f (h)) (where h is positive) exceed f ′(0). Similarly, for h > 0, −h is negative and 0 lies to the right of −h.
Consequently, the slope of the secant line between (0, f (0)) and a nearby point to the left, (−h, f (−h)) is less than f ′(0).
Therefore, the inequality

f ′(0) ≥ f (−h) − f (0)

−h

holds for h > 0.

(b) For h = 0.00001, we have

f (h) − f (0)

h
= 2h − 1

h
≈ 0.69315,

and

f (−h) − f (0)

−h
≈ 0.69314.

In light of (a), 0.69314 ≤ f ′(0) ≤ 0.69315.

(c) We’ll use the same values of h = ±0.00001 and compute difference quotients at x = 1, 2, 3, 4.

• Since 1.386290 ≤ f ′(1) ≤ 1.386299, we conclude that f ′(1) ≈ 1.3863 to four decimal places.
• Since 2.772579 ≤ f ′(2) ≤ 2.772598, we conclude that f ′(2) ≈ 2.7726 to four decimal places.
• Since 5.545158 ≤ f ′(3) ≤ 5.545197, we conclude that f ′(3) ≈ 5.5452 to four decimal places.
• With h = ±0.000001, 11.090351 ≤ f ′(4) ≤ 11.090359, so we conclude that f ′(4) ≈ 11.0904 to four decimal

places.

(d)
x 1 2 3 4

f ′(x)/f ′(0) 2 4 8 16

Looking at this table, we guess that f ′(x)/f ′(0) = 2x . In other words, f ′(x) = 2xf ′(0).

61. Sketch the graph of f (x) = x5/2 on [0, 6].
(a) Use the sketch to justify the inequalities for h > 0:

f (4) − f (4 − h)

h
≤ f ′(4) ≤ f (4 + h) − f (4)

h

(b) Use (a) to compute f ′(4) to four decimal places.

(c) Use a graphing utility to plot f (x) and the tangent line at x = 4, using your estimate for f ′(4).

solution

(a) The slope of the secant line between points (4, f (4)) and (4 + h, f (4 + h)) is

f (4 + h) − f (4)

h
.

x5/2 is a smooth curve increasing at a faster rate as x → ∞. Therefore, if h > 0, then the slope of the secant line is
greater than the slope of the tangent line at f (4), which happens to be f ′(4). Likewise, if h < 0, the slope of the secant
line is less than the slope of the tangent line at f (4), which happens to be f ′(4).

(b) We know that

f ′(4) = lim
h→0

f (4 + h) − f (4)

h
= lim

h→0

(4 + h)5/2 − 32

h
.
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Creating a table with values of h close to zero:

h −0.0001 −0.00001 0.00001 0.0001

(4 + h)5/2 − 32

h
19.999625 19.99999 20.0000 20.0000375

Thus, f ′(4) ≈ 20.0000.

(c) Using the estimate for f ′(4) obtained in part (b), the equation of the line tangent to f (x) = x5/2 at x = 4 is

y = f ′(4)(x − 4) + f (4) = 20(x − 4) + 32 = 20x − 48.

y

x
1 2 3 4 5 6−20

−40
−60

20
40
60
80

62. Verify that P = (
1, 1

2

)
lies on the graphs of both f (x) = 1/(1 + x2) and L(x) = 1

2 + m(x − 1) for every
slope m. Plot f (x) and L(x) on the same axes for several values of m until you find a value of m for which y = L(x)

appears tangent to the graph of f (x). What is your estimate for f ′(1)?

solution Let f (x) = 1

1 + x2
and L(x) = 1

2 + m(x − 1). Because

f (1) = 1

1 + 12
= 1

2
and L(1) = 1

2
+ m(1 − 1) = 1

2
,

it follows that P = (1, 1
2 ) lies on the graphs of both functions. A plot of f (x) and L(x) on the same axes for several

values of m is shown below. The graph of L(x) with m = − 1
2 appears to be tangent to the graph of f (x) at x = 1. We

therefore estimate f ′(1) = − 1
2 .

y

x
0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

m = −1

m = −1/4

m = −1/2

63. Use a plot of f (x) = xx to estimate the value c such that f ′(c) = 0. Find c to sufficient accuracy so that

∣∣∣∣f (c + h) − f (c)

h

∣∣∣∣ ≤ 0.006 for h = ±0.001

solution Here is a graph of f (x) = xx over the interval [0, 1.5].

0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

y

x

The graph shows one location with a horizontal tangent line. The figure below at the left shows the graph of f (x) together
with the horizontal lines y = 0.6, y = 0.7 and y = 0.8. The line y = 0.7 is very close to being tangent to the graph of
f (x). The figure below at the right refines this estimate by graphing f (x) and y = 0.69 on the same set of axes. The point
of tangency has an x-coordinate of roughly 0.37, so c ≈ 0.37.
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0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

y

x
0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

y

x

We note that ∣∣∣∣f (0.37 + 0.001) − f (0.37)

0.001

∣∣∣∣ ≈ 0.00491 < 0.006

and ∣∣∣∣f (0.37 − 0.001) − f (0.37)

0.001

∣∣∣∣ ≈ 0.00304 < 0.006,

so we have determined c to the desired accuracy.

64. Plot f (x) = xx and y = 2x + a on the same set of axes for several values of a until the line becomes tangent
to the graph. Then estimate the value c such that f ′(c) = 2.

solution The figure below on the left shows the graphs of the function f (x) = xx together with the lines y = 2x,
y = 2x − 1, and y = 2x − 2; the figure on the right shows the graphs of f (x) = xx together with the lines y = 2x − 1,
y = 2x − 1.2, and y = 2x − 1.4. The graph of y = 2x − 1.2 appears to be tangent to the graph of f (x) at x ≈ 1.4. We
therefore estimate that f ′(1.4) = 2.

−1

1

0.5 1.0 1.5 2.0

2
3

y

x

−1

1

0.5 1.0 1.5

2

3

y

x

In Exercises 65–71, estimate derivatives using the symmetric difference quotient (SDQ), defined as the average of the
difference quotients at h and −h:

1

2

(
f (a + h) − f (a)

h
+ f (a − h) − f (a)

−h

)
= f (a + h) − f (a − h)

2h
4

The SDQ usually gives a better approximation to the derivative than the difference quotient.

65. The vapor pressure of water at temperature T (in kelvins) is the atmospheric pressure P at which no net evaporation
takes place. Use the following table to estimate P ′(T ) for T = 303, 313, 323, 333, 343 by computing the SDQ given by
Eq. (4) with h = 10.

T (K) 293 303 313 323 333 343 353

P (atm) 0.0278 0.0482 0.0808 0.1311 0.2067 0.3173 0.4754

solution Using equation (4),

P ′(303) ≈ P(313) − P(293)

20
= 0.0808 − 0.0278

20
= 0.00265 atm/K;

P ′(313) ≈ P(323) − P(303)

20
= 0.1311 − 0.0482

20
= 0.004145 atm/K;

P ′(323) ≈ P(333) − P(313)

20
= 0.2067 − 0.0808

20
= 0.006295 atm/K;

P ′(333) ≈ P(343) − P(323)

20
= 0.3173 − 0.1311

20
= 0.00931 atm/K;

P ′(343) ≈ P(353) − P(333)

20
= 0.4754 − 0.2067

20
= 0.013435 atm/K
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66. Use the SDQ with h = 1 year to estimate P ′(T ) in the years 2000, 2002, 2004, 2006, where P(T ) is the U.S. ethanol
production (Figure 18). Express your answer in the correct units.

1.10 1.20 1.35 1.40
1.10 1.30 1.40 1.47

2.12

3.40

4.00

6.20

19
93

19
92

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

1.63 1.77

2.81

4.89

P (billions of gallons)

FIGURE 18 U.S. Ethanol Production

solution Using equation (4),

P ′(2000) ≈ P(2001) − P(1999)

2
= 1.77 − 1.47

2
= 0.15 billions of gallons/yr;

P ′(2002) ≈ P(2003) − P(2001)

2
= 2.81 − 1.77

2
= 0.52 billions of gallons/yr;

P ′(2004) ≈ P(2005) − P(2003)

2
= 4 − 2.81

2
= 0.595 billions of gallons/yr;

P ′(2006) ≈ P(2007) − P(2005)

2
= 6.2 − 4

2
= 1.1 billions of gallons/yr

In Exercises 67 and 68, traffic speed S along a certain road (in km/h) varies as a function of traffic density q (number of
cars per km of road). Use the following data to answer the questions:

q (density) 60 70 80 90 100

S (speed) 72.5 67.5 63.5 60 56

67. Estimate S′(80).

solution Let S(q) be the function determining S given q. Using equation (4) with h = 10,

S′(80) ≈ S(90) − S(70)

20
= 60 − 67.5

20
= −0.375;

with h = 20,

S′(80) ≈ S(100) − S(60)

40
= 56 − 72.5

40
= −0.4125;

The mean of these two symmetric difference quotients is −0.39375 kph·km/car.

68. Explain why V = qS, called traffic volume, is equal to the number of cars passing a point per hour. Use the
data to estimate V ′(80).

solution The traffic speed S has units of km/hour, and the traffic density has units of cars/km. Therefore, the traffic
volume V = Sq has units of cars/hour. A table giving the values of V follows.

q 60 70 80 90 100

V 4350 4725 5080 5400 5600

To estimate dV /dq, we take the mean of the symmetric difference quotients. With h = 10,

V ′(80) ≈ V (90) − V (70)

20
= 5400 − 4725

20
= 33.75;

with h = 20,

V ′(80) ≈ V (100) − V (60)

40
= 5600 − 4350

40
= 31.25;

The mean of the symmetric difference quotients is 32.5. Hence dV /dq ≈ 32.5 cars per hour when q = 80.
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Exercises 69–71: The current (in amperes) at time t (in seconds) flowing in the circuit in Figure 19 is given by Kirchhoff’s
Law:

i(t) = Cv′(t) + R−1v(t)

where v(t) is the voltage (in volts), C the capacitance (in farads), and R the resistance (in ohms, �).

+

−

v
R

i

C

FIGURE 19

69. Calculate the current at t = 3 if

v(t) = 0.5t + 4 V

where C = 0.01 F and R = 100 �.

solution Since v(t) is a line with slope 0.5, v′(t) = 0.5 volts/s for all t . From the formula, i(3) = Cv′(3) +
(1/R)v(3) = 0.01(0.5) + (1/100)(5.5) = 0.005 + 0.055 = 0.06 amperes.

70. Use the following data to estimate v′(10) (by an SDQ). Then estimate i(10), assuming C = 0.03 and R = 1000.

t 9.8 9.9 10 10.1 10.2

v(t) 256.52 257.32 258.11 258.9 259.69

solution Taking h = 0.1, we find

v′(10) ≈ v(10.1) − v(9.9)

0.2
= 258.9 − 257.32

0.2
= 7.9 volts/s.

Thus,

i(10) = 0.03(7.9) + 1

1000
(258.11) = 0.49511 amperes.

71. Assume that R = 200 � but C is unknown. Use the following data to estimate v′(4) (by an SDQ) and deduce an
approximate value for the capacitance C.

t 3.8 3.9 4 4.1 4.2

v(t) 388.8 404.2 420 436.2 452.8

i(t) 32.34 33.22 34.1 34.98 35.86

solution Solving i(4) = Cv′(4) + (1/R)v(4) for C yields

C = i(4) − (1/R)v(4)

v′(4)
= 34.1 − 420

200
v′(4)

.

To compute C, we first approximate v′(4). Taking h = 0.1, we find

v′(4) ≈ v(4.1) − v(3.9)

0.2
= 436.2 − 404.2

0.2
= 160.

Plugging this in to the equation above yields

C ≈ 34.1 − 2.1

160
= 0.2 farads.

Further Insights and Challenges
72. The SDQ usually approximates the derivative much more closely than does the ordinary difference quotient. Let
f (x) = 2x and a = 0. Compute the SDQ with h = 0.001 and the ordinary difference quotients with h = ±0.001.
Compare with the actual value, which is f ′(0) = ln 2.
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solution Let f (x) = 2x and a = 0.

• The ordinary difference quotient for h = −0.001 is 0.69290701 and for h = 0.001 is 0.69338746.
• The symmetric difference quotient for h = 0.001 is 0.69314724.
• Clearly the symmetric difference quotient gives a better estimate of the derivative f ′(0) = ln 2 ≈ 0.69314718.

73. Explain how the symmetric difference quotient defined by Eq. (4) can be interpreted as the slope of a secant line.

solution The symmetric difference quotient

f (a + h) − f (a − h)

2h

is the slope of the secant line connecting the points (a − h, f (a − h)) and (a + h, f (a + h)) on the graph of f ; the
difference in the function values is divided by the difference in the x-values.

74. Which of the two functions in Figure 20 satisfies the inequality

f (a + h) − f (a − h)

2h
≤ f (a + h) − f (a)

h

for h > 0? Explain in terms of secant lines.

a
x

y

a
x

y

(A) (B)

FIGURE 20

solution Figure (A) satisfies the inequality

f (a + h) − f (a − h)

2h
≤ f (a + h) − f (a)

h

since in this graph the symmetric difference quotient has a larger negative slope than the ordinary right difference quotient.
[In figure (B), the symmetric difference quotient has a larger positive slope than the ordinary right difference quotient and
therefore does not satisfy the stated inequality.]

75. Show that if f (x) is a quadratic polynomial, then the SDQ at x = a (for any h 	= 0) is equal to f ′(a).
Explain the graphical meaning of this result.

solution Let f (x) = px2 + qx + r be a quadratic polynomial. We compute the SDQ at x = a.

f (a + h) − f (a − h)

2h
= p(a + h)2 + q(a + h) + r − (p(a − h)2 + q(a − h) + r)

2h

= pa2 + 2pah + ph2 + qa + qh + r − pa2 + 2pah − ph2 − qa + qh − r

2h

= 4pah + 2qh

2h
= 2h(2pa + q)

2h
= 2pa + q

Since this doesn’t depend on h, the limit, which is equal to f ′(a), is also 2pa + q. Graphically, this result tells us that the
secant line to a parabola passing through points chosen symmetrically about x = a is always parallel to the tangent line
at x = a.

76. Let f (x) = x−2. Compute f ′(1) by taking the limit of the SDQs (with a = 1) as h → 0.

solution Let f (x) = x−2. With a = 1, the symmetric difference quotient is

f (1 + h) − f (1 − h)

2h
=

1
(1+h)2 − 1

(1−h)2

2h
= (1 − h)2 − (1 + h)2

2h(1 − h)2(1 + h)2
= −4h

2h(1 − h)2(1 + h)2
= − 2

(1 − h)2(1 + h)2
.

Therefore,

f ′(1) = lim
h→0

− 2

(1 − h)2(1 + h)2
= −2.
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3.2 The Derivative as a Function

Preliminary Questions
1. What is the slope of the tangent line through the point (2, f (2)) if f ′(x) = x3?

solution The slope of the tangent line through the point (2, f (2)) is given by f ′(2). Since f ′(x) = x3, it follows that

f ′(2) = 23 = 8.

2. Evaluate (f − g)′(1) and (3f + 2g)′(1) assuming that f ′(1) = 3 and g′(1) = 5.

solution (f − g)′(1) = f ′(1) − g′(1) = 3 − 5 = −2 and (3f + 2g)′(1) = 3f ′(1) + 2g′(1) = 3(3) + 2(5) = 19.

3. To which of the following does the Power Rule apply?

(a) f (x) = x2 (b) f (x) = 2e

(c) f (x) = xe (d) f (x) = ex

(e) f (x) = xx (f) f (x) = x−4/5

solution

(a) Yes. x2 is a power function, so the Power Rule can be applied.

(b) Yes. 2e is a constant function, so the Power Rule can be applied.

(c) Yes. xe is a power function, so the Power Rule can be applied.

(d) No. ex is an exponential function (the base is constant while the exponent is a variable), so the Power Rule does not
apply.

(e) No. xx is not a power function because both the base and the exponent are variable, so the Power Rule does not apply.

(f) Yes. x−4/5 is a power function, so the Power Rule can be applied.

4. Choose (a) or (b). The derivative does not exist if the tangent line is: (a) horizontal (b) vertical.

solution The derivative does not exist when: (b) the tangent line is vertical. At a horizontal tangent, the derivative is
zero.

5. Which property distinguishes f (x) = ex from all other exponential functions g(x) = bx?

solution The line tangent to f (x) = ex at x = 0 has slope equal to 1.

Exercises
In Exercises 1–6, compute f ′(x) using the limit definition.

1. f (x) = 3x − 7

solution Let f (x) = 3x − 7. Then,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

3(x + h) − 7 − (3x − 7)

h
= lim

h→0

3h

h
= 3.

2. f (x) = x2 + 3x

solution Let f (x) = x2 + 3x. Then,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

(x + h)2 + 3(x + h) − (x2 + 3x)

h

= lim
h→0

2xh + h2 + 3h

h
= lim

h→0
(2x + h + 3) = 2x + 3.

3. f (x) = x3

solution Let f (x) = x3. Then,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

(x + h)3 − x3

h
= lim

h→0

x3 + 3x2h + 3xh2 + h3 − x3

h

= lim
h→0

3x2h + 3xh2 + h3

h
= lim

h→0
(3x2 + 3xh + h2) = 3x2.
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4. f (x) = 1 − x−1

solution Let f (x) = 1 − x−1. Then,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

1 − 1
x+h

−
(

1 − 1
x

)
h

= lim
h→0

(x+h)−x
x(x+h)

h
= lim

h→0

1

x(x + h)
= 1

x2
.

5. f (x) = x − √
x

solution Let f (x) = x − √
x. Then,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

x + h − √
x + h − (x − √

x)

h
= 1 − lim

h→0

√
x + h − √

x

h
·
(√

x + h + √
x√

x + h + √
x

)

= 1 − lim
h→0

(x + h) − x

h(
√

x + h + √
x)

= 1 − lim
h→0

1√
x + h + √

x
= 1 − 1

2
√

x
.

6. f (x) = x−1/2

solution Let f (x) = x−1/2. Then,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

1√
x+h

− 1√
x

h
= lim

h→0

√
x − √

x + h

h
√

x + h
√

x

Multiplying the numerator and denominator of the expression by
√

x + √
x + h, we obtain:

f ′(x) = lim
h→0

√
x − √

x + h

h
√

x + h
√

x

√
x + √

x + h√
x + √

x + h
= lim

h→0

x − (x + h)

h
√

x + h
√

x(
√

x + √
x + h)

= lim
h→0

−1√
x + h

√
x(

√
x + √

x + h)
= −1√

x
√

x(2
√

x)
= −1

2x
√

x
.

In Exercises 7–14, use the Power Rule to compute the derivative.

7.
d

dx
x4

∣∣∣∣
x=−2

solution
d

dx

(
x4

)
= 4x3 so

d

dx
x4

∣∣∣∣
x=−2

= 4(−2)3 = −32.

8.
d

dt
t−3

∣∣∣∣
t=4

solution
d

dt

(
t−3

)
= −3t−4 so

d

dt
t−3

∣∣∣∣
t=4

= −3(4)−4 = − 3

256
.

9.
d

dt
t2/3

∣∣∣∣
t=8

solution
d

dt

(
t2/3

)
= 2

3
t−1/3 so

d

dt
t2/3

∣∣∣∣
t=8

= 2

3
(8)−1/3 = 1

3
.

10.
d

dt
t−2/5

∣∣∣∣
t=1

solution
d

dt

(
t−2/5

)
= −2

5
t−7/5 so

d

dt
t−2/5

∣∣∣∣
t=1

= −2

5
(1)−7/5 = −2

5
.

11.
d

dx
x0.35

solution
d

dx

(
x0.35

)
= 0.35(x0.35−1) = 0.35x−0.65.
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12.
d

dx
x14/3

solution
d

dx

(
x14/3

)
= 14

3

(
x(14/3)−1

)
= 14

3
x11/3.

13.
d

dt
t

√
17

solution
d

dt

(
t

√
17) = √

17t

√
17−1

14.
d

dt
t−π2

solution
d

dt
(t−π2

) = −π2t−π2−1

In Exercises 15–18, compute f ′(x) and find an equation of the tangent line to the graph at x = a.

15. f (x) = x4, a = 2

solution Let f (x) = x4. Then, by the Power Rule, f ′(x) = 4x3. The equation of the tangent line to the graph of
f (x) at x = 2 is

y = f ′(2)(x − 2) + f (2) = 32(x − 2) + 16 = 32x − 48.

16. f (x) = x−2, a = 5

solution Let f (x) = x−2. Using the Power Rule, f ′(x) = −2x−3. The equation of the tangent line to the graph of
f (x) at x = 5 is

y = f ′(5)(x − 5) + f (5) = − 2

125
(x − 5) + 1

25
= − 2

125
x + 3

25
.

17. f (x) = 5x − 32
√

x, a = 4

solution Let f (x) = 5x − 32x1/2. Then f ′(x) = 5 − 16x−1/2. In particular, f ′(4) = −3. The tangent line at x = 4
is

y = f ′(4)(x − 4) + f (4) = −3(x − 4) − 44 = −3x − 32.

18. f (x) = 3√x, a = 8

solution Let f (x) = 3√x = x1/3. Then f ′(x) = 1
3 (x1/3−1) = 1

3x−2/3. In particular, f ′(8) = 1
3

(
1
4

)
= 1

12 .

f (8) = 2, so the tangent line at x = 8 is

y = f ′(8)(x − 8) + f (8) = 1

12
(x − 8) + 2 = 1

12
x + 4

3
.

19. Calculate:

(a)
d

dx
12ex (b)

d

dt
(25t − 8et ) (c)

d

dt
et−3

Hint for (c): Write et−3 as e−3et .

solution

(a)
d

dx
12ex = 12

d

dx
ex = 12ex .

(b)
d

dt
(25t − 8et ) = 25

d

dt
t − 8

d

dt
et = 25 − 8et .

(c)
d

dt
et−3 = e−3 d

dt
et = e−3 · et = et−3.

20. Find an equation of the tangent line to y = 24ex at x = 2.

solution Let f (x) = 24ex . Then f (2) = 24e2, f ′(x) = 24ex , and f ′(2) = 24e2. The equation of the tangent line is

y = f ′(2)(x − 2) + f (2) = 24e2(x − 2) + 24e2.

In Exercises 21–32, calculate the derivative.

21. f (x) = 2x3 − 3x2 + 5

solution
d

dx

(
2x3 − 3x2 + 5

)
= 6x2 − 6x.
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22. f (x) = 2x3 − 3x2 + 2x

solution
d

dx

(
2x3 − 3x2 + 2x

)
= 6x2 − 6x + 2.

23. f (x) = 4x5/3 − 3x−2 − 12

solution
d

dx

(
4x5/3 − 3x−2 − 12

)
= 20

3
x2/3 + 6x−3.

24. f (x) = x5/4 + 4x−3/2 + 11x

solution
d

dx

(
x5/4 + 4x−3/2 + 11x

)
= 5

4
x1/4 − 6x−5/2 + 11.

25. g(z) = 7z−5/14 + z−5 + 9

solution
d

dz

(
7z−5/14 + z−5 + 9

)
= −5

2
z−19/14 − 5z−6.

26. h(t) = 6
√

t + 1√
t

solution
d

dt

(
6t1/2 + t−1/2

)
= 3t−1/2 − 1

2
t−3/2.

27. f (s) = 4√s + 3√s

solution f (s) = 4√s + 3√s = s1/4 + s1/3. In this form, we can apply the Sum and Power Rules.

d

ds

(
s1/4 + s1/3

)
= 1

4
(s(1/4)−1) + 1

3
(s(1/3)−1) = 1

4
s−3/4 + 1

3
s−2/3.

28. W(y) = 6y4 + 7y2/3

solution
d

dy

(
6y4 + 7y2/3

)
= 24y3 + 14

3
y−1/3.

29. g(x) = e2

solution Because e2 is a constant,
d

dx
e2 = 0.

30. f (x) = 3ex − x3

solution
d

dx

(
3ex − x3

)
= 3ex − 3x2.

31. h(t) = 5et−3

solution
d

dt
5et−3 = 5e−3 d

dt
et = 5e−3et = 5et−3.

32. f (x) = 9 − 12x1/3 + 8ex

solution
d

dx

(
9 − 12x1/3 + 8ex

)
= −4x−2/3 + 8ex .

In Exercises 33–36, calculate the derivative by expanding or simplifying the function.

33. P(s) = (4s − 3)2

solution P(s) = (4s − 3)2 = 16s2 − 24s + 9. Thus,

dP

ds
= 32s − 24.



April 4, 2011

214 C H A P T E R 3 DIFFERENTIATION

34. Q(r) = (1 − 2r)(3r + 5)

solution Q(r) = (1 − 2r)(3r + 5) = −6r2 − 7r + 5. Thus,

dQ

dr
= −12r − 7.

35. g(x) = x2 + 4x1/2

x2

solution g(x) = x2 + 4x1/2

x2
= 1 + 4x−3/2. Thus,

dg

dx
= −6x−5/2.

36. s(t) = 1 − 2t

t1/2

solution s(t) = 1 − 2t

t1/2
= t−1/2 − 2t1/2. Thus,

ds

dt
= −1

2
t−3/2 − t−1/2.

In Exercises 37–42, calculate the derivative indicated.

37.
dT

dC

∣∣∣
C=8

, T = 3C2/3

solution With T (C) = 3C2/3, we have
dT

dC
= 2C−1/3. Therefore,

dT

dC

∣∣∣∣
C=8

= 2(8)−1/3 = 1.

38.
dP

dV

∣∣∣
V =−2

, P = 7

V

solution With P = 7V −1, we have
dP

dV
= −7V −2. Therefore,

dP

dV

∣∣∣∣
V =−2

= −7(−2)−2 = −7

4
.

39.
ds

dz

∣∣∣
z=2

, s = 4z − 16z2

solution With s = 4z − 16z2, we have
ds

dz
= 4 − 32z. Therefore,

ds

dz

∣∣∣∣
z=2

= 4 − 32(2) = −60.

40.
dR

dW

∣∣∣∣
W=1

, R = Wπ

solution Let R(W) = Wπ . Then dR/dW = πWπ−1. Therefore,

dR

dW

∣∣∣∣
W=1

= π(1)π−1 = π.

41.
dr

dt

∣∣∣∣
t=4

, r = t − et

solution With r = t − et , we have
dr

dt
= 1 − et . Therefore,

dr

dt

∣∣∣∣
t=4

= 1 − e4.
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42.
dp

dh

∣∣∣∣
h=4

, p = 7eh−2

solution With p = 7eh−2, we have
dp

dh
= 7eh−2. Therefore,

dp

dh

∣∣∣∣
h=4

= 7e4−2 = 7e2.

43. Match the functions in graphs (A)–(D) with their derivatives (I)–(III) in Figure 13. Note that two of the functions
have the same derivative. Explain why.

y

x

x

(A)

y

(I)

x

y

(II)

x

y

(III)

y

x

(B)

y

x

(C)

y

x

(D)

FIGURE 13

solution

• Consider the graph in (A). On the left side of the graph, the slope of the tangent line is positive but on the right
side the slope of the tangent line is negative. Thus the derivative should transition from positive to negative with
increasing x. This matches the graph in (III).

• Consider the graph in (B). This is a linear function, so its slope is constant. Thus the derivative is constant, which
matches the graph in (I).

• Consider the graph in (C). Moving from left to right, the slope of the tangent line transitions from positive to negative
then back to positive. The derivative should therefore be negative in the middle and positive to either side. This
matches the graph in (II).

• Consider the graph in (D). On the left side of the graph, the slope of the tangent line is positive but on the right
side the slope of the tangent line is negative. Thus the derivative should transition from positive to negative with
increasing x. This matches the graph in (III).

Note that the functions whose graphs are shown in (A) and (D) have the same derivative. This happens because the
graph in (D) is just a vertical translation of the graph in (A), which means the two functions differ by a constant. The
derivative of a constant is zero, so the two functions end up with the same derivative.

44. Of the two functions f and g in Figure 14, which is the derivative of the other? Justify your answer.

f (x)

g(x)

1−1

2

x

y

FIGURE 14

solution g(x) is the derivative of f (x). For f (x) the slope is negative for negative values of x until x = 0, where
there is a horizontal tangent, and then the slope is positive for positive values of x. Notice that g(x) is negative for negative
values of x, goes through the origin at x = 0, and then is positive for positive values of x.

45. Assign the labels f (x), g(x), and h(x) to the graphs in Figure 15 in such a way that f ′(x) = g(x) and g′(x) = h(x).

y

x

y

x

y

x

(A) (B) (C)

FIGURE 15
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solution Consider the graph in (A). Moving from left to right, the slope of the tangent line is positive over the first
quarter of the graph, negative in the middle half and positive again over the final quarter. The derivative of this function
must therefore be negative in the middle and positive on either side. This matches the graph in (C).

Now focus on the graph in (C). The slope of the tangent line is negative over the left half and positive on the right
half. The derivative of this function therefore needs to be negative on the left and positive on the right. This description
matches the graph in (B).

We should therefore label the graph in (A) as f (x), the graph in (B) as h(x), and the graph in (C) as g(x). Then
f ′(x) = g(x) and g′(x) = h(x).

46. According to the peak oil theory, first proposed in 1956 by geophysicist M. Hubbert, the total amount of crude oil
Q(t) produced worldwide up to time t has a graph like that in Figure 16.

(a) Sketch the derivative Q′(t) for 1900 ≤ t ≤ 2150. What does Q′(t) represent?

(b) In which year (approximately) does Q′(t) take on its maximum value?

(c) What is L = lim
t→∞ Q(t)? And what is its interpretation?

(d) What is the value of lim
t→∞ Q′(t)?

Q (trillions of barrels)

t (year)

1900 21501950 2000 2050 2100

0.5

1.0

2.0

2.3

1.5

FIGURE 16 Total oil production up to time t

solution

(a) One possible derivative sketch is shown below. Because the graph of Q(t) is roughly horizontal around t = 1900, the
graph of Q′(t) begins near zero. Until roughly t = 2000, the graph of Q(t) increases more and more rapidly, so the graph
of Q′(t) increases. Thereafter, the graph of Q(t) increases more and more gradually, so the graph of Q′(t) decreases.
Around t = 2150, the graph of Q(t) is again roughly horizontal, so the graph of Q′(t) returns to zero. Note that Q′(t)
represents the rate of change in total worldwide oil production; that is, the number of barrels produced per year.

1900 1950 2000 2050 2100 2150
x

(b) The graph of Q(t) appears to be increasing most rapidly around the year 2000, so Q′(t) takes on its maximum value
around the year 2000.

(c) From Figure 16

L = lim
t→∞ Q(t) = 2.3

trillion barrels of oil. This value represents the total number of barrels of oil that can be produced by the planet.

(d) Because the graph of Q(t) appears to approach a horizontal line as t → ∞, it appears that

lim
t→∞ Q′(t) = 0.

47. Use the table of values of f (x) to determine which of (A) or (B) in Figure 17 is the graph of f ′(x). Explain.

x 0 0.5 1 1.5 2 2.5 3 3.5 4

f (x) 10 55 98 139 177 210 237 257 268
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x

y

x

y

(A) (B)

FIGURE 17 Which is the graph of f ′(x)?

solution The increment between successive x values in the table is a constant 0.5 but the increment between successive
f (x) values decreases from 45 to 43 to 41 to 38 and so on. Thus the difference quotients decrease with increasing x,
suggesting that f ′(x) decreases as a function of x. Because the graph in (B) depicts a decreasing function, (B) might be
the graph of the derivative of f (x).

48. Let R be a variable and r a constant. Compute the derivatives:

(a)
d

dR
R (b)

d

dR
r (c)

d

dR
r2R3

solution

(a)
d

dR
R = 1, since R is a linear function of R with slope 1.

(b)
d

dR
r = 0, since r is a constant.

(c) We apply the Linearity and Power Rules:

d

dR
r2R3 = r2 d

dR
R3 = r2(

3(R2)
) = 3r2R2.

49. Compute the derivatives, where c is a constant.

(a)
d

dt
ct3 (b)

d

dy
(9c2y3 − 24c) (c)

d

dz
(5z + 4cz2)

solution

(a)
d

dt
ct3 = 3ct2.

(b)
d

dz
(5z + 4cz2) = 5 + 8cz.

(c)
d

dy
(9c2y3 − 24c) = 27c2y2.

50. Find the points on the graph of f (x) = 12x − x3 where the tangent line is horizontal.

solution Let f (x) = 12x − x3. Solve f ′(x) = 12 − 2x2 = 0 to obtain x = ±√
6. Thus, the graph of f (x) =

12x − x3 has a horizontal tangent line at two points: (
√

6, 6
√

6) and (−√
6, −6

√
6).

51. Find the points on the graph of y = x2 + 3x − 7 at which the slope of the tangent line is equal to 4.

solution Let y = x2 + 3x − 7. Solving dy/dx = 2x + 3 = 4 yields x = 1
2 .

52. 3.2.52 Find the values of x where y = x3 and y = x2 + 5x have parallel tangent lines.

solution Let f (x) = x3 and g(x) = x2 + 5x. The graphs have parallel tangent lines when f ′(x) = g′(x). Hence,

we solve f ′(x) = 3x2 = 2x + 5 = g′(x) to obtain x = 5
3 and x = −1.

53. Determine a and b such that p(x) = x2 + ax + b satisfies p(1) = 0 and p′(1) = 4.

solution Let p(x) = x2 + ax + b satisfy p(1) = 0 and p′(1) = 4. Now, p′(x) = 2x + a. Therefore 0 = p(1) =
1 + a + b and 4 = p′(1) = 2 + a; i.e., a = 2 and b = −3.
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54. Find all values of x such that the tangent line to y = 4x2 + 11x + 2 is steeper than the tangent line to y = x3.

solution Let f (x) = 4x2 + 11x + 2 and let g(x) = x3. We need all x such that f ′(x) > g′(x).

f ′(x) > g′(x)

8x + 11 > 3x2

0 > 3x2 − 8x − 11

0 > (3x − 11)(x + 1).

The product (3x − 11)(x + 1) = 0 when x = −1 and when x = 11
3 . We therefore examine the intervals x < −1,

−1 < x < 11
3 and x > 11

3 . For x < −1 and for x > 11
3 , (3x − 11)(x + 1) > 0, whereas for −1 < x < 11

3 ,

(3x − 11)(x + 1) < 0. The solution set is therefore −1 < x < 11
3 .

55. Let f (x) = x3 − 3x + 1. Show that f ′(x) ≥ −3 for all x and that, for every m > −3, there are precisely two points
where f ′(x) = m. Indicate the position of these points and the corresponding tangent lines for one value of m in a sketch
of the graph of f (x).

solution Let P = (a, b) be a point on the graph of f (x) = x3 − 3x + 1.

• The derivative satisfies f ′(x) = 3x2 − 3 ≥ −3 since 3x2 is nonnegative.

• Suppose the slope m of the tangent line is greater than −3. Then f ′(a) = 3a2 − 3 = m, whence

a2 = m + 3

3
> 0 and thus a = ±

√
m + 3

3
.

• The two parallel tangent lines with slope 2 are shown with the graph of f (x) here.

−2
−1

−2
2

4

1

2
x

y

56. Show that the tangent lines to y = 1
3x3 − x2 at x = a and at x = b are parallel if a = b or a + b = 2.

solution Let P = (a, f (a)) and Q = (b, f (b)) be points on the graph of y = f (x) = 1
3x3 − x2. Equate the slopes

of the tangent lines at the points P and Q: a2 − 2a = b2 − 2b. Thus a2 − 2a − b2 + 2b = 0. Now,

a2 − 2a − b2 + 2b = (a − b)(a + b) − 2(a − b) = (a − 2 + b)(a − b);

therefore, either a = b (i.e., P and Q are the same point) or a + b = 2.

57. Compute the derivative of f (x) = x3/2 using the limit definition. Hint: Show that

f (x + h) − f (x)

h
= (x + h)3 − x3

h

(
1√

(x + h)3 +
√

x3

)

solution Once we have the difference of square roots, we multiply by the conjugate to solve the problem.

f ′(x) = lim
h→0

(x + h)3/2 − x3/2

h
= lim

h→0

√
(x + h)3 −

√
x3

h

(√
(x + h)3 +

√
x3√

(x + h)3 +
√

x3

)

= lim
h→0

(x + h)3 − x3

h

(
1√

(x + h)3 +
√

x3

)
.

The first factor of the expression in the last line is clearly the limit definition of the derivative of x3, which is 3x2. The
second factor can be evaluated, so

d

dx
x3/2 = 3x2 1

2
√

x3
= 3

2
x1/2.
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58. Use the limit definition of m(b) to approximate m(4). Then estimate the slope of the tangent line to y = 4x at x = 0
and x = 2.

solution Recall

m(4) = lim
h→0

(
4h − 1

h

)
.

Using a table of values, we find

h
4h − 1

h

0.01 1.39595
0.001 1.38726
0.0001 1.38639
0.00001 1.38630

Thus m(4) ≈ 1.386. Knowing that y′(x) = m(4) · 4x , it follows that y′(0) ≈ 1.386 and y′(2) ≈ 1.386 · 16 = 22.176.

59. Let f (x) = xex . Use the limit definition to compute f ′(0), and find the equation of the tangent line at x = 0.

solution Let f (x) = xex . Then f (0) = 0, and

f ′(0) = lim
h→0

f (0 + h) − f (0)

h
= lim

h→0

heh − 0

h
= lim

h→0
eh = 1.

The equation of the tangent line is

y = f ′(0)(x − 0) + f (0) = 1(x − 0) + 0 = x.

60. The average speed (in meters per second) of a gas molecule is

vavg =
√

8RT

πM

where T is the temperature (in kelvins), M is the molar mass (in kilograms per mole), and R = 8.31. Calculate dvavg/dT

at T = 300 K for oxygen, which has a molar mass of 0.032 kg/mol.

solution Using the form vav = (8RT/(πM))1/2 = √
8R/(πM)T 1/2, where M and R are constant, we use the

Power Rule to compute the derivative dvav/dT .

d

dT

√
8R/(πM)T 1/2 = √

8R/(πM)
d

dT
T 1/2 = √

8R/(πM)
1

2
(T (1/2)−1).

In particular, if T = 300◦K,

d

dT
vav = √

8(8.31)/(π(0.032))
1

2
(300)−1/2 = 0.74234 m/(s · K).

61. Biologists have observed that the pulse rate P (in beats per minute) in animals is related to body mass (in kilograms)
by the approximate formula P = 200m−1/4. This is one of many allometric scaling laws prevalent in biology. Is |dP/dm|
an increasing or decreasing function of m? Find an equation of the tangent line at the points on the graph in Figure 18
that represent goat (m = 33) and man (m = 68).

Mass (kg)

500400300200100

Cattle

Pulse
(beats/min)

200

100

Guinea pig

Goat

Man

FIGURE 18
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solution dP/dm = −50m−5/4. For m > 0, |dP/dm| = |50m−5/4|. |dP/dm| → 0 as m gets larger; |dP/dm| gets
smaller as m gets bigger.

For each m = c, the equation of the tangent line to the graph of P at m is

y = P ′(c)(m − c) + P(c).

For a goat (m = 33 kg), P(33) = 83.445 beats per minute (bpm) and

dP

dm
= −50(33)−5/4 ≈ −0.63216 bpm/kg.

Hence, y = −0.63216(m − 33) + 83.445.
For a man (m = 68 kg), we have P(68) = 69.647 bpm and

dP

dm
= −50(68)−5/4 ≈ −0.25606 bpm/kg.

Hence, the tangent line has formula y = −0.25606(m − 68) + 69.647.

62. Some studies suggest that kidney mass K in mammals (in kilograms) is related to body mass m (in kilograms) by the
approximate formula K = 0.007m0.85. Calculate dK/dm at m = 68. Then calculate the derivative with respect to m of
the relative kidney-to-mass ratio K/m at m = 68.

solution

dK

dm
= 0.007(0.85)m−0.15 = 0.00595m−0.15;

hence,

dK

dm

∣∣∣∣
m=68

= 0.00595(68)−0.15 = 0.00315966.

Because

K

m
= 0.007

m0.85

m
= 0.007m−0.15,

we find

d

dm

(
K

m

)
= 0.007

d

dm
m−0.15 = −0.00105m−1.15,

and

d

dm

(
K

m

)∣∣∣∣
m=68

= −8.19981 × 10−6 kg−1.

63. The Clausius–Clapeyron Law relates the vapor pressure of water P (in atmospheres) to the temperature T (in kelvins):

dP

dT
= k

P

T 2

where k is a constant. Estimate dP/dT for T = 303, 313, 323, 333, 343 using the data and the approximation

dP

dT
≈ P(T + 10) − P(T − 10)

20

T (K) 293 303 313 323 333 343 353

P (atm) 0.0278 0.0482 0.0808 0.1311 0.2067 0.3173 0.4754

Do your estimates seem to confirm the Clausius–Clapeyron Law? What is the approximate value of k?

solution Using the indicated approximation to the first derivative, we calculate

P ′(303) ≈ P(313) − P(293)

20
= 0.0808 − 0.0278

20
= 0.00265 atm/K;

P ′(313) ≈ P(323) − P(303)

20
= 0.1311 − 0.0482

20
= 0.004145 atm/K;

P ′(323) ≈ P(333) − P(313)

20
= 0.2067 − 0.0808

20
= 0.006295 atm/K;



April 4, 2011

S E C T I O N 3.2 The Derivative as a Function 221

P ′(333) ≈ P(343) − P(323)

20
= 0.3173 − 0.1311

20
= 0.00931 atm/K;

P ′(343) ≈ P(353) − P(333)

20
= 0.4754 − 0.2067

20
= 0.013435 atm/K

If the Clausius–Clapeyron law is valid, then
T 2

P

dP

dT
should remain constant as T varies. Using the data for vapor

pressure and temperature and the approximate derivative values calculated above, we find

T (K) 303 313 323 333 343

T 2

P

dP

dT
5047.59 5025.76 5009.54 4994.57 4981.45

These values are roughly constant, suggesting that the Clausius–Clapeyron law is valid, and that k ≈ 5000.

64. Let L be the tangent line to the hyperbola xy = 1 at x = a, where a > 0. Show that the area of the triangle bounded
by L and the coordinate axes does not depend on a.

solution Let f (x) = x−1. The tangent line to f at x = a is y = f ′(a)(x − a) + f (a) = − 1
a2 (x − a) + 1

a . The

y-intercept of this line (where x = 0) is 2
a . Its x-intercept (where y = 0) is 2a. Hence the area of the triangle bounded by

the tangent line and the coordinate axes is A = 1
2bh = 1

2 (2a)
(

2
a

)
= 2, which is independent of a.

y

x

)P = (0, 2
a

y = 1
x

)R = (a, 1
a

Q = (2a, 0)

65. In the setting of Exercise 64, show that the point of tangency is the midpoint of the segment of L lying in the first
quadrant.

solution In the previous exercise, we saw that the tangent line to the hyperbola xy = 1 or y = 1
x at x = a has

y-intercept P = (0, 2
a ) and x-intercept Q = (2a, 0). The midpoint of the line segment connecting P and Q is thus(

0 + 2a

2
,

2
a + 0

2

)
=

(
a,

1

a

)
,

which is the point of tangency.

66. Match functions (A)–(C) with their derivatives (I)–(III) in Figure 19.

(A)

(I) (II) (III)

x

x

y

(C)

x

y

(B)

x

y

x

y

y

x

y

FIGURE 19

solution Note that the graph in (A) has three locations with a horizontal tangent line. The derivative must therefore
cross the x-axis in three locations, which matches (III).

The graph in (B) has only one location with a horizontal tangent line, so its derivative should cross the x-axis only
once. Thus, (I) is the graph corresponding to the derivative of (B).

Finally, the graph in (B) has two locations with a horizontal tangent line, so its derivative should cross the x-axis twice.
Thus, (II) is the graph corresponding to the derivative of (C).
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67. Make a rough sketch of the graph of the derivative of the function in Figure 20(A).

(A) (B)

y =    x2

434321 20 1−1

3

2

1
2

x

y

x

y

FIGURE 20

solution The graph has a tangent line with negative slope approximately on the interval (1, 3.6), and has a tangent
line with a positive slope elsewhere. This implies that the derivative must be negative on the interval (1, 3.6) and positive
elsewhere. The graph may therefore look like this:

y

x
1 2 3 4

68. Graph the derivative of the function in Figure 20(B), omitting points where the derivative is not defined.

solution On (−1, 0), the graph is a line with slope −3, so the derivative is equal to −3. The derivative on (0, 2) is x.
Finally, on (2, 4) the function is a line with slope −1, so the derivative is equal to −1. Combining this information leads
to the graph:

4321
x

y

1

−1

−2

−3

−1

69. Sketch the graph of f (x) = x |x|. Then show that f ′(0) exists.

solution For x < 0, f (x) = −x2, and f ′(x) = −2x. For x > 0, f (x) = x2, and f ′(x) = 2x. At x = 0, we find

lim
h→0+

f (0 + h) − f (0)

h
= lim

h→0+
h2

h
= 0

and

lim
h→0−

f (0 + h) − f (0)

h
= lim

h→0−
−h2

h
= 0.

Because the two one-sided limits exist and are equal, it follows that f ′(0) exists and is equal to zero. Here is the graph
of f (x) = x|x|.

y

x
1 2−1−2

2

4

−4

−2
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70. Determine the values of x at which the function in Figure 21 is: (a) discontinuous, and (b) nondifferentiable.

4321
x

y

FIGURE 21

solution The function is discontinuous at those points where it is undefined or there is a break in the graph. On the
interval [0, 4], there is only one such point, at x = 1.

The function is nondifferentiable at those points where it is discontinuous or where it has a corner or cusp. In addition
to the point x = 1 we already know about, the function is nondifferentiable at x = 2 and x = 3.

In Exercises 71–76, find the points c (if any) such that f ′(c) does not exist.

71. f (x) = |x − 1|
solution

y

x
1

0.5

1

1.5

2

2 3−1

Here is the graph of f (x) = |x − 1|. Its derivative does not exist at x = 1. At that value of x there is a sharp corner.

72. f (x) = [x]
solution

4321
x

y

1

2

3

−1−2

−2

−1

Here is the graph of f (x) = [x]. This is the integer step function graph. Its derivative does not exist at all x values that
are integers. At those values of x the graph is discontinuous.

73. f (x) = x2/3

solution Here is the graph of f (x) = x2/3. Its derivative does not exist at x = 0. At that value of x, there is a sharp
corner or “cusp”.

y

x
1

1

1.5

2−1−2

74. f (x) = x3/2

solution The function is differentiable on its entire domain, {x : x ≥ 0}. The formula is d
dx

x3/2 = 3
2x1/2.
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75. f (x) = |x2 − 1|
solution Here is the graph of f (x) =

∣∣∣x2 − 1
∣∣∣. Its derivative does not exist at x = −1 or at x = 1. At these values

of x, the graph has sharp corners.

y

x
1

2

1

3

2−1−2

76. f (x) = |x − 1|2

solution

321
x

y

1

3

−1

This is the graph of f (x) = |x − 1|2. Its derivative exists everywhere.

In Exercises 77–82, zoom in on a plot of f (x) at the point (a, f (a)) and state whether or not f (x) appears to be
differentiable at x = a. If it is nondifferentiable, state whether the tangent line appears to be vertical or does not exist.

77. f (x) = (x − 1)|x|, a = 0

solution The graph of f (x) = (x − 1)|x| for x near 0 is shown below. Because the graph has a sharp corner at x = 0,
it appears that f is not differentiable at x = 0. Moreover, the tangent line does not exist at this point.

y

x
0.1 0.2−0.1−0.2

−0.1

−0.2

−0.3

78. f (x) = (x − 3)5/3, a = 3

solution The graph of f (x) = (x − 3)5/3 for x near 3 is shown below. From this graph, it appears that f is
differentiable at x = 3, with a horizontal tangent line.

3

2.95

3.05

79. f (x) = (x − 3)1/3, a = 3

solution The graph of f (x) = (x − 3)1/3 for x near 3 is shown below. From this graph, it appears that f is not
differentiable at x = 3. Moreover, the tangent line appears to be vertical.

3.05 3.12.95 32.9
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80. f (x) = sin(x1/3), a = 0

solution The graph of f (x) = sin(x1/3) for x near 0 is shown below. From this graph, it appears that f is not
differentiable at x = 0. Moreover, the tangent line appears to be vertical.

y

x
0.05−0.05

0.2

0.4

−0.4

−0.2

81. f (x) = | sin x|, a = 0

solution The graph of f (x) = | sin x| for x near 0 is shown below. Because the graph has a sharp corner at x = 0, it
appears that f is not differentiable at x = 0. Moreover, the tangent line does not exist at this point.

y

x
0.05

0.08

0.04

0.1

0.1−0.05−0.1

82. f (x) = |x − sin x|, a = 0

solution The graph of f (x) = |x − sin x| for x near 0 is shown below. From this graph, it appears that f is
differentiable at x = 0, with a horizontal tangent line.

y

x
0.05−0.05

0.00005

0.0001

0.00015

83. Plot the derivative f ′(x) of f (x) = 2x3 − 10x−1 for x > 0 (set the bounds of the viewing box appropriately)
and observe that f ′(x) > 0. What does the positivity of f ′(x) tell us about the graph of f (x) itself? Plot f (x) and confirm
this conclusion.

solution Let f (x) = 2x3 − 10x−1. Then f ′(x) = 6x2 + 10x−2. The graph of f ′(x) is shown in the figure below at
the left and it is clear that f ′(x) > 0 for all x > 0. The positivity of f ′(x) tells us that the graph of f (x) is increasing for
x > 0. This is confirmed in the figure below at the right, which shows the graph of f (x).

8642
x

y

100

200

300

400

8642
x

y

200

−200

400

600

800
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84. Find the coordinates of the point P in Figure 22 at which the tangent line passes through (5, 0).

9

y

Pf (x) = 9 − x2

−3 3 4 5
x

FIGURE 22 Graph of f (x) = 9 − x2.

solution Let f (x) = 9 − x2, and suppose P has coordinates (a, 9 − a2). Because f ′(x) = −2x, the slope of the
line tangent to the graph of f (x) at P is −2a, and the equation of the tangent line is

y = f ′(a)(x − a) + f (a) = −2a(x − a) + 9 − a2 = −2ax + 9 + a2.

In order for this line to pass through the point (5, 0), we must have

0 = −10a + 9 + a2 = (a − 9)(a − 1).

Thus, a = 1 or a = 9. We exclude a = 9 because from Figure 22 we are looking for an x-coordinate between 0 and 5.
Thus, the point P has coordinates (1, 8).

Exercises 85–88 refer to Figure 23. Length QR is called the subtangent at P , and length RT is called the subnormal.

x

y

P = (x, f (x))

TR

y = f (x)

Q

Tangent line

FIGURE 23

85. Calculate the subtangent of

f (x) = x2 + 3x at x = 2

solution Let f (x) = x2 + 3x. Then f ′(x) = 2x + 3, and the equation of the tangent line at x = 2 is

y = f ′(2)(x − 2) + f (2) = 7(x − 2) + 10 = 7x − 4.

This line intersects the x-axis at x = 4
7 . Thus Q has coordinates ( 4

7 , 0), R has coordinates (2, 0) and the subtangent is

2 − 4

7
= 10

7
.

86. Show that the subtangent of f (x) = ex is everywhere equal to 1.

solution Let f (x) = ex . Then f ′(x) = ex , and the equation of the tangent line at x = a is

y = f ′(a)(x − a) + f (a) = ea(x − a) + ea.

This line intersects the x-axis at x = a − 1. Thus, Q has coordinates (a − 1, 0), R has coordinates (a, 0) and the subtangent
is

a − (a − 1) = 1.

87. Prove in general that the subnormal at P is |f ′(x)f (x)|.
solution The slope of the tangent line at P is f ′(x). The slope of the line normal to the graph at P is then −1/f ′(x),
and the normal line intersects the x-axis at the point T with coordinates (x + f (x)f ′(x), 0). The point R has coordinates
(x, 0), so the subnormal is

|x + f (x)f ′(x) − x| = |f (x)f ′(x)|.
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88. Show that PQ has length |f (x)|
√

1 + f ′(x)−2.

solution The coordinates of the point P are (x, f (x)), the coordinates of the point R are (x, 0) and the coordinates
of the point Q are (

x − f (x)

f ′(x)
, 0

)
.

Thus, PR = |f (x)|, QR =
∣∣∣ f (x)
f ′(x)

∣∣∣, and by the Pythagorean Theorem

PQ =
√(

f (x)

f ′(x)

)2
+ (f (x))2 = |f (x)|

√
1 + f ′(x)−2.

89. Prove the following theorem ofApollonius of Perga (the Greek mathematician born in 262 bce who gave the parabola,
ellipse, and hyperbola their names): The subtangent of the parabola y = x2 at x = a is equal to a/2.

solution Let f (x) = x2. The tangent line to f at x = a is

y = f ′(a)(x − a) + f (a) = 2a(x − a) + a2 = 2ax − a2.

The x-intercept of this line (where y = 0) is a
2 as claimed.

y

y = x2

(a, a2)

x

(–, 0)a
2

90. Show that the subtangent to y = x3 at x = a is equal to 1
3a.

solution Let f (x) = x3. Then f ′(x) = 3x2, and the equation of the tangent line t x = a is

y = f ′(a)(x − a) + f (a) = 3a2(x − a) + a3 = 3a2x − 2a3.

This line intersects the x-axis at x = 2a/3. Thus, Q has coordinates (2a/3, 0), R has coordinates (a, 0) and the subtangent
is

a − 2

3
a = 1

3
a.

91. Formulate and prove a generalization of Exercise 90 for y = xn.

solution Let f (x) = xn. Then f ′(x) = nxn−1, and the equation of the tangent line t x = a is

y = f ′(a)(x − a) + f (a) = nan−1(x − a) + an = nan−1x − (n − 1)an.

This line intersects the x-axis at x = (n − 1)a/n. Thus, Q has coordinates ((n − 1)a/n, 0), R has coordinates (a, 0) and
the subtangent is

a − n − 1

n
a = 1

n
a.

Further Insights and Challenges
92. Two small arches have the shape of parabolas. The first is given by f (x) = 1 − x2 for −1 ≤ x ≤ 1 and the second
by g(x) = 4 − (x − 4)2 for 2 ≤ x ≤ 6. A board is placed on top of these arches so it rests on both (Figure 24). What is
the slope of the board? Hint: Find the tangent line to y = f (x) that intersects y = g(x) in exactly one point.

FIGURE 24
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solution At the points where the board makes contact with the arches the slope of the board must be equal to the slope
of the arches (and hence they are equal to each other). Suppose (t, f (t)) is the point where the board touches the left hand
arch. The tangent line here (the line the board defines) is given by

y = f ′(t)(x − t) + f (t).

This line must hit the other arch in exactly one point. In other words, if we plug in y = g(x) to get

g(x) = f ′(t)(x − t) + f (t)

there can only be one solution for x in terms of t . Computing f ′ and plugging in we get

4 − (x2 − 8x + 16) = −2tx + 2t2 + 1 − t2

which simplifies to

x2 − 2tx − 8x + t2 + 13 = 0.

This is a quadratic equation ax2 + bx + c = 0 with a = 1, b = (−2t − 8) and c = t2 + 13. By the quadratic formula
we know there is a unique solution for x iff b2 − 4ac = 0. In our case this means

(2t + 8)2 = 4(t2 + 13).

Solving this gives t = −3/8 and plugging into f ′ shows the slope of the board must be 3/4.

93. A vase is formed by rotating y = x2 around the y-axis. If we drop in a marble, it will either touch the bottom point
of the vase or be suspended above the bottom by touching the sides (Figure 25). How small must the marble be to touch
the bottom?

FIGURE 25

solution Suppose a circle is tangent to the parabola y = x2 at the point (t, t2). The slope of the parabola at this point

is 2t , so the slope of the radius of the circle at this point is − 1
2t

(since it is perpendicular to the tangent line of the circle).

Thus the center of the circle must be where the line given by y = − 1
2t

(x − t) + t2 crosses the y-axis. We can find the

y-coordinate by setting x = 0: we get y = 1
2 + t2. Thus, the radius extends from (0, 1

2 + t2) to (t, t2) and

r =
√(

1

2
+ t2 − t2

)2
+ t2 =

√
1

4
+ t2.

This radius is greater than 1
2 whenever t > 0; so, if a marble has radius > 1/2 it sits on the edge of the vase, but if it has

radius ≤ 1/2 it rolls all the way to the bottom.

94. Let f (x) be a differentiable function, and set g(x) = f (x + c), where c is a constant. Use the limit definition
to show that g′(x) = f ′(x + c). Explain this result graphically, recalling that the graph of g(x) is obtained by shifting
the graph of f (x) c units to the left (if c > 0) or right (if c < 0).

solution

• Let g(x) = f (x + c). Using the limit definition,

g′(x) = lim
h→0

g(x + h) − g(x)

h
= lim

h→0

f ((x + h) + c) − f (x + c)

h

= lim
h→0

f ((x + c) + h) − f (x + c)

h
= f ′(x + c).

• The graph of g(x) is obtained by shifting f (x) to the left by c units. This implies that g′(x) is equal to f ′(x) shifted
to the left by c units, which happens to be f ′(x + c). Therefore, g′(x) = f ′(x + c).
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95. Negative Exponents Let n be a whole number. Use the Power Rule for xn to calculate the derivative of f (x) = x−n

by showing that

f (x + h) − f (x)

h
= −1

xn(x + h)n

(x + h)n − xn

h

solution Let f (x) = x−n where n is a positive integer.

• The difference quotient for f is

f (x + h) − f (x)

h
= (x + h)−n − x−n

h
=

1
(x+h)n

− 1
xn

h
=

xn−(x+h)n

xn(x+h)n

h

= −1

xn(x + h)n

(x + h)n − xn

h
.

• Therefore,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

−1

xn(x + h)n

(x + h)n − xn

h

= lim
h→0

−1

xn(x + h)n
lim
h→0

(x + h)n − xn

h
= −x−2n d

dx

(
xn

)
.

• From above, we continue: f ′(x) = −x−2n d

dx

(
xn

) = −x−2n · nxn−1 = −nx−n−1. Since n is a positive integer,

k = −n is a negative integer and we have
d

dx

(
xk

)
= d

dx

(
x−n

) = −nx−n−1 = kxk−1; i.e.
d

dx

(
xk

)
= kxk−1

for negative integers k.

96. Verify the Power Rule for the exponent 1/n, where n is a positive integer, using the following trick: Rewrite the
difference quotient for y = x1/n at x = b in terms of u = (b + h)1/n and a = b1/n.

solution Substituting x = (b + h)1/n and a = b1/n into the left-hand side of equation (3) yields

xn − an

x − a
= (b + h) − b

(b + h)1/n − b1/n
= h

(b + h)1/n − b1/n

whereas substituting these same expressions into the right-hand side of equation (3) produces

xn − an

x − a
= (b + h)

n−1
n + (b + h)

n−2
n b1/n + (b + h)

n−3
n b2/n + · · · + b

n−1
n ;

hence,

(b + h)1/n − b1/n

h
= 1

(b + h)
n−1
n + (b + h)

n−2
n b1/n + (b + h)

n−3
n b2/n + · · · + b

n−1
n

.

If we take f (x) = x1/n, then, using the previous expression,

f ′(b) = lim
h→0

(b + h)1/n − b1/n

h
= 1

nb
n−1
n

= 1

n
b

1
n
−1.

Replacing b by x, we have f ′(x) = 1
nx

1
n
−1.

97. Infinitely Rapid Oscillations Define

f (x) =

⎧⎪⎨
⎪⎩

x sin
1

x
x 	= 0

0 x = 0

Show that f (x) is continuous at x = 0 but f ′(0) does not exist (see Figure 24).

solution Let f (x) =
{

x sin
(

1
x

)
if x 	= 0

0 if x = 0
. As x → 0,

|f (x) − f (0)| =
∣∣∣∣x sin

(
1

x

)
− 0

∣∣∣∣ = |x|
∣∣∣∣sin

(
1

x

)∣∣∣∣ → 0
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since the values of the sine lie between −1 and 1. Hence, by the Squeeze Theorem, lim
x→0

f (x) = f (0) and thus f is

continuous at x = 0.
As x → 0, the difference quotient at x = 0,

f (x) − f (0)

x − 0
=

x sin
(

1
x

)
− 0

x − 0
= sin

(
1

x

)

does not converge to a limit since it oscillates infinitely through every value between −1 and 1. Accordingly, f ′(0) does
not exist.

98. For which value of λ does the equation ex = λx have a unique solution? For which values of λ does it have at least
one solution? For intuition, plot y = ex and the line y = λx.

solution First, note that when λ = 0, the equation ex = 0 · x = 0 has no real solution. For λ 	= 0, we observe that
solutions to the equation ex = λx correspond to points of intersection between the graphs of y = ex and y = λx. When
λ < 0, the two graphs intersect at only one location (see the graph below at the left). On the other hand, when λ > 0, the
graphs may have zero, one or two points of intersection (see the graph below at the right). Note that the graphs have one
point of intersection when y = λx is the tangent line to y = ex . Thus, not only do we require ex = λx, but also ex = λ.
It then follows that the point of intersection satisfies λ = λx, so x = 1. This then gives λ = e.

Therefore the equation ex = λx:

(a) has at least one solution when λ < 0 and when λ ≥ e;

(b) has a unique solution when λ < 0 and when λ = e.

6

4

2

−2
−1−2 1 2

x

y

15

10

5

−5
−1 21 3

x

y

3.3 Product and Quotient Rules

Preliminary Questions
1. Are the following statements true or false? If false, state the correct version.

(a) fg denotes the function whose value at x is f (g(x)).

(b) f/g denotes the function whose value at x is f (x)/g(x).

(c) The derivative of the product is the product of the derivatives.

(d)
d

dx
(fg)

∣∣∣∣
x=4

= f (4)g′(4) − g(4)f ′(4)

(e)
d

dx
(fg)

∣∣∣∣
x=0

= f (0)g′(0) + g(0)f ′(0)

solution

(a) False. The notation fg denotes the function whose value at x is f (x)g(x).

(b) True.

(c) False. The derivative of a product fg is f ′(x)g(x) + f (x)g′(x).

(d) False.
d

dx
(fg)

∣∣∣∣
x=4

= f (4)g′(4) + g(4)f ′(4).

(e) True.

2. Find (f/g)′(1) if f (1) = f ′(1) = g(1) = 2 and g′(1) = 4.

solution
d

dx
(f/g)

∣∣
x=1 = [g(1)f ′(1) − f (1)g′(1)]/g(1)2 = [2(2) − 2(4)]/22 = −1.

3. Find g(1) if f (1) = 0, f ′(1) = 2, and (fg)′(1) = 10.

solution (fg)′(1) = f (1)g′(1) + f ′(1)g(1), so 10 = 0 · g′(1) + 2g(1) and g(1) = 5.
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Exercises
In Exercises 1–6, use the Product Rule to calculate the derivative.

1. f (x) = x3(2x2 + 1)

solution Let f (x) = x3(2x2 + 1). Then

f ′(x) = x3 d

dx
(2x2 + 1) + (2x2 + 1)

d

dx
x3 = x3(4x) + (2x2 + 1)(3x2) = 10x4 + 3x2.

2. f (x) = (3x − 5)(2x2 − 3)

solution Let f (x) = (3x − 5)(2x2 − 3). Then

f ′(x) = (3x − 5)
d

dx
(2x2 − 3) + (2x2 − 3)

d

dx
(3x − 5) = (3x − 5)(4x) + (2x2 − 3)(3) = 18x2 − 20x − 9.

3. f (x) = x2ex

solution Let f (x) = x2ex . Then

f ′(x) = x2 d

dx
ex + ex d

dx
x2 = x2ex + ex(2x) = ex(x2 + 2x).

4. f (x) = (2x − 9)(4ex + 1)

solution Let f (x) = (2x − 9)(4ex + 1). Then

f ′(x) = (2x − 9)
d

dx
(4ex + 1) + (4ex + 1)

d

dx
(2x − 9) = (2x − 9)(4ex) + (4ex + 1)(2) = 8xex − 28ex + 2.

5.
dh

ds

∣∣∣∣
s=4

, h(s) = (s−1/2 + 2s)(7 − s−1)

solution Let h(s) = (s−1/2 + 2s)(7 − s−1). Then

dh

ds
= (s−1/2 + 2s)

d

dx
(7 − s−1) + (7 − s−1)

d

ds

(
s−1/2 + 2s

)

= (s−1/2 + 2s)(s−2) + (7 − s−1)

(
−1

2
s−3/2 + 2

)
= −7

2
s−3/2 + 3

2
s−5/2 + 14.

Therefore,

dh

ds

∣∣∣∣
s=4

= −7

2
(4)−3/2 + 3

2
(4)−5/2 + 14 = 871

64
.

6.
dy

dt

∣∣∣∣
t=2

, y = (t − 8t−1)(et + t2)

solution Let y(t) = (t − 8t−1)(et + t2). Then

dy

dt
= (t − 8t−1)

d

dt
(et + t2) + (et + t2)

d

dt
(t − 8t−1)

= (t − 8t−1)(et + 2t) + (et + t2)(1 + 8t−2).

Therefore,

dy

dt

∣∣∣∣
t=2

= (2 − 4)(e2 + 4) + (e2 + 4)(1 + 2) = e2 + 4.

In Exercises 7–12, use the Quotient Rule to calculate the derivative.

7. f (x) = x

x − 2

solution Let f (x) = x
x−2 . Then

f ′(x) = (x − 2) d
dx

x − x d
dx

(x − 2)

(x − 2)2
= (x − 2) − x

(x − 2)2
= −2

(x − 2)2
.
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8. f (x) = x + 4

x2 + x + 1

solution Let f (x) = x+4
x2+x+1

. Then

f ′(x) = (x2 + x + 1) d
dx

(x + 4) − (x + 4) d
dx

(x2 + x + 1)

(x2 + x + 1)2

= (x2 + x + 1) − (x + 4)(2x + 1)

(x2 + x + 1)2
= −x2 − 8x − 3

(x2 + x + 1)2
.

9.
dg

dt

∣∣∣∣
t=−2

, g(t) = t2 + 1

t2 − 1

solution Let g(t) = t2 + 1

t2 − 1
. Then

dg

dt
= (t2 − 1) d

dt
(t2 + 1) − (t2 + 1) d

dt
(t2 − 1)

(t2 − 1)2
= (t2 − 1)(2t) − (t2 + 1)(2t)

(t2 − 1)2
= − 4t

(t2 − 1)2
.

Therefore,

dg

dt

∣∣∣∣
t=−2

= − 4(−2)

((−2)2 − 1)2
= 8

9
.

10.
dw

dz

∣∣∣∣
z=9

, w = z2
√

z + z

solution Let w(z) = z2
√

z + z
. Then

dw

dz
= (

√
z + z) d

dz
z2 − z2 d

dz
(
√

z + z)

(
√

z + z)2
= 2z(

√
z + z) − z2((1/2)z−1/2 + 1)

(
√

z + z)2
= (3/2)z3/2 + z2

(
√

z + z)2
.

Therefore,

dw

dz

∣∣∣∣
z=9

= (3/2)(9)3/2 + 92

(
√

9 + 9)2
= 27

32
.

11. g(x) = 1

1 + ex

solution Let g(x) = 1

1 + ex
. Then

dg

dx
= (1 + ex) d

dx
1 − 1 d

dx
(1 + ex)

(1 + ex)2
= (1 + ex)(0) − ex

(1 + ex)2
= − ex

(1 + ex)2
.

12. f (x) = ex

x2 + 1

solution Let f (x) = ex

x2 + 1
. Then

df

dx
= (x2 + 1) d

dx
ex − ex d

dx
(x2 + 1)

(x2 + 1)2
= (x2 + 1)ex − ex(2x)

(x2 + 1)2
= ex(x − 1)2

(x2 + 1)2
.

In Exercises 13–16, calculate the derivative in two ways. First use the Product or Quotient Rule; then rewrite the function
algebraically and apply the Power Rule directly.

13. f (t) = (2t + 1)(t2 − 2)

solution Let f (t) = (2t + 1)(t2 − 2). Then, using the Product Rule,

f ′(t) = (2t + 1)(2t) + (t2 − 2)(2) = 6t2 + 2t − 4.

Multiplying out first, we find f (t) = 2t3 + t2 − 4t − 2. Therefore, f ′(t) = 6t2 + 2t − 4.
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14. f (x) = x2(3 + x−1)

solution Let f (x) = x2(3 + x−1). Then, using the product rule, and then power and sum rules,

f ′(x) = x2(−x−2) + (3 + x−1)(2x) = 6x + 1.

Multiplying out first, we find f (x) = 3x2 + x. Then f ′(x) = 6x + 1.

15. h(t) = t2 − 1

t − 1

solution Let h(t) = t2−1
t−1 . Using the quotient rule,

f ′(t) = (t − 1)(2t) − (t2 − 1)(1)

(t − 1)2
= t2 − 2t + 1

(t − 1)2
= 1

for t 	= 1. Simplifying first, we find for t 	= 1,

h(t) = (t − 1)(t + 1)

(t − 1)
= t + 1.

Hence h′(t) = 1 for t 	= 1.

16. g(x) = x3 + 2x2 + 3x−1

x

solution Let g(x) = x3+2x2+3x−1

x . Using the quotient rule and the sum and power rules, and simplifying

g′(x) = x(3x2 + 4x − 3x−2) − (x3 + 2x2 + 3x−1)1

x2
= 1

x2

(
2x3 + 2x2 − 6x−1

)
= 2x + 2 − 6x−3.

Simplifying first yields g(x) = x2 + 2x + 3x−2, from which we calculate g′(x) = 2x + 2 − 6x−3.

In Exercises 17–38, calculate the derivative.

17. f (x) = (x3 + 5)(x3 + x + 1)

solution Let f (x) = (x3 + 5)(x3 + x + 1). Then

f ′(x) = (x3 + 5)(3x2 + 1) + (x3 + x + 1)(3x2) = 6x5 + 4x3 + 18x2 + 5.

18. f (x) = (4ex − x2)(x3 + 1)

solution Let f (x) = (4ex − x2)(x3 + 1). Then

f ′(x) = (4ex − x2)(3x2) + (x3 + 1)(4ex − 2x) = ex(4x3 + 12x2 + 4) − 5x4 − 2x.

19.
dy

dx

∣∣∣∣
x=3

, y = 1

x + 10

solution Let y = 1
x+10 . Using the quotient rule:

dy

dx
= (x + 10)(0) − 1(1)

(x + 10)2
= − 1

(x + 10)2
.

Therefore,

dy

dx

∣∣∣∣
x=3

= − 1

(3 + 10)2
= − 1

169
.

20.
dz

dx

∣∣∣∣
x=−2

, z = x

3x2 + 1

solution Let z = x
3x2+1

. Using the quotient rule:

dz

dx
= (3x2 + 1)(1) − x(6x)

(3x2 + 1)2
= 1 − 3x2

(3x2 + 1)2
.

Therefore,

dz

dx

∣∣∣∣
x=−2

= 1 − 3(−2)2

(3(−2)2 + 1)2
= − 11

169
.
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21. f (x) = (
√

x + 1)(
√

x − 1)

solution Let f (x) = (
√

x + 1)(
√

x − 1). Multiplying through first yields f (x) = x − 1 for x ≥ 0. Therefore,

f ′(x) = 1 for x ≥ 0. If we carry out the product rule on f (x) = (x1/2 + 1)(x1/2 − 1), we get

f ′(x) = (x1/2 + 1)

(
1

2
(x−1/2)

)
+ (x1/2 − 1)

(
1

2
x−1/2

)
= 1

2
+ 1

2
x−1/2 + 1

2
− 1

2
x−1/2 = 1.

22. f (x) = 9x5/2 − 2

x

solution Let f (x) = 9x5/2−2
x = 9x3/2 − 2x−1. Then f ′(x) = 27

2 x1/2 + 2x−2.

23.
dy

dx

∣∣∣∣
x=2

, y = x4 − 4

x2 − 5

solution Let y = x4 − 4

x2 − 5
. Then

dy

dx
=

(
x2 − 5

) (
4x3

)
−

(
x4 − 4

)
(2x)(

x2 − 5
)2

= 2x5 − 20x3 + 8x(
x2 − 5

)2
.

Therefore,

dy

dx

∣∣∣∣
x=2

= 2(2)5 − 20(2)3 + 8(2)

(22 − 5)2
= −80.

24. f (x) = x4 + ex

x + 1

solution Let f (x) = x4 + ex

x + 1
. Then

df

dx
= (x + 1)(4x3 + ex) − (x4 + ex)(1)

(x + 1)2
= (x + 1)(4x3 + ex) − x4 − ex

(x + 1)2
.

25.
dz

dx

∣∣∣∣
x=1

, z = 1

x3 + 1

solution Let z = 1
x3+1

. Using the quotient rule:

dz

dx
= (x3 + 1)(0) − 1(3x2)

(x3 + 1)2
= − 3x2

(x3 + 1)2
.

Therefore,

dz

dx

∣∣∣∣
x=1

= − 3(1)2

(13 + 1)2
= −3

4
.

26. f (x) = 3x3 − x2 + 2√
x

solution Let

f (x) = 3x3 − x2 + 2√
x

= 3x3 − x2 + 2

x1/2
.

Using the quotient rule, and then simplifying by taking out the greatest negative factor:

f ′(x) = (x1/2)(9x2 − 2x) − (3x3 − x2 + 2)( 1
2x−1/2)

x
= 1

x3/2

(
(9x3 − 2x2) − 1

2
(3x3 − x2 + 2)

)

= 1

x3/2

(
15

2
x3 − 3

2
x2 − 1

)
.

Alternately, since there is a single exponent of x in the denominator, we could also simplify f (x) first, getting
f (x) = 3x5/2 − x3/2 + 2x−1/2. Then f ′(x) = 15

2 x3/2 − 3
2x1/2 − x−3/2. The two answers are the same.
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27. h(t) = t

(t + 1)(t2 + 1)

solution Let h(t) = t

(t + 1)(t2 + 1)
= t

t3 + t2 + t + 1
. Then

h′(t) =
(
t3 + t2 + t + 1

)
(1) − t

(
3t2 + 2t + 1

)
(
t3 + t2 + t + 1

)2
= −2t3 − t2 + 1(

t3 + t2 + t + 1
)2

.

28. f (x) = x3/2(
2x4 − 3x + x−1/2)

solution Let f (x) = x3/2(2x4 − 3x + x−1/2). We multiply through the x3/2 to get f (x) = 2x11/2 − 3x5/2 + x.

Then f ′(x) = 11x9/2 − 15
2 x3/2 + 1.

29. f (t) = 31/2 · 51/2

solution Let f (t) = √
3
√

5. Then f ′(t) = 0, since f (t) is a constant function!

30. h(x) = π2(x − 1)

solution Let h(x) = π2(x − 1). Then h′(x) = π2.

31. f (x) = (x + 3)(x − 1)(x − 5)

solution Let f (x) = (x + 3)(x − 1)(x − 5). Using the Product Rule inside the Product Rule with a first factor of
(x + 3) and a second factor of (x − 1)(x − 5), we find

f ′(x) = (x + 3) ((x − 1)(1) + (x − 5)(1)) + (x − 1)(x − 5)(1) = 3x2 − 6x − 13.

Alternatively,

f (x) = (x + 3)
(
x2 − 6x + 5

)
= x3 − 3x2 − 13x + 15.

Therefore, f ′(x) = 3x2 − 6x − 13.

32. f (x) = ex(x2 + 1)(x + 4)

solution Let f (x) = ex(x2 + 1)(x + 4). Using the Product Rule inside the Product Rule with a first factor of ex and

a second factor of (x2 + 1)(x + 4), we find

f ′(x) = ex
(
(x2 + 1)(1) + (x + 4)(2x)

)
+ (x2 + 1)(x + 4)ex = (x3 + 7x2 + 9x + 5)ex .

33. f (x) = ex

x + 1

solution Let f (x) = ex

(ex + 1)(x + 1)
. Then

f ′(x) = (ex + 1)(x + 1)ex − ex
(
(ex + 1)(1) + (x + 1)ex

)
(ex + 1)2(x + 1)2

= ex(x − ex)

(ex + 1)2(x + 1)2
.

34. g(x) = ex+1 + ex

e + 1

solution Let

g(x) = ex+1 + ex

e + 1
= ex(e + 1)

e + 1
= ex .

Then g′(x) = ex .

35. g(z) =
(

z2 − 4

z − 1

) (
z2 − 1

z + 2

)
Hint: Simplify first.

solution Let

g(z) =
(

z2 − 4

z − 1

) (
z2 − 1

z + 2

)
=

(
(z + 2)(z − 2)

z − 1

) (
(z + 1)(z − 1)

z + 2

)
= (z − 2)(z + 1)

for z 	= −2 and z 	= 1. Then,

g′(z) = (z + 1)(1) + (z − 2)(1) = 2z − 1.
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36.
d

dx

(
(ax + b)(abx2 + 1)

)
(a, b constants)

solution Let f (x) = (ax + b)(abx2 + 1). Then

f ′(x) = (ax + b)(2abx) + (abx2 + 1)(a) = 3a2bx2 + a + 2ab2x.

37.
d

dt

(
xt − 4

t2 − x

)
(x constant)

solution Let f (t) = xt−4
t2−x

. Using the quotient rule:

f ′(t) = (t2 − x)(x) − (xt − 4)(2t)

(t2 − x)2
= xt2 − x2 − 2xt2 + 8t

(t2 − x)2
= −xt2 + 8t − x2

(t2 − x)2
.

38.
d

dx

(
ax + b

cx + d

)
(a, b, c, d constants)

solution Let f (x) =
(

ax + b

cx + d

)
. Using the quotient rule:

f ′(x) = (cx + d)a − (ax + b)c

(cx + d)2
= (ad − bc)

(cx + d)2
.

In Exercises 39–42, calculate the derivative using the values:

f (4) f ′(4) g(4) g′(4)

10 −2 5 −1

39. (fg)′(4) and (f/g)′(4).

solution Let h = fg and H = f/g. Then h′ = fg′ + gf ′ and H ′ = gf ′−fg′
g2 . Finally,

h′(4) = f (4)g′(4) + g(4)f ′(4) = (10)(−1) + (5)(−2) = −20,

and

H ′(4) = g(4)f ′(4) − f (4)g′(4)

(g(4))2
= (5)(−2) − (10)(−1)

(5)2
= 0.

40. F ′(4), where F(x) = x2f (x).

solution Let F(x) = x2f (x). Then F ′(x) = x2f ′(x) + 2xf (x), and

F ′(4) = 16f ′(4) + 8f (4) = (16)(−2) + (8)(10) = 48.

41. G′(4), where G(x) = g(x)2.

solution Let G(x) = g(x)2 = g(x)g(x). Then G′(x) = g(x)g′(x) + g(x)g′(x) = 2g(x)g′(x), and

G′(4) = 2g(4)g′(4) = 2(5)(−1) = −10.

42. H ′(4), where H(x) = x

g(x)f (x)
.

solution Let H(x) = x

g(x)f (x)
. Then

H ′(x) = g(x)f (x) · 1 − x(g(x)f ′(x) + f (x)g′(x))

(g(x)f (x))2
,

and

H ′(4) = (5)(10) − 4((5)(−2) + (10)(−1))

((5)(10))2
= 13

250
.
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43. Calculate F ′(0), where

F(x) = x9 + x8 + 4x5 − 7x

x4 − 3x2 + 2x + 1

Hint: Do not calculate F ′(x). Instead, write F(x) = f (x)/g(x) and express F ′(0) directly in terms of f (0), f ′(0), g(0),

g′(0).

solution Taking the hint, let

f (x) = x9 + x8 + 4x5 − 7x

and let

g(x) = x4 − 3x2 + 2x + 1.

Then F(x) = f (x)
g(x)

. Now,

f ′(x) = 9x8 + 8x7 + 20x4 − 7 and g′(x) = 4x3 − 6x + 2.

Moreover, f (0) = 0, f ′(0) = −7, g(0) = 1, and g′(0) = 2.
Using the quotient rule:

F ′(0) = g(0)f ′(0) − f (0)g′(0)

(g(0))2
= −7 − 0

1
= −7.

44. Proceed as in Exercise 43 to calculate F ′(0), where

F(x) = (
1 + x + x4/3 + x5/3) 3x5 + 5x4 + 5x + 1

8x9 − 7x4 + 1

solution Write F(x) = f (x)(g(x)/h(x)), where

f (x) = (1 + x + x4/3 + x5/3)

g(x) = 3x5 + 5x4 + 5x + 1

and

h(x) = 8x9 − 7x4 + 1.

Now, f ′(x) = 1 + 4
3x

1
3 + 5

3x
2
3 , g′(x) = 15x4 + 20x3 + 5, and h′(x) = 72x8 − 28x3. Moreover, f (0) = 1, f ′(0) = 1,

g(0) = 1, g′(0) = 5, h(0) = 1, and h′(0) = 0. From the product and quotient rules,

F ′(0) = f (0)
h(0)g′(0) − g(0)h′(0)

h(0)2
+ f ′(0)(g(0)/h(0)) = 1

1(5) − 1(0)

1
+ 1(1/1) = 6.

45. Use the Product Rule to calculate
d

dx
e2x .

solution Note that e2x = ex · ex . Therefore

d

dx
e2x = d

dx
(ex · ex) = ex · ex + ex · ex = 2e2x .

46. Plot the derivative of f (x) = x/(x2 + 1) over [−4, 4]. Use the graph to determine the intervals on which
f ′(x) > 0 and f ′(x) < 0. Then plot f (x) and describe how the sign of f ′(x) is reflected in the graph of f (x).

solution Let f (x) = x

x2 + 1
. Then

f ′(x) = (x2 + 1)(1) − x(2x)

(x2 + 1)2
= 1 − x2

(x2 + 1)2
.

The derivative is shown in the figure below at the left. From this plot we see that f ′(x) > 0 for −1 < x < 1 and f ′(x) < 0
for |x| > 1. The original function is plotted in the figure below at the right. Observe that the graph of f (x) is increasing
whenever f ′(x) > 0 and that f (x) is decreasing whenever f ′(x) < 0.
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y

x
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47. Plot f (x) = x/(x2 − 1) (in a suitably bounded viewing box). Use the plot to determine whether f ′(x) is
positive or negative on its domain {x : x 	= ±1}. Then compute f ′(x) and confirm your conclusion algebraically.

solution Let f (x) = x

x2 − 1
. The graph of f (x) is shown below. From this plot, we see that f (x) is decreasing on

its domain {x : x 	= ±1}. Consequently, f ′(x) must be negative. Using the quotient rule, we find

f ′(x) = (x2 − 1)(1) − x(2x)

(x2 − 1)2
= − x2 + 1

(x2 − 1)2
,

which is negative for all x 	= ±1.

4321
x

y

5

−5

−1−2−3−4

48. Let P = V 2R/(R + r)2 as in Example 7. Calculate dP/dr, assuming that r is variable and R is constant.

solution Note that V is also constant. Let

f (r) = V 2R

(R + r)2
= V 2R

R2 + 2Rr + r2
.

Using the quotient rule:

f ′(r) = (R2 + 2Rr + r2)(0) − (V 2R)(2R + 2r)

(R + r)4
= −2V 2R(R + r)

(R + r)4
= − 2V 2R

(R + r)3
.

49. Find a > 0 such that the tangent line to the graph of

f (x) = x2e−x at x = a

passes through the origin (Figure 4).

y

x
a

f (x) = x2e−x

FIGURE 4

solution Let f (x) = x2e−x . Then f (a) = a2e−a ,

f ′(x) = −x2e−x + 2xe−x = e−x(2x − x2),

f ′(a) = (2a − a2)e−a , and the equation of the tangent line to f at x = a is

y = f ′(a)(x − a) + f (a) = (2a − a2)e−a(x − a) + a2e−a.

For this line to pass through the origin, we must have

0 = (2a − a2)e−a(−a) + a2e−a = e−a
(
a2 − 2a2 + a3

)
= a2e−a(a − 1).

Thus, a = 0 or a = 1. The only value a > 0 such that the tangent line to f (x) = x2e−x passes through the origin is
therefore a = 1.
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50. Current I (amperes), voltage V (volts), and resistance R (ohms) in a circuit are related by Ohm’s Law, I = V/R.

(a) Calculate
dI

dR

∣∣∣∣
R=6

if V is constant with value V = 24.

(b) Calculate
dV

dR

∣∣∣∣
R=6

if I is constant with value I = 4.

solution

(a) According to Ohm’s Law, I = V/R = V R−1. Thus, using the power rule,

dI

dR
= −V R−2.

With V = 24 volts, it follows that

dI

dR

∣∣∣∣
R=6

= −24(6)−2 = −2

3

amps

�
.

(b) Solving Ohm’s Law for V yields V = RI . Thus

dV

dR
= I and

dV

dR

∣∣∣∣
I=4

= 4 amps.

51. The revenue per month earned by the Couture clothing chain at time t is R(t) = N(t)S(t), where N(t) is the number
of stores and S(t) is average revenue per store per month. Couture embarks on a two-part campaign: (A) to build new
stores at a rate of 5 stores per month, and (B) to use advertising to increase average revenue per store at a rate of $10,000
per month. Assume that N(0) = 50 and S(0) = $150,000.

(a) Show that total revenue will increase at the rate

dR

dt
= 5S(t) + 10,000N(t)

Note that the two terms in the Product Rule correspond to the separate effects of increasing the number of stores on the
one hand, and the average revenue per store on the other.

(b) Calculate
dR

dt

∣∣∣∣
t=0

.

(c) If Couture can implement only one leg (A or B) of its expansion at t = 0, which choice will grow revenue most
rapidly?

solution

(a) Given R(t) = N(t)S(t), it follows that

dR

dt
= N(t)S′(t) + S(t)N ′(t).

We are told that N ′(t) = 5 stores per month and S′(t) = 10,000 dollars per month. Therefore,

dR

dt
= 5S(t) + 10,000N(t).

(b) Using part (a) and the given values of N(0) and S(0), we find

dR

dt

∣∣∣∣
t=0

= 5(150,000) + 10,000(50) = 1,250,000.

(c) From part (b), we see that of the two terms contributing to total revenue growth, the term 5S(0) is larger than the
term 10,000N(0). Thus, if only one leg of the campaign can be implemented, it should be part A: increase the number of
stores by 5 per month.

52. The tip speed ratio of a turbine (Figure 5) is the ratio R = T/W , where T is the speed of the tip of a blade and W is
the speed of the wind. (Engineers have found empirically that a turbine with n blades extracts maximum power from the
wind when R = 2π/n.) Calculate dR/dt (t in minutes) if W = 35 km/h and W decreases at a rate of 4 km/h per minute,
and the tip speed has constant value T = 150 km/h.
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FIGURE 5 Turbines on a wind farm

solution Let R = T/W . Then

dR

dt
= WT ′ − T W ′

W2
.

Using the values T = 150, T ′ = 0, W = 35 and W ′ = −4, we find

dR

dt
= (35)(0) − 150(−4)

352
= 24

49
.

53. The curve y = 1/(x2 + 1) is called the witch of Agnesi (Figure 6) after the Italian mathematician Maria Agnesi
(1718–1799), who wrote one of the first books on calculus. This strange name is the result of a mistranslation of the Italian
word la versiera, meaning “that which turns.” Find equations of the tangent lines at x = ±1.

321−2−3 −1

1

x

y

FIGURE 6 The witch of Agnesi.

solution Let f (x) = 1

x2 + 1
. Then f ′(x) = (x2 + 1)(0) − 1(2x)

(x2 + 1)2
= − 2x(

x2 + 1
)2

.

• At x = −1, the tangent line is

y = f ′(−1)(x + 1) + f (−1) = 1

2
(x + 1) + 1

2
= 1

2
x + 1.

• At x = 1, the tangent line is

y = f ′(1)(x − 1) + f (1) = −1

2
(x − 1) + 1

2
= −1

2
x + 1.

54. Let f (x) = g(x) = x. Show that (f/g)′ 	= f ′/g′.
solution (f/g) = (x/x) = 1, so (f/g)′ = 0. On the other hand, (f ′/g′) = (x′/x′) = (1/1) = 1. We see that 0 	= 1.

55. Use the Product Rule to show that (f 2)′ = 2ff ′.

solution Let g = f 2 = ff . Then g′ =
(
f 2

)′ = (ff )′ = ff ′ + ff ′ = 2ff ′.

56. Show that (f 3)′ = 3f 2f ′.
solution Let g = f 3 = fff . Then

g′ =
(
f 3

)′ = [f (ff )]′ = f
(
ff ′ + ff ′) + ff (f ′) = 3f 2f ′.
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Further Insights and Challenges
57. Let f , g, h be differentiable functions. Show that (fgh)′(x) is equal to

f (x)g(x)h′(x) + f (x)g′(x)h(x) + f ′(x)g(x)h(x)

Hint: Write fgh as f (gh).

solution Let p = fgh. Then

p′ = (fgh)′ = f
(
gh′ + hg′) + ghf ′ = f ′gh + fg′h + fgh′.

58. Prove the Quotient Rule using the limit definition of the derivative.

solution Let p = f

g
. Suppose that f and g are differentiable at x = a and that g(a) 	= 0. Then

p′(a) = lim
h→0

p(a + h) − p(a)

h
= lim

h→0

f (a + h)

g(a + h)
− f (a)

g(a)

h
= lim

h→0

f (a + h)g(a) − f (a)g(a + h)

g(a + h)g(a)

h

= lim
h→0

f (a + h)g(a) − f (a)g(a) + f (a)g(a) − f (a)g(a + h)

hg(a + h)g(a)

= lim
h→0

(
1

g(a + h)g(a)

(
g(a)

f (a + h) − f (a)

h
− f (a)

g(a + h) − g(a)

h

))

=
(

lim
h→0

1

g(a + h)g(a)

) ((
g(a) lim

h→0

f (a + h) − f (a)

h

)
−

(
f (a) lim

h→0

g(a + h) − g(a)

h

))

= 1

(g(a))2

(
g(a)f ′(a) − f (a)g′(a)

) = g(a)f ′(a) − f (a)g′(a)

(g(a))2

In other words, p′ =
(

f

g

)′
= gf ′ − fg′

g2
.

59. Derivative of the Reciprocal Use the limit definition to prove

d

dx

(
1

f (x)

)
= − f ′(x)

f 2(x)
7

Hint: Show that the difference quotient for 1/f (x) is equal to

f (x) − f (x + h)

hf (x)f (x + h)

solution Let g(x) = 1
f (x)

. We then compute the derivative of g(x) using the difference quotient:

g′(x) = lim
h→0

g(x + h) − g(x)

h
= lim

h→0

1

h

(
1

f (x + h)
− 1

f (x)

)
= lim

h→0

1

h

(
f (x) − f (x + h)

f (x)f (x + h)

)

= − lim
h→0

(
f (x + h) − f (x)

h

) (
1

f (x)f (x + h)

)
.

We can apply the rule of products for limits. The first parenthetical expression is the difference quotient definition of
f ′(x). The second can be evaluated at h = 0 to give 1

(f (x))2 . Hence

g′(x) = d

dx

(
1

f (x)

)
= − f ′(x)

f 2(x)
.

60. Prove the Quotient Rule using Eq. (7) and the Product Rule.

solution Let h(x) = f (x)
g(x)

. We can write h(x) = f (x) 1
g(x)

. Applying Eq. (7),

h′(x) = f (x)

((
1

g(x)

)′)
+ f ′(x)

(
1

g(x)

)
= −f (x)

(
g′(x)

(g(x))2

)
+ f ′(x)

g(x)
= −f (x)g′(x) + f ′(x)g(x)

(g(x))2
.

61. Use the limit definition of the derivative to prove the following special case of the Product Rule:

d

dx
(xf (x)) = xf ′(x) + f (x)
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solution First note that because f (x) is differentiable, it is also continuous. It follows that

lim
h→0

f (x + h) = f (x).

Now we tackle the derivative:

d

dx
(xf (x)) = lim

h→0

(x + h)f (x + h) − f (x)

h
= lim

h→0

(
x

f (x + h) − f (x)

h
+ f (x + h)

)

= x lim
h→0

f (x + h) − f (x)

h
+ lim

h→0
f (x + h)

= xf ′(x) + f (x).

62. Carry out Maria Agnesi’s proof of the Quotient Rule from her book on calculus, published in 1748: Assume that f ,
g, and h = f/g are differentiable. Compute the derivative of hg = f using the Product Rule, and solve for h′.

solution Suppose that f , g, and h are differentiable functions with h = f/g.

• Then hg = f and via the product rule hg′ + gh′ = f ′.

• Solving for h′ yields h′ = f ′ − hg′
g

=
f ′ − f

g
g′

g
= gf ′ − fg′

g2
.

63. The Power Rule Revisited If you are familiar with proof by induction, use induction to prove the Power Rule for

all whole numbers n. Show that the Power Rule holds for n = 1; then write xn as x · xn−1 and use the Product Rule.

solution Let k be a positive integer. If k = 1, then xk = x. Note that

d

dx

(
x1

)
= d

dx
(x) = 1 = 1x0.

Hence the Power Rule holds for k = 1. Assume it holds for k = n where n ≥ 2. Then for k = n + 1, we have

d

dx

(
xk

)
= d

dx

(
xn+1

)
= d

dx

(
x · xn

) = x
d

dx

(
xn

) + xn d

dx
(x)

= x · nxn−1 + xn · 1 = (n + 1)xn = kxk−1

Accordingly, the Power Rule holds for all positive integers by induction.

Exercises 64 and 65: A basic fact of algebra states that c is a root of a polynomial f (x) if and only if f (x) = (x − c)g(x)

for some polynomial g(x). We say that c is a multiple root if f (x) = (x − c)2h(x), where h(x) is a polynomial.

64. Show that c is a multiple root of f (x) if and only if c is a root of both f (x) and f ′(x).

solution Assume first that f (c) = f ′(c) = 0 and let us show that c is a multiple root of f (x). We have f (x) =
(x − c)g(x) for some polynomial g(x) and so f ′(x) = (x − c)g′(x) + g(x). However, f ′(c) = 0 + g(c) = 0, so c is
also a root of g(x) and hence g(x) = (x − c)h(x) for some polynomial h(x). We conclude that f (x) = (x − c)2h(x),
which shows that c is a multiple root of f (x).

Conversely, assume that c is a multiple root. Then f (c) = 0 and f (x) = (x − c)2g(x) for some polynomial g(x).
Then f ′(x) = (x − c)2g′(x) + 2g(x)(x − c). Therefore, f ′(c) = (c − c)2g′(c) + 2g(c)(c − c) = 0.

65. Use Exercise 64 to determine whether c = −1 is a multiple root:

(a) x5 + 2x4 − 4x3 − 8x2 − x + 2

(b) x4 + x3 − 5x2 − 3x + 2

solution

(a) To show that −1 is a multiple root of

f (x) = x5 + 2x4 − 4x3 − 8x2 − x + 2,

it suffices to check that f (−1) = f ′(−1) = 0. We have f (−1) = −1 + 2 + 4 − 8 + 1 + 2 = 0 and

f ′(x) = 5x4 + 8x3 − 12x2 − 16x − 1

f ′(−1) = 5 − 8 − 12 + 16 − 1 = 0
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(b) Let f (x) = x4 + x3 − 5x2 − 3x + 2. Then f ′(x) = 4x3 + 3x2 − 10x − 3. Because

f (−1) = 1 − 1 − 5 + 3 + 2 = 0

but

f ′(−1) = −4 + 3 + 10 − 3 = 6 	= 0,

it follows that x = −1 is a root of f , but not a multiple root.

66. Figure 7 is the graph of a polynomial with roots at A, B, and C. Which of these is a multiple root? Explain
your reasoning using Exercise 64.

x

y

B CA

FIGURE 7

solution A on the figure is a multiple root. It is a multiple root because f (x) = 0 at A and because the tangent line
to the graph at A is horizontal, so that f ′(x) = 0 at A. For the same reasons, f also has a multiple root at C.

67. According to Eq. (6) in Section 3.2, d
dx

bx = m(b) bx . Use the Product Rule to show that m(ab) = m(a) + m(b).

solution

m(ab)(ab)x = d

dx
(ab)x = d

dx

(
axbx

) = ax d

dx
bx + bx d

dx
ax = m(b)axbx + m(a)axbx = (m(a) + m(b))(ab)x .

Thus, m(ab) = m(a) + m(b).

3.4 Rates of Change

Preliminary Questions
1. Which units might be used for each rate of change?

(a) Pressure (in atmospheres) in a water tank with respect to depth

(b) The rate of a chemical reaction (change in concentration with respect to time with concentration in moles per liter)

solution

(a) The rate of change of pressure with respect to depth might be measured in atmospheres/meter.

(b) The reaction rate of a chemical reaction might be measured in moles/(liter·hour).

2. Two trains travel from New Orleans to Memphis in 4 hours. The first train travels at a constant velocity of 90 mph,
but the velocity of the second train varies. What was the second train’s average velocity during the trip?

solution Since both trains travel the same distance in the same amount of time, they have the same average velocity:
90 mph.

3. Estimate f (26), assuming that f (25) = 43, f ′(25) = 0.75.

solution f (x) ≈ f (25) + f ′(25)(x − 25), so f (26) ≈ 43 + 0.75(26 − 25) = 43.75.

4. The population P(t) of Freedonia in 2009 was P(2009) = 5 million.

(a) What is the meaning of P ′(2009)?

(b) Estimate P(2010) if P ′(2009) = 0.2.

solution

(a) Because P(t) measures the population of Freedonia as a function of time, the derivative P ′(2009) measures the rate
of change of the population of Freedonia in the year 2009.

(b) P(2010) ≈ P(2009) + P ′(2010). Thus, if P ′(2009) = 0.2, then P(2009) ≈ 5.2 million.
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Exercises
In Exercises 1–8, find the rate of change.

1. Area of a square with respect to its side s when s = 5.

solution Let the area be A = f (s) = s2. Then the rate of change of A with respect to s is d/ds(s2) = 2s. When
s = 5, the area changes at a rate of 10 square units per unit increase. (Draw a 5 × 5 square on graph paper and trace the
area added by increasing each side length by 1, excluding the corner, to see what this means.)

2. Volume of a cube with respect to its side s when s = 5.

solution Let the volume be V = f (s) = s3. Then the rate of change of V with respect to s is
d

ds
s3 = 3s2. When

s = 5, the volume changes at a rate of 3(52) = 75 cubic units per unit increase.

3. Cube root 3√x with respect to x when x = 1, 8, 27.

solution Let f (x) = 3√x. Writing f (x) = x1/3, we see the rate of change of f (x) with respect to x is given by

f ′(x) = 1
3x−2/3. The requested rates of change are given in the table that follows:

c ROC of f (x) with respect to x at x = c.

1 f ′(1) = 1
3 (1) = 1

3

8 f ′(8) = 1
3 (8−2/3) = 1

3 ( 1
4 ) = 1

12

27 f ′(27) = 1
3 (27−2/3) = 1

3 ( 1
9 ) = 1

27

4. The reciprocal 1/x with respect to x when x = 1, 2, 3.

solution Let f (x) = x−1. The rate of change of f (x) with respect to x is given by f ′(x) = −x−2. The requested

rates of change are then −1 when x = 1, − 1
4 when x = 2 and − 1

9 when x = 3.

5. The diameter of a circle with respect to radius.

solution The relationship between the diameter d of a circle and its radius r is d = 2r . The rate of change of the
diameter with respect to the radius is then d ′ = 2.

6. Surface area A of a sphere with respect to radius r (A = 4πr2).

solution Because A = 4πr2, the rate of change of the surface area of a sphere with respect to the radius is A′ = 8πr .

7. Volume V of a cylinder with respect to radius if the height is equal to the radius.

solution The volume of the cylinder is V = πr2h = πr3. Thus dV/dr = 3πr2.

8. Speed of sound v (in m/s) with respect to air temperature T (in kelvins), where v = 20
√

T .

solution Because, v = 20
√

T = 20T 1/2, the rate of change of the speed of sound with respect to temperature is

v′ = 10T −1/2 = 10√
T

.

In Exercises 9–11, refer to Figure 10, the graph of distance s(t) from the origin as a function of time for a car trip.

t (h)
3.02.52.01.51.00.5

150

100

50

Distance (km)

FIGURE 10 Distance from the origin versus time for a car trip.

9. Find the average velocity over each interval.

(a) [0, 0.5] (b) [0.5, 1] (c) [1, 1.5] (d) [1, 2]
solution

(a) The average velocity over the interval [0, 0.5] is

50 − 0

0.5 − 0
= 100 km/hour.
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(b) The average velocity over the interval [0.5, 1] is

100 − 50

1 − 0.5
= 100 km/hour.

(c) The average velocity over the interval [1, 1.5] is

100 − 100

1.5 − 1
= 0 km/hour.

(d) The average velocity over the interval [1, 2] is

50 − 100

2 − 1
= −50 km/hour.

10. At what time is velocity at a maximum?

solution The velocity is maximum when the slope of the distance versus time curve is most positive. This appears to
happen when t = 0.5 hours.

11. Match the descriptions (i)–(iii) with the intervals (a)–(c).

(i) Velocity increasing

(ii) Velocity decreasing

(iii) Velocity negative

(a) [0, 0.5]
(b) [2.5, 3]
(c) [1.5, 2]

solution

(a) (i) : The distance curve is increasing, and is also bending upward, so that distance is increasing at an increasing rate.

(b) (ii) : Over the interval [2.5, 3], the distance curve is flattening, showing that the car is slowing down; that is, the
velocity is decreasing.

(c) (iii) : The distance curve is decreasing, so the tangent line has negative slope; this means the velocity is negative.

12. Use the data from Table 1 in Example 1 to calculate the average rate of change of Martian temperature T with respect
to time t over the interval from 8:36 am to 9:34 am.

solution The time interval from 8:36 am to 9:34 am has length 58 minutes, and the change in temperature over this
time interval is

�T = −42 − (−47.7) = 5.7◦C.

The average rate of change is then

�T

�t
= 5.7

58
≈ 0.0983◦C/min = 5.897◦C/hr.

13. Use Figure 3 from Example 1 to estimate the instantaneous rate of change of Martian temperature with respect to
time (in degrees Celsius per hour) at t = 4 am.

solution The segment of the temperature graph around t = 4 am appears to be a straight line passing through roughly
(1:36, −70) and (4:48, −75). The instantaneous rate of change of Martian temperature with respect to time at t = 4 am
is therefore approximately

dT

dt
= −75 − (−70)

3.2
= −1.5625◦C/hour.

14. The temperature (in ◦C) of an object at time t (in minutes) is T (t) = 3
8 t2 − 15t + 180 for 0 ≤ t ≤ 20. At what rate

is the object cooling at t = 10? (Give correct units.)

solution Given T (t) = 3
8 t2 − 15t + 180, it follows that

T ′(t) = 3

4
t − 15 and T ′(10) = 3

4
(10) − 15 = −7.5◦C/min.

At t = 10, the object is cooling at the rate of 7.5◦C/min.

15. The velocity (in cm/s) of blood molecules flowing through a capillary of radius 0.008 cm is v = 6.4 × 10−8 − 0.001r2,
where r is the distance from the molecule to the center of the capillary. Find the rate of change of velocity with respect
to r when r = 0.004 cm.
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solution The rate of change of the velocity of the blood molecules is v′(r) = −0.002r . When r = 0.004 cm, this rate

is −8 × 10−6 1/s.

16. Figure 11 displays the voltage V across a capacitor as a function of time while the capacitor is being charged. Estimate
the rate of change of voltage at t = 20 s. Indicate the values in your calculation and include proper units. Does voltage
change more quickly or more slowly as time goes on? Explain in terms of tangent lines.

t (s)
4010 20 30

4

3

2

1

5

V (volts)

FIGURE 11

solution The tangent line sketched in the figure below appears to pass through the points (10, 3) and (30, 4). Thus,
the rate of change of voltage at t = 20 seconds is approximately

4 − 3

30 − 10
= 0.05 V/s.

As we move to the right of the graph, the tangent lines to it grow shallower, indicating that the voltage changes more
slowly as time goes on.

4010 20 30

4

3

2

1

y

x

17. Use Figure 12 to estimate dT /dh at h = 30 and 70, where T is atmospheric temperature (in degrees Celsius) and h

is altitude (in kilometers). Where is dT /dh equal to zero?
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FIGURE 12 Atmospheric temperature versus altitude.

solution At h = 30 km, the graph of atmospheric temperature appears to be linear passing through the points (23, −50)

and (40, 0). The slope of this segment of the graph is then

0 − (−50)

40 − 23
= 50

17
= 2.94;

so

dT

dh

∣∣∣∣
h=30

≈ 2.94◦C/km.

At h = 70 km, the graph of atmospheric temperature appears to be linear passing through the points (58, 0) and (88, −100).
The slope of this segment of the graph is then

−100 − 0

88 − 58
= −100

30
= −3.33;
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so

dT

dh

∣∣∣∣
h=70

≈ −3.33◦C/km.

dT
dh

= 0 at those points where the tangent line on the graph is horizontal. This appears to happen over the interval [13, 23],
and near the points h = 50 and h = 90.

18. The earth exerts a gravitational force of F(r) = (2.99 × 1016)/r2 newtons on an object with a mass of 75 kg located
r meters from the center of the earth. Find the rate of change of force with respect to distance r at the surface of the earth.

solution The rate of change of force is F ′(r) = −5.98 × 1016/r3. Therefore,

F ′(6.77 × 106) = −5.98 × 1016/(6.77 × 106)3 = −1.93 × 10−4 N/m.

19. Calculate the rate of change of escape velocity vesc = (2.82 × 107)r−1/2 m/s with respect to distance r from the
center of the earth.

solution The rate that escape velocity changes is v′
esc(r) = −1.41 × 107r−3/2.

20. The power delivered by a battery to an apparatus of resistance R (in ohms) is P = 2.25R/(R + 0.5)2 watts. Find the
rate of change of power with respect to resistance for R = 3 � and R = 5 �.

solution

P ′(R) = (R + 0.5)22.25 − 2.25R(2R + 1)

(R + 0.5)4
.

Therefore, P ′(3) = −0.1312 W/� and P ′(5) = −0.0609 W/�.

21. The position of a particle moving in a straight line during a 5-s trip is s(t) = t2 − t + 10 cm. Find a time t at which
the instantaneous velocity is equal to the average velocity for the entire trip.

solution Let s(t) = t2 − t + 10, 0 ≤ t ≤ 5, with s in centimeters (cm) and t in seconds (s). The average velocity
over the t-interval [0, 5] is

s(5) − s(0)

5 − 0
= 30 − 10

5
= 4 cm/s.

The (instantaneous) velocity is v(t) = s′(t) = 2t − 1. Solving 2t − 1 = 4 yields t = 5
2 s, the time at which the

instantaneous velocity equals the calculated average velocity.

22. The height (in meters) of a helicopter at time t (in minutes) is s(t) = 600t − 3t3 for 0 ≤ t ≤ 12.

(a) Plot s(t) and velocity v(t).

(b) Find the velocity at t = 8 and t = 10.

(c) Find the maximum height of the helicopter.

solution

(a) With s(t) = 600t − 3t3, it follows that v(t) = 600 − 9t2. Plots of the position and the velocity are shown below.
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(b) From part (a), we have v(t) = 600 − 9t2. Thus, v′(8) = 24 meters/minute and v′(10) = −300 meters/minute.

(c) From the graph in part (a), we see that the helicopter achieves its maximum height when the velocity is zero. Solving
600 − 9t2 = 0 for t yields

t =
√

600

9
= 10

3

√
6 minutes.

The maximum height of the helicopter is then

s

(
10

3

√
6

)
= 4000

3

√
6 ≈ 3266 meters.
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23. A particle moving along a line has position s(t) = t4 − 18t2 m at time t seconds. At which times does the particle
pass through the origin? At which times is the particle instantaneously motionless (that is, it has zero velocity)?

solution The particle passes through the origin when s(t) = t4 − 18t2 = t2(t2 − 18) = 0. This happens when t = 0

seconds and when t = 3
√

2 ≈ 4.24 seconds. With s(t) = t4 − 18t2, it follows that v(t) = s′(t) = 4t3 − 36t = 4t (t2 − 9).
The particle is therefore instantaneously motionless when t = 0 seconds and when t = 3 seconds.

24. Plot the position of the particle in Exercise 23. What is the farthest distance to the left of the origin attained
by the particle?

solution The plot of the position of the particle in Exercise 23 is shown below. Positive values of position correspond
to distance to the right of the origin and negative values correspond to distance to the left of the origin. The most negative
value of s(t) occurs at t = 3 and is equal to s(3) = 34 − 18(3)2 = −81. Thus, the particle achieves a maximum distance
to the left of the origin of 81 meters.

200

1 2 3 4 5

400
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y

x

25. A bullet is fired in the air vertically from ground level with an initial velocity 200 m/s. Find the bullet’s maximum
velocity and maximum height.

solution We employ Galileo’s formula, s(t) = s0 + v0t − 1
2gt2 = 200t − 4.9t2, where the time t is in seconds (s)

and the height s is in meters (m). The velocity is v(t) = 200 − 9.8t . The maximum velocity of 200 m/s occurs at t = 0.
This is the initial velocity. The bullet reaches its maximum height when v(t) = 200 − 9.8t = 0; i.e., when t ≈ 20.41 s.
At this point, the height is 2040.82 m.

26. Find the velocity of an object dropped from a height of 300 m at the moment it hits the ground.

solution We employ Galileo’s formula, s(t) = s0 + v0t − 1
2gt2 = 300 − 4.9t2, where the time t is in seconds (s)

and the height s is in meters (m). When the ball hits the ground its height is 0. Solve s(t) = 300 − 4.9t2 = 0 to obtain
t ≈ 7.8246 s. (We discard the negative time, which took place before the ball was dropped.) The velocity at impact is
v(7.8246) = −9.8(7.8246) ≈ −76.68 m/s. This signifies that the ball is falling at 76.68 m/s.

27. A ball tossed in the air vertically from ground level returns to earth 4 s later. Find the initial velocity and maximum
height of the ball.

solution Galileo’s formula gives s(t) = s0 + v0t − 1
2gt2 = v0t − 4.9t2, where the time t is in seconds (s) and the

height s is in meters (m). When the ball hits the ground after 4 seconds its height is 0. Solve 0 = s(4) = 4v0 − 4.9(4)2

to obtain v0 = 19.6 m/s. The ball reaches its maximum height when s′(t) = 0, that is, when 19.6 − 9.8t = 0, or t = 2
s. At this time, t = 2 s,

s(2) = 0 + 19.6(2) − 1

2
(9.8)(4) = 19.6 m.

28. Olivia is gazing out a window from the tenth floor of a building when a bucket (dropped by a window washer) passes
by. She notes that it hits the ground 1.5 s later. Determine the floor from which the bucket was dropped if each floor is
5 m high and the window is in the middle of the tenth floor. Neglect air friction.

solution Suppose H is the unknown height from which the bucket fell starting at time t = 0. The height of the bucket

at time t is s(t) = H − 4.9t2. Let T be the time when the bucket hits the ground (thus S(T ) = 0). Olivia saw the bucket
at time T − 1.5. The window is located 9.5 floors or 47.5 m above ground. So we have the equations

s(T − 1.5) = H − 4.9(T − 1.5)2 = 47.5 and s(T ) = H − 4.9T 2 = 0

Subtracting the second equation from the first, we obtain −4.9(−3T + 2.25) = 47.5, so T ≈ 4 s. The second equation
gives us H = 4.9T 2 = 4.9(4)2 ≈ 78.4 m. Since there are 5 m in a floor, the bucket was dropped 78.4/5 ≈ 15.7 floors
above the ground. The bucket was dropped from the top of the 15th floor.

29. Show that for an object falling according to Galileo’s formula, the average velocity over any time interval [t1, t2] is
equal to the average of the instantaneous velocities at t1 and t2.

solution The simplest way to proceed is to compute both values and show that they are equal. The average velocity
over [t1, t2] is

s(t2) − s(t1)

t2 − t1
= (s0 + v0t2 − 1

2gt2
2 ) − (s0 + v0t1 − 1

2gt2
1 )

t2 − t1
= v0(t2 − t1) + g

2 (t2
2 − t1

2)

t2 − t1

= v0(t2 − t1)

t2 − t1
− g

2
(t2 + t1) = v0 − g

2
(t2 + t1)
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Whereas the average of the instantaneous velocities at the beginning and end of [t1, t2] is

s′(t1) + s′(t2)

2
= 1

2

(
(v0 − gt1) + (v0 − gt2)

)
= 1

2
(2v0) − g

2
(t2 + t1) = v0 − g

2
(t2 + t1).

The two quantities are the same.

30. An object falls under the influence of gravity near the earth’s surface. Which of the following statements is
true? Explain.

(a) Distance traveled increases by equal amounts in equal time intervals.
(b) Velocity increases by equal amounts in equal time intervals.
(c) The derivative of velocity increases with time.

solution For an object falling under the influence of gravity, Galileo’s formula gives s(t) = s0 + v0t − 1
2gt2.

(a) Since the height of the object varies quadratically with respect to time, it is not true that the object covers equal
distance in equal time intervals.
(b) The velocity is v(t) = s′(t) = v0 − gt . The velocity varies linearly with respect to time. Accordingly, the velocity
decreases (becomes more negative) by equal amounts in equal time intervals. Moreover, its speed (the magnitude of
velocity) increases by equal amounts in equal time intervals.
(c) Acceleration, the derivative of velocity with respect to time, is given by a(t) = v′(t) = −g. This is a constant; it
does not change with time. Hence it is not true that acceleration (the derivative of velocity) increases with time.

31. By Faraday’s Law, if a conducting wire of length � meters moves at velocity v m/s perpendicular to a magnetic field
of strength B (in teslas), a voltage of size V = −B�v is induced in the wire. Assume that B = 2 and � = 0.5.

(a) Calculate dV/dv.
(b) Find the rate of change of V with respect to time t if v = 4t + 9.

solution
(a) Assuming that B = 2 and l = 0.5, V = −2(.5)v = −v. Therefore,

dV

dv
= −1.

(b) If v = 4t + 9, then V = −2(.5)(4t + 9) = −(4t + 9). Therefore, dV
dt

= −4.

32. The voltage V , current I , and resistance R in a circuit are related by Ohm’s Law: V = IR, where the units are volts,
amperes, and ohms. Assume that voltage is constant with V = 12 volts. Calculate (specifying units):

(a) The average rate of change of I with respect to R for the interval from R = 8 to R = 8.1
(b) The rate of change of I with respect to R when R = 8
(c) The rate of change of R with respect to I when I = 1.5

solution Let V = IR or I = V/R = 12/R (since we are assuming V = 12 volts).

(a) The average rate of change is

�I

�R
= I (8.1) − I (8)

8.1 − 8
=

12
8.1 − 12

8
0.1

≈ −0.185 A/�.

(b) dI/dR = −12/R2 = −12/82 = −0.1875 A/�.
(c) With R = 12/I , we have dR/dI = −12/I2 = −12/1.52 ≈ −5.33 �/A.

33. Ethan finds that with h hours of tutoring, he is able to answer correctly S(h) percent of the problems on a
math exam. Which would you expect to be larger: S′(3) or S′(30)? Explain.

solution One possible graph of S(h) is shown in the figure below on the left. This graph indicates that in the early
hours of working with the tutor, Ethan makes rapid progress in learning the material but eventually approaches either the
limit of his ability to learn the material or the maximum possible score on the exam. In this scenario, S′(3) would be
larger than S′(30).

An alternative graph of S(h) is shown below on the right. Here, in the early hours of working with the tutor little
progress is made (perhaps the tutor is assessing how much Ethan already knows, his learning style, his personality, etc.).
This is followed by a period of rapid improvement and finally a leveling off as Ethan reaches his maximum score. In this
scenario, S′(3) and S′(30) might be roughly equal.
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34. Suppose θ(t) measures the angle between a clock’s minute and hour hands. What is θ ′(t) at 3 o’clock?

solution The minute hand makes one full revolution every 60 minutes, so the minute hand moves at a rate of

2π

60
= π

30
rad/min.

The hour hand makes one-twelfth of a revolution every 60 minutes, so the hour hand moves with a rate of

π

360
rad/min.

At 3 o’clock, the movement of the minute hand works to decrease the angle between the minute and hour hands while the
movement of the hour hand works to increase the angle. Therefore, at 3 o’clock,

θ ′(t) = π

360
− π

30
= −11π

360
rad/min.

35. To determine drug dosages, doctors estimate a person’s body surface area (BSA) (in meters squared) using the formula
BSA = √

hm/60, where h is the height in centimeters and m the mass in kilograms. Calculate the rate of change of BSA
with respect to mass for a person of constant height h = 180. What is this rate at m = 70 and m = 80? Express your
result in the correct units. Does BSA increase more rapidly with respect to mass at lower or higher body mass?

solution Assuming constant height h = 180 cm, let f (m) = √
hm/60 =

√
5

10 m be the formula for body surface area
in terms of weight. The rate of change of BSA with respect to mass is

f ′(m) =
√

5

10

(
1

2
m−1/2

)
=

√
5

20
√

m
.

If m = 70 kg, this is

f ′(70) =
√

5

20
√

70
=

√
14

280
≈ 0.0133631

m2

kg
.

If m = 80 kg,

f ′(80) =
√

5

20
√

80
= 1

20
√

16
= 1

80

m2

kg
.

Because the rate of change of BSA depends on 1/
√

m, it is clear that BSA increases more rapidly at lower body mass.

36. The atmospheric CO2 level A(t) at Mauna Loa, Hawaii at time t (in parts per million by volume) is recorded by the
Scripps Institution of Oceanography. The values for the months January–December 2007 were

382.45, 383.68, 384.23, 386.26, 386.39, 385.87,
384.39, 381.78, 380.73, 380.81, 382.33, 383.69

(a) Assuming that the measurements were made on the first of each month, estimate A′(t) on the 15th of the months
January–November.

(b) In which months did A′(t) take on its largest and smallest values?

(c) In which month was the CO2 level most nearly constant?

solution

(a) The rate of change in the atmospheric CO2 level on the 15th of each month can be estimated using the monthly
differences A(n) − A(n − 1) for 2 ≤ n ≤ 12. The estimates we obtain are:

1.23, 0.55, 2.03, 0.13, −0.52, −1.48, −2.61, −1.05, 0.08, 1.52, 1.36

t Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

P ′(t) 1.23 0.55 2.03 0.13 −0.52 −1.48 −2.61 −1.05 0.08 1.52 1.36

(b) According to the table in part (a), the maximum rate of change occurs in March and the minimum rate is in July.

(c) According to the table in part (a), the CO2 level is most nearly constant in September.

37. The tangent lines to the graph of f (x) = x2 grow steeper as x increases. At what rate do the slopes of the tangent
lines increase?

solution Let f (x) = x2. The slopes s of the tangent lines are given by s = f ′(x) = 2x. The rate at which these
slopes are increasing is ds/dx = 2.
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38. Figure 13 shows the height y of a mass oscillating at the end of a spring. through one cycle of the oscillation. Sketch
the graph of velocity as a function of time.

Time

y

FIGURE 13

solution The position graph appears to break into four equal-sized components. Over the first quarter of the time
interval, the position graph is rising but bending downward, eventually reaching a horizontal tangent. Thus, over the first
quarter of the time interval, the velocity is positive but decreasing, eventually reaching 0. Continuing to examine the
structure of the position graph produces the following graph of velocity:

Velocity

y

Time

In Exercises 39–46, use Eq. (3) to estimate the unit change.

39. Estimate
√

2 − √
1 and

√
101 − √

100. Compare your estimates with the actual values.

solution Let f (x) = √
x = x1/2. Then f ′(x) = 1

2 (x−1/2). We are using the derivative to estimate the average rate
of change. That is,

√
x + h − √

x

h
≈ f ′(x),

so that
√

x + h − √
x ≈ hf ′(x).

Thus,
√

2 − √
1 ≈ 1f ′(1) = 1

2 (1) = 1
2 . The actual value, to six decimal places, is 0.414214. Also,

√
101 − √

100 ≈
1f ′(100) = 1

2

(
1
10

)
= .05. The actual value, to six decimal places, is 0.0498756.

40. Estimate f (4) − f (3) if f ′(x) = 2−x . Then estimate f (4), assuming that f (3) = 12.

solution Using the estimate that

f (x + h) − f (x)

h
≈ f ′(x),

so that f (x + h) − f (x) ≈ f ′(x)h with x = 3, h = 1, we get

f (4) − f (3) ≈ 2−3(1) = 1

8
.

If f (3) = 12, then f (4) ≈ 12 1
8 = 97

8 .

41. Let F(s) = 1.1s + 0.05s2 be the stopping distance as in Example 3. Calculate F(65) and estimate the increase in
stopping distance if speed is increased from 65 to 66 mph. Compare your estimate with the actual increase.

solution Let F(s) = 1.1s + .05s2 be as in Example 3. F ′(s) = 1.1 + 0.1s.

• Then F(65) = 282.75 ft and F ′(65) = 7.6 ft/mph.
• F ′(65) ≈ F(66) − F(65) is approximately equal to the change in stopping distance per 1 mph increase in speed

when traveling at 65 mph. Increasing speed from 65 to 66 therefore increases stopping distance by approximately
7.6 ft.

• The actual increase in stopping distance when speed increases from 65 mph to 66 mph is F(66) − F(65) =
290.4 − 282.75 = 7.65 feet, which differs by less than one percent from the estimate found using the derivative.

42. According to Kleiber’s Law, the metabolic rate P (in kilocalories per day) and body mass m (in kilograms) of an
animal are related by a three-quarter-power law P = 73.3m3/4. Estimate the increase in metabolic rate when body mass
increases from 60 to 61 kg.
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solution Let P(m) = 73.3m3/4 be the function relating body mass m to metabolic rate P . Then,

P ′(m) = 3

4
(73.3)m−1/4 = 54.975m−1/4

P(61) − P(60) ≈ P ′(60) = 54.975(60−1/4) = 19.7527.

As body mass is increased from 60 to 61 kg, metabolic rate is increased by approximately 19.7527 kcal/day.

43. The dollar cost of producing x bagels is C(x) = 300 + 0.25x − 0.5(x/1000)3. Determine the cost of producing 2000
bagels and estimate the cost of the 2001st bagel. Compare your estimate with the actual cost of the 2001st bagel.

solution Expanding the power of 3 yields

C(x) = 300 + 0.25x − 5 × 10−10x3.

This allows us to get the derivative C′(x) = 0.25 − 1.5 × 10−9x2. The cost of producing 2000 bagels is

C(2000) = 300 + 0.25(2000) − 0.5(2000/1000)3 = 796

dollars. The cost of the 2001st bagel is, by definition, C(2001) − C(2000). By the derivative estimate, C(2001) −
C(2000) ≈ C′(2000)(1), so the cost of the 2001st bagel is approximately

C′(2000) = 0.25 − 1.5 × 10−9(20002) = $0.244.

C(2001) = 796.244, so the exact cost of the 2001st bagel is indistinguishable from the estimated cost. The function is
very nearly linear at this point.

44. Suppose the dollar cost of producing x video cameras is C(x) = 500x − 0.003x2 + 10−8x3.

(a) Estimate the marginal cost at production level x = 5000 and compare it with the actual cost C(5001) − C(5000).

(b) Compare the marginal cost at x = 5000 with the average cost per camera, defined as C(x)/x.

solution Let C(x) = 500x − 0.003x2 + 10−8x3. Then

C′(x) = 500 − 0.006x + (3 × 10−8)x2.

(a) The cost difference is approximately C′(5000) = 470.75. The actual cost is C(5001) − C(5000) = 470.747, which
is quite close to the marginal cost computed using the derivative.

(b) The average cost per camera is

C(5000)

5000
= 2426250

5000
= 485.25,

which is slightly higher than the marginal cost.

45. Demand for a commodity generally decreases as the price is raised. Suppose that the demand for oil (per capita per
year) is D(p) = 900/p barrels, where p is the dollar price per barrel. Find the demand when p = $40. Estimate the
decrease in demand if p rises to $41 and the increase if p declines to $39.

solution D(p) = 900p−1, so D′(p) = −900p−2. When the price is $40 a barrel, the per capita demand is D(40) =
22.5 barrels per year. With an increase in price from $40 to $41 a barrel, the change in demand D(41) − D(40) is
approximately D′(40) = −900(40−2) = −0.5625 barrels a year. With a decrease in price from $40 to $39 a barrel, the
change in demand D(39) − D(40) is approximately −D′(40) = +0.5625. An increase in oil prices of a dollar leads to a
decrease in demand of 0.5625 barrels a year, and a decrease of a dollar leads to an increase in demand of 0.5625 barrels
a year.

46. The reproduction rate f of the fruit fly Drosophila melanogaster, grown in bottles in a laboratory, decreases with the
number p of flies in the bottle. A researcher has found the number of offspring per female per day to be approximately
f (p) = (34 − 0.612p)p−0.658.

(a) Calculate f (15) and f ′(15).

(b) Estimate the decrease in daily offspring per female when p is increased from 15 to 16. Is this estimate larger or
smaller than the actual value f (16) − f (15)?

(c) Plot f (p) for 5 ≤ p ≤ 25 and verify that f (p) is a decreasing function of p. Do you expect f ′(p) to be
positive or negative? Plot f ′(p) and confirm your expectation.

solution Let

f (p) = (34 − 0.612p)p−0.658 = 34p−0.658 − 0.612p0.342.

Then

f ′(p) = −22.372p−1.658 − 0.209304p−0.658.
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(a) f (15) = 34(15)−0.658 − 0.612(15)0.342 ≈ 4.17767 offspring per female per day and f ′(15) =
−22.372(15)−1.658 − 0.209304(15)−0.658 ≈ −0.28627 offspring per female per day per fly.

(b) f (16) − f (15) ≈ f ′(15) ≈ −0.28627. The decrease in daily offspring per female is estimated at 0.28627. f (16) −
f (15) = −0.272424. The actual decrease in daily offspring per female is 0.272424. The actual decrease in daily offspring
per female is less than the estimated decrease. This is because the graph of the function bends towards the x axis.

(c) The function f (p) is plotted below at the left and is clearly a decreasing function of p; we therefore expect that f ′(p)

will be negative. The plot of the derivative shown below at the right confirms our expectation.
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47. According to Stevens’ Law in psychology, the perceived magnitude of a stimulus is proportional (approxi-
mately) to a power of the actual intensity I of the stimulus. Experiments show that the perceived brightness B of a light
satisfies B = kI2/3, where I is the light intensity, whereas the perceived heaviness H of a weight W satisfies H = kW3/2

(k is a constant that is different in the two cases). Compute dB/dI and dH/dW and state whether they are increasing or
decreasing functions. Then explain the following statements:

(a) A one-unit increase in light intensity is felt more strongly when I is small than when I is large.

(b) Adding another pound to a load W is felt more strongly when W is large than when W is small.

solution

(a) dB/dI = 2k

3
I−1/3 = 2k

3I1/3
.

As I increases, dB/dI shrinks, so that the rate of change of perceived intensity decreases as the actual intensity
increases. Increased light intensity has a diminished return in perceived intensity. A sketch of B against I is shown: See
that the height of the graph increases more slowly as you move to the right.

(b) dH/dW = 3k
2 W1/2. As W increases, dH/dW increases as well, so that the rate of change of perceived weight

increases as weight increases. A sketch of H against W is shown: See that the graph becomes steeper as you move to the
right.

48. Let M(t) be the mass (in kilograms) of a plant as a function of time (in years). Recent studies by Niklas and Enquist
have suggested that a remarkably wide range of plants (from algae and grass to palm trees) obey a three-quarter-power
growth law—that is, dM/dt = CM3/4 for some constant C.

(a) If a tree has a growth rate of 6 kg/yr when M = 100 kg, what is its growth rate when M = 125 kg?

(b) If M = 0.5 kg, how much more mass must the plant acquire to double its growth rate?

solution

(a) Suppose a tree has a growth rate dM/dt of 6 kg/yr when M = 100, then 6 = C(1003/4) = 10C
√

10, so that

C = 3
√

10
50 . When M = 125,

dM

dt
= C(1253/4) = 3

√
10

50
25(51/4) = 7.09306.

(b) The growth rate when M = 0.5 kg is dM/dt = C(0.53/4). To double the rate, we must find M so that dM/dt =
CM3/4 = 2C(0.53/4). We solve for M .

CM3/4 = 2C(0.53/4)
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M3/4 = 2(0.53/4)

M = (2(0.53/4))4/3 = 1.25992.

The plant must acquire the difference 1.25992 − 0.5 = 0.75992 kg in order to double its growth rate.
Note that a doubling of growth rate requires more than a doubling of mass.

Further Insights and Challenges
Exercises 49–51: The Lorenz curve y = F(r) is used by economists to study income distribution in a given country (see
Figure 14). By definition, F(r) is the fraction of the total income that goes to the bottom rth part of the population, where
0 ≤ r ≤ 1. For example, if F(0.4) = 0.245, then the bottom 40% of households receive 24.5% of the total income. Note
that F(0) = 0 and F(1) = 1.
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FIGURE 14

49. Our goal is to find an interpretation for F ′(r). The average income for a group of households is the total
income going to the group divided by the number of households in the group. The national average income is A = T/N ,
where N is the total number of households and T is the total income earned by the entire population.

(a) Show that the average income among households in the bottom rth part is equal to (F (r)/r)A.
(b) Show more generally that the average income of households belonging to an interval [r, r + �r] is equal to(

F(r + �r) − F(r)

�r

)
A

(c) Let 0 ≤ r ≤ 1. A household belongs to the 100rth percentile if its income is greater than or equal to the income of
100r % of all households. Pass to the limit as �r → 0 in (b) to derive the following interpretation: A household in the
100rth percentile has income F ′(r)A. In particular, a household in the 100rth percentile receives more than the national
average if F ′(r) > 1 and less if F ′(r) < 1.
(d) For the Lorenz curves L1 and L2 in Figure 14(B), what percentage of households have above-average income?

solution
(a) The total income among households in the bottom rth part is F(r)T and there are rN households in this part of the
population. Thus, the average income among households in the bottom rth part is equal to

F(r)T

rN
= F(r)

r
· T

N
= F(r)

r
A.

(b) Consider the interval [r, r + �r]. The total income among households between the bottom rth part and the bottom
r + �r-th part is F(r + �r)T − F(r)T . Moreover, the number of households covered by this interval is (r + �r)N −
rN = �rN . Thus, the average income of households belonging to an interval [r, r + �r] is equal to

F(r + �r)T − F(r)T

�rN
= F(r + �r) − F(r)

�r
· T

N
= F(r + �r) − F(r)

�r
A.

(c) Take the result from part (b) and let �r → 0. Because

lim
�r→0

F(r + �r) − F(r)

�r
= F ′(r),

we find that a household in the 100rth percentile has income F ′(r)A.
(d) The point P in Figure 14(B) has an r-coordinate of 0.6, while the point Q has an r-coordinate of roughly 0.75. Thus,
on curve L1, 40% of households have F ′(r) > 1 and therefore have above-average income. On curve L2, roughly 25%
of households have above-average income.
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50. The following table provides values of F(r) for Sweden in 2004. Assume that the national average income was
A = 30,000 euros.

r 0 0.2 0.4 0.6 0.8 1
F(r) 0 0.01 0.245 0.423 0.642 1

(a) What was the average income in the lowest 40% of households?

(b) Show that the average income of the households belonging to the interval [0.4, 0.6] was 26,700 euros.

(c) Estimate F ′(0.5). Estimate the income of households in the 50th percentile? Was it greater or less than the national
average?

solution

(a) The average income in the lowest 40% of households is F ′(0.4)A = 0.245(30,000) = 7350 euros.

(b) The average income of the households belonging to the interval [0.4, 0.6] is

F(0.6) − F(0.4)

0.2
A = 0.423 − 0.245

0.2
(30,000) = (0.89)(30,000) = 26700

euros.

(c) We estimate

F ′(0.5) ≈ F(0.6) − F(0.4)

0.2
= 0.423 − 0.245

0.2
= 0.89.

The income of households in the 50th percentile is then F ′(0.5)A = 0.89(30,000) = 26,700 euros, which is less than
the national average.

51. Use Exercise 49 (c) to prove:

(a) F ′(r) is an increasing function of r .

(b) Income is distributed equally (all households have the same income) if and only if F(r) = r for 0 ≤ r ≤ 1.

solution

(a) Recall from Exercise 49 (c) that F ′(r)A is the income of a household in the 100r-th percentile. Suppose 0 ≤ r1 <

r2 ≤ 1. Because r2 > r1, a household in the 100r2-th percentile must have income at least as large as a household in the
100r1-th percentile. Thus, F ′(r2)A ≥ F ′(r1)A, or F ′(r2) ≥ F ′(r1). This implies F ′(r) is an increasing function of r .

(b) If F(r) = r for 0 ≤ r ≤ 1, then F ′(r) = 1 and households in all percentiles have income equal to the national
average; that is, income is distributed equally. Alternately, if income is distributed equally (all households have the same
income), then F ′(r) = 1 for 0 ≤ r ≤ 1. Thus, F must be a linear function in r with slope 1. Moreover, the condition
F(0) = 0 requires the F intercept of the line to be 0. Hence, F(r) = 1 · r + 0 = r .

52. Studies of Internet usage show that website popularity is described quite well by Zipf’s Law, according to
which the nth most popular website receives roughly the fraction 1/n of all visits. Suppose that on a particular day, the
nth most popular site had approximately V (n) = 106/n visitors (for n ≤ 15,000).

(a) Verify that the top 50 websites received nearly 45% of the visits. Hint: Let T (N) denote the sum of V (n) for
1 ≤ n ≤ N . Use a computer algebra system to compute T (45) and T (15,000).

(b) Verify, by numerical experimentation, that when Eq. (3) is used to estimate V (n + 1) − V (n), the error in the estimate
decreases as n grows larger. Find (again, by experimentation) an N such that the error is at most 10 for n ≥ N .

(c) Using Eq. (3), show that for n ≥ 100, the nth website received at most 100 more visitors than the (n + 1)st website.

solution

(a) In Mathematica, using the command Sum[10 ˆ 6/n,{n,50}] yields 4.49921 × 106 and the command
Sum[10 ˆ 6/n,{n,15000}] yields 1.01931 × 107. We see that the first 50 sites get around 4.4 million hits, nearly half
the 10.19 million hits of the first 15000 sites.

(b) We use V[n_] := 10 ˆ 6/n, and compute the error V (n + 1) − V (n) − V ′(n) for various values of n. The table of
values computed follows:

n 10 20 30 40 50

(V (n + 1) − V (n)) − V ′(n) 909.091 119.048 35.8423 15.2489 7.84314

The error decreases in every entry. Furthermore, for n > 50, the error appears to be less than 10.

(c) Since V (n) = 106n−1, V ′(n) = −106n−2. The marginal derivative estimate Eq. (3) tells us that

V (n) − V (n + 1) ≈ −V ′(n) = 106n−2.

If n ≥ 100, −V ′(n) ≤ 106(100)−2 = 106(10−4) = 100. Therefore V (n) − V (n + 1) < 100 for n ≥ 100.
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In Exercises 53 and 54, the average cost per unit at production level x is defined as Cavg(x) = C(x)/x, where C(x) is
the cost function. Average cost is a measure of the efficiency of the production process.

53. Show that Cavg(x) is equal to the slope of the line through the origin and the point (x, C(x)) on the graph of C(x).
Using this interpretation, determine whether average cost or marginal cost is greater at points A, B, C, D in Figure 15.

Cost

Production level

A B C

D

FIGURE 15 Graph of C(x).

solution By definition, the slope of the line through the origin and (x, C(x)), that is, between (0, 0) and (x, C(x)) is

C(x) − 0

x − 0
= C(x)

x
= Cav.

At point A, average cost is greater than marginal cost, as the line from the origin to A is steeper than the curve at this
point (we see this because the line, tracing from the origin, crosses the curve from below). At point B, the average cost is
still greater than the marginal cost. At the point C, the average cost and the marginal cost are nearly the same, since the
tangent line and the line from the origin are nearly the same. The line from the origin to D crosses the cost curve from
above, and so is less steep than the tangent line to the curve at D; the average cost at this point is less than the marginal
cost.

54. The cost in dollars of producing alarm clocks is C(x) = 50x3 − 750x2 + 3740x + 3750 where x is in units of 1000.

(a) Calculate the average cost at x = 4, 6, 8, and 10.

(b) Use the graphical interpretation of average cost to find the production level x0 at which average cost is lowest. What
is the relation between average cost and marginal cost at x0 (see Figure 16)?

10,000

5,000

1 2 3 4 5 6 7 8 9 10
Units (thousands)

Cost
(dollars)

FIGURE 16 Cost function C(x) = 50x3 − 750x2 + 3740x + 3750.

solution Let C(x) = 50x3 − 750x2 + 3740x + 3750.

(a) The slope of the line through the origin and the point (x, C(x)) is

C(x) − 0

x − 0
= C(x)

x
= Cav(x),

the average cost.

x 4 6 8 10

C(x) 9910 9990 11270 16150

Cav(x) 2477.5 1665 1408.75 1615

(b) The average cost is lowest at the point P0 where the angle between the x-axis and the line through the origin and P0
is lowest. This is at the point (8, 11270), where the line through the origin and the graph of C(x) meet in the figure above.
You can see that the line is also tangent to the graph of C(x), so the average cost and the marginal cost are equal at this
point.
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3.5 Higher Derivatives

Preliminary Questions
1. On September 4, 2003, the Wall Street Journal printed the headline “Stocks Go Higher, Though the Pace of Their

Gains Slows.” Rephrase this headline as a statement about the first and second time derivatives of stock prices and sketch
a possible graph.

solution Because stocks are going higher, stock prices are increasing and the first derivative of stock prices must
therefore be positive. On the other hand, because the pace of gains is slowing, the second derivative of stock prices must
be negative.

Stock
price

Time

2. True or false? The third derivative of position with respect to time is zero for an object falling to earth under the
influence of gravity. Explain.

solution This statement is true. The acceleration of an object falling to earth under the influence of gravity is constant;
hence, the second derivative of position with respect to time is constant. Because the third derivative is just the derivative
of the second derivative and the derivative of a constant is zero, it follows that the third derivative is zero.

3. Which type of polynomial satisfies f ′′′(x) = 0 for all x?

solution The third derivative of all quadratic polynomials (polynomials of the form ax2 + bx + c for some constants
a, b and c) is equal to 0 for all x.

4. What is the millionth derivative of f (x) = ex?

solution Every derivative of f (x) = ex is ex .

Exercises
In Exercises 1–16, calculate y′′ and y′′′.

1. y = 14x2

solution Let y = 14x2. Then y′ = 28x, y′′ = 28, and y′′′ = 0.

2. y = 7 − 2x

solution Let y = 7 − 2x. Then y′ = −2, y′′ = 0, and y′′′ = 0.

3. y = x4 − 25x2 + 2x

solution Let y = x4 − 25x2 + 2x. Then y′ = 4x3 − 50x + 2, y′′ = 12x2 − 50, and y′′′ = 24x.

4. y = 4t3 − 9t2 + 7

solution Let y = 4t3 − 9t2 + 7. Then y′ = 12t2 − 18t , y′′ = 24t − 18, and y′′′ = 24.

5. y = 4

3
πr3

solution Let y = 4
3πr3. Then y′ = 4πr2, y′′ = 8πr , and y′′′ = 8π .

6. y = √
x

solution Let y = √
x = x1/2. Then y′ = 1

2x−1/2, y′′ = − 1
4x−3/2, and y′′′ = 3

8x−5/2.

7. y = 20t4/5 − 6t2/3

solution Let y = 20t4/5 − 6t2/3. Then y′ = 16t−1/5 − 4t−1/3, y′′ = − 16
5 t−6/5 + 4

3 t−4/3, and y′′′ = 96
25 t−11/15 −

16
9 t−7/3.

8. y = x−9/5

solution Let y = x−9/5. Then y′ = − 9
5x−14/5, y′′ = 126

25 x−19/5, and y′′′ = − 2394
125 x−24/5.

9. y = z − 4

z

solution Let y = z − 4z−1. Then y′ = 1 + 4z−2, y′′ = −8z−3, and y′′′ = 24z−4.
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10. y = 5t−3 + 7t−8/3

solution Let y = 5t−3 + 7t−8/3. Then y′ = −15t−4 − 56
3 t−11/3, y′′ = 60t−5 + 616

9 t−14/3, and y′′′ = −300t−6 −
8624
27 t−17/3.

11. y = θ2(2θ + 7)

solution Let y = θ2(2θ + 7) = 2θ3 + 7θ2. Then y′ = 6θ2 + 14θ , y′′ = 12θ + 14, and y′′′ = 12.

12. y = (x2 + x)(x3 + 1)

solution Since we don’t want to apply the product rule to an ever growing list of products, we multiply through

first. Let y = (x2 + x)(x3 + 1) = x5 + x4 + x2 + x. Then y′ = 5x4 + 4x3 + 2x + 1, y′′ = 20x3 + 12x2 + 2, and
y′′′ = 60x2 + 24x.

13. y = x − 4

x

solution Let y = x−4
x = 1 − 4x−1. Then y′ = 4x−2, y′′ = −8x−3, and y′′′ = 24x−4.

14. y = 1

1 − x

solution Let y = 1
1−x

. Applying the quotient rule:

y′ = (1 − x)(0) − 1(−1)

(1 − x)2
= 1

(1 − x)2
= 1

1 − 2x + x2

y′′ = (1 − 2x + x2)(0) − (1)(−2 + 2x)

(1 − 2x + x2)2
= 2 − 2x

(1 − x)4
= 2

(1 − x)3
= 2

1 − 3x + 3x2 − x3

y′′′ = (1 − 3x + 3x2 − x3)(0) − 2(−3 + 6x − 3x2)

(1 − 3x + 3x2 − x3)2
= 6(x2 − 2x + 1)

(1 − x)6
= 6

(1 − x)4
.

15. y = x5ex

solution Let y = x5ex . Then

y′ = x5ex + 5x4ex = (x5 + 5x4)ex

y′′ = (x5 + 5x4)ex + (5x4 + 20x3)ex = (x5 + 10x4 + 20x3)ex

y′′′ = (x5 + 10x4 + 20x3)ex + (5x4 + 40x3 + 60x2)ex = (x5 + 15x4 + 60x3 + 60x2)ex .

16. y = ex

x

solution Let y = ex

x = x−1ex . Then

y′ = x−1ex + ex(−x−2) = (x−1 − x−2)ex

y′′ = (x−1 − x−2)ex + ex(−x−2 + 2x−3) = (x−1 − 2x−2 + 2x−3)ex

y′′′ = (x−1 − 2x−2 + 2x−3)ex + ex(−x−2 + 4x−3 − 6x−4) = (x−1 − 3x−2 + 6x−3 − 6x−4)ex .

In Exercises 17–26, calculate the derivative indicated.

17. f (4)(1), f (x) = x4

solution Let f (x) = x4. Then f ′(x) = 4x3, f ′′(x) = 12x2, f ′′′(x) = 24x, and f (4)(x) = 24. Thus f (4)(1) = 24.

18. g′′′(−1), g(t) = −4t−5

solution Let g(t) = −4t−5. Then g′(t) = 20t−6, g′′(t) = −120t−7, and g′′′(t) = 840t−8. Hence g′′′(−1) = 840.

19.
d2y

dt2

∣∣∣∣
t=1

, y = 4t−3 + 3t2

solution Let y = 4t−3 + 3t2. Then dy
dt

= −12t−4 + 6t and d2y

dt2 = 48t−5 + 6. Hence

d2y

dt2

∣∣∣∣∣
t=1

= 48(1)−5 + 6 = 54.
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20.
d4f

dt4

∣∣∣∣
t=1

, f (t) = 6t9 − 2t5

solution Let f (t) = 6t9 − 2t5. Then df
dt

= 54t8 − 10t4, d2f

dt2 = 432t7 − 40t3, d3f

dt3 = 3024t6 − 120t2, and

d4f

dt4 = 18144t5 − 240t . Therefore,

d4f

dt4

∣∣∣∣∣
t=1

= 17904.

21.
d4x

dt4

∣∣∣∣
t=16

, x = t−3/4

solution Let x(t) = t−3/4. Then dx
dt

= − 3
4 t−7/4, d2x

dt2 = 21
16 t−11/4, d3x

dt3 = − 231
64 t−15/4, and d4x

dt4 = 3465
256 t−19/4.

Thus

d4x

dt4

∣∣∣∣∣
t=16

= 3465

256
16−19/4 = 3465

134217728
.

22. f ′′′(4), f (t) = 2t2 − t

solution Since f (t) = 2t2 − t , f ′(t) = 4t − 1, f ′′(t) = 4, and f ′′′(t) = 0 for all t . In particular, f ′′′(4) = 0.

23. f ′′′(−3), f (x) = 4ex − x3

solution Let f (x) = 4ex − x3. Then f ′(x) = 4ex − 3x2, f ′′(x) = 4ex − 6x, f ′′′(x) = 4ex − 6, and f ′′′(−3) =
4e−3 − 6.

24. f ′′(1), f (t) = t

t + 1

solution Let f (t) = t

t + 1
. Then

f ′(t) = (t + 1)(1) − (t)(1)

(t + 1)2
= 1

(t + 1)2
= 1

t2 + 2t + 1

and

f ′′(t) = (t2 + 2t + 1)(0) − 1(2t + 2)

(t2 + 2t + 1)2
= −2(t + 1)

(t + 1)4
= − 2

(t + 1)3
.

Thus, f ′′(1) = −1

4
.

25. h′′(1), h(w) = √
wew

solution Let h(w) = √
wew = w1/2ew . Then

h′(w) = w1/2ew + ew

(
1

2
w−1/2

)
=

(
w1/2 + 1

2
w−1/2

)
ew

and

h′′(w) =
(

w1/2 + 1

2
w−1/2

)
ew + ew

(
1

2
w−1/2 − 1

4
w−3/2

)
=

(
w1/2 + w−1/2 − 1

4
w−3/2

)
ew.

Thus, h′′(1) = 7

4
e.

26. g′′(0), g(s) = es

s + 1

solution Let g(s) = es

s + 1
. Then

g′(s) = (s + 1)es − es(1)

(s + 1)2
= ses

s2 + 2s + 1

and

g′′(s) = (s2 + 2s + 1)(ses + es) − ses(2s + 2)

(s2 + 2s + 1)2
= (s2 + 1)es

(s + 1)3
.

Thus, g′′(0) = 1.
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27. Calculate y(k)(0) for 0 ≤ k ≤ 5, where y = x4 + ax3 + bx2 + cx + d (with a, b, c, d the constants).

solution Applying the power, constant multiple, and sum rules at each stage, we get (note y(0) is y by convention):

k y(k)

0 x4 + ax3 + bx2 + cx + d

1 4x3 + 3ax2 + 2bx + c

2 12x2 + 6ax + 2b

3 24x + 6a

4 24

5 0

from which we get y(0)(0) = d, y(1)(0) = c, y(2)(0) = 2b, y(3)(0) = 6a, y(4)(0) = 24, and y(5)(0) = 0.

28. Which of the following satisfy f (k)(x) = 0 for all k ≥ 6?

(a) f (x) = 7x4 + 4 + x−1 (b) f (x) = x3 − 2

(c) f (x) = √
x (d) f (x) = 1 − x6

(e) f (x) = x9/5 (f) f (x) = 2x2 + 3x5

solution Equations (b) and (f) go to zero after the sixth derivative. We don’t have to take the derivatives to see this.

• Look at (a). f ′(x) = 28x3 − x−2. Every time we take higher derivatives of f (x), the negative exponent will keep
decreasing, and will never become zero.

• In the case of (b), we see that every derivative decreases the degree (the highest exponent) of the polynomial by
one, so that f (4)(x) = 0.

• For (c), f ′(x) = d
dx

x1/2 = 1
2x−1/2. Every further derivative of f (x) is going to make the exponent more negative,

so that it will never go to zero.
• In the case of (d), like (b), the highest exponent will decrease with every derivative, but 6 derivatives will leave the

exponent zero, f (6)(x) will be −6!. This is easy to verify.
• (e) is like (c). Since the exponent is not a whole number, successive derivatives will make the exponent “pass over”

zero, and go to negative infinity.
• In the case of (f), f (5)(x) is constant, so that f (6)(x) = 0 for all x.

29. Use the result in Example 3 to find
d6

dx6
x−1.

solution The equation in Example 3 indicates that

d6

dx6
x−1 = (−1)66!x−6−1.

(−1)6 = 1 and 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720, so

d6

dx6
x−1 = 720x−7.

30. Calculate the first five derivatives of f (x) = √
x.

(a) Show that f (n)(x) is a multiple of x−n+1/2.

(b) Show that f (n)(x) alternates in sign as (−1)n−1 for n ≥ 1.

(c) Find a formula for f (n)(x) for n ≥ 2. Hint: Verify that the coefficient is ±1 · 3 · 5 · · · 2n − 3

2n
.

solution We use the Power Rule:

df

dx
= 1

2 x−1/2 d4f

dx4
= − 5

2

( 3
2

)( 1
2

)( 1
2

)
x−7/2

d2f

dx2
= − 1

2

( 1
2

)
x−3/2 d5f

dx5 = 7
2

( 5
2

)( 3
2

)( 1
2

)( 1
2

)
x−9/2

d3f

dx3
= 3

2

( 1
2

)( 1
2

)
x−5/2 d6f

dx6
= − 9

2

( 7
2

)( 5
2

)( 3
2

)( 1
2

)( 1
2

)
x−11/2
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The pattern we see here is that the nth derivative is a multiple of ±x−n+ 1
2 . Which multiple? The coefficient is the product

of the odd numbers up to 2n − 3 divided by 2n. Therefore we can write a general formula for the nth derivative as follows:

f (n)(x) = (−1)n−1 1 · 3 · 5 · · · (2n − 3)

2n
x−n+ 1

2

In Exercises 31–36, find a general formula for f (n)(x).

31. f (x) = x−2

solution f ′(x) = −2x−3, f ′′(x) = 6x−4, f ′′′(x) = −24x−5, f (4)(x) = 5 · 24x−6, . . . . From this we can conclude

that the nth derivative can be written as f (n)(x) = (−1)n(n + 1)!x−(n+2).

32. f (x) = (x + 2)−1

solution Let f (x) = (x + 2)−1 = 1
x+2 . Then f ′(x) = −1(x + 2)−2, f ′′(x) = 2(x + 2)−3,f ′′′(x) = −6(x + 2)−4,

f (4)(x) = 24(x + 2)−5, . . . From this we conclude that the nth derivative can be written as

f (n)(x) = (−1)nn!(x + 2)−(n+1).

33. f (x) = x−1/2

solution f ′(x) = −1
2 x−3/2. We will avoid simplifying numerators and denominators to find the pattern:

f ′′(x) = −3

2

−1

2
x−5/2 = (−1)2 3 × 1

22
x−5/2

f ′′′(x) = −5

2

3 × 1

22
x−7/2 = (−1)3 5 × 3 × 1

23
x−7/2

...

f (n)(x) = (−1)n
(2n − 1) × (2n − 3) × . . . × 1

2n
x−(2n+1)/2.

34. f (x) = x−3/2

solution f ′(x) = −3
2 x−5/2. We will avoid simplifying numerators and denominators to find the pattern:

f ′′(x) = −5

2

−3

2
x−7/2 = (−1)2 5 × 3

22
x−7/2

f ′′′(x) = −7

2

5 × 3

22
x−9/2 = (−1)3 7 × 5 × 3

23
x−9/2

...

f (n)(x) = (−1)n
(2n + 1) × (2n − 1) × . . . × 3

2n
x−(2n+3)/2.

35. f (x) = xe−x

solution Let f (x) = xe−x . Then

f ′(x) = x(−e−x) + e−x = (1 − x)e−x = −(x − 1)e−x

f ′′(x) = (1 − x)(−e−x) − e−x = (x − 2)e−x

f ′′′(x) = (x − 2)(−e−x) + e−x = (3 − x)e−x = −(x − 3)e−x

From this we conclude that the nth derivative can be written as f (n)(x) = (−1)n(x − n)e−x .

36. f (x) = x2ex

solution Let f (x) = x2ex . Then

f ′(x) = x2ex + 2xex = (x2 + 2x)ex

f ′′(x) = (x2 + 2x)ex + ex(2x + 2) = (x2 + 4x + 2)ex

f ′′′(x) = (x2 + 4x + 2)ex + ex(2x + 4) = (x2 + 6x + 6)ex

f (4)(x) = (x2 + 6x + 6)ex + ex(2x + 6) = (x2 + 8x + 12)ex

From this we conclude that the nth derivative can be written as f (n)(x) = (x2 + 2nx + n(n − 1))ex .
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37. (a) Find the acceleration at time t = 5 min of a helicopter whose height is s(t) = 300t − 4t3 m.

(b) Plot the acceleration h′′(t) for 0 ≤ t ≤ 6. How does this graph show that the helicopter is slowing down during this
time interval?

solution

(a) Let s(t) = 300t − 4t3, with t in minutes and s in meters. The velocity is v(t) = s′(t) = 300 − 12t2 and acceleration
is a(t) = s′′(t) = −24t . Thus a(5) = −120 m/min2.

(b) The acceleration of the helicopter for 0 ≤ t ≤ 6 is shown in the figure below. As the acceleration of the helicopter is
negative, the velocity of the helicopter must be decreasing. Because the velocity is positive for 0 ≤ t ≤ 6, the helicopter
is slowing down.

−140
−120
−100
−80
−60
−40
−20 1 2 3 4 5 6

y

x

38. Find an equation of the tangent to the graph of y = f ′(x) at x = 3, where f (x) = x4.

solution Let f (x) = x4 and g(x) = f ′(x) = 4x3. Then g′(x) = 12x2. The tangent line to g at x = 3 is given by

y = g′(3)(x − 3) + g(3) = 108(x − 3) + 108 = 108x − 216.

39. Figure 5 shows f , f ′, and f ′′. Determine which is which.

(A) (B)

x

y

321
x

y

321
x

y

(C)

321

FIGURE 5

solution (a) f ′′ (b) f ′ (c) f .
The tangent line to (c) is horizontal at x = 1 and x = 3, where (b) has roots. The tangent line to (b) is horizontal at

x = 2 and x = 0, where (a) has roots.

40. The second derivative f ′′ is shown in Figure 6. Which of (A) or (B) is the graph of f and which is f ′?

x

y

x

y

x

y

(A) (B)f ''(x)

FIGURE 6

solution f ′(x) = A and f (x) = B.

41. Figure 7 shows the graph of the position s of an object as a function of time t . Determine the intervals on which the
acceleration is positive.

Time

40302010

Position

FIGURE 7

solution Roughly from time 10 to time 20 and from time 30 to time 40. The acceleration is positive over the same
intervals over which the graph is bending upward.
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42. Find a polynomial f (x) that satisfies the equation xf ′′(x) + f (x) = x2.

solution Since xf ′′(x) + f (x) = x2, and x2 is a polynomial, it seems reasonable to assume that f (x) is a polynomial
of some degree, call it n. The degree of f ′′(x) is n − 2, so the degree of xf ′′(x) is n − 1, and the degree of xf ′′(x) + f (x)

is n. Hence, n = 2, since the degree of x2 is 2. Therefore, let f (x) = ax2 + bx + c. Then f ′(x) = 2ax + b and
f ′′(x) = 2a. Substituting into the equation xf ′′(x) + f (x) = x2 yields ax2 + (2a + b)x + c = x2, an identity in x.
Equating coefficients, we have a = 1, 2a + b = 0, c = 0. Therefore, b = −2 and f (x) = x2 − 2x.

43. Find a value of n such that y = xnex satisfies the equation xy′ = (x − 3)y.

solution Let y = xnex . Then

y′ = xnex + nxn−1ex = xn−1ex(x + n),

and

xy′ = xnex(x + n) = (x + n)y.

Thus, y = xnex satisfies the equation xy′ = (x − 3)y for n = −3.

44. Which of the following descriptions could not apply to Figure 8? Explain.

(a) Graph of acceleration when velocity is constant

(b) Graph of velocity when acceleration is constant

(c) Graph of position when acceleration is zero

Time

Distance

FIGURE 8

solution

(a) Does NOT apply to the figure because if v(t) = C where C is a constant, then a(t) = v′(t) = 0, which is the
horizontal line going through the origin.

(b) Can apply because the graph has a constant slope.

(c) Can apply because if we took this as a position graph, the velocity graph would be a horizontal line and thus,
acceleration would be zero.

45. According to one model that takes into account air resistance, the acceleration a(t) (in m/s2) of a skydiver of mass
m in free fall satisfies

a(t) = −9.8 + k

m
v(t)2

where v(t) is velocity (negative since the object is falling) and k is a constant. Suppose that m = 75 kg and k = 14 kg/m.

(a) What is the object’s velocity when a(t) = −4.9?

(b) What is the object’s velocity when a(t) = 0? This velocity is the object’s terminal velocity.

solution Solving a(t) = −9.8 + k
mv(t)2 for the velocity and taking into account that the velocity is negative since

the object is falling, we find

v(t) = −
√

m

k
(a(t) + 9.8) = −

√
75

14
(a(t) + 9.8).

(a) Substituting a(t) = −4.9 into the above formula for the velocity, we find

v(t) = −
√

75

14
(4.9) = −√

26.25 = −5.12 m/s.

(b) When a(t) = 0,

v(t) = −
√

75

14
(9.8) = −√

52.5 = −7.25 m/s.
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46. According to one model that attempts to account for air resistance, the distance s(t) (in meters) traveled by
a falling raindrop satisfies

d2s

dt2
= g − 0.0005

D

(
ds

dt

)2

where D is the raindrop diameter and g = 9.8 m/s2. Terminal velocity vterm is defined as the velocity at which the drop
has zero acceleration (one can show that velocity approaches vterm as time proceeds).

(a) Show that vterm = √
2000gD.

(b) Find vterm for drops of diameter 10−3 m and 10−4 m.
(c) In this model, do raindrops accelerate more rapidly at higher or lower velocities?

solution

(a) vterm is found by setting d2s
dt2 = 0, and solving for ds

dt
= v.

0 = g − 0.0005

D

(
ds

dt

)2

g = 0.0005

D

(
ds

dt

)2

ds

dt
=

√
g

D

0.0005
= √

2000gD = v1/2.

(b) If D = 0.003 ft,

vterm = √
2000g(0.003) = √

58.8 = 7.668 m/s.

If D = 0.0003 ft,

vterm = √
2000g(0.0003) = √

5.88 = 2.425 m/s.

(c) The greater the velocity, the more gets subtracted from g in the formula for acceleration. Therefore, assuming velocity
is less than vterm, greater velocities correspond to lower acceleration.

47. Aservomotor controls the vertical movement of a drill bit that will drill a pattern of holes in sheet metal. The maximum
vertical speed of the drill bit is 4 in./s, and while drilling the hole, it must move no more than 2.6 in./s to avoid warping
the metal. During a cycle, the bit begins and ends at rest, quickly approaches the sheet metal, and quickly returns to its
initial position after the hole is drilled. Sketch possible graphs of the drill bit’s vertical velocity and acceleration. Label
the point where the bit enters the sheet metal.

solution There will be multiple cycles, each of which will be more or less identical. Let v(t) be the downward vertical
velocity of the drill bit, and let a(t) be the vertical acceleration. From the narrative, we see that v(t) can be no greater
than 4 and no greater than 2.6 while drilling is taking place. During each cycle, v(t) = 0 initially, v(t) goes to 4 quickly.
When the bit hits the sheet metal, v(t) goes down to 2.6 quickly, at which it stays until the sheet metal is drilled through.
As the drill pulls out, it reaches maximum non-drilling upward speed (v(t) = −4) quickly, and maintains this speed until
it returns to rest. A possible plot follows:

−2

−4

4

2

21.510.5
x

y

Metal

A graph of the acceleration is extracted from this graph:

−20

−40

40

20

21.5

10.5
x

y

Metal
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In Exercises 48 and 49, refer to the following. In a 1997 study, Boardman and Lave related the traffic speed S on a
two-lane road to traffic density Q (number of cars per mile of road) by the formula

S = 2882Q−1 − 0.052Q + 31.73

for 60 ≤ Q ≤ 400 (Figure 9).

Density Q

400300200100

Speed S
(mph)

10
20
30
40
50
60
70

FIGURE 9 Speed as a function of traffic density.

48. Calculate dS/dQ and d2S/dQ2.

solution

dS/dQ = −2882Q−2 − 0.052

d2S/dQ2 = 5764Q−3.

49. (a) Explain intuitively why we should expect that dS/dQ < 0.

(b) Show that d2S/dQ2 > 0. Then use the fact that dS/dQ < 0 and d2S/dQ2 > 0 to justify the following statement:
A one-unit increase in traffic density slows down traffic more when Q is small than when Q is large.

(c) Plot dS/dQ. Which property of this graph shows that d2S/dQ2 > 0?

solution

(a) Traffic speed must be reduced when the road gets more crowded so we expect dS/dQ to be negative. This is indeed
the case since dS/dQ = −0.052 − 2882/Q2 < 0.

(b) The decrease in speed due to a one-unit increase in density is approximately dS/dQ (a negative number). Since
d2S/dQ2 = 5764Q−3 > 0 is positive, this tells us that dS/dQ gets larger as Q increases—and a negative number which
gets larger is getting closer to zero. So the decrease in speed is smaller when Q is larger, that is, a one-unit increase in
traffic density has a smaller effect when Q is large.

(c) dS/dQ is plotted below. The fact that this graph is increasing shows that d2S/dQ2 > 0.

x

y

−0.2
−0.4
−0.6
−0.8

−1
−1.2

400300100 200

50. Use a computer algebra system to compute f (k)(x) for k = 1, 2, 3 for the following functions.

(a) f (x) = (1 + x3)5/3 (b) f (x) = 1 − x4

1 − 5x − 6x2

solution

(a) Let f (x) = (1 + x3)5/3. Using a computer algebra system,

f ′(x) = 5x2(1 + x3)2/3;
f ′′(x) = 10x(1 + x3)2/3 + 10x4(1 + x3)−1/3; and

f ′′′(x) = 10(1 + x3)2/3 + 60x3(1 + x3)−1/3 − 10x6(1 + x3)−4/3.

(b) Let f (x) = 1 − x4

1 − 5x − 6x2
. Using a computer algebra system,

f ′(x) = 12x3 − 9x2 + 2x + 5

(6x − 1)2
;
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f ′′(x) = 2(36x3 − 18x2 + 3x − 31)

(6x − 1)3
; and

f ′′′(x) = 1110

(6x − 1)4
.

51. Let f (x) = x + 2

x − 1
. Use a computer algebra system to compute the f (k)(x) for 1 ≤ k ≤ 4. Can you find a

general formula for f (k)(x)?

solution Let f (x) = x + 2

x − 1
. Using a computer algebra system,

f ′(x) = − 3

(x − 1)2
= (−1)1 3 · 1

(x − 1)1+1
;

f ′′(x) = 6

(x − 1)3
= (−1)2 3 · 2 · 1

(x − 1)2+1
;

f ′′′(x) = − 18

(x − 1)4
= (−1)3 3 · 3!

(x − 1)3+1
; and

f (4)(x) = 72

(x − 1)5 = (−1)4 3 · 4!
(x − 1)4+1

.

From the pattern observed above, we conjecture

f (k)(x) = (−1)k
3 · k!

(x − 1)k+1
.

Further Insights and Challenges
52. Find the 100th derivative of

p(x) = (x + x5 + x7)10(1 + x2)11(x3 + x5 + x7)

solution This is a polynomial of degree 70 + 22 + 7 = 99, so its 100th derivative is zero.

53. What is p(99)(x) for p(x) as in Exercise 52?

solution First note that for any integer n ≤ 98,

d99

dx99
xn = 0.

Now, if we expand p(x), we find

p(x) = x99 + terms of degree at most 98;

therefore,

d99

dx99
p(x) = d99

dx99
(x99 + terms of degree at most 98) = d99

dx99
x99

Using logic similar to that used to compute the derivative in Example (3), we compute:

d99

dx99
(x99) = 99 × 98 × . . . 1,

so that d99

dx99 p(x) = 99!.

54. Use the Product Rule twice to find a formula for (fg)′′ in terms of f and g and their first and second derivatives.

solution Let h = fg. Then h′ = fg′ + gf ′ = f ′g + fg′ and

h′′ = f ′g′ + gf ′′ + fg′′ + g′f ′ = f ′′g + 2f ′g′ + fg′′.



April 4, 2011

S E C T I O N 3.6 Trigonometric Functions 267

55. Use the Product Rule to find a formula for (fg)′′′ and compare your result with the expansion of (a + b)3. Then try
to guess the general formula for (fg)(n).

solution Continuing from Exercise 54, we have

h′′′ = f ′′g′ + gf ′′′ + 2(f ′g′′ + g′f ′′) + fg′′′ + g′′f ′ = f ′′′g + 3f ′′g′ + 3f ′g′′ + fg′′′

The binomial theorem gives

(a + b)3 = a3 + 3a2b + 3ab2 + b3 = a3b0 + 3a2b1 + 3a1b2 + a0b3

and more generally

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk,

where the binomial coefficients are given by(
n

k

)
= k(k − 1) · · · (k − n + 1)

n! .

Accordingly, the general formula for (fg)(n) is given by

(fg)(n) =
n∑

k=0

(
n

k

)
f (n−k)g(k),

where p(k) is the kth derivative of p (or p itself when k = 0).

56. Compute

�f (x) = lim
h→0

f (x + h) + f (x − h) − 2f (x)

h2

for the following functions:

(a) f (x) = x (b) f (x) = x2 (c) f (x) = x3

Based on these examples, what do you think the limit �f represents?

solution For f (x) = x, we have

f (x + h) + f (x − h) − 2f (x) = (x + h) + (x − h) − 2x = 0.

Hence, �(x) = 0. For f (x) = x2,

f (x + h) + f (x − h) − 2f (x) = (x + h)2 + (x − h)2 − 2x2

= x2 + 2xh + h2 + x2 − 2xh + h2 − 2x2 = 2h2,

so �(x2) = 2. Working in a similar fashion, we find �(x3) = 6x. One can prove that for twice differentiable functions,
�f = f ′′. It is an interesting fact of more advanced mathematics that there are functions f for which �f exists at all
points, but the function is not differentiable.

3.6 Trigonometric Functions

Preliminary Questions
1. Determine the sign (+ or −) that yields the correct formula for the following:

(a)
d

dx
(sin x + cos x) = ± sin x ± cos x

(b)
d

dx
sec x = ± sec x tan x

(c)
d

dx
cot x = ± csc2 x

solution The correct formulas are

(a)
d

dx
(sin x + cos x) = − sin x + cos x
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(b)
d

dx
sec x = sec x tan x

(c)
d

dx
cot x = − csc2 x

2. Which of the following functions can be differentiated using the rules we have covered so far?

(a) y = 3 cos x cot x (b) y = cos(x2) (c) y = ex sin x

solution

(a) 3 cos x cot x is a product of functions whose derivatives are known. This function can therefore be differentiated using
the Product Rule.

(b) cos(x2) is a composition of the functions cos x and x2. We have not yet discussed how to differentiate composite
functions.

(c) x2 cos x is a product of functions whose derivatives are known. This function can therefore be differentiated using
the Product Rule.

3. Compute d
dx

(sin2 x + cos2 x) without using the derivative formulas for sin x and cos x.

solution Recall that sin2 x + cos2 x = 1 for all x. Thus,

d

dx
(sin2 x + cos2 x) = d

dx
1 = 0.

4. How is the addition formula used in deriving the formula (sin x)′ = cos x?

solution The difference quotient for the function sin x involves the expression sin(x + h). The addition formula for
the sine function is used to expand this expression as sin(x + h) = sin x cos h + sin h cos x.

Exercises
In Exercises 1–4, find an equation of the tangent line at the point indicated.

1. y = sin x, x = π
4

solution Let f (x) = sin x. Then f ′(x) = cos x and the equation of the tangent line is

y = f ′ (π

4

) (
x − π

4

)
+ f

(π

4

)
=

√
2

2

(
x − π

4

)
+

√
2

2
=

√
2

2
x +

√
2

2

(
1 − π

4

)
.

2. y = cos x, x = π
3

solution Let f (x) = cos x. Then f ′(x) = − sin x and the equation of the tangent line is

y = f ′ (π

3

) (
x − π

3

)
+ f

(π

3

)
= −

√
3

2

(
x − π

3

)
+ 1

2
= −

√
3

2
x + 1

2
+ π

√
3

6
.

3. y = tan x, x = π
4

solution Let f (x) = tan x. Then f ′(x) = sec2 x and the equation of the tangent line is

y = f ′ (π

4

) (
x − π

4

)
+ f

(π

4

)
= 2

(
x − π

4

)
+ 1 = 2x + 1 − π

2
.

4. y = sec x, x = π
6

solution Let f (x) = sec x. Then f ′(x) = sec x tan x and the equation of the tangent line is

y = f ′ (π

6

) (
x − π

6

)
+ f

(π

6

)
= 2

3

(
x − π

6

)
+ 2√

3
= 2

3
x + 2

√
3

3
+ π

9
.

In Exercises 5–24, compute the derivative.

5. f (x) = sin x cos x

solution Let f (x) = sin x cos x. Then

f ′(x) = sin x(− sin x) + cos x(cos x) = − sin2 x + cos2 x.
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6. f (x) = x2 cos x

solution Let f (x) = x2 cos x. Then

f ′(x) = x2 (− sin x) + (cos x) (2x) = 2x cos x − x2 sin x.

7. f (x) = sin2 x

solution Let f (x) = sin2 x = sin x sin x. Then

f ′(x) = sin x(cos x) + sin x(cos x) = 2 sin x cos x.

8. f (x) = 9 sec x + 12 cot x

solution Let f (x) = 9 sec x + 12 cot x. Then f ′(x) = 9 sec x tan x − 12 csc2 x.

9. H(t) = sin t sec2 t

solution Let H(t) = sin t sec2 t . Then

H ′(t) = sin t
d

dt
(sec t · sec t) + sec2 t (cos t)

= sin t (sec t sec t tan t + sec t sec t tan t) + sec t

= 2 sin t sec2 t tan t + sec t.

10. h(t) = 9 csc t + t cot t

solution Let h(t) = 9 csc t + t cot t . Then

h′(t) = 9(− csc t cot t) + t (− csc2 t) + cot t = cot t − 9 csc t cot t − t csc2 t.

11. f (θ) = tan θ sec θ

solution Let f (θ) = tan θ sec θ . Then

f ′(θ) = tan θ sec θ tan θ + sec θ sec2 θ = sec θ tan2 θ + sec3 θ =
(

tan2 θ + sec2 θ
)

sec θ.

12. k(θ) = θ2 sin2 θ

solution Let k(θ) = θ2 sin2 θ . Then

k′(θ) = θ2 (2 sin θ cos θ) + 2θ sin2 θ = 2θ2 sin θ cos θ + 2θ sin2 θ.

Here we used the result from Exercise 7.

13. f (x) = (2x4 − 4x−1) sec x

solution Let f (x) = (2x4 − 4x−1) sec x. Then

f ′(x) = (2x4 − 4x−1) sec x tan x + sec x(8x3 + 4x−2).

14. f (z) = z tan z

solution Let f (z) = z tan z. Then f ′(z) = z(sec2 z) + tan z.

15. y = sec θ

θ

solution Let y = sec θ

θ
. Then

y′ = θ sec θ tan θ − sec θ

θ2
.

16. G(z) = 1

tan z − cot z

solution Let G(z) = 1

tan z − cot z
. Then

G′(z) = (tan z − cot z)(0) − 1(sec2 z + csc2 z)

(tan z − cot z)2
= − sec2 z + csc2 z

(tan z − cot z)2
.
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17. R(y) = 3 cos y − 4

sin y

solution Let R(y) = 3 cos y − 4

sin y
. Then

R′(y) = sin y(−3 sin y) − (3 cos y − 4)(cos y)

sin2 y
= 4 cos y − 3(sin2 y + cos2 y)

sin2 y
= 4 cos y − 3

sin2 y
.

18. f (x) = x

sin x + 2

solution Let f (x) = x

2 + sin x
. Then

f ′(x) = (2 + sin x) (1) − x cos x

(2 + sin x)2
= 2 + sin x − x cos x

(2 + sin x)2
.

19. f (x) = 1 + tan x

1 − tan x

solution Let f (x) = 1 + tan x

1 − tan x
. Then

f ′(x) =
(1 − tan x) sec2 x − (1 + tan x)

(
− sec2 x

)
(1 − tan x)2

= 2 sec2 x

(1 − tan x)2
.

20. f (θ) = θ tan θ sec θ

solution Let f (θ) = θ tan θ sec θ . Then

f ′(θ) = θ
d

dθ
(tan θ sec θ) + tan θ sec θ

= θ(tan θ sec θ tan θ + sec θ sec2 θ) + tan θ sec θ

= θ tan2 θ sec θ + θ sec3 θ + tan θ sec θ.

21. f (x) = ex sin x

solution Let f (x) = ex sin x. Then f ′(x) = ex cos x + sin xex = ex(cos x + sin x).

22. h(t) = et csc t

solution Let h(t) = et csc t . Then h′(t) = et (− csc t cot t) + csc tet = et csc t (1 − cot t).

23. f (θ) = eθ (5 sin θ − 4 tan θ)

solution Let f (θ) = eθ (5 sin θ − 4 tan θ). Then

f ′(θ) = eθ (5 cos θ − 4 sec2 θ) + eθ (5 sin θ − 4 tan θ)

= eθ (5 sin θ + 5 cos θ − 4 tan θ − 4 sec2 θ).

24. f (x) = xex cos x

solution Let f (x) = xex cos x. Then

f ′(x) = x
d

dx
(ex cos x) + ex cos x = x(ex(− sin x) + cos xex) + ex cos x

= ex(x cos x − x sin x + cos x).

In Exercises 25–34, find an equation of the tangent line at the point specified.

25. y = x3 + cos x, x = 0

solution Let f (x) = x3 + cos x. Then f ′(x) = 3x2 − sin x and f ′(0) = 0. The tangent line at x = 0 is

y = f ′(0)(x − 0) + f (0) = 0(x) + 1 = 1.
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26. y = tan θ , θ = π
6

solution Let f (θ) = tan θ . Then f ′(θ) = sec2 θ and f ′( π
6 ) = 4

3 . The tangent line at x = π
6 is

y = f ′ (π

6

) (
θ − π

6

)
+ f

(π

6

)
= 4

3

(
θ − π

6

)
+

√
3

3
= 4

3
θ +

√
3

3
− 2π

9
.

27. y = sin x + 3 cos x, x = 0

solution Let f (x) = sin x + 3 cos x. Then f ′(x) = cos x − 3 sin x and f ′(0) = 1. The tangent line at x = 0 is

y = f ′(0)(x − 0) + f (0) = x + 3.

28. y = sin t

1 + cos t
, t = π

3

solution Let f (t) = sin t
1+cos t

. Then

f ′(t) = (1 + cos t)(cos t) − sin t (− sin t)

(1 + cos t)2
= 1 + cos t

(1 + cos t)2
= 1

1 + cos t
,

and

f ′ (π

3

)
= 1

1 + 1/2
= 2

3
.

The tangent line at x = π
3 is

y = f ′ (π

3

) (
x − π

3

)
+ f

(π

3

)
= 2

3

(
x − π

3

)
+

√
3

3
= 2

3
x +

√
3

3
− 2π

9
.

29. y = 2(sin θ + cos θ), θ = π
3

solution Let f (θ) = 2(sin θ + cos θ). Then f ′(θ) = 2(cos θ − sin θ) and f ′( π
3 ) = 1 − √

3. The tangent line at
x = π

3 is

y = f ′ (π

3

) (
x − π

3

)
+ f

(π

3

)
= (1 − √

3)
(
x − π

3

)
+ 1 + √

3.

30. y = csc x − cot x, x = π
4

solution Let f (x) = csc x − cot x. Then

f ′(x) = csc2 x − csc x cot x

and

f ′ (π

4

)
= 2 − √

2 · 1 = 2 − √
2.

Hence the tangent line is

y = f ′ (π

4

) (
x − π

4

)
+ f

(π

4

)
=

(
2 − √

2
) (

x − π

4

)
+

(√
2 − 1

)
=

(
2 − √

2
)

x + √
2 − 1 + π

4

(√
2 − 2

)
.

31. y = ex cos x, x = 0

solution Let f (x) = ex cos x. Then

f ′(x) = ex(− sin x) + ex cos x = ex(cos x − sin x),

and f ′(0) = e0(cos 0 − sin 0) = 1. Thus, the equation of the tangent line is

y = f ′(0)(x − 0) + f (0) = x + 1.
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32. y = ex cos2 x, x = π
4

solution Let f (x) = ex cos2 x. Then

f ′(x) = ex d

dx
(cos x · cos x) + ex cos2 x = ex(cos x(− sin x) + cos x(− sin x)) + ex cos2 x

= ex(cos2 x − 2 sin x cos x),

and

f ′ (π

4

)
= eπ/4

(
1

2
− 1

)
= −1

2
eπ/4.

The tangent line at x = π
4 is

y = f ′ (π

4

) (
x − π

4

)
+ f

(π

4

)
= −1

2
eπ/4

(
x − π

4

)
+ 1

2
eπ/4.

33. y = et (1 − cos t), t = π
2

solution Let f (t) = et (1 − cos t). Then

f ′(t) = et sin t + et (1 − cos t) = et (1 + sin t − cos t),

and f ′( π
2 ) = 2eπ/2. The tangent line at x = π

2 is

y = f ′ (π

2

) (
t − π

2

)
+ f

(π

2

)
= 2eπ/2

(
t − π

2

)
+ eπ/2.

34. y = eθ sec θ , θ = π
4

solution Let f (θ) = eθ sec θ . Then

f ′(θ) = eθ sec θ tan θ + eθ sec θ = eθ sec θ(tan θ + 1),

and

f ′ (π

4

)
= eπ/4 sec

π

4

(
tan

π

4
+ 1

)
= 2

√
2eπ/4.

Thus, the equation of the tangent line is

y = f ′ (π

4

) (
x − π

4

)
+ f

(π

4

)
= 2

√
2eπ/4

(
x − π

4

)
+ √

2eπ/4.

In Exercises 35–37, use Theorem 1 to verify the formula.

35.
d

dx
cot x = − csc2 x

solution cot x = cos x

sin x
. Using the quotient rule and the derivative formulas, we compute:

d

dx
cot x = d

dx

cos x

sin x
= sin x(− sin x) − cos x(cos x)

sin2 x
= −(sin2 x + cos2 x)

sin2 x
= −1

sin2 x
= − csc2 x.

36.
d

dx
sec x = sec x tan x

solution Since sec x = 1

cos x
, we can apply the quotient rule and the known derivatives to get:

d

dx
sec x = d

dx

1

cos x
= cos x(0) − 1(− sin x)

cos2 x
= sin x

cos2 x
= sin x

cos x

1

cos x
= tan x sec x.

37.
d

dx
csc x = − csc x cot x

solution Since csc x = 1

sin x
, we can apply the quotient rule and the two known derivatives to get:

d

dx
csc x = d

dx

1

sin x
= sin x(0) − 1(cos x)

sin2 x
= − cos x

sin2 x
= − cos x

sin x

1

sin x
= − cot x csc x.
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38. Show that both y = sin x and y = cos x satisfy y′′ = −y.

solution Let y = sin x. Then y′ = cos x and y′′ = − sin x = −y. Similarly, if we let y = cos x, then y′ = − sin x

and y′′ = − cos x = −y.

In Exercises 39–42, calculate the higher derivative.

39. f ′′(θ), f (θ) = θ sin θ

solution Let f (θ) = θ sin θ . Then

f ′(θ) = θ cos θ + sin θ

f ′′(θ) = θ(− sin θ) + cos θ + cos θ = −θ sin θ + 2 cos θ.

40.
d2

dt2
cos2 t

solution

d

dt
cos2 t = d

dt
(cos t · cos t) = cos t (− sin t) + cos t (− sin t) = −2 sin t cos t

d2

dt2
cos2 t = d

dt
(−2 sin t cos t) = −2(sin t (− sin t) + cos t (cos t)) = −2(cos2 t − sin2 t).

41. y′′, y′′′, y = tan x

solution Let y = tan x. Then y′ = sec2 x and by the Chain Rule,

y′′ = = d

dx
sec2 x = 2(sec x)(sec x tan x) = 2 sec2 x tan x

y′′′ = 2 sec2 x(sec2 x) + (2 sec2 x tan x) tan x = 2 sec4 +4 sec4 x tan2 x

42. y′′, y′′′, y = et sin t

solution Let y = et sin t . Then

y′ = et cos t + et sin t = et (cos t + sin t)

y′′ = et (− sin t + cos t) + et (cos t + sin t) = 2et cos t

y′′′ = 2et (− sin t) + 2et cos t = 2et (cos t − sin t).

43. Calculate the first five derivatives of f (x) = cos x. Then determine f (8) and f (37).

solution Let f (x) = cos x.

• Then f ′(x) = − sin x, f ′′(x) = − cos x, f ′′′(x) = sin x, f (4)(x) = cos x, and f (5)(x) = − sin x.
• Accordingly, the successive derivatives of f cycle among

{− sin x, − cos x, sin x, cos x}
in that order. Since 8 is a multiple of 4, we have f (8)(x) = cos x.

• Since 36 is a multiple of 4, we have f (36)(x) = cos x. Therefore, f (37)(x) = − sin x.

44. Find y(157), where y = sin x.

solution Let f (x) = sin x. Then the successive derivatives of f cycle among

{cos x, − sin x, − cos x, sin x}
in that order. Since 156 is a multiple of 4, we have f (156)(x) = sin x. Therefore, f (157)(x) = cos x.

45. Find the values of x between 0 and 2π where the tangent line to the graph of y = sin x cos x is horizontal.

solution Let y = sin x cos x. Then

y′ = (sin x)(− sin x) + (cos x)(cos x) = cos2 x − sin2 x.

When y′ = 0, we have sin x = ± cos x. In the interval [0, 2π ], this occurs when x = π
4 , 3π

4 , 5π
4 , 7π

4 .
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46. Plot the graph f (θ) = sec θ + csc θ over [0, 2π ] and determine the number of solutions to f ′(θ) = 0 in this
interval graphically. Then compute f ′(θ) and find the solutions.

solution The graph of f (θ) = sec θ + csc θ over [0, 2π ] is given below. From the graph, it appears that there are
two locations where the tangent line would be horizontal; that is, there appear to be two solutions to f ′(θ) = 0. Now
f ′(θ) = sec θ tan θ − csc θ cot θ . Setting sec θ tan θ − csc θ cot θ = 0 and then multiplying by sin θ tan θ and rearranging
terms yields tan3 θ = 1. Thus, on the interval [0, 2π ], there are two solution of f ′(θ) = 0: θ = π

4 and θ = 5π
4 .

−5

5

1 2 3 4 5 6

y

x

47. Let g(t) = t − sin t .

(a) Plot the graph of g with a graphing utility for 0 ≤ t ≤ 4π .

(b) Show that the slope of the tangent line is nonnegative. Verify this on your graph.

(c) For which values of t in the given range is the tangent line horizontal?

solution Let g(t) = t − sin t .

(a) Here is a graph of g over the interval [0, 4π ].
y

x
2 4 6 8 10 12

2

4

6

8

10

12

(b) Since g′(t) = 1 − cos t ≥ 0 for all t , the slope of the tangent line to g is always nonnegative.

(c) In the interval [0, 4π ], the tangent line is horizontal when t = 0, 2π, 4π .

48. Let f (x) = (sin x)/x for x 	= 0 and f (0) = 1.

(a) Plot f (x) on [−3π, 3π ].
(b) Show that f ′(c) = 0 if c = tan c. Use the numerical root finder on a computer algebra system to find a good
approximation to the smallest positive value c0 such that f ′(c0) = 0.

(c) Verify that the horizontal line y = f (c0) is tangent to the graph of y = f (x) at x = c0 by plotting them on the same
set of axes.

solution

(a) Here is the graph of f (x) over [−3π, 3π ].
y

x
−10

−5 5

10

0.4

0.8

1

(b) Let f (x) = sin x

x
. Then

f ′(x) = x cos x − sin x

x2
.

To have f ′(c) = 0, it follows that c cos c − sin c = 0, or

tan c = c.

Using a computer algebra system, we find that the smallest positive value c0 such that f ′(c0) = 0 is c0 = 4.493409.
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(c) The horizontal line y = f (c0) = −0.217234 and the function y = f (x) are both plotted below. The horizontal line
is clearly tangent to the graph of f (x).

y

x
−10

−5 5

10

0.4

0.8

1

49. Show that no tangent line to the graph of f (x) = tan x has zero slope. What is the least slope of a tangent
line? Justify by sketching the graph of (tan x)′.
solution Let f (x) = tan x. Then f ′(x) = sec2 x = 1

cos2 x
. Note that f ′(x) = 1

cos2 x
has numerator 1; the equation

f ′(x) = 0 therefore has no solution. Because the maximum value of cos2 x is 1, the minimum value of f ′(x) = 1
cos2 x

is 1. Hence, the least slope for a tangent line to tan x is 1. Here is a graph of f ′.

2 4−2−4

y

x
2
4
6
8

10
12
14

50. The height at time t (in seconds) of a mass, oscillating at the end of a spring, is s(t) = 300 + 40 sin t cm. Find the
velocity and acceleration at t = π

3 s.

solution Let s(t) = 300 + 40 sin t be the height. Then the velocity is

v(t) = s′(t) = 40 cos t

and the acceleration is

a(t) = v′(t) = −40 sin t.

At t = π
3 , the velocity is v

(
π
3

) = 20 cm/sec and the acceleration is a
(
π
3

) = −20
√

3 cm/sec2.

51. The horizontal range R of a projectile launched from ground level at an angle θ and initial velocity v0 m/s is
R = (v2

0/9.8) sin θ cos θ . Calculate dR/dθ . If θ = 7π/24, will the range increase or decrease if the angle is increased
slightly? Base your answer on the sign of the derivative.

solution Let R(θ) = (v2
0/9.8) sin θ cos θ .

dR

dθ
= R′(θ) = (v2

0/9.8)(− sin2 θ + cos2 θ).

If θ = 7π/24, π
4 < θ < π

2 , so | sin θ | > | cos θ |, and dR/dθ < 0 (numerically, dR/dθ = −0.0264101v2
0). At this point,

increasing the angle will decrease the range.

52. Show that if π
2 < θ < π , then the distance along the x-axis between θ and the point where the tangent line intersects

the x-axis is equal to |tan θ | (Figure 4).

y = sin x

2

x

y

| tan x |

FIGURE 4

solution Let f (x) = sin x. Since f ′(x) = cos x, this means that the tangent line at (θ, sin θ) is y = cos θ(x − θ) +
sin θ . When y = 0, x = θ − tan θ . The distance from x to θ is then

|θ − (θ − tan θ)| = | tan θ |.
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Further Insights and Challenges
53. Use the limit definition of the derivative and the addition law for the cosine function to prove that (cos x)′ = − sin x.

solution Let f (x) = cos x. Then

f ′(x) = lim
h→0

cos(x + h) − cos x

h
= lim

h→0

cos x cos h − sin x sin h − cos x

h

= lim
h→0

(
(− sin x)

sin h

h
+ (cos x)

cos h − 1

h

)
= (− sin x) · 1 + (cos x) · 0 = − sin x.

54. Use the addition formula for the tangent

tan(x + h) = tan x + tan h

1 + tan x tan h

to compute (tan x)′ directly as a limit of the difference quotients. You will also need to show that lim
h→0

tan h

h
= 1.

solution First note that

lim
h→0

tan h

h
= lim

h→0

sin h

h
· lim
h→0

1

cos h
= 1(1) = 1.

Now, using the addition formula for tangent,

tan(x + h) − tan x

h
=

tan x+tan h
1+tan x tan h

− tan x

h

= tan h(1 − tan2 x)

h(1 + tan x tan h)
= tan h

h
· sec2 x

1 + tan x tan h
.

Therefore,
d

dx
tan x = lim

h→0

tan h

h
· sec2 x

1 + tan x tan h

= lim
h→0

tan h

h
· lim
h→0

sec2 x

1 + tan x tan h

= 1(sec2 x) = sec2 x.

55. Verify the following identity and use it to give another proof of the formula (sin x)′ = cos x.

sin(x + h) − sin x = 2 cos
(
x + 1

2h
)

sin
(

1
2h

)
Hint: Use the addition formula to prove that sin(a + b) − sin(a − b) = 2 cos a sin b.

solution Recall that

sin(a + b) = sin a cos b + cos a sin b

and

sin(a − b) = sin a cos b − cos a sin b.

Subtracting the second identity from the first yields

sin(a + b) − sin(a − b) = 2 cos a sin b.

If we now set a = x + h
2 and b = h

2 , then the previous equation becomes

sin(x + h) − sin x = 2 cos

(
x + h

2

)
sin

(
h

2

)
.

Finally, we use the limit definition of the derivative of sin x to obtain

d

dx
sin x = lim

h→0

sin(x + h) − sin x

h
= lim

h→0

2 cos
(
x + h

2

)
sin

(
h
2

)
h

= lim
h→0

cos

(
x + h

2

)
· lim
h→0

sin
(

h
2

)
(

h
2

) = cos x · 1 = cos x.

In other words,
d

dx
(sin x) = cos x.
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56. Show that a nonzero polynomial function y = f (x) cannot satisfy the equation y′′ = −y. Use this to prove
that neither sin x nor cos x is a polynomial. Can you think of another way to reach this conclusion by considering limits
as x → ∞?

solution

• Let p be a nonzero polynomial of degree n and assume that p satisfies the differential equation y′′ + y = 0. Then
p′′ + p = 0 for all x. There are exactly three cases.

(a) If n = 0, then p is a constant polynomial and thus p′′ = 0. Hence 0 = p′′ + p = p or p ≡ 0 (i.e., p is equal
to 0 for all x or p is identically 0). This is a contradiction, since p is a nonzero polynomial.
(b) If n = 1, then p is a linear polynomial and thus p′′ = 0. Once again, we have 0 = p′′ + p = p or p ≡ 0, a
contradiction since p is a nonzero polynomial.
(c) If n ≥ 2, then p is at least a quadratic polynomial and thus p′′ is a polynomial of degree n − 2 ≥ 0. Thus
q = p′′ + p is a polynomial of degree n ≥ 2. By assumption, however, p′′ + p = 0. Thus q ≡ 0, a polynomial of
degree 0. This is a contradiction, since the degree of q is n ≥ 2.

CONCLUSION: In all cases, we have reached a contradiction. Therefore the assumption that p satisfies the dif-
ferential equation y′′ + y = 0 is false. Accordingly, a nonzero polynomial cannot satisfy the stated differential
equation.

• Let y = sin x. Then y′ = cos x and y′′ = − sin x. Therefore, y′′ = −y. Now, let y = cos x. Then y′ = − sin x and
y′′ = − cos x. Therefore, y′′ = −y. Because sin x and cos x are nonzero functions that satisfy y′′ = −y, it follows
that neither sin x nor cos x is a polynomial.

57. Let f (x) = x sin x and g(x) = x cos x.

(a) Show that f ′(x) = g(x) + sin x and g′(x) = −f (x) + cos x.
(b) Verify that f ′′(x) = −f (x) + 2 cos x and
g′′(x) = −g(x) − 2 sin x.
(c) By further experimentation, try to find formulas for all higher derivatives of f and g. Hint: The kth derivative depends
on whether k = 4n, 4n + 1, 4n + 2, or 4n + 3.

solution Let f (x) = x sin x and g(x) = x cos x.

(a) We examine first derivatives: f ′(x) = x cos x + (sin x) · 1 = g(x) + sin x and g′(x) = (x)(− sin x) + (cos x) · 1 =
−f (x) + cos x; i.e., f ′(x) = g(x) + sin x and g′(x) = −f (x) + cos x.
(b) Now look at second derivatives: f ′′(x) = g′(x) + cos x = −f (x) + 2 cos x and g′′(x) = −f ′(x) − sin x =
−g(x) − 2 sin x; i.e., f ′′(x) = −f (x) + 2 cos x and g′′(x) = −g(x) − 2 sin x.
(c) • The third derivatives are f ′′′(x) = −f ′(x) − 2 sin x = −g(x) − 3 sin x and g′′′(x) = −g′(x) − 2 cos x =

f (x) − 3 cos x; i.e., f ′′′(x) = −g(x) − 3 sin x and g′′′(x) = f (x) − 3 cos x.
• The fourth derivatives are f (4)(x) = −g′(x) − 3 cos x = f (x) − 4 cos x and g(4)(x) = f ′(x) + 3 sin x =

g(x) + 4 sin x; i.e., f (4) = f (x) − 4 cos x and g(4)(x) = g(x) + 4 sin x.
• We can now see the pattern for the derivatives, which are summarized in the following table. Here n = 0, 1, 2, . . .

k 4n 4n + 1 4n + 2 4n + 3

f (k)(x) f (x) − k cos x g(x) + k sin x −f (x) + k cos x −g(x) − k sin x

g(k)(x) g(x) + k sin x −f (x) + k cos x −g(x) − k sin x f (x) − k cos x

58. Figure 5 shows the geometry behind the derivative formula (sin θ)′ = cos θ . Segments BA and BD are
parallel to the x- and y-axes. Let � sin θ = sin(θ + h) − sin θ . Verify the following statements.

(a) � sin θ = BC

(b) 	 BDA = θ Hint: OA ⊥ AD.
(c) BD = (cos θ)AD

Now explain the following intuitive argument: If h is small, then BC ≈ BD and AD ≈ h, so � sin θ ≈ (cos θ)h and
(sin θ)′ = cos θ .

1

h

θ

B

C

A

O

D

x

y

FIGURE 5



April 4, 2011

278 C H A P T E R 3 DIFFERENTIATION

solution
(a) We note that sin(θ + h) is the y-coordinate of the point C and sin θ is the y-coordinate of the point A, and therefore
also of the point B. Now, � sin θ = sin(θ + h) − sin θ can be interpreted as the difference between the y-coordinates of
the points B and C; that is, � sin θ = BC.
(b) From the figure, we note that 	 OAB = θ , so 	 BAD = π − θ and 	 BDA = θ .
(c) Using part (b), it follows that

cos θ = BD

AD
or BD = (cos θ)AD.

For h “small,” BC ≈ BD and AD is roughly the length of the arc subtended from A to C; that is, AD ≈ 1(h) = h. Thus,
using (a) and (c),

� sin θ = BC ≈ BD = (cos θ)AD ≈ (cos θ)h.

In the limit as h → 0,

� sin θ

h
→ (sin θ)′,

so (sin θ)′ = cos θ .

3.7 The Chain Rule

Preliminary Questions
1. Identify the outside and inside functions for each of these composite functions.

(a) y =
√

4x + 9x2 (b) y = tan(x2 + 1)

(c) y = sec5 x (d) y = (1 + ex)4

solution

(a) The outer function is
√

x, and the inner function is 4x + 9x2.
(b) The outer function is tan x, and the inner function is x2 + 1.
(c) The outer function is x5, and the inner function is sec x.
(d) The outer function is x4, and the inner function is 1 + ex .

2. Which of the following can be differentiated easily without using the Chain Rule?

(a) y = tan(7x2 + 2) (b) y = x

x + 1
(c) y = √

x · sec x (d) y = √
x cos x

(e) y = xex (f) y = esin x

solution The function x
x+1 can be differentiated using the Quotient Rule, and the functions

√
x · sec x and xex can

be differentiated using the Product Rule. The functions tan(7x2 + 2),
√

x cos x and esin x require the Chain Rule.

3. Which is the derivative of f (5x)?

(a) 5f ′(x) (b) 5f ′(5x) (c) f ′(5x)

solution The correct answer is (b): 5f ′(5x).

4. Suppose that f ′(4) = g(4) = g′(4) = 1. Do we have enough information to compute F ′(4), where F(x) = f (g(x))?
If not, what is missing?

solution If F(x) = f (g(x)), then F ′(x) = f ′(g(x))g′(x) and F ′(4) = f ′(g(4))g′(4). Thus, we do not have enough
information to compute F ′(4). We are missing the value of f ′(1).

Exercises
In Exercises 1–4, fill in a table of the following type:

f (g(x)) f ′(u) f ′(g(x)) g′(x) (f ◦ g)′

1. f (u) = u3/2, g(x) = x4 + 1

solution

f (g(x)) f ′(u) f ′(g(x)) g′(x) (f ◦ g)′

(x4 + 1)3/2 3
2u1/2 3

2 (x4 + 1)1/2 4x3 6x3(x4 + 1)1/2
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2. f (u) = u3, g(x) = 3x + 5

solution

f (g(x)) f ′(u) f ′(g(x)) g′(x) (f ◦ g)′

(3x + 5)3 3u2 3(3x + 5)2 3 9(3x + 5)2

3. f (u) = tan u, g(x) = x4

solution

f (g(x)) f ′(u) f ′(g(x)) g′(x) (f ◦ g)′

tan(x4) sec2 u sec2(x4) 4x3 4x3 sec2(x4)

4. f (u) = u4 + u, g(x) = cos x

solution

f (g(x)) f ′(u) f ′(g(x)) g′(x) (f ◦ g)′

(cos x)4 + cos x 4u3 + 1 4(cos x)3 + 1 − sin x −4 sin x cos3 x − sin x

In Exercises 5 and 6, write the function as a composite f (g(x)) and compute the derivative using the Chain Rule.

5. y = (x + sin x)4

solution Let f (x) = x4, g(x) = x + sin x, and y = f (g(x)) = (x + sin x)4. Then

dy

dx
= f ′(g(x))g′(x) = 4(x + sin x)3(1 + cos x).

6. y = cos(x3)

solution Let f (x) = cos x, g(x) = x3, and y = f (g(x)) = cos(x3). Then

dy

dx
= f ′(g(x))g′(x) = −3x2 sin(x3).

7. Calculate
d

dx
cos u for the following choices of u(x):

(a) u = 9 − x2 (b) u = x−1 (c) u = tan x

solution

(a) cos(u(x)) = cos(9 − x2).

d

dx
cos(u(x)) = − sin(u(x))u′(x) = − sin(9 − x2)(−2x) = 2x sin(9 − x2).

(b) cos(u(x)) = cos(x−1).

d

dx
cos(u(x)) = − sin(u(x))u′(x) = − sin(x−1)

(
− 1

x2

)
= sin(x−1)

x2
.

(c) cos(u(x)) = cos(tan x).

d

dx
cos(u(x)) = − sin(u(x))u′(x) = − sin(tan x)(sec2 x) = − sec2 x sin(tan x).

8. Calculate
d

dx
f (x2 + 1) for the following choices of f (u):

(a) f (u) = sin u (b) f (u) = 3u3/2 (c) f (u) = u2 − u

solution

(a) Let sin(u) = sin(x2 + 1). Then

d

dx
sin(x2 + 1) = cos(x2 + 1) · d

dx
(x2 + 1) = cos(x2 + 1)2x = 2x cos(x2 + 1).
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(b) Let 3u3/2 = 3(x2 + 1)3/2. Then

d

dx
3(x2 + 1)3/2 = 3 · 3

2
(x2 + 1)1/2 d

dx
(x2 + 1) = 9

2
(x2 + 1)1/2(2x) = 9x(x2 + 1)1/2.

(c) Let u2 − u = (x2 + 1)2 − (x2 + 1). Then

d

dx

(
(x2 + 1)2 − (x2 + 1)

)
= [2(x2 + 1) − 1] d

dx
(x2 + 1) = [2(x2 + 1) − 1](2x) = 4x3 + 2x.

9. Compute
df

dx
if

df

du
= 2 and

du

dx
= 6.

solution Assuming f is a function of u, which is in turn a function of x,

df

dx
= df

du
· du

dx
= 2(6) = 12.

10. Compute
df

dx

∣∣∣
x=2

if f (u) = u2, u(2) = −5, and u′(2) = −5.

solution Because f (u) = u2, it follows that f ′(u) = 2u. Therefore,

df

dx

∣∣∣∣
x=2

= f ′(u(2))u′(2) = 2u(2)u′(2) = 2(−5)(−5) = 50.

In Exercises 11–22, use the General Power Rule or the Shifting and Scaling Rule to compute the derivative.

11. y = (x4 + 5)3

solution Using the General Power Rule,

d

dx
(x4 + 5)3 = 3(x4 + 5)2 d

dx
(x4 + 5) = 3(x4 + 5)2(4x3) = 12x3(x4 + 5)2.

12. y = (8x4 + 5)3

solution Using the General Power Rule,

d

dx
(8x4 + 5)3 = 3(8x4 + 5)2 d

dx
(8x4 + 5) = 3(8x4 + 5)2(32x3) = 96x3(8x4 + 5)2.

13. y = √
7x − 3

solution Using the Shifting and Scaling Rule

d

dx

√
7x − 3 = d

dx
(7x − 3)1/2 = 1

2
(7x − 3)−1/2(7) = 7

2
√

7x − 3
.

14. y = (4 − 2x − 3x2)5

solution Using the General Power Rule,

d

dx
(4 − 2x − 3x2)5 = 5(4 − 2x − 3x2)4 d

dx
(4 − 2x − 3x2) = 5(4 − 2x − 3x2)4(−2 − 6x)

= −10(1 + 3x)(4 − 2x − 3x2)4.

15. y = (x2 + 9x)−2

solution Using the General Power Rule,

d

dx
(x2 + 9x)−2 = −2(x2 + 9x)−3 d

dx
(x2 + 9x) = −2(x2 + 9x)−3(2x + 9).

16. y = (x3 + 3x + 9)−4/3

solution Using the General Power Rule,

d

dx
(x3 + 3x + 9)−4/3 = −4

3
(x3 + 3x + 9)−7/3 d

dx
(x3 + 3x + 9) = −4

3
(x3 + 3x + 9)−7/3(3x2 + 3)

= −4(x2 + 1)(x3 + 3x + 9)−7/3.
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17. y = cos4 θ

solution Using the General Power Rule,

d

dθ
cos4 θ = 4 cos3 θ

d

dθ
cos θ = −4 cos3 θ sin θ.

18. y = cos(9θ + 41)

solution Using the Shifting and Scaling Rule

d

dθ
cos(9θ + 41) = −9 sin(9θ + 41).

19. y = (2 cos θ + 5 sin θ)9

solution Using the General Power Rule,

d

dθ
(2 cos θ + 5 sin θ)9 = 9(2 cos θ + 5 sin θ)8 d

dθ
(2 cos θ + 5 sin θ) = 9(2 cos θ + 5 sin θ)8(5 cos θ − 2 sin θ).

20. y = √
9 + x + sin x

solution Using the General Power Rule,

d

dx

√
9 + x + sin x = 1

2
(9 + x + sin x)−1/2 d

dx
(9 + x + sin x) = 1 + cos x

2
√

9 + x + sin x
.

21. y = ex−12

solution Using the Shifting and Scaling Rule,

d

dx
ex−12 = (1)ex−12 = ex−12.

22. y = e8x+9

solution Using the Shifting and Scaling Rule,

d

dx
e8x+9 = 8e8x+9.

In Exercises 23–26, compute the derivative of f ◦ g.

23. f (u) = sin u, g(x) = 2x + 1

solution Let h(x) = f (g(x)) = sin(2x + 1). Then, applying the shifting and scaling rule, h′(x) = 2 cos(2x + 1).
Alternately,

d

dx
f (g(x)) = f ′(g(x))g′(x) = cos(2x + 1) · 2 = 2 cos(2x + 1).

24. f (u) = 2u + 1, g(x) = sin x

solution Let h(x) = f (g(x)) = 2(sin x) + 1. Then h′(x) = 2 cos x. Alternately,

d

dx
f (g(x)) = f ′(g(x))g′(x) = 2 cos x.

25. f (u) = eu, g(x) = x + x−1

solution Let h(x) = f (g(x)) = ex+x−1
. Then

d

dx
f (g(x)) = f ′(g(x))g′(x) = ex+x−1

(
1 − x−2

)
.
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26. f (u) = u

u − 1
, g(x) = csc x

solution Let h(x) = f (g(x)). Then, applying the quotient rule:

h′(x) = (csc x − 1)(− csc x cot x) − (csc x)(− csc x cot x)

(csc x − 1)2
= csc x cot x

(csc x − 1)2
.

Alternately,

d

dx
f (g(x)) = f ′(g(x))g′(x) = − 1

(csc x − 1)2
(− csc x cot x) = csc x cot x

(csc x − 1)2
,

where we have used the quotient rule to calculate f ′(u) = − 1
(u−1)2 .

In Exercises 27 and 28, find the derivatives of f (g(x)) and g(f (x)).

27. f (u) = cos u, u = g(x) = x2 + 1

solution

d

dx
f (g(x)) = f ′(g(x))g′(x) = − sin(x2 + 1)(2x) = −2x sin(x2 + 1).

d

dx
g(f (x)) = g′(f (x))f ′(x) = 2(cos x)(− sin x) = −2 sin x cos x.

28. f (u) = u3, u = g(x) = 1

x + 1

solution The derivative of 1
x+1 is taken using the shifting and scaling rule.

d

dx
f (g(x)) = f ′(g(x))g′(x) = 3

(
1

x + 1

)2 (
− 1

(x + 1)2

)
= − 3

(x + 1)4
.

d

dx
g(f (x)) = g′(f (x))f ′(x) = − 1

(x3 + 1)2
(3x2) = − 3x2

(x3 + 1)2
.

In Exercises 29–42, use the Chain Rule to find the derivative.

29. y = sin(x2)

solution Let y = sin
(
x2

)
. Then y′ = cos

(
x2

)
· 2x = 2x cos

(
x2

)
.

30. y = sin2 x

solution Let y = sin2 x = (sin x)2. Then y′ = 2 sin x(cos x).

31. y =
√

t2 + 9

solution Let y =
√

t2 + 9 = (t2 + 9)1/2. Then

y′ = 1

2
(t2 + 9)−1/2(2t) = t√

t2 + 9
.

32. y = (t2 + 3t + 1)−5/2

solution Let y =
(
t2 + 3t + 1

)−5/2
. Then

y′ = −5

2

(
t2 + 3t + 1

)−7/2
(2t + 3) = − 5 (2t + 3)

2
(
t2 + 3t + 1

)7/2
.

33. y = (x4 − x3 − 1)2/3

solution Let y =
(
x4 − x3 − 1

)2/3
. Then

y′ = 2

3

(
x4 − x3 − 1

)−1/3 (
4x3 − 3x2

)
.
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34. y = (
√

x + 1 − 1)3/2

solution Let y =
(
(x + 1)1/2 − 1

)3/2
. Here, we note that calculating the derivative of the inside function,

√
x + 1 −

1, requires the chain rule (in the form of the scaling and shifting rule). After two applications of the chain rule, we have

y′ = 3

2

(
(x + 1)1/2 − 1

)1/2 ·
(

1

2
(x + 1)−1/2 · 1

)
= 3

√√
x + 1 − 1

4
√

x + 1
.

35. y =
(

x + 1

x − 1

)4

solution Let y =
(

x + 1

x − 1

)4
. Then

y′ = 4

(
x + 1

x − 1

)3
· (x − 1) · 1 − (x + 1) · 1

(x − 1)2
= −8 (x + 1)3

(x − 1)5 = 8(1 + x)3

(1 − x)5 .

36. y = cos3(12θ)

solution After two applications of the chain rule,

y′ = 3 cos2(12θ)(− sin(12θ))(12) = −36 cos2(12θ) sin(12θ).

37. y = sec
1

x

solution Let f (x) = sec
(
x−1

)
. Then

f ′(x) = sec
(
x−1

)
tan

(
x−1

)
·
(
−x−2

)
= − sec (1/x) tan (1/x)

x2
.

38. y = tan(θ2 − 4θ)

solution Let y = tan(θ2 − 4θ). Then

y′ = sec2(θ2 − 4θ) · (2θ − 4) = (2θ − 4) sec2(θ2 − 4θ).

39. y = tan(θ + cos θ)

solution Let y = tan (θ + cos θ). Then

y′ = sec2 (θ + cos θ) · (1 − sin θ) = (1 − sin θ) sec2 (θ + cos θ) .

40. y = e2x2

solution Let y = e2x2
. Then

y′ = e2x2
(4x) = 4xe2x2

.

41. y = e2−9t2

solution Let y = e2−9t2
. Then

y′ = e2−9t2
(−18t) = −18te2−9t2

.

42. y = cos3(e4θ )

solution Let y = cos3(e4θ ). After two applications of the chain rule, we have

y′ = 3 cos2(e4θ )(− sin(e4θ ))(4e4θ ) = −12e4θ cos2(e4θ ) sin(e4θ ).
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In Exercises 43–72, find the derivative using the appropriate rule or combination of rules.

43. y = tan(x2 + 4x)

solution Let y = tan(x2 + 4x). By the chain rule,

y′ = sec2(x2 + 4x) · (2x + 4) = (2x + 4) sec2(x2 + 4x).

44. y = sin(x2 + 4x)

solution Let y = sin(x2 + 4x). By the chain rule,

dy

dx
= (2x + 4) cos(x2 + 4x).

45. y = x cos(1 − 3x)

solution Let y = x cos (1 − 3x). Applying the product rule and then the scaling and shifting rule,

y′ = x (− sin (1 − 3x)) · (−3) + cos (1 − 3x) · 1 = 3x sin (1 − 3x) + cos (1 − 3x) .

46. y = sin(x2) cos(x2)

solution We start by using a trig identity to rewrite

y = sin(x2) cos(x2) = 1

2
sin(2x2).

Then, by the chain rule,

y′ = 1

2
cos(2x2) · 4x = 2x cos(2x2).

47. y = (4t + 9)1/2

solution Let y = (4t + 9)1/2. By the shifting and scaling rule,

dy

dt
= 4

(
1

2

)
(4t + 9)−1/2 = 2(4t + 9)−1/2.

48. y = (z + 1)4(2z − 1)3

solution Let y = (z + 1)4(2z − 1)3. Applying the product rule and the general power rule,

dy

dz
= (z + 1)4(3(2z − 1)2)(2) + (2z − 1)3(4(z + 1)3)(1) = (z + 1)3(2z − 1)2(6(z + 1) + 4(2z − 1))

= (z + 1)3(2z − 1)2(14z + 2).

49. y = (x3 + cos x)−4

solution Let y = (x3 + cos x)−4. By the general power rule,

y′ = −4(x3 + cos x)−5(3x2 − sin x) = 4(sin x − 3x2)(x3 + cos x)−5.

50. y = sin(cos(sin x))

solution Let y = sin (cos (sin x)). Applying the chain rule twice,

y′ = cos (cos (sin x)) · (− sin (sin x)) · cos x = − cos x sin (sin x) cos (cos (sin x)) .

51. y = √
sin x cos x

solution We start by using a trig identity to rewrite

y = √
sin x cos x =

√
1

2
sin 2x = 1√

2
(sin 2x)1/2 .

Then, after two applications of the chain rule,

y′ = 1√
2

· 1

2
(sin 2x)−1/2 · cos 2x · 2 = cos 2x√

2 sin 2x
.
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52. y = (9 − (5 − 2x4)7)3

solution Let y = (9 − (5 − 2x4)7)3. Applying the chain rule twice, we find

y′ = 3(9 − (5 − 2x4)7)2(−7(5 − 2x4)6)(−8x3) = 168x3(5 − 2x4)6(9 − (5 − 2x4)7)2.

53. y = (cos 6x + sin x2)1/2

solution Let y = (cos 6x + sin(x2))1/2. Applying the general power rule followed by both the scaling and shifting
rule and the chain rule,

y′ = 1

2

(
cos 6x + sin(x2)

)−1/2(− sin 6x · 6 + cos(x2) · 2x
) = x cos(x2) − 3 sin 6x√

cos 6x + sin(x2)
.

54. y = (x + 1)1/2

x + 2

solution Let y = (x+1)1/2

x+2 . Applying the quotient rule and the shifting and scaling rule, we get

dy

dx
= (x + 2) 1

2 (x + 1)−1/2 − (x + 1)1/2

(x + 2)2
= 1

2
√

x + 1

(x + 2) − 2(x + 1)

(x + 2)2
= − 1

2
√

x + 1

x

(x + 2)2
.

55. y = tan3 x + tan(x3)

solution Let y = tan3 x + tan(x3) = (tan x)3 + tan(x3). Applying the general power rule to the first term and the
chain rule to the second term,

y′ = 3(tan x)2 sec2 x + sec2(x3) · 3x2 = 3
(
x2 sec2(x3) + sec2 x tan2 x

)
.

56. y = √
4 − 3 cos x

solution Let y = (4 − 3 cos x)1/2. By the general power rule,

y′ = 1

2
(4 − 3 cos x)−1/2 · 3 sin x = 3 sin x

2
√

4 − 3 cos x
.

57. y =
√

z + 1

z − 1

solution Let y =
(

z + 1

z − 1

)1/2
. Applying the general power rule followed by the quotient rule,

dy

dz
= 1

2

(
z + 1

z − 1

)−1/2
· (z − 1) · 1 − (z + 1) · 1

(z − 1)2
= −1√

z + 1 (z − 1)3/2
.

58. y = (cos3 x + 3 cos x + 7)9

solution Let y =
(

cos3 x + 3 cos x + 7
)9

. Applying the general power rule followed by the sum rule, with the first

term requiring the general power rule,

dy

dx
= 9

(
cos3 x + 3 cos x + 7

)8 (
3 cos2 x · (− sin x) − 3 sin x

)

= −27 sin x
(

cos3 x + 3 cos x + 7
)8 (

1 + cos2 x
)

.

59. y = cos(1 + x)

1 + cos x

solution Let

y = cos(1 + x)

1 + cos x
.

Then, applying the quotient rule and the shifting and scaling rule,

dy

dx
= −(1 + cos x) sin(1 + x) + cos(1 + x) sin x

(1 + cos x)2
= cos(1 + x) sin x − cos x sin(1 + x) − sin(1 + x)

(1 + cos x)2

= sin(−1) − sin(1 + x)

(1 + cos x)2
.
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The last line follows from the identity

sin(A − B) = sin A cos B − cos A sin B

with A = x and B = 1 + x.

60. y = sec(
√

t2 − 9)

solution Let y = sec
(√

t2 − 9
)

. Applying the chain rule followed by the general power rule,

dy

dt
= sec

(√
t2 − 9

)
tan

(√
t2 − 9

)
· 1

2

(
t2 − 9

)−1/2 · 2t =
t sec

(√
t2 − 9

)
tan

(√
t2 − 9

)
√

t2 − 9
.

61. y = cot7(x5)

solution Let y = cot7
(
x5

)
. Applying the general power rule followed by the chain rule,

dy

dx
= 7 cot6

(
x5

)
·
(
− csc2

(
x5

))
· 5x4 = −35x4 cot6

(
x5

)
csc2

(
x5

)
.

62. y = cos(1/x)

1 + x2

solution Let y = cos(1/x)

1+x2 = cos(x−1)

1+x2 . Then, applying the quotient rule and the chain rule, we get:

dy

dx
= (1 + x2)(x−2 sin(x−1)) − cos(x−1)(2x)

(1 + x2)2
= sin(x−1) − 2x cos(x−1) + x−2 sin(x−1)

(1 + x2)2
.

63. y =
(

1 + cot5(x4 + 1)
)9

solution Let y =
(

1 + cot5
(
x4 + 1

))9
. Applying the general power rule, the chain rule, and the general power rule

in succession,

dy

dx
= 9

(
1 + cot5

(
x4 + 1

))8 · 5 cot4
(
x4 + 1

)
·
(
− csc2

(
x4 + 1

))
· 4x3

= −180x3 cot4
(
x4 + 1

)
csc2

(
x4 + 1

) (
1 + cot5

(
x4 + 1

))8
.

64. y = 4e−x + 7e−2x

solution Let y = 4e−x + 7e−2x . Using the chain rule twice, once for each exponential function, we obtain

dy

dx
= −4e−x − 14e−2x .

65. y = (2e3x + 3e−2x)4

solution Let y = (2e3x + 3e−2x)4. Applying the general power rule followed by two applications of the chain rule,
one for each exponential function, we find

dy

dx
= 4(2e3x + 3e−2x)3(6e3x − 6e−2x) = 24(2e3x + 3e−2x)3(e3x − e−2x).

66. y = cos(te−2t )

solution Let y = cos(te−2t ). Applying the chain rule and the product rule, we have

dy

dt
= − sin(te−2t )

(
−2te−2t + e−2t

)
= e−2t (2t − 1) sin(te−2t ).

67. y = e(x2+2x+3)2

solution Let y = e(x2+2x+3)2
. By the chain rule and the general power rule, we obtain

dy

dx
= e(x2+2x+3)2 · 2(x2 + 2x + 3)(2x + 2) = 4(x + 1)(x2 + 2x + 3)e(x2+2x+3)2

.
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68. y = eex

solution Let y = eex
. Applying the chain rule, we have

dy

dx
= eex

ex .

69. y =
√

1 +
√

1 + √
x

solution Let y =
(

1 +
(

1 + x1/2
)1/2

)1/2
. Applying the general power rule twice,

dy

dx
= 1

2

(
1 +

(
1 + x1/2

)1/2
)−1/2

· 1

2

(
1 + x1/2

)−1/2 · 1

2
x−1/2 = 1

8
√

x
√

1 + √
x

√
1 + √

1 + √
x

.

70. y =
√√

x + 1 + 1

solution Let y =
(

1 + (x + 1)1/2
)1/2

. Applying the general power rule twice,

dy

dx
= 1

2

(
1 + (x + 1)1/2

)−1/2 · 1

2
(x + 1)−1/2 · 1 = 1

4
√

x + 1
√

1 + √
x + 1

.

71. y = (kx + b)−1/3; k and b any constants

solution Let y = (kx + b)−1/3, where b and k are constants. By the scaling and shifting rule,

y′ = −1

3
(kx + b)−4/3 · k = −k

3
(kx + b)−4/3.

72. y = 1√
kt4 + b

; k, b constants, not both zero

solution Let y =
(
kt4 + b

)−1/2
, where b and k are constants. By the chain rule,

y′ = −1

2

(
kt4 + b

)−3/2 · 4kt3 = − 2kt3(
kt4 + b

)3/2
.

In Exercises 73–76, compute the higher derivative.

73.
d2

dx2
sin(x2)

solution Let f (x) = sin
(
x2

)
. Then, by the chain rule, f ′(x) = 2x cos

(
x2

)
and, by the product rule and the chain

rule,

f ′′(x) = 2x
(
− sin

(
x2

)
· 2x

)
+ 2 cos

(
x2

)
= 2 cos

(
x2

)
− 4x2 sin

(
x2

)
.

74.
d2

dx2
(x2 + 9)5

solution Let f (x) = (x2 + 9)5. Then, by the general power rule,

f ′(x) = 5(x2 + 9)4 · 2x = 10x(x2 + 9)4

and, by the product rule and the general power rule,

f ′′(x) = 10x · 4(x2 + 9)3 · 2x + 10(x2 + 9)4 = 80x2(x2 + 9)3 + 10(x2 + 9)4.
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75.
d3

dx3
(9 − x)8

solution Let f (x) = (9 − x)8. Then, by repeated use of the scaling and shifting rule,

f ′(x) = 8(9 − x)7 · (−1) = −8(9 − x)7

f ′′(x) = −56(9 − x)6 · (−1) = 56(9 − x)6,

f ′′′(x) = 336(9 − x)5 · (−1) = −336(9 − x)5.

76.
d3

dx3
sin(2x)

solution Let f (x) = sin (2x). Then, by repeated use of the scaling and shifting rule,

f ′(x) = 2 cos(2x)

f ′′(x) = −4 sin(2x)

f ′′′(x) = −8 cos(2x).

77. The average molecular velocity v of a gas in a certain container is given by v = 29
√

T m/s, where T is the

temperature in kelvins. The temperature is related to the pressure (in atmospheres) by T = 200P . Find
dv

dP

∣∣∣∣
P=1.5

.

solution First note that when P = 1.5 atmospheres, T = 200(1.5) = 300K. Thus,

dv

dP

∣∣∣∣
P=1.5

= dv

dT

∣∣∣∣
T =300

· dT

dP

∣∣∣∣
P=1.5

= 29

2
√

300
· 200 = 290

√
3

3

m

s · atmospheres
.

Alternately, substituting T = 200P into the equation for v gives v = 290
√

2P . Therefore,

dv

dP
= 290

√
2

2
√

P
= 290√

2P
,

so

dv

dP

∣∣∣∣
P=1.5

= 290√
3

= 290
√

3

3

m

s · atmospheres
.

78. The power P in a circuit is P = Ri2, where R is the resistance and i is the current. Find dP/dt at t = 1
3 if

R = 1000 � and i varies according to i = sin(4πt) (time in seconds).

solution
d

dt

(
Ri2

)∣∣∣∣
t=1/3

= 2Ri
di

dt

∣∣∣∣
t=2

= 2(1000)4π sin(4πt) cos(4πt)|t=1/3 = 2000π
√

3.

79. An expanding sphere has radius r = 0.4t cm at time t (in seconds). Let V be the sphere’s volume. Find dV /dt

when (a) r = 3 and (b) t = 3.

solution Let r = 0.4t , where t is in seconds (s) and r is in centimeters (cm). With V = 4
3πr3, we have

dV

dr
= 4πr2.

Thus

dV

dt
= dV

dr

dr

dt
= 4πr2 · (0.4) = 1.6πr2.

(a) When r = 3,
dV

dt
= 1.6π(3)2 ≈ 45.24 cm/s.

(b) When t = 3, we have r = 1.2. Hence
dV

dt
= 1.6π(1.2)2 ≈ 7.24 cm/s.

80. A 2005 study by the Fisheries Research Services in Aberdeen, Scotland, suggests that the average length of the
species Clupea harengus (Atlantic herring) as a function of age t (in years) can be modeled by L(t) = 32(1 − e−0.37t )

cm for 0 ≤ t ≤ 13. See Figure 2.

(a) How fast is the length changing at age t = 6 years?

(b) At what age is the length changing at a rate of 5 cm/yr?
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t (year)

L (cm)

FIGURE 2 Average length of the species Clupea harengus

solution Let L(t) = 32(1 − e−0.37t ). Then

L′(t) = 32(0.37)e−0.37t = 11.84e−0.37t .

(a) At age t = 6,

L′(t) = 11.84e−0.37(6) = 11.84e−2.22 ≈ 1.29 cm/yr.

(b) The length will be changing at a rate of 5 cm/yr when

11.84e−0.37t = 5.

Solving for t yields

t = − 1

0.37
ln

5

11.84
≈ 2.33 years.

81. A 1999 study by Starkey and Scarnecchia developed the following model for the average weight (in kilograms) at
age t (in years) of channel catfish in the Lower Yellowstone River (Figure 3):

W(t) = (3.46293 − 3.32173e−0.03456t )3.4026

Find the rate at which weight is changing at age t = 10.

5 10 15 20

1

2

3

4

5

6

7

8

t (year)

W (kg)

Lower Yellowstone River

FIGURE 3 Average weight of channel catfish at age t

solution Let W(t) = (3.46293 − 3.32173e−0.03456t )3.4026. Then

W ′(t) = 3.4026(3.46293 − 3.32173e−0.03456t )2.4026(3.32173)(0.03456)e−0.03456t

= 0.3906(3.46293 − 3.32173e−0.03456t )2.4026e−0.03456t .

At age t = 10,

W ′(10) = 0.3906(1.1118)2.4026(0.7078) ≈ 0.3566 kg/yr.

82. The functions in Exercises 80 and 81 are examples of the von Bertalanffy growth function

M(t) = (
a + (b − a)ekmt

)1/m
(m 	= 0)

introduced in the 1930s by Austrian-born biologist Karl Ludwig von Bertalanffy. Calculate M ′(0) in terms of the constants
a, b, k and m.
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solution Let

M(t) = (
a + (b − a)ekmt

)1/m
(m 	= 0).

Then

M ′(t) = 1

m
(a + (b − a)ekmt )1/m−1km(b − a)ekmt = k(b − a)ekmt (a + (b − a)ekmt )1/m−1,

and

M ′(0) = k(b − a)e0(a + (b − a)e0)1/m−1 = k(b − a)b1/m−1.

83. With notation as in Example 7, calculate

(a)
d

dθ
sin θ

∣∣∣∣
θ=60◦

(b)
d

dθ

(
θ + tan θ

) ∣∣∣∣
θ=45◦

solution

(a)
d

dθ
sin θ

∣∣∣
θ=60◦=

d

dθ
sin

( π

180
θ
) ∣∣∣

θ=60◦ =
( π

180

)
cos

( π

180
(60)

)
= π

180

1

2
= π

360
.

(b)
d

dθ

(
θ + tan θ

) ∣∣∣
θ=45◦=

d

dθ

(
θ + tan

( π

180
θ
)) ∣∣∣

θ=45◦ = 1 + π

180
sec2

(π

4

)
= 1 + π

90
.

84. Assume that

f (0) = 2, f ′(0) = 3, h(0) = −1, h′(0) = 7

Calculate the derivatives of the following functions at x = 0:

(a) (f (x))3 (b) f (7x) (c) f (4x)h(5x)

solution

(a) Let g(x) = (f (x))3. Then

g′(0) = 3(f (0))2(f ′(0)) = 12(3) = 36.

(b) Let g(x) = f (7x). Then

g′(0) = 7f ′(7(0)) = 21.

(c) Let F(x) = f (4x)h(5x). Then F ′(x) = 4f ′(4x)h(5x) + 5f (4x)h′(5x) and

F ′(0) = 4(3)(−1) + 5(2)(7) = 58.

85. Compute the derivative of h(sin x) at x = π
6 , assuming that h′(0.5) = 10.

solution Let u = sin x and suppose that h′(0.5) = 10. Then

d

dx
(h(u)) = dh

du

du

dx
= dh

du
cos x.

When x = π
6 , we have u = .5. Accordingly, the derivative of h(sin x) at x = π

6 is 10 cos
(
π
6

) = 5
√

3.

86. Let F(x) = f (g(x)), where the graphs of f and g are shown in Figure 4. Estimate g′(2) and f ′(g(2)) and compute
F ′(2).

1

2

3

4

1 2 3 4 5

f (x)

g(x)

x

y

FIGURE 4

solution After sketching an approximate tangent line to g at x = 2 (see the figure below), we estimate g′(2) = −1.

It appears from the graph that g(2) = 3 and f ′(3) = 5
4 (since between x = 2 and x = 4 the graph of f appears to be

linear with slope 5
4 ). Thus,

F ′(2) = f ′(g(2))g′(2) = 5

4
(−1) = −1.25.
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1

2

3

4

1 2 3 4 5
x

y

In Exercises 87–90, use the table of values to calculate the derivative of the function at the given point.

x 1 4 6

f (x) 4 0 6
f ′(x) 5 7 4
g(x) 4 1 6
g′(x) 5 1

2 3

87. f (g(x)), x = 6

solution
d

dx
f (g(x))

∣∣∣∣
x=6

= f ′(g(6))g′(6) = f ′(6)g′(6) = 4 × 3 = 12.

88. ef (x), x = 4

solution
d

dx
ef (x)

∣∣∣∣
x=4

= ef (4)f ′(4) = e0(7) = 7.

89. g(
√

x), x = 16

solution
d

dx
g(

√
x)

∣∣∣∣
x=16

= g′(4)

(
1

2

)
(1/

√
16) =

(
1

2

) (
1

2

) (
1

4

)
= 1

16
.

90. f (2x + g(x)), x = 1

solution
d

dx
f (2x + g(x))

∣∣∣∣
x=1

= f ′(2(1) + g(1))(2 + g′(1)) = f ′(2 + 4)(7) = 4(7) = 28.

91. The price (in dollars) of a computer component is P = 2C − 18C−1, where C is the manufacturer’s cost to produce
it. Assume that cost at time t (in years) is C = 9 + 3t−1. Determine the rate of change of price with respect to time at
t = 3.

solution
dC

dt
= −3t−2. C(3) = 10 and C′(3) = − 1

3 , so we compute:

dP

dt

∣∣∣∣
t=3

= 2C′(3) + 18

(C(3))2
C′(3) = −2

3
+ 18

100

(
−1

3

)
= −0.727

dollars

year
.

92. Plot the “astroid” y = (4 − x2/3)3/2 for 0 ≤ x ≤ 8. Show that the part of every tangent line in the first
quadrant has a constant length 8.

solution

• Here is a graph of the astroid.

y

x

10

10−10

−10

• Let f (x) = (4 − x2/3)3/2. Then

f ′(x) = 3

2
(4 − x2/3)1/2

(
−2

3
x−1/3

)
= −

√
4 − x2/3

x1/3
,
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and the tangent line to f at x = a is

y = −
√

4 − a2/3

a1/3
(x − a) +

(
4 − a2/3

)3/2
.

The y-intercept of this line is the point P = (
0, 4

√
4 − a2/3

)
, its x-intercept is the point Q =

(
4a1/3, 0

)
, and the

distance between P and Q is 8.

93. According to the U.S. standard atmospheric model, developed by the National Oceanic and Atmospheric Adminis-
tration for use in aircraft and rocket design, atmospheric temperature T (in degrees Celsius), pressure P (kPa = 1,000
pascals), and altitude h (in meters) are related by these formulas (valid in the troposphere h ≤ 11,000):

T = 15.04 − 0.000649h, P = 101.29 +
(

T + 273.1

288.08

)5.256

Use the Chain Rule to calculate dP/dh. Then estimate the change in P (in pascals, Pa) per additional meter of altitude
when h = 3,000.

solution

dP

dT
= 5.256

(
T + 273.1

288.08

)4.256 (
1

288.08

)
= 6.21519 × 10−13 (273.1 + T )4.256

and dT
dh

= −0.000649◦C/m. dP
dh

= dP
dT

dT
dh

, so

dP

dh
=

(
6.21519 × 10−13 (273.1 + T )4.256

)
(−0.000649) = −4.03366 × 10−16 (288.14 − 0.000649 h)4.256.

When h = 3000,

dP

dh
= −4.03366 × 10−16(286.193)4.256 = −1.15 × 10−5 kPa/m;

therefore, for each additional meter of altitude,

�P ≈ −1.15 × 10−5 kPa = −1.15 × 10−2 Pa.

94. Climate scientists use the Stefan-Boltzmann Law R = σT 4 to estimate the change in the earth’s average temperature
T (in kelvins) caused by a change in the radiation R (in joules per square meter per second) that the earth receives from
the sun. Here σ = 5.67 × 10−8 Js−1m−2K−4. Calculate dR/dt , assuming that T = 283 and dT

dt
= 0.05 K/yr. What are

the units of the derivative?

solution By the Chain Rule,

dR

dt
= dR

dT
· dT

dt
= 4σT 3 dT

dt
.

Assuming T = 283 K and dT
dt

= 0.05 K/yr, it follows that

dR

dt
= 4σ(2833)(0.05) ≈ 0.257 Js−1m−2/yr

95. In the setting of Exercise 94, calculate the yearly rate of change of T if T = 283 K and R increases at a rate of 0.5
Js−1m−2 per year.

solution By the Chain Rule,

dR

dt
= dR

dT
· dT

dt
= 4σT 3 dT

dt
.

Assuming T = 283 K and dR
dt

= 0.5 Js−1m−2 per year, it follows that author:

0.5 = 4σ(283)3 dT

dt
⇒ dT

dt
= 0.5

4σ(283)3
≈ 0.0973 kelvins/yr
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96. Use a computer algebra system to compute f (k)(x) for k = 1, 2, 3 for the following functions:

(a) f (x) = cot(x2) (b) f (x) =
√

x3 + 1

solution

(a) Let f (x) = cot(x2). Using a computer algebra system,

f ′(x) = −2x csc2(x2);
f ′′(x) = 2 csc2(x2)(4x2 cot(x2) − 1); and

f ′′′(x) = −8x csc2(x2)
(

6x2 cot2(x2) − 3 cot(x2) + 2x2
)

.

(b) Let f (x) =
√

x3 + 1. Using a computer algebra system,

f ′(x) = 3x2

2
√

x3 + 1
;

f ′′(x) = 3x(x3 + 4)

4(x3 + 1)3/2
; and

f ′′′(x) = −3(x6 + 20x3 − 8)

8(x3 + 1)5/2
.

97. Use the Chain Rule to express the second derivative of f ◦ g in terms of the first and second derivatives of f and g.

solution Let h(x) = f (g(x)). Then

h′(x) = f ′(g(x))g′(x)

and

h′′(x) = f ′(g(x))g′′(x) + g′(x)f ′′(g(x))g′(x) = f ′(g(x))g′′(x) + f ′′(g(x))
(
g′(x)

)2
.

98. Compute the second derivative of sin(g(x)) at x = 2, assuming that g(2) = π
4 , g′(2) = 5, and g′′(2) = 3.

solution Let f (x) = sin(g(x)). Then f ′(x) = cos(g(x))g′(x) and

f ′′(x) = cos(g(x))g′′(x) + g′(x)(− sin(g(x)))g′(x) = cos(g(x))g′′(x) − (g′(x))2 sin(g(x)).

Therefore,

f ′′(2) = g′′(2) cos (g(2)) − (
g′(2)

)2 sin (g(2)) = 3 cos
(
π
4

) − (5)2 sin
(
π
4

) = −22 ·
√

2
2 = −11

√
2

Further Insights and Challenges
99. Show that if f , g, and h are differentiable, then

[f (g(h(x)))]′ = f ′(g(h(x)))g′(h(x))h′(x)

solution Let f , g, and h be differentiable. Let u = h(x), v = g(u), and w = f (v). Then

dw

dx
= df

dv

dv

dx
= df

dv

dg

du

du

dx
= f ′(g(h(x))g′(h(x))h′(x)

100. Show that differentiation reverses parity: If f is even, then f ′ is odd, and if f is odd, then f ′ is even. Hint:
Differentiate f (−x).

solution A function is even if f (−x) = f (x) and odd if f (−x) = −f (x). By the chain rule, d
dx

f (−x) = −f ′(−x).
Now suppose that f is even. Then f (−x) = f (x) and

d

dx
f (−x) = d

dx
f (x) = f ′(x).

Hence, when f is even, −f ′(−x) = f ′(x) or f ′(−x) = −f ′(x) and f ′ is odd. On the other hand, suppose f is odd.
Then f (−x) = −f (x) and

d

dx
f (−x) = − d

dx
f (x) = −f ′(x).

Hence, when f is odd, −f ′(−x) = −f ′(x) or f ′(−x) = f ′(x) and f ′ is even.
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101. (a) Sketch a graph of any even function f (x) and explain graphically why f ′(x) is odd.

(b) Suppose that f ′(x) is even. Is f (x) necessarily odd? Hint: Check whether this is true for linear functions.

solution

(a) The graph of an even function is symmetric with respect to the y-axis. Accordingly, its image in the left half-plane is
a mirror reflection of that in the right half-plane through the y-axis. If at x = a ≥ 0, the slope of f exists and is equal to
m, then by reflection its slope at x = −a ≤ 0 is −m. That is, f ′(−a) = −f ′(a). Note: This means that if f ′(0) exists,
then it equals 0.

y

x
−2 −1 1 2

1

2

3

4

(b) Suppose that f ′ is even. Then f is not necessarily odd. Let f (x) = 4x + 7. Then f ′(x) = 4, an even function. But
f is not odd. For example, f (2) = 15, f (−2) = −1, but f (−2) 	= −f (2).

102. Power Rule for Fractional Exponents Let f (u) = uq and g(x) = xp/q . Assume that g(x) is differentiable.

(a) Show that f (g(x)) = xp (recall the laws of exponents).

(b) Apply the Chain Rule and the Power Rule for whole-number exponents to show that f ′(g(x)) g′(x) = pxp−1.

(c) Then derive the Power Rule for xp/q .

solution

(a) Let f (u) = uq and g(x) = xp/q , where q is a positive integer and p is an integer. Then

f (g(x)) = f
(
xp/q

)
=

(
xp/q

)q = xp.

(b) Differentiating both sides of the final expression in part (a), applying the chain rule on the left and the power rule for
whole number exponents on the right, it follows that

f ′(g(x))g′(x) = pxp−1.

(c) Thus

g′(x) = pxp−1

f ′(g(x))
= pxp−1

q
(
xp/q

)q−1
= pxp−1

qxp−p/q
= p

q
xp/q−1.

103. Prove that for all whole numbers n ≥ 1,

dn

dxn
sin x = sin

(
x + nπ

2

)

Hint: Use the identity cos x = sin
(
x + π

2

)
.

solution We will proceed by induction on n. For n = 1, we find

d

dx
sin x = cos x = sin

(
x + π

2

)
,

as required. Now, suppose that for some positive integer k,

dk

dxk
sin x = sin

(
x + kπ

2

)
.

Then

dk+1

dxk+1
sin x = d

dx
sin

(
x + kπ

2

)

= cos

(
x + kπ

2

)
= sin

(
x + (k + 1)π

2

)
.
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104. A Discontinuous Derivative Use the limit definition to show that g′(0) exists but g′(0) 	= lim
x→0

g′(x), where

g(x) =

⎧⎪⎨
⎪⎩

x2 sin
1

x
x 	= 0

0 x = 0

solution Using the limit definition,

g′(0) = lim
h→0

g(0 + h) − g(0)

h
= lim

h→0

h2 sin
(

1
h

)
− 0

h
= lim

h→0
h sin

(
1

h

)
= 0,

where we have used the squeeze theorem in the last step. Now, for x 	= 0,

g′(x) = x2
(

− 1

x2

)
cos

(
1

x

)
+ 2x sin

(
1

x

)
= 2x sin

(
1

x

)
− cos

(
1

x

)
.

Although the first term in g′ has a limit of 0 as x → 0 (by the squeeze theorem), the limit as x → 0 of the second term
does not exist. Hence, limx→0 g′(x) does not exist, so g′(0) 	= limx→0 g′(x).

105. Chain Rule This exercise proves the Chain Rule without the special assumption made in the text. For any number
b, define a new function

F(u) = f (u) − f (b)

u − b
for all u 	= b

(a) Show that if we define F(b) = f ′(b), then F(u) is continuous at u = b.

(b) Take b = g(a). Show that if x 	= a, then for all u,

f (u) − f (g(a))

x − a
= F(u)

u − g(a)

x − a
2

Note that both sides are zero if u = g(a).

(c) Substitute u = g(x) in Eq. (2) to obtain

f (g(x)) − f (g(a))

x − a
= F(g(x))

g(x) − g(a)

x − a

Derive the Chain Rule by computing the limit of both sides as x → a.

solution For any differentiable function f and any number b, define

F(u) = f (u) − f (b)

u − b

for all u 	= b.

(a) Define F(b) = f ′(b). Then

lim
u→b

F (u) = lim
u→b

f (u) − f (b)

u − b
= f ′(b) = F(b),

i.e., lim
u→b

F (u) = F(b). Therefore, F is continuous at u = b.

(b) Let g be a differentiable function and take b = g(a). Let x be a number distinct from a. If we substitute u = g(a)

into Eq. (2), both sides evaluate to 0, so equality is satisfied. On the other hand, if u 	= g(a), then

f (u) − f (g(a))

x − a
= f (u) − f (g(a))

u − g(a)

u − g(a)

x − a
= f (u) − f (b)

u − b

u − g(a)

x − a
= F(u)

u − g(a)

x − a
.

(c) Hence for all u, we have

f (u) − f (g(a))

x − a
= F(u)

u − g(a)

x − a
.

(d) Substituting u = g(x) in Eq. (2), we have

f (g(x)) − f (g(a))

x − a
= F(g(x))

g(x) − g(a)

x − a
.
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Letting x → a gives

lim
x→a

f (g(x)) − f (g(a))

x − a
= lim

x→a

(
F(g(x))

g(x) − g(a)

x − a

)
= F(g(a))g′(a) = F(b)g′(a) = f ′(b)g′(a)

= f ′(g(a))g′(a)

Therefore (f ◦ g)′ (a) = f ′(g(a))g′(a), which is the Chain Rule.

3.8 Derivatives of Inverse Functions

Preliminary Questions
1. What is the slope of the line obtained by reflecting the line y = x

2 through the line y = x?

solution The line obtained by reflecting the line y = x/2 through the line y = x has slope 2.

2. Suppose that P = (2, 4) lies on the graph of f (x) and that the slope of the tangent line through P is m = 3. Assuming
that f −1(x) exists, what is the slope of the tangent line to the graph of f −1(x) at the point Q = (4, 2)?

solution The tangent line to the graph of f −1(x) at the point Q = (4, 2) has slope 1
3 .

3. Which inverse trigonometric function g(x) has the derivative g′(x) = 1

x2 + 1
?

solution g(x) = tan−1 x has the derivative g′(x) = 1

x2 + 1
.

4. What does the following identity tell us about the derivatives of sin−1 x and cos−1 x?

sin−1 x + cos−1 x = π

2

solution Angles whose sine and cosine are x are complementary.

Exercises
1. Find the inverse g(x) of f (x) =

√
x2 + 9 with domain x ≥ 0 and calculate g′(x) in two ways: using Theorem 1 and

by direct calculation.

solution To find a formula for g(x) = f −1(x), solve y =
√

x2 + 9 for x. This yields x = ±
√

y2 − 9. Because the
domain of f was restricted to x ≥ 0, we must choose the positive sign in front of the radical. Thus

g(x) = f −1(x) =
√

x2 − 9.

Because x2 + 9 ≥ 9 for all x, it follows that f (x) ≥ 3 for all x. Thus, the domain of g(x) = f −1(x) is x ≥ 3. The range
of g is the restricted domain of f : y ≥ 0.

By Theorem 1,

g′(x) = 1

f ′(g(x))
.

With

f ′(x) = x√
x2 + 9

,

it follows that

f ′(g(x)) =
√

x2 − 9√
(
√

x2 − 9)2 + 9
=

√
x2 − 9√

x2
=

√
x2 − 9

x

since the domain of g is x ≥ 3. Thus,

g′(x) = 1

f ′(g(x))
= x√

x2 − 9
.

This agrees with the answer we obtain by differentiating directly:

g′(x) = 2x

2
√

x2 − 9
= x√

x2 − 9
.
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2. Let g(x) be the inverse of f (x) = x3 + 1. Find a formula for g(x) and calculate g′(x) in two ways: using Theorem
1 and then by direct calculation.

solution To find g(x), we solve y = x3 + 1 for x:

y − 1 = x3

x = (y − 1)1/3

Therefore, the inverse is g(x) = (x − 1)1/3.
We have f ′(x) = 3x2. According to Theorem 1,

g′(x) = 1

f ′(g(x))
= 1

3g(x)2
= 1

3(x − 1)2/3
= 1

3
(x − 1)−2/3

This agrees with the answer we obtain by differentiating directly:

d

dx
(x − 1)1/3 = 1

3 (x − 1)−2/3.

In Exercises 3–8, use Theorem 1 to calculate g′(x), where g(x) is the inverse of f (x).

3. f (x) = 7x + 6

solution Let f (x) = 7x + 6 then f ′(x) = 7. Solving y = 7x + 6 for x and switching variables, we obtain the inverse
g(x) = (x − 6)/7. Thus,

g′(x) = 1

f ′(g(x))
= 1

7
.

4. f (x) = √
3 − x

solution Let f (x) = (3 − x)1/2. Then

f ′(x) = 1

2
(3 − x)−1/2(−1) = −1

2(3 − x)1/2
.

Solving y = √
3 − x for x and switching variables, we obtain the inverse g(x) = 3 − x2. Thus,

g′(x) = 1

/ −1

2(3 − 3 + x2)1/2
= −2x,

where we have used the fact that the domain of g is x ≥ 0 to write
√

x2 = x.

5. f (x) = x−5

solution Let f (x) = x−5, then f ′(x) = −5x−6. Solving y = x−5 for x and switching variables, we obtain the

inverse g(x) = x−1/5. Thus,

g′(x) = 1

−5(x−1/5)−6
= −1

5
x−6/5.

6. f (x) = 4x3 − 1

solution Let f (x) = 4x3 − 1, then f ′(x) = 12x2. Solving y = 4x3 − 1 for x and switching variables, we obtain the

inverse g(x) = ( x+1
4 )1/3. Thus,

g′(x) = 1

12

(
x + 1

4

)−2/3

7. f (x) = x

x + 1

solution Let f (x) = x
x+1 , then

f ′(x) = (x + 1) − x

(x + 1)2
= 1

(x + 1)2
.

Solving y = x
x+1 for x and switching variables, we obtain the inverse g(x) = x

1−x
. Thus

g′(x) = 1

/
1

(x/(1 − x) + 1)2
= 1

(1 − x)2
.
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8. f (x) = 2 + x−1

solution Let f (x) = 2 + x−1, then f ′(x) = −1/x2. Solving y = 2 + x−1 for x and switching variables, we obtain
the inverse g(x) = 1/(x − 2). Thus,

g′(x) = 1

/ −1

1/(x − 2)2
= − 1

(x − 2)2
.

9. Let g(x) be the inverse of f (x) = x3 + 2x + 4. Calculate g(7) [without finding a formula for g(x)], and then
calculate g′(7).

solution Let g(x) be the inverse of f (x) = x3 + 2x + 4. Because

f (1) = 13 + 2(1) + 4 = 7,

it follows that g(7) = 1. Moreover, f ′(x) = 3x2 + 2, and

g′(7) = 1

f ′(g(7))
= 1

f ′(1)
= 1

5
.

10. Find g′( − 1
2

)
, where g(x) is the inverse of f (x) = x3

x2 + 1
.

solution Let g(x) be the inverse of f (x) = x3

x2 + 1
. Because

f (−1) = (−1)3

(−1)2 + 1
= −1

2
,

it follows that g(− 1
2 ) = −1. Moreover,

f ′(x) = (x2 + 1)(3x2) − x3(2x)

(x2 + 1)2
= x4 + 3x2

(x2 + 1)2
,

and

g′
(

−1

2

)
= 1

f ′(g(− 1
2 ))

= 1

f ′(−1)
= 1.

In Exercises 11–16, calculate g(b) and g′(b), where g is the inverse of f (in the given domain, if indicated).

11. f (x) = x + cos x, b = 1

solution f (0) = 1, so g(1) = 0. f ′(x) = 1 − sin x so f ′(g(1)) = f ′(0) = 1 − sin 0 = 1. Thus, g′(1) = 1/1 = 1.

12. f (x) = 4x3 − 2x, b = −2

solution f (−1) = −2, so g(−2) = −1. f ′(x) = 12x2 − 2 so f ′(g(−2)) = f ′(−1) = 12 − 2 = 10. Thus,
g′(−2) = 1/10.

13. f (x) =
√

x2 + 6x for x ≥ 0, b = 4

solution To determine g(4), we solve f (x) =
√

x2 + 6x = 4 for x. This yields:

x2 + 6x = 16

x2 + 6x − 16 = 0

(x + 8)(x − 2) = 0

or x = −8, 2. Because the domain of f has been restricted to x ≥ 0, we have g(4) = 2. With

f ′(x) = x + 3√
x2 + 6x

,

it then follows that

g′(4) = 1

f ′(g(4))
= 1

f ′(2)
= 4

5
.
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14. f (x) =
√

x2 + 6x for x ≤ −6, b = 4

solution To determine g(4), we solve f (x) =
√

x2 + 6x = 4 for x. This yields:

x2 + 6x = 16

x2 + 6x − 16 = 0

(x + 8)(x − 2) = 0

or x = −8, 2. Because the domain of f has been restricted to x ≤ −6, we have g(4) = −8. With

f ′(x) = x + 3√
x2 + 6x

,

it then follows that

g′(4) = 1

f ′(g(4))
= 1

f ′(−8)
= −4

5
.

15. f (x) = 1

x + 1
, b = 1

4

solution f (3) = 1/4, so g(1/4) = 3. f ′(x) = −1
(x+1)2 so f ′(g(1/4)) = f ′(3) = −1

(3+1)2 = −1/16. Thus, g′(1/4) =
−16.

16. f (x) = ex , b = e

solution f (1) = e so g(e) = 1. f ′(x) = ex so f ′(g(e)) = f ′(1) = e. Thus, g′(x) = 1/e.

17. Let f (x) = xn and g(x) = x1/n. Compute g′(x) using Theorem 1 and check your answer using the Power Rule.

solution Note that g(x) = f −1(x). Therefore,

g′(x) = 1

f ′(g(x))
= 1

n(g(x))n−1
= 1

n(x1/n)n−1
= 1

n(x1−1/n)
= x1/n−1

n
= 1

n
(x1/n−1)

which agrees with the Power Rule.

18. Show that f (x) = 1

1 + x
and g(x) = 1 − x

x
are inverses. Then compute g′(x) directly and verify that g′(x) =

1/f ′(g(x)).

solution Let f (x) = 1

1 + x
and g(x) = 1 − x

x
. Then

f (g(x)) = 1

1 + 1−x
x

= x

x + 1 − x
= x,

and

g(f (x)) = 1 − 1
1+x

1
1+x

= 1 + x − 1

1
= x;

consequently, f and g are inverses. Rewriting g(x) = x−1 − 1, we see that g′(x) = −x−2. Moreover, f ′(x) =
−(1 + x)−2, so

f ′(g(x)) = −
(

1 + 1 − x

x

)−2
= −(x−1)−2 = −x2,

and

1

f ′(g(x))
= −x−2 = g′(x).

In Exercises 19–22, compute the derivative at the point indicated without using a calculator.

19. y = sin−1 x, x = 3
5

solution Let y = sin−1 x. Then y′ = 1√
1−x2

and

y′
(

3

5

)
= 1√

1 − 9/25
= 1

4/5
= 5

4
.
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20. y = tan−1 x, x = 1
2

solution Let y = tan−1 x. Then y′ = 1
x2+1

and

y′
(

1

2

)
= 1

1
4 + 1

= 4

5
.

21. y = sec−1 x, x = 4

solution Let y = sec−1 x. Then y′ = 1
|x|

√
x2−1

and

y′(4) = 1

4
√

15
.

22. y = arccos(4x), x = 1
5

solution Let y = cos−1(4x). Then y′ = −4√
1−16x2

and

y′
(

1

5

)
= −4√

1 − 16
25

= −4
3
5

= −20

3
.

In Exercises 23–36, find the derivative.

23. y = sin−1(7x)

solution
d

dx
sin−1(7x) = 1√

1 − (7x)2
· d

dx
7x = 7√

1 − (7x)2
.

24. y = arctan
(x

3

)

solution
d

dx
tan−1

(x

3

)
= 1

(x/3)2 + 1
· d

dx

(x

3

)
= 1

3
· 1(

x
3

)2 + 1
= 1

(x2/3) + 3
.

25. y = cos−1(x2)

solution
d

dx
cos−1(x2) = −1√

1 − x4
· d

dx
x2 = −2x√

1 − x4
.

26. y = sec−1(t + 1)

solution
d

dt
sec−1(t + 1) = 1

|t + 1|
√

(t + 1)2 − 1
= 1

|t + 1|
√

t2 + 2t
.

27. y = x tan−1 x

solution
d

dx
x tan−1 x = x

(
1

1 + x2

)
+ tan−1 x.

28. y = ecos−1 x

solution
d

dx
ecos−1 x = ecos−1 x d

dx
cos−1 x = −ecos−1 x√

1 − x2
.

29. y = arcsin(ex)

solution
d

dx
sin−1(ex) = 1√

1 − e2x
· d

dx
ex = ex√

1 − e2x
.

30. y = csc−1(x−1)

solution
d

dx
csc−1(x−1) = −1

|1/x|
√

1/x2 − 1

(−1

x2

)
= 1

x2|1/x|
√

1/x2 − 1
= 1√

1 − x2
.

31. y =
√

1 − t2 + sin−1 t

solution
d

dt

(√
1 − t2 + sin−1 t

)
= 1

2
(1 − t2)−1/2(−2t) + 1√

1 − t2
= −t√

1 − t2
+ 1√

1 − t2
= 1 − t√

1 − t2
.
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32. y = tan−1
(

1 + t

1 − t

)

solution
d

dx
tan−1

(
1 + t

1 − t

)
= 1(

1+t
1−t

)2 + 1
·
(

(1 − t) − (1 + t)(−1)

(1 − t)2

)
= 2

(1 + t)2 + (1 − t)2
= 1

t2 + 1
.

33. y = (tan−1 x)3

solution
d

dx

(
(tan−1 x)3

)
= 3(tan−1 x)2 d

dx
tan−1 x = 3(tan−1 x)2

x2 + 1
.

34. y = cos−1 x

sin−1 x

solution
d

dx

(
cos−1 x

sin−1 x

)
=

sin−1 x

(
−1√
1−x2

)
− cos−1 x

(
1√

1−x2

)
(sin−1 x)2

= − π

2
√

1 − x2(sin−1 x)2
.

35. y = cos−1 t−1 − sec−1 t

solution
d

dx
(cos−1 t−1 − sec−1 t)= −1√

1 − (1/t)2

(−1

t2

)
− 1

|t |
√

t2 − 1

= 1√
t4 − t2

− 1

|t |
√

t2 − 1
= 1

|t |
√

t2 − 1
− 1

|t |
√

t2 − 1
= 0.

Alternately, let t = sec θ . Then t−1 = cos θ and cos−1 t−1 − sec−1 t = θ − θ = 0. Consequently,

d

dx
(cos−1 t−1 − sec−1 t) = 0.

36. y = cos−1(x + sin−1 x)

solution
d

dx
cos−1(x + sin−1 x) = −1√

1 − (x + sin−1 x)2

(
1 + 1√

1 − x2

)
.

37. Use Figure 5 to prove that (cos−1 x)′ = − 1√
1 − x2

.

1

x

1 − x2

FIGURE 5 Right triangle with θ = cos−1 x.

solution Let θ = cos−1 x. Then cos θ = x and

− sin θ
dθ

dx
= 1 or

dθ

dx
= − 1

sin θ
= − 1

sin(cos−1 x)
.

From Figure 5, we see that sin(cos−1 x) = sin θ =
√

1 − x2; hence,

d

dx
cos−1 x = 1

− sin(cos−1 x)
= − 1√

1 − x2
.

38. Show that (tan−1 x)′ = cos2(tan−1 x) and then use Figure 6 to prove that (tan−1 x)′ = (x2 + 1)−1.

q
1

x1 + x2

FIGURE 6 Right triangle with θ = tan−1 x.
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solution Let θ = tan−1 x. Then x = tan θ and

1 = sec2 θ
dθ

dx
or

dθ

dx
= 1

sec2 θ
= cos2 θ = cos2(tan−1 x).

From Figure 6, cos θ = 1√
1 + x2

, thus cos2 θ = 1

1 + x2
and

d

dx
(tan−1 x) = 1

1 + x2
.

39. Let θ = sec−1 x. Show that tan θ =
√

x2 − 1 if x ≥ 1 and that tan θ = −
√

x2 − 1 if x ≤ −1. Hint: tan θ ≥ 0 on(
0, π

2

)
and tan θ ≤ 0 on

(
π
2 , π

)
.

solution In general, 1 + tan2 θ = sec2 θ , so tan θ = ±
√

sec2 θ − 1. With θ = sec−1 x, it follows that sec θ = x, so

tan θ = ±
√

x2 − 1. Finally, if x ≥ 1 then θ = sec−1 x ∈ [0, π/2) so tan θ is positive; on the other hand, if x ≤ 1 then
θ = sec−1 x ∈ (−π/2, 0] so tan θ is negative.

40. Use Exercise 39 to verify the formula

(sec−1 x)′ = 1

|x|
√

x2 − 1

solution Let θ = sec−1 x. Then sec θ = x and

sec θ tan θ
dθ

dx
= 1 or

dθ

dx
= 1

sec θ tan θ
= 1

x tan(sec−1 x)
.

By Exercise 39, tan(sec−1 x) =
√

x2 − 1 for x > 1 and tan(sec−1 x) = −
√

x2 − 1 for x < −1. Hence,

d

dx
sec−1 x = 1

|x|
√

x2 − 1
.

Further Insights and Challenges
41. Let g(x) be the inverse of f (x). Show that if f ′(x) = f (x), then g′(x) = x−1. We will apply this in the next section
to show that the inverse of f (x) = ex (the natural logarithm) has the derivative f ′(x) = x−1.

solution

g′(x) = 1

f ′(g(x))
= 1

f ′(f −1(x))
= 1

f (f −1(x))
= 1

x
.

3.9 Derivatives of General Exponential and Logarithmic Functions

Preliminary Questions
1. What is the slope of the tangent line to y = 4x at x = 0?

solution The slope of the tangent line to y = 4x at x = 0 is

d

dx
4x

∣∣∣∣
x=0

= 4x ln 4

∣∣∣∣
x=0

= ln 4.

2. What is the rate of change of y = ln x at x = 10?

solution The rate of change of y = ln x at x = 10 is

d

dx
ln x

∣∣∣∣
x=10

= 1

x

∣∣∣∣
x=10

= 1

10
.

3. What is b > 0 if the tangent line to y = bx at x = 0 has slope 2?

solution The tangent line to y = bx at x = 0 has slope

d

dx
bx

∣∣∣∣
x=0

= bx ln b

∣∣∣∣
x=0

= ln b.

This slope will be equal to 2 when

ln b = 2 or b = e2.
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4. What is b if (logb x)′ = 1

3x
?

solution (logb x)′ =
(

ln x

ln b

)′
= 1

x ln b
. This derivative will equal 1

3x
when

ln b = 3 or b = e3.

5. What are y(100) and y(101) for y = cosh x?

solution Let y = cosh x. Then y′ = sinh x, y′′ = cosh x, and this pattern repeats indefinitely. Thus, y(100) = cosh x

and y(101) = sinh x.

Exercises
In Exercises 1–20, find the derivative.

1. y = x ln x

solution
d

dx
x ln x = ln x + x

x
= ln x + 1.

2. y = t ln t − t

solution
d

dt
(t ln t − t) = t

(
1

t

)
+ ln t − 1 = ln t .

3. y = (ln x)2

solution
d

dx
(ln x)2 = (2 ln x)

1

x
= 2

x
ln x.

4. y = ln(x5)

solution
d

dx
(ln x5) = 1

x5 (5x4) = 5

x
.

5. y = ln(9x2 − 8)

solution
d

dx
ln(9x2 − 8) = 18x

9x2 − 8
.

6. y = ln(t5t )

solution Using the rules for logarithms, we write

y = ln(t5t ) = ln t + ln(5t ) = ln t + t ln 5.

Then,

d

dt
ln(t5t ) = 1

t
+ ln 5.

7. y = ln(sin t + 1)

solution
d

dt
ln(sin t + 1) = cos t

sin t + 1
.

8. y = x2 ln x

solution
d

dx
x2 ln x = 2x ln x + x2

x
= 2x ln x + x.

9. y = ln x

x

solution
d

dx

ln x

x
=

1
x (x) − ln x

x2
= 1 − ln x

x2
.

10. y = e(ln x)2

solution
d

dx
e(ln x)2 = e(ln x)2 · 2 · ln x

x
.

11. y = ln(ln x)

solution
d

dx
ln(ln x) = 1

x ln x
.
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12. y = ln(cot x)

solution
d

dx
ln(cot x) = 1

cot x
(− csc2 x) = − 1

sin x cos x
.

13. y = (
ln(ln x)

)3

solution
d

dx
(ln(ln x))3 = 3(ln(ln x))2

(
1

ln x

) (
1

x

)
= 3(ln(ln x))2

x ln x
.

14. y = ln
(
(ln x)3)

solution
d

dx
ln((ln x)3) = 3(ln x)2

x(ln x)3
= 3

x ln x
.

Alternately, because ln((ln x)3) = 3 ln(ln x),

d

dx
ln((ln x)3) = 3

d

dx
ln(ln x) = 3 · 1

x ln x
.

15. y = ln
(
(x + 1)(2x + 9)

)
solution

d

dx
ln ((x + 1)(2x + 9)) = 1

(x + 1)(2x + 9)
· ((x + 1)2 + (2x + 9)) = 4x + 11

(x + 1)(2x + 9)
.

Alternately, because ln((x + 1)(2x + 9)) = ln(x + 1) + ln(2x + 9),

d

dx
ln((x + 1)(2x + 9)) = 1

x + 1
+ 2

2x + 9
= 4x + 11

(x + 1)(2x + 9)
.

16. y = ln

(
x + 1

x3 + 1

)

solution

d

dx
ln

(
x + 1

x3 + 1

)
= d

dx
ln

(
1

x2 − x + 1

)
= − d

dx
ln(x2 − x + 1) = − 2x − 1

x2 − x + 1
.

17. y = 11x

solution
d

dx
11x = ln 11 · 11x .

18. y = 74x−x2

solution
d

dx
74x−x2 = ln 7(4 − 2x)74x−x2

.

19. y = 2x − 3−x

x

solution
d

dx

2x − 3−x

x
= x(2x ln 2 + 3−x ln 3) − (2x − 3−x)

x2
.

20. y = 16sin x

solution
d

dx
16sin x = ln 16(cos x)16sin x .

In Exercises 21–24, compute the derivative.

21. f ′(x), f (x) = log2 x

solution f (x) = log2 x = ln x

ln 2
. Thus, f ′(x) = 1

x
· 1

ln 2
.

22. f ′(3), f (x) = log5 x

solution f (x) = ln x

ln 5
, so f ′(x) = 1

x ln 5
. Thus, f ′(3) = 1

3 ln 5
.

23.
d

dt
log3(sin t)

solution
d

dt
log3(sin t) = d

dt

(
ln(sin t)

ln 3

)
= 1

ln 3
· 1

sin t
· cos t = cot t

ln 3
.
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24.
d

dt
log10(t + 2t )

solution
d

dt
log10(t + 2t ) = d

dt

(
ln(t + 2t )

ln 10

)
= 1

ln 10
· 1 + 2t ln 2

t + 2t
.

In Exercises 25–36, find an equation of the tangent line at the point indicated.

25. f (x) = 6x , x = 2

solution Let f (x) = 6x . Then f (2) = 36, f ′(x) = 6x ln 6 and f ′(2) = 36 ln 6. The equation of the tangent line is
therefore y = 36 ln 6(x − 2) + 36.

26. y = (
√

2)x , x = 8

solution Let y = (
√

2)x . Then y(8) = 16, y′(x) = (
√

2)x ln
√

2 and y′(8) = 16 ln
√

2 = 8 ln 2. The equation of the
tangent line is therefore y = 8 ln 2(x − 8) + 16.

27. s(t) = 39t , t = 2

solution Let s(t) = 39t . Then s(2) = 318, s′(t) = 39t9 ln 3, and s′(2) = 318 · 9 ln 3 = 320 ln 3. The equation of the

tangent line is therefore y = 320 ln 3(t − 2) + 318.

28. y = π5x−2, x = 1

solution Let y = π5x−2. Then y(1) = π3, y′(x) = π5x−25 ln π , and y′(1) = 5π3 ln π . The equation of the tangent

line is therefore y = 5π3 ln π(x − 1) + π3.

29. f (x) = 5x2−2x , x = 1

solution Let f (x) = 5x2−2x . Then f (1) = 5−1, f ′(x) = ln 5 · 5x2−2x(2x − 2), and f ′(1) = ln 5(0) = 0. Therefore,

the equation of the tangent line is y = 5−1.

30. s(t) = ln t , t = 5

solution Let s(t) = ln t . Then s(5) = ln 5. s′(t) = 1/t , so s′(5) = 1/5. Therefore the equation of the tangent line is
y = (1/5)(t − 5) + ln 5.

31. s(t) = ln(8 − 4t), t = 1

solution Let s(t) = ln(8 − 4t). Then s(1) = ln(8 − 4) = ln 4. s′(t) = −4
8−4t

, so s′(1) = −4/4 = −1. Therefore the
equation of the tangent line is y = −1(t − 1) + ln 4.

32. f (x) = ln(x2), x = 4

solution Let f (x) = ln x2 = 2 ln x. Then f (4) = 2 ln 4. f ′(x) = 2/x, so f ′(4) = 1/2. Therefore the equation of
the tangent line is y = (1/2)(x − 4) + 2 ln 4.

33. R(z) = log5(2z2 + 7), z = 3

solution Let R(z) = log5(2z2 + 7). Then R(3) = log5(25) = 2,

R′(z) = 4z

(2z2 + 7) ln 5
, and R′(3) = 12

25 ln 5
.

The equation of the tangent line is therefore

y = 12

25 ln 5
(z − 3) + 2.

34. y = ln(sin x), x = π

4

solution Let f (x) = ln sin x. Then f (π/4) = ln(
√

2/2). f ′(x) = cos x/ sin x = cot x, so f ′(π/4) = 1. Therefore

the equation of the tangent line is y = (x − π/4) + ln(
√

2/2).

35. f (w) = log2 w, w = 1
8

solution Let f (w) = log2 w. Then

f

(
1

8

)
= log2

1

8
= log2 2−3 = −3,

f ′(w) = 1
w ln 2 , and

f ′
(

1

8

)
= 8

ln 2
.

The equation of the tangent line is therefore

y = 8

ln 2

(
w − 1

8

)
− 3.
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36. y = log2(1 + 4x−1), x = 4

solution Let y = log2(1 + 4x−1). Then y(4) = log2(1 + 1) = 1,

y′(x) = − 4x−2

(1 + 4x−1) ln 2
, and y′(4) = − 1

8 ln 2
.

The equation of the tangent line is therefore

y = − 1

8 ln 2
(x − 4) − 1.

In Exercises 37–44, find the derivative using logarithmic differentiation as in Example 5.

37. y = (x + 5)(x + 9)

solution Let y = (x + 5)(x + 9). Then ln y = ln((x + 5)(x + 9)) = ln(x + 5) + ln(x + 9). By logarithmic
differentiation

y′
y

= 1

x + 5
+ 1

x + 9

or

y′ = (x + 5)(x + 9)

(
1

x + 5
+ 1

x + 9

)
= (x + 9) + (x + 5) = 2x + 14.

38. y = (3x + 5)(4x + 9)

solution Let y = (3x + 5)(4x + 9). Then ln y = ln((3x + 5)(4x + 9)) = ln(3x + 5) + ln(4x + 9). By logarithmic
differentiation

y′
y

= 3

3x + 5
+ 4

4x + 9

or

y′ = (3x + 5)(4x + 9)

(
3

3x + 5
+ 4

4x + 9

)
= (12x + 27) + (12x + 20) = 24x + 47.

39. y = (x − 1)(x − 12)(x + 7)

solution Let y = (x − 1)(x − 12)(x + 7). Then ln y = ln(x − 1) + ln(x − 12) + ln(x + 7). By logarithmic
differentiation,

y′
y

= 1

x − 1
+ 1

x − 12
+ 1

x + 7

or

y′ = (x − 12)(x + 7) + (x − 1)(x + 7) + (x − 1)(x − 12) = 3x2 − 12x + 79.

40. y = x(x + 1)3

(3x − 1)2

solution Let y = x(x+1)3

(3x−1)2 . Then ln y = ln x + 3 ln(x + 1) − 2 ln(3x − 1). By logarithmic differentiation

y′
y

= 1

x
+ 3

x + 1
− 6

3x − 1
,

so

y′ = (x + 1)3

(3x − 1)2
+ 3x(x + 1)2

(3x − 1)2
− 6x(x + 1)3

(3x − 1)3
.

41. y = x(x2 + 1)√
x + 1

solution Let y = x(x2+1)√
x+1

. Then ln y = ln x + ln(x2 + 1) − 1
2 ln(x + 1). By logarithmic differentiation

y′
y

= 1

x
+ 2x

x2 + 1
− 1

2(x + 1)
,

so

y′ = x(x2 + 1)√
x + 1

(
1

x
+ 2x

x2 + 1
− 1

2(x + 1)

)
.
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42. y = (2x + 1)(4x2)
√

x − 9

solution Let y = (2x + 1)(4x2)
√

x − 9. Then

ln y = ln(2x + 1) + ln 4x2 + ln(x − 9)1/2 = ln(2x + 1) + ln 4 + 2 ln x + 1

2
ln(x − 9).

By logarithmic differentiation

y′
y

= 2

2x + 1
+ 2

x
+ 1

2(x − 9)
,

so

y′ = (2x + 1)(4x2)
√

x − 9

(
2

2x + 1
+ 2

x
+ 1

2(x − 9)

)
.

43. y =
√

x(x + 2)

(2x + 1)(3x + 2)

solution Let y =
√

x(x+2)
(2x+1)(3x+2)

. Then ln y = 1
2 [ln(x) + ln(x + 2) − ln(2x + 1) − ln(3x + 2)]. By logarithmic

differentiation

y′
y

= 1

2

(
1

x
+ 1

x + 2
− 2

2x + 1
− 3

3x + 2

)
,

so

y′ = 1

2

√
x(x + 2)

(2x + 1)(3x + 2)
·
(

1

x
+ 1

x + 2
− 2

2x + 1
− 3

3x + 2

)
.

44. y = (x3 + 1)(x4 + 2)(x5 + 3)2

solution Let y = (x3 + 1)(x4 + 2)(x5 + 3)2. Then ln y = ln(x3 + 1) + ln(x4 + 2) + 2 ln(x5 + 3). By logarithmic
differentiation

y′
y

= 3x2

x3 + 1
+ 4x3

x4 + 2
+ 10x4

x5 + 3
,

so

y′ = (x3 + 1)(x4 + 2)(x5 + 3)2

(
3x2

x3 + 1
+ 4x3

x4 + 2
+ 10x4

x5 + 3

)
.

In Exercises 45–50, find the derivative using either method of Example 6.

45. f (x) = x3x

solution Method 1: x3x = e3x ln x , so

d

dx
x3x = e3x ln x(3 + 3 ln x) = x3x(3 + 3 ln x).

Method 2: Let y = x3x . Then, ln y = 3x ln x. By logarithmic differentiation

y′
y

= 3x · 1

x
+ 3 ln x,

so

y′ = y(3 + 3 ln x) = x3x (3 + 3 ln x) .
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46. f (x) = xcos x

solution Method 1: xcos x = ecos x ln x , so

d

dx
xcos x = ecos x ln x

( cos x

x
− sin x ln x

)
= xcos x

( cos x

x
− sin x ln x

)
.

Method 2: Let y = xcos x . Then ln y = cos x ln x. By logarithmic differentiation

y′
y

= cos x
1

x
+ ln x(− sin x),

so

y′ = y
( cos x

x
− sin x ln x

)
= xcos x

( cos x

x
− sin x ln x

)
.

47. f (x) = xex

solution Method 1: xex = eex ln x , so

d

dx
xex = eex ln x

(
ex

x
+ ex ln x

)
= xex

(
ex

x
+ ex ln x

)
.

Method 2: Let y = xex
. Then ln y = ex ln x. By logarithmic differentiation

y′
y

= ex · 1

x
+ ex ln x,

so

y′ = y

(
ex

x
+ ex ln x

)
= xex

(
ex

x
+ ex ln x

)
.

48. f (x) = xx2

solution Method 1: xx2 = ex2 ln x , so

d

dx
xx2 = ex2 ln x(x + 2x ln x) = xx2

(x + 2x ln x) = xx2+1(1 + 2 ln x).

Method 2: Let y = xx2
. Then ln y = x2 ln x. By logarithmic differentiation

y′
y

= x + 2x ln x,

so

y′ = xx2
(x + 2x ln x) = xx2+1(1 + 2 ln x).

49. f (x) = x3x

solution Method 1: x3x = e3x ln x , so

d

dx
x3x = e3x ln x

(
3x

x
+ (ln x)(ln 3)3x

)
= x3x

(
3x

x
+ (ln x)(ln 3)3x

)
.

Method 2: Let y = x3x
. Then ln y = 3x ln x. By logarithmic differentiation

y′
y

= 3x 1

x
+ (ln x)(ln 3)3x,

so

y′ = x3x
(

3x

x
+ (ln x)(ln 3)3x

)
.

50. f (x) = exx

solution Method 1:

d

dx
exx = exx d

dx
xx = exx · xx(1 + ln x),

by Example 6 from the text.
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Method 2: Let y = exx
. Then ln y = xx ln e = xx . By logarithmic differentiation and Example 6

y′
y

= xx(1 + ln x), so y′ = exx
(xx)(1 + ln x).

In Exercises 51–74, calculate the derivative.

51. y = sinh(9x)

solution
d

dx
sinh(9x) = 9 cosh(9x).

52. y = sinh(x2)

solution
d

dx
sinh(x2) = 2x cosh(x2).

53. y = cosh2(9 − 3t)

solution
d

dt
cosh2(9 − 3t) = 2 cosh(9 − 3t) · (−3 sinh(9 − 3t)) = −6 cosh(9 − 3t) sinh(9 − 3t).

54. y = tanh(t2 + 1)

solution
d

dt
tanh(t2 + 1) = 2t sech2(t2 + 1).

55. y = √
cosh x + 1

solution
d

dx

√
cosh x + 1 = 1

2
(cosh x + 1)−1/2 sinh x.

56. y = sinh x tanh x

solution
d

dx
sinh x tanh x = cosh x tanh x + sinh x sech2 x = sinh x + tanh x sech x.

57. y = coth t

1 + tanh t

solution
d

dt

coth t

1 + tanh t
= − csch2 t (1 + tanh t) − coth t (sech2 t)

(1 + tanh t)2
= 1 + cosh t

(1 + cosh t)2
= 1

1 + cosh t
.

58. y = (ln(cosh x))5

solution
d

dx
(ln(cosh x))5 = 5(ln cosh x)4 sinh x

cosh x
= 5(ln cosh x)4 tanh x.

59. y = sinh(ln x)

solution
d

dx
sinh(ln x) = cosh(ln x)

x
.

60. y = ecoth x

solution
d

dx
ecoth x = − csch2 x · ecoth x .

61. y = tanh(ex)

solution
d

dx
tanh(ex) = ex sech2(ex).

62. y = sinh(cosh3 x)

solution
d

dx
sinh(cosh3 x) = cosh(cosh3 x)(3 cosh2 x sinh x).

63. y = sech(
√

x)

solution
d

dx
sech(

√
x) = −1

2
x−1/2 sech

√
x tanh

√
x.

64. y = ln(coth x)

solution
d

dx
ln(coth x) = − csch2 x

coth x
= −1

sinh2 x( cosh x
sinh x

)
= −1

sinh x cosh x
.
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65. y = sech x coth x

solution
d

dx
sech x coth x = d

dx
csch x = − csch x coth x.

66. y = xsinh x

solution

d

dx
xsinh x = d

dx
eln x sinh x =

(
cosh x ln x + sinh x

x

)
esinh x ln x = xsinh x

(
cosh x ln x + sinh x

x

)
.

67. y = cosh−1(3x)

solution
d

dx
cosh−1(3x) = 3√

9x2 − 1
.

68. y = tanh−1(ex + x2)

solution
d

dx
tanh−1(ex + x2) = ex + 2x

1 − (ex + x2)2
.

69. y = (sinh−1(x2))3

solution
d

dx
(sinh−1(x2))3 = 3(sinh−1(x2))2 2x√

x4 + 1
.

70. y = (csch−1 3x)4

solution
d

dx
(csch−1 3x)4 = 4(csch−1 3x)3

(
−1

|3x|
√

1 + 9x2

)
(3) = −4(csch−1 3x)3

|x|
√

1 + 9x2
.

71. y = ecosh−1 x

solution
d

dx
ecosh−1 x = ecosh−1 x

(
1√

x2 − 1

)
.

72. y = sinh−1(
√

x2 + 1)

solution
d

dx
sinh−1(

√
x2 + 1) = 1√

x2 + 1 + 1

(
1

2
√

x2 + 1

)
(2x) = x√

x2 + 2 ·
√

x2 + 1
.

73. y = tanh−1(ln t)

solution
d

dt
tanh−1(ln t) = 1

t (1 − (ln t)2)
.

74. y = ln(tanh−1 x)

solution
d

dx
ln(tanh−1 x) = 1

tanh−1 x

(
1

1 − x2

)
.

In Exercises 75–77, prove the formula.

75.
d

dx
(coth x) = − csch2 x

solution
d

dx
coth x = d

dx

cosh x

sinh x
= sinh2 x − cosh2 x

sinh2 x
= −1

sinh2 x
= − csch2 x.

76.
d

dt
sinh−1 t = 1√

t2 + 1

solution Let x = sinh−1 t . Then t = sinh x and

1 = cosh x
dx

dt
or

dx

dt
= 1

cosh x
.

Thus,

d

dt
sinh−1 t = 1

cosh x
,

where sinh x = t . Working from the identity cosh2 x − sinh2 x = 1, we find cosh x = ±
√

sinh2 x + 1. Because the

hyperbolic cosine is always positive, we know to choose the positive square root. Hence, cosh x =
√

sinh2 x + 1 =√
t2 + 1, and

d

dt
sinh−1 t = 1

cosh x
= 1√

t2 + 1
.
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77.
d

dt
cosh−1 t = 1√

t2 − 1
for t > 1

solution Let x = cosh−1 t . Then x ≥ 0, t = cosh x and

1 = sinh x
dx

dt
or

dx

dt
= 1

sinh x
.

Thus, for t > 1,

d

dt
cosh−1 t = 1

sinh x
,

where cosh x = t . Working from the identity cosh2 x − sinh2 x = 1, we find sinh x = ±
√

cosh2 x − 1. Because

sinh w ≥ 0 for w ≥ 0, we know to choose the positive square root. Hence, sinh x =
√

cosh2 x − 1 =
√

t2 − 1, and

d

dt
cosh−1 t = 1

sinh x
= 1√

t2 − 1
.

78. Use the formula (ln f (x))′ = f ′(x)/f (x) to show that ln x and ln(2x) have the same derivative. Is there a
simpler explanation of this result?

solution Observe

(ln x)′ = 1

x
and (ln 2x)′ = 2

2x
= 1

x
.

As an alternative explanation, note that ln(2x) = ln 2 + ln x. Hence, ln x and ln(2x) differ by a constant, which implies
the two functions have the same derivative.

79. According to one simplified model, the purchasing power of a dollar in the year 2000 + t is equal to P(t) =
0.68(1.04)−t (in 1983 dollars). Calculate the predicted rate of decline in purchasing power (in cents per year) in the year
2020.

solution First, note that

P ′(t) = −0.68(1.04)−t ln 1.04;
thus, the rate of change in the year 2020 is

P ′(20) = −0.68(1.04)−20 ln 1.04 = −0.0122.

That is, the rate of decline is 1.22 cents per year.

80. The energy E (in joules) radiated as seismic waves by an earthquake of Richter magnitude M satisfies log10 E =
4.8 + 1.5M .

(a) Show that when M increases by 1, the energy increases by a factor of approximately 31.5.

(b) Calculate dE/dM .

solution Solving log10 E = 4.8 + 1.5M for E yields

E = 104.8+1.5M.

(a) We find

E(M + 1) = 104.8+1.5(M+1) = 101.5104.8+1.5M ≈ 31.6E(M).

(b)

dE

dM
= (1.5 ln 10)104.8+1.5M.

81. Show that for any constants M , k, and a, the function

y(t) = 1

2
M

(
1 + tanh

(
k(t − a)

2

))

satisfies the logistic equation:
y′
y

= k
(

1 − y

M

)
.
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solution Let

y(t) = 1

2
M

(
1 + tanh

(
k(t − a)

2

))
.

Then

1 − y(t)

M
= 1

2

(
1 − tanh

(
k(t − a)

2

))
,

and

ky(t)

(
1 − y(t)

M

)
= 1

4
Mk

(
1 − tanh2

(
k(t − a)

2

))

= 1

4
Mk sech2

(
k(t − a)

2

)
.

Finally,

y′(t) = 1

4
Mk sech2

(
k(t − a)

2

)
= ky(t)

(
1 − y(t)

M

)
.

82. Show that V (x) = 2 ln(tanh(x/2)) satisfies the Poisson-Boltzmann equation V ′′(x) = sinh(V (x)), which is used
to describe electrostatic forces in certain molecules.

solution Let V (x) = 2 ln(tanh(x/2)). Then

V ′(x) = 2
1

tanh(x/2)
· 1

2
sech2(x/2) = 1

sinh(x/2) cosh(x/2)

and

V ′′(x) = −1

2

sinh2(x/2) + cosh2(x/2)

sinh2(x/2) cosh2(x/2)
= −1

2

(
sech2(x/2) + csch2(x/2)

)
.

On the other hand,

sinh(V (x)) = e2 ln(tanh(x/2)) − e−2 ln(tanh(x/2))

2

= tanh2(x/2) − coth2(x/2)

2

= (1 − sech2(x/2)) − (1 + csch2(x/2))

2
= −1

2

(
sech2(x/2) + csch2(x/2)

)
.

Thus, V ′′(x) = sinh(V (x)).

83. The Palermo Technical Impact Hazard Scale P is used to quantify the risk associated with the impact of an asteroid
colliding with the earth:

P = log10

(
piE

0.8

0.03T

)

where pi is the probability of impact, T is the number of years until impact, and E is the energy of impact (in megatons
of TNT). The risk is greater than a random event of similar magnitude if P > 0.

(a) Calculate dP/dT , assuming that pi = 2 × 10−5 and E = 2 megatons.

(b) Use the derivative to estimate the change in P if T increases from 8 to 9 years.
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solution
(a) Observe that

P = log10

(
piE

0.8

0.03T

)
= log10

(
piE

0.8

0.03

)
− log10 T ,

so

dP

dT
= − 1

T ln 10
.

(b) If T increases to 9 years from 8 years, then

�P ≈ dP

dT

∣∣∣∣
T =8

· �T = − 1

(8 yr) ln 10
· (1 yr) = −0.054

Further Insights and Challenges
84. (a) Show that if f and g are differentiable, then

d

dx
ln(f (x)g(x)) = f ′(x)

f (x)
+ g′(x)

g(x)
4

(b) Give a new proof of the Product Rule by observing that the left-hand side of Eq. (4) is equal to
(f (x)g(x))′
f (x)g(x)

.

solution

(a)
d

dx
ln f (x)g(x) = d

dx
(ln f (x) + ln g(x)) = f ′(x)

f (x)
+ g′(x)

g(x)
.

(b) By part (a),

d

dx
ln f (x)g(x) = f ′(x)

f (x)
+ g′(x)

g(x)
= f ′(x)g(x) + f (x)g′(x)

f (x)g(x)
.

Alternately,

d

dx
ln f (x)g(x) = (f (x)g(x))′

f (x)g(x)
.

Thus,

(f (x)g(x))′
f (x)g(x)

= f ′(x)g(x) + f (x)g′(x)

f (x)g(x)
,

or

(f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x).

85. Use the formula logb x = loga x

loga b
for a, b > 0 to verify the formula

d

dx
logb x = 1

(ln b)x

solution
d

dx
logb x = d

dx

ln x

ln b
= 1

(ln b)x
.

3.10 Implicit Differentiation

Preliminary Questions
1. Which differentiation rule is used to show

d

dx
sin y = cos y

dy

dx
?

solution The chain rule is used to show that d
dx

sin y = cos y
dy
dx

.

2. One of (a)–(c) is incorrect. Find and correct the mistake.

(a)
d

dy
sin(y2) = 2y cos(y2) (b)

d

dx
sin(x2) = 2x cos(x2) (c)

d

dx
sin(y2) = 2y cos(y2)
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solution
(a) This is correct. Note that the differentiation is with respect to the variable y.
(b) This is correct. Note that the differentiation is with respect to the variable x.
(c) This is incorrect. Because the differentiation is with respect to the variable x, the chain rule is needed to obtain

d

dx
sin(y2) = 2y cos(y2)

dy

dx
.

3. On an exam, Jason was asked to differentiate the equation

x2 + 2xy + y3 = 7

Find the errors in Jason’s answer: 2x + 2xy′ + 3y2 = 0

solution There are two mistakes in Jason’s answer. First, Jason should have applied the product rule to the second
term to obtain

d

dx
(2xy) = 2x

dy

dx
+ 2y.

Second, he should have applied the general power rule to the third term to obtain

d

dx
y3 = 3y2 dy

dx
.

4. Which of (a) or (b) is equal to
d

dx
(x sin t)?

(a) (x cos t)
dt

dx
(b) (x cos t)

dt

dx
+ sin t

solution Using the product rule and the chain rule we see that

d

dx
(x sin t) = x cos t

dt

dx
+ sin t,

so the correct answer is (b).

Exercises
1. Show that if you differentiate both sides of x2 + 2y3 = 6, the result is 2x + 6y2 dy

dx
= 0. Then solve for dy/dx and

evaluate it at the point (2, 1).

solution

d

dx
(x2 + 2y3) = d

dx
6

2x + 6y2 dy

dx
= 0

2x + 6y2 dy

dx
= 0

6y2 dy

dx
= −2x

dy

dx
= −2x

6y2
.

At (2, 1), dy
dx

= −4
6 = − 2

3 .

2. Show that if you differentiate both sides of xy + 4x + 2y = 1, the result is (x + 2)
dy
dx

+ y + 4 = 0. Then solve for
dy/dx and evaluate it at the point (1, −1).

solution Applying the product rule

d

dx
(xy + 4x + 2y) = d

dx
1

x
dy

dx
+ y + 4 + 2

dy

dx
= 0

(x + 2)
dy

dx
= −(y + 4)

dy

dx
= −y + 4

x + 2
.

At (1, −1), dy/dx = −3/3 = −1.
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In Exercises 3–8, differentiate the expression with respect to x, assuming that y = f (x).

3. x2y3

solution Assuming that y depends on x, then

d

dx

(
x2y3

)
= x2 · 3y2y′ + y3 · 2x = 3x2y2y′ + 2xy3.

4.
x3

y2

solution Assuming that y depends on x, then

d

dx

(
x3

y2

)
= y2(3x2) − x32yy′

y4
= 3x2

y2
− 2x3y′

y3
.

5. (x2 + y2)3/2

solution Assuming that y depends on x, then

d

dx

((
x2 + y2

)3/2
)

= 3

2

(
x2 + y2

)1/2 (
2x + 2yy′) = 3

(
x + yy′) √

x2 + y2.

6. tan(xy)

solution Assuming that y depends on x, then
d

dx
(tan (xy)) = (

xy′ + y
)

sec2(xy).

7.
y

y + 1

solution Assuming that y depends on x, then
d

dx

y

y + 1
= (y + 1)y′ − yy′

(y + 1)2
= y′

(y + 1)2
.

8. ey/t

solution Assuming that y depends on t , then

d

dt
ey/t = ey/t

(
ty′ − y

t2

)
.

In Exercises 9–26, calculate the derivative with respect to x.

9. 3y3 + x2 = 5

solution Let 3y3 + x2 = 5. Then 9y2y′ + 2x = 0, and y′ = − 2x

9y2
.

10. y4 − 2y = 4x3 + x

solution Let y4 − 2y = 4x3 + x. Then

d

dx
(y4 − 2y) = d

dx
(4x3 + x)

4y3y′ − 2y′ = 12x2 + 1

y′(4y3 − 2) = 12x2 + 1

y′ = 12x2 + 1

4y3 − 2

11. x2y + 2x3y = x + y

solution Let x2y + 2x3y = x + y. Then

x2y′ + 2xy + 2x3y′ + 6x2y = 1 + y′

x2y′ + 2x3y′ − y′ = 1 − 2xy − 6x2y

y′ = 1 − 2xy − 6x2y

x2 + 2x3 − 1
.
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12. xy2 + x2y5 − x3 = 3

solution Let xy2 + x2y5 − x3 = 3. Then

2xyy′ + y2 + 5x2y4y′ + 2xy5 − 3x2 = 0

(2xy + 5x2y4)y′ = 3x2 − y2 − 2xy5

y′ = 3x2 − y2 − 2xy5

2xy + 5x2y4

13. x3R5 = 1

solution Let x3R5 = 1. Then x3 · 5R4R′ + R5 · 3x2 = 0, and R′ = −3x2R5

5x3R4
= −3R

5x
.

14. x4 + z4 = 1

solution Let x4 + z4 = 1. Then 4x3 + 4z3z′ = 0, and z′ = −x3/z3.

15.
y

x
+ x

y
= 2y

solution Let

y

x
+ x

y
= 2y.

Then

xy′ − y

x2
+ y − xy′

y2
= 2y′

(
1

x
− x

y2
− 2

)
y′ = y

x2
− 1

y

y2 − x2 − 2xy2

xy2
y′ = y2 − x2

x2y

y′ = y(y2 − x2)

x(y2 − x2 − 2xy2)
.

16.
√

x + s = 1

x
+ 1

s

solution Let (x + s)1/2 = x−1 + s−1. Then

1

2
(x + s)−1/2 (

1 + s′) = −x−2 − s−2s′.

Multiplying by 2x2s2√
x + s and then solving for s′ gives

x2s2 (
1 + s′) = −2s2√

x + s − 2x2s′√x + s

x2s2s′ + 2x2s′√x + s = −2s2√
x + s − x2s2

x2
(
s2 + 2

√
x + s

)
s′ = −s2

(
x2 + 2

√
x + s

)

s′ = −
s2

(
x2 + 2

√
x + s

)
x2

(
s2 + 2

√
x + s

) .

17. y−2/3 + x3/2 = 1

solution Let y−2/3 + x3/2 = 1. Then

−2

3
y−5/3y′ + 3

2
x1/2 = 0 or y′ = 9

4
x1/2y5/3.

18. x1/2 + y2/3 = −4y

solution Let x1/2 + y2/3 = y−4. Then 1
2x−1/2 + 2

3y−1/3y′ = −4y−5y′, and

y′ = −
1
2x−1/2

2
3y−1/3 + 4y−5

.
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19. y + 1

y
= x2 + x

solution Let y + 1
y = x2 + x. Then

y′ − 1

y2
y′ = 2x + 1 or y′ = 2x + 1

1 − y−2
= (2x + 1)y2

y2 − 1
.

20. sin(xt) = t

solution In what follows, t ′ = dt
dx

. Applying the chain rule and the product rule, we get:

d

dx
sin(xt) = d

dx
t

cos(xt)(xt ′ + t) = t ′

x cos(xt)t ′ + t cos(xt) = t ′

x cos(xt)t ′ − t ′ = −t cos(xt)

t ′(x cos(xt) − 1) = −t cos(xt)

t ′ = −t cos(xt)

x cos(xt) − 1
.

21. sin(x + y) = x + cos y

solution Let sin(x + y) = x + cos y. Then

(1 + y′) cos(x + y) = 1 − y′ sin y

cos(x + y) + y′ cos(x + y) = 1 − y′ sin y

(cos(x + y) + sin y) y′ = 1 − cos(x + y)

y′ = 1 − cos(x + y)

cos(x + y) + sin y
.

22. tan(x2y) = (x + y)3

solution Let tan
(
x2y

)
= (x + y)3. Then

sec2(x2y) · (x2y′ + 2xy) = 3(x + y)2(1 + y′)
x2 sec2(x2y)y′ + 2xy sec2(x2y) = 3(x + y)2 + 3(x + y)2y′(

x2 sec2(x2y) − 3(x + y)2
)

y′ = 3(x + y)2 − 2xy sec2(x2y)

y′ =
3(x + y)2 − 2xy sec2

(
x2y

)
x2 sec2

(
x2y

) − 3(x + y)2
.

23. xey = 2xy + y3

solution Let xey = 2xy + y3. Then xy′ey + ey = 2xy′ + 2y + 3y2y′, whence

y′ = ey − 2y

2x + 3y2 − xey
.

24. exy = sin(y2)

solution Let exy = sin(y2). Then exy
(
xy′ + y

) = 2y cos(y2)y′, whence

y′ = yexy

2y cos(y2) − xexy
.
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25. ln x + ln y = x − y

solution Let ln x + ln y = x − y. Then

1

x
+ y′

y
= 1 − y′ or y′ = 1 − 1

x

1 + 1
y

= xy − y

xy + x
.

26. ln(x2 + y2) = x + 4

solution Let ln(x2 + y2) = x + 4. Then

2x + 2yy′
x2 + y2

= 1 or y′ = x2 + y2 − 2x

2y
.

27. Show that x + yx−1 = 1 and y = x − x2 define the same curve (except that (0, 0) is not a solution of the first
equation) and that implicit differentiation yields y′ = yx−1 − x and y′ = 1 − 2x. Explain why these formulas produce
the same values for the derivative.

solution Multiply the first equation by x and then isolate the y term to obtain

x2 + y = x ⇒ y = x − x2.

Implicit differentiation applied to the first equation yields

1 − yx−2 + x−1y′ = 0 or y′ = yx−1 − x.

From the first equation, we find yx−1 = 1 − x; upon substituting this expression into the previous derivative, we find

y′ = 1 − x − x = 1 − 2x,

which is the derivative of the second equation.

28. Use the method of Example 4 to compute dy
dx

∣∣
P

at P = (2, 1) on the curve y2x3 + y3x4 − 10x + y = 5.

solution Implicit differentiation yields

3x2y2 + 2x3yy′ + 4x3y3 + 3x4y2y′ − 10 + y′ = 0 or y′ = 10 − 3x2y2 − 4x3y3

2x3y + 3x4y2 + 1
.

Thus, at P = (2, 1),

dy

dx

∣∣∣
P

= 10 − 3(2)2(1)2 − 4(2)3(1)3

2(2)3(1) + 3(2)4(1)2 + 1
= −34

65
.

In Exercises 29 and 30, find dy/dx at the given point.

29. (x + 2)2 − 6(2y + 3)2 = 3, (1, −1)

solution By the scaling and shifting rule,

2(x + 2) − 24(2y + 3)y′ = 0.

If x = 1 and y = −1, then

2(3) − 24(1)y′ = 0.

so that 24y′ = 6, or y′ = 1
4 .
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30. sin2(3y) = x + y,

(
2 − π

4
,
π

4

)

solution Taking the derivative of both sides of sin2(3y) = x + y yields

2 sin(3y) cos(3y)(3y′) = 1 + y′.

If x = 2−π
4 and y = π

4 , we get

6 sin

(
3π

4

)
cos

(
3π

4

)
y′ = 1 + y′.

Using

sin

(
3π

4

)
=

√
2

2
and cos

(
3π

4

)
= −

√
2

2

we find

−6

(√
2

2

) (√
2

2

)
y′ = 1 + y′

−3y′ = 1 + y′

y′ = −1

4
.

In Exercises 31–38, find an equation of the tangent line at the given point.

31. xy + x2y2 = 5, (2, 1)

solution Taking the derivative of both sides of xy + x2y2 = 5 yields

xy′ + y + 2xy2 + 2x2yy′ = 0.

Substituting x = 2, y = 1, we find

2y′ + 1 + 4 + 8y′ = 0 or y′ = −1

2
.

Hence, the equation of the tangent line at (2, 1) is y − 1 = − 1
2 (x − 2) or y = − 1

2x + 2.

32. x2/3 + y2/3 = 2, (1, 1)

solution Taking the derivative of both sides of x2/3 + y2/3 = 2 yields

2

3
x−1/3 + 2

3
y−1/3y′ = 0.

Substituting x = 1, y = 1 yields 2
3 + 2

3y′ = 0, so that 1 + y′ = 0, or y′ = −1. Hence, the equation of the tangent line at
(1, 1) is y − 1 = −(x − 1), or y = 2 − x.

33. x2 + sin y = xy2 + 1, (1, 0)

solution Taking the derivative of both sides of x2 + sin y = xy2 + 1 yields

2x + cos yy′ = y2 + 2xyy′.

Substituting x = 1, y = 0, we find

2 + y′ = 0 or y′ = −2.

Hence, the equation of the tangent line is y − 0 = −2(x − 1) or y = −2x + 2.

34. sin(x − y) = x cos
(
y + π

4

)
,

(
π
4 , π

4

)
solution Taking the derivative of both sides of sin(x − y) = x cos

(
y + π

4

)
yields

cos(x − y)(1 − y′) = cos
(
y + π

4

) − x sin
(
y + π

4

)
y′.

Substituting x = π
4 , y = π

4 , we find

1(1 − y′) = 0 − π

4
y′ or y′ = 4

4 + π
.
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Hence, the equation of the tangent line is

y − π

4
= 4

4 + π

(
x − π

4

)
.

35. 2x1/2 + 4y−1/2 = xy, (1, 4)

solution Taking the derivative of both sides of 2x1/2 + 4y−1/2 = xy yields

x−1/2 − 2y−3/2y′ = xy′ + y.

Substituting x = 1, y = 4, we find

1 − 2

(
1

8

)
y′ = y′ + 4 or y′ = −12

5
.

Hence, the equation of the tangent line is y − 4 = − 12
5 (x − 1) or y = − 12

5 x + 32
5 .

36. x2ey + yex = 4, (2, 0)

solution Taking the derivative of both sides of x2ey + yex = 4 yields

x2eyy′ + 2xey + yex + exy′ = 0.

Substituting x = 2, y = 0, we find

4y′ + 4 + 0 + e2y′ = 0 or y′ = − 4

4 + e2
.

Hence, the equation of the tangent line is

y = − 4

4 + e2
(x − 2).

37. e2x−y = x2

y
, (2, 4)

solution taking the derivative of both sides of e2x−y = x2

y
yields

e2x−y(2 − y′) = 2xy − x2y′
y2

.

Substituting x = 2, y = 4, we find

e0(2 − y′) = 16 − 4y′
16

or y′ = 4

3
.

Hence, the equation of the tangent line is y − 4 = 4
3 (x − 2) or y = 4

3x + 4
3 .

38. y2ex2−16 − xy−1 = 2, (4, 2)

solution Taking the derivative of both sides of y2ex2−16 − xy−1 = 2 yields

2xy2ex2−16 + 2yy′ex2−16 + xy−2y′ − y−1 = 0.

Substituting x = 4, y = 2, we find

32e0 + 4y′e0 + y′ − 1

2
= 0 or y′ = −63

10
.

Hence, the equation of the tangent line is y − 2 = − 63
10 (x − 4) or y = − 63

10x + 136
5 .

39. Find the points on the graph of y2 = x3 − 3x + 1 (Figure 6) where the tangent line is horizontal.

(a) First show that 2yy′ = 3x2 − 3, where y′ = dy/dx.

(b) Do not solve for y′. Rather, set y′ = 0 and solve for x. This yields two values of x where the slope may be zero.

(c) Show that the positive value of x does not correspond to a point on the graph.

(d) The negative value corresponds to the two points on the graph where the tangent line is horizontal. Find their
coordinates.
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2

−2

−2 −1 1 2
x

y

FIGURE 6 Graph of y2 = x3 − 3x + 1.

solution

(a) Applying implicit differentiation to y2 = x3 − 3x + 1, we have

2y
dy

dx
= 3x2 − 3.

(b) Setting y′ = 0 we have 0 = 3x2 − 3, so x = 1 or x = −1.

(c) If we return to the equation y2 = x3 − 3x + 1 and substitute x = 1, we obtain the equation y2 = −1, which has no
real solutions.

(d) Substituting x = −1 into y2 = x3 − 3x + 1 yields

y2 = (−1)3 − 3(−1) + 1 = −1 + 3 + 1 = 3,

so y = √
3 or −√

3. The tangent is horizontal at the points (−1,
√

3) and (−1, −√
3).

40. Show, by differentiating the equation, that if the tangent line at a point (x, y) on the curve x2y − 2x + 8y = 2 is
horizontal, then xy = 1. Then substitute y = x−1 in x2y − 2x + 8y = 2 to show that the tangent line is horizontal at the
points

(
2, 1

2

)
and

( − 4, − 1
4

)
.

solution Taking the derivative on both sides of the equation x2y − 2x + 8y = 2 yields

x2y′ + 2xy − 2 + 8y′ = 0 or y′ = 2(1 − xy)

x2 + 8
.

Thus, if the tangent line to the given curve is horizontal, it must be that 1 − xy = 0, or xy = 1. Substituting y = x−1

into x2y − 2x + 8y = 2 then yields

x − 2x + 8

x
= 2 or x2 + 2x − 8 = (x + 4)(x − 2) = 0.

Hence, the given curve has a horizontal tangent line when x = 2 and when x = −4. The corresponding points on the
curve are thus

(
2, 1

2

)
and

( − 4, − 1
4

)
.

41. Find all points on the graph of 3x2 + 4y2 + 3xy = 24 where the tangent line is horizontal (Figure 7).

−2

2

3

−3

−2

−3

3

2

x

y

FIGURE 7 Graph of 3x2 + 4y2 + 3xy = 24.

solution Differentiating the equation 3x2 + 4y2 + 3xy = 24 implicitly yields

6x + 8yy′ + 3xy′ + 3y = 0,

so

y′ = −6x + 3y

8y + 3x
.

Setting y′ = 0 leads to 6x + 3y = 0, or y = −2x. Substituting y = −2x into the equation 3x2 + 4y2 + 3xy = 24 yields

3x2 + 4(−2x)2 + 3x(−2x) = 24,
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or 13x2 = 24. Thus, x = ±2
√

78/13, and the coordinates of the two points on the graph of 3x2 + 4y2 + 3xy = 24
where the tangent line is horizontal are(

2
√

78

13
, −4

√
78

13

)
and

(
−2

√
78

13
,

4
√

78

13

)
.

42. Show that no point on the graph of x2 − 3xy + y2 = 1 has a horizontal tangent line.

solution Let the implicit curve x2 − 3xy + y2 = 1 be given. Then

2x − 3xy′ − 3y + 2yy′ = 0,

so

y′ = 2x − 3y

3x − 2y
.

Setting y′ = 0 leads to y = 2
3x. Substituting y = 2

3x into the equation of the implicit curve gives

x2 − 3x

(
2

3
x

)
+

(
2

3
x

)2
= 1,

or − 5
9x2 = 1, which has no real solutions. Accordingly, there are no points on the implicit curve where the tangent line

has slope zero.

43. Figure 1 shows the graph of y4 + xy = x3 − x + 2. Find dy/dx at the two points on the graph with x-coordinate 0
and find an equation of the tangent line at (1, 1).

solution Consider the equation y4 + xy = x3 − x + 2. Then 4y3y′ + xy′ + y = 3x2 − 1, and

y′ = 3x2 − y − 1

x + 4y3
.

• Substituting x = 0 into y4 + xy = x3 − x + 2 gives y4 = 2, which has two real solutions, y = ±21/4. When
y = 21/4, we have

y′ = −21/4 − 1

4
(
23/4

) = −
√

2 + 4√2

8
≈ −.3254.

When y = −21/4, we have

y′ = 21/4 − 1

−4
(
23/4

) = −
√

2 − 4√2

8
≈ −.02813.

• At the point (1, 1), we have y′ = 1
5 . At this point the tangent line is y − 1 = 1

5 (x − 1) or y = 1
5x + 4

5 .

44. Folium of Descartes The curve x3 + y3 = 3xy (Figure 8) was first discussed in 1638 by the French philosopher-
mathematician René Descartes, who called it the folium (meaning “leaf”). Descartes’s scientific colleague Gilles de
Roberval called it the jasmine flower. Both men believed incorrectly that the leaf shape in the first quadrant was repeated
in each quadrant, giving the appearance of petals of a flower. Find an equation of the tangent line at the point

( 2
3 , 4

3

)
.

2

−2

−2 2
x

y

FIGURE 8 Folium of Descartes: x3 + y3 = 3xy.

solution Let x3 + y3 = 3xy. Then 3x2 + 3y2y′ = 3xy′ + 3y, and y′ = x2 − y

x − y2
. At the point

(
2
3 , 4

3

)
, we have

y′ =
4
9 − 4

3
2
3 − 16

9

= − 8
9

− 10
9

= 4

5
.

The tangent line at P is thus y − 4
3 = 4

5

(
x − 2

3

)
or y = 4

5x + 4
5 .
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45. Find a point on the folium x3 + y3 = 3xy other than the origin at which the tangent line is horizontal.

solution Using implicit differentiation, we find

d

dx

(
x3 + y3

)
= d

dx
(3xy)

3x2 + 3y2y′ = 3(xy′ + y)

Setting y′ = 0 in this equation yields 3x2 = 3y or y = x2. If we substitute this expression into the original equation
x3 + y3 = 3xy, we obtain:

x3 + x6 = 3x(x2) = 3x3 or x3(x3 − 2) = 0.

One solution of this equation is x = 0 and the other is x = 21/3. Thus, the two points on the folium x3 + y3 = 3xy at
which the tangent line is horizontal are (0, 0) and (21/3, 22/3).

46. Plot x3 + y3 = 3xy + b for several values of b and describe how the graph changes as b → 0. Then

compute dy/dx at the point (b1/3, 0). How does this value change as b → ∞? Do your plots confirm this conclusion?

solution Consider the first row of figures below. When b < 0, the graph of x3 + y3 = 3xy + b consists of two pieces.
As b → 0−, the two pieces move closer to intersecting at the origin. From the second row of figures, we see that the
graph of x3 + y3 = 3xy + b when b > 0 consists of a single piece that has a “loop" in the first quadrant. As b → 0+,
the loop comes closer to “pinching off" at the origin.

y

x
−0.5

−0.5

1.510.5

b = −0.1

0.5

1

1.5

y

x
−0.5

−0.5

1.510.5

b = −0.01

0.5

1

1.5

y

x
−0.5

−0.5

1.510.5

b = −0.001

0.5

1

1.5

y

x
−0.5

−0.5

1.510.5

b = 0.1

0.5

1

1.5

y

x
−0.5

−0.5

1.510.5

b = 0.01

0.5

1

1.5

y

x
−0.5

−0.5

1.510.5

b = 0.001

0.5

1

1.5

Differentiating the equation x3 + y3 = 3xy + b with respect to x yields 3x2 + 3y2y′ = 3xy′ + 3y, so

y′ = y − x2

y2 − x
.

At (b1/3, 0), we have

y′ = 0 − x2

02 − x
= x = 3√

b.

Consequently, as b → ∞, y′ → ∞ at the point on the graph where y = 0. This conclusion is supported by the figures
shown below, which correspond to b = 1, b = 10, and b = 100.

y

x
−4 −2

−4

−2

42

b = 01

2

4

y

x
−4 −2

−4

−2

42

2

4

y

x
−4 −2

−4

−2

42

2

4

b = 10
b = 100
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47. Find the x-coordinates of the points where the tangent line is horizontal on the trident curve xy = x3 − 5x2 + 2x − 1,
so named by Isaac Newton in his treatise on curves published in 1710 (Figure 9).

Hint: 2x3 − 5x2 + 1 = (2x − 1)(x2 − 2x − 1).

20

−20

−2 86

4

2
x

y

FIGURE 9 Trident curve: xy = x3 − 5x2 + 2x − 1.

solution Take the derivative of the equation of a trident curve:

xy = x3 − 5x2 + 2x − 1

to obtain

xy′ + y = 3x2 − 10x + 2.

Setting y′ = 0 gives y = 3x2 − 10x + 2. Substituting this into the equation of the trident, we have

xy = x(3x2 − 10x + 2) = x3 − 5x2 + 2x − 1

or

3x3 − 10x2 + 2x = x3 − 5x2 + 2x − 1

Collecting like terms and setting to zero, we have

0 = 2x3 − 5x2 + 1 = (2x − 1)(x2 − 2x − 1).

Hence, x = 1
2 , 1 ± √

2.

48. Find an equation of the tangent line at each of the four points on the curve (x2 + y2 − 4x)2 = 2(x2 + y2) where
x = 1. This curve (Figure 10) is an example of a limaçon of Pascal, named after the father of the French philosopher
Blaise Pascal, who first described it in 1650.

3

−3

531
x

y

FIGURE 10 Limaçon: (x2 + y2 − 4x)2 = 2(x2 + y2).

solution Plugging x = 1 into the equation for the limaçon and solving for y, we find that the points on the curve

where x = 1 are: (1, 1), (1, −1), (1,
√

7), (1, −√
7). Using implicit differentiation, we obtain

2(x2 + y2 − 4x)(2x + 2yy′ − 4) = 2(2x + 2yy′).

We plug in x = 1 and get

2(1 + y2 − 4)(2 + 2yy′ − 4) = 2(2 + 2yy′)

or

(2y2 − 6)(2yy′ − 2) = 4 + 4yy′.

After collecting like terms and solving for y′, we have

y′ = −2 + y2

y3 − 4y
.
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At the point (1, 1) the slope of the tangent is 1
3 and the tangent line is

y − 1 = 1

3
(x − 1) or y = 1

3
x + 2

3
.

At the point (1, −1) the slope of the tangent is − 1
3 and the tangent line is

y + 1 = −1

3
(x − 1) or y = −1

3
x − 2

3
.

At the point (1,
√

7) the slope of the tangent is 5/3
√

7 and the tangent line is

y − √
7 = 5

3
√

7
(x − 1) or y = 5

3
√

7
x + √

7 − 5

3
√

7
.

At the point (1, −√
7) the slope of the tangent is −5/3

√
7 and the tangent line is

y + √
7 = − 5

3
√

7
(x − 1) or y = − 5

3
√

7
x + 5

3
√

7
− √

7.

49. Find the derivative at the points where x = 1 on the folium (x2 + y2)2 = 25
4 xy2. See Figure 11.

2

−2

1
x

y

FIGURE 11 Folium curve: (x2 + y2)2 = 25

4
xy2

solution First, find the points (1, y) on the curve. Setting x = 1 in the equation (x2 + y2)2 = 25
4 xy2 yields

(1 + y2)2 = 25

4
y2

y4 + 2y2 + 1 = 25

4
y2

4y4 + 8y2 + 4 = 25y2

4y4 − 17y2 + 4 = 0

(4y2 − 1)(y2 − 4) = 0

y2 = 1

4
or y2 = 4

Hence y = ± 1
2 or y = ±2. Taking d

dx
of both sides of the original equation yields

2(x2 + y2)(2x + 2yy′) = 25

4
y2 + 25

2
xyy′

4(x2 + y2)x + 4(x2 + y2)yy′ = 25

4
y2 + 25

2
xyy′

(4(x2 + y2) − 25

2
x)yy′ = 25

4
y2 − 4(x2 + y2)x

y′ =
25
4 y2 − 4(x2 + y2)x

y(4(x2 + y2) − 25
2 x)

• At (1, 2), x2 + y2 = 5, and

y′ =
25
4 22 − 4(5)(1)

2(4(5) − 25
2 (1))

= 1

3
.
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• At (1, −2), x2 + y2 = 5 as well, and

y′ =
25
4 (−2)2 − 4(5)(1)

−2(4(5) − 25
2 (1))

= −1

3
.

• At (1, 1
2 ), x2 + y2 = 5

4 , and

y′ =
25
4

(
1
2

)2 − 4
(

5
4

)
(1)

1
2

(
4

(
5
4

)
− 25

2 (1)
) = 11

12
.

• At (1, − 1
2 ), x2 + y2 = 5

4 , and

y′ =
25
4

(
− 1

2

)2 − 4
(

5
4

)
(1)

− 1
2

(
4

(
5
4

)
− 25

2 (1)
) = − 11

12
.

The folium and its tangent lines are plotted below:

2

1

−1

−2

21.510.5
x

y

50. Plot (x2 + y2)2 = 12(x2 − y2) + 2 for −4 ≤ x ≤ 4, 4 ≤ y ≤ 4 using a computer algebra system. How
many horizontal tangent lines does the curve appear to have? Find the points where these occur.

solution A plot of the curve (x2 + y2)2 = 12(x2 − y2) + 2 is shown below. From this plot, it appears that the curve
has a horizontal tangent line at six different locations.

−1−2−3

1

−1

1 2 3
x

y

Differentiating the equation (x2 + y2)2 = 12(x2 − y2) + 2 with respect to x yields

2(x2 + y2)(2x + 2yy′) = 12(2x − 2yy′),

so

y′ = x(6 − x2 − y2)

y(x2 + y2 + 6)
.

Thus, horizontal tangent lines occur when x = 0 and when x2 + y2 = 6. Substituting x = 0 into the equation for the curve

leaves y4 + 12y2 − 2 = 0, from which it follows that y2 = √
38 − 6 or y = ±

√√
38 − 6. Substituting x2 + y2 = 6

into the equation for the curve leaves x2 − y2 = 17
6 . From here, it follows that

x = ±
√

159

6
and y = ±

√
57

6
.

The six points at which horizontal tangent lines occur are therefore(
0,

√√
38 − 6

)
,

(
0, −

√√
38 − 6

)
(√

159

6
,

√
57

6

)
,

(√
159

6
, −

√
57

6

)
,

(
−

√
159

6
,

√
57

6

)
,

(
−

√
159

6
, −

√
57

6

)
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Exercises 51–53: If the derivative dx/dy (instead of dy/dx = 0) exists at a point and dx/dy = 0, then the tangent line
at that point is vertical.

51. Calculate dx/dy for the equation y4 + 1 = y2 + x2 and find the points on the graph where the tangent line is vertical.

solution Let y4 + 1 = y2 + x2. Differentiating this equation with respect to y yields

4y3 = 2y + 2x
dx

dy
,

so

dx

dy
= 4y3 − 2y

2x
= y(2y2 − 1)

x
.

Thus,
dx

dy
= 0 when y = 0 and when y = ±

√
2

2
. Substituting y = 0 into the equation y4 + 1 = y2 + x2 gives

1 = x2, so x = ±1. Substituting y = ±
√

2

2
, gives x2 = 3/4, so x = ±

√
3

2
. Thus, there are six points on the graph of

y4 + 1 = y2 + x2 where the tangent line is vertical:

(1, 0), (−1, 0),

(√
3

2
,

√
2

2

)
,

(
−

√
3

2
,

√
2

2

)
,

(√
3

2
, −

√
2

2

)
,

(
−

√
3

2
, −

√
2

2

)
.

52. Show that the tangent lines at x = 1 ± √
2 to the conchoid with equation (x − 1)2(x2 + y2) = 2x2 are vertical

(Figure 12).

2

1

−1

−2

21
x

y

FIGURE 12 Conchoid: (x − 1)2(x2 + y2) = 2x2.

solution Consider the equation of a conchoid:

(x − 1)2
(
x2 + y2

)
= 2x2.

Taking the derivative of both sides of this equation gives

(x − 1)2
(

2x
dx

dy
+ 2y

)
+

(
x2 + y2

)
· 2 (x − 1)

dx

dy
= 4x

dx

dy
,

so that

dx

dy
= (x − 1)2 y

2x + (1 − x)
(
x2 + y2

) − x (x − 1)2
.

Setting dx/dy = 0 yields x = 1 or y = 0. We can’t have x = 1, lest 0 = 2 in the conchoid’s equation. Plugging

y = 0 into the equation gives (x − 1)2 x2 = 2x2 or x2
(
(x − 1)2 − 2

)
= 0, which implies x = 0 (a double root) or

x = 1 ± √
2. [Plugging x = 0 into the conchoid’s equation gives y2 = 0 or y = 0. At (x, y) = (0, 0) the expression for

dx/dy is undefined (0/0). Via an alternative parametric analysis, the slopes of the tangent lines at the origin turn out to
be ±√

3.] Accordingly, the tangent lines to the conchoid are vertical at (x, y) = (1 ± √
2, 0).

53. Use a computer algebra system to plot y2 = x3 − 4x for −4 ≤ x ≤ 4, 4 ≤ y ≤ 4. Show that if dx/dy = 0,
then y = 0. Conclude that the tangent line is vertical at the points where the curve intersects the x-axis. Does your plot
confirm this conclusion?

solution A plot of the curve y2 = x3 − 4x is shown below.
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1

2

−1

−2

−1−2 321
x

y

Differentiating the equation y2 = x3 − 4x with respect to y yields

2y = 3x2 dx

dy
− 4

dx

dy
,

or

dx

dy
= 2y

3x2 − 4
.

From here, it follows that dx
dy

= 0 when y = 0, so the tangent line to this curve is vertical at the points where the curve
intersects the x-axis. This conclusion is confirmed by the plot of the curve shown above.

54. Show that for all points P on the graph in Figure 13, the segments OP and PR have equal length.

x

y

P

Tangent line

RO

FIGURE 13 Graph of x2 − y2 = a2.

solution Because of the symmetry of the graph, we may restrict attention to any point P in the first quadrant. Suppose

P has coordinates (p,
√

p2 − a2). Taking the derivative of both sides of the equation x2 − y2 = a2 yields 2x − 2yy′ = 0,
or y′ = x/y. It follows that the slope of the line tangent to the graph at P has slope

p√
p2 − a2

and the slope of the normal line is

−
√

p2 − a2

p
.

Thus, the equation of the normal line is

y −
√

p2 − a2 = −
√

p2 − a2

p
(x − p),

and the coordinates of the point R are (2p, 0). Finally, the length of the line segment OP is

√
p2 + p2 − a2 =

√
2p2 − a2,

while the length of the segment PR is

√
(2p − p)2 + p2 − a2 =

√
2p2 − a2.
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In Exercises 55–58, use implicit differentiation to calculate higher derivatives.

55. Consider the equation y3 − 3
2x2 = 1.

(a) Show that y′ = x/y2 and differentiate again to show that

y′′ = y2 − 2xyy′
y4

(b) Express y′′ in terms of x and y using part (a).

solution

(a) Let y3 − 3
2x2 = 1. Then 3y2y′ − 3x = 0, and y′ = x/y2. Therefore,

y′′ = y2 · 1 − x · 2yy′
y4

= y2 − 2xyy′
y4

.

(b) Substituting the expression for y′ into the result for y′′ gives

y′′ =
y2 − 2xy

(
x/y2

)
y4

= y3 − 2x2

y5 .

56. Use the method of the previous exercise to show that y′′ = −y−3 on the circle x2 + y2 = 1.

solution Let x2 + y2 = 1. Then 2x + 2yy′ = 0, and y′ = −x

y
. Thus

y′′ = −y · 1 − xy′
y2

= −
y − x

(
− x

y

)
y2

= −y2 + x2

y3
= − 1

y3
= −y−3.

57. Calculate y′′ at the point (1, 1) on the curve xy2 + y − 2 = 0 by the following steps:

(a) Find y′ by implicit differentiation and calculate y′ at the point (1, 1).

(b) Differentiate the expression for y′ found in (a). Then compute y′′ at (1, 1) by substituting x = 1, y = 1, and the
value of y′ found in (a).

solution Let xy2 + y − 2 = 0.

(a) Then x · 2yy′ + y2 · 1 + y′ = 0, and y′ = − y2

2xy + 1
. At (x, y) = (1, 1), we have y′ = −1

3
.

(b) Therefore,

y′′ = − (2xy + 1)
(
2yy′) − y2 (

2xy′ + 2y
)

(2xy + 1)2
= −

(3)
(
− 2

3

)
− (1)

(
− 2

3 + 2
)

32
= −−6 + 2 − 6

27
= 10

27

given that (x, y) = (1, 1) and y′ = − 1
3 .

58. Use the method of the previous exercise to compute y′′ at the point (1, 1) on the curve x3 + y3 = 3x + y − 2.

solution Let x3 + y3 = 3x + y − 2. Then 3x2 + 3y2y′ = 3 + y′, and y′ = 3(1 − x2)

3y2 − 1
. At (x, y) = (1, 1), we find

y′ = 3(1 − 1)

3(1) − 1
= 0.

Similarly,

y′′ =
(

3y2 − 1
)

(−6x) −
(

3 − 3x2
) (

6yy′)
(
3y2 − 1

)2
= −3

when (x, y) = (1, 1) and y′ = 0.
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In Exercises 59–61, x and y are functions of a variable t and use implicit differentiation to relate dy/dt and dx/dt .

59. Differentiate xy = 1 with respect to t and derive the relation
dy

dt
= −y

x

dx

dt
.

solution Let xy = 1. Then x
dy

dt
+ y

dx

dt
= 0, and

dy

dt
= −y

x

dx

dt
.

60. Differentiate x3 + 3xy2 = 1 with respect to t and express dy/dt in terms of dx/dt , as in Exercise 59.

solution Let x3 + 3xy2 = 1. Then

3x2 dx

dt
+ 6xy

dy

dt
+ 3y2 dx

dt
= 0,

and

dy

dt
= −x2 + y2

2xy

dx

dt
.

61. Calculate dy/dt in terms of dx/dt .

(a) x3 − y3 = 1 (b) y4 + 2xy + x2 = 0

solution

(a) Taking the derivative of both sides of the equation x3 − y3 = 1 with respect to t yields

3x2 dx

dt
− 3y2 dy

dt
= 0 or

dy

dt
= x2

y2

dx

dt
.

(b) Taking the derivative of both sides of the equation y4 + 2xy + x2 = 0 with respect to t yields

4y3 dy

dt
+ 2x

dy

dt
+ 2y

dx

dt
+ 2x

dx

dt
= 0,

or

dy

dt
= − x + y

2y3 + x

dx

dt
.

62. The volume V and pressure P of gas in a piston (which vary in time t) satisfy PV 3/2 = C, where C is a
constant. Prove that

dP/dt

dV /dt
= −3

2

P

V

The ratio of the derivatives is negative. Could you have predicted this from the relation PV 3/2 = C?

solution Let PV 3/2 = C, where C is a constant. Then

P · 3

2
V 1/2 dV

dt
+ V 3/2 dP

dt
= 0, so

dP/dt

dV/dt
= −3

2

P

V
.

If P is increasing (respectively, decreasing), then V = (C/P )2/3 is decreasing (respectively, increasing). Hence the ratio
of the derivatives (+/− or −/+) is negative.

Further Insights and Challenges
63. Show that if P lies on the intersection of the two curves x2 − y2 = c and xy = d (c, d constants), then the tangents
to the curves at P are perpendicular.

solution Let C1 be the curve described by x2 − y2 = c, and let C2 be the curve described by xy = d. Suppose that

P = (x0, y0) lies on the intersection of the two curves x2 − y2 = c and xy = d. Since x2 − y2 = c, the chain rule gives
us 2x − 2yy′ = 0, so that y′ = 2x

2y
= x

y . The slope to the tangent line to C1 is x0
y0

. On the curve C2, since xy = d, the

product rule yields that xy′ + y = 0, so that y′ = − y
x . Therefore the slope to the tangent line to C2 is − y0

x0
. The two

slopes are negative reciprocals of one another, hence the tangents to the two curves are perpendicular.
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64. The lemniscate curve (x2 + y2)2 = 4(x2 − y2) was discovered by Jacob Bernoulli in 1694, who noted that it is
“shaped like a figure 8, or a knot, or the bow of a ribbon.” Find the coordinates of the four points at which the tangent
line is horizontal (Figure 14).

1

−1

−1 1
x

y

FIGURE 14 Lemniscate curve: (x2 + y2)2 = 4(x2 − y2).

solution Consider the equation of a lemniscate curve:
(
x2 + y2

)2 = 4
(
x2 − y2

)
. Taking the derivative of both

sides of this equation, we have

2
(
x2 + y2

) (
2x + 2yy′) = 4

(
2x − 2yy′) .

Therefore,

y′ =
8x − 4x

(
x2 + y2

)
8y + 4y

(
x2 + y2

) = −
(
x2 + y2 − 2

)
x(

x2 + y2 + 2
)
y

.

If y′ = 0, then either x = 0 or x2 + y2 = 2.

• If x = 0 in the lemniscate curve, then y4 = −4y2 or y2
(
y2 + 4

)
= 0. If y is real, then y = 0. The formula for y′

in (a) is not defined at the origin (0/0). An alternative parametric analysis shows that the slopes of the tangent lines
to the curve at the origin are ±1.

• If x2 + y2 = 2 or y2 = 2 − x2, then plugging this into the lemniscate equation gives 4 = 4
(

2x2 − 2
)

which

yields x = ±
√

3
2 = ±

√
6

2 . Thus y = ±
√

1
2 = ±

√
2

2 . Accordingly, the four points at which the tangent lines to the

lemniscate curve are horizontal are
(
−

√
6

2 , −
√

2
2

)
,
(
−

√
6

2 ,

√
2

2

)
,
(√

6
2 , −

√
2

2

)
, and

(√
6

2 ,

√
2

2

)
.

65. Divide the curve in Figure 15 into five branches, each of which is the graph of a function. Sketch the branches.

2

−2

−2−4 42
x

y

FIGURE 15 Graph of y5 − y = x2y + x + 1.

solution The branches are:

• Upper branch:

−2−4 42
x

2

−2

y

• Lower part of lower left curve:

x

y

−4 −3 −2 −1

−2

−1

1
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• Upper part of lower left curve:

x

y

−4 −3 −2 −1

−1

1

−2

• Upper part of lower right curve:

y

−1

−2

1

1 2 3 4
x

• Lower part of lower right curve:

y

−1

−2

1

1 2 3 4
x

3.11 Related Rates

Preliminary Questions
1. Assign variables and restate the following problem in terms of known and unknown derivatives (but do not solve it):

How fast is the volume of a cube increasing if its side increases at a rate of 0.5 cm/s?

solution Let s and V denote the length of the side and the corresponding volume of a cube, respectively. Determine
dV
dt

if ds
dt

= 0.5 cm/s.

2. What is the relation between dV /dt and dr/dt if V = ( 4
3

)
πr3?

solution Applying the general power rule, we find dV
dt

= 4πr2 dr
dt

. Therefore, the ratio is 4πr2.

In Questions 3 and 4, water pours into a cylindrical glass of radius 4 cm. Let V and h denote the volume and water level
respectively, at time t .

3. Restate this question in terms of dV /dt and dh/dt : How fast is the water level rising if water pours in at a rate of
2 cm3/min?

solution Determine dh
dt

if dV
dt

= 2 cm3/min.

4. Restate this question in terms of dV /dt and dh/dt : At what rate is water pouring in if the water level rises at a rate
of 1 cm/min?

solution Determine dV
dt

if dh
dt

= 1 cm/min.

Exercises
In Exercises 1 and 2, consider a rectangular bathtub whose base is 18 ft2.

1. How fast is the water level rising if water is filling the tub at a rate of 0.7 ft3/min?

solution Let h be the height of the water in the tub and V be the volume of the water. Then V = 18h and
dV

dt
= 18

dh

dt
.

Thus

dh

dt
= 1

18

dV

dt
= 1

18
(0.7) ≈ 0.039 ft/min.
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2. At what rate is water pouring into the tub if the water level rises at a rate of 0.8 ft/min?

solution Let h be the height of the water in the tub and V its volume. Then V = 18h and

dV

dt
= 18

dh

dt
= 18 (0.8) = 14.4 ft3/min.

3. The radius of a circular oil slick expands at a rate of 2 m/min.

(a) How fast is the area of the oil slick increasing when the radius is 25 m?

(b) If the radius is 0 at time t = 0, how fast is the area increasing after 3 min?

solution Let r be the radius of the oil slick and A its area.

(a) Then A = πr2 and
dA

dt
= 2πr

dr

dt
. Substituting r = 25 and dr

dt
= 2, we find

dA

dt
= 2π (25) (2) = 100π ≈ 314.16 m2/min.

(b) Since dr
dt

= 2 and r(0) = 0, it follows that r(t) = 2t . Thus, r(3) = 6 and

dA

dt
= 2π (6) (2) = 24π ≈ 75.40 m2/min.

4. At what rate is the diagonal of a cube increasing if its edges are increasing at a rate of 2 cm/s?

solution Let s be the length of an edge of the cube and q the length of its diagonal. Two applications of the Pythagorean

Theorem (or the distance formula) yield q = √
3s. Thus

dq

dt
= √

3
ds

dt
. Using ds

dt
= 2,

dq

dt
= √

3 × 2 = 2
√

3 ≈ 3.46 cm/s.

In Exercises 5–8, assume that the radius r of a sphere is expanding at a rate of 30 cm/min. The volume of a sphere is
V = 4

3πr3 and its surface area is 4πr2. Determine the given rate.

5. Volume with respect to time when r = 15 cm.

solution As the radius is expanding at 30 centimeters per minute, we know that dr
dt

= 30 cm/min. Taking d
dt

of the

equation V = 4
3πr3 yields

dV

dt
= 4

3
π

(
3r2 dr

dt

)
= 4πr2 dr

dt
.

Substituting r = 15 and dr
dt

= 30 yields

dV

dt
= 4π(15)2(30) = 27000π cm3/min.

6. Volume with respect to time at t = 2 min, assuming that r = 0 at t = 0.

solution Taking d
dt

of the equation V = 4
3πr3 yields dV

dt
= 4πr2 dr

dt
. Since dr

dt
= 30 and r(0) = 0, it follows that

r(t) = 30t . From this, r(2) = 60, so

dV

dt
= 4π(602)(30) = 432000π cm3/min.

7. Surface area with respect to time when r = 40 cm.

solution Taking the derivative of both sides of A = 4πr2 with respect to t yields dA
dt

= 8πr dr
dt

. dr
dt

= 30, so

dA

dt
= 8π(40)(30) = 9600π cm2/min.

8. Surface area with respect to time at t = 2 min, assuming that r = 10 at t = 0.

solution Taking d
dt

of both sides of A = 4πr2 yields dA
dt

= 8πr dr
dt

. Since r = 10 at t = 0 and dr
dt

= 30, r = 30t + 10.
Hence, at t = 2,

dA

dt
= 8π(30 · 2 + 10)(30) = 16800π cm2/min.
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In Exercises 9–12, refer to a 5-meter ladder sliding down a wall, as in Figures 1 and 2. The variable h is the height of the
ladder’s top at time t , and x is the distance from the wall to the ladder’s bottom.

9. Assume the bottom slides away from the wall at a rate of 0.8 m/s. Find the velocity of the top of the ladder at t = 2 s
if the bottom is 1.5 m from the wall at t = 0 s.

solution Let x denote the distance from the base of the ladder to the wall, and h denote the height of the top of the

ladder from the floor. The ladder is 5 m long, so h2 + x2 = 52. At any time t , x = 1.5 + 0.8t . Therefore, at time t = 2,
the base is x = 1.5 + 0.8(2) = 3.1 m from the wall. Furthermore, we have

2h
dh

dt
+ 2x

dx

dt
= 0 so

dh

dt
= −x

h

dx

dt
.

Substituting x = 3.1, h =
√

52 − 3.12 and dx
dt

= 0.8, we obtain

dh

dt
= − 3.1√

52 − 3.12
(0.8) ≈ −0.632 m/s.

10. Suppose that the top is sliding down the wall at a rate of 1.2 m/s. Calculate dx/dt when h = 3 m.

solution Let h be the height of the ladder’s top and x the distance from the wall of the ladder’s bottom. Then

h2 + x2 = 52. Thus 2h
dh

dt
+ 2x

dx

dt
= 0, and

dx

dt
= −h

x

dh

dt
. With h = 3, x =

√
52 − 32 = 4, and dh

dt
= −1.2, we find

dx

dt
= −3

4
(−1.2) = 0.9 m/s.

11. Suppose that h(0) = 4 and the top slides down the wall at a rate of 1.2 m/s. Calculate x and dx/dt at t = 2 s.

solution Let h and x be the height of the ladder’s top and the distance from the wall of the ladder’s bottom, respectively.

After 2 seconds, h = 4 + 2 (−1.2) = 1.6 m. Since h2 + x2 = 52,

x =
√

52 − 1.62 = 4.737 m.

Furthermore, we have 2h
dh

dt
+ 2x

dx

dt
= 0, so that

dx

dt
= −h

x

dh

dt
. Substituting h = 1.6, x = 4.737, and dh

dt
= −1.2, we

find

dx

dt
= − 1.6

4.737
(−1.2) ≈ 0.405 m/s.

12. What is the relation between h and x at the moment when the top and bottom of the ladder move at the same speed?

solution Let h and x be the height of the ladder’s top and the distance from the wall of the ladder’s bottom, respec-
tively. When the top and the bottom of the ladder are moving at the same speed (say s > 0), their velocities satisfy
dh

dt
= −dx

dt
= −s. Since h2 + x2 = 162, we have 2h

dh

dt
+ 2x

dx

dt
= 0 or −hs + xs = 0. This implies h = x.

13. A conical tank has height 3 m and radius 2 m at the top. Water flows in at a rate of 2 m3/min. How fast is the water
level rising when it is 2 m?

solution Consider the cone of water in the tank at a certain instant. Let r be the radius of its (inverted) base, h its

height, and V its volume. By similar triangles, r
h

= 2
3 or r = 2

3h and thus V = 1
3πr2h = 4

27πh3. Therefore,

dV

dt
= 4

9πh2 dh

dt
,

and

dh

dt
= 9

4πh2

dV

dt
.

Substituting h = 2 and dV
dt

= 2 yields

dh

dt
= 9

4π (2)2
× 2 = 9

8π
≈ −0.36 m/min.
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14. Follow the same set-up as Exercise 13, but assume that the water level is rising at a rate of 0.3 m/min when it is 2 m.
At what rate is water flowing in?

solution Consider the cone of water in the tank at a certain instant. Let r be the radius of its (inverted) base, h its

height, and V its volume. By similar triangles, r
h

= 2
3 or r = 2

3h and thus V = 1
3πr2h = 4

27πh3. Accordingly,

dV

dt
= 4

9
πh2 dh

dt
.

Substituting h = 2 and dh
dt

= 0.3 yields

dV

dt
= 4

9
π (2)2 (0.3) ≈ 1.68 m3/min.

15. The radius r and height h of a circular cone change at a rate of 2 cm/s. How fast is the volume of the cone increasing
when r = 10 and h = 20?

solution Let r be the radius, h be the height, and V be the volume of a right circular cone. Then V = 1
3πr2h, and

dV

dt
= 1

3
π

(
r2 dh

dt
+ 2hr

dr

dt

)
.

When r = 10, h = 20, and dr
dt

= dh
dt

= 2, we find

dV

dt
= π

3

(
102 · 2 + 2 · 20 · 10 · 2

)
= 1000π

3
≈ 1047.20 cm3/s.

16. A road perpendicular to a highway leads to a farmhouse located 2 km away (Figure 8). An automobile travels past the
farmhouse at a speed of 80 km/h. How fast is the distance between the automobile and the farmhouse increasing when
the automobile is 6 km past the intersection of the highway and the road?

80 km/h

Automobile

2

FIGURE 8

solution Let l denote the distance between the automobile and the farmhouse, and let s denote the distance past the

intersection of the highway and the road. Then l2 = 22 + s2. Taking the derivative of both sides of this equation yields
2l dl

dt
= 2s ds

dt
, so

dl

dt
= s

l

ds

dt
.

When the auto is 6 km past the intersection, we have

dl

dt
= 6 · 80√

22 + 62
= 480√

40
= 24

√
10 ≈ 75.89 km/h.

17. A man of height 1.8 meters walks away from a 5-meter lamppost at a speed of 1.2 m/s (Figure 9). Find the rate at
which his shadow is increasing in length.

x y

5

FIGURE 9
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solution Since the man is moving at a rate of 1.2 m/s, his distance from the light post at any given time is x = 1.2t .
Knowing the man is 1.8 meters tall and that the length of his shadow is denoted by y, we set up a proportion of similar
triangles from the diagram:

y

1.8
= 1.2t + y

5
.

Clearing fractions and solving for y yields

y = 0.675t.

Thus, dy/dt = 0.675 meters per second is the rate at which the length of the shadow is increasing.

18. As Claudia walks away from a 264-cm lamppost, the tip of her shadow moves twice as fast as she does. What is
Claudia’s height?

solution Let L be the distance from the base of the lamppost to the tip of Claudia’s shadow, let x denote the distance
from the base of the lamppost to Claudia’s feet, and let h denote Claudia’s height. The right triangle with legs L − x and
h (formed by Claudia and her shadow) and the right triangle with legs L and 264 (formed by the lamppost and the total
distance L) are similar. By similarity

L − x

h
= L264.

h is constant, so taking the derivative of both sides of this equation yields

dL/dt − dx/dt

h
= dL/dt

264
.

The problem states that dL
dt

= 2 dx
dt

, so

264

(
2
dx

dt
− dx

dt

)
= 2h

dx

dt
or 264 = 2h.

Hence, h = 132 cm.

19. At a given moment, a plane passes directly above a radar station at an altitude of 6 km.

(a) The plane’s speed is 800 km/h. How fast is the distance between the plane and the station changing half an hour later?
(b) How fast is the distance between the plane and the station changing when the plane passes directly above the station?

solution Let x be the distance of the plane from the station along the ground and h the distance through the air.

(a) By the Pythagorean Theorem, we have

h2 = x2 + 62 = x2 + 36.

Thus 2h
dh

dt
= 2x

dx

dt
, and

dh

dt
= x

h

dx

dt
. After an half hour, x = 1

2 × 800 = 400 kilometers. With x = 400, h =√
4002 + 36, and dx

dt
= 800,

dh

dt
= 400√

4002 + 36
× 800 ≈ 799.91 km/h.

(b) When the plane is directly above the station, x = 0, so the distance between the plane and the station is not changing,
for at this instant we have

dh

dt
= 0

6
× 800 = 0 km/h.

20. In the setting of Exercise 19, let θ be the angle that the line through the radar station and the plane makes with the
horizontal. How fast is θ changing 12 min after the plane passes over the radar station?

solution Let the distance x and angle θ be defined as in the figure below. Then

tan θ = 6

x
and sec2 θ

dθ

dt
= − 6

x2

dx

dt
.

Because the plane is traveling at 800 km/h, 12 minutes after the plane passes over the radar station,

x = 160 and tan θ = 3

80
.

Furthermore,

sec2 θ = 1 + tan2 θ = 1 + 32

802
.
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Finally,

dθ

dt
= − 6

1602

1

1 + 32

802

800 = −1200

6409
= −0.187 rad/hour.

x

q

6

Plane

Radar
station

21. A hot air balloon rising vertically is tracked by an observer located 4 km from the lift-off point. At a certain moment,
the angle between the observer’s line of sight and the horizontal is π

5 , and it is changing at a rate of 0.2 rad/min. How fast
is the balloon rising at this moment?

solution Let y be the height of the balloon (in miles) and θ the angle between the line-of-sight and the horizontal. Via

trigonometry, we have tan θ = y

4
. Therefore,

sec2 θ · dθ

dt
= 1

4

dy

dt
,

and

dy

dt
= 4

dθ

dt
sec2 θ.

Using dθ
dt

= 0.2 and θ = π
5 yields

dy

dt
= 4 (0.2)

1

cos2 (π/5)
≈ 1.22 km/min.

22. A laser pointer is placed on a platform that rotates at a rate of 20 revolutions per minute. The beam hits a wall 8 m
away, producing a dot of light that moves horizontally along the wall. Let θ be the angle between the beam and the line
through the searchlight perpendicular to the wall (Figure 10). How fast is this dot moving when θ = π

6 ?

8 m
θ

Wall

Laser

FIGURE 10

solution Let y be the distance between the dot of light and the point of intersection of the wall and the line through
the searchlight perpendicular to the wall. Let θ be the angle between the beam of light and the line. Using trigonometry,
we have tan θ = y

8 . Therefore,

sec2 θ · dθ

dt
= 1

8

dy

dt
,

and

dy

dt
= 8

dθ

dt
sec2 θ.

With θ = π
6 and dθ

dt
= 40π , we find

dy

dt
= 8 (40π)

1

cos2 (π/6)
= 1280

3
π ≈ 1340.4 m/min.

23. A rocket travels vertically at a speed of 1200 km/h. The rocket is tracked through a telescope by an observer located
16 km from the launching pad. Find the rate at which the angle between the telescope and the ground is increasing 3 min
after lift-off.

solution Let y be the height of the rocket and θ the angle between the telescope and the ground. Using trigonometry,
we have tan θ = y

16 . Therefore,
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sec2 θ · dθ

dt
= 1

16

dy

dt
,

and

dθ

dt
= cos2 θ

16

dy

dt
.

After the rocket has traveled for 3 minutes (or 1
20 hour), its height is 1

20 × 1200 = 60 km. At this instant, tan θ = 60/16 =
15/4 and thus

cos θ = 4√
152 + 42

= 4√
241

.

Finally,

dθ

dt
= 16/241

16
(1200) = 1200

241
≈ 4.98 rad/hr.

24. Using a telescope, you track a rocket that was launched 4 km away, recording the angle θ between the telescope and
the ground at half-second intervals. Estimate the velocity of the rocket if θ(10) = 0.205 and θ(10.5) = 0.225.

solution Let h be the height of the vertically ascending rocket. Using trigonometry, tan θ = h

4
, so

dh

dt
= 4 sec2 θ · dθ

dt
.

We are given θ(10) = 0.205, and we can estimate

dθ

dt

∣∣∣∣
t=10

≈ θ(10.5) − θ(10)

0.5
= 0.04.

Thus,

dh

dt
= 4 sec2(0.205) · (0.04) ≈ 0.166 km/s,

or roughly 600 km/h.

25. A police car traveling south toward Sioux Falls at 160 km/h pursues a truck traveling east away from Sioux Falls,
Iowa, at 140 km/h (Figure 11). At time t = 0, the police car is 20 km north and the truck is 30 km east of Sioux Falls.
Calculate the rate at which the distance between the vehicles is changing:

(a) At time t = 0

(b) 5 minutes later

160 km/h

140 km/h

Sioux Falls

x

y

FIGURE 11

solution Let y denote the distance the police car is north of Sioux Falls and x the distance the truck is east of Sioux
Falls. Then y = 20 − 160t and x = 30 + 140t . If � denotes the distance between the police car and the truck, then

�2 = x2 + y2 = (30 + 140t)2 + (20 − 160t)2

and

�
d�

dt
= 140(30 + 140t) − 160(20 − 160t) = 1000 + 45200t.

(a) At t = 0, � =
√

302 + 202 = 10
√

13, so

d�

dt
= 1000

10
√

13
= 100

√
13

13
≈ 27.735 km/h.



April 4, 2011

S E C T I O N 3.11 Related Rates 339

(b) At t = 5 minutes = 1
12 hour,

� =
√(

30 + 140 · 1

12

)2
+

(
20 − 160 · 1

12

)2
≈ 42.197 km,

and

d�

dt
= 1000 + 45200 · 1

12
42.197

≈ 112.962 km/h.

26. A car travels down a highway at 25 m/s. An observer stands 150 m from the highway.

(a) How fast is the distance from the observer to the car increasing when the car passes in front of the observer? Explain
your answer without making any calculations.

(b) How fast is the distance increasing 20 s later?

solution Let x be the distance (in feet) along the road that the car has traveled and h be the distance (in feet) between
the car and the observer.

(a) Before the car passes the observer, we have dh/dt < 0; after it passes, we have dh/dt > 0. So at the instant it passes
we have dh/dt = 0, given that dh/dt varies continuously since the car travels at a constant velocity.

(b) By the Pythagorean Theorem, we have h2 = x2 + 1502. Thus

2h
dh

dt
= 2x

dx

dt
,

and

dh

dt
= x

h

dx

dt
.

The car travels at 25 m/s, so after 20 seconds, x = 25(20) = 500 meters. Therefore,

dh

dt
= 500√

5002 + 1252
(25) ≈ 24.25 m/s.

27. In the setting of Example 5, at a certain moment, the tractor’s speed is 3 m/s and the bale is rising at 2 m/s. How far
is the tractor from the bale at this moment?

solution From Example 5, we have the equation

x dx
dt√

x2 + 4.52
= dh

dt
,

where x denote the distance from the tractor to the bale and h denotes the height of the bale. Given

dx

dt
= 3 and

dh

dt
= 2,

it follows that

3x√
4.52 + x2

= 2,

which yields x = √
16.2 ≈ 4.025 m.

28. Placido pulls a rope attached to a wagon through a pulley at a rate of q m/s. With dimensions as in Figure 12:

(a) Find a formula for the speed of the wagon in terms of q and the variable x in the figure.

(b) Find the speed of the wagon when x = 0.6 if q = 0.5 m/s.

x

0.6 m

3 m

FIGURE 12

solution Let h be the distance from the pulley to the loop on the wagon. Using the Pythagorean Theorem, we have

h2 = x2 + (3 − 0.6)2 = x2 + 2.42.
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(a) Thus 2h
dh

dt
= 2x

dx

dt
, and

dx

dt
= h

x

dh

dt
. Given dh/dt = q, it follows that

dx

dt
=

√
x2 + 2.42

x
q.

(b) As Placido pulls the rope at the rate of q = 0.5 m/s and x = 0.6

dx

dt
=

√
0.62 + 2.42

0.6
(0.5) ≈ 2.06 m/s.

29. Julian is jogging around a circular track of radius 50 m. In a coordinate system with origin at the center of the track,
Julian’s x-coordinate is changing at a rate of −1.25 m/s when his coordinates are (40, 30). Find dy/dt at this moment.

solution We have x2 + y2 = 502, so

2x
dx

dt
+ 2y

dy

dt
= 0 or

dy

dt
= −x

y

dx

dt
.

Given x = 40, y = 30 and dx/dt = −1.25, we find

dy

dt
= −40

30
(−1.25) = 5

3
m/s.

30. A particle moves counterclockwise around the ellipse with equation 9x2 + 16y2 = 25 (Figure 13).

(a) In which of the four quadrants is dx/dt > 0? Explain.
(b) Find a relation between dx/dt and dy/dt .
(c) At what rate is the x-coordinate changing when the particle passes the point (1, 1) if its y-coordinate is increasing at
a rate of 6 m/s?
(d) Find dy/dt when the particle is at the top and bottom of the ellipse.

− 5
4

− 5
3

5
3

5
4

FIGURE 13

solution A particle moves counterclockwise around the ellipse with equation 9x2 + 16y2 = 25.

(a) The derivative dx/dt is positive in quadrants 3 and 4 since the particle is moving to the right.

(b) From 9x2 + 16y2 = 25 we have 18x
dx

dt
+ 32y

dy

dt
= 0.

(c) From (b), we have
dx

dt
= −16y

9x

dy

dt
. With x = y = 1 and dy

dt
= 6,

dx

dt
= −16 · 1

9 · 1
(6) = −32

3
m/s.

(d) From (b), we have
dy

dt
= − 9x

16y

dx

dt
. When (x, y) =

(
0, ±5

4

)
, it follows that

dy

dt
= 0.

In Exercises 31 and 32, assume that the pressure P (in kilopascals) and volume V (in cubic centimeters) of an expanding
gas are related by PV b = C, where b and C are constants (this holds in an adiabatic expansion, without heat gain or
loss).

31. Find dP/dt if b = 1.2, P = 8 kPa, V = 100 cm2, and dV /dt = 20 cm3/min.

solution Let PV b = C. Then

PbV b−1 dV

dt
+ V b dP

dt
= 0,

and

dP

dt
= −Pb

V

dV

dt
.

Substituting b = 1.2, P = 8, V = 100, and dV
dt

= 20, we find

dP

dt
= − (8) (1.2)

100
(20) = −1.92 kPa/min.
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32. Find b if P = 25 kPa, dP/dt = 12 kPa/min, V = 100 cm2, and dV /dt = 20 cm3/min.

solution Let PV b = C. Then

PbV b−1 dV

dt
+ V b dP

dt
= 0,

and

b = −V

P

dP/dt

dV/dt
.

With P = 25, V = 100, dP
dt

= 12, and dV
dt

= 20, we have

b = −100

25
× 12

20
= −12

5
.

(Note: If instead we have dP
dt

= −12 kPa/min, then b = 12
5 .)

33. The base x of the right triangle in Figure 14 increases at a rate of 5 cm/s, while the height remains constant at h = 20.
How fast is the angle θ changing when x = 20?

x

q

20

FIGURE 14

solution We have cot θ = x

20
, from which

− csc2 θ · dθ

dt
= 1

20

dx

dt

and thus

dθ

dt
= − sin2 θ

20

dx

dt
.

We are given dx
dt

= 5 and when x = h = 20, θ = π
4 . Hence,

dθ

dt
= − sin2 (

π
4

)
20

(5) = −1

8
rad/s.

34. Two parallel paths 15 m apart run east-west through the woods. Brooke jogs east on one path at 10 km/h, while Jamail
walks west on the other path at 6 km/h. If they pass each other at time t = 0, how far apart are they 3 s later, and how fast
is the distance between them changing at that moment?

solution Brooke jogs at 10 km/h = 25
9 m/s and Jamail walks at 6 km/h = 5

3 m/s. At time zero, consider Brooke to
be at the origin (0, 0) and (without loss of generality) Jamail to be at (0, 15); i.e., due north of Brooke. Then at time t , the

position of Brooke is
(

25
9 t, 0

)
and that of Jamail is

(
− 5

3 t, 15
)

. The distance between them is

L =
√(

25

9
t + 5

3
t

)2
+ (15)2 =

((
40

9
t

)2
+ 152

)1/2

.

• When t = 3 seconds, the distance between them is

L =
√(

40

3

)2
+ 152 = 5

3

√
145 ≈ 20.07 m.

• The distance between them is changing at the rate

dL

dt
= 1

2

((
40

9
t

)2
+ 152

)−1/2 (
2

(
40

9
t

)
40

9

)
.

When t = 3, we then have

dL

dt
=

1
9 (40)2√

402 + 452
≈ 2.95 m/s
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35. A particle travels along a curve y = f (x) as in Figure 15. Let L(t) be the particle’s distance from the origin.

(a) Show that
dL

dt
=

(
x + f (x)f ′(x)√

x2 + f (x)2

)
dx

dt
if the particle’s location at time t is P = (x, f (x)).

(b) Calculate L′(t) when x = 1 and x = 2 if f (x) =
√

3x2 − 8x + 9 and dx/dt = 4.

x

y

y = f (x)

O

P

θ

1 2

2

FIGURE 15

solution

(a) If the particle’s location at time t is P = (x, f (x)), then

L(t) =
√

x2 + f (x)2.

Thus,

dL

dt
= 1

2
(x2 + f (x)2)−1/2

(
2x

dx

dt
+ 2f (x)f ′(x)

dx

dt

)
=

(
x + f (x)f ′(x)√

x2 + f (x)2

)
dx

dt
.

(b) Given f (x) =
√

3x2 − 8x + 9, it follows that

f ′(x) = 3x − 4√
3x2 − 8x + 9

.

Let’s start with x = 1. Then f (1) = 2, f ′(1) = − 1
2 and

dL

dt
=

(
1 − 1√
12 + 22

)
(4) = 0.

With x = 2, f (2) = √
5, f ′(2) = 2/

√
5 and

dL

dt
= 2 + 2√

22 + √
5

2
(4) = 16

3
.

36. Let θ be the angle in Figure 15, where P = (x, f (x)). In the setting of the previous exercise, show that

dθ

dt
=

(
xf ′(x) − f (x)

x2 + f (x)2

)
dx

dt

Hint: Differentiate tan θ = f (x)/x and observe that cos θ = x/
√

x2 + f (x)2.

solution If the particle’s location at time t is P = (x, f (x)), then tan θ = f (x)/x and

sec2 θ
dθ

dx
= xf ′(x) − f (x)

x2
.

Now

cos θ = x√
x2 + f (x)2

so sec2 θ = x2 + f (x)2

x2
.

Finally,

dθ

dx
= xf ′(x) − f (x)

x2 + f (x)2
.
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Exercises 37 and 38 refer to the baseball diamond (a square of side 90 ft) in Figure 16.

20 ft/s

15 ft/s

s

90 ft

First base

Second base

Home plate

FIGURE 16

37. A baseball player runs from home plate toward first base at 20 ft/s. How fast is the player’s distance from second base
changing when the player is halfway to first base?

solution Let x be the distance of the player from home plate and h the player’s distance from second base. Using the

Pythagorean theorem, we have h2 = 902 + (90 − x)2. Therefore,

2h
dh

dt
= 2 (90 − x)

(
− dx

dt

)
,

and

dh

dt
= −90 − x

h

dx

dt
.

We are given dx
dt

= 20. When the player is halfway to first base, x = 45 and h =
√

902 + 452, so

dh

dt
= − 45√

902 + 452
(20) = −4

√
5 ≈ −8.94 ft/s.

38. Player 1 runs to first base at a speed of 20 ft/s while Player 2 runs from second base to third base at a speed of 15 ft/s.
Let s be the distance between the two players. How fast is s changing when Player 1 is 30 ft from home plate and Player
2 is 60 ft from second base?

solution Let x denote the distance from home plate to Player 1 and y denote the distance from second base to Player
2, both distances measured along the base path. Then

s(t) =
√

(90 − x − y)2 + 902,

and

ds

dt
= − 90 − x − y√

(90 − x − y)2 + 902

(
dx

dt
+ dy

dt

)
.

With x = 30 and y = 60, it follows that

ds

dt
= 0.

39. The conical watering pail in Figure 17 has a grid of holes. Water flows out through the holes at a rate of kA m3/min,
where k is a constant and A is the surface area of the part of the cone in contact with the water. This surface area

is A = πr
√

h2 + r2 and the volume is V = 1
3πr2h. Calculate the rate dh/dt at which the water level changes at

h = 0.3 m, assuming that k = 0.25 m.

0.45 m

0.15 m

h

r

FIGURE 17
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solution By similar triangles, we have

r

h
= 0.15

0.45
= 1

3
so r = 1

3
h.

Substituting this expression for r into the formula for V yields

V = 1

3
π

(
1

3
h

)2
h = 1

27
πh3.

From here and the problem statement, it follows that

dV

dt
= 1

9
πh2 dh

dt
= −kA = −0.25πr

√
h2 + r2.

Solving for dh/dt gives

dh

dt
= −9

4

r

h2

√
h2 + r2.

When h = 0.3, r = 0.1 and

dh

dt
= −9

4

0.1

0.32

√
0.32 + 0.12 = −0.79 m/min.

Further Insights and Challenges
40. A bowl contains water that evaporates at a rate proportional to the surface area of water exposed to the air
(Figure 18). Let A(h) be the cross-sectional area of the bowl at height h.

(a) Explain why V (h + �h) − V (h) ≈ A(h)�h if �h is small.

(b) Use (a) to argue that
dV

dh
= A(h).

(c) Show that the water level h decreases at a constant rate.

V(h) = volume up 
            to height h

Cross-sectional
area A(h)

h

�h

V(h + �h) − V(h)

FIGURE 18

solution

(a) Consider a thin horizontal slice of the water in the cup of thickness �h at height h. Assuming the cross-sectional area
of the cup is roughly constant across this slice, it follows that

V (h + �h) − V (h) ≈ A(h)�h.

(b) If we take the expression from part (a), divide by �h and pass to the limit as �h → 0, we find

dV

dh
= A(h).

(c) If we take the expression from part (b) and multiply by dh/dt , recognizing that

dV

dt
= dV

dh
· dh

dt
,

we find that

dV

dt
= A(h)

dh

dt
.

We are told that the water in the bowl evaporates at a rate proportional to the surface area exposed to the air; translated
into mathematics, this means

dV

dt
= −kA(h),
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where k is a positive constant of proportionality. Combining the last two equations yields

dh

dt
= −k;

that is, the water level decreases at a constant rate.

41. A roller coaster has the shape of the graph in Figure 19. Show that when the roller coaster passes the point (x, f (x)),
the vertical velocity of the roller coaster is equal to f ′(x) times its horizontal velocity.

(x,  f (x))

FIGURE 19 Graph of f (x) as a roller coaster track.

solution Let the equation y = f (x) describe the shape of the roller coaster track. Taking d
dt

of both sides of this

equation yields dy
dt

= f ′(x) dx
dt

. In other words, the vertical velocity of a car moving along the track, dy
dt

, is equal to f ′(x)

times the horizontal velocity, dx
dt

.

42. Two trains leave a station at t = 0 and travel with constant velocity v along straight tracks that make an angle θ .

(a) Show that the trains are separating from each other at a rate v
√

2 − 2 cos θ .

(b) What does this formula give for θ = π?

solution Choose a coordinate system such that

• the origin is the point of departure of the trains;

• the first train travels along the positive x-axis;

• the second train travels along the ray emanating from the origin at an angle of θ > 0.

(a) At time t , the position of the first train is (vt, 0), while that of the second is (vt cos θ, vt sin θ). The distance between
the trains is

L =
√

(vt (1 − cos θ))2 + (vt sin θ)2 = vt
√

2 − 2 cos θ.

Thus dL/dt = v
√

2 − 2 cos θ .

(b) When θ = π , we have dL/dt = 2v. This is obviously correct since at this angle the trains travel in opposite directions
at the same constant speed, having started from the same point.

43. As the wheel of radius r cm in Figure 20 rotates, the rod of length L attached at point P drives a piston back and
forth in a straight line. Let x be the distance from the origin to point Q at the end of the rod, as shown in the figure.

(a) Use the Pythagorean Theorem to show that

L2 = (x − r cos θ)2 + r2 sin2 θ 6

(b) Differentiate Eq. (6) with respect to t to prove that

2(x − r cos θ)

(
dx

dt
+ r sin θ

dθ

dt

)
+ 2r2 sin θ cos θ

dθ

dt
= 0

(c) Calculate the speed of the piston when θ = π
2 , assuming that r = 10 cm, L = 30 cm, and the wheel rotates at 4

revolutions per minute.

Piston moves
back and forth

x

L
qP

Q

r

FIGURE 20
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solution From the diagram, the coordinates of P are (r cos θ, r sin θ) and those of Q are (x, 0).

(a) The distance formula gives

L =
√

(x − r cos θ)2 + (−r sin θ)2.

Thus,

L2 = (x − r cos θ)2 + r2 sin2 θ.

Note that L (the length of the fixed rod) and r (the radius of the wheel) are constants.

(b) From (a) we have

0 = 2 (x − r cos θ)

(
dx

dt
+ r sin θ

dθ

dt

)
+ 2r2 sin θ cos θ

dθ

dt
.

(c) Solving for dx/dt in (b) gives

dx

dt
= r2 sin θ cos θ dθ

dt

r cos θ − x
− r sin θ

dθ

dt
= rx sin θ dθ

dt

r cos θ − x
.

With θ = π
2 , r = 10, L = 30, and dθ

dt
= 8π ,

dx

dt
= (10) (x)

(
sin π

2

)
(8π)

(10) (0) − x
= −80π ≈ −251.33 cm/min

44. A spectator seated 300 m away from the center of a circular track of radius 100 m watches an athlete run laps at
a speed of 5 m/s. How fast is the distance between the spectator and athlete changing when the runner is approaching
the spectator and the distance between them is 250 m? Hint: The diagram for this problem is similar to Figure 20, with
r = 100 and x = 300.

solution From the diagram, the coordinates of P are (r cos θ, r sin θ) and those of Q are (x, 0).

• The distance formula gives

L =
√

(x − r cos θ)2 + (−r sin θ)2.

Thus,

L2 = (x − r cos θ)2 + r2 sin2 θ.

Note that x (the distance of the spectator from the center of the track) and r (the radius of the track) are constants.
• Differentiating with respect to t gives

2L
dL

dt
= 2 (x − r cos θ) r sin θ

dθ

dt
+ 2r2 sin θ cos θ

dθ

dt
.

Thus,

dL

dt
= rx

L
sin θ

dθ

dt
.

• Recall the relation between arc length s and angle θ , namely s = rθ . Thus
dθ

dt
= 1

r

ds

dt
. Given r = 100 and

ds
dt

= −5, we have

dθ

dt
= 1

100
(−5) = − 1

20
rad/s.

(Note: In this scenario, the runner traverses the track in a clockwise fashion and approaches the spectator from
Quadrant 1.)

• Next, the Law of Cosines gives L2 = r2 + x2 − 2rx cos θ , so

cos θ = r2 + x2 − L2

2rx
= 1002 + 3002 − 2502

2 (100) (300)
= 5

8
.

Accordingly,

sin θ =
√

1 −
(

5

8

)2
=

√
39

8
.
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• Finally

dL

dt
= (300) (100)

250

(√
39

8

) (
− 1

20

)
= −3

√
39

4
≈ −4.68 m/s.

45. A cylindrical tank of radius R and length L lying horizontally as in Figure 21 is filled with oil to height h.

(a) Show that the volume V (h) of oil in the tank is

V (h) = L

(
R2 cos−1

(
1 − h

R

)
− (R − h)

√
2hR − h2

)

(b) Show that dV
dh

= 2L
√

h(2R − h).

(c) Suppose that R = 1.5 m and L = 10 m and that the tank is filled at a constant rate of 0.6 m3/min. How fast is the
height h increasing when h = 0.5?

h

L

R

FIGURE 21 Oil in the tank has level h.

solution

(a) From Figure 21, we see that the volume of oil in the tank, V (h), is equal to L times A(h), the area of that portion of
the circular cross section occupied by the oil. Now,

A(h) = area of sector − area of triangle = R2θ

2
− R2 sin θ

2
,

where θ is the central angle of the sector. Referring to the diagram below,

cos
θ

2
= R − h

R
and sin

θ

2
=

√
2hR − h2

R
.

2hR − h2

/2
R − h

R

Thus,

θ = 2 cos−1
(

1 − h

R

)
,

sin θ = 2 sin
θ

2
cos

θ

2
= 2

(R − h)
√

2hR − h2

R2
,

and

V (h) = L

(
R2 cos−1

(
1 − h

R

)
− (R − h)

√
2hR − h2

)
.

(b) Recalling that d
dx

cos−1 u = − 1√
1−x2

du
dx

,

dV

dh
= L

(
d

dh

(
R2 cos−1

(
1 − h

R

))
− d

dh

(
(R − h)

√
2hR − h2

))

= L

(
−R

−1√
1 − (1 − (h/R))2

+
√

2hR − h2 − (R − h)2√
2hR − h2

)
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= L

(
R2√

2hR − h2
+

√
2hR − h2 − R2 − 2Rh + h2√

2hR − h2

)

= L

(
R2 + (2hR − h2) − (R2 − 2Rh + h2)√

2hR − h2

)

= L

(
4hR − 2h2√

2hR − h2

)
= L

(
2(2hR − h2)√

2hR − h2

)
= 2L

√
2hR − h2.

(c)
dV

dt
= dV

dh

dh

dt
, so

dh

dt
= 1

dV/dh

dV

dt
. From part (b) with R = 1.5, L = 10 and h = 0.5,

dV

dh
= 2(10)

√
2(0.5)(1.5) − 0.52 = 10

√
5 m2.

Thus,

dh

dt
= 1

10
√

5
(0.6) = 3

√
5

2500
≈ 0.0027 m/min.

CHAPTER REVIEW EXERCISES

In Exercises 1–4, refer to the function f (x) whose graph is shown in Figure 1.

y

2.01.51.00.5
x

7
6
5
4
3
2
1

FIGURE 1

1. Compute the average rate of change of f (x) over [0, 2]. What is the graphical interpretation of this average rate?

solution The average rate of change of f (x) over [0, 2] is

f (2) − f (0)

2 − 0
= 7 − 1

2 − 0
= 3.

Graphically, this average rate of change represents the slope of the secant line through the points (2, 7) and (0, 1) on the
graph of f (x).

2. For which value of h is
f (0.7 + h) − f (0.7)

h
equal to the slope of the secant line between the points where x = 0.7

and x = 1.1?

solution Because 1.1 = 0.7 + 0.4, the difference quotient

f (0.7 + h) − f (0.7)

h

is equal to the slope of the secant line between the points where x = 0.7 and x = 1.1 for h = 0.4.

3. Estimate
f (0.7 + h) − f (0.7)

h
for h = 0.3. Is this number larger or smaller than f ′(0.7)?

solution For h = 0.3,

f (0.7 + h) − f (0.7)

h
= f (1) − f (0.7)

0.3
≈ 2.8 − 2

0.3
= 8

3
.

Because the curve is concave up, the slope of the secant line is larger than the slope of the tangent line, so the value of
the difference quotient should be larger than the value of the derivative.
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4. Estimate f ′(0.7) and f ′(1.1).

solution The tangent line sketched in the graph below at the left appears to pass through the points (0.2, 1) and
(1.5, 3.5). Thus,

f ′(0.7) ≈ 3.5 − 1

1.5 − 0.2
= 2.5

1.3
= 1.923.

The tangent line sketched in the graph below at the right appears to pass through the points (0.8, 2) and (2, 5.5). Thus,

f ′(1.1) ≈ 5.5 − 2

2 − 0.8
= 3.5

1.2
= 2.917.

y

2.01.51.00.5
x

7
6
5
4
3
2
1

y

2.01.51.00.5
x

7
6
5
4
3
2
1

In Exercises 5–8, compute f ′(a) using the limit definition and find an equation of the tangent line to the graph of f (x)

at x = a.

5. f (x) = x2 − x, a = 1

solution Let f (x) = x2 − x and a = 1. Then

f ′(a) = lim
h→0

f (a + h) − f (a)

h
= lim

h→0

(1 + h)2 − (1 + h) − (12 − 1)

h

= lim
h→0

1 + 2h + h2 − 1 − h

h
= lim

h→0
(1 + h) = 1

and the equation of the tangent line to the graph of f (x) at x = a is

y = f ′(a)(x − a) + f (a) = 1(x − 1) + 0 = x − 1.

6. f (x) = 5 − 3x, a = 2

solution Let f (x) = 5 − 3x and a = 2. Then

f ′(a) = lim
h→0

f (a + h) − f (a)

h
= lim

h→0

5 − 3(2 + h) − (5 − 6)

h
= lim

h→0
−3 = −3

and the equation of the tangent line to the graph of f (x) at x = a is

y = f ′(a)(x − a) + f (a) = −3(x − 2) − 1 = −3x + 5.

7. f (x) = x−1, a = 4

solution Let f (x) = x−1 and a = 4. Then

f ′(a) = lim
h→0

f (a + h) − f (a)

h
= lim

h→0

1
4+h

− 1
4

h
= lim

h→0

4 − (4 + h)

4h(4 + h)

= lim
h→0

−1

4(4 + h)
= − 1

4(4 + 0)
= − 1

16

and the equation of the tangent line to the graph of f (x) at x = a is

y = f ′(a)(x − a) + f (a) = − 1

16
(x − 4) + 1

4
= − 1

16
x + 1

2
.

8. f (x) = x3, a = −2

solution Let f (x) = x3 and a = −2. Then

f ′(a) = lim
h→0

f (a + h) − f (a)

h
= lim

h→0

(−2 + h)3 − (−2)3

h
= lim

h→0

−8 + 12h − 6h2 + h3 + 8

h

= lim
h→0

(12 − 6h + h2) = 12 − 6(0) + 02 = 12
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and the equation of the tangent line to the graph of f (x) at x = a is

y = f ′(a)(x − a) + f (a) = 12(x + 2) − 8 = 12x + 16.

In Exercises 9–12, compute dy/dx using the limit definition.

9. y = 4 − x2

solution Let y = 4 − x2. Then

dy

dx
= lim

h→0

4 − (x + h)2 − (4 − x2)

h
= lim

h→0

4 − x2 − 2xh − h2 − 4 + x2

h
= lim

h→0
(−2x − h) = −2x − 0 = −2x.

10. y = √
2x + 1

solution Let y = √
2x + 1. Then

dy

dx
= lim

h→0

√
2(x + h) + 1 − √

2x + 1

h
= lim

h→0

√
2x + 2h + 1 − √

2x + 1

h
·
√

2x + 2h + 1 + √
2x + 1√

2x + 2h + 1 + √
2x + 1

= lim
h→0

(2x + 2h + 1) − (2x + 1)

h(
√

2x + 2h + 1 + √
2x + 1)

= lim
h→0

2√
2x + 2h + 1 + √

2x + 1
= 1√

2x + 1
.

11. y = 1

2 − x

solution Let y = 1

2 − x
. Then

dy

dx
= lim

h→0

1
2−(x+h)

− 1
2−x

h
= lim

h→0

(2 − x) − (2 − x − h)

h(2 − x − h)(2 − x)
= lim

h→0

1

(2 − x − h)(2 − x)
= 1

(2 − x)2
.

12. y = 1

(x − 1)2

solution Let y = 1

(x − 1)2
. Then

dy

dx
= lim

h→0

1
(x+h−1)2 − 1

(x−1)2

h
= lim

h→0

(x − 1)2 − (x + h − 1)2

h(x + h − 1)2(x − 1)2

= lim
h→0

x2 − 2x + 1 − (x2 + 2xh + h2 − 2x − 2h + 1)

h(x + h − 1)2(x − 1)2
= lim

h→0

−2x − h + 2

(x + h − 1)2(x − 1)2

= −2x + 2

(x − 1)4
= − 2

(x − 1)3
.

In Exercises 13–16, express the limit as a derivative.

13. lim
h→0

√
1 + h − 1

h

solution Let f (x) = √
x. Then

lim
h→0

√
1 + h − 1

h
= lim

h→0

f (1 + h) − f (1)

h
= f ′(1).

14. lim
x→−1

x3 + 1

x + 1

solution Let f (x) = x3. Then

lim
x→−1

x3 + 1

x + 1
= lim

x→−1

f (x) − f (−1)

x − (−1)
= f ′(−1).
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15. lim
t→π

sin t cos t

t − π

solution Let f (t) = sin t cos t and note that f (π) = sin π cos π = 0. Then

lim
t→π

sin t cos t

t − π
= lim

t→π

f (t) − f (π)

t − π
= f ′(π).

16. lim
θ→π

cos θ − sin θ + 1

θ − π

solution Let f (θ) = cos θ − sin θ and note that f (π) = −1. Then

lim
θ→π

cos θ − sin θ + 1

θ − π
= lim

θ→π

f (θ) − f (π)

θ − π
= f ′(π).

17. Find f (4) and f ′(4) if the tangent line to the graph of f (x) at x = 4 has equation y = 3x − 14.

solution The equation of the tangent line to the graph of f (x) at x = 4 is y = f ′(4)(x − 4) + f (4) = f ′(4)x +
(f (4) − 4f ′(4)). Matching this to y = 3x − 14, we see that f ′(4) = 3 and f (4) − 4(3) = −14, so f (4) = −2.

18. Each graph in Figure 2 shows the graph of a function f (x) and its derivative f ′(x). Determine which is the function
and which is the derivative.

y

x

(I)

y

x

(II)

y

x

(III)

A

B

A

B

A

B

FIGURE 2 Graph of f (x).

solution

• In (I), the graph labeled A is increasing when the graph labeled B is positive and is decreasing when the graph
labeled B is negative. Therefore, the graph labeled A is the function f (x) and the graph labeled B is the derivative
f ′(x).

• In (II), the graph labeled B is increasing when the graph labeled A is positive and is decreasing when the graph
labeled A is negative. Therefore, the graph labeled B is the function f (x) and the graph labeled A is the derivative
f ′(x).

• In (III), the graph labeled B has horizontal tangent lines at the locations the graph labeled A is zero. Therefore, the
graph labeled B is the function f (x) and the graph labeled A is the derivative f ′(x).

19. Is (A), (B), or (C) the graph of the derivative of the function f (x) shown in Figure 3?

(A) (B)

y

(C)

y

x
−2 2−1 1

x
−2 2−1 1

y

y = f (x)

x
−2 2−1 1

y

x
−2 2−1 1

FIGURE 3

solution The graph of f (x) has four horizontal tangent lines on [−2, 2], so the graph of its derivative must have four
x-intercepts on [−2, 2]. This eliminates (B). Moreover, f (x) is increasing at both ends of the interval, so its derivative
must be positive at both ends. This eliminates (A) and identifies (C) as the graph of f ′(x).

20. Let N(t) be the percentage of a state population infected with a flu virus on week t of an epidemic. What percentage
is likely to be infected in week 4 if N(3) = 8 and N ′(3) = 1.2?

solution Because N(4) − N(3) ≈ N ′(3), we estimate that

N(4) ≈ N(3) + N ′(3) = 8 + 1.2 = 9.2.

Thus, 9.2% of the population is likely infected in week 4.
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21. A girl’s height h(t) (in centimeters) is measured at time t (in years) for 0 ≤ t ≤ 14:

52, 75.1, 87.5, 96.7, 104.5, 111.8, 118.7, 125.2,
131.5, 137.5, 143.3, 149.2, 155.3, 160.8, 164.7

(a) What is the average growth rate over the 14-year period?

(b) Is the average growth rate larger over the first half or the second half of this period?

(c) Estimate h′(t) (in centimeters per year) for t = 3, 8.

solution

(a) The average growth rate over the 14-year period is

164.7 − 52

14
= 8.05 cm/year.

(b) Over the first half of the 14-year period, the average growth rate is

125.2 − 52

7
≈ 10.46 cm/year,

which is larger than the average growth rate over the second half of the 14-year period:

164.7 − 125.2

7
≈ 5.64 cm/year.

(c) For t = 3,

h′(3) ≈ h(4) − h(3)

4 − 3
= 104.5 − 96.7

1
= 7.8 cm/year;

for t = 8,

h′(8) ≈ h(9) − h(8)

9 − 8
= 137.5 − 131.5

1
= 6.0 cm/year.

22. A planet’s period P (number of days to complete one revolution around the sun) is approximately 0.199A3/2, where
A is the average distance (in millions of kilometers) from the planet to the sun.

(a) Calculate P and dP/dA for Earth using the value A = 150.

(b) Estimate the increase in P if A is increased to 152.

solution

(a) Let P = 0.199A3/2. Then dP
dA

= 0.2985A1/2. For A = 150,

P = 0.199(150)3/2 ≈ 365.6 days; and

dP

dA
= 0.2985(150)1/2 ≈ 3.656 days/millions of kilometers.

(b) If A is increased to 150, then

P(152) − P(150) ≈ dP

dA

∣∣∣∣
A=150

= 3.656 days.

In Exercises 23 and 24, use the following table of values for the number A(t) of automobiles (in millions) manufactured
in the United States in year t .

t 1970 1971 1972 1973 1974 1975 1976

A(t) 6.55 8.58 8.83 9.67 7.32 6.72 8.50

23. What is the interpretation of A′(t)? Estimate A′(1971). Does A′(1974) appear to be positive or negative?

solution Because A(t) measures the number of automobiles manufactured in the United States in year t , A′(t)
measures the rate of change in automobile production in the United States. For t = 1971,

A′(1971) ≈ A(1972) − A(1971)

1972 − 1971
= 8.83 − 8.58

1
= 0.25 million automobiles/year.

Because A(t) decreases from 1973 to 1974 and from 1974 to 1975, it appears that A′(1974) would be negative.
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24. Given the data, which of (A)–(C) in Figure 4 could be the graph of the derivative A′(t)? Explain.

(A) (B) (C)
−2

'75'73'71−1

1
2

−2

'75'73'71−1

1
2

−2

'75'73'71−1

1
2

FIGURE 4

solution The values of A(t) increase, then decrease and finally increase. Thus A′(t) should transition from positive
to negative and back to positive. This describes the graph in (B).

25. Which of the following is equal to
d

dx
2x?

(a) 2x (b) (ln 2)2x (c) x2x−1 (d)
1

ln 2
2x

solution The derivative of f (x) = 2x is

d

dx
2x = 2x ln 2.

Hence, the correct answer is (b).

26. Describe the graphical interpretation of the relation g′(x) = 1/f ′(g(x)), where f (x) and g(x) are inverses
of each other.

solution Suppose f (x) and g(x) are inverse functions. Consider a point on the graph of y = f (x) – say (a, b) – and the
point on the graph of y = g(x) symmetric with respect to the line y = x – that is, (b, a). The relation g′(x) = 1/f ′(g(x))

indicates that the lines tangent to the two graphs at these symmetric points have slopes that are reciprocals of one another.

(g(a),a)

(a, g(a))

0
x

y y = g(x)

y = f(x)

y = x

27. Show that if f (x) is a function satisfying f ′(x) = f (x)2, then its inverse g(x) satisfies g′(x) = x−2.

solution

g′(x) = 1

f ′(g(x))
= 1

f (g(x))2
= 1

x2
= x−2.

28. Find g′(8), where g(x) is the inverse of a differentiable function f (x) such that f (−1) = 8 and f ′(−1) = 12.

solution The Theorem on the derivative of an inverse function states

g′(x) = 1

f ′(g(x))
.

Setting x = 8, we obtain

g′(8) = 1

f ′(g(8))
.

Because f (−1) = 8, it follows that g(8) = −1. Thus,

g′(8) = 1

f ′(−1)
= 1

12
.

In Exercises 29–80, compute the derivative.

29. y = 3x5 − 7x2 + 4

solution Let y = 3x5 − 7x2 + 4. Then

dy

dx
= 15x4 − 14x.
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30. y = 4x−3/2

solution Let y = 4x−3/2. Then

dy

dx
= −6x−5/2.

31. y = t−7.3

solution Let y = t−7.3. Then

dy

dt
= −7.3t−8.3.

32. y = 4x2 − x−2

solution Let y = 4x2 − x−2. Then

dy

dx
= 8x + 2x−3.

33. y = x + 1

x2 + 1

solution Let y = x + 1

x2 + 1
. Then

dy

dx
= (x2 + 1)(1) − (x + 1)(2x)

(x2 + 1)2
= 1 − 2x − x2

(x2 + 1)2
.

34. y = 3t − 2

4t − 9

solution Let y = 3t − 2

4t − 9
. Then

dy

dt
= (4t − 9)(3) − (3t − 2)(4)

(4t − 9)2
= − 19

(4t − 9)2
.

35. y = (x4 − 9x)6

solution Let y = (x4 − 9x)6. Then

dy

dx
= 6(x4 − 9x)5 d

dx
(x4 − 9x) = 6(4x3 − 9)(x4 − 9x)5.

36. y = (3t2 + 20t−3)6

solution Let y = (3t2 + 20t−3)6. Then

dy

dt
= 6(3t2 + 20t−3)5 d

dt
(3t2 + 20t−3) = 6(6t − 60t−4)(3t2 + 20t−3)5.

37. y = (2 + 9x2)3/2

solution Let y = (2 + 9x2)3/2. Then

dy

dx
= 3

2
(2 + 9x2)1/2 d

dx
(2 + 9x2) = 27x(2 + 9x2)1/2.

38. y = (x + 1)3(x + 4)4

solution Let y = (x + 1)3(x + 4)4. Then

dy

dx
= 4(x + 1)3(x + 4)3 + 3(x + 1)2(x + 4)4 = (x + 1)2(x + 4)3(4x + 4 + 3x + 12)

= (7x + 16)(x + 1)2(x + 4)3.

39. y = z√
1 − z

solution Let y = z√
1 − z

. Then

dy

dz
=

√
1 − z − (− z

2 ) 1√
1−z

1 − z
= 1 − z + z

2

(1 − z)3/2
= 2 − z

2(1 − z)3/2
.
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40. y =
(

1 + 1

x

)3

solution Let y =
(

1 + 1

x

)3
. Then

dy

dx
= 3

(
1 + 1

x

)2 d

dx

(
1 + 1

x

)
= − 3

x2

(
1 + 1

x

)2
.

41. y = x4 + √
x

x2

solution Let

y = x4 + √
x

x2
= x2 + x−3/2.

Then

dy

dx
= 2x − 3

2
x−5/2.

42. y = 1

(1 − x)
√

2 − x

solution Let y = 1

(1 − x)
√

2 − x
=

(
(1 − x)

√
2 − x

)−1
. Then

dy

dx
= −

(
(1 − x)

√
2 − x

)−2 d

dx

(
(1 − x)

√
2 − x

)
= −

(
(1 − x)

√
2 − x

)−2
(

− 1 − x

2
√

2 − x
− √

2 − x

)

= 5 − 3x

2(1 − x)2(2 − x)3/2
.

43. y =
√

x +
√

x + √
x

solution Let y =
√

x + √
x + √

x. Then

dy

dx
= 1

2

(
x +

√
x + √

x

)−1/2 d

dx

(
x +

√
x + √

x

)

= 1

2

(
x +

√
x + √

x

)−1/2 (
1 + 1

2

(
x + √

x
)−1/2 d

dx

(
x + √

x
))

= 1

2

(
x +

√
x + √

x

)−1/2 (
1 + 1

2

(
x + √

x
)−1/2

(
1 + 1

2
x−1/2

))
.

44. h(z) = (
z + (z + 1)1/2)−3/2

solution

d

dz

(
z + (z + 1)1/2)−3/2 = −3

2

(
z + (z + 1)1/2

)−5/2 d

dz

(
z + (z + 1)1/2

)

= −3

2

(
z + (z + 1)1/2

)−5/2
(

1 + 1

2
(z + 1)−1/2

)
.

45. y = tan(t−3)

solution Let y = tan(t−3). Then

dy

dt
= sec2(t−3)

d

dt
t−3 = −3t−4 sec2(t−3).

46. y = 4 cos(2 − 3x)

solution Let y = 4 cos(2 − 3x). Then

dy

dx
= −4 sin(2 − 3x)

d

dx
(2 − 3x) = 12 sin(2 − 3x).



April 4, 2011

356 C H A P T E R 3 DIFFERENTIATION

47. y = sin(2x) cos2 x

solution Let y = sin(2x) cos2 x = 2 sin x cos3 x. Then

dy

dx
= −6 sin2 x cos2 x + 2 cos4 x.

48. y = sin

(
4

θ

)

solution Let y = sin

(
4

θ

)
. Then

dy

dθ
= cos

(
4

θ

)
d

dθ

(
4

θ

)
= − 4

θ2
cos

(
4

θ

)
.

49. y = t

1 + sec t

solution Let y = t

1 + sec t
. Then

dy

dt
= 1 + sec t − t sec t tan t

(1 + sec t)2
.

50. y = z csc(9z + 1)

solution Let y = z csc(9z + 1). Then

dy

dz
= −9z csc(9z + 1) cot(9z + 1) + csc(9z + 1).

51. y = 8

1 + cot θ

solution Let y = 8

1 + cot θ
= 8(1 + cot θ)−1. Then

dy

dθ
= −8(1 + cot θ)−2 d

dθ
(1 + cot θ) = 8 csc2 θ

(1 + cot θ)2
.

52. y = tan(cos x)

solution Let y = tan(cos x). Then

dy

dx
= sec2(cos x)

d

dx
cos x = − sin x sec2(cos x).

53. y = tan(
√

1 + csc θ)

solution

dy

dx
= sec2(

√
1 + csc θ)

d

dx

√
1 + csc θ

= sec2(
√

1 + csc θ) · 1

2
(1 + csc θ)−1/2 d

dx
(1 + csc θ)

= − sec2(
√

1 + csc θ) csc θ cot θ

2(
√

1 + csc θ)
.

54. y = cos(cos(cos(θ)))

solution Let y = cos(cos(cos(θ))). Then

dy

dθ
= − sin(cos(cos(θ)))

d

dθ
cos(cos(θ)) = sin(cos(cos(θ))) sin(cos(θ))

d

dθ
cos(θ)

= − sin(cos(cos(θ))) sin(cos(θ)) sin(θ).

55. f (x) = 9e−4x

solution
d

dx
9e−4x = −36e−4x .
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56. f (x) = e−x

x

solution
d

dx

(
e−x

x

)
= −xe−x − e−x

x2
= − e−x(x + 1)

x2
.

57. g(t) = e4t−t2

solution
d

dt
e4t−t2 = (4 − 2t)e4t−t2

.

58. g (t) = t2e1/t

solution
d

dt
t2e1/t = 2te1/t + t2

(
− 1

t2

)
e1/t = (2t − 1)e1/t .

59. f (x) = ln(4x2 + 1)

solution
d

dx
ln(4x2 + 1) = 8x

4x2 + 1
.

60. f (x) = ln(ex − 4x)

solution
d

dx
ln(ex − 4x) = ex − 4

ex − 4x
.

61. G(s) = (ln(s))2

solution
d

ds
(ln s)2 = 2 ln s

s
.

62. G(s) = ln(s2)

solution
d

ds
ln(s2) = 2

d

ds
ln s = 2

s
.

63. f (θ) = ln(sin θ)

solution
d

dθ
ln(sin θ) = cos θ

sin θ
= cot θ .

64. f (θ) = sin(ln θ)

solution
d

dθ
sin(ln θ) = cos(ln θ)

θ
.

65. h(z) = sec(z + ln z)

solution
d

dz
sec(z + ln z) = sec(z + ln z) tan(z + ln z)

(
1 + 1

z

)
.

66. f (x) = esin2x

solution
d

dx
esin2 x = 2 sin x cos xesin2 x = sin 2xesin2 x .

67. f (x) = 7−2x

solution
d

dx
7−2x = ( − 2 ln 7

)(
7−2x

)
.
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68. h (y) = 1 + ey

1 − ey

solution
d

dy

(
1 + ey

1 − ey

)
= (1 − ey)ey − (1 + ey)(−ey)

(1 − ey)2
= ey(1 − ey + 1 + ey)

(1 − ey)2
= 2ey

(1 − ey)2
.

69. g(x) = tan−1(ln x)

solution
d

dx
tan−1(ln x) = 1

1 + (ln x)2
· 1

x
.

70. G(s) = cos−1(s−1)

solution
d

ds
cos−1(s−1) = −1√

1 −
(

1
s

)2

(
− 1

s2

)
= 1√

s4 − s2
.

71. f (x) = ln(csc−1 x)

solution
d

dx
ln(csc−1 x) = − 1

|x|
√

x2 − 1 csc−1 x
.

72. f (x) = esec−1 x

solution
d

dx
esec−1 x = 1

|x|
√

x2 − 1
esec−1 x .

73. R(s) = sln s

solution Rewrite

R(s) =
(
eln s

)ln s = e(ln s)2
.

Then

dR

ds
= e(ln s)2 · 2 ln s · 1

s
= 2 ln s

s
sln s .

Alternately, R(s) = sln s implies that ln R = ln
(
sln s

)
= (ln s)2. Thus,

1

R

dR

ds
= 2 ln s · 1

s
or

dR

ds
= 2 ln s

s
sln s .

74. f (x) = (cos2 x)cos x

solution Rewrite

f (x) =
(
eln cos2 x

)cos x = e2 cos x ln cos x .

Then

df

dx
= e2 cos x ln cos x

(
2 cos x · − sin x

cos x
− 2 sin x ln cos x

)

= −2 sin x(cos2 x)cos x(1 + ln cos x).

Alternately, f (x) = (cos2 x)cos x implies that ln f = cos x ln cos2 x = 2 cos x ln cos x. Thus,

1

f

df

dx
= 2 cos x · − sin x

cos x
− 2 sin x ln cos x

= −2 sin x(1 + ln cos x),

and

df

dx
= −2 sin x(cos2 x)cos x(1 + ln cos x).

75. G(t) = (sin2 t)t

solution Rewrite

G(t) =
(
eln sin2 t

)t = e2t ln sin t .

Then

dG

dt
= e2t ln sin t

(
2t · cos t

sin t
+ 2 ln sin t

)
= 2(sin2 t)t (t cot t + ln sin t).
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Alternately, G(t) = (sin2 t)t implies that ln G = t ln sin2 t = 2t ln sin t . Thus,

1

G

dG

dt
= 2t · cos t

sin t
+ 2 ln sin t,

and

dG

dt
= 2(sin2 t)t (t cot t + ln sin t).

76. h(t) = t (t
t )

solution Let h(t) = t (t
t ). Then ln h = t t ln t and

ln(ln h) = ln(t t ln t) = ln t t + ln(ln t)

= t ln t + ln(ln t).

Thus,

1

h ln h

dh

dt
= t · 1

t
+ ln t + 1

t ln t
= 1 + ln t + 1

t ln t
,

and

dh

dt
= t (t

t )t t ln t

(
1 + ln t + 1

t ln t

)
.

77. g(t) = sinh(t2)

solution
d

dt
sinh(t2) = 2t cosh(t2).

78. h(y) = y tanh(4y)

solution
d

dy
y tanh(4y) = tanh(4y) + 4y sech2(4y).

79. g(x) = tanh−1(ex)

solution
d

dx
tanh−1(ex) = 1

1 − (ex)2
ex = ex

1 − e2x
.

80. g(t) =
√

t2 − 1 sinh−1 t

solution
d

dt

√
t2 − 1 sinh−1 t = t√

t2 − 1
sinh−1t +

√
t2 − 1 · 1√

t2 + 1
= tsinh−1t√

t2 − 1
+

√
t2 − 1

t2 + 1
.

81. For which values of α is f (x) = |x|α differentiable at x = 0?

solution Let f (x) = |x|α . If α < 0, then f (x) is not continuous at x = 0 and therefore cannot be differentiable
at x = 0. If α = 0, then the function reduces to f (x) = 1, which is differentiable at x = 0. Now, suppose α > 0 and
consider the limit

lim
x→0

f (x) − f (0)

x − 0
= lim

x→0

|x|α
x

.

If 0 < α < 1, then

lim
x→0−

|x|α
x

= −∞ while lim
x→0+

|x|α
x

= ∞

and f ′(0) does not exist. If α = 1, then

lim
x→0−

|x|
x

= −1 while lim
x→0+

|x|
x

= 1

and f ′(0) again does not exist. Finally, if α > 1, then

lim
x→0

|x|α
x

= 0,

so f ′(0) does exist.
In summary, f (x) = |x|α is differentiable at x = 0 when α = 0 and when α > 1.
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82. Find f ′(2) if f (g(x)) = ex2
, g(1) = 2, and g′(1) = 4.

solution We differentiate both sides of the equation f (g(x)) = ex2
to obtain,

f ′ (g(x)) g′(x) = 2xex2
.

Setting x = 1 yields

f ′ (g(1)) g′(1) = 2e.

Since g(1) = 2 and g′(1) = 4, we find

f ′(2) · 4 = 2e,

or

f ′(2) = e

2
.

In Exercises 83 and 84, let f (x) = xe−x .

83. Show that f (x) has an inverse on [1, ∞). Let g(x) be this inverse. Find the domain and range of g(x) and compute
g′(2e−2).

solution Let f (x) = xe−x . Then f ′(x) = e−x(1 − x). On [1, ∞), f ′(x) < 0, so f (x) is decreasing and therefore

one-to-one. It follows that f (x) has an inverse on [1, ∞). Let g(x) denote this inverse. Because f (1) = e−1 and f (x) → 0
as x → ∞, the domain of g(x) is (0, e−1], and the range is [1, ∞).

To determine g′(2e−2), we use the formula g′(x) = 1/f ′(g(x)). Because f (2) = 2e−2, it follows that g(2e−2) = 2.
Then,

g′(2e−2) = 1

f ′(g(2e−2))
= 1

f ′(2)
= 1

−e−2
= −e2.

84. Show that f (x) = c has two solutions if 0 < c < e−1.

solution First note that f (x) < 0 for x < 0, so we only need to examine (0, ∞) for solutions to f (x) = c when
c > 0. Next, because f ′(x) = e−x(1 − x), f is decreasing on (1, ∞) and increasing on (0, 1). Therefore, f is one-to-one
on each of these intervals, which guarantees that the equation f (x) = c can have at most one solution on each of these
intervals for any value of c.

Now, let 0 < c < e−1 and consider the interval [1, ∞). Because

lim
x→∞ f (x) = lim

x→∞
x

ex
= 0,

it follows that there exists a d ∈ (1, ∞) such that f (d) < c. With f (1) = e−1 > c, it follows from the Intermediate Value
Theorem that the equation f (x) = c has a solution on [1, ∞). Next, consider the interval [0, 1]. With f (0) = 0 < c and
f (1) = e−1 > c, it follows from the Intermediate Value Theorem that the equation f (x) = c has a solution on [0, 1].

In summary, the equation f (x) = c has exactly two solutions for any c between 0 and e−1.

In Exercises 85–90, use the following table of values to calculate the derivative of the given function at x = 2.

x f (x) g(x) f ′(x) g′(x)

2 5 4 −3 9

4 3 2 −2 3

85. S(x) = 3f (x) − 2g(x)

solution Let S(x) = 3f (x) − 2g(x). Then S′(x) = 3f ′(x) − 2g′(x) and

S′(2) = 3f ′(2) − 2g′(2) = 3(−3) − 2(9) = −27.

86. H(x) = f (x)g(x)

solution Let H(x) = f (x)g(x). Then H ′(x) = f (x)g′(x) + f ′(x)g(x) and

H ′(2) = f (2)g′(2) + f ′(2)g(2) = 5(9) + (−3)(4) = 33.
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87. R(x) = f (x)

g(x)

solution Let R(x) = f (x)/g(x). Then

R′(x) = g(x)f ′(x) − f (x)g′(x)

g(x)2

and

R′(2) = g(2)f ′(2) − f (2)g′(2)

g(2)2
= 4(−3) − 5(9)

42
= −57

16
.

88. G(x) = f (g(x))

solution Let G(x) = f (g(x)). Then G′(x) = f ′(g(x))g′(x) and

G′(2) = f ′(g(2))g′(2) = f ′(4)g′(2) = −2(9) = −18.

89. F(x) = f (g(2x))

solution Let F(x) = f (g(2x)). Then F ′(x) = 2f ′(g(2x))g′(2x) and

F ′(2) = 2f ′(g(4))g′(4) = 2f ′(2)g′(4) = 2(−3)(3) = −18.

90. K(x) = f (x2)

solution Let K(x) = f (x2). Then K ′(x) = 2xf ′(x2) and

K ′(2) = 2(2)f ′(4) = 4(−2) = −8.

91. Find the points on the graph of f (x) = x3 − 3x2 + x + 4 where the tangent line has slope 10.

solution Let f (x) = x3 − 3x2 + x + 4. Then f ′(x) = 3x2 − 6x + 1. The tangent line to the graph of f (x) will

have slope 10 when f ′(x) = 10. Solving the quadratic equation 3x2 − 6x + 1 = 10 yields x = −1 and x = 3. Thus, the
points on the graph of f (x) where the tangent line has slope 10 are (−1, −1) and (3, 7).

92. Find the points on the graph of x2/3 + y2/3 = 1 where the tangent line has slope 1.

solution Suppose x2/3 + y2/3 = 1. Differentiating with respect to x leads to

2

3
x−1/3 + 2

3
y−1/3 dy

dx
= 0,

or

dy

dx
= −

(
x

y

)−1/3
= −

(y

x

)1/3
.

Tangents to the curve therefore have slope 1 when y = −x. Substituting y = −x into the equation for the curve yields

2x2/3 = 1, so x = ±
√

2
4 . Thus, the points along the curve x2/3 + y2/3 = 1 where the tangent line has slope 1 are:(√

2

4
, −

√
2

4

)
and

(
−

√
2

4
,

√
2

4

)
.

93. Find a such that the tangent lines y = x3 − 2x2 + x + 1 at x = a and x = a + 1 are parallel.

solution Let f (x) = x3 − 2x2 + x + 1. Then f ′(x) = 3x2 − 4x + 1 and the slope of the tangent line at x = a is

f ′(a) = 3a2 − 4a + 1, while the slope of the tangent line at x = a + 1 is

f ′(a + 1) = 3(a + 1)2 − 4(a + 1) + 1 = 3(a2 + 2a + 1) − 4a − 4 + 1 = 3a2 + 2a.

In order for the tangent lines at x = a and x = a + 1 to have the same slope, we must have f ′(a) = f ′(a + 1), or

3a2 − 4a + 1 = 3a2 + 2a.

The only solution to this equation is a = 1
6 . The equation of the tangent line at x = 1

6 is

y = f ′
(

1

6

) (
x − 1

6

)
+ f

(
1

6

)
= 5

12

(
x − 1

6

)
+ 241

216
= 5

12
x + 113

108
,
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and the equation of the tangent line at x = 7
6 is

y = f ′
(

7

6

) (
x − 7

6

)
+ f

(
7

6

)
= 5

12

(
x − 7

6

)
+ 223

216
= 5

12
x + 59

108
.

The graphs of f (x) and the two tangent lines appear below.

y

x
−1 −1

−3
−2

21.510.5

3
2

94. Use the table to compute the average rate of change of Candidate A’s percentage of votes over the intervals
from day 20 to day 15, day 15 to day 10, and day 10 to day 5. If this trend continues over the last 5 days before the
election, will Candidate A win?

Days Before Election 20 15 10 5

Candidate A 44.8% 46.8% 48.3% 49.3%

Candidate B 55.2% 53.2% 51.7% 50.7%

solution The average rate of change of A’s percentage for the period from day 20 to day 15 is

46.8 − 44.8

5
= 0.4%/day.

For the period from day 15 to day 10, the average rate of change is

48.3 − 46.8

5
= 0.3%/day.

Finally, for the period from day 10 to day 5, the average rate of change is

49.3 − 48.3

5
= 0.2%/day.

If this trend continues over the last five days before the election, the average rate of change will drop to 0.1 %/day, so A’s
percentage will increase another 0.5% to 49.8%. Accordingly, A will not win the election.

In Exercises 95–100, calculate y′′.

95. y = 12x3 − 5x2 + 3x

solution Let y = 12x3 − 5x2 + 3x. Then

y′ = 36x2 − 10x + 3 and y′′ = 72x − 10.

96. y = x−2/5

solution Let y = x−2/5. Then

y′ = −2

5
x−7/5 and y′′ = 14

25
x−12/5.

97. y = √
2x + 3

solution Let y = √
2x + 3 = (2x + 3)1/2. Then

y′ = 1

2
(2x + 3)−1/2 d

dx
(2x + 3) = (2x + 3)−1/2 and y′′ = −1

2
(2x + 3)−3/2 d

dx
(2x + 3) = −(2x + 3)−3/2.

98. y = 4x

x + 1

solution Let y = 4x

x + 1
. Then

y′ = (x + 1)(4) − 4x

(x + 1)2
= 4

(x + 1)2
and y′′ = − 8

(x + 1)3
.
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99. y = tan(x2)

solution Let y = tan(x2). Then

y′ = 2x sec2(x2) and

y′′ = 2x

(
2 sec(x2)

d

dx
sec(x2)

)
+ 2 sec2(x2) = 8x2 sec2(x2) tan(x2) + 2 sec2(x2).

100. y = sin2(4x + 9)

solution Let y = sin2(4x + 9). Then

y′ = 8 sin(4x + 9) cos(4x + 9) = 4 sin(8x + 18) and y′′ = 32 cos(8x + 18).

In Exercises 101–106, compute
dy

dx
.

101. x3 − y3 = 4

solution Consider the equation x3 − y3 = 4. Differentiating with respect to x yields

3x2 − 3y2 dy

dx
= 0.

Therefore,

dy

dx
= x2

y2
.

102. 4x2 − 9y2 = 36

solution Consider the equation 4x2 − 9y2 = 36. Differentiating with respect to x yields

8x − 18y
dy

dx
= 0.

Therefore,

dy

dx
= 4x

9y
.

103. y = xy2 + 2x2

solution Consider the equation y = xy2 + 2x2. Differentiating with respect to x yields

dy

dx
= 2xy

dy

dx
+ y2 + 4x.

Therefore,

dy

dx
= y2 + 4x

1 − 2xy
.

104.
y

x
= x + y

solution Solving y
x = x + y for y yields

y = x2

1 − x
.

By the quotient rule,

dy

dx
= (1 − x)(2x) − x2(−1)

(1 − x)2
= 2x − x2

(1 − x)2
.

105. y = sin(x + y)

solution Consider the equation y = sin(x + y). Differentiating with respect to x yields

dy

dx
= cos(x + y)

(
1 + dy

dx

)
.

Therefore,

dy

dx
= cos(x + y)

1 − cos(x + y)
.
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106. tan(x + y) = xy

solution Consider the equation tan(x + y) = xy. Differentiating with respect to x yields

sec2(x + y)

(
1 + dy

dx

)
= x

dy

dx
+ y.

Therefore,

dy

dx
= y − sec2(x + y)

sec2(x + y) − x
.

107. In Figure 5, label the graphs f , f ′, and f ′′.
y

x

y

x

FIGURE 5

solution First consider the plot on the left. Observe that the green curve is nonnegative whereas the red curve is
increasing, suggesting that the green curve is the derivative of the red curve. Moreover, the green curve is linear with
negative slope for x < 0 and linear with positive slope for x > 0 while the blue curve is a negative constant for x < 0
and a positive constant for x > 0, suggesting the blue curve is the derivative of the green curve. Thus, the red, green and
blue curves, respectively, are the graphs of f , f ′ and f ′′.

Now consider the plot on the right. Because the red curve is decreasing when the blue curve is negative and increasing
when the blue curve is positive and the green curve is decreasing when the red curve is negative and increasing when the
red curve is positive, it follows that the green, red and blue curves, respectively, are the graphs of f , f ′ and f ′′.
108. Let f (x) = x2 sin(x−1) for x 	= 0 and f (0) = 0. Show that f ′(x) exists for all x (including x = 0) but that f ′(x)

is not continuous at x = 0 (Figure 6).

y

x

−0.05

0.05

−0.5 0.5

FIGURE 6 Graph of f (x) = x2 sin(x−1).

solution Let f (x) = x2 sin(x−1) for x 	= 0 and f (0) = 0. For x 	= 0, the product rule and the chain rule give

f ′(x) = 2x sin(x−1) − x2 cos(x−1)(x−2) = 2x sin(x−1) − cos(x−1),

which exists for all x 	= 0. At x = 0 we use the limit definition of the derivative:

f ′(0) = lim
h→0

f (h) − f (0)

h
= lim

h→0

1

h
(h2 sin(h−1)) = lim

h→0
h sin(h−1) = 0,

by the Squeeze Theorem, since −h ≤ h sin 1
h

≤ h. Thus, f ′(x) exists for all x. However,

lim
x→0

f ′(x) = lim
x→0

(
2x sin(x−1) − cos(x−1)

)

does not exist, so f ′(x) is not continuous at x = 0.

In Exercises 109–114, use logarithmic differentiation to find the derivative.

109. y = (x + 1)3

(4x − 2)2

solution Let y = (x + 1)3

(4x − 2)2
. Then

ln y = ln

(
(x + 1)3

(4x − 2)2

)
= ln (x + 1)3 − ln (4x − 2)2 = 3 ln(x + 1) − 2 ln(4x − 2).
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By logarithmic differentiation,

y′
y

= 3

x + 1
− 2

4x − 2
· 4 = 3

x + 1
− 4

2x − 1
,

so

y′ = (x + 1)3

(4x − 2)2

(
3

x + 1
− 4

2x − 1

)
.

110. y = (x + 1)(x + 2)2

(x + 3)(x + 4)

solution Let y = (x + 1)(x + 2)2

(x + 3)(x + 4)
. Then

ln y = ln
(
(x + 1)(x + 2)2

)
− ln ((x + 3)(x + 4))

= ln(x + 1) + 2 ln(x + 2) − ln(x + 3) − ln(x + 4).

By logarithmic differentiation,

y′
y

= 1

x + 1
+ 2

x + 2
− 1

x + 3
− 1

x + 4
,

so

y′ = (x + 1)(x + 2)2

(x + 3)(x + 4)

(
1

x + 1
+ 2

x + 2
− 1

x + 3
− 1

x + 4

)
.

111. y = e(x−1)2
e(x−3)2

solution Let y = e(x−1)2
e(x−3)2

. Then

ln y = ln
(
e(x−1)2

e(x−3)2) = ln
(
e(x−1)2+(x−3)2) = (x − 1)2 + (x − 3)2.

By logarithmic differentiation,

y′
y

= 2(x − 1) + 2(x − 3) = 4x − 8,

so

y′ = 4e(x−1)2
e(x−3)2

(x − 2).

112. y = ex sin−1 x

ln x

solution Let y = ex sin−1 x

ln x
. Then

ln y = ln

(
exsin−1x

ln x

)
= ln(exsin−1x) − ln(ln x)

= ln
(
ex

) + ln(sin−1x) − ln(ln x) = x + ln(sin−1x) − ln(ln x).

By logarithmic differentiation,

y′
y

= 1 + 1

sin−1x
· 1√

1 − x2
− 1

ln x
· 1

x
,

so

y′ = exsin−1x

ln x

(
1 + 1√

1 − x2sin−1x
− 1

x ln x

)
.
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113. y = e3x(x − 2)2

(x + 1)2

solution Let y = e3x(x − 2)2

(x + 1)2
. Then

ln y = ln

(
e3x(x − 2)2

(x + 1)2

)
= ln e3x + ln (x − 2)2 − ln (x + 1)2

= 3x + 2 ln(x − 2) − 2 ln(x + 1).

By logarithmic differentiation,

y′
y

= 3 + 2

x − 2
− 2

x + 1
,

so

y = e3x(x − 2)2

(x + 1)2

(
3 + 2

x − 2
− 2

x + 1

)
.

114. y = x
√

x(xln x)

solution Let y = x
√

x(xln x). Then

ln y = √
x ln x + (ln x)2

By logarithmic differentiation,

y′
y

= 1

2
√

x
ln x + √

x · 1

x
+ 2(ln x) · 1

x
= ln x

2
√

x
+ 1√

x
+ 2 ln x

x
,

so

y′ = x
√

x(xln x)

(
ln x

2
√

x
+ 1√

x
+ 2 ln x

x

)
.

Exercises 115–117: Let q be the number of units of a product (cell phones, barrels of oil, etc.) that can be sold at the
price p. The price elasticity of demand E is defined as the percentage rate of change of q with respect to p. In terms of
derivatives,

E = p

q

dq

dp
= lim

�p→0

(100�q)/q

(100�p)/p

115. Show that the total revenue R = pq satisfies
dR

dp
= q(1 + E).

solution Let R = pq. Then

dR

dp
= p

dq

dp
+ q = q

p

q

dq

dp
+ q = q(E + 1).

116. A commercial bakery can sell q chocolate cakes per week at price $p, where q = 50p(10 − p) for
5 < p < 10.

(a) Show that E(p) = 2p − 10

p − 10
.

(b) Show, by computing E(8), that if p = $8, then a 1% increase in price reduces demand by approximately 3%.

solution

(a) Let q = 50p(10 − p) = 500p − 50p2. Then q ′(p) = 500 − 100p and

E(p) =
(

p

q

)
dq

dp
= p

50p(10 − p)
(500 − 100p) = 10 − 2p

10 − p
= 2p − 10

p − 10
.

(b) From part (a),

E(8) = 2(8) − 10

8 − 10
= −3.

Thus, with the price set at $8, a 1% increase in price results in a 3% decrease in demand.
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117. The monthly demand (in thousands) for flights between Chicago and St. Louis at the price p is q = 40 − 0.2p.
Calculate the price elasticity of demand when p = $150 and estimate the percentage increase in number of additional
passengers if the ticket price is lowered by 1%.

solution Let q = 40 − 0.2p. Then q ′(p) = −0.2 and

E(p) =
(

p

q

)
dq

dp
= 0.2p

0.2p − 40
.

For p = 150,

E(150) = 0.2(150)

0.2(150) − 40
= −3,

so a 1% decrease in price increases demand by 3%. The demand when p = 150 is q = 40 − 0.2(150) = 10, or 10000
passengers. Therefore, a 1% increase in demand translates to 300 additional passengers.

118. How fast does the water level rise in the tank in Figure 7 when the water level is h = 4 m and water pours in at
20 m3/min?

24 m
10 m

8 m

36 m

FIGURE 7

solution When the water level is at height h, the length of the upper surface of the water is 24 + 3
2h and the volume

of water in the trough is

V = 1

2
h

(
24 + 24 + 3

2
h

)
(10) = 240h + 15

2
h2.

Therefore,

dV

dt
= (240 + 15h)

dh

dt
= 20 m3/min.

When h = 4, we have

dh

dt
= 20

240 + 15(4)
= 1

15
m/min.

119. The minute hand of a clock is 8 cm long, and the hour hand is 5 cm long. How fast is the distance between the tips
of the hands changing at 3 o’clock?

solution Let S be the distance between the tips of the two hands. By the law of cosines

S2 = 82 + 52 − 2 · 8 · 5 cos(θ),

where θ is the angle between the hands. Thus

2S
dS

dt
= 80 sin(θ)

dθ

dt
.

At three o’clock θ = π/2, S = √
89, and

dθ

dt
=

( π

360
− π

30

)
rad/min = −11π

360
rad/min,

so

dS

dt
= 1

2
√

89
(80)(1)

−11π

360
≈ −0.407 cm/min.

120. Chloe and Bao are in motorboats at the center of a lake. At time t = 0, Chloe begins traveling south at a speed of
50 km/h. One minute later, Bao takes off, heading east at a speed of 40 km/h. At what rate is the distance between them
increasing at t = 12 min?
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solution Take the center of the lake to be origin of our coordinate system. Because Chloe travels at 50 km/h = 5
6

km/min due south, her position at time t > 0 is (0, 5
6 t); because Bao travels at 40 km/h = 2

3 km/min due east, her position

at time t > 1 is ( 2
3 (t − 1), 0). Thus, the distance between the two motorboats at time t > 1 is

s =
√

4

9
(t − 1)2 + 25

36
t2 = 1

6

√
41t2 − 32t + 16,

and

ds

dt
= 41t − 16

6
√

41t2 − 32t + 16
.

At t = 12, it follows that

ds

dt
= 476

6
√

5536
≈ 1.066 km/min.

121. A bead slides down the curve xy = 10. Find the bead’s horizontal velocity at time t = 2 s if its height at time t

seconds is y = 400 − 16t2 cm.

solution Let xy = 10. Then x = 10/y and

dx

dt
= − 10

y2

dy

dt
.

If y = 400 − 16t2, then dy
dt

= −32t and

dx

dt
= − 10

(400 − 16t2)2
(−32t) = 320t

(400 − 16t2)2
.

Thus, at t = 2,

dx

dt
= 640

(336)2
≈ 0.00567 cm/s.

122. In Figure 8, x is increasing at 2 cm/s, y is increasing at 3 cm/s, and θ is decreasing such that the area of the triangle
has the constant value 4 cm2.

(a) How fast is θ decreasing when x = 4, y = 4?

(b) How fast is the distance between P and Q changing when x = 4, y = 4?

P

Qy

x

FIGURE 8

solution

(a) The area of the triangle is

A = 1

2
xy sin θ = 4.

Differentiating with respect to t , we obtain

dA

dt
= 1

2
xy cos θ

dθ

dt
+ 1

2
y sin θ

dx

dt
+ x sin θ

dy

dt
= 0.

When x = y = 4, we have 1
2 (4)(4) sin θ = 4, so sin θ = 1

2 . Thus, θ = π
6 and

1

2
(4)(4)

√
3

2

dθ

dt
+ 1

2
(4)

(
1

2

)
(2) + 1

2
(4)

(
1

2

)
(3) = 0.

Solving for dθ/dt , we find

dθ

dt
= − 5

4
√

3
≈ −0.72 rad/s.
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(b) By the Law of Cosines, the distance D between P and Q satisfies

D2 = x2 + y2 − 2xy cos θ,

so

2D
dD

dt
= 2x

dx

dt
+ 2y

dy

dt
+ 2xy sin θ

dθ

dt
− 2x cos θ

dy

dt
− 2y cos θ

dx

dt
.

With x = y = 4 and θ = π
6 ,

D =
√

42 + 42 − 2(4)(4)

√
3

2
= 4

√
2 − √

3.

Therefore,

dD

dt
=

16 + 24 − 20√
3

− 12
√

3 − 8
√

3

8
√

2 − √
3

≈ −1.50 cm/s.

123. A light moving at 0.8 m/s approaches a man standing 4 m from a wall (Figure 9). The light is 1 m above the ground.
How fast is the tip P of the man’s shadow moving when the light is 7 m from the wall?

1.8 m

1 m

4 m 0.8 m/s

P

FIGURE 9

solution Let x denote the distance between the man and the light. Using similar triangles, we find

0.8

x
= P − 1

4 + x
or P = 3.2

x
+ 1.8.

Therefore,

dP

dt
= −3.2

x2

dx

dt
.

When the light is 7 feet from the wall, x = 3. With dx
dt

= −0.8, we have

dP

dt
= −3.2

32
(−0.8) = 0.284 m/s.
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4 APPLICATIONS OF
THE DERIVATIVE

4.1 Linear Approximation and Applications

Preliminary Questions
1. True or False? The Linear Approximation says that the vertical change in the graph is approximately equal to the

vertical change in the tangent line.

solution This statement is true. The linear approximation does say that the vertical change in the graph is approximately
equal to the vertical change in the tangent line.

2. Estimate g(1.2) − g(1) if g′(1) = 4.

solution Using the Linear Approximation,

g(1.2) − g(1) ≈ g′(1)(1.2 − 1) = 4(0.2) = 0.8.

3. Estimate f (2.1) if f (2) = 1 and f ′(2) = 3.

solution Using the Linearization,

f (2.1) ≈ f (2) + f ′(2)(2.1 − 2) = 1 + 3(0.1) = 1.3

4. Complete the sentence: The Linear Approximation shows that up to a small error, the change in output �f is directly
proportional to ….

solution The Linear Approximation tells us that up to a small error, the change in output �f is directly proportional
to the change in input �x when �x is small.

Exercises
In Exercises 1–6, use Eq. (1) to estimate �f = f (3.02) − f (3).

1. f (x) = x2

solution Let f (x) = x2. Then f ′(x) = 2x and �f ≈ f ′(3)�x = 6(0.02) = 0.12.

2. f (x) = x4

solution Let f (x) = x4. Then f ′(x) = 4x3 and �f ≈ f ′(3)�x = 4(27)(0.02) = 2.16.

3. f (x) = x−1

solution Let f (x) = x−1. Then f ′(x) = −x−2 and �f ≈ f ′(3)�x = −1

9
(0.02) = −0.00222.

4. f (x) = 1

x + 1

solution Let f (x) = (x + 1)−1. Then f ′(x) = −(x + 1)−2 and �f ≈ f ′(3)�x = − 1

16
(0.02) = −0.00125.

5. f (x) = √
x + 6

solution Let f (x) = √
x + 6. Then f ′(x) = 1

2 (x + 6)−1/2 and

�f ≈ f ′(3)�x = 1

2
9−1/2(0.02) = 0.003333.

6. f (x) = tan
πx

3

solution Let f (x) = tan πx
3 . Then f ′(x) = π

3 sec2 πx
3 and

�f ≈ f ′(3)�x = π

3
(0.02) = 0.020944.

370
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7. The cube root of 27 is 3. How much larger is the cube root of 27.2? Estimate using the Linear Approximation.

solution Let f (x) = x1/3, a = 27, and �x = 0.2. Then f ′(x) = 1
3x−2/3 and f ′(a) = f ′(27) = 1

27 . The Linear
Approximation is

�f ≈ f ′(a)�x = 1

27
(0.2) = 0.0074074

8. Estimate ln(e3 + 0.1) − ln(e3) using differentials.

solution Let f (x) = ln x, a = e3, and �x = 0.1. Then f ′(x) = x−1 and f ′(a) = e−3. Thus,

ln(e3 + 0.1) − ln(e3) = �f ≈ f ′(a)�x = e−3(0.1) = 0.00498.

In Exercises 9–12, use Eq. (1) to estimate �f . Use a calculator to compute both the error and the percentage error.

9. f (x) = √
1 + x, a = 3, �x = 0.2

solution Let f (x) = (1 + x)1/2, a = 3, and �x = 0.2. Then f ′(x) = 1
2 (1 + x)−1/2, f ′(a) = f ′(3) = 1

4 and

�f ≈ f ′(a)�x = 1
4 (0.2) = 0.05. The actual change is

�f = f (a + �x) − f (a) = f (3.2) − f (3) = √
4.2 − 2 ≈ 0.049390.

The error in the Linear Approximation is therefore |0.049390 − 0.05| = 0.000610; in percentage terms, the error is

0.000610

0.049390
× 100% ≈ 1.24%.

10. f (x) = 2x2 − x, a = 5, �x = −0.4

solution Let f (x) = 2x2 − x, a = 5 and �x = −0.4. Then f ′(x) = 4x − 1, f ′(a) = 19 and �f ≈ f ′(a)�x =
19(−0.4) = −7.6. The actual change is

�f = f (a + �x) − f (a) = f (4.6) − f (5) = 37.72 − 45 = −7.28.

The error in the Linear Approximation is therefore | − 7.28 − (−7.6)| = 0.32; in percentage terms, the error is

0.32

7.28
× 100% ≈ 4.40%.

11. f (x) = 1

1 + x2
, a = 3, �x = 0.5

solution Let f (x) = 1
1+x2 , a = 3, and �x = .5. Then f ′(x) = − 2x

(1+x2)2 , f ′(a) = f ′(3) = −0.06 and �f ≈
f ′(a)�x = −0.06(0.5) = −0.03. The actual change is

�f = f (a + �x) − f (a) = f (3.5) − f (3) ≈ −0.0245283.

The error in the Linear Approximation is therefore | − 0.0245283 − (−0.03)| = 0.0054717; in percentage terms, the
error is ∣∣∣∣ 0.0054717

−0.0245283

∣∣∣∣× 100% ≈ 22.31%

12. f (x) = ln(x2 + 1), a = 1, �x = 0.1

solution Let f (x) = ln(x2 + 1), a = 1, and �x = 0.1. Then f ′(x) = 2x
x2+1

, f ′(a) = f ′(1) = 1, and �f ≈
f ′(a)�x = 1(0.1) = 0.1. The actual change is

�f = f (a + �x) − f (a) = f (1.1) − f (1) = 0.099845.

The error in the Linear Approximation is therefore |0.099845 − 0.1| = 0.000155; in percentage terms, the error is

0.000155

0.099845
× 100% ≈ 0.16%.

In Exercises 13–16, estimate �y using differentials [Eq. (3)].

13. y = cos x, a = π
6 , dx = 0.014

solution Let f (x) = cos x. Then f ′(x) = − sin x and

�y ≈ dy = f ′(a)dx = − sin
(π

6

)
(0.014) = −0.007.
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14. y = tan2 x, a = π
4 , dx = −0.02

solution Let f (x) = tan2 x. Then f ′(x) = 2 tan x sec2 x and

�y ≈ dy = f ′(a)dx = 2 tan
π

4
sec2 π

4
(−0.02) = −0.08.

15. y = 10 − x2

2 + x2
, a = 1, dx = 0.01

solution Let f (x) = 10 − x2

2 + x2
. Then

f ′(x) = (2 + x2)(−2x) − (10 − x2)(2x)

(2 + x2)2
= − 24x

(2 + x2)2

and

�y ≈ dy = f ′(a)dx = −24

9
(0.01) = −0.026667.

16. y = x1/3ex−1, a = 1, dx = 0.1

solution Let y = x1/3ex−1, a = 1, and dx = 0.1. Then y′(x) = 1
3x−2/3ex−1(3x + 1), y′(a) = y′(1) = 4

3 , and

�y ≈ dy = y′(a) dx = 4
3 (0.1) = 0.133333.

In Exercises 17–24, estimate using the Linear Approximation and find the error using a calculator.

17.
√

26 − √
25

solution Let f (x) = √
x, a = 25, and �x = 1. Then f ′(x) = 1

2x−1/2 and f ′(a) = f ′(25) = 1
10 .

• The Linear Approximation is �f ≈ f ′(a)�x = 1
10 (1) = 0.1.

• The actual change is �f = f (a + �x) − f (a) = f (26) − f (25) ≈ 0.0990195.
• The error in this estimate is |0.0990195 − 0.1| = 0.000980486.

18. 16.51/4 − 161/4

solution Let f (x) = x1/4, a = 16, and �x = .5. Then f ′(x) = 1
4x−3/4 and f ′(a) = f ′(16) = 1

32 .

• The Linear Approximation is �f ≈ f ′(a)�x = 1
32 (0.5) = 0.015625.

• The actual change is

�f = f (a + �x) − f (a) = f (16.5) − f (16) ≈ 2.015445 − 2 = 0.015445

• The error in this estimate is |0.015625 − 0.015445| ≈ 0.00018.

19.
1√
101

− 1

10

solution Let f (x) = 1√
x

, a = 100, and �x = 1. Then f ′(x) = d
dx

(x−1/2) = − 1
2x−3/2 and f ′(a) = − 1

2 ( 1
1000 ) =

−0.0005.

• The Linear Approximation is �f ≈ f ′(a)�x = −0.0005(1) = −0.0005.
• The actual change is

�f = f (a + �x) − f (a) = 1√
101

− 1

10
= −0.000496281.

• The error in this estimate is |−0.0005 − (−0.000496281)| = 3.71902 × 10−6.

20.
1√
98

− 1

10

solution Let f (x) = 1√
x

, a = 100, and �x = −2. Then f ′(x) = d
dx

(x−1/2) = − 1
2x−3/2 and f ′(a) = − 1

2 ( 1
1000 ) =

−0.0005.

• The Linear Approximation is �f ≈ f ′(a)�x = −0.0005(−2) = 0.001.

• The actual change is �f = f (a + �x) − f (a) = f (98) − f (100) = 0.00101525.
• The error in this estimate is |0.001 − 0.00101525| ≈ 0.00001525.

21. 91/3 − 2

solution Let f (x) = x1/3, a = 8, and �x = 1. Then f ′(x) = 1
3x−2/3 and f ′(a) = f ′(8) = 1

12 .

• The Linear Approximation is �f ≈ f ′(a)�x = 1
12 (1) = 0.083333.

• The actual change is �f = f (a + �x) − f (a) = f (9) − f (8) = 0.080084.
• The error in this estimate is |0.080084 − 0.083333| ≈ 3.25 × 10−3.
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22. tan−1(1.05) − π
4

solution Let f (x) = tan−1 x, a = 1, and �x = 0.05. Then f ′(x) = (1 + x2)−1 and f ′(a) = f ′(1) = 1
2 .

• The Linear Approximation is �f ≈ f ′(a)�x = 1
2 (0.05) = 0.025.

• The actual change is �f = f (a + �x) − f (a) = f (1.05) − f (1) = 0.024385.
• The error in this estimate is |0.024385 − 0.025| ≈ 6.15 × 10−4.

23. e−0.1 − 1

solution Let f (x) = ex , a = 0, and �x = −0.1. Then f ′(x) = ex and f ′(a) = f ′(0) = 1.

• The Linear Approximation is �f ≈ f ′(a)�x = 1(−0.1) = −0.1.
• The actual change is �f = f (a + �x) − f (a) = f (−0.1) − f (0) = −0.095163.
• The error in this estimate is | − 0.095163 − (−0.1)| ≈ 4.84 × 10−3.

24. ln(0.97)

solution Let f (x) = ln x, a = 1, and �x = −0.03. Then f ′(x) = 1
x and f ′(a) = f ′(1) = 1.

• The Linear Approximation is �f ≈ f ′(a)�x = (1)(−0.03) = −0.03, so ln(0.97) ≈ ln 1 − 0.03 = −0.03.
• The actual change is

�f = f (a + �x) − f (a) = f (0.97) − f (1) ≈ −0.030459 − 0 = −0.030459.

• The error is |�f − f ′(a)�x| ≈ 0.000459.

25. Estimate f (4.03) for f (x) as in Figure 8.

(4, 2)

(10, 4)

x

y = f (x)

Tangent line

y

FIGURE 8

solution Using the Linear Approximation, f (4.03) ≈ f (4) + f ′(4)(0.03). From the figure, we find that f (4) = 2
and

f ′(4) = 4 − 2

10 − 4
= 1

3
.

Thus,

f (4.03) ≈ 2 + 1

3
(0.03) = 2.01.

26. At a certain moment, an object in linear motion has velocity 100 m/s. Estimate the distance traveled over the
next quarter-second, and explain how this is an application of the Linear Approximation.

solution Because the velocity is 100 m/s, we estimate the object will travel

(
100

m

s

)(1

4
s

)
= 25 m

in the next quarter-second. Recall that velocity is the derivative of position, so we have just estimated the change in
position, �s, using the product s′�t , which is just the Linear Approximation.

27. Which is larger:
√

2.1 − √
2 or

√
9.1 − √

9? Explain using the Linear Approximation.

solution Let f (x) = √
x, and �x = 0.1. Then f ′(x) = 1

2x−1/2 and the Linear Approximation at x = a gives

�f = √
a + 0.1 − √

a ≈ f ′(a)(0.1) = 1

2
a−1/2(0.1) = 0.05√

a

We see that �f decreases as a increases. In particular

√
2.1 − √

2 ≈ 0.05√
2

is larger than
√

9.1 − √
9 ≈ 0.05

3



April 2, 2011

374 C H A P T E R 4 APPLICATIONS OF THE DERIVATIVE

28. Estimate sin 61◦ − sin 60◦ using the Linear Approximation. Hint: Express �θ in radians.

solution Let f (x) = sin x, a = π
3 , and �x = π

180 . Then f ′(x) = cos x and f ′(a) = f ′( π
3 ) = 1

2 . Finally, the Linear
Approximation is

�f ≈ f ′(a)�x = 1

2

( π

180

)
= π

360
≈ 0.008727

29. Box office revenue at a multiplex cinema in Paris is R(p) = 3600p − 10p3 euros per showing when the ticket price
is p euros. Calculate R(p) for p = 9 and use the Linear Approximation to estimate �R if p is raised or lowered by 0.5
euros.

solution Let R(p) = 3600p − 10p3. Then R(9) = 3600(9) − 10(9)3 = 25110 euros. Moreover, R′(p) = 3600 −
30p2, so by the Linear Approximation,

�R ≈ R′(9)�p = 1170�p.

If p is raised by 0.5 euros, then �R ≈ 585 euros; on the other hand, if p is lowered by 0.5 euros, then �R ≈ −585 euros.

30. The stopping distance for an automobile is F(s) = 1.1s + 0.054s2 ft, where s is the speed in mph. Use the Linear
Approximation to estimate the change in stopping distance per additional mph when s = 35 and when s = 55.

solution Let F(s) = 1.1s + 0.054s2.

• The Linear Approximation at s = 35 mph is

�F ≈ F ′(35)�s = (1.1 + 0.108 × 35)�s = 4.88�s ft

The change in stopping distance per additional mph for s = 35 mph is approximately 4.88 ft.

• The Linear Approximation at s = 55 mph is

�F ≈ F ′(55)�s = (1.1 + 0.108 × 55)�s = 7.04�s ft

The change in stopping distance per additional mph for s = 55 mph is approximately 7.04 ft.

31. A thin silver wire has length L = 18 cm when the temperature is T = 30◦C. Estimate �L when T decreases to 25◦C
if the coefficient of thermal expansion is k = 1.9 × 10−5◦C−1 (see Example 3).

solution We have

dL

dT
= kL = (1.9 × 10−5)(18) = 3.42 × 10−4 cm/◦C

The change in temperature is �T = −5◦ C, so by the Linear Approximation, the change in length is approximately

�L ≈ 3.42 × 10−4�T = (3.42 × 10−4)(−5) = −0.00171 cm

At T = 25◦ C, the length of the wire is approximately 17.99829 cm.

32. At a certain moment, the temperature in a snake cage satisfies dT /dt = 0.008◦C/s. Estimate the rise in temperature
over the next 10 seconds.

solution Using the Linear Approximation, the rise in temperature over the next 10 seconds will be

�T ≈ dT

dt
�t = 0.008(10) = 0.08◦C.

33. The atmospheric pressure at altitude h (kilometers) for 11 ≤ h ≤ 25 is approximately

P(h) = 128e−0.157h kilopascals.

(a) Estimate �P at h = 20 when �h = 0.5.

(b) Compute the actual change, and compute the percentage error in the Linear Approximation.
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solution

(a) Let P(h) = 128e−0.157h. Then P ′(h) = −20.096e−0.157h. Using the Linear Approximation,

�P ≈ P ′(h)�h = P ′(20)(0.5) = −0.434906 kilopascals.

(b) The actual change in pressure is

P(20.5) − P(20) = −0.418274 kilopascals.

The percentage error in the Linear Approximation is∣∣∣∣−0.434906 − (−0.418274)

−0.418274

∣∣∣∣× 100% ≈ 3.98%.

34. The resistance R of a copper wire at temperature T = 20◦C is R = 15 �. Estimate the resistance at T = 22◦C,
assuming that dR/dT

∣∣
T =20 = 0.06 �/◦C.

solution �T = 2◦C. The Linear Approximation gives us:

R(22) − R(20) ≈ dR/dT

∣∣∣∣
T =20

�T = 0.06 �/◦C(2◦C) = 0.12 �.

Therefore, R(22) ≈ 15 � + 0.12 � = 15.12 �.

35. Newton’s Law of Gravitation shows that if a person weighs w pounds on the surface of the earth, then his or her
weight at distance x from the center of the earth is

W(x) = wR2

x2
(for x ≥ R)

where R = 3960 miles is the radius of the earth (Figure 9).

(a) Show that the weight lost at altitude h miles above the earth’s surface is approximately �W ≈ −(0.0005w)h. Hint:
Use the Linear Approximation with dx = h.
(b) Estimate the weight lost by a 200-lb football player flying in a jet at an altitude of 7 miles.

3960

dx

FIGURE 9 The distance to the center of the earth is 3960 + h miles.

solution
(a) Using the Linear Approximation

�W ≈ W ′(R)�x = −2wR2

R3
h = −2wh

R
≈ −0.0005wh.

(b) Substitute w = 200 and h = 7 into the result from part (a) to obtain

�W ≈ −0.0005(200)(7) = −0.7 pounds.

36. Using Exercise 35(a), estimate the altitude at which a 130-lb pilot would weigh 129.5 lb.

solution From Exercise 35(a), the weight loss �W at altitude h (in miles) for a person weighing w at the surface of
the earth is approximately

�W ≈ −0.0005wh

If w = 130 pounds, then �W ≈ −0.065h. Accordingly, the pilot loses approximately 0.065 pounds per mile of altitude
gained. The pilot will weigh 129.5 pounds at the altitude h such that −0.065h = −0.5, or h = 0.5/0.065 ≈ 7.7 miles.

37. A stone tossed vertically into the air with initial velocity v cm/s reaches a maximum height of h = v2/1960 cm.

(a) Estimate �h if v = 700 cm/s and �v = 1 cm/s.
(b) Estimate �h if v = 1,000 cm/s and �v = 1 cm/s.
(c) In general, does a 1 cm/s increase in v lead to a greater change in h at low or high initial velocities? Explain.
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solution A stone tossed vertically with initial velocity v cm/s attains a maximum height of h(v) = v2/1960 cm.
Thus, h′(v) = v/980.

(a) If v = 700 and �v = 1, then �h ≈ h′(v)�v = 1
980 (700)(1) ≈ 0.71 cm.

(b) If v = 1000 and �v = 1, then �h ≈ h′(v)�v = 1
980 (1000)(1) = 1.02 cm.

(c) A one centimeter per second increase in initial velocity v increases the maximum height by approximately v/980 cm.
Accordingly, there is a bigger effect at higher velocities.

38. The side s of a square carpet is measured at 6 m. Estimate the maximum error in the area A of the carpet if s is
accurate to within 2 centimeters.

solution Let s be the length in meters of the side of the square carpet. Then A(s) = s2 is the area of the carpet. With
a = 6 and �s = 0.02 (note that 1 cm equals 0.01 m), an estimate of the size of the error in the area is given by the Linear
Approximation:

�A ≈ A′(6)�s = 12 (0.02) = 0.24 m2

In Exercises 39 and 40, use the following fact derived from Newton’s Laws: An object released at an angle θ with initial
velocity v ft/s travels a horizontal distance

s = 1

32
v2 sin 2θ ft (Figure 10)

q
x

y

FIGURE 10 Trajectory of an object released at an angle θ .

39. A player located 18.1 ft from the basket launches a successful jump shot from a height of 10 ft (level with the rim of
the basket), at an angle θ = 34◦ and initial velocity v = 25 ft/s.)

(a) Show that �s ≈ 0.255�θ ft for a small change of �θ .
(b) Is it likely that the shot would have been successful if the angle had been off by 2◦?

solution Using Newton’s laws and the given initial velocity of v = 25 ft/s, the shot travels s = 1
32v2 sin 2t =

625
32 sin 2t ft, where t is in radians.

(a) If θ = 34◦ (i.e., t = 17
90π ), then

�s ≈ s′(t)�t = 625

16
cos

(
17

45
π

)
�t = 625

16
cos

(
17

45
π

)
�θ · π

180
≈ 0.255�θ.

(b) If �θ = 2◦, this gives �s ≈ 0.51 ft, in which case the shot would not have been successful, having been off half a
foot.

40. Estimate �s if θ = 34◦, v = 25 ft/s, and �v = 2.

solution Using Newton’s laws and the fixed angle of θ = 34◦ = 17
90π , the shot travels

s = 1

32
v2 sin

17

45
π.

With v = 25 ft/s and �v = 2 ft/s, we find

�s ≈ s′(v)�v = 1

16
(25) sin

17π

45
· 2 = 2.897 ft.

41. The radius of a spherical ball is measured at r = 25 cm. Estimate the maximum error in the volume and surface area
if r is accurate to within 0.5 cm.

solution The volume and surface area of the sphere are given by V = 4
3πr3 and S = 4πr2, respectively. If r = 25

and �r = ±0.5, then

�V ≈ V ′(25)�r = 4π(25)2(0.5) ≈ 3927 cm3,

and

�S ≈ S′(25)�r = 8π(25)(0.5) ≈ 314.2 cm2.
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42. The dosage D of diphenhydramine for a dog of body mass w kg is D = 4.7w2/3 mg. Estimate the maximum allowable
error in w for a cocker spaniel of mass w = 10 kg if the percentage error in D must be less than 3%.

solution We have D = kw2/3 where k = 4.7. The Linear Approximation yields

�D ≈ 2

3
kw−1/3�w,

so

�D

D
≈

2
3kw−1/3�w

kw2/3
= 2

3
· �w

w

If the percentage error in D must be less than 3%, we estimate the maximum allowable error in w to be

�w ≈ 3w

2
· �D

D
= 3(10)

2
(.03) = 0.45 kg

43. The volume (in liters) and pressure P (in atmospheres) of a certain gas satisfy PV = 24. A measurement yields
V = 4 with a possible error of ±0.3 L. Compute P and estimate the maximum error in this computation.

solution Given PV = 24 and V = 4, it follows that P = 6 atmospheres. Solving PV = 24 for P yields P = 24V −1.

Thus, P ′ = −24V −2 and

�P ≈ P ′(4)�V = −24(4)−2(±0.3) = ±0.45 atmospheres.

44. In the notation of Exercise 43, assume that a measurement yields V = 4. Estimate the maximum allowable error in
V if P must have an error of less than 0.2 atm.

solution From Exercise 43, with V = 4, we have

�P ≈ −3

2
�V or �V = −2

3
�P.

If we require |�P | ≤ 0.2, then we must have

|�V | ≤ 2

3
(0.2) = 0.133333 L.

In Exercises 45–54, find the linearization at x = a.

45. f (x) = x4, a = 1

solution Let f (x) = x4. Then f ′(x) = 4x3. The linearization at a = 1 is

L(x) = f ′(a)(x − a) + f (a) = 4(x − 1) + 1 = 4x − 3.

46. f (x) = 1

x
, a = 2

solution Let f (x) = 1
x = x−1. Then f ′(x) = −x−2. The linearization at a = 2 is

L(x) = f ′(a)(x − a) + f (a) = −1

4
(x − 2) + 1

2
= −1

4
x + 1.

47. f (θ) = sin2 θ , a = π
4

solution Let f (θ) = sin2 θ . Then f ′(θ) = 2 sin θ cos θ = sin 2θ . The linearization at a = π
4 is

L(θ) = f ′(a)(θ − a) + f (a) = 1
(
θ − π

4

)
+ 1

2
= θ − π

4
+ 1

2
.

48. g(x) = x2

x − 3
, a = 4

solution Let g(x) = x2

x−3 . Then

g′(x) = (x − 3)(2x) − x2

(x − 3)2
= x2 − 6x

(x − 3)2
.

The linearization at a = 4 is

L(x) = g′(a)(x − a) + g(a) = −8(x − 4) + 16 = −8x + 48.
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49. y = (1 + x)−1/2, a = 0

solution Let f (x) = (1 + x)−1/2. Then f ′(x) = − 1
2 (1 + x)−3/2. The linearization at a = 0 is

L(x) = f ′(a)(x − a) + f (a) = −1

2
x + 1.

50. y = (1 + x)−1/2, a = 3

solution Let f (x) = (1 + x)−1/2. Then f ′(x) = − 1
2 (1 + x)−3/2, f (a) = 4−1/2 = 1

2 , and f ′(a) = − 1
2 (4−3/2) =

− 1
16 , so the linearization at a = 3 is

L(x) = f ′(a)(x − a) + f (a) = − 1

16
(x − 3) + 1

2
= − 1

16
x + 11

16
.

51. y = (1 + x2)−1/2, a = 0

solution Let f (x) = (1 + x2)−1/2. Then f ′(x) = −x(1 + x2)−3/2, f (a) = 1 and f ′(a) = 0, so the linearization
at a is

L(x) = f ′(a)(x − a) + f (a) = 1.

52. y = tan−1 x, a = 1

solution Let f (x) = tan−1 x. Then

f ′(x) = 1

1 + x2
, f (a) = π

4
, and f ′(a) = 1

2
,

so the linearization of f (x) at a is

L(x) = f ′(a)(x − a) + f (a) = 1

2
(x − 1) + π

4
.

53. y = e
√

x , a = 1

solution Let f (x) = e
√

x . Then

f ′(x) = 1

2
√

x
e
√

x, f (a) = e, and f ′(a) = 1

2
e,

so the linearization of f (x) at a is

L(x) = f ′(a)(x − a) + f (a) = 1

2
e(x − 1) + e = 1

2
e(x + 1).

54. y = ex ln x, a = 1

solution Let f (x) = ex ln x. Then

f ′(x) = ex

x
+ ex ln x, f (a) = 0, and f ′(a) = e,

so the linearization of f (x) at a is

L(x) = f ′(a)(x − a) + f (a) = e(x − 1).

55. What is f (2) if the linearization of f (x) at a = 2 is L(x) = 2x + 4?

solution f (2) = L(2) = 2(2) + 4 = 8.

56. Compute the linearization of f (x) = 3x − 4 at a = 0 and a = 2. Prove more generally that a linear function coincides
with its linearization at x = a for all a.

solution Let f (x) = 3x − 4. Then f ′(x) = 3. With a = 0, f (a) = −4 and f ′(a) = 3, so the linearization of f (x)

at a = 0 is

L(x) = −4 + 3(x − 0) = 3x − 4 = f (x).

With a = 2, f (a) = 2 and f ′(a) = 3, so the linearization of f (x) at a = 2 is

L(x) = 2 + 3(x − 2) = 2 + 3x − 6 = 3x − 4 = f (x).

More generally, let g(x) = bx + c be any linear function. The linearization L(x) of g(x) at x = a is

L(x) = g′(a)(x − a) + g(a) = b(x − a) + ba + c = bx + c = g(x);
i.e., L(x) = g(x).
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57. Estimate
√

16.2 using the linearization L(x) of f (x) = √
x at a = 16. Plot f (x) and L(x) on the same set of axes

and determine whether the estimate is too large or too small.

solution Let f (x) = x1/2, a = 16, and �x = 0.2. Then f ′(x) = 1
2x−1/2 and f ′(a) = f ′(16) = 1

8 . The linearization
to f (x) is

L(x) = f ′(a)(x − a) + f (a) = 1

8
(x − 16) + 4 = 1

8
x + 2.

Thus, we have
√

16.2 ≈ L(16.2) = 4.025. Graphs of f (x) and L(x) are shown below. Because the graph of L(x) lies
above the graph of f (x), we expect that the estimate from the Linear Approximation is too large.

y

x
1
2
3
4

0

5

5 10 15 2520

f (x)

L(x)

58. Estimate 1/
√

15 using a suitable linearization of f (x) = 1/
√

x. Plot f (x) and L(x) on the same set of axes
and determine whether the estimate is too large or too small. Use a calculator to compute the percentage error.

solution The nearest perfect square to 15 is 16. Let f (x) = 1√
x

and a = 16. Then f ′(x) = − 1
2x−3/2 and f ′(a) =

f ′(16) = − 1
128 . The linearization is

L(x) = f ′(a)(x − a) + f (a) = − 1

128
(x − 16) + 1

4
.

Then

1√
15

≈ L(15) = − 1

128
(−1) + 1

4
= 33

128
= 0.257813.

Graphs of f (x) and L(x) are shown below. Because the graph of L(x) lies below the graph of f (x), we expect that the
estimate from the Linear Approximation is too small. The percentage error in the estimate is

∣∣∣∣∣∣
1√
15

− 0.257813

1√
15

∣∣∣∣∣∣× 100% ≈ 0.15%

y

x
0

0.2

0.4

0.6

0.8

5 10 15 2520

f (x)

L(x)

In Exercises 59–67, approximate using linearization and use a calculator to compute the percentage error.

59.
1√
17

solution Let f (x) = x−1/2, a = 16, and �x = 1. Then f ′(x) = − 1
2x−3/2, f ′(a) = f ′(16) = − 1

128 and the
linearization to f (x) is

L(x) = f ′(a)(x − a) + f (a) = − 1

128
(x − 16) + 1

4
= − 1

128
x + 3

8
.

Thus, we have 1√
17

≈ L(17) ≈ 0.24219. The percentage error in this estimate is

∣∣∣∣∣∣
1√
17

− 0.24219

1√
17

∣∣∣∣∣∣× 100% ≈ 0.14%
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60.
1

101

solution Let f (x) = x−1, a = 100 and �x = 1. Then f ′(x) = −x−2, f ′(a) = f ′(100) = −0.0001 and the
linearization to f (x) is

L(x) = f ′(a)(x − a) + f (a) = −0.0001(x − 100) + 0.01 = −0.0001x + 0.02.

Thus, we have

1

101
≈ L(101) = −0.0001(101) + 0.02 = 0.0099.

The percentage error in this estimate is ∣∣∣∣∣
1

101 − 0.0099
1

101

∣∣∣∣∣× 100% ≈ 0.01%

61.
1

(10.03)2

solution Let f (x) = x−2, a = 10 and �x = 0.03. Then f ′(x) = −2x−3, f ′(a) = f ′(10) = −0.002 and the
linearization to f (x) is

L(x) = f ′(a)(x − a) + f (a) = −0.002(x − 10) + 0.01 = −0.002x + 0.03.

Thus, we have

1

(10.03)2
≈ L(10.03) = −0.002(10.03) + 0.03 = 0.00994.

The percentage error in this estimate is∣∣∣∣∣∣
1

(10.03)2 − 0.00994

1
(10.03)2

∣∣∣∣∣∣× 100% ≈ 0.0027%

62. (17)1/4

solution Let f (x) = x1/4, a = 16, and �x = 1. Then f ′(x) = 1
4x−3/4, f ′(a) = f ′(16) = 1

32 and the linearization
to f (x) is

L(x) = f ′(a)(x − a) + f (a) = 1

32
(x − 16) + 2 = 1

32
x + 3

2
.

Thus, we have (17)1/4 ≈ L(17) = 2.03125. The percentage error in this estimate is∣∣∣∣∣ (17)1/4 − 2.03125

(17)1/4

∣∣∣∣∣× 100% ≈ 0.035%

63. (64.1)1/3

solution Let f (x) = x1/3, a = 64, and �x = 0.1. Then f ′(x) = 1
3x−2/3, f ′(a) = f ′(64) = 1

48 and the linearization
to f (x) is

L(x) = f ′(a)(x − a) + f (a) = 1

48
(x − 64) + 4 = 1

48
x + 8

3
.

Thus, we have (64.1)1/3 ≈ L(64.1) ≈ 4.002083. The percentage error in this estimate is∣∣∣∣∣ (64.1)1/3 − 4.002083

(64.1)1/3

∣∣∣∣∣× 100% ≈ 0.000019%

64. (1.2)5/3

solution Let f (x) = (1 + x)5/3 and a = 0. Then f ′(x) = 5
3 (1 + x)2/3, f ′(a) = f ′(0) = 5

3 and the linearization to
f (x) is

L(x) = f ′(a)(x − a) + f (a) = 5

3
x + 1.
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Thus, we have (1.2)5/3 ≈ L(0.2) = 5
3 (0.2) + 1 = 1.3333. The percentage error in this estimate is∣∣∣∣∣ (1.2)5/3 − 1.3333

(1.2)5/3

∣∣∣∣∣× 100% ≈ 1.61%

65. cos−1(0.52)

solution Let f (x) = cos−1 x and a = 0.5. Then

f ′(x) = − 1√
1 − x2

, f ′(a) = f ′(0) = −2
√

3

3
,

and the linearization to f (x) is

L(x) = f ′(a)(x − a) + f (a) = −2
√

3

3
(x − 0.5) + π

3
.

Thus, we have cos−1(0.52) ≈ L(0.02) = 1.024104. The percentage error in this estimate is∣∣∣∣∣ cos−1(0.52) − 1.024104

cos−1(0.52)

∣∣∣∣∣× 100% ≈ 0.015%.

66. ln 1.07

solution Let f (x) = ln(1 + x) and a = 0. Then f ′(x) = 1
1+x

, f ′(a) = f ′(0) = 1 and the linearization to f (x) is

L(x) = f ′(a)(x − a) + f (a) = x.

Thus, we have ln 1.07 ≈ L(0.07) = 0.07. The percentage error in this estimate is∣∣∣∣ ln 1.07 − 0.07

ln 1.07

∣∣∣∣× 100% ≈ 3.46%.

67. e−0.012

solution Let f (x) = ex and a = 0. Then f ′(x) = ex , f ′(a) = f ′(0) = 1 and the linearization to f (x) is

L(x) = f ′(a)(x − a) + f (a) = 1(x − 0) + 1 = x + 1.

Thus, we have e−0.012 ≈ L(−0.012) = 1 − 0.012 = 0.988. The percentage error in this estimate is∣∣∣∣∣ e
−0.012 − 0.988

e−0.012

∣∣∣∣∣× 100% ≈ 0.0073%.

68. Compute the linearization L(x) of f (x) = x2 − x3/2 at a = 4. Then plot f (x) − L(x) and find an interval
I around a = 4 such that |f (x) − L(x)| ≤ 0.1 for x ∈ I .

solution Let f (x) = x2 − x3/2 and a = 4. Then f ′(x) = 2x − 3
2x1/2, f ′(4) = 5 and

L(x) = f (a) + f ′(a)(x − a) = 8 + 5(x − 4) = 5x − 12.

The graph of y = f (x) − L(x) is shown below at the left, and portions of the graphs of y = f (x) − L(x) and y = 0.1
are shown below at the right. From the graph on the right, we see that |f (x) − L(x)| < 0.1 roughly for 3.6 < x < 4.4.

2

2
4
6
8

10
12

y

x
4 6 3.6 3.8 4.0 4.2 4.4

x

69. Show that the Linear Approximation to f (x) = √
x at x = 9 yields the estimate

√
9 + h − 3 ≈ 1

6h. Set K = 0.01
and show that |f ′′(x)| ≤ K for x ≥ 9. Then verify numerically that the error E satisfies Eq. (5) for h = 10−n, for
1 ≤ n ≤ 4.
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solution Let f (x) = √
x. Then f (9) = 3, f ′(x) = 1

2x−1/2 and f ′(9) = 1
6 . Therefore, by the Linear Approximation,

f (9 + h) − f (9) = √
9 + h − 3 ≈ 1

6
h.

Moreover, f ′′(x) = − 1
4x−3/2, so |f ′′(x)| = 1

4x−3/2. Because this is a decreasing function, it follows that for x ≥ 9,

K = max |f ′′(x)| ≤ |f ′′(9)| = 1

108
< 0.01.

From the following table, we see that for h = 10−n, 1 ≤ n ≤ 4, E ≤ 1
2Kh2.

h E = |√9 + h − 3 − 1
6h| 1

2Kh2

10−1 4.604 × 10−5 5.00 × 10−5

10−2 4.627 × 10−7 5.00 × 10−7

10−3 4.629 × 10−9 5.00 × 10−9

10−4 4.627 × 10−11 5.00 × 10−11

70. The Linear Approximation to f (x) = tan x at x = π
4 yields the estimate tan

(
π
4 + h

)− 1 ≈ 2h. Set K = 6.2
and show, using a plot, that |f ′′(x)| ≤ K for x ∈ [π

4 , π
4 + 0.1]. Then verify numerically that the error E satisfies Eq. (5)

for h = 10−n, for 1 ≤ n ≤ 4.

solution Let f (x) = tan x. Then f (π
4 ) = 1, f ′(x) = sec2 x and f ′( π

4 ) = 2. Therefore, by the LinearApproximation,

f
(π

4
+ h
)

− f
(π

4

)
= tan

(π

4
+ h
)

− 1 ≈ 2h.

Moreover, f ′′(x) = 2 sec2 x tan x. The graph of the second derivative over the interval [π/4, π/4 + 0.1] is shown below.
From this graph we see that K = max |f ′′(x)| ≈ 6.1 < 6.2.

6.1

5.7

5.3

4.9

4.5

4.1

0.78 0.80 0.82 0.84 0.86 0.88

y

x

Finally, from the following table, we see that for h = 10−n, 1 ≤ n ≤ 4, E ≤ 1
2Kh2.

h E = | tan( π
4 + h) − 1 − 2h| 1

2Kh2

10−1 2.305 × 10−2 3.10 × 10−2

10−2 2.027 × 10−4 3.10 × 10−4

10−3 2.003 × 10−6 3.10 × 10−6

10−4 2.000 × 10−8 3.10 × 10−8

Further Insights and Challenges
71. Compute dy/dx at the point P = (2, 1) on the curve y3 + 3xy = 7 and show that the linearization at P is
L(x) = − 1

3x + 5
3 . Use L(x) to estimate the y-coordinate of the point on the curve where x = 2.1.

solution Differentiating both sides of the equation y3 + 3xy = 7 with respect to x yields

3y2 dy

dx
+ 3x

dy

dx
+ 3y = 0,

so

dy

dx
= − y

y2 + x
.

Thus,

dy

dx

∣∣∣∣
(2,1)

= − 1

12 + 2
= −1

3
,

and the linearization at P = (2, 1) is

L(x) = 1 − 1

3
(x − 2) = −1

3
x + 5

3
.
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Finally, when x = 2.1, we estimate that the y-coordinate of the point on the curve is

y ≈ L(2.1) = −1

3
(2.1) + 5

3
= 0.967.

72. Apply the method of Exercise 71 to P = (0.5, 1) on y5 + y − 2x = 1 to estimate the y-coordinate of the point on
the curve where x = 0.55.

solution Differentiating both sides of the equation y5 + y − 2x = 1 with respect to x yields

5y4 dy

dx
+ dy

dx
− 2 = 0,

so

dy

dx
= 2

5y4 + 1
.

Thus,

dy

dx

∣∣∣∣
(0.5,1)

= 2

5(1)2 + 1
= 1

3
,

and the linearization at P = (0.5, 1) is

L(x) = 1 + 1

3

(
x − 1

2

)
= 1

3
x + 5

6
.

Finally, when x = 0.55, we estimate that the y-coordinate of the point on the curve is

y ≈ L(0.55) = 1

3
(0.55) + 5

6
= 1.017.

73. Apply the method of Exercise 71 to P = (−1, 2) on y4 + 7xy = 2 to estimate the solution of y4 − 7.7y = 2 near
y = 2.

solution Differentiating both sides of the equation y4 + 7xy = 2 with respect to x yields

4y3 dy

dx
+ 7x

dy

dx
+ 7y = 0,

so

dy

dx
= − 7y

4y3 + 7x
.

Thus,

dy

dx

∣∣∣∣
(−1,2)

= − 7(2)

4(2)3 + 7(−1)
= −14

25
,

and the linearization at P = (−1, 2) is

L(x) = 2 − 14

25
(x + 1) = −14

25
x + 36

25
.

Finally, the equation y4 − 7.7y = 2 corresponds to x = −1.1, so we estimate the solution of this equation near y = 2 is

y ≈ L(−1.1) = −14

25
(−1.1) + 36

25
= 2.056.

74. Show that for any real number k, (1 + �x)k ≈ 1 + k�x for small �x. Estimate (1.02)0.7 and (1.02)−0.3.

solution Let f (x) = (1 + x)k . Then for small �x, we have

f (�x) ≈ L(�x) = f ′(0)(�x − 0) + f (0) = k(1 + 0)k−1(�x − 0) + 1 = 1 + k�x

• Let k = 0.7 and �x = 0.02. Then L(0.02) = 1 + (0.7)(0.02) = 1.014.
• Let k = −0.3 and �x = 0.02. Then L(0.02) = 1 + (−0.3)(0.02) = 0.994.
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75. Let �f = f (5 + h) − f (5), where f (x) = x2. Verify directly that E = |�f − f ′(5)h| satisfies (5) with K = 2.

solution Let f (x) = x2. Then

�f = f (5 + h) − f (5) = (5 + h)2 − 52 = h2 + 10h

and

E = |�f − f ′(5)h| = |h2 + 10h − 10h| = h2 = 1

2
(2)h2 = 1

2
Kh2.

76. Let �f = f (1 + h) − f (1) where f (x) = x−1. Show directly that E = |�f − f ′(1)h| is equal to h2/(1 + h).
Then prove that E ≤ 2h2 if − 1

2 ≤ h ≤ 1
2 . Hint: In this case, 1

2 ≤ 1 + h ≤ 3
2 .

solution Let f (x) = x−1. Then

�f = f (1 + h) − f (1) = 1

1 + h
− 1 = − h

1 + h

and

E = |�f − f ′(1)h| =
∣∣∣∣− h

1 + h
+ h

∣∣∣∣ = h2

1 + h
.

If − 1
2 ≤ h ≤ 1

2 , then 1
2 ≤ 1 + h ≤ 3

2 and 2
3 ≤ 1

1+h
≤ 2. Thus, E ≤ 2h2 for − 1

2 ≤ h ≤ 1
2 .

4.2 Extreme Values

Preliminary Questions
1. What is the definition of a critical point?

solution A critical point is a value of the independent variable x in the domain of a function f at which either f ′(x) = 0
or f ′(x) does not exist.

In Questions 2 and 3, choose the correct conclusion.

2. If f (x) is not continuous on [0, 1], then

(a) f (x) has no extreme values on [0, 1].
(b) f (x) might not have any extreme values on [0, 1].
solution The correct response is (b): f (x) might not have any extreme values on [0, 1]. Although [0, 1] is closed,
because f is not continuous, the function is not guaranteed to have any extreme values on [0, 1].

3. If f (x) is continuous but has no critical points in [0, 1], then

(a) f (x) has no min or max on [0, 1].
(b) Either f (0) or f (1) is the minimum value on [0, 1].
solution The correct response is (b): either f (0) or f (1) is the minimum value on [0, 1]. Remember that extreme
values occur either at critical points or endpoints. If a continuous function on a closed interval has no critical points, the
extreme values must occur at the endpoints.

4. Fermat’s Theorem does not claim that if f ′(c) = 0, then f (c) is a local extreme value (this is false). What does
Fermat’s Theorem assert?

solution Fermat’s Theorem claims: If f (c) is a local extreme value, then either f ′(c) = 0 or f ′(c) does not exist.
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Exercises
1. The following questions refer to Figure 15.

(a) How many critical points does f (x) have on [0, 8]?
(b) What is the maximum value of f (x) on [0, 8]?
(c) What are the local maximum values of f (x)?

(d) Find a closed interval on which both the minimum and maximum values of f (x) occur at critical points.

(e) Find an interval on which the minimum value occurs at an endpoint.

83 4 5 6 721

2

3

4

5

6

1

f (x)

x

y

FIGURE 15

solution
(a) f (x) has three critical points on the interval [0, 8]: at x = 3, x = 5 and x = 7. Two of these, x = 3 and x = 5, are
where the derivative is zero and one, x = 7, is where the derivative does not exist.

(b) The maximum value of f (x) on [0, 8] is 6; the function takes this value at x = 0.

(c) f (x) achieves a local maximum of 5 at x = 5.

(d) Answers may vary. One example is the interval [4, 8]. Another is [2, 6].
(e) Answers may vary. The easiest way to ensure this is to choose an interval on which the graph takes no local minimum.
One example is [0, 2].

2. State whether f (x) = x−1 (Figure 16) has a minimum or maximum value on the following intervals:

(a) (0, 2) (b) (1, 2) (c) [1, 2]

1 2 3
x

y

FIGURE 16 Graph of f (x) = x−1.

solution f (x) has no local minima or maxima. Hence, f (x) only takes minimum and maximum values on an interval
if it takes them at the endpoints.

(a) f (x) takes no minimum or maximum value on this interval, since the interval does not contain its endpoints.

(b) f (x) takes no minimum or maximum value on this interval, since the interval does not contain its endpoints.

(c) The function is decreasing on the whole interval [1, 2]. Hence, f (x) takes on its maximum value of 1 at x = 1 and
f (x) takes on its minimum value of 1

2 at x = 2.

In Exercises 3–20, find all critical points of the function.

3. f (x) = x2 − 2x + 4

solution Let f (x) = x2 − 2x + 4. Then f ′(x) = 2x − 2 = 0 implies that x = 1 is the lone critical point of f .

4. f (x) = 7x − 2

solution Let f (x) = 7x − 2. Then f ′(x) = 7, which is never zero, so f (x) has no critical points.

5. f (x) = x3 − 9
2x2 − 54x + 2

solution Let f (x) = x3 − 9
2x2 − 54x + 2. Then f ′(x) = 3x2 − 9x − 54 = 3(x + 3)(x − 6) = 0 implies that

x = −3 and x = 6 are the critical points of f .

6. f (t) = 8t3 − t2

solution Let f (t) = 8t3 − t2. Then f ′(t) = 24t2 − 2t = 2t (12t − 1) = 0 implies that t = 0 and t = 1
12 are the

critical points of f .
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7. f (x) = x−1 − x−2

solution Let f (x) = x−1 − x−2. Then

f ′(x) = −x−2 + 2x−3 = 2 − x

x3
= 0

implies that x = 2 is the only critical point of f . Though f ′(x) does not exist at x = 0, this is not a critical point of f

because x = 0 is not in the domain of f .

8. g(z) = 1

z − 1
− 1

z

solution Let

g(z) = 1

z − 1
− 1

z
= z − (z − 1)

z(z − 1)
= 1

z2 − z
.

Then

g′(z) = − 1

(z2 − z)2
(2z − 1) = − 2z − 1

(z2 − z)2
= 0

implies that z = 1/2 is the only critical point of g. Though g′(z) does not exist at either z = 0 or z = 1, neither is a
critical point of g because neither is in the domain of g.

9. f (x) = x

x2 + 1

solution Let f (x) = x

x2 + 1
. Then f ′(x) = 1 − x2

(x2 + 1)2
= 0 implies that x = ±1 are the critical points of f .

10. f (x) = x2

x2 − 4x + 8

solution Let f (x) = x2

x2 − 4x + 8
. Then

f ′(x) = (x2 − 4x + 8)(2x) − x2(2x − 4)

(x2 − 4x + 8)2
= 4x(4 − x)

(x2 − 4x + 8)2
= 0

implies that x = 0 and x = 4 are the critical points of f .

11. f (t) = t − 4
√

t + 1

solution Let f (t) = t − 4
√

t + 1. Then

f ′(t) = 1 − 2√
t + 1

= 0

implies that t = 3 is a critical point of f . Because f ′(t) does not exist at t = −1, this is another critical point of f .

12. f (t) = 4t −
√

t2 + 1

solution Let f (t) = 4t −
√

t2 + 1. Then

f ′(t) = 4 − t

(t2 + 1)1/2
= 4(t2 + 1)1/2 − t

(t2 + 1)1/2
= 0

implies that there are no critical points of f since neither the numerator nor denominator equals 0 for any value of t .

13. f (x) = x2
√

1 − x2

solution Let f (x) = x2
√

1 − x2. Then

f ′(x) = − x3√
1 − x2

+ 2x
√

1 − x2 = 2x − 3x3√
1 − x2

.

This derivative is 0 when x = 0 and when x = ±√
2/3; the derivative does not exist when x = ±1. All five of these

values are critical points of f
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14. f (x) = x + |2x + 1|
solution Removing the absolute values, we see that

f (x) =
{

−x − 1, x < − 1
2

3x + 1, x ≥ − 1
2

Thus,

f ′(x) =
{

−1, x < − 1
2

3, x ≥ − 1
2

and we see that f ′(0) is never equal to 0. However, f ′(−1/2) does not exist, so x = −1/2 is the only critical point of f .

15. g(θ) = sin2 θ

solution Let g(θ) = sin2 θ . Then g′(θ) = 2 sin θ cos θ = sin 2θ = 0 implies that

θ = nπ

2

is a critical value of g for all integer values of n.

16. R(θ) = cos θ + sin2 θ

solution Let R(θ) = cos θ + sin2 θ . Then

R′(θ) = − sin θ + 2 sin θ cos θ = sin θ(2 cos θ − 1) = 0

implies that θ = nπ ,

θ = π

3
+ 2nπ and θ = 5π

3
+ 2nπ

are critical points of R for all integer values of n.

17. f (x) = x ln x

solution Let f (x) = x ln x. Then f ′(x) = 1 + ln x = 0 implies that x = e−1 = 1
e is the only critical point of f .

18. f (x) = xe2x

solution Let f (x) = xe2x . Then f ′(x) = (2x + 1)e2x = 0 implies that x = − 1
2 is the only critical point of f .

19. f (x) = sin−1 x − 2x

solution Let f (x) = sin−1 x − 2x. Then

f ′(x) = 1√
1 − x2

− 2 = 0

implies that x = ±
√

3
2 are the critical points of f .

20. f (x) = sec−1 x − ln x

solution Let f (x) = sec−1 x − ln x. Then

f ′(x) = 1

x
√

x2 − 1
− 1

x
.

This derivative is equal to zero when
√

x2 − 1 = 1, or when x = ±√
2. Moreover, the derivative does not exist at x = 0

and at x = ±1. Among these numbers, x = 1 and x = √
2 are the only critical points of f . x = −√

2, x = −1, and
x = 0 are not critical points of f because none are in the domain of f .

21. Let f (x) = x2 − 4x + 1.

(a) Find the critical point c of f (x) and compute f (c).
(b) Compute the value of f (x) at the endpoints of the interval [0, 4].
(c) Determine the min and max of f (x) on [0, 4].
(d) Find the extreme values of f (x) on [0, 1].
solution Let f (x) = x2 − 4x + 1.

(a) Then f ′(c) = 2c − 4 = 0 implies that c = 2 is the sole critical point of f . We have f (2) = −3.
(b) f (0) = f (4) = 1.
(c) Using the results from (a) and (b), we find the maximum value of f on [0, 4] is 1 and the minimum value is −3.
(d) We have f (1) = −2. Hence the maximum value of f on [0, 1] is 1 and the minimum value is −2.
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22. Find the extreme values of f (x) = 2x3 − 9x2 + 12x on [0, 3] and [0, 2].
solution Let f (x) = 2x3 − 9x2 + 12x. First, we find the critical points. Setting f ′(x) = 6x2 − 18x + 12 = 0 yields

x2 − 3x + 2 = 0 so that x = 2 or x = 1. Next, we compare: first, for [0, 3]:

x-value Value of f

1 (critical point) f (1) = 5

2 (critical point) f (2) = 4

0 (endpoint) f (0) = 0 min

3 (endpoint) f (3) = 9 max

Then, for [0, 2]:

x-value Value of f

1 (critical point) f (1) = 5 max

2 (endpoint) f (2) = 4

0 (endpoint) f (0) = 0 min

23. Find the critical points of f (x) = sin x + cos x and determine the extreme values on
[
0, π

2

]
.

solution

• Let f (x) = sin x + cos x. Then on the interval
[
0, π

2

]
, we have f ′(x) = cos x − sin x = 0 at x = π

4 , the only
critical point of f in this interval.

• Since f (π
4 ) = √

2 and f (0) = f (π
2 ) = 1, the maximum value of f on

[
0, π

2

]
is

√
2, while the minimum value is

1.

24. Compute the critical points of h(t) = (t2 − 1)1/3. Check that your answer is consistent with Figure 17. Then find
the extreme values of h(t) on [0, 1] and [0, 2].

1 2−1−2

1

−1

t

h(t)

FIGURE 17 Graph of h(t) = (t2 − 1)1/3.

solution

• Let h(t) = (t2 − 1)1/3. Then h′(t) = 2t

3(t2 − 1)2/3
= 0 implies critical points at t = 0 and t = ±1. These results

are consistent with Figure 17 which shows a horizontal tangent at t = 0 and vertical tangents at t = ±1.
• Since h(0) = −1 and h(1) = 0, the maximum value on [0, 1] is h(1) = 0 and the minimum is h(0) = −1. Similarly,

the minimum on [0, 2] is h(0) = −1 and the maximum is h(2) = 31/3 ≈ 1.44225.

25. Plot f (x) = 2
√

x − x on [0, 4] and determine the maximum value graphically. Then verify your answer
using calculus.

solution The graph of y = 2
√

x − x over the interval [0, 4] is shown below. From the graph, we see that at x = 1,
the function achieves its maximum value of 1.

y

x
0.2
0.4
0.6
0.8

0

1

1 2 3 4
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To verify the information obtained from the plot, let f (x) = 2
√

x − x. Then f ′(x) = x−1/2 − 1. Solving f ′(x) = 0
yields the critical points x = 0 and x = 1. Because f (0) = f (4) = 0 and f (1) = 1, we see that the maximum value of
f on [0, 4] is 1.

26. Plot f (x) = ln x − 5 sin x on [0.1, 2] and approximate both the critical points and the extreme values.

solution The graph of f (x) = ln x − 5 sin x is shown below. From the graph, we see that critical points occur at
approximately x = 0.2 and x = 1.4. The maximum value of approximately −2.6 occurs at x ≈ 0.2; the minimum value
of approximately −4.6 occurs at x ≈ 1.4.

−5

−4

−3

−2

−1

0.5 1.0 1.5
y

x

27. Approximate the critical points of g(x) = x cos−1 x and estimate the maximum value of g(x).

solution g′(x) = −x√
1−x2

+ cos−1 x, so g′(x) = 0 when x ≈ 0.652185. Evaluating g at the endpoints of its domain,

x = ±1, and at the critical point x ≈ 0.652185, we find g(−1) = −π , g(0.652185) ≈ 0.561096, and g(1) = 0. Hence,
the maximum value of g(x) is approximately 0.561096.

28. Approximate the critical points of g(x) = 5ex − tan x in
(−π

2 , π
2

)
.

solution Let g(x) = 5ex − tan x. Then g′(x) = 5ex − sec2 x. The derivative is defined for all x ∈ (−π
2 , π

2

)
and is

equal to 0 for x ≈ 1.339895 and x ≈ −0.82780. Hence, the critical points of g are x ≈ 1.339895 and x ≈ −0.82780.

In Exercises 29–58, find the min and max of the function on the given interval by comparing values at the critical points
and endpoints.

29. y = 2x2 + 4x + 5, [−2, 2]
solution Let f (x) = 2x2 + 4x + 5. Then f ′(x) = 4x + 4 = 0 implies that x = −1 is the only critical point of f .
The minimum of f on the interval [−2, 2] is f (−1) = 3, whereas its maximum is f (2) = 21. (Note: f (−2) = 5.)

30. y = 2x2 + 4x + 5, [0, 2]
solution Let f (x) = 2x2 + 4x + 5. Then f ′(x) = 4x + 4 = 0 implies that x = −1 is the only critical point of
f . The minimum of f on the interval [0, 2] is f (0) = 5, whereas its maximum is f (2) = 21. (Note: The critical point
x = −1 is not on the interval [0, 2].)
31. y = 6t − t2, [0, 5]
solution Let f (t) = 6t − t2. Then f ′(t) = 6 − 2t = 0 implies that t = 3 is the only critical point of f . The minimum
of f on the interval [0, 5] is f (0) = 0, whereas the maximum is f (3) = 9. (Note: f (5) = 5.)

32. y = 6t − t2, [4, 6]
solution Let f (t) = 6t − t2. Then f ′(t) = 6 − 2t = 0 implies that t = 3 is the only critical point of f . The minimum
of f on the interval [4, 6] is f (6) = 0, whereas the maximum is f (4) = 8. (Note: The critical point t = 3 is not on the
interval [4, 6].)
33. y = x3 − 6x2 + 8, [1, 6]
solution Let f (x) = x3 − 6x2 + 8. Then f ′(x) = 3x2 − 12x = 3x(x − 4) = 0 implies that x = 0 and x = 4 are
the critical points of f . The minimum of f on the interval [1, 6] is f (4) = −24, whereas the maximum is f (6) = 8.
(Note: f (1) = 3 and the critical point x = 0 is not in the interval [1, 6].)
34. y = x3 + x2 − x, [−2, 2]
solution Let f (x) = x3 + x2 − x. Then f ′(x) = 3x2 + 2x − 1 = (3x − 1)(x + 1) = 0 implies that x = 1/3 and
x = −1 are critical points of f . The minimum of f on the interval [−2, 2] is f (−2) = −2, whereas the maximum is
f (2) = 10. (Note: f (−1) = 1 and f (1/3) = −5/27.)

35. y = 2t3 + 3t2, [1, 2]
solution Let f (t) = 2t3 + 3t2. Then f ′(t) = 6t2 + 6t = 6t (t + 1) = 0 implies that t = 0 and t = −1 are the
critical points of f . The minimum of f on the interval [1, 2] is f (1) = 5, whereas the maximum is f (2) = 28. (Note:
Neither critical points are in the interval [1, 2].)
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36. y = x3 − 12x2 + 21x, [0, 2]
solution Let f (x) = x3 − 12x2 + 21x. Then f ′(x) = 3x2 − 24x + 21 = 3(x − 7)(x − 1) = 0 implies that x = 1
and x = 7 are the critical points of f . The minimum of f on the interval [0, 2] is f (0) = 0, whereas its maximum is
f (1) = 10. (Note: f (2) = 2 and the critical point x = 7 is not in the interval [0, 2].)
37. y = z5 − 80z, [−3, 3]
solution Let f (z) = z5 − 80z. Then f ′(z) = 5z4 − 80 = 5(z4 − 16) = 5(z2 + 4)(z + 2)(z − 2) = 0 implies
that z = ±2 are the critical points of f . The minimum value of f on the interval [−3, 3] is f (2) = −128, whereas the
maximum is f (−2) = 128. (Note: f (−3) = 3 and f (3) = −3.)

38. y = 2x5 + 5x2, [−2, 2]
solution Let f (x) = 2x5 + 5x2. Then f ′(x) = 10x4 + 10x = 10x(x3 + 1) = 0 implies that x = 0 and x = −1
are critical points of f . The minimum value of f on the interval [−2, 2] is f (−2) = −44, whereas the maximum is
f (2) = 84. (Note: f (−1) = 3 and f (0) = 0.)

39. y = x2 + 1

x − 4
, [5, 6]

solution Let f (x) = x2 + 1

x − 4
. Then

f ′(x) = (x − 4) · 2x − (x2 + 1) · 1

(x − 4)2
= x2 − 8x − 1

(x − 4)2
= 0

implies x = 4 ± √
17 are critical points of f . x = 4 is not a critical point because x = 4 is not in the domain of f . On

the interval [5, 6], the minimum of f is f (6) = 37
2 = 18.5, whereas the maximum of f is f (5) = 26. (Note: The critical

points x = 4 ± √
17 are not in the interval [5, 6].)

40. y = 1 − x

x2 + 3x
, [1, 4]

solution Let f (x) = 1 − x

x2 + 3x
. Then

f ′(x) = −(x2 + 3x) − (1 − x)(2x + 3)

(x2 + 3x)2
= (x − 3)(x + 1)

(x2 + 3x)2
= 0

implies that x = 3 and x = −1 are critical points. Neither x = 0 nor x = −3 is a critical point because neither is in the
domain of f . On the interval [1, 4], the maximum value is f (1) = 0 and the minimum value is f (3) = − 1

9 . (Note: The
critical point x = −1 is not in the interval [1, 4].)

41. y = x − 4x

x + 1
, [0, 3]

solution Let f (x) = x − 4x

x + 1
. Then

f ′(x) = 1 − 4

(x + 1)2
= (x − 1)(x + 3)

(x + 1)2
= 0

implies that x = 1 and x = −3 are critical points of f . x = −1 is not a critical point because x = −1 is not in the domain
of f . The minimum of f on the interval [0, 3] is f (1) = −1, whereas the maximum is f (0) = f (3) = 0. (Note: The
critical point x = −3 is not in the interval [0, 3].)
42. y = 2

√
x2 + 1 − x, [0, 2]

solution Let f (x) = 2
√

x2 + 1 − x. Then

f ′(x) = 2x√
x2 + 1

− 1 = 0

implies that x = ±
√

1
3 are critical points of f . On the interval [0, 2], the minimum is f

(√
1
3

)
= √

3 and the maximum

is f (2) = 2
√

5 − 2. (Note: The critical point x = −
√

1
3 is not in the interval [0, 2].)



April 2, 2011

S E C T I O N 4.2 Extreme Values 391

43. y = (2 + x)
√

2 + (2 − x)2, [0, 2]
solution Let f (x) = (2 + x)

√
2 + (2 − x)2. Then

f ′(x) =
√

2 + (2 − x)2 − (2 + x)(2 + (2 − x)2)−1/2(2 − x) = 2(x − 1)2√
2 + (2 − x)2

= 0

implies that x = 1 is the critical point of f . On the interval [0, 2], the minimum is f (0) = 2
√

6 ≈ 4.9 and the maximum
is f (2) = 4

√
2 ≈ 5.66. (Note: f (1) = 3

√
3 ≈ 5.2.)

44. y =
√

1 + x2 − 2x, [0, 1]
solution Let f (x) =

√
1 + x2 − 2x. Then

f ′(x) = x√
1 + x2

− 2 = 0

implies that f has no critical points. The minimum value of f on the interval [0, 1] is f (1) = √
2 − 2, whereas the

maximum is f (0) = 1.

45. y =
√

x + x2 − 2
√

x, [0, 4]
solution Let f (x) =

√
x + x2 − 2

√
x. Then

f ′(x) = 1

2
(x + x2)−1/2(1 + 2x) − x−1/2 = 1 + 2x − 2

√
1 + x

2
√

x
√

1 + x
= 0

implies that x = 0 and x =
√

3
2 are the critical points of f . Neither x = −1 nor x = −

√
3

2 is a critical point because

neither is in the domain of f . On the interval [0, 4], the minimum of f is f
(√

3
2

)
≈ −0.589980 and the maximum is

f (4) ≈ 0.472136. (Note: f (0) = 0.)

46. y = (t − t2)1/3, [−1, 2]
solution Let s(t) = (t − t2)1/3. Then s′(t) = 1

3 (t − t2)−2/3(1 − 2t) = 0 at t = 1
2 , a critical point of s. Other critical

points of s are t = 0 and t = 1, where the derivative of s does not exist. Therefore, on the interval [−1, 2], the minimum
of s is s(−1) = s(2) = −21/3 ≈ −1.26 and the maximum is s( 1

2 ) = ( 1
4 )1/3 ≈ 0.63. (Note: s(0) = s(1) = 0.)

47. y = sin x cos x,
[
0, π

2

]
solution Let f (x) = sin x cos x = 1

2 sin 2x. On the interval
[
0, π

2

]
, f ′(x) = cos 2x = 0 when x = π

4 . The minimum

of f on this interval is f (0) = f (π
2 ) = 0, whereas the maximum is f (π

4 ) = 1
2 .

48. y = x + sin x, [0, 2π ]
solution Let f (x) = x + sin x. Then f ′(x) = 1 + cos x = 0 implies that x = π is the only critical point on
[0, 2π ]. The minimum value of f on the interval [0, 2π ] is f (0) = 0, whereas the maximum is f (2π) = 2π . (Note:
f (π) = π − 1.)

49. y = √
2 θ − sec θ ,

[
0, π

3

]
solution Let f (θ) = √

2θ − sec θ . On the interval [0, π
3 ], f ′(θ) = √

2 − sec θ tan θ = 0 at θ = π
4 . The minimum

value of f on this interval is f (0) = −1, whereas the maximum value over this interval is f (π
4 ) = √

2( π
4 − 1) ≈

−0.303493. (Note: f (π
3 ) = √

2 π
3 − 2 ≈ −.519039.)

50. y = cos θ + sin θ , [0, 2π ]
solution Let f (θ) = cos θ + sin θ . On the interval [0, 2π ], f ′(θ) = − sin θ + cos θ = 0 where sin θ = cos θ , which

is at the two points θ = π
4 and 5π

4 . The minimum value on the interval is f ( 5π
4 ) = −√

2, whereas the maximum value

on the interval is f (π
4 ) = √

2. (Note: f (0) = f (2π) = 1.)

51. y = θ − 2 sin θ , [0, 2π ]
solution Let g(θ) = θ − 2 sin θ . On the interval [0, 2π ], g′(θ) = 1 − 2 cos θ = 0 at θ = π

3 and θ = 5
3π . The

minimum of g on this interval is g(π
3 ) = π

3 − √
3 ≈ −.685 and the maximum is g( 5

3π) = 5
3π + √

3 ≈ 6.968. (Note:
g(0) = 0 and g(2π) = 2π ≈ 6.283.)

52. y = 4 sin3 θ − 3 cos2 θ , [0, 2π ]
solution Let f (θ) = 4 sin3 θ − 3 cos2 θ . Then

f ′(θ) = 12 sin2 θ cos θ + 6 cos θ sin θ

= 6 cos θ sin θ(2 sin θ + 1) = 0

yields θ = 0, π/2, π, 7π/6, 3π/2, 11π/6, 2π as critical points of f . The minimum value of f on the interval [0, 2π ]
is f (3π/2) = −4, whereas the maximum is f (π/2) = 4. (Note: f (0) = f (π) = f (2π) = −3 and f (7π/6) =
f (11π/6) = −11/4.)
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53. y = tan x − 2x, [0, 1]
solution Let f (x) = tan x − 2x. Then on the interval [0, 1], f ′(x) = sec2 x − 2 = 0 at x = π

4 . The minimum of f

is f (π
4 ) = 1 − π

2 ≈ −0.570796 and the maximum is f (0) = 0. (Note: f (1) = tan 1 − 2 ≈ −0.442592.)

54. y = xe−x , [0, 2]
solution Let f (x) = xe−x . Then, on the interval [0, 2], f ′(x) = −xe−x + e−x = (1 − x)e−x = 0 at x = 1. The

minimum of f on this interval is f (0) = 0 and the maximum is f (1) = e−1 ≈ 0.367879. (Note: f (2) = 2e−2 ≈
0.270671.)

55. y = ln x

x
, [1, 3]

solution Let f (x) = ln x
x . Then, on the interval [1, 3],

f ′(x) = 1 − ln x

x2
= 0

at x = e. The minimum of f on this interval is f (1) = 0 and the maximum is f (e) = e−1 ≈ 0.367879. (Note:
f (3) = 1

3 ln 3 ≈ 0.366204.)

56. y = 3ex − e2x ,
[− 1

2 , 1
]

solution Let f (x) = 3ex − e2x . Then, on the interval
[− 1

2 , 1
]
, f ′(x) = 3ex − 2e2x = ex(3 − 2ex) = 0 at

x = ln(3/2). The minimum of f on this interval is f (1) = 3e − e2 ≈ 0.765789 and the maximum is f (ln(3/2)) = 2.25.
(Note: f (−1/2) = 3e−1/2 − e−1 ≈ 1.451713.)

57. y = 5 tan−1 x − x, [1, 5]
solution Let f (x) = 5 tan−1 x − x. Then, on the interval [1, 5],

f ′(x) = 5
1

1 + x2
− 1 = 0

at x = 2. The minimum of f on this interval is f (5) = 5 tan−1 5 − 5 ≈ 1.867004 and the maximum is f (2) =
5 tan−1 2 − 2 ≈ 3.535744. (Note: f (1) = 5π

4 − 1 ≈ 2.926991.)

58. y = x3 − 24 ln x,
[ 1

2 , 3
]

solution Let f (x) = x3 − 24 ln x. Then, on the interval
[ 1

2 , 3
]
,

f ′(x) = 3x2 − 24

x
= 0

at x = 2. The minimum of f on this interval is f (2) = 8 − 24 ln 2 ≈ −8.635532 and the maximum is f (1/2) =
1
8 + 24 ln 2 ≈ 16.760532. (Note: f (3) = 27 − 24 ln 2 ≈ 0.633305.)

59. Let f (θ) = 2 sin 2θ + sin 4θ .

(a) Show that θ is a critical point if cos 4θ = − cos 2θ .

(b) Show, using a unit circle, that cos θ1 = − cos θ2 if and only if θ1 = π ± θ2 + 2πk for an integer k.

(c) Show that cos 4θ = − cos 2θ if and only if θ = π
2 + πk or θ = π

6 + (π3 )k.

(d) Find the six critical points of f (θ) on [0, 2π ] and find the extreme values of f (θ) on this interval.

(e) Check your results against a graph of f (θ).

solution f (θ) = 2 sin 2θ + sin 4θ is differentiable at all θ , so the way to find the critical points is to find all points
such that f ′(θ) = 0.

(a) f ′(θ) = 4 cos 2θ + 4 cos 4θ . If f ′(θ) = 0, then 4 cos 4θ = −4 cos 2θ , so cos 4θ = − cos 2θ .

(b) Given the point (cos θ, sin θ) at angle θ on the unit circle, there are two points with x coordinate − cos θ . The graphic
shows these two points, which are:

• The point (cos(θ + π), sin(θ + π)) on the opposite end of the unit circle.
• The point (cos(π − θ), sin(θ − π)) obtained by reflecting through the y axis.
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If we include all angles representing these points on the circle, we find that cos θ1 = − cos θ2 if and only if θ1 =
(π + θ2) + 2πk or θ1 = (π − θ2) + 2πk for integers k.
(c) Using (b), we recognize that cos 4θ = − cos 2θ if 4θ = 2θ + π + 2πk or 4θ = π − 2θ + 2πk. Solving for θ , we
obtain θ = π

2 + kπ or θ = π
6 + π

3 k.
(d) To find all θ , 0 ≤ θ < 2π indicated by (c), we use the following table:

k 0 1 2 3 4 5

π
2 + kπ π

2
3π
2

π
6 + π

3 k π
6

π
2

5π
6

7π
6

3π
2

11π
6

The critical points in the range [0, 2π ] are π
6 , π

2 , 5π
6 , 7π

6 , 3π
2 , and 11π

6 . On this interval, the maximum value is f (π
6 ) =

f ( 7π
6 ) = 3

√
3

2 and the minimum value is f ( 5π
6 ) = f ( 11π

6 ) = − 3
√

3
2 .

(e) The graph of f (θ) = 2 sin 2θ + sin 4θ is shown here:

x
1

2 3

4

5

6

1

2

−1

−2

y

We can see that there are six flat points on the graph between 0 and 2π , as predicted. There are 4 local extrema, and two
points at ( π

2 , 0) and ( 3π
2 , 0) where the graph has neither a local maximum nor a local minimum.

60. Find the critical points of f (x) = 2 cos 3x + 3 cos 2x in [0, 2π ]. Check your answer against a graph of f (x).

solution f (x) is differentiable for all x, so we are looking for points where f ′(x) = 0 only. Setting f ′(x) =
−6 sin 3x − 6 sin 2x, we get sin 3x = − sin 2x. Looking at a unit circle, we find the relationship between angles y and x

such that sin y = − sin x. This technique is also used in Exercise 59.

From the diagram, we see that sin y = − sin x if y is either (i.) the point antipodal to x (y = π + x + 2πk) or (ii.) the
point obtained by reflecting x through the horizontal axis (y = −x + 2πk).

Since sin 3x = − sin 2x, we get either 3x = π + 2x + 2πk or 3x = −2x + 2πk. Solving each of these equations for
x yields x = π + 2πk and x = 2π

5 k, respectively. The values of x between 0 and 2π are 0, 2π
5 , 4π

5 , π, 6π
5 , 8π

5 , and 2π .

The graph is shown below. As predicted, it has horizontal tangent lines at 2π
5 k and at x = π

2 . Each of these points is
a local extremum.

x
1 2 3 4 5 6

2

4

−2

−4

y

In Exercises 61–64, find the critical points and the extreme values on [0, 4]. In Exercises 63 and 64, refer to Figure 18.

y = |x2 + 4x − 12|

2−6

10

20

30

y = | cos x |

1

π
2

π 3π
2

− π
2

x x

yy

FIGURE 18
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61. y = |x − 2|
solution Let f (x) = |x − 2|. For x < 2, we have f ′(x) = −1. For x > 2, we have f ′(x) = 1. Now as x → 2−, we

have
f (x) − f (2)

x − 2
= (2 − x) − 0

x − 2
→ −1; whereas as x → 2+, we have

f (x) − f (2)

x − 2
= (x − 2) − 0

x − 2
→ 1. Therefore,

f ′(2) = lim
x→2

f (x) − f (2)

x − 2
does not exist and the lone critical point of f is x = 2. Alternately, we examine the graph of

f (x) = |x − 2| shown below.
To find the extremum, we check the values of f (x) at the critical point and the endpoints. f (0) = 2, f (4) = 2, and

f (2) = 0. f (x) takes its minimum value of 0 at x = 2, and its maximum of 2 at x = 0 and at x = 4.

y

x

0.5

1

1.5

2

0 3 421

62. y = |3x − 9|
solution Let f (x) = |3x − 9| = 3|x − 3|. For x < 3, we have f ′(x) = −3. For x > 3, we have f ′(x) = 3.

Now as x → 3−, we have
f (x) − f (3)

x − 3
= 3(3 − x) − 0

x − 3
→ −3; whereas as x → 3+, we have

f (x) − f (3)

x − 3
=

3(x − 3) − 0

x − 3
→ 3. Therefore, f ′(3) = lim

x→3

f (x) − f (3)

x − 3
does not exist and the lone critical point of f is x = 3.

Alternately, we examine the graph of f (x) = |3x − 9| shown below.
To find the extrema of f (x) on [0, 4], we test the values of f (x) at the critical point and the endpoints. f (0) = 9,

f (3) = 0 and f (4) = 3, so f (x) takes its minimum value of 0 at x = 3, and its maximum value of 9 at x = 0.

x

12

4

8

2 4 6

y

63. y = |x2 + 4x − 12|
solution Let f (x) = |x2 + 4x − 12| = |(x + 6)(x − 2)|. From the graph of f in Figure 18, we see that f ′(x) does
not exist at x = −6 and at x = 2, so these are critical points of f . There is also a critical point between x = −6 and
x = 2 at which f ′(x) = 0. For −6 < x < 2, f (x) = −x2 − 4x + 12, so f ′(x) = −2x − 4 = 0 when x = −2. On
the interval [0, 4] the minimum value of f is f (2) = 0 and the maximum value is f (4) = 20. (Note: f (0) = 12 and the
critical points x = −6 and x = −2 are not in the interval.)

64. y = | cos x|
solution Let f (x) = | cos x|. There are two types of critical points: points of the form πn where the derivative is
zero and points of the form nπ + π/2 where the derivative does not exist. Only two of these, x = π

2 and x = π are in
the interval [0, 4]. Now, f (0) = f (π) = 1, f (4) = | cos 4| ≈ 0.6536, and f (π

2 ) = 0, so f (x) takes its maximum value
of 1 at x = 0 and x = π and its minimum of 0 at x = π

2 .

In Exercises 65–68, verify Rolle’s Theorem for the given interval.

65. f (x) = x + x−1,
[ 1

2 , 2
]

solution Because f is continuous on [ 1
2 , 2], differentiable on ( 1

2 , 2) and

f

(
1

2

)
= 1

2
+ 1

1
2

= 5

2
= 2 + 1

2
= f (2),

we may conclude from Rolle’s Theorem that there exists a c ∈ ( 1
2 , 2) at which f ′(c) = 0. Here, f ′(x) = 1 − x−2 = x2−1

x2 ,
so we may take c = 1.
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66. f (x) = sin x,
[
π
4 , 3π

4

]
solution Because f is continuous on [π

4 , 3π
4 ], differentiable on ( π

4 , 3π
4 ) and

f
(π

4

)
= f

(
3π

4

)
=

√
2

2
,

we may conclude from Rolle’s Theorem that there exists a c ∈ ( π
4 , 3π

4 ) at which f ′(c) = 0. Here, f ′(x) = cos x, so we
may take c = π

2 .

67. f (x) = x2

8x − 15
, [3, 5]

solution Because f is continuous on [3, 5], differentiable on (3, 5) and f (3) = f (5) = 1, we may conclude from
Rolle’s Theorem that there exists a c ∈ (3, 5) at which f ′(c) = 0. Here,

f ′(x) = (8x − 15)(2x) − 8x2

(8x − 15)2
= 2x(4x − 15)

(8x − 15)2
,

so we may take c = 15
4 .

68. f (x) = sin2 x − cos2 x,
[
π
4 , 3π

4

]
solution Because f is continuous on [π

4 , 3π
4 ], differentiable on ( π

4 , 3π
4 ) and

f
(π

4

)
= f

(
3π

4

)
= 0,

we may conclude from Rolle’s Theorem that there exists a c ∈ ( π
4 , 3π

4 ) at which f ′(c) = 0. Here,

f ′(x) = 2 sin x cos x − 2 cos x(− sin x) = 2 sin 2x,

so we may take c = π
2 .

69. Prove that f (x) = x5 + 2x3 + 4x − 12 has precisely one real root.

solution Let’s first establish the f (x) = x5 + 2x3 + 4x − 12 has at least one root. Because f is a polynomial, it is
continuous for all x. Moreover, f (0) = −12 < 0 and f (2) = 44 > 0. Therefore, by the Intermediate Value Theorem,
there exists a c ∈ (0, 2) such that f (c) = 0.

Next, we prove that this is the only root. We will use proof by contradiction. Suppose f (x) = x5 + 2x3 + 4x − 12 has
two real roots, x = a and x = b. Then f (a) = f (b) = 0 and Rolle’s Theorem guarantees that there exists a c ∈ (a, b) at
which f ′(c) = 0. However, f ′(x) = 5x4 + 6x2 + 4 ≥ 4 for all x, so there is no c ∈ (a, b) at which f ′(c) = 0. Based on
this contradiction, we conclude that f (x) = x5 + 2x3 + 4x − 12 cannot have more than one real root. Finally, f must
have precisely one real root.

70. Prove that f (x) = x3 + 3x2 + 6x has precisely one real root.

solution First, note that f (0) = 0, so f has at least one real root. We will proceed by contradiction to establish that
x = 0 is the only real root. Suppose there exists another real root, say x = a. Because the polynomial f is continuous
and differentiable for all real x, it follows by Rolle’s Theorem that there exists a real number c between 0 and a such that
f ′(c) = 0. However, f ′(x) = 3x2 + 6x + 6 = 3(x + 1)2 + 3 ≥ 3 for all x. Thus, there is no c between 0 and a at which
f ′(c) = 0. Based on this contradiction, we conclude that f (x) = x3 + 3x2 + 6x cannot have more than one real root.
Finally, f must have precisely one real root.

71. Prove that f (x) = x4 + 5x3 + 4x has no root c satisfying c > 0. Hint: Note that x = 0 is a root and apply Rolle’s
Theorem.

solution We will proceed by contradiction. Note that f (0) = 0 and suppose that there exists a c > 0 such that
f (c) = 0. Then f (0) = f (c) = 0 and Rolle’s Theorem guarantees that there exists a d ∈ (0, c) such that f ′(d) = 0.
However, f ′(x) = 4x3 + 15x2 + 4 > 4 for all x > 0, so there is no d ∈ (0, c) such that f ′(d) = 0. Based on this
contradiction, we conclude that f (x) = x4 + 5x3 + 4x has no root c satisfying c > 0.

72. Prove that c = 4 is the largest root of f (x) = x4 − 8x2 − 128.

solution First, note that f (4) = 44 − 8(4)2 − 128 = 256 − 128 − 128 = 0, so c = 4 is a root of f . We will proceed
by contradiction to establish that c = 4 is the largest real root. Suppose there exists real root, say x = a, where a > 4.
Because the polynomial f is continuous and differentiable for all real x, it follows by Rolle’s Theorem that there exists a
real number c ∈ (4, a) such that f ′(c) = 0. However, f ′(x) = 4x3 − 16x = 4x(x2 − 4) > 0 for all x > 4. Thus, there
is no c ∈ (4, a) at which f ′(c) = 0. Based on this contradiction, we conclude that f (x) = x4 − 8x2 − 128 has no real
root larger than 4.
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73. The position of a mass oscillating at the end of a spring is s(t) = A sin ωt , where A is the amplitude and ω is the
angular frequency. Show that the speed |v(t)| is at a maximum when the acceleration a(t) is zero and that |a(t)| is at a
maximum when v(t) is zero.

solution Let s(t) = A sin ωt . Then

v(t) = ds

dt
= Aω cos ωt

and

a(t) = dv

dt
= −Aω2 sin ωt.

Thus, the speed

|v(t)| = |Aω cos ωt |
is a maximum when | cos ωt | = 1, which is precisely when sin ωt = 0; that is, the speed |v(t)| is at a maximum when the
acceleration a(t) is zero. Similarly,

|a(t)| = |Aω2 sin ωt |
is a maximum when | sin ωt | = 1, which is precisely when cos ωt = 0; that is, |a(t)| is at a maximum when v(t) is zero.

74. The concentration C(t) (in mg/cm3) of a drug in a patient’s bloodstream after t hours is

C(t) = 0.016t

t2 + 4t + 4

Find the maximum concentration in the time interval [0, 8] and the time at which it occurs.

solution

C′(t) = 0.016(t2 + 4t + 4) − (0.016t (2t + 4))

(t2 + 4t + 4)2
= 0.016

−t2 + 4

(t2 + 4t + 4)2
= 0.016

2 − t

(t + 2)3
.

C′(t) exists for all t ≥ 0, so we are looking for points where C′(t) = 0. C′(t) = 0 when t = 2. Using a calculator, we
find that C(2) = 0.002 mg

cm3 . On the other hand, C(0) = 0 and C(10) ≈ 0.001. Hence, the maximum concentration occurs

at t = 2 hours and is equal to .002 mg
cm3 .

75. Antibiotic Levels A study shows that the concentration C(t) (in micrograms per milliliter) of antibiotic in a

patient’s blood serum after t hours is C(t) = 120(e−0.2t − e−bt ), where b ≥ 1 is a constant that depends on the particular
combination of antibiotic agents used. Solve numerically for the value of b (to two decimal places) for which maximum
concentration occurs at t = 1 h. You may assume that the maximum occurs at a critical point as suggested by Figure 19.

t (h)

C (mcg/ml)

2 4 6 8 10 12

20

40

60

80

100

FIGURE 19 Graph of C(t) = 120(e−0.2t − e−bt ) with b chosen so that the maximum occurs at t = 1 h.

solution Answer is b = 2.86. The max of C(t) occurs at t = ln(5b)/(b − 0.2) so we solve ln(5b)/(b − 0.1) = 1
numerically.

Let C(t) = 120(e−0.2t − e−bt ). Then C′(t) = 120(−0.2e−0.2t + be−bt ) = 0 when

t = ln 5b

b − 0.2
.

Substituting t = 1 and solving for b numerically yields b ≈ 2.86.
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76. In the notation of Exercise 75, find the value of b (to two decimal places) for which the maximum value of
C(t) is equal to 100 mcg/ml.

solution From the previous exercise, we know that C(t) achieves its maximum when

t = ln 5b

b − 0.2
.

Substituting this expression into the formula for C(t), setting the resulting expression equal to 100 and solving for b yields
b ≈ 4.75.

77. In 1919, physicist Alfred Betz argued that the maximum efficiency of a wind turbine is around 59%. If wind enters a
turbine with speed v1 and exits with speed v2, then the power extracted is the difference in kinetic energy per unit time:

P = 1

2
mv2

1 − 1

2
mv2

2 watts

where m is the mass of wind flowing through the rotor per unit time (Figure 20). Betz assumed that m = ρA(v1 + v2)/2,
where ρ is the density of air and A is the area swept out by the rotor. Wind flowing undisturbed through the same area
A would have mass per unit time ρAv1 and power P0 = 1

2ρAv3
1. The fraction of power extracted by the turbine is

F = P/P0.

(a) Show that F depends only on the ratio r = v2/v1 and is equal to F(r) = 1
2 (1 − r2)(1 + r), where 0 ≤ r ≤ 1.

(b) Show that the maximum value of F(r), called the Betz Limit, is 16/27 ≈ 0.59.

(c) Explain why Betz’s formula for F(r) is not meaningful for r close to zero. Hint: How much wind would
pass through the turbine if v2 were zero? Is this realistic?

1

0.1

0.2

0.3

0.5

0.4

0.6

0.5
r

F

(A) Wind flowing through a turbine. (B) F is the fraction of energy
       extracted by the turbine as a 
      function of r = v2/v1.

v1 v2

FIGURE 20

solution

(a) We note that

F = P

P0
=

1
2

ρA(v1+v2)
2 (v2

1 − v2
2)

1
2ρAv3

1

= 1

2

v2
1 − v2

2

v2
1

· v1 + v2

v1

= 1

2

(
1 − v2

2

v2
1

)(
1 + v2

v1

)

= 1

2
(1 − r2)(1 + r).

(b) Based on part (a),

F ′(r) = 1

2
(1 − r2) − r(1 + r) = −3

2
r2 − r + 1

2
.

The roots of this quadratic are r = −1 and r = 1
3 . Now, F(0) = 1

2 , F(1) = 0 and

F

(
1

3

)
= 1

2
· 8

9
· 4

3
= 16

27
≈ 0.59.

Thus, the Betz Limit is 16/27 ≈ 0.59.

(c) If v2 were 0, then no air would be passing through the turbine, which is not realistic.
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78. The Bohr radius a0 of the hydrogen atom is the value of r that minimizes the energy

E(r) = h̄2

2mr2
− e2

4πε0r

where h̄, m, e, and ε0 are physical constants. Show that a0 = 4πε0h̄2/(me2). Assume that the minimum occurs at a
critical point, as suggested by Figure 21.

1 32
−1

−2

1

2

r (10−10 meters) 

E(r) (10−18 joules) 

FIGURE 21

solution Let

E(r) = h̄2

2mr2
− e2

4πε0r
.

Then

dE

dr
= − h̄2

mr3
+ e2

4πε0r2
= 0

implies

r = 4πε0h̄2

me2
.

Thus,

a0 = 4πε0h̄2

me2
.

79. The response of a circuit or other oscillatory system to an input of frequency ω (“omega”) is described by the function

φ(ω) = 1√
(ω2

0 − ω2)2 + 4D2ω2

Both ω0 (the natural frequency of the system) and D (the damping factor) are positive constants. The graph of φ is called a
resonance curve, and the positive frequency ωr > 0, where φ takes its maximum value, if it exists, is called the resonant

frequency. Show that ωr =
√

ω2
0 − 2D2 if 0 < D < ω0/

√
2 and that no resonant frequency exists otherwise (Figure 22).

w

(A) D = 0.01 (B) D = 0.2

2 2w r

(C) D = 0.75 (no resonance)

50
f f f

w
2w r

1

2

3

w
31 2

1

0.5

FIGURE 22 Resonance curves with ω0 = 1.

solution Let φ(ω) = ((ω2
0 − ω2)2 + 4D2ω2)−1/2. Then

φ′(ω) = 2ω((ω2
0 − ω2) − 2D2)

((ω2
0 − ω2)2 + 4D2ω2)3/2

and the non-negative critical points are ω = 0 and ω =
√

ω2
0 − 2D2. The latter critical point is positive if and only if

ω2
0 − 2D2 > 0, and since we are given D > 0, this is equivalent to 0 < D < ω0/

√
2.
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Define ωr =
√

ω2
0 − 2D2. Now, φ(0) = 1/ω2

0 and φ(ω) → 0 as ω → ∞. Finally,

φ(ωr ) = 1

2D

√
ω2

0 − D2
,

which, for 0 < D < ω0/
√

2, is larger than 1/ω2
0. Hence, the point ω =

√
ω2

0 − 2D2, if defined, is a local maximum.

80. Bees build honeycomb structures out of cells with a hexagonal base and three rhombus-shaped faces on top, as in
Figure 23. We can show that the surface area of this cell is

A(θ) = 6hs + 3

2
s2(

√
3 csc θ − cot θ)

with h, s, and θ as indicated in the figure. Remarkably, bees “know” which angle θ minimizes the surface area (and
therefore requires the least amount of wax).

(a) Show that θ ≈ 54.7◦ (assume h and s are constant). Hint: Find the critical point of A(θ) for 0 < θ < π/2.

(b) Confirm, by graphing f (θ) = √
3 csc θ − cot θ , that the critical point indeed minimizes the surface area.

s

h

θ

FIGURE 23 A cell in a honeycomb constructed by bees.

solution

(a) Because h and s are constant relative to θ , we have A′(θ) = 3
2 s2(−√

3 csc θ cot θ + csc2 θ) = 0. From this, we get√
3 csc θ cot θ = csc2 θ , or cos θ = 1√

3
, whence θ = cos−1( 1√

3

) = 0.955317 radians = 54.736◦.

(b) The plot of
√

3 csc θ − cot θ , where θ is given in degrees, is given below. We can see that the minimum occurs just
below 55◦.

h

Degrees

1.42

1.44

1.4

1.46

1.48

1.5

45 50 55 60 6540

81. Find the maximum of y = xa − xb on [0, 1] where 0 < a < b. In particular, find the maximum of y = x5 − x10 on
[0, 1].
solution

• Let f (x) = xa − xb. Then f ′(x) = axa−1 − bxb−1. Since a < b, f ′(x) = xa−1(a − bxb−a) = 0 implies
critical points x = 0 and x = ( a

b
)1/(b−a), which is in the interval [0, 1] as a < b implies a

b
< 1 and consequently

x = ( a
b
)1/(b−a) < 1. Also, f (0) = f (1) = 0 and a < b implies xa > xb on the interval [0, 1], which gives

f (x) > 0 and thus the maximum value of f on [0, 1] is

f

((a

b

)1/(b−a)
)

=
(a

b

)a/(b−a) −
(a

b

)b/(b−a)
.

• Let f (x) = x5 − x10. Then by part (a), the maximum value of f on [0, 1] is

f

((
1

2

)1/5
)

=
(

1

2

)
−
(

1

2

)2
= 1

2
− 1

4
= 1

4
.
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In Exercises 82–84, plot the function using a graphing utility and find its critical points and extreme values on [−5, 5].

82. y = 1

1 + |x − 1|

solution Let f (x) = 1
1+|x−1| . The plot follows:

−5 −4 −3 −2 −1 1 2 3 4 5

0.2

0.4

0.6

0.8

1

y

x

We can see on the plot that the only critical point of f (x) lies at x = 1. With f (−5) = 1
7 , f (1) = 1 and f (5) = 1

5 , it

follows that the maximum value of f (x) on [−5, 5] is f (1) = 1 and the minimum value is f (−5) = 1
7 .

83. y = 1

1 + |x − 1| + 1

1 + |x − 4|

solution Let

f (x) = 1

1 + |x − 1| + 1

1 + |x − 4| .

The plot follows:

−5 −4 −3 −2 −1 1 2 3 4 5

0.2

0.4

0.6

0.8

1

1.2

We can see on the plot that the critical points of f (x) lie at the cusps at x = 1 and x = 4 and at the location of the
horizontal tangent line at x = 5

2 . With f (−5) = 17
70 , f (1) = f (4) = 5

4 , f ( 5
2 ) = 4

5 and f (5) = 7
10 , it follows that the

maximum value of f (x) on [−5, 5] is f (1) = f (4) = 5
4 and the minimum value is f (−5) = 17

70 .

84. y = x

|x2 − 1| + |x2 − 4|

solution Let f (x) = x
|x2−1|+|x2−4| . The cusps of the graph of a function containing |g(x)| are likely to lie where

g(x) = 0, so we choose a plot range that includes x = ±2 and x = ±1:

x

0.5

42

−4

−2

−0.5

y

As we can see from the graph, the function has cusps at x = ±2 and sharp corners at x = ±1. The cusps at (2, 2
3 ) and

(−2, − 2
3 ) are the locations of the maximum and minimum values of f (x), respectively.
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85. (a) Use implicit differentiation to find the critical points on the curve 27x2 = (x2 + y2)3.

(b) Plot the curve and the horizontal tangent lines on the same set of axes.

solution

(a) Differentiating both sides of the equation 27x2 = (x2 + y2)3 with respect to x yields

54x = 3(x2 + y2)2
(

2x + 2y
dy

dx

)
.

Solving for dy/dx we obtain

dy

dx
= 27x − 3x(x2 + y2)2

3y(x2 + y2)2
= x(9 − (x2 + y2)2)

y(x2 + y2)2
.

Thus, the derivative is zero when x2 + y2 = 3. Substituting into the equation for the curve, this yields x2 = 1, or x = ±1.
There are therefore four points at which the derivative is zero:

(−1, −√
2), (−1,

√
2), (1, −√

2), (1,
√

2).

There are also critical points where the derivative does not exist. This occurs when y = 0 and gives the following points
with vertical tangents:

(0, 0), (± 4√
27, 0).

(b) The curve 27x2 = (x2 + y2)3 and its horizontal tangents are plotted below.

1

−1

y

x
−2 −1 1 2

86. Sketch the graph of a continuous function on (0, 4) with a minimum value but no maximum value.

solution Here is the graph of a function f on (0, 4) with a minimum value [at x = 2] but no maximum value [since
f (x) → ∞ as x → 0+ and as x → 4−].

x
2 40 1 3

1

2

3

4

y

87. Sketch the graph of a continuous function on (0, 4) having a local minimum but no absolute minimum.

solution Here is the graph of a function f on (0, 4) with a local minimum value [between x = 2 and x = 4] but no
absolute minimum [since f (x) → −∞ as x → 0+].

x
1 2 3

10

−10

y

88. Sketch the graph of a function on [0, 4] having

(a) Two local maxima and one local minimum.

(b) An absolute minimum that occurs at an endpoint, and an absolute maximum that occurs at a critical point.

solution Here is the graph of a function on [0, 4] that (a) has two local maxima and one local minimum and (b) has an
absolute minimum that occurs at an endpoint (at x = 0 or x = 4) and has an absolute maximum that occurs at a critical
point.
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x
2 40 1 3

2

4

6

8

10

y

89. Sketch the graph of a function f (x) on [0, 4] with a discontinuity such that f (x) has an absolute minimum but no
absolute maximum.

solution Here is the graph of a function f on [0, 4] that (a) has a discontinuity [at x = 4] and (b) has an absolute
minimum [at x = 0] but no absolute maximum [since f (x) → ∞ as x → 4−].

y

x
0

1

2

3

4

1 2 3 4

90. A rainbow is produced by light rays that enter a raindrop (assumed spherical) and exit after being reflected internally
as in Figure 24. The angle between the incoming and reflected rays is θ = 4r − 2i, where the angle of incidence i and
refraction r are related by Snell’s Law sin i = n sin r with n ≈ 1.33 (the index of refraction for air and water).

(a) Use Snell’s Law to show that
dr

di
= cos i

n cos r
.

(b) Show that the maximum value θmax of θ occurs when i satisfies cos i =
√

n2 − 1

3
. Hint: Show that

dθ

di
= 0 if

cos i = n

2
cos r . Then use Snell’s Law to eliminate r .

(c) Show that θmax ≈ 59.58◦.

i

r
r

r

r

i

θ

Incoming light ray

Water
droplet

Reflected ray

FIGURE 24

solution

(a) Differentiating Snell’s Law with respect to i yields

cos i = n cos r
dr

di
or

dr

di
= cos i

n cos r
.

(b) Differentiating the formula for θ with respect to i yields

dθ

di
= 4

dr

di
− 2 = 4

cos i

n cos r
− 2

by part (a). Thus,

dθ

di
= 0 when cos i = n

2
cos r.
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Squaring both sides of this last equation gives

cos2 i = n2

4
cos2 r,

while squaring both sides of Snell’s Law gives

sin2 i = n2 sin2 r or 1 − cos2 i = n2(1 − cos2 r).

Solving this equation for cos2 r gives

cos2 r = 1 − 1 − cos2 i

n2
;

Combining these last two equations and solving for cos i yields

cos i =
√

n2 − 1

3
.

(c) With n = 1.33,

cos i =
√

(1.33)2 − 1

3
= 0.5063

and

cos r = 2

1.33
cos i = 0.7613.

Thus, r = 40.42◦, i = 59.58◦ and

θmax = 4r − 2i = 42.53◦.

Further Insights and Challenges
91. Show that the extreme values of f (x) = a sin x + b cos x are ±

√
a2 + b2.

solution If f (x) = a sin x + b cos x, then f ′(x) = a cos x − b sin x, so that f ′(x) = 0 implies a cos x − b sin x = 0.
This implies tan x = a

b
. Then,

sin x = ±a√
a2 + b2

and cos x = ±b√
a2 + b2

.

Therefore

f (x) = a sin x + b cos x = a
±a√

a2 + b2
+ b

±b√
a2 + b2

= ± a2 + b2√
a2 + b2

= ±
√

a2 + b2.

92. Show, by considering its minimum, that f (x) = x2 − 2x + 3 takes on only positive values. More generally, find
the conditions on r and s under which the quadratic function f (x) = x2 + rx + s takes on only positive values. Give
examples of r and s for which f takes on both positive and negative values.

solution

• Observe that f (x) = x2 − 2x + 3 = (x − 1)2 + 2 > 0 for all x. Let f (x) = x2 + rx + s. Completing the square,
we note that f (x) = (x + 1

2 r)2 + s − 1
4 r2 > 0 for all x provided that s > 1

4 r2.

• Let f (x) = x2 − 4x + 3 = (x − 1)(x − 3). Then f takes on both positive and negative values. Here, r = −4 and
s = 3.

93. Show that if the quadratic polynomial f (x) = x2 + rx + s takes on both positive and negative values, then its
minimum value occurs at the midpoint between the two roots.

solution Let f (x) = x2 + rx + s and suppose that f (x) takes on both positive and negative values. This will
guarantee that f has two real roots. By the quadratic formula, the roots of f are

x = −r ±
√

r2 − 4s

2
.
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Observe that the midpoint between these roots is

1

2

(
−r +

√
r2 − 4s

2
+ −r −

√
r2 − 4s

2

)
= − r

2
.

Next, f ′(x) = 2x + r = 0 when x = − r
2 and, because the graph of f (x) is an upward opening parabola, it follows that

f (− r
2 ) is a minimum. Thus, f takes on its minimum value at the midpoint between the two roots.

94. Generalize Exercise 93: Show that if the horizontal line y = c intersects the graph of f (x) = x2 + rx + s at two

points (x1, f (x1)) and (x2, f (x2)), then f (x) takes its minimum value at the midpoint M = x1 + x2

2
(Figure 25).

x

y

x1 M

c

f (x)

y = c

x2

FIGURE 25

solution Suppose that a horizontal line y = c intersects the graph of a quadratic function f (x) = x2 + rx + s in two
points (x1, f (x1)) and (x2, f (x2)). Then of course f (x1) = f (x2) = c. Let g(x) = f (x) − c. Then g(x1) = g(x2) = 0.
By Exercise 93, g takes on its minimum value at x = 1

2 (x1 + x2). Hence so does f (x) = g(x) + c.

95. A cubic polynomial may have a local min and max, or it may have neither (Figure 26). Find conditions on the
coefficients a and b of

f (x) = 1

3
x3 + 1

2
ax2 + bx + c

that ensure that f has neither a local min nor a local max. Hint: Apply Exercise 92 to f ′(x).

−4 −2 42

(A) (B)

−2 42

20

−20

60

30

xx

yy

FIGURE 26 Cubic polynomials

solution Let f (x) = 1
3x3 + 1

2ax2 + bx + c. Using Exercise 92, we have g(x) = f ′(x) = x2 + ax + b > 0 for all

x provided b > 1
4a2, in which case f has no critical points and hence no local extrema. (Actually b ≥ 1

4a2 will suffice,
since in this case [as we’ll see in a later section] f has an inflection point but no local extrema.)

96. Find the min and max of

f (x) = xp(1 − x)q on [0, 1],
where p, q > 0.

solution Let f (x) = xp(1 − x)q , 0 ≤ x ≤ 1, where p and q are positive numbers. Then

f ′(x) = xpq(1 − x)q−1(−1) + (1 − x)qpxp−1

= xp−1(1 − x)q−1(p(1 − x) − qx) = 0 at x = 0, 1,
p

p + q

The minimum value of f on [0, 1] is f (0) = f (1) = 0, whereas its maximum value is

f

(
p

p + q

)
= ppqq

(p + q)p+q
.

97. Prove that if f is continuous and f (a) and f (b) are local minima where a < b, then there exists a value c

between a and b such that f (c) is a local maximum. (Hint: Apply Theorem 1 to the interval [a, b].) Show that continuity
is a necessary hypothesis by sketching the graph of a function (necessarily discontinuous) with two local minima but no
local maximum.
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solution

• Let f (x) be a continuous function with f (a) and f (b) local minima on the interval [a, b]. By Theorem 1, f (x)

must take on both a minimum and a maximum on [a, b]. Since local minima occur at f (a) and f (b), the maximum
must occur at some other point in the interval, call it c, where f (c) is a local maximum.

• The function graphed here is discontinuous at x = 0.

x
2 4 6 8−8 −6 −4 −2

4

6

8

y

4.3 The Mean Value Theorem and Monotonicity

Preliminary Questions
1. For which value of m is the following statement correct? If f (2) = 3 and f (4) = 9, and f (x) is differentiable, then

f has a tangent line of slope m.

solution The Mean Value Theorem guarantees that the function has a tangent line with slope equal to

f (4) − f (2)

4 − 2
= 9 − 3

4 − 2
= 3.

Hence, m = 3 makes the statement correct.

2. Assume f is differentiable. Which of the following statements does not follow from the MVT?

(a) If f has a secant line of slope 0, then f has a tangent line of slope 0.
(b) If f (5) < f (9), then f ′(c) > 0 for some c ∈ (5, 9).
(c) If f has a tangent line of slope 0, then f has a secant line of slope 0.
(d) If f ′(x) > 0 for all x, then every secant line has positive slope.

solution Conclusion (c) does not follow from the Mean Value Theorem. As a counterexample, consider the function

f (x) = x3. Note that f ′(0) = 0, but no secant line has zero slope.

3. Can a function that takes on only negative values have a positive derivative? If so, sketch an example.

solution Yes. The figure below displays a function that takes on only negative values but has a positive derivative.

x

y

4. For f (x) with derivative as in Figure 12:

(a) Is f (c) a local minimum or maximum?
(b) Is f (x) a decreasing function?

c
x

y

FIGURE 12 Graph of derivative f ′(x).

solution
(a) To the left of x = c, the derivative is positive, so f is increasing; to the right of x = c, the derivative is negative, so f
is decreasing. Consequently, f (c) must be a local maximum.
(b) No. The derivative is a decreasing function, but as noted in part (a), f (x) is increasing for x < c and decreasing for
x > c.
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Exercises
In Exercises 1–8, find a point c satisfying the conclusion of the MVT for the given function and interval.

1. y = x−1, [2, 8]
solution Let f (x) = x−1, a = 2, b = 8. Then f ′(x) = −x−2, and by the MVT, there exists a c ∈ (2, 8) such that

− 1

c2
= f ′(c) = f (b) − f (a)

b − a
=

1
8 − 1

2
8 − 2

= − 1

16
.

Thus c2 = 16 and c = ±4. Choose c = 4 ∈ (2, 8).

2. y = √
x, [9, 25]

solution Let f (x) = x1/2, a = 9, b = 25. Then f ′(x) = 1
2x−1/2, and by the MVT, there exists a c ∈ (9, 25) such

that

1

2
c−1/2 = f ′(c) = f (b) − f (a)

b − a
= 5 − 3

25 − 9
= 1

8
.

Thus 1√
c

= 1
4 and c = 16 ∈ (9, 25).

3. y = cos x − sin x, [0, 2π ]
solution Let f (x) = cos x − sin x, a = 0, b = 2π . Then f ′(x) = − sin x − cos x, and by the MVT, there exists a
c ∈ (0, 2π) such that

− sin c − cos c = f ′(c) = f (b) − f (a)

b − a
= 1 − 1

2π − 0
= 0.

Thus − sin c = cos c. Choose either c = 3π
4 or c = 7π

4 ∈ (0, 2π).

4. y = x

x + 2
, [1, 4]

solution Let f (x) = x/ (x + 2), a = 1, b = 4. Then f ′(x) = 2
(x+2)2 , and by the MVT, there exists a c ∈ (1, 4) such

that

2

(c + 2)2
= f ′(c) = f (b) − f (a)

b − a
=

2
3 − 1

3
4 − 1

= 1

9
.

Thus (c + 2)2 = 18 and c = −2 ± 3
√

2. Choose c = 3
√

2 − 2 ≈ 2.24 ∈ (1, 4).

5. y = x3, [−4, 5]
solution Let f (x) = x3, a = −4, b = 5. Then f ′(x) = 3x2, and by the MVT, there exists a c ∈ (−4, 5) such that

3c2 = f ′(c) = f (b) − f (a)

b − a
= 189

9
= 21.

Solving for c yields c2 = 7, so c = ±√
7. Both of these values are in the interval [−4, 5], so either value can be chosen.

6. y = x ln x, [1, 2]
solution Let f (x) = x ln x, a = 1, b = 2. Then f ′(x) = 1 + ln x, and by the MVT, there exists a c ∈ (1, 2) such
that

1 + ln c = f ′(c) = f (b) − f (a)

b − a
= 2 ln 2

1
= 2 ln 2.

Solving for c yields c = e2ln2−1 = 4
e ≈ 1.4715 ∈ (1, 2).

7. y = e−2x , [0, 3]
solution Let f (x) = e−2x , a = 0, b = 3. Then f ′(x) = −2e−2x , and by the MVT, there exists a c ∈ (0, 3) such that

−2e−2c = f ′(c) = f (b) − f (a)

b − a
= e−6 − 1

3 − 0
= e−6 − 1

3
.

Solving for c yields

c = −1

2
ln

(
1 − e−6

6

)
≈ 0.8971 ∈ (0, 3).
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8. y = ex − x, [−1, 1]
solution Let f (x) = ex − x, a = −1, b = 1. Then f ′(x) = ex − 1, and by the MVT, there exists a c ∈ (−1, 1) such
that

ec − 1 = f ′(c) = f (b) − f (a)

b − a
= (e − 1) − (e−1 + 1)

1 − (−1)
= 1

2
(e − e−1) − 1.

Solving for c yields

c = ln

(
e − e−1

2

)
≈ 0.1614 ∈ (−1, 1).

9. Let f (x) = x5 + x2. The secant line between x = 0 and x = 1 has slope 2 (check this), so by the MVT,
f ′(c) = 2 for some c ∈ (0, 1). Plot f (x) and the secant line on the same axes. Then plot y = 2x + b for different values
of b until the line becomes tangent to the graph of f . Zoom in on the point of tangency to estimate x-coordinate c of the
point of tangency.

solution Let f (x) = x5 + x2. The slope of the secant line between x = 0 and x = 1 is

f (1) − f (0)

1 − 0
= 2 − 0

1
= 2.

A plot of f (x), the secant line between x = 0 and x = 1, and the line y = 2x − 0.764 is shown below at the left. The
line y = 2x − 0.764 appears to be tangent to the graph of y = f (x). Zooming in on the point of tangency (see below at
the right), it appears that the x-coordinate of the point of tangency is approximately 0.62.

y = x5 + x2

y = 2x − .764

x
1

2

4

y

x

y

0.3

0.6

0.5

0.4

0.56 0.6 0.640.52

10. Plot the derivative of f (x) = 3x5 − 5x3. Describe its sign changes and use this to determine the local extreme
values of f (x). Then graph f (x) to confirm your conclusions.

solution Let f (x) = 3x5 − 5x3. Then f ′(x) = 15x4 − 15x2 = 15x2(x2 − 1). The graph of f ′(x) is shown below
at the left. Because f ′(x) changes from positive to negative at x = −1, f (x) changes from increasing to decreasing and
therefore has a local maximum at x = −1. At x = 1, f ′(x) changes from negative to positive, so f (x) changes from
decreasing to increasing and therefore has a local minimum. Though f ′(x) = 0 at x = 0, f ′(x) does not change sign at
x = 0, so f (x) has neither a local maximum nor a local minimum at x = 0. The graph of f (x), shown below at the right,
confirms each of these conclusions.

x

10

5

−10

−5

y

x
1 2−2 −1

20

40

60

80

y

1

2−2 −1

11. Determine the intervals on which f ′(x) is positive and negative, assuming that Figure 13 is the graph of f (x).

x
654321

y

FIGURE 13

solution The derivative of f is positive on the intervals (0, 1) and (3, 5) where f is increasing; it is negative on the
intervals (1, 3) and (5, 6) where f is decreasing.
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12. Determine the intervals on which f (x) is increasing or decreasing, assuming that Figure 13 is the graph of f ′(x).

solution f (x) is increasing on every interval (a, b) over which f ′(x) > 0, and is decreasing on every interval over
which f ′(x) < 0. If the graph of f ′(x) is given in Figure 13, then f (x) is increasing on the intervals (0, 2) and (4, 6),
and is decreasing on the interval (2, 4).

13. State whether f (2) and f (4) are local minima or local maxima, assuming that Figure 13 is the graph of f ′(x).

solution

• f ′(x) makes a transition from positive to negative at x = 2, so f (2) is a local maximum.
• f ′(x) makes a transition from negative to positive at x = 4, so f (4) is a local minimum.

14. Figure 14 shows the graph of the derivative f ′(x) of a function f (x). Find the critical points of f (x) and determine
whether they are local minima, local maxima, or neither.

y

x
320.5−2 −1

y = f ' (x)

6

−2

FIGURE 14

solution Since f ′(x) = 0 when x = −1, x = 1
2 and x = 2, these are the critical points of f . At x = −1, there is no

sign transition in f ′, so f (−1) is neither a local maximum nor a local minimum. At x = 1
2 , f ′ transitions from + to −,

so f ( 1
2 ) is a local maximum. Finally, at x = 2, f ′ transitions from − to +, so f (2) is a local minimum.

In Exercises 15–18, sketch the graph of a function f (x) whose derivative f ′(x) has the given description.

15. f ′(x) > 0 for x > 3 and f ′(x) < 0 for x < 3

solution Here is the graph of a function f for which f ′(x) > 0 for x > 3 and f ′(x) < 0 for x < 3.

y

x
0

2

4

6

8

10

1 2 3 4 5

16. f ′(x) > 0 for x < 1 and f ′(x) < 0 for x > 1

solution Here is the graph of a function f for which f ′(x) > 0 for x < 1 and f ′(x) < 0 for x > 1.

x
321−1

y

1

−2

17. f ′(x) is negative on (1, 3) and positive everywhere else.

solution Here is the graph of a function f for which f ′(x) is negative on (1, 3) and positive elsewhere.

x
1 2 3 4

2

4

6

8

−2

y
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18. f ′(x) makes the sign transitions +, −, +, −.

solution Here is the graph of a function f for which f ′ makes the sign transitions +, −, +, −.

x

60

40

20

42−2−4

−40

y

In Exercises 19–22, find all critical points of f and use the First Derivative Test to determine whether they are local
minima or maxima.

19. f (x) = 4 + 6x − x2

solution Let f (x) = 4 + 6x − x2. Then f ′(x) = 6 − 2x = 0 implies that x = 3 is the only critical point of f . As x

increases through 3, f ′(x) makes the sign transition +, −. Therefore, f (3) = 13 is a local maximum.

20. f (x) = x3 − 12x − 4

solution Let f (x) = x3 − 12x − 4. Then, f ′(x) = 3x2 − 12 = 3(x − 2)(x + 2) = 0 implies that x = ±2 are critical
points of f . As x increases through −2, f ′(x) makes the sign transition +, −; therefore, f (−2) is a local maximum. On
the other hand, as x increases through 2, f ′(x) makes the sign transition −, +; therefore, f (2) is a local minimum.

21. f (x) = x2

x + 1

solution Let f (x) = x2

x + 1
. Then

f ′(x) = x(x + 2)

(x + 1)2
= 0

implies that x = 0 and x = −2 are critical points. Note that x = −1 is not a critical point because it is not in the domain of
f . As x increases through −2, f ′(x) makes the sign transition +, − so f (−2) = −4 is a local maximum. As x increases
through 0, f ′(x) makes the sign transition −, + so f (0) = 0 is a local minimum.

22. f (x) = x3 + x−3

solution Let f (x) = x3 + x−3. Then

f ′(x) = 3x2 − 3x−4 = 3

x4
(x6 − 1) = 3

x4
(x − 1)(x + 1)(x2 − x + 1)(x2 + x + 1) = 0

implies that x = ±1 are critical points of f . Though f ′(x) does not exist at x = 0, x = 0 is not a critical point of f

because it is not in the domain of f . As x increases through −1, f ′(x) makes the sign transition +, −; therefore, f (−1)

is a local maximum. On the other hand, as x increases through 1, f ′(x) makes the sign transition −, +; therefore, f (1)

is a local minimum.

In Exercises 23–52, find the critical points and the intervals on which the function is increasing or decreasing. Use the
First Derivative Test to determine whether the critical point is a local min or max (or neither).

solution Here is a table legend for Exercises 23–44.

SYMBOL MEANING

− The entity is negative on the given interval.

0 The entity is zero at the specified point.

+ The entity is positive on the given interval.

U The entity is undefined at the specified point.

↗ f is increasing on the given interval.

↘ f is decreasing on the given interval.

M f has a local maximum at the specified point.

m f has a local minimum at the specified point.

¬ There is no local extremum here.
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23. y = −x2 + 7x − 17

solution Let f (x) = −x2 + 7x − 17. Then f ′(x) = 7 − 2x = 0 yields the critical point c = 7
2 .

x
(
−∞, 7

2

)
7/2

(
7
2 , ∞

)
f ′ + 0 −
f ↗ M ↘

24. y = 5x2 + 6x − 4

solution Let f (x) = 5x2 + 6x − 4. Then f ′(x) = 10x + 6 = 0 yields the critical point c = − 3
5 .

x
(
−∞, − 3

5

)
−3/5

(
− 3

5 , ∞
)

f ′ − 0 +
f ↘ m ↗

25. y = x3 − 12x2

solution Let f (x) = x3 − 12x2. Then f ′(x) = 3x2 − 24x = 3x(x − 8) = 0 yields critical points c = 0, 8.

x (−∞, 0) 0 (0, 8) 8 (8, ∞)

f ′ + 0 − 0 +
f ↗ M ↘ m ↗

26. y = x(x − 2)3

solution Let f (x) = x (x − 2)3. Then

f ′(x) = x · 3 (x − 2)2 + (x − 2)3 · 1 = (4x − 2) (x − 2)2 = 0

yields critical points c = 2, 1
2 .

x (−∞, 1/2) 1/2 (1/2, 2) 2 (2, ∞)

f ′ − 0 + 0 +
f ↘ m ↗ ¬ ↗

27. y = 3x4 + 8x3 − 6x2 − 24x

solution Let f (x) = 3x4 + 8x3 − 6x2 − 24x. Then

f ′(x) = 12x3 + 24x2 − 12x − 24

= 12x2(x + 2) − 12(x + 2) = 12(x + 2)(x2 − 1)

= 12 (x − 1) (x + 1) (x + 2) = 0

yields critical points c = −2, −1, 1.

x (−∞, −2) −2 (−2, −1) −1 (−1, 1) 1 (1, ∞)

f ′ − 0 + 0 − 0 +
f ↘ m ↗ M ↘ m ↗

28. y = x2 + (10 − x)2

solution Let f (x) = x2 + (10 − x)2. Then f ′(x) = 2x + 2 (10 − x) (−1) = 4x − 20 = 0 yields the critical point
c = 5.

x (−∞, 5) 5 (5, ∞)

f ′ − 0 +
f ↘ m ↗
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29. y = 1
3x3 + 3

2x2 + 2x + 4

solution Let f (x) = 1
3x3 + 3

2x2 + 2x + 4. Then f ′(x) = x2 + 3x + 2 = (x + 1) (x + 2) = 0 yields critical points
c = −2, −1.

x (−∞, −2) −2 (−2, −1) −1 (−1, ∞)

f ′ + 0 − 0 +
f ↗ M ↘ m ↗

30. y = x4 + x3

solution Let f (x) = x4 + x3. Then f ′(x) = 4x3 + 3x2 = x2(4x + 3) yields critical points c = 0, − 3
4 .

x
(
−∞, − 3

4

)
− 3

4

(
− 3

4 , 0
)

0 (0, ∞)

f ′ − 0 + 0 +
f ↘ m ↗ ¬ ↗

31. y = x5 + x3 + 1

solution Let f (x) = x5 + x3 + 1. Then f ′(x) = 5x4 + 3x2 = x2(5x2 + 3) yields a single critical point: c = 0.

x (−∞, 0) 0 (0, ∞)

f ′ + 0 +
f ↗ ¬ ↗

32. y = x5 + x3 + x

solution Let f (x) = x5 + x3 + x. Then f ′(x) = 5x4 + 3x2 + 1 ≥ 1 for all x. Thus, f has no critical points and is
always increasing.

33. y = x4 − 4x3/2 (x > 0)

solution Let f (x) = x4 − 4x3/2 for x > 0. Then f ′(x) = 4x3 − 6x1/2 = 2x1/2(2x5/2 − 3) = 0, which gives us

the critical point c = ( 3
2 )2/5. (Note: c = 0 is not in the interval under consideration.)

x
(

0,
( 3

2

)2/5
)

3
2

2/5 (( 3
2

)2/5
, ∞
)

f ′ − 0 +
f ↘ m ↗

34. y = x5/2 − x2 (x > 0)

solution Let f (x) = x5/2 − x2. Then f ′(x) = 5
2x3/2 − 2x = x( 5

2x1/2 − 2) = 0, so the critical point is c = 16
25 .

(Note: c = 0 is not in the interval under consideration.)

x
(
0, 16

25

) 16
25

( 16
25 , ∞)

f ′ − 0 +
f ↘ m ↗

35. y = x + x−1 (x > 0)

solution Let f (x) = x + x−1 for x > 0. Then f ′(x) = 1 − x−2 = 0 yields the critical point c = 1. (Note: c = −1
is not in the interval under consideration.)

x (0, 1) 1 (1, ∞)

f ′ − 0 +
f ↘ m ↗
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36. y = x−2 − 4x−1 (x > 0)

solution Let f (x) = x−2 − 4x−1. Then f ′(x) = −2x−3 + 4x−2 = 0 yields −2 + 4x = 0. Thus, 2x = 1, and

x = 1
2 .

x (0, 1
2 ) 1

2 ( 1
2 , ∞)

f ′ − 0 +
f ↘ m ↗

37. y = 1

x2 + 1

solution Let f (x) =
(
x2 + 1

)−1
. Then f ′(x) = −2x

(
x2 + 1

)−2 = 0 yields critical point c = 0.

x (−∞, 0) 0 (0, ∞)

f ′ + 0 −
f ↗ M ↘

38. y = 2x + 1

x2 + 1

solution Let f (x) = 2x + 1

x2 + 1
. Then

f ′(x) =
(
x2 + 1

)
(2) − (2x + 1) (2x)(
x2 + 1

)2 =
−2
(
x2 + x − 1

)
(
x2 + 1

)2 = 0

yields critical points c = −1 ± √
5

2
.

x
(
−∞, −1−√

5
2

) −1−√
5

2

(−1−√
5

2 , −1+√
5

2

) −1+√
5

2

(−1+√
5

2 , ∞
)

f ′ − 0 + 0 −
f ↘ m ↗ M ↘

39. y = x3

x2 + 1

solution Let f (x) = x3

x2 + 1
. Then

f ′(x) = (x2 + 1)(3x2) − x3(2x)

(x2 + 1)2
= x2(x2 + 3)

(x2 + 1)2
= 0

yields the single critical point c = 0.

x (−∞, 0) 0 (0, ∞)

f ′ + 0 +
f ↗ ¬ ↗

40. y = x3

x2 − 3

solution Let f (x) = x3

x2 − 3
. Then

f ′(x) = (x2 − 3)(3x2) − x3(2x)

(x2 − 3)2
= x2(x2 − 9)

(x2 − 3)2
= 0

yields the critical points c = 0 and c = ±3. c = ±√
3 are not critical points because they are not in the domain of f .
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x (−∞, −3) −3 (−3, −√
3) −√

3 (−√
3, 0) 0 (0,

√
3)

√
3 (

√
3, 3) 3 (3, ∞)

f ′ + 0 − ∞ − 0 − ∞ − 0 +
f ↗ M ↘ ¬ ↘ ¬ ↘ ¬ ↘ m ↗

41. y = θ + sin θ + cos θ

solution Let f (θ) = θ + sin θ + cos θ . Then f ′(θ) = 1 + cos θ − sin θ = 0 yields the critical points c = π
2 and

c = π .

θ
(
0, π

2

)
π
2

(
π
2 , π

)
π (π, 2π)

f ′ + 0 − 0 +
f ↗ M ↘ m ↗

42. y = sin θ + √
3 cos θ

solution Let f (θ) = sin θ + √
3 cos θ . Then f ′(θ) = cos θ − √

3 sin θ = 0 yields the critical points c = π
6 and

c = 7π
6 .

θ
(
0, π

6

)
π
6

(
π
6 , 7π

6

)
7π
6

(
7π
6 , 2π

)
f ′ + 0 − 0 +
f ↗ M ↘ m ↗

43. y = sin2 θ + sin θ

solution Let f (θ) = sin2 θ + sin θ . Then f ′(θ) = 2 sin θ cos θ + cos θ = cos θ(2 sin θ + 1) = 0 yields the critical

points c = π
2 , 7π

6 , 3π
2 , and 11π

6 .

θ
(
0, π

2

)
π
2

(
π
2 , 7π

6

)
7π
6

(
7π
6 , 3π

2

)
3π
2

(
3π
2 , 11π

6

)
11π

6

(
11π

6 , 2π
)

f ′ + 0 − 0 + 0 − 0 +
f ↗ M ↘ m ↗ M ↘ m ↗

44. y = θ − 2 cos θ , [0, 2π ]
solution Let f (θ) = θ − 2 cos θ . Then f ′(θ) = 1 + 2 sin θ = 0, which yields c = 7π

6 , 11π
6 on the interval [0, 2π ].

θ
(

0, 7π
6

)
7π
6

(
7π
6 , 11π

6

)
11π

6

(
11π

6 , 2π
)

f ′ + 0 − 0 +
f ↗ M ↘ m ↗

45. y = x + e−x

solution Let f (x) = x + e−x . Then f ′(x) = 1 − e−x , which yields c = 0 as the only critical point.

x (−∞, 0) 0 (0, ∞)

f ′ − 0 +
f ↘ m ↗

46. y = ex

x
(x > 0)

solution Let f (x) = ex

x . Then

f ′(x) = xex − ex

x2
= ex(x − 1)

x2
,

which yields c = 1 as the only critical point.

x (0, 1) 1 (1, ∞)

f ′ − 0 +
f ↘ m ↗
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47. y = e−x cos x,
[− π

2 , π
2

]
solution Let f (x) = e−x cos x. Then

f ′(x) = −e−x sin x − e−x cos x = −e−x(sin x + cos x),

which yields c = −π
4 as the only critical point on the interval [−π

2 , π
2 ].

x
[−π

2 , −π
4

) −π
4

(−π
4 , π

2

]
f ′ + 0 −
f ↗ M ↘

48. y = x2ex

solution Let f (x) = x2ex . Then f ′(x) = x2ex + 2xex = xex(x + 2), which yields c = −2 and c = 0 as critical
points.

x (−∞, −2) −2 (−2, 0) 0 (0, ∞)

f ′ + 0 − 0 +
f ↗ M ↘ m ↗

49. y = tan−1 x − 1
2x

solution Let f (x) = tan−1 x − 1
2x. Then

f ′(x) = 1

1 + x2
− 1

2
,

which yields c = ±1 as critical points.

x (−∞, −1) −1 (−1, 1) 1 (1, ∞)

f ′ − 0 + 0 −
f ↘ m ↗ M ↘

50. y = (x2 − 2x)ex

solution Let f (x) = (x2 − 2x)ex . Then

f ′(x) = (x2 − 2x)ex + (2x − 2)ex = (x2 − 2)ex,

which yields c = ±√
2 as critical points.

x
(−∞,

√
2
) −√

2
(−√

2,
√

2
) √

2
(√

2, ∞)
f ′ + 0 − 0 +
f ↗ M ↘ m ↗

51. y = x − ln x (x > 0)

solution Let f (x) = x − ln x. Then f ′(x) = 1 − x−1, which yields c = 1 as the only critical point.

x (0, 1) 1 (1, ∞)

f ′ − 0 +
f ↘ m ↗

52. y = ln x

x
(x > 0)

solution Let f (x) = ln x
x . Then

f ′(x) = 1 − ln x

x2
,

which yields c = e as the only critical point.
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x (0, e) e (e, ∞)

f ′ + 0 −
f ↗ M ↘

53. Find the minimum value of f (x) = xx for x > 0.

solution Let f (x) = xx . By logarithmic differentiation, we know that f ′(x) = xx(1 + ln x). Thus, x = 1
e is the

only critical point. Because f ′(x) < 0 for 0 < x < 1
e and f ′(x) > 0 for x > 1

e ,

f

(
1

e

)
=
(

1

e

)1/e

≈ 0.692201

is the minimum value.

54. Show that f (x) = x2 + bx + c is decreasing on
(− ∞, − b

2

)
and increasing on

(− b
2 , ∞).

solution Let f (x) = x2 + bx + c. Then f ′(x) = 2x + b = 0 yields the critical point c = − b
2 .

• For x < − b
2 , we have f ′(x) < 0, so f is decreasing on

(
−∞, − b

2

)
.

• For x > − b
2 , we have f ′(x) > 0, so f is increasing on

(
− b

2 , ∞
)

.

55. Show that f (x) = x3 − 2x2 + 2x is an increasing function. Hint: Find the minimum value of f ′(x).

solution Let f (x) = x3 − 2x2 + 2x. For all x, we have

f ′(x) = 3x2 − 4x + 2 = 3

(
x − 2

3

)2
+ 2

3
≥ 2

3
> 0.

Since f ′(x) > 0 for all x, the function f is everywhere increasing.

56. Find conditions on a and b that ensure that f (x) = x3 + ax + b is increasing on (−∞, ∞).

solution Let f (x) = x3 + ax + b.

• If a > 0, then f ′(x) = 3x2 + a > 0 and f is increasing for all x.
• If a = 0, then

f (x2) − f (x1) = (3x3
2 + b) − (3x3

1 + b) = 3(x2 − x1)(x2
2 + x2x1 + x2

1 ) > 0

whenever x2 > x1. Thus, f is increasing for all x.

• If a < 0, then f ′(x) = 3x2 + a < 0 and f is decreasing for |x| <
√

− a
3 .

In summary, f (x) = x3 + ax + b is increasing on (−∞, ∞) whenever a ≥ 0.

57. Let h(x) = x(x2 − 1)

x2 + 1
and suppose that f ′(x) = h(x). Plot h(x) and use the plot to describe the local extrema

and the increasing/decreasing behavior of f (x). Sketch a plausible graph for f (x) itself.

solution The graph of h(x) is shown below at the left. Because h(x) is negative for x < −1 and for 0 < x < 1, it
follows that f (x) is decreasing for x < −1 and for 0 < x < 1. Similarly, f (x) is increasing for −1 < x < 0 and for
x > 1 because h(x) is positive on these intervals. Moreover, f (x) has local minima at x = −1 and x = 1 and a local
maximum at x = 0. A plausible graph for f (x) is shown below at the right.

x

0.3

0.2

0.1

21−1−2

−0.2

x

1

0.5

−1

−0.5

h(x) f(x)

1 2−2 −1

58. Sam made two statements that Deborah found dubious.

(a) “The average velocity for my trip was 70 mph; at no point in time did my speedometer read 70 mph.”
(b) “A policeman clocked me going 70 mph, but my speedometer never read 65 mph.”

In each case, which theorem did Deborah apply to prove Sam’s statement false: the Intermediate Value Theorem or the
Mean Value Theorem? Explain.
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solution
(a) Deborah is applying the Mean Value Theorem here. Let s(t) be Sam’s distance, in miles, from his starting point, let
a be the start time for Sam’s trip, and let b be the end time of the same trip. Sam is claiming that at no point was

s′(t) = s(b) − s(a)

b − a
.

This violates the MVT.
(b) Deborah is applying the Intermediate Value Theorem here. Let v(t) be Sam’s velocity in miles per hour. Sam started
out at rest, and reached a velocity of 70 mph. By the IVT, he should have reached a velocity of 65 mph at some point.

59. Determine where f (x) = (1000 − x)2 + x2 is decreasing. Use this to decide which is larger: 8002 + 2002 or
6002 + 4002.

solution If f (x) = (1000 − x)2 + x2, then f ′(x) = −2(1000 − x) + 2x = 4x − 2000. f ′(x) < 0 as long as

x < 500. Therefore, 8002 + 2002 = f (200) > f (400) = 6002 + 4002.

60. Show that f (x) = 1 − |x| satisfies the conclusion of the MVT on [a, b] if both a and b are positive or negative, but
not if a < 0 and b > 0.

solution Let f (x) = 1 − |x|.
• If a and b (where a < b) are both positive (or both negative), then f is continuous on [a, b] and differentiable on

(a, b). Accordingly, the hypotheses of the MVT are met and the theorem does apply. Indeed, in these cases, any
point c ∈ (a, b) satisfies the conclusion of the MVT (since f ′ is constant on [a, b] in these instances).

• For a = −2 and b = 1, we have
f (b) − f (a)

b − a
= 0 − (−1)

1 − (−2)
= 1

3
. Yet there is no point c ∈ (−2, 1) such that

f ′(c) = 1
3 . Indeed, f ′(x) = 1 for x < 0, f ′(x) = −1 for x > 0, and f ′(0) is undefined. The MVT does not apply

in this case, since f is not differentiable on the open interval (−2, 1).

61. Which values of c satisfy the conclusion of the MVT on the interval [a, b] if f (x) is a linear function?

solution Let f (x) = px + q, where p and q are constants. Then the slope of every secant line and tangent line of f is

p. Accordingly, considering the interval [a, b], every point c ∈ (a, b) satisfies f ′(c) = p = f (b) − f (a)

b − a
, the conclusion

of the MVT.

62. Show that if f (x) is any quadratic polynomial, then the midpoint c = a + b

2
satisfies the conclusion of the MVT on

[a, b] for any a and b.

solution Let f (x) = px2 + qx + r with p = 0 and consider the interval [a, b]. Then f ′(x) = 2px + q, and by the
MVT we have

2pc + q = f ′(c) = f (b) − f (a)

b − a
=
(
pb2 + qb + r

)
−
(
pa2 + qa + r

)
b − a

= (b − a) (p (b + a) + q)

b − a
= p (b + a) + q

Thus 2pc + q = p(a + b) + q, and c = a + b

2
.

63. Suppose that f (0) = 2 and f ′(x) ≤ 3 for x > 0. Apply the MVT to the interval [0, 4] to prove that f (4) ≤ 14.
Prove more generally that f (x) ≤ 2 + 3x for all x > 0.

solution The MVT, applied to the interval [0, 4], guarantees that there exists a c ∈ (0, 4) such that

f ′(c) = f (4) − f (0)

4 − 0
or f (4) − f (0) = 4f ′(c).

Because c > 0, f ′(c) ≤ 3, so f (4) − f (0) ≤ 12. Finally, f (4) ≤ f (0) + 12 = 14.
More generally, let x > 0. The MVT, applied to the interval [0, x], guarantees there exists a c ∈ (0, x) such that

f ′(c) = f (x) − f (0)

x − 0
or f (x) − f (0) = f ′(c)x.

Because c > 0, f ′(c) ≤ 3, so f (x) − f (0) ≤ 3x. Finally, f (x) ≤ f (0) + 3x = 3x + 2.

64. Show that if f (2) = −2 and f ′(x) ≥ 5 for x > 2, then f (4) ≥ 8.

solution The MVT, applied to the interval [2, 4], guarantees there exists a c ∈ (2, 4) such that

f ′(c) = f (4) − f (2)

4 − 2
or f (4) − f (2) = 2f ′(c).

Because f ′(x) ≥ 5, it follows that f (4) − f (2) ≥ 10, or f (4) ≥ f (2) + 10 = 8.
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65. Show that if f (2) = 5 and f ′(x) ≥ 10 for x > 2, then f (x) ≥ 10x − 15 for all x > 2.

solution Let x > 2. The MVT, applied to the interval [2, x], guarantees there exists a c ∈ (2, x) such that

f ′(c) = f (x) − f (2)

x − 2
or f (x) − f (2) = (x − 2)f ′(c).

Because f ′(x) ≥ 10, it follows that f (x) − f (2) ≥ 10(x − 2), or f (x) ≥ f (2) + 10(x − 2) = 10x − 15.

Further Insights and Challenges
66. Show that a cubic function f (x) = x3 + ax2 + bx + c is increasing on (−∞, ∞) if b > a2/3.

solution Let f (x) = x3 + ax2 + bx + c. Then f ′(x) = 3x2 + 2ax + b = 3
(
x + a

3

)2 − a2

3 + b > 0 for all x if

b − a2

3 > 0. Therefore, if b > a2/3, then f (x) is increasing on (−∞, ∞).

67. Prove that if f (0) = g(0) and f ′(x) ≤ g′(x) for x ≥ 0, then f (x) ≤ g(x) for all x ≥ 0. Hint: Show that f (x) − g(x)

is nonincreasing.

solution Let h(x) = f (x) − g(x). By the sum rule, h′(x) = f ′(x) − g′(x). Since f ′(x) ≤ g′(x) for all x ≥ 0,
h′(x) ≤ 0 for all x ≥ 0. This implies that h is nonincreasing. Since h(0) = f (0) − g(0) = 0, h(x) ≤ 0 for all x ≥ 0 (as
h is nonincreasing, it cannot climb above zero). Hence f (x) − g(x) ≤ 0 for all x ≥ 0, and so f (x) ≤ g(x) for x ≥ 0.

68. Use Exercise 67 to prove that x ≤ tan x for 0 ≤ x < π
2 .

solution Let f (x) = x and g(x) = tan x. Then f (0) = g(0) = 0 and f ′(x) = 1 ≤ sec2 x = g′(x) for 0 ≤ x < π
2 .

Apply the result of Exercise 67 to conclude that x ≤ tan x for 0 ≤ x < π
2 .

69. Use Exercise 67 and the inequality sin x ≤ x for x ≥ 0 (established in Theorem 3 of Section 2.6) to prove the
following assertions for all x ≥ 0 (each assertion follows from the previous one).

(a) cos x ≥ 1 − 1
2x2

(b) sin x ≥ x − 1
6x3

(c) cos x ≤ 1 − 1
2x2 + 1

24x4

(d) Can you guess the next inequality in the series?

solution

(a) We prove this using Exercise 67: Let g(x) = cos x and f (x) = 1 − 1
2x2. Then f (0) = g(0) = 1 and g′(x) =

− sin x ≥ −x = f ′(x) for x ≥ 0 by Exercise 68. Now apply Exercise 67 to conclude that cos x ≥ 1 − 1
2x2 for x ≥ 0.

(b) Let g(x) = sin x and f (x) = x − 1
6x3. Then f (0) = g(0) = 0 and g′(x) = cos x ≥ 1 − 1

2x2 = f ′(x) for x ≥ 0 by

part (a). Now apply Exercise 67 to conclude that sin x ≥ x − 1
6x3 for x ≥ 0.

(c) Let g(x) = 1 − 1
2x2 + 1

24x4 and f (x) = cos x. Then f (0) = g(0) = 1 and g′(x) = −x + 1
6x3 ≥ − sin x = f ′(x)

for x ≥ 0 by part (b). Now apply Exercise 67 to conclude that cos x ≤ 1 − 1
2x2 + 1

24x4 for x ≥ 0.

(d) The next inequality in the series is sin x ≤ x − 1
6x3 + 1

120x5, valid for x ≥ 0. To construct (d) from (c), we note
that the derivative of sin x is cos x, and look for a polynomial (which we currently must do by educated guess) whose
derivative is 1 − 1

2x2 + 1
24x4. We know the derivative of x is 1, and that a term whose derivative is − 1

2x2 should be

of the form Cx3. d
dx

Cx3 = 3Cx2 = − 1
2x2, so C = − 1

6 . A term whose derivative is 1
24x4 should be of the form Dx5.

From this, d
dx

Dx5 = 5Dx4 = 1
24x4, so that 5D = 1

24 , or D = 1
120 .

70. Let f (x) = e−x . Use the method of Exercise 69 to prove the following inequalities for x ≥ 0.

(a) e−x ≥ 1 − x

(b) e−x ≤ 1 − x + 1
2x2

(c) e−x ≥ 1 − x + 1
2x2 − 1

6x3

Can you guess the next inequality in the series?

solution

(a) Let f (x) = 1 − x and g(x) = e−x . Then f (0) = g(0) = 1 and, for x ≥ 0,

f ′(x) = −1 ≤ −e−x = g′(x).

Thus, by Exercise 67 we conclude that e−x ≥ 1 − x for x ≥ 0.

(b) Let f (x) = e−x and g(x) = 1 − x + 1
2x2. Then f (0) = g(0) = 1 and, for x ≥ 0,

f ′(x) = −e−x ≤ x − 1 = g′(x)

by the result from part (a). Thus, by Exercise 67 we conclude that e−x ≤ 1 − x + 1

2
x2 for x ≥ 0.
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(c) Let f (x) = 1 − x + 1
2x2 − 1

6x3 and g(x) = e−x . Then f (0) = g(0) = 1 and, for x ≥ 0,

f ′(x) = −1 + x − 1

2
x2 ≤ −e−x = g′(x)

by the result from part (b). Thus, by Exercise 67 we conclude that e−x ≥ 1 − x + 1

2
x2 − 1

6
x3 for x ≥ 0.

The next inequality in the series is e−x ≤ 1 − x + 1

2
x2 − 1

6
x3 + 1

24
x4 for x ≥ 0

71. Assume that f ′′ exists and f ′′(x) = 0 for all x. Prove that f (x) = mx + b, where m = f ′(0) and b = f (0).

solution

• Let f ′′(x) = 0 for all x. Then f ′(x) = constant for all x. Since f ′(0) = m, we conclude that f ′(x) = m for all x.
• Let g(x) = f (x) − mx. Then g′(x) = f ′(x) − m = m − m = 0 which implies that g(x) = constant for all x and

consequently f (x) − mx = constant for all x. Rearranging the statement, f (x) = mx + constant. Since f (0) = b,
we conclude that f (x) = mx + b for all x.

72. Define f (x) = x3 sin
( 1
x

)
for x = 0 and f (0) = 0.

(a) Show that f ′(x) is continuous at x = 0 and that x = 0 is a critical point of f .
(b) Examine the graphs of f (x) and f ′(x). Can the First Derivative Test be applied?
(c) Show that f (0) is neither a local min nor a local max.

solution

(a) Let f (x) = x3 sin( 1
x ). Then

f ′(x) = 3x2 sin

(
1

x

)
+ x3 cos

(
1

x

)
(−x−2) = x

(
3x sin

(
1

x

)
− cos

(
1

x

))
.

This formula is not defined at x = 0, but its limit is. Since −1 ≤ sin x ≤ 1 and −1 ≤ cos x ≤ 1 for all x,

|f ′(x)| = |x|
∣∣∣∣3x sin

(
1

x

)
− cos

(
1

x

)∣∣∣∣ ≤ |x|
(∣∣∣∣3x sin

(
1

x

)∣∣∣∣+
∣∣∣∣cos

(
1

x

)∣∣∣∣
)

≤ |x|(3|x| + 1)

so, by the Squeeze Theorem, lim
x→0

|f ′(x)| = 0. But does f ′(0) = 0? We check using the limit definition of the derivative:

f ′(0) = lim
x→0

f (x) − f (0)

x − 0
= lim

x→0
x2 sin

(
1

x

)
= 0.

Thus f ′(x) is continuous at x = 0, and x = 0 is a critical point of f .
(b) The figure below at the left shows f (x), and the figure below at the right shows f ′(x). Note how the two functions
oscillate near x = 0, which implies that the First Derivative Test cannot be applied.

x
0.2−0.2

y

x
0.2−0.2

y

(c) As x approaches 0 from either direction, f (x) alternates between positive and negative arbitrarily close to x = 0.
This means that f (0) cannot be a local minimum (since f (x) gets lower than f (0) arbitrarily close to 0), nor can f (0) be
a local maximum (since f (x) takes values higher than f (0) arbitrarily close to x = 0). Therefore f (0) is neither a local
minimum nor a local maximum of f .

73. Suppose that f (x) satisfies the following equation (an example of a differential equation):

f ′′(x) = −f (x) 1

(a) Show that f (x)2 + f ′(x)2 = f (0)2 + f ′(0)2 for all x. Hint: Show that the function on the left has zero derivative.
(b) Verify that sin x and cos x satisfy Eq. (1), and deduce that sin2 x + cos2 x = 1.

solution

(a) Let g(x) = f (x)2 + f ′(x)2. Then

g′(x) = 2f (x)f ′(x) + 2f ′(x)f ′′(x) = 2f (x)f ′(x) + 2f ′(x)(−f (x)) = 0,

where we have used the fact that f ′′(x) = −f (x). Because g′(0) = 0 for all x, g(x) = f (x)2 + f ′(x)2 must be a constant
function. In other words, f (x)2 + f ′(x)2 = C for some constant C. To determine the value of C, we can substitute any
number for x. In particular, for this problem, we want to substitute x = 0 and find C = f (0)2 + f ′(0)2. Hence,

f (x)2 + f ′(x)2 = f (0)2 + f ′(0)2.
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(b) Let f (x) = sin x. Then f ′(x) = cos x and f ′′(x) = − sin x, so f ′′(x) = −f (x). Next, let f (x) = cos x. Then
f ′(x) = − sin x, f ′′(x) = − cos x, and we again have f ′′(x) = −f (x). Finally, if we take f (x) = sin x, the result from
part (a) guarantees that

sin2 x + cos2 x = sin2 0 + cos2 0 = 0 + 1 = 1.

74. Suppose that functions f and g satisfy Eq. (1) and have the same initial values—that is, f (0) = g(0) and f ′(0) =
g′(0). Prove that f (x) = g(x) for all x. Hint: Apply Exercise 73(a) to f − g.

solution Let h(x) = f (x) − g(x). Then

h′′(x) = f ′′(x) − g′′(x) = −f (x) − (−g(x)) = −(f (x) − g(x)) = −h(x).

Furthermore, h(0) = f (0) − g(0) = 0 and h′(0) = f ′(0) − g′(0) = 0. Thus, by part (a) of Exercise 73, h(x)2 + h′(x)2 =
0. This can only happen if h(x) = 0 for all x, or, equivalently, f (x) = g(x) for all x.

75. Use Exercise 74 to prove: f (x) = sin x is the unique solution of Eq. (1) such that f (0) = 0 and f ′(0) = 1; and
g(x) = cos x is the unique solution such that g(0) = 1 and g′(0) = 0. This result can be used to develop all the properties
of the trigonometric functions “analytically”—that is, without reference to triangles.

solution In part (b) of Exercise 73, it was shown that f (x) = sin x satisfies Eq. (1), and we can directly calculate
that f (0) = sin 0 = 0 and f ′(0) = cos 0 = 1. Suppose there is another function, call it F(x), that satisfies Eq. (1) with
the same initial conditions: F(0) = 0 and F ′(0) = 1. By Exercise 74, it follows that F(x) = sin x for all x. Hence,
f (x) = sin x is the unique solution of Eq. (1) satisfying f (0) = 0 and f ′(0) = 1. The proof that g(x) = cos x is the
unique solution of Eq. (1) satisfying g(0) = 1 and g′(0) = 0 is carried out in a similar manner.

4.4 The Shape of a Graph

Preliminary Questions
1. If f is concave up, then f ′ is (choose one):

(a) increasing (b) decreasing

solution The correct response is (a): increasing. If the function is concave up, then f ′′ is positive. Since f ′′ is the
derivative of f ′, it follows that the derivative of f ′ is positive and f ′ must therefore be increasing.

2. What conclusion can you draw if f ′(c) = 0 and f ′′(c) < 0?

solution If f ′(c) = 0 and f ′′(c) < 0, then f (c) is a local maximum.

3. True or False? If f (c) is a local min, then f ′′(c) must be positive.

solution False. f ′′(c) could be zero.

4. True or False? If f ′′(x) changes from + to − at x = c, then f has a point of inflection at x = c.

solution False. f will have a point of inflection at x = c only if x = c is in the domain of f .

Exercises
1. Match the graphs in Figure 13 with the description:

(a) f ′′(x) < 0 for all x. (b) f ′′(x) goes from + to −.

(c) f ′′(x) > 0 for all x. (d) f ′′(x) goes from − to +.

(A) (B) (C) (D)

FIGURE 13

solution

(a) In C, we have f ′′(x) < 0 for all x.

(b) In A, f ′′(x) goes from + to −.

(c) In B, we have f ′′(x) > 0 for all x.

(d) In D, f ′′(x) goes from − to +.
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2. Match each statement with a graph in Figure 14 that represents company profits as a function of time.

(a) The outlook is great: The growth rate keeps increasing.

(b) We’re losing money, but not as quickly as before.

(c) We’re losing money, and it’s getting worse as time goes on.

(d) We’re doing well, but our growth rate is leveling off.

(e) Business had been cooling off, but now it’s picking up.

(f) Business had been picking up, but now it’s cooling off.

(i) (ii) (iii) (iv) (v) (vi)

FIGURE 14

solution

(a) (ii) An increasing growth rate implies an increasing f ′, and so a graph that is concave up.

(b) (iv) “Losing money” implies a downward curve. “Not as fast” implies that f ′ is becoming less negative, so that
f ′′(x) > 0.

(c) (i) “Losing money” implies a downward curve. “Getting worse” implies that f ′ is becoming more negative, so the
curve is concave down.

(d) (iii) “We’re doing well” implies that f is increasing, but “the growth rate is leveling off” implies that f ′ is decreasing,
so that the graph is concave down.

(e) (vi) “Cooling off” generally means increasing at a decreasing rate. The use of “had” implies that only the beginning
of the graph is that way. The phrase “...now it’s picking up” implies that the end of the graph is concave up.

(f) (v) “Business had been picking up” implies that the graph started out concave up. The phrase “…but now it’s cooling
off” implies that the graph ends up concave down.

In Exercises 3–18, determine the intervals on which the function is concave up or down and find the points of inflection.

3. y = x2 − 4x + 3

solution Let f (x) = x2 − 4x + 3. Then f ′(x) = 2x − 4 and f ′′(x) = 2 > 0 for all x. Therefore, f is concave up
everywhere, and there are no points of inflection.

4. y = t3 − 6t2 + 4

solution Let f (t) = t3 − 6t2 + 4. Then f ′(t) = 3t2 − 12t and f ′′(t) = 6t − 12 = 0 at t = 2. Now, f is concave
up on (2, ∞), since f ′′(t) > 0 there. Moreover, f is concave down on (−∞, 2), since f ′′(t) < 0 there. Finally, because
f ′′(t) changes sign at t = 2, f (t) has a point of inflection at t = 2.

5. y = 10x3 − x5

solution Let f (x) = 10x3 − x5. Then f ′(x) = 30x2 − 5x4 and f ′′(x) = 60x − 20x3 = 20x(3 − x2). Now, f is

concave up for x < −√
3 and for 0 < x <

√
3 since f ′′(x) > 0 there. Moreover, f is concave down for −√

3 < x < 0
and for x >

√
3 since f ′′(x) < 0 there. Finally, because f ′′(x) changes sign at x = 0 and at x = ±√

3, f (x) has a point
of inflection at x = 0 and at x = ±√

3.

6. y = 5x2 + x4

solution Let f (x) = 5x2 + x4. Then f ′(x) = 10x + 4x3 and f ′′(x) = 10 + 12x2 > 10 for all x. Thus, f is concave
up for all x and has no points of inflection.

7. y = θ − 2 sin θ , [0, 2π ]
solution Let f (θ) = θ − 2 sin θ . Then f ′(θ) = 1 − 2 cos θ and f ′′(θ) = 2 sin θ . Now, f is concave up for 0 < θ < π

since f ′′(θ) > 0 there. Moreover, f is concave down for π < θ < 2π since f ′′(θ) < 0 there. Finally, because f ′′(θ)

changes sign at θ = π , f (θ) has a point of inflection at θ = π .

8. y = θ + sin2 θ , [0, π]
solution Let f (θ) = θ + sin2 θ . Then f ′(θ) = 1 + 2 sin θ cos θ = 1 + sin 2θ and f ′′(θ) = 2 cos 2θ . Now, f

is concave up for 0 < θ < π/4 and for 3π/4 < θ < π since f ′′(θ) > 0 there. Moreover, f is concave down for
π/4 < θ < 3π/4 since f ′′(θ) < 0 there. Finally, because f ′′(θ) changes sign at θ = π/4 and at θ = 3π/4, f (θ) has a
point of inflection at θ = π/4 and at θ = 3π/4.

9. y = x(x − 8
√

x) (x ≥ 0)

solution Let f (x) = x(x − 8
√

x) = x2 − 8x3/2. Then f ′(x) = 2x − 12x1/2 and f ′′(x) = 2 − 6x−1/2. Now, f

is concave down for 0 < x < 9 since f ′′(x) < 0 there. Moreover, f is concave up for x > 9 since f ′′(x) > 0 there.
Finally, because f ′′(x) changes sign at x = 9, f (x) has a point of inflection at x = 9.
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10. y = x7/2 − 35x2

solution Let f (x) = x7/2 − 35x2. Then

f ′(x) = 7

2
x5/2 − 70x and f ′′(x) = 35

4
x3/2 − 70.

Now, f is concave down for 0 < x < 4 since f ′′(x) < 0 there. Moreover, f is concave up for x > 4 since f ′′(x) > 0
there. Finally, because f ′′(x) changes sign at x = 4, f (x) has a point of inflection at x = 4.

11. y = (x − 2)(1 − x3)

solution Let f (x) = (x − 2)
(

1 − x3
)

= x − x4 − 2 + 2x3. Then f ′(x) = 1 − 4x3 + 6x2 and f ′′(x) = 12x −
12x2 = 12x(1 − x) = 0 at x = 0 and x = 1. Now, f is concave up on (0, 1) since f ′′(x) > 0 there. Moreover, f

is concave down on (−∞, 0) ∪ (1, ∞) since f ′′(x) < 0 there. Finally, because f ′′(x) changes sign at both x = 0 and
x = 1, f (x) has a point of inflection at both x = 0 and x = 1.

12. y = x7/5

solution Let f (x) = x7/5. Then f ′(x) = 7
5x2/5 and f ′′(x) = 14

25x−3/5. Now, f is concave down for x < 0 since
f ′′(x) < 0 there. Moreover, f is concave up for x > 0 since f ′′(x) > 0 there. Finally, because f ′′(x) changes sign at
x = 0, f (x) has a point of inflection at x = 0.

13. y = 1

x2 + 3

solution Let f (x) = 1

x2 + 3
. Then f ′(x) = − 2x

(x2 + 3)2
and

f ′′(x) = −2(x2 + 3)2 − 8x2(x2 + 3)

(x2 + 3)4
= 6x2 − 6

(x2 + 3)3
.

Now, f is concave up for |x| > 1 since f ′′(x) > 0 there. Moreover, f is concave down for |x| < 1 since f ′′(x) < 0
there. Finally, because f ′′(x) changes sign at both x = −1 and x = 1, f (x) has a point of inflection at both x = −1 and
x = 1.

14. y = x

x2 + 9

solution Let f (x) = x
x2+9

. Then

f ′(x) = (x2 + 9)(1) − x(2x)

(x2 + 9)2
= 9 − x2

(x2 + 9)2

and

f ′′(x) = (x2 + 9)2(−2x) − (9 − x2)(2)(x2 + 9)(2x)

(x2 + 9)4
= 2x(x2 − 27)

(x2 + 9)3
.

Now, f is concave up for −3
√

3 < x < 0 and for x > 3
√

3 since f ′′(x) > 0 there. Moreover, f is concave down
for x < −3

√
3 and for 0 < x < 3

√
3 since f ′′(x) < 0 there. Finally, because f ′′(x) changes sign at x = 0 and at

x = ±3
√

3, f (x) has a point of inflection at x = 0 and at x = ±3
√

3.

15. y = xe−3x

solution Let f (x) = xe−3x . Then f ′(x) = −3xe−3x + e−3x = (1 − 3x)e−3x and f ′′(x) = −3(1 − 3x)e−3x −
3e−3x = (9x − 6)e−3x . Now, f is concave down for x < 2

3 since f ′′(x) < 0 there. Moreover, f is concave up for

x > 2
3 since f ′′(x) > 0 there. Finally, because f ′′(x) changes sign at x = 2

3 , x = 2
3 is a point of inflection.

16. y = (x2 − 7)ex

solution Let f (x) = (x2 − 7)ex . Then f ′(x) = (x2 − 7)ex + 2xex = (x2 + 2x07)ex and f ′′(x) = (x2 + 2x −
7)ex + (2x + 2)ex = (x + 5)(x − 1)ex . Now, f is concave up for x < −5 and for x > 1 since f ′′(x) > 0 there.
Moreover, f is concave down for −5 < x < 1 since f ′′(x) < 0 there. Finally, because f ′′(x) changes sign at x = −5
and at x = 1, f has a point of inflection at x = −5 and at x = 1.

17. y = 2x2 + ln x (x > 0)

solution Let f (x) = 2x2 + ln x. Then f ′(x) = 4x + x−1 and f ′′(x) = 4 − x−2. Now, f is concave down for

x < 1
2 since f ′′(x) < 0 there. Moreover, f is concave up for x > 1

2 since f ′′(x) > 0 there. Finally, because f ′′(x)

changes sign at x = 1
2 , f has a point of inflection at x = 1

2 .
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18. y = x − ln x (x > 0)

solution Let f (x) = x − ln x. Then f ′(x) = 1 − 1/x and f ′′(x) = x−2 > 0 for all x > 0. Thus, f is concave up
for all x > 0 and has no points of inflection.

19. The growth of a sunflower during the first 100 days after sprouting is modeled well by the logistic curve
y = h(t) shown in Figure 15. Estimate the growth rate at the point of inflection and explain its significance. Then make
a rough sketch of the first and second derivatives of h(t).

20 40 60 80 100

50

100

150

200

300

250

t  (days)

Height (cm)

FIGURE 15

solution The point of inflection in Figure 15 appears to occur at t = 40 days. The graph below shows the logistic
curve with an approximate tangent line drawn at t = 40. The approximate tangent line passes roughly through the points
(20, 20) and (60, 240). The growth rate at the point of inflection is thus

240 − 20

60 − 20
= 220

40
= 5.5 cm/day.

Because the logistic curve changes from concave up to concave down at t = 40, the growth rate at this point is the
maximum growth rate for the sunflower plant.
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Sketches of the first and second derivative of h(t) are shown below at the left and at the right, respectively.
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20. Assume that Figure 16 is the graph of f (x). Where do the points of inflection of f (x) occur, and on which interval
is f (x) concave down?

x

y

gecba d f

FIGURE 16

solution The function in Figure 16 changes concavity at x = c; therefore, there is a single point of inflection at x = c.
The graph is concave down for x < c.

21. Repeat Exercise 20 but assume that Figure 16 is the graph of the derivative f ′(x).

solution Points of inflection occur when f ′′(x) changes sign. Consequently, points of inflection occur when f ′(x)

changes from increasing to decreasing or from decreasing to increasing. In Figure 16, this occurs at x = b and at x = e;
therefore, f (x) has an inflection point at x = b and another at x = e. The function f (x) will be concave down when
f ′′(x) < 0 or when f ′(x) is decreasing. Thus, f (x) is concave down for b < x < e.
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22. Repeat Exercise 20 but assume that Figure 16 is the graph of the second derivative f ′′(x).

solution Inflection points occur when f ′′(x) changes sign; therefore, f (x) has inflection points at x = a, x = d and
x = f . The function f (x) is concave down for x < a and for d < x < f .

23. Figure 17 shows the derivative f ′(x) on [0, 1.2]. Locate the points of inflection of f (x) and the points where the
local minima and maxima occur. Determine the intervals on which f (x) has the following properties:

(a) Increasing (b) Decreasing

(c) Concave up (d) Concave down

1.210.17 0.640.4
x

y

y = f '(x)

FIGURE 17

solution Recall that the graph is that of f ′, not f . The inflection points of f occur where f ′ changes from increasing
to decreasing or vice versa because it is at these points that the sign of f ′′ changes. From the graph we conclude that f

has points of inflection at x = 0.17, x = 0.64, and x = 1. The local extrema of f occur where f ′ changes sign. This
occurs at x = 0.4. Because the sign of f ′ changes from + to −, f (0.4) is a local maximum. There are no local minima.

(a) f is increasing when f ′ is positive. Hence, f is increasing on (0, 0.4).

(b) f is decreasing when f ′ is negative. Hence, f is decreasing on (0.4, 1) ∪ (1, 1.2).

(c) Now f is concave up where f ′ is increasing. This occurs on (0, 0.17) ∪ (0.64, 1).

(d) Moreover, f is concave down where f ′ is decreasing. This occurs on (0.17, 0.64) ∪ (1, 1.2).

24. Leticia has been selling solar-powered laptop chargers through her website, with monthly sales as recorded below.
In a report to investors, she states, “Sales reached a point of inflection when I started using pay-per-click advertising.” In
which month did that occur? Explain.

Month 1 2 3 4 5 6 7 8

Sales 2 30 50 60 90 150 230 340

solution Note that in successive months, sales increased by 28, 20, 10, 30, 60, 80 and 110. Until month 5, the rate
of increase in sales was decreasing. After month 5, the rate of increase in sales increased. Thus, Leticia began using
pay-per-click advertising in month 5.

In Exercises 25–38, find the critical points and apply the Second Derivative Test.

25. f (x) = x3 − 12x2 + 45x

solution Let f (x) = x3 − 12x2 + 45x. Then f ′(x) = 3x2 − 24x + 45 = 3(x − 3)(x − 5), and the critical points
are x = 3 and x = 5. Moreover, f ′′(x) = 6x − 24, so f ′′(3) = −6 < 0 and f ′′(5) = 6 > 0. Therefore, by the Second
Derivative Test, f (3) = 54 is a local maximum, and f (5) = 50 is a local minimum.

26. f (x) = x4 − 8x2 + 1

solution Let f (x) = x4 − 8x2 + 1. Then f ′(x) = 4x3 − 16x = 4x(x2 − 4), and the critical points are x = 0 and

x = ±2. Moreover, f ′′(x) = 12x2 − 16, so f ′′(−2) = f ′′(2) = 32 > 0 and f ′′(0) = −16 < 0. Therefore, by the
second derivative test, f (−2) = −15 and f (2) = −15 are local minima, and f (0) = 1 is a local maximum.

27. f (x) = 3x4 − 8x3 + 6x2

solution Let f (x) = 3x4 − 8x3 + 6x2. Then f ′(x) = 12x3 − 24x2 + 12x = 12x(x − 1)2 = 0 at x = 0, 1 and

f ′′(x) = 36x2 − 48x + 12. Thus, f ′′(0) > 0, which implies f (0) is a local minimum; however, f ′′(1) = 0, which is
inconclusive.

28. f (x) = x5 − x3

solution Let f (x) = x5 − x3. Then f ′(x) = 5x4 − 3x2 = x2(5x2 − 3) = 0 at x = 0, x = ±
√

3
5 and f ′′(x) =

20x3 − 6x = x(20x2 − 6). Thus, f ′′
(√

3
5

)
> 0, which implies f

(√
3
5

)
is a local minimum, and f ′′

(
−
√

3
5

)
< 0,

which implies that f

(
−
√

3
5

)
is a local maximum; however, f ′′(0) = 0, which is inconclusive.



April 2, 2011

424 C H A P T E R 4 APPLICATIONS OF THE DERIVATIVE

29. f (x) = x2 − 8x

x + 1

solution Let f (x) = x2 − 8x

x + 1
. Then

f ′(x) = x2 + 2x − 8

(x + 1)2
and f ′′(x) = 2(x + 1)2 − 2(x2 + 2x − 8)

(x + 1)3
.

Thus, the critical points are x = −4 and x = 2. Moreover, f ′′(−4) < 0 and f ′′(2) > 0. Therefore, by the second
derivative test, f (−4) = −16 is a local maximum and f (2) = −4 is a local minimum.

30. f (x) = 1

x2 − x + 2

solution Let f (x) = 1

x2 − x + 2
. Then f ′(x) = −2x + 1

(x2 − x + 2)2
= 0 at x = 1

2 and

f ′′(x) = −2(x2 − x + 2) + 2(2x − 1)2

(x2 − x + 2)3
.

Thus f ′′ ( 1
2

)
< 0, which implies that f

(
1
2

)
is a local maximum.

31. y = 6x3/2 − 4x1/2

solution Let f (x) = 6x3/2 − 4x1/2. Then f ′(x) = 9x1/2 − 2x−1/2 = x−1/2(9x − 2), so there are two critical

points: x = 0 and x = 2
9 . Now,

f ′′(x) = 9

2
x−1/2 + x−3/2 = 1

2
x−3/2(9x + 2).

Thus, f ′′ ( 2
9

)
> 0, which implies f

(
2
9

)
is a local minimum. f ′′(x) is undefined at x = 0, so the Second Derivative Test

cannot be applied there.

32. y = 9x7/3 − 21x1/2

solution Let f (x) = 9x7/3 − 21x1/2. Then f ′(x) = 21x4/3 − 21
2 x−1/2 = 0 when

x =
(

1

2

)6/11
,

and f ′′(x) = 28x1/3 + 21
4 x−3/2. Thus,

f ′′
((

1

2

)6/11
)

> 0,

which implies f

((
1
2

)6/11
)

is a local minimum.

33. f (x) = sin2 x + cos x, [0, π]
solution Let f (x) = sin2 x + cos x. Then f ′(x) = 2 sin x cos x − sin x = sin x(2 cos x − 1). On the interval [0, π],
f ′(x) = 0 at x = 0, x = π

3 and x = π . Now,

f ′′(x) = 2 cos2 x − 2 sin2 x − cos x.

Thus, f ′′(0) > 0, so f (0) is a local minimum. On the other hand, f ′′( π
3 ) < 0, so f (π

3 ) is a local maximum. Finally,
f ′′(π) > 0, so f (π) is a local minimum.

34. y = 1

sin x + 4
, [0, 2π ]

solution Let f (x) = (sin x + 4)−1. Then

f ′(x) = − cos x

(sin x + 4)2
and f ′′(x) = 2 cos2 x + sin2 x + 4 sin x

(sin x + 4)3
.

Now, f ′(x) = 0 when x = π/2 and when x = 3π/2. Since f ′′(π/2) > 0, it follows that f (π/2) is a local minimum.
On the other hand, f ′′(3π/2) < 0, so f (3π/2) is a local maximum.
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35. f (x) = xe−x2

solution Let f (x) = xe−x2
. Then f ′(x) = −2x2e−x2 + e−x2 = (1 − 2x2)e−x2

, so there are two critical points:

x = ±
√

2
2 . Now,

f ′′(x) = (4x3 − 2x)e−x2 − 4xe−x2 = (4x3 − 6x)e−x2
.

Thus, f ′′ (√
2

2

)
< 0, so f

(√
2

2

)
is a local maximum. On the other hand, f ′′ (−√

2
2

)
> 0, so f

(
−

√
2

2

)
is a local

minimum.

36. f (x) = e−x − 4e−2x

solution Let f (x) = e−x − 4e−2x . Then f ′(x) = −e−x + 8e−2x = 0 when x = 3 ln 2. Now, f ′′(x) = e−x −
16e−2x , so f ′′(3 ln 2) < 0. Thus, f (3 ln 2) is a local maximum.

37. f (x) = x3 ln x (x > 0)

solution Let f (x) = x3 ln x. Then f ′(x) = x2 + 3x2 ln x = x2(1 + 3 ln x), so there is only one critical point:

x = e−1/3. Now,

f ′′(x) = 3x + 2x(1 + 3 ln x) = x(5 + 6lnx).

Thus, f ′′ (e−1/3
)

> 0, so f
(
e−1/3

)
is a local minimum.

38. f (x) = ln x + ln(4 − x2), (0, 2)

solution Let f (x) = ln x + ln(4 − x2). Then

f ′(x) = 1

x
− 2x

4 − x2
,

so there is only one critical point on the interval 0 < x < 2: x = 2
√

3
3 . Now,

f ′′(x) = − 1

x2
− (4 − x2)(2) − 2x(−2x)

(4 − x2)2
= − 1

x2
− 8 + 2x2

(4 − x2)2
.

Thus, f ′′ ( 2
√

3
3

)
< 0, so f

(
2
√

3
3

)
is a local maximum.

In Exercises 39–52, find the intervals on which f is concave up or down, the points of inflection, the critical points, and
the local minima and maxima.

solution Here is a table legend for Exercises 39–49.

SYMBOL MEANING

− The entity is negative on the given interval.

0 The entity is zero at the specified point.

+ The entity is positive on the given interval.

U The entity is undefined at the specified point.

↗ The function (f , g, etc.) is increasing on the given interval.

↘ The function (f , g, etc.) is decreasing on the given interval.

� The function (f , g, etc.) is concave up on the given interval.

� The function (f , g, etc.) is concave down on the given interval.

M The function (f , g, etc.) has a local maximum at the specified point.

m The function (f , g, etc.) has a local minimum at the specified point.

I The function (f , g, etc.) has an inflection point here.

¬ There is no local extremum or inflection point here.
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39. f (x) = x3 − 2x2 + x

solution Let f (x) = x3 − 2x2 + x.

• Then f ′(x) = 3x2 − 4x + 1 = (x − 1)(3x − 1) = 0 yields x = 1 and x = 1
3 as candidates for extrema.

• Moreover, f ′′(x) = 6x − 4 = 0 gives a candidate for a point of inflection at x = 2
3 .

x
(− ∞, 1

3

) 1
3

( 1
3 , 1
)

1
(
1, ∞)

f ′ + 0 − 0 +
f ↗ M ↘ m ↗

x
(− ∞, 2

3

) 2
3

( 2
3 , ∞)

f ′′ − 0 +
f � I �

40. f (x) = x2(x − 4)

solution Let f (x) = x2(x − 4) = x3 − 4x2.

• Then f ′(x) = 3x2 − 8x = x(3x − 8) = 0 yields x = 0 and x = 8
3 as candidates for extrema.

• Moreover, f ′′(x) = 6x − 8 = 0 gives a candidate for a point of inflection at x = 4
3 .

x (−∞, 0) 0
(
0, 8

3

) 8
3

( 8
3 , ∞)

f ′ + 0 − 0 +
f ↗ M ↘ m ↗

x
(− ∞, 4

3

) 4
3

( 4
3 , ∞)

f ′′ − 0 +
f � I �

41. f (t) = t2 − t3

solution Let f (t) = t2 − t3.

• Then f ′(t) = 2t − 3t2 = t (2 − 3t) = 0 yields t = 0 and t = 2
3 as candidates for extrema.

• Moreover, f ′′(t) = 2 − 6t = 0 gives a candidate for a point of inflection at t = 1
3 .

t (−∞, 0) 0
(
0, 2

3

) 2
3

( 2
3 , ∞)

f ′ − 0 + 0 −
f ↘ m ↗ M ↘

t
(− ∞, 1

3

) 1
3

( 1
3 , ∞)

f ′′ + 0 −
f � I �

42. f (x) = 2x4 − 3x2 + 2

solution Let f (x) = 2x4 − 3x2 + 2.

• Then f ′(x) = 8x3 − 6x = 2x(4x2 − 3) = 0 yields x = 0 and x = ±
√

3
2 as candidates for extrema.

• Moreover, f ′′(x) = 24x2 − 6 = 6(4x2 − 1) = 0 gives candidates for a point of inflection at x = ± 1
2 .

x
(
−∞, −

√
3

2

)
−

√
3

2

(
−

√
3

2 , 0
)

0
(

0,

√
3

2

) √
3

2

(√
3

2 , ∞
)

f ′ − 0 + 0 − 0 +
f ↘ m ↗ M ↘ m ↗

x
(− ∞, − 1

2

) − 1
2

(− 1
2 , 1

2

) 1
2

( 1
2 , ∞)

f ′′ + 0 − 0 +
f � I � I �

43. f (x) = x2 − 8x1/2 (x ≥ 0)

solution Let f (x) = x2 − 8x1/2. Note that the domain of f is x ≥ 0.

• Then f ′(x) = 2x − 4x−1/2 = x−1/2
(

2x3/2 − 4
)

= 0 yields x = 0 and x = (2)2/3 as candidates for extrema.

• Moreover, f ′′(x) = 2 + 2x−3/2 > 0 for all x ≥ 0, which means there are no inflection points.
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x 0
(

0, (2)2/3
)

(2)2/3
(
(2)2/3 , ∞

)
f ′ U − 0 +
f M ↘ m ↗

44. f (x) = x3/2 − 4x−1/2 (x > 0)

solution Let f (x) = x3/2 − 4x−1/2. Then

f ′(x) = 3

2
x1/2 + 2x−3/2 > 0

for all x > 0. Thus, f is always increasing and there are no local extrema. Now,

f ′′(x) = 3

4
x−1/2 − 3x−5/2

so x = 2 is a candidate point of inflection.

x (0, 2) 2 (2, ∞)

f ′′ − 0 +
f � I �

45. f (x) = x

x2 + 27

solution Let f (x) = x

x2 + 27
.

• Then f ′(x) = 27 − x2(
x2 + 27

)2 = 0 yields x = ±3
√

3 as candidates for extrema.

• Moreover, f ′′(x) =
−2x

(
x2 + 27

)2 − (27 − x2)(2)
(
x2 + 27

)
(2x)(

x2 + 27
)4 =

2x
(
x2 − 81

)
(
x2 + 27

)3 = 0 gives candidates for

a point of inflection at x = 0 and at x = ±9.

x
(
−∞, −3

√
3
)

−3
√

3
(
−3

√
3, 3

√
3
)

3
√

3
(

3
√

3, ∞
)

f ′ − 0 + 0 −
f ↘ m ↗ M ↘

x (−∞, −9) −9 (−9, 0) 0 (0, 9) 9 (9, ∞)

f ′′ − 0 + 0 − 0 +
f � I � I � I �

46. f (x) = 1

x4 + 1

solution Let f (x) = 1

x4 + 1
.

• Then f ′(x) = − 4x3(
x4 + 1

)2 = 0 yields x = 0 as a candidate for an extremum.

• Moreover,

f ′′(x) =
(
x4 + 1

)2 (−12x2
)

− (−4x3) · 2
(
x4 + 1

) (
4x3
)

(
x2 + 1

)4 =
4x2

(
5x4 − 3

)
(
x4 + 1

)3 = 0

gives candidates for a point of inflection at x = 0 and at x = ±
(

3
5

)1/4
.
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x (−∞, 0) 0 (0, ∞)

f ′ + 0 −
f ↗ M ↘

x

(
−∞, −

(
3
5

)1/4
)

−
(

3
5

)1/4
(

−
(

3
5

)1/4
, 0

)
0

(
0,
(

3
5

)1/4
) (

3
5

)1/4
((

3
5

)1/4
, ∞
)

f ′′ + 0 − 0 − 0 +
f � I � ¬ � I �

47. f (θ) = θ + sin θ , [0, 2π ]
solution Let f (θ) = θ + sin θ on [0, 2π ].

• Then f ′(θ) = 1 + cos θ = 0 yields θ = π as a candidate for an extremum.
• Moreover, f ′′(θ) = − sin θ = 0 gives candidates for a point of inflection at θ = 0, at θ = π , and at θ = 2π .

θ (0, π) π (π, 2π)

f ′ + 0 +
f ↗ ¬ ↗

θ 0 (0, π) π (π, 2π) 2π

f ′′ 0 − 0 + 0

f ¬ � I � ¬
48. f (x) = cos2 x, [0, π]
solution Let f (x) = cos2 x. Then f ′(x) = −2 cos x sin x = −2 sin 2x = 0 when x = 0, x = π/2 and x = π . All
three are candidates for extrema. Moreover, f ′′(x) = −4 cos 2x = 0 when x = π/4 and x = 3π/4. Both are candidates
for a point of inflection.

x 0
(
0, π

2

)
π
2

(
π
2 , π

)
π

f ′ 0 − 0 + 0

f M ↘ m ↗ M

x
(
0, π

4

)
π
4

(
π
4 , 3π

4

)
3π
4

(
3π
4 , π

)
f ′′ − 0 + 0 −
f � I � I �

49. f (x) = tan x,
[−π

4 , π
3

]
solution Let f (x) = tan x on

[−π
4 , π

3

]
.

• Then f ′(x) = sec2 x ≥ 1 > 0 on
[−π

4 , π
3

]
.

• Moreover, f ′′(x) = 2 sec x · sec x tan x = 2 sec2 x tan x = 0 gives a candidate for a point of inflection at x = 0.

x
(−π

4 , π
3

)
f ′ +
f ↗

x
(−π

4 , 0
)

0
(
0, π

3

)
f ′′ − 0 +
f � I �

50. f (x) = e−x cos x,
[−π

2 , 3π
2

]
solution Let f (x) = e−x cos x on

[
−π

2 , 3π
2

]
.

• Then, f ′(x) = −e−x sin x − e−x cos x = −e−x(sin x + cos x) = 0 gives x = −π
4 and x = 3π

4 as candidates for
extrema.

• Moreover,

f ′′(x) = −e−x(cos x − sin x) + e−x(sin x + cos x) = 2e−x sin x = 0

gives x = 0 and x = π as inflection point candidates.
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x
(−π

2 , −π
4

) −π
4

(
−π

4 , 3π
4

)
3π
4

(
3π
4 , 3π

2

)
f ′ + 0 − 0 +
f ↗ M ↘ m ↗

x
(−π

2 , 0
)

0 (0, π) π
(
π, 3π

2

)
f ′′ − 0 + 0 −
f � I � I �

51. y = (x2 − 2)e−x (x > 0)

solution Let f (x) = (x2 − 2)e−x .

• Then f ′(x) = −(x2 − 2x − 2)e−x = 0 gives x = 1 + √
3 as a candidate for an extrema.

• Moreover, f ′′(x) = (x2 − 4x)e−x = 0 gives x = 4 as a candidate for a point of inflection.

x
(

0, 1 + √
3
)

1 + √
3

(
1 + √

3, ∞
)

f ′ + 0 −
f ↗ M ↘

x (0, 4) 4 (4, ∞)

f ′′ − 0 +
f � I �

52. y = ln(x2 + 2x + 5)

solution Let f (x) = ln(x2 + 2x + 5). Then

f ′(x) = 2x + 2

x2 + 2x + 5
= 0

when x = −1. This is the only critical point. Moreover,

f ′′(x) = −2(x − 1)(x + 3)

(x2 + 2x + 5)2
,

so x = 1 and x = −3 are candidates for inflection points.

x (−∞, −1) −1 (−1, ∞)

f ′ − 0 +
f ↘ m ↗

x (−∞, −3) −3 (−3, 1) 1 (1, ∞)

f ′′ − 0 + 0 −
f � I � I �

53. Sketch the graph of an increasing function such that f ′′(x) changes from + to − at x = 2 and from − to + at x = 4.
Do the same for a decreasing function.

solution The graph shown below at the left is an increasing function which changes from concave up to concave
down at x = 2 and from concave down to concave up at x = 4. The graph shown below at the right is a decreasing
function which changes from concave up to concave down at x = 2 and from concave down to concave up at x = 4.

x
2 4

2

1

y

x
2 4

6

2

4

y
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In Exercises 54–56, sketch the graph of a function f (x) satisfying all of the given conditions.

54. f ′(x) > 0 and f ′′(x) < 0 for all x.

solution Here is the graph of a function f (x) satisfying f ′(x) > 0 for all x and f ′′(x) < 0 for all x.

21
x

0.50.5

−0.5

y

55. (i) f ′(x) > 0 for all x, and

(ii) f ′′(x) < 0 for x < 0 and f ′′(x) > 0 for x > 0.

solution Here is the graph of a function f (x) satisfying (i) f ′(x) > 0 for all x and (ii) f ′′(x) < 0 for x < 0 and
f ′′(x) > 0 for x > 0.

x

10

5

−10

−5

y

1 2−2 −1

56. (i) f ′(x) < 0 for x < 0 and f ′(x) > 0 for x > 0, and

(ii) f ′′(x) < 0 for |x| > 2, and f ′′(x) > 0 for |x| < 2.

solution

Interval (−∞, −2) (−2, 0) (0, 2) (2, ∞)

Direction ↘ ↘ ↗ ↗
Concavity � � � �

One potential graph with this shape is the following:

x
10−10

y

57. An infectious flu spreads slowly at the beginning of an epidemic. The infection process accelerates until a
majority of the susceptible individuals are infected, at which point the process slows down.

(a) If R(t) is the number of individuals infected at time t , describe the concavity of the graph of R near the beginning
and end of the epidemic.

(b) Describe the status of the epidemic on the day that R(t) has a point of inflection.

solution

(a) Near the beginning of the epidemic, the graph of R is concave up. Near the epidemic’s end, R is concave down.

(b) “Epidemic subsiding: number of new cases declining.”
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58. Water is pumped into a sphere at a constant rate (Figure 18). Let h(t) be the water level at time t . Sketch the
graph of h(t) (approximately, but with the correct concavity). Where does the point of inflection occur?

h

FIGURE 18

solution Because water is entering the sphere at a constant rate, we expect the water level to rise more rapidly near
the bottom and top of the sphere where the sphere is not as “wide” and to rise more slowly near the middle of the sphere.
The graph of h(t) should therefore start concave down and end concave up, with an inflection point when the sphere is
half full; that is, when the water level is equal to the radius of the sphere. A possible graph of h(t) is shown below.

h(t)

t

2R

R

W
at

er
 le

ve
l

Time

59. Water is pumped into a sphere of radius R at a variable rate in such a way that the water level rises at a
constant rate (Figure 18). Let V (t) be the volume of water in the tank at time t . Sketch the graph V (t) (approximately,
but with the correct concavity). Where does the point of inflection occur?

solution Because water is entering the sphere in such a way that the water level rises at a constant rate, we expect the
volume to increase more slowly near the bottom and top of the sphere where the sphere is not as “wide” and to increase
more rapidly near the middle of the sphere. The graph of V (t) should therefore start concave up and change to concave
down when the sphere is half full; that is, the point of inflection should occur when the water level is equal to the radius
of the sphere. A possible graph of V (t) is shown below.

t

V

60. (Continuation of Exercise 59) If the sphere has radius R, the volume of water is V = π
(
Rh2 − 1

3h3) where h is the
water level. Assume the level rises at a constant rate of 1 (that is, h = t).

(a) Find the inflection point of V (t). Does this agree with your conclusion in Exercise 59?

(b) Plot V (t) for R = 1.

solution

(a) With h = t and V (t) = π(Rt2 − 1
3 t3). Then, V ′(t) = π(2Rt − t2) and V ′′(t) = π(2R − 2t). Therefore, V (t) is

concave up for t < R, concave down for t > R and has an inflection point at t = R. In other words, V (t) has an inflection
point when the water level is equal to the radius of the sphere, in agreement with the conclusion of Exercise 59.

(b) With h = t and R = 1, V (t) = π(t2 − 1
3 t3). The graph of V (t) is shown below.

V(t)

t

4π/3

2π/3

1 2



April 2, 2011

432 C H A P T E R 4 APPLICATIONS OF THE DERIVATIVE

61. Image Processing The intensity of a pixel in a digital image is measured by a number u between 0 and 1. Often,
images can be enhanced by rescaling intensities (Figure 19), where pixels of intensity u are displayed with intensity g(u)

for a suitable function g(u). One common choice is the sigmoidal correction, defined for constants a, b by

g(u) = f (u) − f (0)

f (1) − f (0)
where f (u) = (1 + eb(a−u)

)−1

Figure 20 shows that g(u) reduces the intensity of low-intensity pixels (where g(u) < u) and increases the intensity of
high-intensity pixels.
(a) Verify that f ′(u) > 0 and use this to show that g(u) increases from 0 to 1 for 0 ≤ u ≤ 1.
(b) Where does g′(u) have a point of inflection?

Original Sigmoidal correction

FIGURE 19

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

u

y

y = g(u)

y = u

FIGURE 20 Sigmoidal correction with
a = 0.47, b = 12.

solution

(a) With f (u) = (1 + eb(a−u))−1, it follows that

f ′(u) = −(1 + eb(a−u))−2 · −beb(a−u) = beb(a−u)

(1 + eb(a−u))2
> 0

for all u. Next, observe that

g(0) = f (0) − f (0)

f (1) − f (0)
= 0, g(1) = f (1) − f (0)

f (1) − f (0)
= 1,

and

g′(u) = 1

f (1) − f (0)
f ′(u) > 0

for all u. Thus, g(u) increases from 0 to 1 for 0 ≤ u ≤ 1.
(b) Working from part (a), we find

f ′′(u) = b2eb(a−u)(2eb(a−u) − 1)

(1 + eb(a−u))3
.

Because

g′′(u) = 1

f (1) − f (0)
f ′′(u),

it follows that g(u) has a point of inflection when

2eb(a−u) − 1 = 0 or u = a + 1

b
ln 2.

62. Use graphical reasoning to determine whether the following statements are true or false. If false, modify the
statement to make it correct.
(a) If f (x) is increasing, then f −1(x) is decreasing.
(b) If f (x) is decreasing, then f −1(x) is decreasing.
(c) If f (x) is concave up, then f −1(x) is concave up.
(d) If f (x) is concave down, then f −1(x) is concave up.

solution

(a) False. Should be: If f (x) is increasing, then f −1(x) is increasing.
(b) True.
(c) False. Should be: If f (x) is concave up, then f −1(x) is concave down.
(d) True.
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Further Insights and Challenges
In Exercises 63–65, assume that f (x) is differentiable.

63. Proof of the Second Derivative Test Let c be a critical point such that f ′′(c) > 0 (the case f ′′(c) < 0 is similar).

(a) Show that f ′′(c) = lim
h→0

f ′(c + h)

h
.

(b) Use (a) to show that there exists an open interval (a, b) containing c such that f ′(x) < 0 if a < x < c and f ′(x) > 0
if c < x < b. Conclude that f (c) is a local minimum.

solution

(a) Because c is a critical point, either f ′(c) = 0 or f ′(c) does not exist; however, f ′′(c) exists, so f ′(c) must also exist.
Therefore, f ′(c) = 0. Now, from the definition of the derivative, we have

f ′′(c) = lim
h→0

f ′(c + h) − f ′(c)
h

= lim
h→0

f ′(c + h)

h
.

(b) We are given that f ′′(c) > 0. By part (a), it follows that

lim
h→0

f ′(c + h)

h
> 0;

in other words, for sufficiently small h,

f ′(c + h)

h
> 0.

Now, if h is sufficiently small but negative, then f ′(c + h) must also be negative (so that the ratio f ′(c + h)/h will be
positive) and c + h < c. On the other hand, if h is sufficiently small but positive, then f ′(c + h) must also be positive
and c + h > c. Thus, there exists an open interval (a, b) containing c such that f ′(x) < 0 for a < x < c and f ′(c) > 0
for c < x < b. Finally, because f ′(x) changes from negative to positive at x = c, f (c) must be a local minimum.

64. Prove that if f ′′(x) exists and f ′′(x) > 0 for all x, then the graph of f (x) “sits above” its tangent lines.

(a) For any c, set G(x) = f (x) − f ′(c)(x − c) − f (c). It is sufficient to prove that G(x) ≥ 0 for all c. Explain why
with a sketch.

(b) Show that G(c) = G′(c) = 0 and G′′(x) > 0 for all x. Conclude that G′(x) < 0 for x < c and G′(x) > 0 for x > c.
Then deduce, using the MVT, that G(x) > G(c) for x = c.

solution

(a) Let c be any number. Then y = f ′(c)(x − c) + f (c) is the equation of the line tangent to the graph of f (x) at x = c

and G(x) = f (x) − f ′(c)(x − c) − f (c) measures the amount by which the value of the function exceeds the value of
the tangent line (see the figure below). Thus, to prove that the graph of f (x) “sits above” its tangent lines, it is sufficient
to prove that G(x) ≥ 0 for all c.

y

x

(b) Note that G(c) = f (c) − f ′(c)(c − c) − f (c) = 0, G′(x) = f ′(x) − f ′(c) and G′(c) = f ′(c) − f ′(c) = 0.
Moreover, G′′(x) = f ′′(x) > 0 for all x. Now, because G′(c) = 0 and G′(x) is increasing, it must be true that G′(x) < 0
for x < c and that G′(x) > 0 for x > c. Therefore, G(x) is decreasing for x < c and increasing for x > c. This implies
that G(c) = 0 is a minimum; consequently G(x) > G(c) = 0 for x = c.

65. Assume that f ′′(x) exists and let c be a point of inflection of f (x).

(a) Use the method of Exercise 64 to prove that the tangent line at x = c crosses the graph (Figure 21). Hint: Show that
G(x) changes sign at x = c.
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(b) Verify this conclusion for f (x) = x

3x2 + 1
by graphing f (x) and the tangent line at each inflection point on

the same set of axes.

FIGURE 21 Tangent line crosses graph at point of inflection.

solution
(a) Let G(x) = f (x) − f ′(c)(x − c) − f (c). Then, as in Exercise 63, G(c) = G′(c) = 0 and G′′(x) = f ′′(x). If f ′′(x)

changes from positive to negative at x = c, then so does G′′(x) and G′(x) is increasing for x < c and decreasing for
x > c. This means that G′(x) < 0 for x < c and G′(x) < 0 for x > c. This in turn implies that G(x) is decreasing, so
G(x) > 0 for x < c but G(x) < 0 for x > c. On the other hand, if f ′′(x) changes from negative to positive at x = c, then
so does G′′(x) and G′(x) is decreasing for x < c and increasing for x > c. Thus, G′(x) > 0 for x < c and G′(x) > 0
for x > c. This in turn implies that G(x) is increasing, so G(x) < 0 for x < c and G(x) > 0 for x > c. In either case,
G(x) changes sign at x = c, and the tangent line at x = c crosses the graph of the function.

(b) Let f (x) = x

3x2 + 1
. Then

f ′(x) = 1 − 3x2

(3x2 + 1)2
and f ′′(x) = −18x(1 − x2)

(3x2 + 1)3
.

Therefore f (x) has a point of inflection at x = 0 and at x = ±1. The figure below shows the graph of y = f (x) and its
tangent lines at each of the points of inflection. It is clear that each tangent line crosses the graph of f (x) at the inflection
point.

x

y

66. Let C(x) be the cost of producing x units of a certain good. Assume that the graph of C(x) is concave up.

(a) Show that the average cost A(x) = C(x)/x is minimized at the production level x0 such that average cost equals
marginal cost—that is, A(x0) = C′(x0).
(b) Show that the line through (0, 0) and (x0, C(x0)) is tangent to the graph of C(x).

solution Let C(x) be the cost of producing x units of a commodity. Assume the graph of C is concave up.

(a) Let A(x) = C(x)/x be the average cost and let x0 be the production level at which average cost is minimized. Then

A′(x0) = x0C′(x0) − C(x0)

x2
0

= 0 implies x0C′(x0) − C(x0) = 0, whence C′(x0) = C(x0)/x0 = A(x0). In other words,

A(x0) = C′(x0) or average cost equals marginal cost at production level x0. To confirm that x0 corresponds to a local
minimum of A, we use the Second Derivative Test. We find

A′′(x0) = x2
0C′′(x0) − 2(x0C′(x0) − C(x0))

x3
0

= C′′(x0)

x0
> 0

because C is concave up. Hence, x0 corresponds to a local minimum.
(b) The line between (0, 0) and (x0, C(x0)) is

C(x0) − 0

x0 − 0
(x − x0) + C(x0) = C(x0)

x0
(x − x0) + C(x0) = A(x0)(x − x0) + C(x0)

= C′(x0)(x − x0) + C(x0)

which is the tangent line to C at x0.

67. Let f (x) be a polynomial of degree n ≥ 2. Show that f (x) has at least one point of inflection if n is odd. Then give
an example to show that f (x) need not have a point of inflection if n is even.

solution Let f (x) = anxn + an−1xn−1 + · · · + a1x + a0 be a polynomial of degree n. Then f ′(x) = nanxn−1 +
(n − 1)an−1xn−2 + · · · + 2a2x + a1 and f ′′(x) = n(n − 1)anxn−2 + (n − 1)(n − 2)an−1xn−3 + · · · + 6a3x + 2a2.
If n ≥ 3 and is odd, then n − 2 is also odd and f ′′(x) is a polynomial of odd degree. Therefore f ′′(x) must take on both
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positive and negative values. It follows that f ′′(x) has at least one root c such that f ′′(x) changes sign at c. The function
f (x) will then have a point of inflection at x = c. On the other hand, the functions f (x) = x2, x4 and x8 are polynomials
of even degree that do not have any points of inflection.

68. Critical and Inflection Points If f ′(c) = 0 and f (c) is neither a local min nor a local max, must x = c be a point
of inflection? This is true for “reasonable” functions (including the functions studied in this text), but it is not true in
general. Let

f (x) =
{

x2 sin 1
x for x = 0

0 for x = 0

(a) Use the limit definition of the derivative to show that f ′(0) exists and f ′(0) = 0.
(b) Show that f (0) is neither a local min nor a local max.
(c) Show that f ′(x) changes sign infinitely often near x = 0. Conclude that x = 0 is not a point of inflection.

solution Let f (x) =
{

x2 sin (1/x) for x = 0

0 for x = 0
.

(a) Now f ′(0) = lim
x→0

f (x) − f (0)

x − 0
= lim

x→0

x2 sin (1/x)

x
= lim

x→0
x sin

(
1

x

)
= 0 by the Squeeze Theorem: as x → 0

we have ∣∣∣∣x sin

(
1

x

)
− 0

∣∣∣∣ = |x|
∣∣∣∣sin

(
1

x

)∣∣∣∣→ 0,

since | sin u| ≤ 1.
(b) Since sin( 1

x ) oscillates through every value between −1 and 1 with increasing frequency as x → 0, in any open

interval (−δ, δ) there are points a and b such that f (a) = a2 sin( 1
a ) < 0 and f (b) = b2 sin( 1

b
) > 0. Accordingly,

f (0) = 0 can neither be a local minimum value nor a local maximum value of f .
(c) In part (a) it was shown that f ′(0) = 0. For x = 0, we have

f ′(x) = x2 cos

(
1

x

)(
− 1

x2

)
+ 2x sin

(
1

x

)
= 2x sin

(
1

x

)
− cos

(
1

x

)
.

As x → 0, f ′(x) oscillates increasingly rapidly; consequently, f ′(x) changes sign infinitely often near x = 0. From this
we conclude that f (x) does not have a point of inflection at x = 0.

4.5 L’Hôpital’s Rule

Preliminary Questions

1. What is wrong with applying L’Hôpital’s Rule to lim
x→0

x2 − 2x

3x − 2
?

solution As x → 0,

x2 − 2x

3x − 2

is not of the form 0
0 or ∞∞ , so L’Hôpital’s Rule cannot be used.

2. Does L’Hôpital’s Rule apply to lim
x→a

f (x)g(x) if f (x) and g(x) both approach ∞ as x → a?

solution No. L’Hôpital’s Rule only applies to limits of the form 0
0 or ∞∞ .

Exercises
In Exercises 1–10, use L’Hôpital’s Rule to evaluate the limit, or state that L’Hôpital’s Rule does not apply.

1. lim
x→3

2x2 − 5x − 3

x − 4

solution Because the quotient is not indeterminate at x = 3,

2x2 − 5x − 3

x − 4

∣∣∣∣
x=3

= 18 − 15 − 3

3 − 4
= 0

−1
,

L’Hôpital’s Rule does not apply.
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2. lim
x→−5

x2 − 25

5 − 4x − x2

solution The functions x2 − 25 and 5 − 4x − x2 are differentiable, but the quotient is indeterminate at x = −5,

x2 − 25

5 − 4x − x2

∣∣∣∣
x=−5

= 25 − 25

5 + 20 − 25
= 0

0
,

so L’Hôpital’s Rule applies. We find

lim
x→−5

x2 − 25

5 − 4x − x2
= lim

x→−5

2x

−4 − 2x
= −10

−4 + 10
= −5

3
.

3. lim
x→4

x3 − 64

x2 + 16

solution Because the quotient is not indeterminate at x = 4,

x3 − 64

x2 + 16

∣∣∣∣
x=4

= 64 − 64

16 + 16
= 0

32
,

L’Hôpital’s Rule does not apply.

4. lim
x→−1

x4 + 2x + 1

x5 − 2x − 1

solution The functions x4 + 2x + 1 and x5 − 2x − 1 are differentiable, but the quotient is indeterminate at x = −1,

x4 + 2x + 1

x5 − 2x − 1

∣∣∣∣
x=−1

= 1 − 2 + 1

−1 + 2 − 1
= 0

0
,

so L’Hôpital’s Rule applies. We find

lim
x→−1

x4 + 2x + 1

x5 − 2x − 1
= lim

x→−1

4x3 + 2

5x4 − 2
= −4 + 2

5 − 2
= −2

3
.

5. lim
x→9

x1/2 + x − 6

x3/2 − 27

solution Because the quotient is not indeterminate at x = 9,

x1/2 + x − 6

x3/2 − 27

∣∣∣∣
x=9

= 3 + 9 − 6

27 − 27
= 6

0
,

L’Hôpital’s Rule does not apply.

6. lim
x→3

√
x + 1 − 2

x3 − 7x − 6

solution The functions
√

x + 1 − 2 and x3 − 7x − 6 are differentiable, but the quotient is indeterminate at x = 3,

√
x + 1 − 2

x3 − 7x − 6

∣∣∣∣
x=3

= 2 − 2

27 − 21 − 6
= 0

0
,

so L’Hôpital’s Rule applies. We find

lim
x→3

√
x + 1 − 2

x3 − 7x − 6
=

1
2
√

x+1

3x2 − 7
=

1
4

20
= 1

80
.

7. lim
x→0

sin 4x

x2 + 3x + 1

solution Because the quotient is not indeterminate at x = 0,

sin 4x

x2 + 3x + 1

∣∣∣∣
x=0

= 0

0 + 0 + 1
= 0

1
,

L’Hôpital’s Rule does not apply.
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8. lim
x→0

x3

sin x − x

solution The functions x3 and sin x − x are differentiable, but the quotient is indeterminate at x = 0,

x3

sin x − x

∣∣∣∣
x=0

= 0

0 − 0
= 0

0
,

so L’Hôpital’s Rule applies. Here, we use L’Hôpital’s Rule three times to find

lim
x→0

x3

sin x − x
= lim

x→0

3x2

cos x − 1
= lim

x→0

6x

− sin x
= lim

x→0

6

− cos x
= −6.

9. lim
x→0

cos 2x − 1

sin 5x

solution The functions cos 2x − 1 and sin 5x are differentiable, but the quotient is indeterminate at x = 0,

cos 2x − 1

sin 5x

∣∣∣∣
x=0

= 1 − 1

0
= 0

0
,

so L’Hôpital’s Rule applies. We find

lim
x→0

cos 2x − 1

sin 5x
= lim

x→0

−2 sin 2x

5 cos 5x
= 0

5
= 0.

10. lim
x→0

cos x − sin2 x

sin x

solution Because the quotient is not indeterminate at x = 0,

cos x − sin2 x

sin x

∣∣∣∣
x=0

= 1 − 0

0
= 1

0
,

L’Hôpital’s Rule does not apply.

In Exercises 11–16, show that L’Hôpital’s Rule is applicable to the limit as x → ±∞ and evaluate.

11. lim
x→∞

9x + 4

3 − 2x

solution As x → ∞, the quotient
9x + 4

3 − 2x
is of the form

∞
∞ , so L’Hôpital’s Rule applies. We find

lim
x→∞

9x + 4

3 − 2x
= lim

x→∞
9

−2
= −9

2
.

12. lim
x→−∞ x sin

1

x

solution As x → ∞, x sin 1
x is of the form ∞ · 0, so L’Hôpital’s Rule does not immediately apply. If we rewrite

x sin 1
x as

sin(1/x)

1/x
, the rewritten expression is of the form

0

0
as x → ∞, so L’Hôpital’s Rule now applies. We find

lim
x→∞ x · sin

(
1

x

)
= lim

x→∞
sin(1/x)

1/x
= lim

x→∞
cos(1/x)(−1/x2)

−1/x2
= lim

x→∞ cos(1/x) = cos 0 = 1.
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13. lim
x→∞

ln x

x1/2

solution As x → ∞, the quotient
ln x

x1/2
is of the form

∞
∞ , so L’Hôpital’s Rule applies. We find

lim
x→∞

ln x

x1/2
= lim

x→∞
1
x

1
2x−1/2

= lim
x→∞

1

2x1/2
= 0.

14. lim
x→∞

x

ex

solution As x → ∞, the quotient
x

ex
is of the form

∞
∞ , so L’Hôpital’s Rule applies. We find

lim
x→∞

x

ex
= lim

x→∞
1

ex
= 0.

15. lim
x→−∞

ln(x4 + 1)

x

solution As x → ∞, the quotient
ln(x4 + 1)

x
is of the form

∞
∞ , so L’Hôpital’s Rule applies. Here, we use L’Hôpital’s

Rule twice to find

lim
x→∞

ln(x4 + 1)

x
= lim

x→∞

4x3

x4+1

1
= lim

x→∞
12x2

4x3
= lim

x→∞
3

x
= 0.

16. lim
x→∞

x2

ex

solution As x → ∞, the quotient
x2

ex
is of the form

∞
∞ , so L’Hôpital’s Rule applies. Here, we use L’Hôpital’s Rule

twice to find

lim
x→∞

x2

ex
= lim

x→∞
2x

ex
= lim

x→∞
2

ex
= 0.

In Exercises 17–54, evaluate the limit.

17. lim
x→1

√
8 + x − 3x1/3

x2 − 3x + 2

solution lim
x→1

√
8 + x − 3x1/3

x2 − 3x + 2
= lim

x→1

1
2 (8 + x)−1/2 − x−2/3

2x − 3
=

1
6 − 1

−1
= 5

6
.

18. lim
x→4

[
1√

x − 2
− 4

x − 4

]

solution lim
x→4

[
1√

x − 2
− 4

x − 4

]
= lim

x→4

[√
x + 2

x − 4
− 4

x − 4

]
= lim

x→4

1
2
√

x

1
= 1

4
.

19. lim
x→−∞

3x − 2

1 − 5x

solution lim
x→−∞

3x − 2

1 − 5x
= lim

x→−∞
3

−5
= −3

5
.

20. lim
x→∞

x2/3 + 3x

x5/3 − x

solution lim
x→∞

x2/3 + 3x

x5/3 − x
= lim

x→∞
1
x + 3

x2/3

1 − 1
x2/3

= 0 + 0

1 − 0
= 0.

21. lim
x→−∞

7x2 + 4x

9 − 3x2

solution lim
x→−∞

7x2 + 4x

9 − 3x2
= lim

x→−∞
14x + 4

−6x
= lim

x→−∞
14

−6
= −7

3
.
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22. lim
x→∞

3x3 + 4x2

4x3 − 7

solution lim
x→∞

3x3 + 4x2

4x3 − 7
= lim

x→∞
9x2 + 8x

12x2
= lim

x→∞
18x + 8

24x
= 18

24
= 3

4
.

23. lim
x→1

(1 + 3x)1/2 − 2

(1 + 7x)1/3 − 2
solution Apply L’Hôpital’s Rule once:

lim
x→1

(1 + 3x)1/2 − 2

(1 + 7x)1/3 − 2
= lim

x→1

3
2 (1 + 3x)−1/2

7
3 (1 + 7x)−2/3

= ( 3
2 ) 1

2

( 7
3 )( 1

4 )
= 9

7

24. lim
x→8

x5/3 − 2x − 16

x1/3 − 2

solution lim
x→8

x5/3 − 2x − 16

x1/3 − 2
= lim

x→8

5
3x2/3 − 2

1
3x−2/3

=
20
3 − 2

1
12

= 56.

25. lim
x→0

sin 2x

sin 7x

solution lim
x→0

sin 2x

sin 7x
= lim

x→0

2 cos 2x

7 cos 7x
= 2

7
.

26. lim
x→π/2

tan 4x

tan 5x

solution

lim
x→π/2

tan 4x

tan 5x
= lim

x→π/2

4 sec2 4x

5 sec2 5x
= 4

5
lim

x→π/2

cos2 5x

cos2 4x

= 4

5
lim

x→π/2

−10 sin 5x cos 5x

−8 sin 4x cos 4x
= lim

x→π/2

sin 10x

sin 8x

= lim
x→π/2

10 cos 10x

8 cos 8x
= −5

4
.

27. lim
x→0

tan x

x

solution lim
x→0

tan x

x
= lim

x→0

sec2 x

1
= 1.

28. lim
x→0

(
cot x − 1

x

)
solution

lim
x→0

(
cot x − 1

x

)
= lim

x→0

x cos x − sin x

x sin x
= lim

x→0

−x sin x + cos x − cos x

x cos x + sin x
= lim

x→0

−x sin x

x cos x + sin x

= lim
x→0

−x cos x − x

−x sin x + cos x + cos x
= 0

2
= 0.

29. lim
x→0

sin x − x cos x

x − sin x

solution

lim
x→0

sin x − x cos x

x − sin x
= lim

x→0

x sin x

1 − cos x
= lim

x→0

sin x + x cos x

sin x
= lim

x→0

cos x + cos x − x sin x

cos x
= 2.

30. lim
x→π/2

(
x − π

2

)
tan x

solution

lim
x→π/2

(
x − π

2

)
tan x = lim

x→π/2

x − π/2

1/ tan x
= lim

x→π/2

x − π/2

cot x
= lim

x→π/2

1

− csc2 x
= lim

x→π/2
− sin2 x = −1.
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31. lim
x→0

cos(x + π
2 )

sin x

solution lim
x→0

cos(x + π
2 )

sin x
= lim

x→0

− sin(x + π
2 )

cos x
= −1.

32. lim
x→0

x2

1 − cos x

solution lim
x→0

x2

1 − cos x
= lim

x→0

2x

sin x
= lim

x→0

2

cos x
= 2.

33. lim
x→π/2

cos x

sin(2x)

solution lim
x→π/2

cos x

sin(2x)
= lim

x→π/2

− sin x

2 cos(2x)
= 1

2
.

34. lim
x→0

(
1

x2
− csc2 x

)

solution

lim
x→0

(
1

x2
− csc2 x

)
= lim

x→0

sin2 x − x2

x2 sin2 x

= lim
x→0

2 sin x cos x − 2x

2x2 sin x cos x + 2x sin2 x
= lim

x→0

sin 2x − 2x

x2 sin 2x + 2x sin2 x

= lim
x→0

2 cos 2x − 2

2x2 cos 2x + 2x sin 2x + 4x sin x cos x + 2 sin2 x
= lim

x→0

cos 2x − 1

x2 cos 2x + 2x sin 2x + sin2 x

= lim
x→0

−2 sin 2x

−2x2 sin 2x + 2x cos 2x + 4x cos 2x + 2 sin 2x + 2 sin x cos x

= lim
x→0

−2 sin 2x

(3 − 2x2) sin 2x + 6x cos 2x

= lim
x→0

−4 cos 2x

2(3 − 2x2) cos 2x − 4x sin 2x + −12x sin 2x + 6 cos 2x
= −1

3
.

35. lim
x→π/2

(sec x − tan x)

solution

lim
x→ π

2

( sec x − tan x) = lim
x→ π

2

(
1

cos x
− sin x

cos x

)
= lim

x→ π
2

(
1 − sin x

cos x

)
= lim

x→ π
2

( − cos x

− sin x

)
= 0.

36. lim
x→2

ex2 − e4

x − 2

solution lim
x→2

ex2 − e4

x − 2
= lim

x→2

2xex2

1
= 4e4.

37. lim
x→1

tan
(πx

2

)
ln x

solution lim
x→1

tan
(πx

2

)
ln x = lim

x→1

ln x

cot( πx
2 )

= lim
x→1

1
x

−π
2 csc2( πx

2 )
= lim

x→1

−2

πx
sin2

(π

2
x
)

= − 2

π
.

38. lim
x→1

x(ln x − 1) + 1

(x − 1) ln x

solution

lim
x→1

x(ln x − 1) + 1

(x − 1) ln x
= lim

x→1

x( 1
x ) + (ln x − 1)

(x − 1)( 1
x ) + ln x

= lim
x→1

ln x

1 − 1
x + ln x

= lim
x→1

1
x

1
x2 + 1

x

= 1

1 + 1
= 1

2
.

39. lim
x→0

ex − 1

sin x

solution lim
x→0

ex − 1

sin x
= lim

x→0

ex

cos x
= 1.
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40. lim
x→1

ex − e

ln x

solution lim
x→1

ex − e

ln x
= lim

x→1

ex

x−1
= e

1
= e.

41. lim
x→0

e2x − 1 − x

x2

solution lim
x→0

e2x − 1 − x

x2
= lim

x→0

2e2x − 1

2x
which does not exist.

42. lim
x→∞

e2x − 1 − x

x2

solution

lim
x→∞

e2x − 1 − x

x2
= lim

x→∞
2e2x − 1

2x

= lim
x→∞

4e2x

2
= ∞.

43. lim
t→0+(sin t)(ln t)

solution

lim
t→0+(sin t)(ln t) = lim

t→0+
ln t

csc t
= lim

t→0+
1
t

− csc t cot t
= lim

t→0+
− sin2 t

t cos t
= lim

t→0+
−2 sin t cos t

cos t − t sin t
= 0.

44. lim
x→∞ e−x(x3 − x2 + 9)

solution

lim
x→∞ e−x(x3 − x2 + 9) = lim

x→∞
x3 − x2 + 9

ex
= lim

x→∞
3x2 − 2x

ex
= lim

x→∞
6x − 2

ex
= lim

x→∞
6

ex
= 0.

45. lim
x→0

ax − 1

x
(a > 0)

solution lim
x→0

ax − 1

x
= lim

x→0

ln a · ax

1
= ln a.

46. lim
x→∞ x1/x2

solution lim
x→∞ ln x1/x2 = lim

x→∞
ln x

x2
= lim

x→∞
1

2x2
= 0. Hence,

lim
x→∞ x1/x2 = lim

x→∞ eln x1/x2

= e0 = 1.

47. lim
x→1

(1 + ln x)1/(x−1)

solution lim
x→1

ln(1 + ln x)1/(x−1) = lim
x→1

ln(1 + ln x)

x − 1
= lim

x→1

1

x(1 + ln x)
= 1. Hence,

lim
x→1

(1 + ln x)1/(x−1) = lim
x→1

e(1+ln x)1/(x−1) = e.

48. lim
x→0+ xsin x

solution

lim
x→0+ ln(xsin x) = lim

x→0+ sin x(ln x) = lim
x→0+

ln x

1
sin x

= lim
x→0+

1
x

− cos x(sin x)−2

= lim
x→0+ − sin2 x

x cos x
= lim

x→0+ − 2 sin x cos x

−x sin x + cos x
= 0.

Hence, lim
x→0+ xsin x = lim

x→0+ eln(xsin x) = e0 = 1.
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49. lim
x→0

(cos x)3/x2

solution

lim
x→0

ln(cos x)3/x2 = lim
x→0

3 ln cos x

x2

= lim
x→0

−3 tan x

2x

= lim
x→0

−3 sec2 x

2
= −3

2
.

Hence, lim
x→0

(cos x)3/x2 = e−3/2.

50. lim
x→∞

(
x

x + 1

)x

solution

lim
x→∞ x ln

(
x

x + 1

)
= lim

x→∞
ln
(

x
x+1

)
1/x

= lim
x→∞

(
x+1
x

) (
1

(x+1)2

)
−1/x2

= lim
x→∞ − x

x + 1
= −1.

Hence,

lim
x→∞

(
x

x + 1

)x

= 1

e
.

51. lim
x→0

sin−1 x

x

solution lim
x→0

sin−1 x

x
= lim

x→0

1√
1−x2

1
= 1.

52. lim
x→0

tan−1 x

sin−1 x

solution lim
x→0

tan−1 x

sin−1 x
= lim

x→0

1
1+x2

1√
1−x2

= 1.

53. lim
x→1

tan−1 x − π
4

tan π
4 x − 1

solution lim
x→1

tan−1 x − π
4

tan(πx/4) − 1
= lim

x→1

1
1+x2

π
4 sec2(πx/4)

=
1
2
π
2

= 1

π
.

54. lim
x→0+ ln x tan−1 x

solution Let h(x) = ln x tan−1 x. limx→0 h(x) = −∞ · 0, so we apply L’Hôpital’s rule to h(x) = f (x)
g(x)

, where

f (x) = tan−1(x) and g(x) = 1
ln x

.

f ′(x) = 1

1 + x2

lim
x→0

f ′(x) = 1

g′(x) = − 1

x(ln x)2

lim
x→0

g′(x) = −∞

Hence, L’Hôpital’s rule yields:

lim
x→0

f (x)

g(x)
= limx→0 f ′(x)

limx→0 g′(x)
= − 1

∞ = 0.



April 2, 2011

S E C T I O N 4.5 L’Hôpital’s Rule 443

55. Evaluate lim
x→π/2

cos mx

cos nx
, where m, n = 0 are integers.

solution Suppose m and n are even. Then there exist integers k and l such that m = 2k and n = 2l and

lim
x→π/2

cos mx

cos nx
= cos kπ

cos lπ
= (−1)k−l .

Now, suppose m is even and n is odd. Then

lim
x→π/2

cos mx

cos nx

does not exist (from one side the limit tends toward −∞, while from the other side the limit tends toward +∞). Third,
suppose m is odd and n is even. Then

lim
x→π/2

cos mx

cos nx
= 0.

Finally, suppose m and n are odd. This is the only case when the limit is indeterminate. Then there exist integers k and l

such that m = 2k + 1, n = 2l + 1 and, by L’Hôpital’s Rule,

lim
x→π/2

cos mx

cos nx
= lim

x→π/2

−m sin mx

−n sin nx
= (−1)k−l m

n
.

To summarize,

lim
x→π/2

cos mx

cos nx
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)(m−n)/2, m, n even

does not exist, m even, n odd

0 m odd, n even

(−1)(m−n)/2 m
n , m, n odd

56. Evaluate lim
x→1

xm − 1

xn − 1
for any numbers m, n = 0.

solution lim
x→1

xm − 1

xn − 1
= lim

x→1

mxm−1

nxn−1
= m

n
.

57. Prove the following limit formula for e:

e = lim
x→0

(1 + x)1/x

Then find a value of x such that |(1 + x)1/x − e| ≤ 0.001.

solution Using L’Hôpital’s Rule,

lim
x→0

ln(1 + x)

x
= lim

x→0

1
1+x

1
= 1.

Thus,

lim
x→0

ln
(
(1 + x)1/x

)
= lim

x→0

1

x
ln(1 + x) = lim

x→0

ln(1 + x)

x
= 1,

and lim
x→0

(1 + x)1/x = e1 = e. For x = 0.0005,

∣∣∣(1 + x)1/x − e

∣∣∣ = |(1.0005)2000 − e| ≈ 6.79 × 10−4 < 0.001.

58. Can L’Hôpital’s Rule be applied to lim
x→0+ xsin(1/x)? Does a graphical or numerical investigation suggest that

the limit exists?

solution Since sin(1/x) oscillates as x → 0+, L’Hôpital’s Rule cannot be applied. Both numerical and graphical
investigations suggest that the limit does not exist due to the oscillation.

x 1 0.1 0.01 0.001 0.0001 0.00001

xsin(1/x) 1 3.4996 10.2975 0.003316 16.6900 0.6626
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y

x

15

20

10

5

0 0.40.30.20.1

59. Let f (x) = x1/x for x > 0.

(a) Calculate lim
x→0+ f (x) and lim

x→∞ f (x).

(b) Find the maximum value of f (x), and determine the intervals on which f (x) is increasing or decreasing.

solution

(a) Let f (x) = x1/x . Note that limx→0+ x1/x is not indeterminate. As x → 0+, the base of the function tends toward
0 and the exponent tends toward +∞. Both of these factors force x1/x toward 0. Thus, limx→0+ f (x) = 0. On the other
hand, limx→∞ f (x) is indeterminate. We calculate this limit as follows:

lim
x→∞ ln f (x) = lim

x→∞
ln x

x
= lim

x→∞
1

x
= 0,

so limx→∞ f (x) = e0 = 1.

(b) Again, let f (x) = x1/x , so that ln f (x) = 1
x ln x. To find the derivative f ′, we apply the derivative to both sides:

d

dx
ln f (x) = d

dx

(
1

x
ln x

)

1

f (x)
f ′(x) = − ln x

x2
+ 1

x2

f ′(x) = f (x)

(
− ln x

x2
+ 1

x2

)
= x1/x

x2
(1 − ln x)

Thus, f is increasing for 0 < x < e, is decreasing for x > e and has a maximum at x = e. The maximum value is
f (e) = e1/e ≈ 1.444668.

60. (a) Use the results of Exercise 59 to prove that x1/x = c has a unique solution if 0 < c ≤ 1 or c = e1/e, two solutions
if 1 < c < e1/e, and no solutions if c > e1/e.

(b) Plot the graph of f (x) = x1/x and verify that it confirms the conclusions of (a).

solution

(a) Because (e, e1/e) is the only maximum, no solution exists for c > e1/e and only one solution exists for c = e1/e.
Moreover, because f (x) increases from 0 to e1/e as x goes from 0 to e and then decreases from e1/e to 1 as x goes from
e to +∞, it follows that there are two solutions for 1 < c < e1/e, but only one solution for 0 < c ≤ 1.

(b) Observe that if we sketch the horizontal line y = c, this line will intersect the graph of y = f (x) only once for
0 < c ≤ 1 and c = e1/e and will intersect the graph of y = f (x) twice for 1 < c < e1/e. There are no points of
intersection for c > e1/e.

y

x

0.5

0

1

2015105

61. Determine whether f << g or g << f (or neither) for the functions f (x) = log10 x and g(x) = ln x.

solution Because

lim
x→∞

f (x)

g(x)
= lim

x→∞
log10 x

ln x
= lim

x→∞
ln x
ln 10
ln x

= 1

ln 10
,

neither f << g or g << f is satisfied.
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62. Show that (ln x)2 <<
√

x and (ln x)4 << x1/10.

solution

• (ln x)2 <<
√

x:

lim
x→∞

√
x

(ln x)2
= lim

x→∞

1
2
√

x

2
x ln x

= lim
x→∞

√
x

4 ln x
= lim

x→∞

1
2
√

x

4
x

= lim
x→∞

√
x

8
= ∞.

• (ln x)4 << x1/10:

lim
x→∞

x1/10

(ln x)4
= lim

x→∞
1

10x9/10

4
x (ln x)3

= lim
x→∞

x1/10

40(ln x)3
= lim

x→∞
1

10x9/10

120
x (ln x)2

= lim
x→∞

x1/10

1200(ln x)2

= lim
x→∞

1
10x9/10

2400
x (ln x)

= lim
x→∞

x1/10

24000 ln x
= lim

x→∞
1

10x9/10

24000
x

= lim
x→∞

x1/10

240000
= ∞.

63. Just as exponential functions are distinguished by their rapid rate of increase, the logarithm functions grow particularly
slowly. Show that ln x << xa for all a > 0.

solution Using L’Hôpital’s Rule:

lim
x→∞

ln x

xa
= lim

x→∞
x−1

axa−1
= lim

x→∞
1

a
x−a = 0;

hence, ln x << (xa).

64. Show that (ln x)N << xa for all N and all a > 0.

solution

lim
x→∞

xa

(ln x)N
= lim

x→∞
axa−1

N
x (ln x)N−1

= lim
x→∞

axa

N(ln x)N−1
= · · ·

If we continue in this manner, L’Hôpital’s Rule will give a factor of xa in the numerator, but the power on ln x in the
denominator will eventually be zero. Thus,

lim
x→∞

xa

(ln x)N
= ∞,

so (ln x)N << xa for all N and for all a > 0.

65. Determine whether
√

x << e

√
ln x or e

√
ln x <<

√
x. Hint: Use the substitution u = ln x instead of L’Hôpital’s

Rule.

solution Let u = ln x, then x = eu, and as x → ∞, u → ∞. So

lim
x→∞

e
√

ln x

√
x

= lim
u→∞

e
√

u

eu/2
= lim

u→∞ e
√

u− u
2 .

We need to examine lim
u→∞(

√
u − u

2 ). Since

lim
u→∞

u/2√
u

= lim
u→∞

1
2
1

2
√

u

= lim
u→∞

√
u = ∞,

√
u = o(u/2) and lim

u→∞
(√

u − u

2

)
= −∞. Thus

lim
u→∞ e

√
u− u

2 = e−∞ = 0 so lim
x→∞

e
√

ln x

√
x

= 0

and e
√

ln x <<
√

x.
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66. Show that lim
x→∞ xne−x = 0 for all whole numbers n > 0.

solution

lim
x→∞ xne−x = lim

x→∞
xn

ex
= lim

x→∞
nxn−1

ex

= lim
x→∞

n(n − 1)xn−2

ex

...

= lim
x→∞

n!
ex

= 0.

67. Assumptions Matter Let f (x) = x(2 + sin x) and g(x) = x2 + 1.

(a) Show directly that lim
x→∞ f (x)/g(x) = 0.

(b) Show that lim
x→∞ f (x) = lim

x→∞ g(x) = ∞, but lim
x→∞ f ′(x)/g′(x) does not exist.

Do (a) and (b) contradict L’Hôpital’s Rule? Explain.

solution

(a) 1 ≤ 2 + sin x ≤ 3, so

x

x2 + 1
≤ x(2 + sin x)

x2 + 1
≤ 3x

x2 + 1
.

Since,

lim
x→∞

x

x2 + 1
= lim

x→∞
3x

x2 + 1
= 0,

it follows by the Squeeze Theorem that

lim
x→∞

x(2 + sin x)

x2 + 1
= 0.

(b) lim
x→∞ f (x) = lim

x→∞ x(2 + sin x) ≥ lim
x→∞ x = ∞ and lim

x→∞ g(x) = lim
x→∞(x2 + 1) = ∞, but

lim
x→∞

f ′(x)

g′(x)
= lim

x→∞
x(cos x) + (2 + sin x)

2x

does not exist since cos x oscillates. This does not violate L’Hôpital’s Rule since the theorem clearly states

lim
x→∞

f (x)

g(x)
= lim

x→∞
f ′(x)

g′(x)

“provided the limit on the right exists.”

68. Let H(b) = lim
x→∞

ln(1 + bx)

x
for b > 0.

(a) Show that H(b) = ln b if b ≥ 1

(b) Determine H(b) for 0 < b ≤ 1.

solution

(a) Suppose b ≥ 1. Then

H(b) = lim
x→∞

ln(1 + bx)

x
= lim

x→∞
bx ln b

1 + bx
= bx ln b

bx
= ln b.

(b) Now, suppose 0 < b < 1. Then

H(b) = lim
x→∞

ln(1 + bx)

x
= lim

x→∞
bx ln b

1 + bx
= 0

1
= 0.

69. Let G(b) = lim
x→∞(1 + bx)1/x .

(a) Use the result of Exercise 68 to evaluate G(b) for all b > 0.

(b) Verify your result graphically by plotting y = (1 + bx)1/x together with the horizontal line y = G(b) for the
values b = 0.25, 0.5, 2, 3.
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solution

(a) Using Exercise 68, we see that G(b) = eH(b). Thus, G(b) = 1 if 0 ≤ b ≤ 1 and G(b) = b if b > 1.
(b)

1

5 10 15

2

3

4

y

x

b = 0.25

1

5 10 15

2

3

4

y

x

b = 0.5

1

5 10 15

2

3

4

y

x

b = 2.0

1

5 10 15

2

3

4

5

6

y

x

b = 3.0

70. Show that lim
t→∞ tke−t2 = 0 for all k. Hint: Compare with lim

t→∞ tke−t = 0.

solution Because we are interested in the limit as t → +∞, we will restrict attention to t > 1. Then, for all k,

0 ≤ tke−t2 ≤ tke−t .

As lim
t→∞ tke−t = 0, it follows from the Squeeze Theorem that

lim
t→∞ tke−t2 = 0.

In Exercises 71–73, let

f (x) =
{

e−1/x2
for x = 0

0 for x = 0

These exercises show that f (x) has an unusual property: All of its derivatives at x = 0 exist and are equal to zero.

71. Show that lim
x→0

f (x)

xk
= 0 for all k. Hint: Let t = x−1 and apply the result of Exercise 70.

solution lim
x→0

f (x)

xk
= lim

x→0

1

xke1/x2 . Let t = 1/x. As x → 0, t → ∞. Thus,

lim
x→0

1

xke1/x2 = lim
t→∞

tk

et2 = 0

by Exercise 70.

72. Show that f ′(0) exists and is equal to zero. Also, verify that f ′′(0) exists and is equal to zero.

solution Working from the definition,

f ′(0) = lim
x→0

f (x) − f (0)

x − 0
= lim

x→0

f (x)

x
= 0

by the previous exercise. Thus, f ′(0) exists and is equal to 0. Moreover,

f ′(x) =
{

e−1/x2
(

2
x3

)
for x = 0

0 for x = 0

Now,

f ′′(0) = lim
x→0

f ′(x) − f ′(0)

x − 0
= lim

x→0
e−1/x2

(
2

x4

)
= 2 lim

x→0

f (x)

x4
= 0

by the previous exercise. Thus, f ′′(0) exists and is equal to 0.
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73. Show that for k ≥ 1 and x = 0,

f (k)(x) = P(x)e−1/x2

xr

for some polynomial P(x) and some exponent r ≥ 1. Use the result of Exercise 71 to show that f (k)(0) exists and is
equal to zero for all k ≥ 1.

solution For x = 0, f ′(x) = e−1/x2
(

2

x3

)
. Here P(x) = 2 and r = 3. Assume f (k)(x) = P(x)e−1/x2

xr
. Then

f (k+1)(x) = e−1/x2

(
x3P ′(x) + (2 − rx2)P (x)

xr+3

)

which is of the form desired.
Moreover, from Exercise 72, f ′(0) = 0. Suppose f (k)(0) = 0. Then

f (k+1)(0) = lim
x→0

f (k)(x) − f (k)(0)

x − 0
= lim

x→0

P(x)e−1/x2

xr+1
= P(0) lim

x→0

f (x)

xr+1
= 0.

Further Insights and Challenges
74. Show that L’Hôpital’s Rule applies to lim

x→∞
x√

x2 + 1
but that it does not help. Then evaluate the limit directly.

solution Both the numerator f (x) = x and the denominator g(x) =
√

x2 + 1 tend to infinity as x → ∞, and

g′(x) = x/
√

x2 + 1 is nonzero for x > 0. Therefore, L’Hôpital’s Rule applies:

lim
x→∞

x√
x2 + 1

= lim
x→∞

1

x(x2 + 1)−1/2
= lim

x→∞
(x2 + 1)1/2

x

We may apply L’Hôpital’s Rule again: lim
x→∞

(x2 + 1)1/2

x
= lim

x→∞
x(x2 + 1)−1/2

1
= lim

x→∞
x√

x2 + 1
. This takes us back

to the original limit, so L’Hôpital’s Rule is ineffective. However, we can evaluate the limit directly by observing that

x√
x2 + 1

= x−1(x)

x−1
√

x2 + 1
= 1√

1 + x−2
and hence lim

x→∞
x√

x2 + 1
= lim

x→∞
1√

1 + x−2
= 1.

75. The Second Derivative Test for critical points fails if f ′′(c) = 0. This exercise develops a Higher Derivative Test
based on the sign of the first nonzero derivative. Suppose that

f ′(c) = f ′′(c) = · · · = f (n−1)(c) = 0, but f (n)(c) = 0

(a) Show, by applying L’Hôpital’s Rule n times, that

lim
x→c

f (x) − f (c)

(x − c)n
= 1

n! f (n)(c)

where n! = n(n − 1)(n − 2) · · · (2)(1).

(b) Use (a) to show that if n is even, then f (c) is a local minimum if f (n)(c) > 0 and is a local maximum if f (n)(c) < 0.
Hint: If n is even, then (x − c)n > 0 for x = a, so f (x) − f (c) must be positive for x near c if f (n)(c) > 0.

(c) Use (a) to show that if n is odd, then f (c) is neither a local minimum nor a local maximum.

solution

(a) Repeated application of L’Hôpital’s rule yields

lim
x→c

f (x) − f (c)

(x − c)n
= lim

x→c

f ′(x)

n(x − c)n−1

= lim
x→c

f ′′(x)

n(n − 1)(x − c)n−2

= lim
x→c

f ′′′(x)

n(n − 1)(n − 2)(x − c)n−3

= · · ·
= 1

n!f
(n)(c)
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(b) Suppose n is even. Then (x − c)n > 0 for all x = c. If f (n)(c) > 0, it follows that f (x) − f (c) must be positive
for x near c. In other words, f (x) > f (c) for x near c and f (c) is a local minimum. On the other hand, if f (n)(c) < 0,
it follows that f (x) − f (c) must be negative for x near c. In other words, f (x) < f (c) for x near c and f (c) is a local
maximum.

(c) If n is odd, then (x − c)n > 0 for x > c but (x − c)n < 0 for x < c. If f (n)(c) > 0, it follows that f (x) − f (c)

must be positive for x near c and x > c but is negative for x near c and x < c. In other words, f (x) > f (c) for x near
c and x > c but f (x) < f (c) for x near c and x < c. Thus, f (c) is neither a local minimum nor a local maximum. We
obtain a similar result if f (n)(c) < 0.

76. When a spring with natural frequency λ/2π is driven with a sinusoidal force sin(ωt) with ω = λ, it oscillates
according to

y(t) = 1

λ2 − ω2

(
λ sin(ωt) − ω sin(λt)

)
Let y0(t) = lim

ω→λ
y(t).

(a) Use L’Hôpital’s Rule to determine y0(t).

(b) Show that y0(t) ceases to be periodic and that its amplitude |y0(t)| tends to ∞ as t → ∞ (the system is said to be in
resonance; eventually, the spring is stretched beyond its limits).

(c) Plot y(t) for λ = 1 and ω = 0.8, 0.9, 0.99, and 0.999. Do the graphs confirm your conclusion in (b)?

solution

(a)

lim
ω→λ

y(t) = lim
ω→λ

λ sin(ωt) − ω sin(λt)

λ2 − ω2
= lim

ω→λ

d
dω

(λ sin(ωt) − ω sin(λt))

d
dω

(λ2 − ω2)

= lim
ω→λ

λt cos(ωt) − sin(λt)

−2ω
= λt cos(λt) − sin(λt)

−2λ

(b) From part (a)

y0(t) = lim
ω→λ

y(t) = λt cos(λt) − sin(λt)

−2λ
.

This may be rewritten as

y0(t) =
√

λ2t2 + 1

−2λ
cos(λt + φ),

where cos φ = λt√
λ2t2 + 1

and sin φ = 1√
λ2t2 + 1

. Since the amplitude varies with t , y0(t) is not periodic. Also note

that √
λ2t2 + 1

−2λ
→ ∞ as t → ∞.

(c) The graphs below were produced with λ = 1. Moving from left to right and from top to bottom, ω =
0.5, 0.8, 0.9, 0.99, 0.999, 1.
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77. We expended a lot of effort to evaluate lim
x→0

sin x

x
in Chapter 2. Show that we could have evaluated it easily

using L’Hôpital’s Rule. Then explain why this method would involve circular reasoning.

solution lim
x→0

sin x

x
= lim

x→0

cos x

1
= 1. To use L’Hôpital’s Rule to evaluate lim

x→0

sin x

x
, we must know that the

derivative of sin x is cos x, but to determine the derivative of sin x, we must be able to evaluate lim
x→0

sin x

x
.

78. By a fact from algebra, if f , g are polynomials such that f (a) = g(a) = 0, then there are polynomials f1, g1 such
that

f (x) = (x − a)f1(x), g(x) = (x − a)g1(x)

Use this to verify L’Hôpital’s Rule directly for lim
x→a

f (x)/g(x).

solution As in the problem statement, let f (x) and g(x) be two polynomials such that f (a) = g(a) = 0, and let
f1(x) and g1(x) be the polynomials such that f (x) = (x − a)f1(x) and g(x) = (x − a)g1(x). By the product rule, we
have the following facts,

f ′(x) = (x − a)f ′
1(x) + f1(x)

g′(x) = (x − a)g′
1(x) + g1(x)

so

lim
x→a

f ′(x) = f1(a) and lim
x→a

g′(x) = g1(a).

L’Hôpital’s Rule stated for f and g is: if limx→a g′(x) = 0, so that g1(a) = 0,

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
= f1(a)

g1(a)
.

Suppose g1(a) = 0. Then, by direct computation,

lim
x→a

f (x)

g(x)
= lim

x→a

(x − a)f1(x)

(x − a)g1(x)
= lim

x→a

f1(x)

g1(x)
= f1(a)

g1(a)
,

exactly as predicted by L’Hôpital’s Rule.

79. Patience Required Use L’Hôpital’s Rule to evaluate and check your answers numerically:

(a) lim
x→0+

(
sin x

x

)1/x2

(b) lim
x→0

(
1

sin2 x
− 1

x2

)

solution

(a) We start by evaluating

lim
x→0+ ln

(
sin x

x

)1/x2

= lim
x→0+

ln(sin x) − ln x

x2
.

Repeatedly using L’Hôpital’s Rule, we find

lim
x→0+ ln

(
sin x

x

)1/x2

= lim
x→0+

cot x − x−1

2x
= lim

x→0+
x cos x − sin x

2x2 sin x
= lim

x→0+
−x sin x

2x2 cos x + 4x sin x

= lim
x→0+

−x cos x − sin x

8x cos x + 4 sin x − 2x2 sin x
= lim

x→0+
−2 cos x + x sin x

12 cos x − 2x2 cos x − 12x sin x

= − 2

12
= −1

6
.

Therefore, lim
x→0+

( sin x

x

)1/x2

= e−1/6. Numerically we find:

x 1 0.1 0.01

( sin x

x

)1/x2

0.841471 0.846435 0.846481

Note that e−1/6 ≈ 0.846481724.
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(b) Repeatedly using L’Hôpital’s Rule and simplifying, we find

lim
x→0

(
1

sin2 x
− 1

x2

)
= lim

x→0

x2 − sin2 x

x2 sin2 x
= lim

x→0

2x − 2 sin x cos x

x2(2 sin x cos x) + 2x sin2 x
= lim

x→0

2x − 2 sin 2x

x2 sin 2x + 2x sin2 x

= lim
x→0

2 − 2 cos 2x

2x2 cos 2x + 2x sin 2x + 4x sin x cos x + 2 sin2 x

= lim
x→0

2 − 2 cos 2x

2x2 cos 2x + 4x sin 2x + 2 sin2 x

= lim
x→0

4 sin 2x

−4x2 sin 2x + 4x cos 2x + 8x cos 2x + 4 sin 2x + 4 sin x cos x

= lim
x→0

4 sin 2x

(6 − 4x2) sin 2x + 12x cos 2x

= lim
x→0

8 cos 2x

(12 − 8x2) cos 2x − 8x sin 2x + 12 cos 2x − 24x sin 2x
= 1

3
.

Numerically we find:

x 1 0.1 0.01

1

sin2 x
− 1

x2
0.412283 0.334001 0.333340

80. In the following cases, check that x = c is a critical point and use Exercise 75 to determine whether f (c) is a local
minimum or a local maximum.

(a) f (x) = x5 − 6x4 + 14x3 − 16x2 + 9x + 12 (c = 1)

(b) f (x) = x6 − x3 (c = 0)

solution

(a) Let f (x) = x5 − 6x4 + 14x3 − 16x2 + 9x + 12. Then f ′(x) = 5x4 − 24x3 + 42x2 − 32x + 9, so f ′(1) =
5 − 24 + 42 − 32 + 9 = 0 and c = 1 is a critical point. Now,

f ′′(x) = 20x3 − 72x2 + 84x − 32 so f ′′(1) = 0;
f ′′′(x) = 60x2 − 144x + 84 so f ′′′(1) = 0;

f (4)(x) = 120x − 144 so f (4)(1) = −24 = 0.

Thus, n = 4 is even and f (4) < 0, so f (1) is a local maximum.

(b) Let f (x) = x6 − x3. Then, f ′(x) = 6x5 − 3x2, so f ′(0) = 0 and c = 0 is a critical point. Now,

f ′′(x) = 30x4 − 6x so f ′′(0) = 0;
f ′′′(x) = 120x − 6 so f ′′′(0) = −6 = 0.

Thus, n = 3 is odd, so f (0) is neither a local minimum nor a local maximum.

4.6 Graph Sketching and Asymptotes

Preliminary Questions
1. Sketch an arc where f ′ and f ′′ have the sign combination ++. Do the same for −+.

solution An arc with the sign combination ++ (increasing, concave up) is shown below at the left. An arc with the
sign combination −+ (decreasing, concave up) is shown below at the right.

x

y

x

y
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2. If the sign combination of f ′ and f ′′ changes from ++ to +− at x = c, then (choose the correct answer):

(a) f (c) is a local min (b) f (c) is a local max
(c) c is a point of inflection

solution Because the sign of the second derivative changes at x = c, the correct response is (c): c is a point of
inflection.

3. The second derivative of the function f (x) = (x − 4)−1 is f ′′(x) = 2(x − 4)−3. Although f ′′(x) changes sign at
x = 4, f (x) does not have a point of inflection at x = 4. Why not?

solution The function f does not have a point of inflection at x = 4 because x = 4 is not in the domain of f.

Exercises
1. Determine the sign combinations of f ′ and f ′′ for each interval A–G in Figure 16.

CB D E F GA
x

y

y = f (x)

FIGURE 16

solution

• In A, f is decreasing and concave up, so f ′ < 0 and f ′′ > 0.
• In B, f is increasing and concave up, so f ′ > 0 and f ′′ > 0.
• In C, f is increasing and concave down, so f ′ > 0 and f ′′ < 0.
• In D, f is decreasing and concave down, so f ′ < 0 and f ′′ < 0.
• In E, f is decreasing and concave up, so f ′ < 0 and f ′′ > 0.
• In F, f is increasing and concave up, so f ′ > 0 and f ′′ > 0.
• In G, f is increasing and concave down, so f ′ > 0 and f ′′ < 0.

2. State the sign change at each transition point A–G in Figure 17. Example: f ′(x) goes from + to − at A.

A
x

y

y = f (x)

CB D E F G

FIGURE 17

solution

• At B, the graph changes from concave down to concave up, so f ′′ goes from − to +.
• At C, the graph changes from decreasing to increasing, so f ′ goes from − to +.
• At D, the graph changes from concave up to concave down, so f ′′ goes from + to −.
• At E, the graph changes from increasing to decreasing, so f ′ goes from + to −.
• At F, the graph changes from concave down to concave up, so f ′′ goes from − to +.
• At G, the graph changes from decreasing to increasing, so f ′ goes from − to +.

In Exercises 3–6, draw the graph of a function for which f ′ and f ′′ take on the given sign combinations.

3. ++, +−, −−
solution This function changes from concave up to concave down at x = −1 and from increasing to decreasing at
x = 0.

x

y

−1

0 1−1
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4. +−, −−, −+
solution This function changes from increasing to decreasing at x = 0 and from concave down to concave up at
x = 1.

x
21−1

y

−0.2

−0.4

−0.6

5. −+, −−, −+
solution The function is decreasing everywhere and changes from concave up to concave down at x = −1 and from

concave down to concave up at x = − 1
2 .

x

y

0.05

−1 0

6. −+, ++, +−
solution This function changes from decreasing to increasing at x = 0 and from concave up to concave down at
x = 1.

0.2

x
21−1

y

0.4

0.6

7. Sketch the graph of y = x2 − 5x + 4.

solution Let f (x) = x2 − 5x + 4. Then f ′(x) = 2x − 5 and f ′′(x) = 2. Hence f is decreasing for x < 5/2, is
increasing for x > 5/2, has a local minimum at x = 5/2 and is concave up everywhere.

2

5

10

15

4 6

y

x

8. Sketch the graph of y = 12 − 5x − 2x2.

solution Let f (x) = 12 − 5x − 2x2. Then f ′(x) = −5 − 4x and f ′′(x) = −4. Hence f is increasing for x < −5/4,
is decreasing for x > −5/4, has a local maximum at x = −5/4 and is concave down everywhere.

−6 −4 −2

−20

−40

2

y

x
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9. Sketch the graph of f (x) = x3 − 3x2 + 2. Include the zeros of f (x), which are x = 1 and 1 ± √
3 (approximately

−0.73, 2.73).

solution Let f (x) = x3 − 3x2 + 2. Then f ′(x) = 3x2 − 6x = 3x(x − 2) = 0 yields x = 0, 2 and f ′′(x) = 6x − 6.
Thus f is concave down for x < 1, is concave up for x > 1, has an inflection point at x = 1, is increasing for x < 0 and
for x > 2, is decreasing for 0 < x < 2, has a local maximum at x = 0, and has a local minimum at x = 2.

1

x
1 2 3−1

y

−1

2

−2

10. Show that f (x) = x3 − 3x2 + 6x has a point of inflection but no local extreme values. Sketch the graph.

solution Let f (x) = x3 − 3x2 + 6x. Then f ′(x) = 3x2 − 6x + 6 = 3
(
(x − 1)2 + 1

)
> 0 for all values of x and

f ′′(x) = 6x − 6. Hence f is everywhere increasing and has an inflection point at x = 1. It is concave down on (−∞, 1)

and concave up on (1, ∞).

x

10

15

5

−5

y

1 2 3−1

11. Extend the sketch of the graph of f (x) = cos x + 1
2x in Example 4 to the interval [0, 5π ].

solution Let f (x) = cos x + 1
2x. Then f ′(x) = − sin x + 1

2 = 0 yields critical points at x = π
6 , 5π

6 , 13π
6 , 17π

6 ,
25π

6 , and 29π
6 . Moreover, f ′′(x) = − cos x so there are points of inflection at x = π

2 , 3π
2 , 5π

2 , 7π
2 , and 9π

2 .

2

x
2 4 6 8 10 12 14

y

4

6

0

12. Sketch the graphs of y = x2/3 and y = x4/3.

solution

• Let f (x) = x2/3. Then f ′(x) = 2
3x−1/3 and f ′′(x) = − 2

9x−4/3, neither of which exist at x = 0. Thus f is
decreasing and concave down for x < 0 and increasing and concave down for x > 0.

x
1 2−2 −1

1

2

y

• Let f (x) = x4/3. Then f ′(x) = 4
3x1/3 and f ′′(x) = 4

9x−2/3. Thus f is decreasing and concave up for x < 0 and
increasing and concave up for x > 0.

x
1 2−2 −1

1

2

y
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In Exercises 13–34, find the transition points, intervals of increase/decrease, concavity, and asymptotic behavior. Then
sketch the graph, with this information indicated.

13. y = x3 + 24x2

solution Let f (x) = x3 + 24x2. Then f ′(x) = 3x2 + 48x = 3x (x + 16) and f ′′(x) = 6x + 48. This shows that f

has critical points at x = 0 and x = −16 and a candidate for an inflection point at x = −8.

Interval (−∞, −16) (−16, −8) (−8, 0) (0, ∞)

Signs of f ′ and f ′′ +− −− −+ ++
Thus, there is a local maximum at x = −16, a local minimum at x = 0, and an inflection point at x = −8. Moreover,

lim
x→−∞ f (x) = −∞ and lim

x→∞ f (x) = ∞.

Here is a graph of f with these transition points highlighted as in the graphs in the textbook.

−20 −15 −10 −5 5

1000

2000

3000

y

x

14. y = x3 − 3x + 5

solution Let f (x) = x3 − 3x + 5. Then f ′(x) = 3x2 − 3 and f ′′(x) = 6x. Critical points are at x = ±1 and the
sole candidate point of inflection is at x = 0.

Interval (−∞, −1) (−1, 0) (0, 1) (1, ∞)

Signs of f ′ and f ′′ +− −− −+ ++
Thus, f (−1) is a local maximum, f (1) is a local minimum, and there is a point of inflection at x = 0. Moreover,

lim
x→−∞ f (x) = −∞ and lim

x→∞ f (x) = ∞.

Here is the graph of f with the transition points highlighted as in the textbook.

x

10

20

21−1−2

−10

y

15. y = x2 − 4x3

solution Let f (x) = x2 − 4x3. Then f ′(x) = 2x − 12x2 = 2x(1 − 6x) and f ′′(x) = 2 − 24x. Critical points are

at x = 0 and x = 1
6 , and the sole candidate point of inflection is at x = 1

12 .

Interval (−∞, 0) (0, 1
12 ) ( 1

12 , 1
6 ) ( 1

6 , ∞)

Signs of f ′ and f ′′ −+ ++ +− −−

Thus, f (0) is a local minimum, f ( 1
6 ) is a local maximum, and there is a point of inflection at x = 1

12 . Moreover,

lim
x→±∞ f (x) = ∞.

Here is the graph of f with transition points highlighted as in the textbook:

0.04

x
0.2−0.2

y

−0.04
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16. y = 1
3x3 + x2 + 3x

solution Let f (x) = 1
3x3 + x2 + 3x. Then f ′(x) = x2 + 2x + 3, and f ′′(x) = 2x + 2 = 0 if x = −1. Sign

analysis shows that f ′(x) = (x + 1)2 + 2 > 0 for all x (so that f (x) has no critical points and is always increasing),
and that f ′′(x) changes from negative to positive at x = −1, implying that the graph of f (x) has an inflection point at
(−1, f (−1)). Moreover,

lim
x→−∞ f (x) = −∞ and lim

x→∞ f (x) = ∞.

A graph with the inflection point indicated appears below:

x

5

10

21

−1

−2

−5

y

17. y = 4 − 2x2 + 1
6x4

solution Let f (x) = 1
6x4 − 2x2 + 4. Then f ′(x) = 2

3x3 − 4x = 2
3x
(
x2 − 6

)
and f ′′(x) = 2x2 − 4. This shows

that f has critical points at x = 0 and x = ±√
6 and has candidates for points of inflection at x = ±√

2.

Interval (−∞, −√
6) (−√

6, −√
2) (−√

2, 0) (0,
√

2) (
√

2,
√

6) (
√

6, ∞)

Signs of f ′ and f ′′ −+ ++ +− −− −+ ++

Thus, f has local minima at x = ±√
6, a local maximum at x = 0, and inflection points at x = ±√

2. Moreover,

lim
x→±∞ f (x) = ∞.

Here is a graph of f with transition points highlighted.

5

x
2−2

y

10

18. y = 7x4 − 6x2 + 1

solution Let f (x) = 7x4 − 6x2 + 1. Then f ′(x) = 28x3 − 12x = 4x
(

7x2 − 3
)

and f ′′(x) = 84x2 − 12. This

shows that f has critical points at x = 0 and x = ±
√

21
7 and candidates for points of inflection at x = ±

√
7

7 .

Interval (−∞, −
√

21
7 ) (−

√
21
7 , −

√
7

7 ) (−
√

7
7 , 0) (0,

√
7

7 ) (

√
7

7 ,

√
21
7 ) (

√
21
7 , ∞)

Signs of f ′ and f ′′ −+ ++ +− −− −+ ++

Thus, f has local minima at x = ±
√

21
7 , a local maximum at x = 0, and inflection points at x = ±

√
7

7 . Moreover,

lim
x→±∞ f (x) = ∞.

Here is a graph of f with transition points highlighted.

x
1−1

−0.5

1.5

y
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19. y = x5 + 5x

solution Let f (x) = x5 + 5x. Then f ′(x) = 5x4 + 5 = 5(x4 + 1) and f ′′(x) = 20x3. f ′(x) > 0 for all x, so the
graph has no critical points and is always increasing. f ′′(x) = 0 at x = 0. Sign analyses reveal that f ′′(x) changes from
negative to positive at x = 0, so that the graph of f (x) has an inflection point at (0, 0). Moreover,

lim
x→−∞ f (x) = −∞ and lim

x→∞ f (x) = ∞.

Here is a graph of f with transition points highlighted.

20

x
21−2 −1

y

−40

40

−20

20. y = x5 − 15x3

solution Let f (x) = x5 − 15x3. Then f ′(x) = 5x4 − 45x2 = 5x2(x2 − 9) and f ′′(x) = 20x3 − 90x = 10x(2x2 −
9). This shows that f has critical points at x = 0 and x = ±3 and candidate inflection points at x = 0 and x = ±3

√
2/2.

Sign analyses reveal that f ′(x) changes from positive to negative at x = −3, is negative on either side of x = 0 and
changes from negative to positive at x = 3. The graph therefore has a local maximum at x = −3 and a local minimum at
x = 3. Further sign analyses show that f ′′(x) transitions from positive to negative at x = 0 and from negative to positive
at x = ±3

√
2/2. The graph therefore has points of inflection at x = 0 and x = ±3

√
2/2. Moreover,

lim
x→−∞ f (x) = −∞ and lim

x→∞ f (x) = ∞.

Here is a graph of f with transition points highlighted.
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4 6

−200

200
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21. y = x4 − 3x3 + 4x

solution Let f (x) = x4 − 3x3 + 4x. Then f ′(x) = 4x3 − 9x2 + 4 = (4x2 − x − 2)(x − 2) and f ′′(x) =
12x2 − 18x = 6x(2x − 3). This shows that f has critical points at x = 2 and x = 1 ± √

33

8
and candidate points of

inflection at x = 0 and x = 3
2 . Sign analyses reveal that f ′(x) changes from negative to positive at x = 1−√

33
8 , from

positive to negative at x = 1+√
33

8 , and again from negative to positive at x = 2. Therefore, f ( 1−√
33

8 ) and f (2) are

local minima of f (x), and f ( 1+√
33

8 ) is a local maximum. Further sign analyses reveal that f ′′(x) changes from positive

to negative at x = 0 and from negative to positive at x = 3
2 , so that there are points of inflection both at x = 0 and x = 3

2 .
Moreover,

lim
x→±∞ f (x) = ∞.

Here is a graph of f (x) with transition points highlighted.

4

x
21−1

y

6

2

−2

22. y = x2(x − 4)2

solution Let f (x) = x2(x − 4)2. Then

f ′(x) = 2x(x − 4)2 + 2x2(x − 4) = 2x(x − 4)(x − 4 + x) = 4x(x − 4)(x − 2)
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and

f ′′(x) = 12x2 − 48x + 32 = 4(3x2 − 12x + 8).

Critical points are therefore at x = 0, x = 4, and x = 2. Candidate inflection points are at solutions of 4(3x2 − 12x + 8) =
0, which, from the quadratic formula, are at 2 ±

√
48
6 = 2 ± 2

√
3

3 .
Sign analyses reveal that f ′(x) changes from negative to positive at x = 0 and x = 4, and from positive to negative

at x = 2. Therefore, f (0) and f (4) are local minima, and f (2) a local maximum, of f (x). Also, f ′′(x) changes from

positive to negative at 2 − 2
√

3
3 and from negative to positive at 2 + 2

√
3

3 . Therefore there are points of inflection at both

x = 2 ± 2
√

3
3 . Moreover,

lim
x→±∞ f (x) = ∞.

Here is a graph of f (x) with transition points highlighted.
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15

20

25

54321−1

y

23. y = x7 − 14x6

solution Let f (x) = x7 − 14x6. Then f ′(x) = 7x6 − 84x5 = 7x5 (x − 12) and f ′′(x) = 42x5 − 420x4 =
42x4 (x − 10). Critical points are at x = 0 and x = 12, and candidate inflection points are at x = 0 and x = 10. Sign
analyses reveal that f ′(x) changes from positive to negative at x = 0 and from negative to positive at x = 12. Therefore
f (0) is a local maximum and f (12) is a local minimum. Also, f ′′(x) changes from negative to positive at x = 10.
Therefore, there is a point of inflection at x = 10. Moreover,

lim
x→−∞ f (x) = −∞ and lim

x→∞ f (x) = ∞.

Here is a graph of f with transition points highlighted.
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−5 × 106

5 × 106
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y
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24. y = x6 − 9x4

solution Let f (x) = x6 − 9x4. Then f ′(x) = 6x5 − 36x3 = 6x3(x2 − 6) and f ′′(x) = 30x4 − 108x2 =
6x2(5x2 − 18). This shows that f has critical points at x = 0 and x = ±√

6 and candidate inflection points at x = 0 and
x = ±3

√
10/5. Sign analyses reveal that f ′(x) changes from negative to positive at x = −√

6, from positive to negative
at x = 0 and from negative to positive at x = √

6. The graph therefore has a local maximum at x = 0 and local minima
at x = ±√

6. Further sign analyses show that f ′′(x) transitions from positive to negative at x = −3
√

10/5 and from
negative to positive at x = 3

√
10/5. The graph therefore has points of inflection at x = ±3

√
10/5. Moreover,

lim
x→±∞ f (x) = ∞.

Here is a graph of f with transition points highlighted.
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400
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25. y = x − 4
√

x

solution Let f (x) = x − 4
√

x = x − 4x1/2. Then f ′(x) = 1 − 2x−1/2. This shows that f has critical points at
x = 0 (where the derivative does not exist) and at x = 4 (where the derivative is zero). Because f ′(x) < 0 for 0 < x < 4
and f ′(x) > 0 for x > 4, f (4) is a local minimum. Now f ′′(x) = x−3/2 > 0 for all x > 0, so the graph is always
concave up. Moreover,

lim
x→∞ f (x) = ∞.

Here is a graph of f with transition points highlighted.
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y

x

26. y = √
x + √

16 − x

solution Let f (x) = √
x + √

16 − x = x1/2 + (16 − x)1/2. Note that the domain of f is [0, 16]. Now, f ′(x) =
1
2x−1/2 − 1

2 (16 − x)−1/2 and f ′′(x) = − 1
4x−3/2 − 1

4 (16 − x)−3/2. Thus, the critical points are x = 0, x = 8 and
x = 16. Sign analysis reveals that f ′(x) > 0 for 0 < x < 8 and f ′(x) < 0 for 8 < x < 16, so f has a local maximum
at x = 9. Further, f ′′(x) < 0 on (0, 16), so the graph is always concave down. Here is a graph of f with the transition
point highlighted.
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27. y = x(8 − x)1/3

solution Let f (x) = x (8 − x)1/3. Then

f ′(x) = x · 1
3 (8 − x)−2/3 (−1) + (8 − x)1/3 · 1 = 24 − 4x

3 (8 − x)2/3

and similarly

f ′′(x) = 4x − 48

9 (8 − x)5/3
.

Critical points are at x = 8 and x = 6, and candidate inflection points are x = 8 and x = 12. Sign analyses reveal that
f ′(x) changes from positive to negative at x = 6 and f ′(x) remains negative on either side of x = 8. Moreover, f ′′(x)

changes from negative to positive at x = 8 and from positive to negative at x = 12. Therefore, f has a local maximum
at x = 6 and inflection points at x = 8 and x = 12. Moreover,

lim
x→±∞ f (x) = −∞.

Here is a graph of f with the transition points highlighted.

−30

−5 5 10 15

−20

−10

y

x



April 2, 2011

460 C H A P T E R 4 APPLICATIONS OF THE DERIVATIVE

28. y = (x2 − 4x)1/3

solution Let f (x) = (x2 − 4x)1/3. Then

f ′(x) = 2

3
(x − 2)(x2 − 4x)−2/3

and

f ′′(x) = 2

3

(
(x2 − 4x)−2/3 − 4

3
(x − 2)2(x2 − 4x)−5/3

)

= 2

9
(x2 − 4x)−5/3

(
3(x2 − 4x) − 4(x − 2)2

)
= −2

9
(x2 − 4x)−5/3(x2 − 4x + 16).

Critical points of f (x) are x = 2 (where the derivative is zero) an x = 0 and x = 4 (where the derivative does not exist);
candidate points of inflection are x = 0 and x = 4. Sign analyses reveal that f ′′(x) < 0 for x < 0 and for x > 4, while
f ′′(x) > 0 for 0 < x < 4. Therefore, the graph of f (x) has points of inflection at x = 0 and x = 4. Since (x2 − x)−2/3

is positive wherever it is defined, the sign of f ′(x) depends solely on the sign of x − 2. Hence, f ′(x) does not change
sign at x = 0 or x = 4, and goes from negative to positive at x = 2. f (2) is, in that case, a local minimum. Moreover,

lim
x→±∞ f (x) = ∞.

Here is a graph of f (x) with the transition points indicated.
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29. y = xe−x2

solution Let f (x) = xe−x2
. Then

f ′(x) = −2x2e−x2 + e−x2 = (1 − 2x2)e−x2
,

and

f ′′(x) = (4x3 − 2x)e−x2 − 4xe−x2 = 2x(2x2 − 3)e−x2
.

There are critical points at x = ±
√

2
2 , and x = 0 and x = ±

√
3

2 are candidates for inflection points. Sign analysis shows

that f ′(x) changes from negative to positive at x = −
√

2
2 and from positive to negative at x =

√
2

2 . Moreover, f ′′(x)

changes from negative to positive at both x = ±
√

3
2 and from positive to negative at x = 0. Therefore, f has a local

minimum at x = −
√

2
2 , a local maximum at x =

√
2

2 and inflection points at x = 0 and at x = ±
√

3
2 . Moreover,

lim
x→±∞ f (x) = 0,

so the graph has a horizontal asymptote at y = 0. Here is a graph of f with the transition points highlighted.
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30. y = (2x2 − 1)e−x2

solution Let f (x) = (2x2 − 1)e−x2
. Then

f ′(x) = (2x − 4x3)e−x2 + 4xe−x2 = 2x(3 − 2x2)e−x2
,

and

f ′′(x) = (8x4 − 12x2)e−x2 + (6 − 12x2)e−x2 = 2(4x4 − 12x2 + 3)e−x2
.
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There are critical points at x = 0 and x = ±
√

3
2 , and

x = −
√

3 + √
6

2
, x = −

√
3 − √

6

2
, x =

√
3 − √

6

2
, x =

√
3 + √

6

2

are candidates for inflection points. Sign analysis shows that f ′(x) changes from positive to negative at x = ±
√

3
2

and from negative to positive at x = 0. Moreover, f ′′(x) changes from positive to negative at x = −
√

3+√
6

2 and at

x =
√

3−√
6

2 and from negative to positive at x = −
√

3−√
6

2 and at x =
√

3+√
6

2 . Therefore, f has local maxima at

x = ±
√

3
2 , a local minimum at x = 0 and points of inflection at x = ±

√
3±√

6
2 . Moreover,

lim
x→±∞ f (x) = 0,

so the graph has a horizontal asymptote at y = 0. Here is a graph of f with the transition points highlighted.
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31. y = x − 2 ln x

solution Let f (x) = x − 2 ln x. Note that the domain of f is x > 0. Now,

f ′(x) = 1 − 2

x
and f ′′(x) = 2

x2
.

The only critical point is x = 2. Sign analysis shows that f ′(x) changes from negative to positive at x = 2, so f (2) is a
local minimum. Further, f ′′(x) > 0 for x > 0, so the graph is always concave up. Moreover,

lim
x→∞ f (x) = ∞.

Here is a graph of f with the transition points highlighted.
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32. y = x(4 − x) − 3 ln x

solution Let f (x) = x(4 − x) − 3 ln x. Note that the domain of f is x > 0. Now,

f ′(x) = 4 − 2x − 3

x
and f ′′(x) = −2 + 3

x2
.

Because f ′(x) < 0 for all x > 0, the graph is always decreasing. On the other hand, f ′′(x) changes from positive to

negative at x =
√

3
2 , so there is a point of inflection at x =

√
3
2 . Moreover,

lim
x→0+ f (x) = ∞ and lim

x→inf ty
f (x) = −∞,

so f has a vertical asymptote at x = 0. Here is a graph of f with the transition points highlighted.
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33. y = x − x2 ln x

solution Let f (x) = x − x2 ln x. Then f ′(x) = 1 − x − 2x ln x and f ′′(x) = −3 − 2 ln x. There is a critical point

at x = 1, and x = e−3/2 ≈ 0.223 is a candidate inflection point. Sign analysis shows that f ′(x) changes from positive
to negative at x = 1 and that f ′′(x) changes from positive to negative at x = e−3/2. Therefore, f has a local maximum
at x = 1 and a point of inflection at x = e−3/2. Moreover,

lim
x→∞ f (x) = −∞.

Here is a graph of f with the transition points highlighted.
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34. y = x − 2 ln(x2 + 1)

solution Let f (x) = x − 2 ln(x2 + 1). Then f ′(x) = 1 − 4x

x2 + 1
, and

f ′′(x) = − (x2 + 1)(4) − (4x)(2x)

(x2 + 1)2
= 4(x2 − 1)

(x2 + 1)2
.

There are critical points at x = 2 ± √
3, and x = ±1 are candidates for inflection points. Sign analysis shows that f ′(x)

changes from positive to negative at x = 2 − √
3 and from negative to positive at x = 2 + √

3. Moreover, f ′′(x) changes
from positive to negative at x = −1 and from negative to positive at x = 1. Therefore, f has a local maximum at
x = 2 − √

3, a local minimum at x = 2 + √
3 and points of inflection at x = ±1. Finally,

lim
x→−∞ f (x) = −∞ and lim

x→∞ f (x) = ∞.

Here is a graph of f with the transition points highlighted.
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35. Sketch the graph of f (x) = 18(x − 3)(x − 1)2/3 using the formulas

f ′(x) = 30
(
x − 9

5

)
(x − 1)1/3

, f ′′(x) = 20
(
x − 3

5

)
(x − 1)4/3

solution

f ′(x) = 30(x − 9
5 )

(x − 1)1/3

yields critical points at x = 9
5 , x = 1.

f ′′(x) = 20(x − 3
5 )

(x − 1)4/3

yields potential inflection points at x = 3
5 , x = 1.

Interval signs of f ′ and f ′′

(−∞, 3
5 ) +−

( 3
5 , 1) ++

(1, 9
5 ) −+

( 9
5 , ∞) ++
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The graph has an inflection point at x = 3
5 , a local maximum at x = 1 (at which the graph has a cusp), and a local

minimum at x = 9
5 . The sketch looks something like this.

40
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y

−20
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−40
−60
−80

36. Sketch the graph of f (x) = x

x2 + 1
using the formulas

f ′(x) = 1 − x2

(1 + x2)2
, f ′′(x) = 2x(x2 − 3)

(x2 + 1)3

solution Let f (x) = x

x2 + 1
.

• Because lim
x→±∞ f (x) = 1

1 · lim
x→±∞ x−1 = 0, y = 0 is a horizontal asymptote for f .

• Now f ′(x) = 1 − x2(
x2 + 1

)2 is negative for x < −1 and x > 1, positive for −1 < x < 1, and 0 at x = ±1.Accordingly,

f is decreasing for x < −1 and x > 1, is increasing for −1 < x < 1, has a local minimum value at x = −1 and a
local maximum value at x = 1.

• Moreover,

f ′′(x) =
2x
(
x2 − 3

)
(
x2 + 1

)3 .

Here is a sign chart for the second derivative, similar to those constructed in various exercises in Section 4.4. (The
legend is on page 425.)

x
(
−∞, −√

3
)

−√
3

(
−√

3, 0
)

0
(

0,
√

3
) √

3
(√

3, ∞
)

f ′′ − 0 + 0 − 0 +
f � I � I � I �

• Here is a graph of f (x) = x

x2 + 1
.

x
105

−10 −5

y

−0.5

0.5

In Exercises 37–40, sketch the graph of the function, indicating all transition points. If necessary, use a graphing
utility or computer algebra system to locate the transition points numerically.

37. y = x2 − 10 ln(x2 + 1)

solution Let f (x) = x2 − 10 ln(x2 + 1). Then f ′(x) = 2x − 20x

x2 + 1
, and

f ′′(x) = 2 − (x2 + 1)(20) − (20x)(2x)

(x2 + 1)2
= x4 + 12x2 − 9

(x2 + 1)2
.

There are critical points at x = 0 and x = ±3, and x = ±
√

−6 + 3
√

5 are candidates for inflection points. Sign analysis
shows that f ′(x) changes from negative to positive at x = ±3 and from positive to negative at x = 0. Moreover, f ′′(x)

changes from positive to negative at x = −
√

−6 + 3
√

5 and from negative to positive at x =
√

−6 + 3
√

5. Therefore,

f has a local maximum at x = 0, local minima at x = ±3 and points of inflection at x = ±
√

−6 + 3
√

5. Here is a graph
of f with the transition points highlighted.
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38. y = e−x/2 ln x

solution Let f (x) = e−x/2 ln x. Then

f ′(x) = e−x/2

x
− 1

2
e−x/2 ln x = e−x/2

(
1

x
− 1

2
ln x

)

and

f ′′(x) = e−x/2
(

− 1

x2
− 1

2x

)
− 1

2
e−x/2

(
1

x
− 1

2
ln x

)

= e−x/2
(

− 1

x2
− 1

x
+ 1

4
ln x

)
.

There is a critical point at x = 2.345751 and a candidate point of inflection at x = 3.792199. Sign analysis reveals
that f ′(x) changes from positive to negative at x = 2.345751 and that f ′′(x) changes from negative to positive at
x = 3.792199. Therefore, f has a local maximum at x = 2.345751 and a point of inflection at x = 3.792199. Moreover,

lim
x→0+ f (x) = −∞ and lim

x→∞ f (x) = 0.

Here is a graph of f with the transition points highlighted.
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39. y = x4 − 4x2 + x + 1

solution Let f (x) = x4 − 4x2 + x + 1. Then f ′(x) = 4x3 − 8x + 1 and f ′′(x) = 12x2 − 8. The critical points

are x = −1.473, x = 0.126 and x = 1.347, while the candidates for points of inflection are x = ±
√

2
3 . Sign analysis

reveals that f ′(x) changes from negative to positive at x = −1.473, from positive to negative at x = 0.126 and from

negative to positive at x = 1.347. For the second derivative, f ′′(x) changes from positive to negative at x = −
√

2
3 and

from negative to positive at x =
√

2
3 . Therefore, f has local minima at x = −1.473 and x = 1.347, a local maximum at

x = 0.126 and points of inflection at x = ±
√

2
3 . Moreover,

lim
x→±∞ f (x) = ∞.

Here is a graph of f with the transition points highlighted.
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40. y = 2
√

x − sin x, 0 ≤ x ≤ 2π

solution Let f (x) = 2
√

x − sin x. Then

f ′(x) = 1√
x

− cos x and f ′′(x) = −1

2
x−3/2 + sin x.
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On 0 ≤ x ≤ 2π , there is a critical point at x = 5.167866 and candidate points of inflection at x = 0.790841 and
x = 3.047468. Sign analysis reveals that f ′(x) changes from positive to negative at x = 5.167866, while f ′′(x) changes
from negative to positive at x = 0.790841 and from positive to negative at x = 3.047468. Therefore, f has a local
maximum at x = 5.167866 and points of inflection at x = 0.790841 and x = 3.047468. Here is a graph of f with the
transition points highlighted.

1

1 2 3 4 5 6

2

3

4

5

y

x

In Exercises 41–46, sketch the graph over the given interval, with all transition points indicated.

41. y = x + sin x, [0, 2π ]
solution Let f (x) = x + sin x. Setting f ′(x) = 1 + cos x = 0 yields cos x = −1, so that x = π is the lone critical
point on the interval [0, 2π ]. Setting f ′′(x) = − sin x = 0 yields potential points of inflection at x = 0, π, 2π on the
interval [0, 2π ].

Interval signs of f ′ and f ′′

(0, π) +−
(π, 2π) ++

The graph has an inflection point at x = π , and no local maxima or minima. Here is a sketch of the graph of f (x):

y

x

1

2

3

4

5

6

0 654321

42. y = sin x + cos x, [0, 2π ]
solution Let f (x) = sin x + cos x. Setting f ′(x) = cos x − sin x = 0 yields sin x = cos x, so that tan x = 1, and

x = π
4 , 5π

4 . Setting f ′′(x) = − sin x − cos x = 0 yields sin x = − cos x, so that − tan x = 1, and x = 3π
4 , x = 7π

4 .

Interval signs of f ′ and f ′′

(0, π
4 ) +−

( π
4 , 3π

4 ) −−

( 3π
4 , 5π

4 ) −+

( 5π
4 , 7π

4 ) ++

( 7π
4 , 2π) +−

The graph has a local maximum at x = π
4 , a local minimum at x = 5π

4 , and inflection points at x = 3π
4 and x = 7π

4 .
Here is a sketch of the graph of f (x):

x
1 2 3 4 5 6

1

−1

y
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43. y = 2 sin x − cos2 x, [0, 2π ]
solution Let f (x) = 2 sin x − cos2 x. Then f ′(x) = 2 cos x − 2 cos x (− sin x) = sin 2x + 2 cos x and f ′′(x) =
2 cos 2x − 2 sin x. Setting f ′(x) = 0 yields sin 2x = −2 cos x, so that 2 sin x cos x = −2 cos x. This implies cos x = 0
or sin x = −1, so that x = π

2 or 3π
2 . Setting f ′′(x) = 0 yields 2 cos 2x = 2 sin x, so that 2 sin( π

2 − 2x) = 2 sin x, or
π
2 − 2x = x ± 2nπ . This yields 3x = π

2 + 2nπ , or x = π
6 , 5π

6 , 9π
6 = 3π

2 .

Interval signs of f ′ and f ′′
(
0, π

6

) ++
(
π
6 , π

2

) +−
(
π
2 , 5π

6

) −−
( 5π

6 , 3π
2

) −+
( 3π

2 , 2π
) ++

The graph has a local maximum at x = π
2 , a local minimum at x = 3π

2 , and inflection points at x = π
6 and x = 5π

6 .
Here is a graph of f without transition points highlighted.

x
654

3

21

y

1

2

−2

−1

44. y = sin x + 1
2x, [0, 2π ]

solution Let f (x) = sin x + 1
2x. Setting f ′(x) = cos x + 1

2 = 0 yields x = 2π
3 or 4π

3 . Setting f ′′(x) = − sin x = 0
yields potential points of inflection at x = 0, π , 2π .

Interval signs of f ′ and f ′′
(
0, 2π

3

) +−
( 2π

3 , π
) −−

(
π, 4π

3

) −+
( 4π

3 , 2π
) ++

The graph has a local maximum at x = 2π
3 , a local minimum at x = 4π

3 , and an inflection point at x = π . Here is a graph
of f without transition points highlighted.

1

x
1 2 3 4 5 6

y

2

3

0

45. y = sin x + √
3 cos x, [0, π ]

solution Let f (x) = sin x + √
3 cos x. Setting f ′(x) = cos x − √

3 sin x = 0 yields tan x = 1√
3

. In the interval

[0, π ], the solution is x = π
6 . Setting f ′′(x) = − sin x − √

3 cos x = 0 yields tan x = −√
3. In the interval [0, π ], the

lone solution is x = 2π
3 .
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Interval signs of f ′ and f ′′

(0, π/6) +−
(π/6, 2π/3) −−
(2π/3, π) −+

The graph has a local maximum at x = π
6 and a point of inflection at x = 2π

3 . A plot without the transition points
highlighted is given below:

x
321

y

1

2

−2

−1

46. y = sin x − 1
2 sin 2x, [0, π]

solution Let f (x) = sin x − 1
2 sin 2x. Setting f ′(x) = cos x − cos 2x = 0 yields cos 2x = cos x. Using the double

angle formula for cosine, this gives 2 cos2 x − 1 = cos x or (2 cos x + 1)(cos x − 1) = 0. Solving for x ∈ [0, π], we find
x = 0 or 2π

3 .

Setting f ′′(x) = − sin x + 2 sin 2x = 0 yields 4 sin x cos x = sin x, so sin x = 0 or cos x = 1
4 . Hence, there are

potential points of inflection at x = 0, x = π and x = cos−1 1
4 ≈ 1.31812.

Interval Sign of f ′ and f ′′(
0, cos−1 1

4

) ++(
cos−1 1

4 , 2π
3

) +−
( 2π

3 , π
) −−

The graph of f (x) has a local maximum at x = 2π
3 and a point of inflection at x = cos−1 1

4 .

1

x
1 2 3

y

0

47. Are all sign transitions possible? Explain with a sketch why the transitions ++ → −+ and −− → +− do
not occur if the function is differentiable. (See Exercise 76 for a proof.)

solution In both cases, there is a point where f is not differentiable at the transition from increasing to decreasing or
decreasing to increasing.

y

x

y

x

48. Suppose that f is twice differentiable satisfying (i) f (0) = 1, (ii) f ′(x) > 0 for all x = 0, and (iii) f ′′(x) < 0 for
x < 0 and f ′′(x) > 0 for x > 0. Let g(x) = f (x2).

(a) Sketch a possible graph of f (x).

(b) Prove that g(x) has no points of inflection and a unique local extreme value at x = 0. Sketch a possible graph of
g(x).
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solution
(a) To produce a possible sketch, we give the direction and concavity of the graph over every interval.

Interval (−∞, 0) (0, ∞)

Direction ↗ ↗
Concavity � �

A sketch of one possible such function appears here:

2
x

21−2 −1

y

(b) Let g(x) = f (x2). Then g′(x) = 2xf ′(x2). If g′(x) = 0, either x = 0 or f ′(x2) = 0, which implies that x = 0
as well. Since f ′(x2) > 0 for all x = 0, g′(x) < 0 for x < 0 and g′(x) > 0 for x > 0. This gives g(x) a unique local
extreme value at x = 0, a minimum. g′′(x) = 2f ′(x2) + 4x2f ′′(x2). For all x = 0, x2 > 0, and so f ′′(x2) > 0 and
f ′(x2) > 0. Thus g′′(x) > 0, and so g′′(x) does not change sign, and can have no inflection points. A sketch of g(x)

based on the sketch we made for f (x) follows: indeed, this sketch shows a unique local minimum at x = 0.

2
x

1−1

y

49. Which of the graphs in Figure 18 cannot be the graph of a polynomial? Explain.

(A) (B) (C)

x

x

x

yy y

FIGURE 18

solution Polynomials are everywhere differentiable. Accordingly, graph (B) cannot be the graph of a polynomial,
since the function in (B) has a cusp (sharp corner), signifying nondifferentiability at that point.

50. Which curve in Figure 19 is the graph of f (x) = 2x4 − 1

1 + x4
? Explain on the basis of horizontal asymptotes.

(A)

−4 −2 2 4

2

−1.5

(B)

−4 −2 2 4

2

−1.5

x x

yy

FIGURE 19

solution Since

lim
x→±∞

2x4 − 1

1 + x4
= 2

1
· lim
x→±∞ 1 = 2

the graph has left and right horizontal asymptotes at y = 2, so the left curve is the graph of f (x) = 2x4 − 1

1 + x4
.
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51. Match the graphs in Figure 20 with the two functions y = 3x

x2 − 1
and y = 3x2

x2 − 1
. Explain.

(A) (B)

−1 1−1 1
xx

y y

FIGURE 20

solution Since lim
x→±∞

3x2

x2 − 1
= 3

1
· lim
x→±∞ 1 = 3, the graph of y = 3x2

x2 − 1
has a horizontal asymptote of y = 3;

hence, the right curve is the graph of f (x) = 3x2

x2 − 1
. Since

lim
x→±∞

3x

x2 − 1
= 3

1
· lim
x→±∞ x−1 = 0,

the graph of y = 3x

x2 − 1
has a horizontal asymptote of y = 0; hence, the left curve is the graph of f (x) = 3x

x2 − 1
.

52. Match the functions with their graphs in Figure 21.

(a) y = 1

x2 − 1
(b) y = x2

x2 + 1

(c) y = 1

x2 + 1
(d) y = x

x2 − 1

(A) (B) (D)(C)

x

x

x

y y

x

y y

FIGURE 21

solution

(a) The graph of 1
x2−1

should have a horizontal asymptote at y = 0 and vertical asymptotes at x = ±1. Further, the

graph should consist of positive values for |x| > 1 and negative values for |x| < 1. Hence, the graph of 1
x2−1

is (D).

(b) The graph of x2

x2+1
should have a horizontal asymptote at y = 1 and no vertical asymptotes. Hence, the graph of

x2

x2+1
is (A).

(c) The graph of 1
x2+1

should have a horizontal asymptote at y = 0 and no vertical asymptotes. Hence, the graph of
1

x2+1
is (B).

(d) The graph of x
x2−1

should have a horizontal asymptote at y = 0 and vertical asymptotes at x = ±1. Further, the
graph should consist of positive values for −1 < x < 0 and x > 1 and negative values for x < 1 and 0 < x < 1. Hence,
the graph of x

x2−1
is (C).

In Exercises 53–70, sketch the graph of the function. Indicate the transition points and asymptotes.

53. y = 1

3x − 1

solution Let f (x) = 1

3x − 1
. Then f ′(x) = −3

(3x − 1)2
, so that f is decreasing for all x = 1

3 . Moreover, f ′′(x) =
18

(3x − 1)3
, so that f is concave up for x > 1

3 and concave down for x < 1
3 . Because lim

x→±∞
1

3x − 1
= 0, f has a

horizontal asymptote at y = 0. Finally, f has a vertical asymptote at x = 1
3 with

lim
x→ 1

3 −
1

3x − 1
= −∞ and lim

x→ 1
3 +

1

3x − 1
= ∞.
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−5

−2 2

5

y

x

54. y = x − 2

x − 3

solution Let f (x) = x − 2

x − 3
. Then f ′(x) = −1

(x − 3)2
, so that f is decreasing for all x = 3. Moreover, f ′′(x) =

2

(x − 3)3
, so that f is concave up for x > 3 and concave down for x < 3. Because lim

x→±∞
x − 2

x − 3
= 1, f has a horizontal

asymptote at y = 1. Finally, f has a vertical asymptote at x = 3 with

lim
x→3−

x − 2

x − 3
= −∞ and lim

x→3+
x − 2

x − 3
= ∞.

−5

5

−2 2 4 6

y

x

55. y = x + 3

x − 2

solution Let f (x) = x + 3

x − 2
. Then f ′(x) = −5

(x − 2)2
, so that f is decreasing for all x = 2. Moreover, f ′′(x) =

10

(x − 2)3
, so that f is concave up for x > 2 and concave down for x < 2. Because lim

x→±∞
x + 3

x − 2
= 1, f has a horizontal

asymptote at y = 1. Finally, f has a vertical asymptote at x = 2 with

lim
x→2−

x + 3

x − 2
= −∞ and lim

x→2+
x + 3

x − 2
= ∞.

x
105−10 −5

y

−10

−5

10

5

56. y = x + 1

x

solution Let f (x) = x + x−1. Then f ′(x) = 1 − x−2, so that f is increasing for x < −1 and x > 1 and decreasing

for −1 < x < 0 and 0 < x < 1. Moreover, f ′′(x) = 2x−3, so that f is concave up for x > 0 and concave down for
x < 0. f has no horizontal asymptote and has a vertical asymptote at x = 0 with

lim
x→0−(x + x−1) = −∞ and lim

x→0+(x + x−1) = ∞.

−5

x
1 2

−2 −1

5

y
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57. y = 1

x
+ 1

x − 1

solution Let f (x) = 1

x
+ 1

x − 1
. Then f ′(x) = −2x2 − 2x + 1

x2 (x − 1)2
, so that f is decreasing for all x = 0, 1. Moreover,

f ′′(x) =
2
(

2x3 − 3x2 + 3x − 1
)

x3 (x − 1)3
, so that f is concave up for 0 < x < 1

2 and x > 1 and concave down for x < 0

and 1
2 < x < 1. Because lim

x→±∞

(
1

x
+ 1

x − 1

)
= 0, f has a horizontal asymptote at y = 0. Finally, f has vertical

asymptotes at x = 0 and x = 1 with

lim
x→0−

(
1

x
+ 1

x − 1

)
= −∞ and lim

x→0+

(
1

x
+ 1

x − 1

)
= ∞

and

lim
x→1−

(
1

x
+ 1

x − 1

)
= −∞ and lim

x→1+

(
1

x
+ 1

x − 1

)
= ∞.

x
1 2−1

y

5

−5

58. y = 1

x
− 1

x − 1

solution Let f (x) = 1

x
− 1

x − 1
. Then f ′(x) = 2x − 1

x2 (x − 1)2
, so that f is decreasing for x < 0 and 0 < x < 1

2 and

increasing for 1
2 < x < 1 and x > 1. Moreover, f ′′(x) = −

2
(

3x2 − 3x + 1
)

x3 (x − 1)3
, so that f is concave up for 0 < x < 1

and concave down for x < 0 and x > 1. Because lim
x→±∞

(
1

x
− 1

x − 1

)
= 0, f has a horizontal asymptote at y = 0.

Finally, f has vertical asymptotes at x = 0 and x = 1 with

lim
x→0−

(
1

x
− 1

x − 1

)
= −∞ and lim

x→0+

(
1

x
− 1

x − 1

)
= ∞

and

lim
x→1−

(
1

x
− 1

x − 1

)
= ∞ and lim

x→1+

(
1

x
− 1

x − 1

)
= −∞.

x
21−1

y

−5

5

59. y = 1

x(x − 2)

solution Let f (x) = 1

x(x − 2)
. Then f ′(x) = 2(1 − x)

x2(x − 2)2
, so that f is increasing for x < 0 and 0 < x < 1 and

decreasing for 1 < x < 2 and x > 2. Moreover, f ′′(x) = 2(3x2 − 6x + 4)

x3(x − 2)3
, so that f is concave up for x < 0 and x > 2

and concave down for 0 < x < 2. Because lim
x→±∞

(
1

x(x − 2)

)
= 0, f has a horizontal asymptote at y = 0. Finally, f

has vertical asymptotes at x = 0 and x = 2 with

lim
x→0−

(
1

x(x − 2)

)
= +∞ and lim

x→0+

(
1

x(x − 2)

)
= −∞
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and

lim
x→2−

(
1

x(x − 2)

)
= −∞ and lim

x→2+

(
1

x(x − 2)

)
= ∞.

−5

5

−2 4

y

x

60. y = x

x2 − 9

solution Let f (x) = x

x2 − 9
. Then f ′(x) = − x2 + 9

(x2 − 9)2
, so that f is decreasing for all x = ±3. Moreover,

f ′′(x) = 6x(x2 + 6)

(x2 − 9)3
, so that f is concave down for x < −3 and for 0 < x < 3 and is concave up for −3 < x < 0 and

for x > 3. Because lim
x→±∞

x

x2 − 9
= 0, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at

x = ±3, with

lim
x→−3−

(
x

x2 − 9

)
= −∞ and lim

x→−3+

(
x

x2 − 9

)
= ∞

and

lim
x→3−

(
x

x2 − 9

)
= −∞ and lim

x→3+

(
x

x2 − 9

)
= ∞.

−10

10

−4 −2 2 4

y

x

61. y = 1

x2 − 6x + 8

solution Let f (x) = 1

x2 − 6x + 8
= 1

(x − 2) (x − 4)
. Then f ′(x) = 6 − 2x(

x2 − 6x + 8
)2 , so that f is increasing for

x < 2 and for 2 < x < 3, is decreasing for 3 < x < 4 and for x > 4, and has a local maximum at x = 3. Moreover,

f ′′(x) =
2
(

3x2 − 18x + 28
)

(
x2 − 6x + 8

)3 , so that f is concave up for x < 2 and for x > 4 and is concave down for 2 < x < 4.

Because lim
x→±∞

1

x2 − 6x + 8
= 0, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at x = 2

and x = 4, with

lim
x→2−

(
1

x2 − 6x + 8

)
= ∞ and lim

x→2+

(
1

x2 − 6x + 8

)
= −∞

and

lim
x→4−

(
1

x2 − 6x + 8

)
= −∞ and lim

x→4+

(
1

x2 − 6x + 8

)
= ∞.

x
6542

3

1

y

5

−5
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62. y = x3 + 1

x

solution Let f (x) = x3 + 1

x
= x2 + x−1. Then f ′(x) = 2x − x−2, so that f is decreasing for x < 0 and for

0 < x < 3√1/2 and increasing for x > 3√1/2. Moreover, f ′′(x) = 2 + 2x−3, so f is concave up for x < −1 and for
x > 0 and concave down for −1 < x < 0. Because

lim
x→±∞

x3 + 1

x
= ∞,

f has no horizontal asymptotes. Finally, f has a vertical asymptote at x = 0 with

lim
x→0−

x3 + 1

x
= −∞ and lim

x→0+
x3 + 1

x
= ∞.

−20

−10

10

20

−4 −2 2 4

y

x

63. y = 1 − 3

x
+ 4

x3

solution Let f (x) = 1 − 3

x
+ 4

x3
. Then

f ′(x) = 3

x2
− 12

x4
= 3(x − 2)(x + 2)

x4
,

so that f is increasing for |x| > 2 and decreasing for −2 < x < 0 and for 0 < x < 2. Moreover,

f ′′(x) = − 6

x3
+ 48

x5 = 6(8 − x2)

x5 ,

so that f is concave down for −2
√

2 < x < 0 and for x > 2
√

2, while f is concave up for x < −2
√

2 and for
0 < x < 2

√
2. Because

lim
x→±∞

(
1 − 3

x
+ 4

x3

)
= 1,

f has a horizontal asymptote at y = 1. Finally, f has a vertical asymptote at x = 0 with

lim
x→0−

(
1 − 3

x
+ 4

x3

)
= −∞ and lim

x→0+

(
1 − 3

x
+ 4

x3

)
= ∞.

2

x
2 4 6−6 −4 −2

y

4

6

−6

−4

−2

64. y = 1

x2
+ 1

(x − 2)2

solution Let f (x) = 1

x2
+ 1

(x − 2)2
. Then

f ′(x) = −2x−3 − 2 (x − 2)−3 = −4(x − 1)(x2 − 2x + 4)

x3(x − 2)3
,

so that f is increasing for x < 0 and for 1 < x < 2, is decreasing for 0 < x < 1 and for x > 2, and has a
local minimum at x = 1. Moreover, f ′′(x) = 6x−4 + 6 (x − 2)−4, so that f is concave up for all x = 0, 2. Because
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lim
x→±∞

(
1

x2
+ 1

(x − 2)2

)
= 0, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at x = 0 and

x = 2 with

lim
x→0−

(
1

x2
+ 1

(x − 2)2

)
= ∞ and lim

x→0+

(
1

x2
+ 1

(x − 2)2

)
= ∞

and

lim
x→2−

(
1

x2
+ 1

(x − 2)2

)
= ∞ and lim

x→2+

(
1

x2
+ 1

(x − 2)2

)
= ∞.

x
1 2 3 4−1−2

y

2

65. y = 1

x2
− 1

(x − 2)2

solution Let f (x) = 1

x2
− 1

(x − 2)2
. Then f ′(x) = −2x−3 + 2 (x − 2)−3, so that f is increasing for x < 0 and for

x > 2 and is decreasing for 0 < x < 2. Moreover,

f ′′(x) = 6x−4 − 6 (x − 2)−4 = −48(x − 1)(x2 − 2x + 2)

x4(x − 2)4
,

so that f is concave up for x < 0 and for 0 < x < 1, is concave down for 1 < x < 2 and for x > 2, and has a point

of inflection at x = 1. Because lim
x→±∞

(
1

x2
− 1

(x − 2)2

)
= 0, f has a horizontal asymptote at y = 0. Finally, f has

vertical asymptotes at x = 0 and x = 2 with

lim
x→0−

(
1

x2
− 1

(x − 2)2

)
= ∞ and lim

x→0+

(
1

x2
− 1

(x − 2)2

)
= ∞

and

lim
x→2−

(
1

x2
− 1

(x − 2)2

)
= −∞ and lim

x→2+

(
1

x2
− 1

(x − 2)2

)
= −∞.

x

2

4

−2

−4

y

1 2 3 4

−2 −1

66. y = 4

x2 − 9

solution Let f (x) = 4

x2 − 9
. Then f ′(x) = − 8x(

x2 − 9
)2 , so that f is increasing for x < −3 and for −3 < x < 0,

is decreasing for 0 < x < 3 and for x > 3, and has a local maximum at x = 0. Moreover, f ′′(x) =
24
(
x2 + 3

)
(
x2 − 9

)3 , so that

f is concave up for x < −3 and for x > 3 and is concave down for −3 < x < 3. Because lim
x→±∞

4

x2 − 9
= 0, f has a

horizontal asymptote at y = 0. Finally, f has vertical asymptotes at x = −3 and x = 3, with

lim
x→−3−

(
4

x2 − 9

)
= ∞ and lim

x→−3+

(
4

x2 − 9

)
= −∞

and

lim
x→3−

(
4

x2 − 9

)
= −∞ and lim

x→3+

(
4

x2 − 9

)
= ∞.
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x
5−5

y

−2

−1

2

1

67. y = 1

(x2 + 1)2

solution Let f (x) = 1

(x2 + 1)2
. Then f ′(x) = −4x

(x2 + 1)3
, so that f is increasing for x < 0, is decreasing for x > 0

and has a local maximum at x = 0. Moreover,

f ′′(x) = −4(x2 + 1)3 + 4x · 3(x2 + 1)2 · 2x

(x2 + 1)6
= 20x2 − 4

(x2 + 1)4
,

so that f is concave up for |x| > 1/
√

5, is concave down for |x| < 1/
√

5, and has points of inflection at x = ±1/
√

5.

Because lim
x→±∞

1

(x2 + 1)2
= 0, f has a horizontal asymptote at y = 0. Finally, f has no vertical asymptotes.

x

1

0.8

42−2−4

y

68. y = x2

(x2 − 1)(x2 + 1)

solution Let

f (x) = x2

(x2 − 1)(x2 + 1)
.

Then

f ′(x) = − 2x(1 + x4)

(x − 1)2(x + 1)2(x2 + 1)2
,

so that f is increasing for x < −1 and for −1 < x < 0, is decreasing for 0 < x < 1 and for x > 1, and has a local
maximum at x = 0. Moreover,

f ′′(x) = 2 + 24x4 + 6x8

(x − 1)3(x + 1)3(x2 + 1)3
,

so that f is concave up for |x| > 1 and concave down for |x| < 1. Because lim
x→±∞

x2

(x2 − 1)(x2 + 1)
= 0, f has a

horizontal asymptote at y = 0. Finally, f has vertical asymptotes at x = −1 and x = 1, with

lim
x→−1−

x2

(x2 − 1)(x2 + 1)
= ∞ and lim

x→−1+
x2

(x2 − 1)(x2 + 1)
= −∞

and

lim
x→1−

x2

(x2 − 1)(x2 + 1)
= −∞ and lim

x→1+
x2

(x2 − 1)(x2 + 1)
= ∞.
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x
21−2 −1

y

−2

−1

2

1

69. y = 1√
x2 + 1

solution Let f (x) = 1√
x2+1

. Then

f ′(x) = − x√
(x2 + 1)3

= −x(x2 + 1)−3/2,

so that f is increasing for x < 0 and decreasing for x > 0. Moreover,

f ′′(x) = −3

2
x(x2 + 1)−5/2(−2x) − (x2 + 1)−3/2 = (2x2 − 1)(x2 + 1)−5/2,

so that f is concave down for |x| <

√
2

2 and concave up for |x| >

√
2

2 . Because

lim
x→±∞

1√
x2 + 1

= 0,

f has a horizontal asymptote at y = 0. Finally, f has no vertical asymptotes.

x

1

0.8

0.2

105−5−10

y

70. y = x√
x2 + 1

solution Let

f (x) = x√
x2 + 1

.

Then

f ′(x) = (x2 + 1)−3/2 and f ′′(x) = −3x

(x2 + 1)5/2
.

Thus, f is increasing for all x, is concave up for x < 0, is concave down for x > 0, and has a point of inflection at x = 0.
Because

lim
x→∞

x√
x2 + 1

= 1 and lim
x→−∞

x√
x2 + 1

= −1,

f has horizontal asymptotes of y = −1 and y = 1. There are no vertical asymptotes.

x
5−5

y

−1

1
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Further Insights and Challenges
In Exercises 71–75, we explore functions whose graphs approach a nonhorizontal line as x → ∞. A line y = ax + b is
called a slant asymptote if

lim
x→∞(f (x) − (ax + b)) = 0

or

lim
x→−∞(f (x) − (ax + b)) = 0

71. Let f (x) = x2

x − 1
(Figure 22). Verify the following:

(a) f (0) is a local max and f (2) a local min.
(b) f is concave down on (−∞, 1) and concave up on (1, ∞).
(c) lim

x→1− f (x) = −∞ and lim
x→1+ f (x) = ∞.

(d) y = x + 1 is a slant asymptote of f (x) as x → ±∞.
(e) The slant asymptote lies above the graph of f (x) for x < 1 and below the graph for x > 1.

y = x + 1

10−10

10

−10

x

y
f (x) = x2

x − 1

FIGURE 22

solution Let f (x) = x2

x − 1
. Then f ′(x) = x(x − 2)

(x − 1)2
and f ′′(x) = 2

(x − 1)3
.

(a) Sign analysis of f ′′(x) reveals that f ′′(x) < 0 on (−∞, 1) and f ′′(x) > 0 on (1, ∞).
(b) Critical points of f ′(x) occur at x = 0 and x = 2. x = 1 is not a critical point because it is not in the domain of f .
Sign analyses reveal that x = 2 is a local minimum of f and x = 0 is a local maximum.
(c)

lim
x→1− f (x) = −1 lim

x→1−
1

1 − x
= −∞ and lim

x→1+ f (x) = 1 lim
x→1+

1

x − 1
= ∞.

(d) Note that using polynomial division, f (x) = x2

x − 1
= x + 1 + 1

x − 1
. Then

lim
x→±∞(f (x) − (x + 1)) = lim

x→±∞ x + 1 + 1

x − 1
− (x + 1) = lim

x→±∞
1

x − 1
= 0.

(e) For x > 1, f (x) − (x + 1) = 1

x − 1
> 0, so f (x) approaches x + 1 from above. Similarly, for x < 1, f (x) − (x +

1) = 1

x − 1
< 0, so f (x) approaches x + 1 from below.

72. If f (x) = P(x)/Q(x), where P and Q are polynomials of degrees m + 1 and m, then by long division, we
can write

f (x) = (ax + b) + P1(x)/Q(x)

where P1 is a polynomial of degree < m. Show that y = ax + b is the slant asymptote of f (x). Use this procedure to
find the slant asymptotes of the following functions:

(a) y = x2

x + 2
(b) y = x3 + x

x2 + x + 1

solution Since deg(P1) < deg(Q),

lim
x→±∞

P1(x)

Q(x)
= 0.

Thus

lim
x→±∞(f (x) − (ax + b)) = 0

and y = ax + b is a slant asymptote of f .
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(a)
x2

x + 2
= x − 2 + 4

x + 2
; hence y = x − 2 is a slant asymptote of

x2

x + 2
.

(b)
x3 + x

x2 + x + 1
= (x − 1) + x + 1

x2 − 1
; hence, y = x − 1 is a slant asymptote of

x3 + x

x2 + x + 1
.

73. Sketch the graph of

f (x) = x2

x + 1
.

Proceed as in the previous exercise to find the slant asymptote.

solution Let f (x) = x2

x + 1
. Then f ′(x) = x(x + 2)

(x + 1)2
and f ′′(x) = 2

(x + 1)3
. Thus, f is increasing for x < −2 and

for x > 0, is decreasing for −2 < x < −1 and for −1 < x < 0, has a local minimum at x = 0, has a local maximum at
x = −2, is concave down on (−∞, −1) and concave up on (−1, ∞). Limit analyses give a vertical asymptote at x = −1,
with

lim
x→−1−

x2

x + 1
= −∞ and lim

x→−1+
x2

x + 1
= ∞.

By polynomial division, f (x) = x − 1 + 1

x + 1
and

lim
x→±∞

(
x − 1 + 1

x + 1
− (x − 1)

)
= 0,

which implies that the slant asymptote is y = x − 1. Notice that f approaches the slant asymptote as in exercise 71.

x

4

2

42−2−4

−4

−6

−2

y

74. Show that y = 3x is a slant asymptote for f (x) = 3x + x−2. Determine whether f (x) approaches the slant asymptote
from above or below and make a sketch of the graph.

solution Let f (x) = 3x + x−2. Then

lim
x→±∞(f (x) − 3x) = lim

x→±∞(3x + x−2 − 3x) = lim
x→±∞ x−2 = 0

which implies that 3x is the slant asymptote of f (x). Since f (x) − 3x = x−2 > 0 as x → ±∞, f (x) approaches the
slant asymptote from above in both directions. Moreover, f ′(x) = 3 − 2x−3 and f ′′(x) = 6x−4. Sign analyses reveal

a local minimum at x =
(

3
2

)−1/3 ≈ 0.87358 and that f is concave up for all x = 0. Limit analyses give a vertical

asymptote at x = 0.

x
42−4 −2

y

−5

5

75. Sketch the graph of f (x) = 1 − x2

2 − x
.

solution Let f (x) = 1 − x2

2 − x
. Using polynomial division, f (x) = x + 2 + 3

x − 2
. Then

lim
x→±∞(f (x) − (x + 2)) = lim

x→±∞

(
(x + 2) + 3

x − 2
− (x + 2)

)
= lim

x→±∞
3

x − 2
= 3

1
· lim
x→±∞ x−1 = 0
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which implies that y = x + 2 is the slant asymptote of f (x). Since f (x) − (x + 2) = 3

x − 2
> 0 for x > 2, f (x)

approaches the slant asymptote from above for x > 2; similarly,
3

x − 2
< 0 for x < 2 so f (x) approaches the slant

asymptote from below for x < 2. Moreover, f ′(x) = x2 − 4x + 1

(2 − x)2
and f ′′(x) = −6

(2 − x)3
. Sign analyses reveal a local

minimum at x = 2 + √
3, a local maximum at x = 2 − √

3 and that f is concave down on (−∞, 2) and concave up on
(2, ∞). Limit analyses give a vertical asymptote at x = 2.

x

10

5
105−5−10

−10

−5

y

76. Assume that f ′(x) and f ′′(x) exist for all x and let c be a critical point of f (x). Show that f (x) cannot make a
transition from ++ to −+ at x = c. Hint: Apply the MVT to f ′(x).

solution Let f (x) be a function such that f ′′(x) > 0 for all x and such that it transitions from ++ to −+ at a critical
point c where f ′(c) is defined. That is, f ′(c) = 0, f ′(x) > 0 for x < c and f ′(x) < 0 for x > c. Let g(x) = f ′(x). The
previous statements indicate that g(c) = 0, g(x0) > 0 for some x0 < c, and g(x1) < 0 for some x1 > c. By the Mean
Value Theorem,

g(x1) − g(x0)

x1 − x0
= g′(c0),

for some c0 between x0 and x1. Because x1 > c > x0 and g(x1) < 0 < g(x0),

g(x1) − g(x0)

x1 − x0
< 0.

But, on the other hand g′(c0) = f ′′(c0) > 0, so there is a contradiction. This means that our assumption of the existence
of such a function f (x) must be in error, so no function can transition from ++ to −+.

If we drop the requirement that f ′(c) exist, such a function can be found. The following is a graph of f (x) = −x2/3.
f ′′(x) > 0 wherever f ′′(x) is defined, and f ′(x) transitions from positive to negative at x = 0.

x
10.5−1 −0.5

y

−0.8

77. Assume that f ′′(x) exists and f ′′(x) > 0 for all x. Show that f (x) cannot be negative for all x. Hint: Show
that f ′(b) = 0 for some b and use the result of Exercise 64 in Section 4.4.

solution Let f (x) be a function such that f ′′(x) exists and f ′′(x) > 0 for all x. Since f ′′(x) > 0, there is at least one
point x = b such that f ′(b) = 0. If not, f ′(x) = 0 for all x, so f ′′(x) = 0. By the result of Exercise 64 in Section 4.4,
f (x) ≥ f (b) + f ′(b)(x − b). Now, if f ′(b) > 0, we find that f (b) + f ′(b)(x − b) > 0 whenever

x >
bf ′(b) − f (b)

f ′(b)
,

a condition that must be met for some x sufficiently large. For such x, f (x) > f (b) + f ′(b)(x − b) > 0. On the other
hand, if f ′(b) < 0, we find that f (b) + f ′(b)(x − b) > 0 whenever

x <
bf ′(b) − f (b)

f ′(b)
.

For such an x, f (x) > f (b) + f ′(b)(x − b) > 0.
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4.7 Applied Optimization

Preliminary Questions
1. The problem is to find the right triangle of perimeter 10 whose area is as large as possible. What is the constraint

equation relating the base b and height h of the triangle?

solution The perimeter of a right triangle is the sum of the lengths of the base, the height and the hypotenuse. If the

base has length b and the height is h, then the length of the hypotenuse is
√

b2 + h2 and the perimeter of the triangle is

P = b + h +
√

b2 + h2. The requirement that the perimeter be 10 translates to the constraint equation

b + h +
√

b2 + h2 = 10.

2. Describe a way of showing that a continuous function on an open interval (a, b) has a minimum value.

solution If the function tends to infinity at the endpoints of the interval, then the function must take on a minimum
value at a critical point.

3. Is there a rectangle of area 100 of largest perimeter? Explain.

solution No. Even by fixing the area at 100, we can take one of the dimensions as large as we like thereby allowing
the perimeter to become as large as we like.

Exercises
1. Find the dimensions x and y of the rectangle of maximum area that can be formed using 3 meters of wire.

(a) What is the constraint equation relating x and y?

(b) Find a formula for the area in terms of x alone.

(c) What is the interval of optimization? Is it open or closed?

(d) Solve the optimization problem.

solution

(a) The perimeter of the rectangle is 3 meters, so 3 = 2x + 2y, which is equivalent to y = 3
2 − x.

(b) Using part (a), A = xy = x( 3
2 − x) = 3

2x − x2.

(c) This problem requires optimization over the closed interval [0, 3
2 ], since both x and y must be non-negative.

(d) A′(x) = 3
2 − 2x = 0, which yields x = 3

4 and consequently, y = 3
4 . Because A(0) = A(3/2) = 0 and A( 3

4 ) =
0.5625, the maximum area 0.5625 m2 is achieved with x = y = 3

4 m.

2. Wire of length 12 m is divided into two pieces and each piece is bent into a square. How should this be done in order
to minimize the sum of the areas of the two squares?

(a) Express the sum of the areas of the squares in terms of the lengths x and y of the two pieces.

(b) What is the constraint equation relating x and y?

(c) What is the interval of optimization? Is it open or closed?

(d) Solve the optimization problem.

solution Let x and y be the lengths of the pieces.

(a) The perimeter of the first square is x, which implies the length of each side is x
4 and the area is

(
x
4

)2. Similarly, the

area of the second square is
( y

4

)2. Then the sum of the areas is given by A = ( x4 )2 + ( y4 )2.

(b) x + y = 12, so that y = 12 − x. Then

A(x) =
(x

4

)2 +
(y

4

)2 =
(x

4

)2 +
(

12 − x

4

)2
= 1

8
x2 − 3

2
x + 9.

(c) Since it is possible for the minimum total area to be realized by not cutting the wire at all, optimization over the
closed interval [0, 12] suffices.

(d) Solve A′(x) = 1
4x − 3

2 = 0 to obtain x = 6 m. Now A(0) = A(12) = 9 m2, whereas A(4) = 9
4 m2. Accordingly,

the sum of the areas of the squares is minimized if the wire is cut in half.

3. Wire of length 12 m is divided into two pieces and the pieces are bend into a square and a circle. How should this be
done in order to minimize the sum of their areas?
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solution Suppose the wire is divided into one piece of length x m that is bent into a circle and a piece of length
12 − x m that is bent into a square. Because the circle has circumference x, it follows that the radius of the circle is x/2π ;
therefore, the area of the circle is

π
( x

2π

)2 = x2

4π
.

As for the square, because the perimeter is 12 − x, the length of each side is 3 − x/4 and the area is (3 − x/4)2. Then

A(x) = x2

4π
+
(

3 − 1

4
x

)2
.

Now

A′(x) = x

2π
− 1

2

(
3 − 1

4
x

)
= 0

when

x = 12π

4 + π
m ≈ 5.28 m.

Because A(0) = 9 m2, A(12) = 36/π ≈ 11.46 m2, and

A

(
12π

4 + π

)
≈ 5.04 m2,

we see that the sum of the areas is minimized when approximately 5.28 m of the wire is allotted to the circle.

4. Find the positive number x such that the sum of x and its reciprocal is as small as possible. Does this problem require
optimization over an open interval or a closed interval?

solution Let x > 0 and f (x) = x + x−1. Here we require optimization over the open interval (0, ∞). Solve

f ′(x) = 1 − x−2 = 0 for x > 0 to obtain x = 1. Since f (x) → ∞ as x → 0+ and as x → ∞, we conclude that f has
an absolute minimum of f (1) = 2 at x = 1.

5. A flexible tube of length 4 m is bent into an L-shape. Where should the bend be made to minimize the distance
between the two ends?

solution Let x, y > 0 be lengths of the side of the L. Since x + y = 4 or y = 4 − x, the distance between the ends

of L is h(x) =
√

x2 + y2 =
√

x2 + (4 − x)2. We may equivalently minimize the square of the distance,

f (x) = x2 + y2 = x2 + (4 − x)2

This is easier computationally (when working by hand). Solve f ′(x) = 4x − 8 = 0 to obtain x = 2 m. Now f (0) =
f (4) = 16, whereas f (2) = 8. Hence the distance between the two ends of the L is minimized when the bend is made at
the middle of the wire.

6. Find the dimensions of the box with square base with:

(a) Volume 12 and the minimal surface area.
(b) Surface area 20 and maximal volume.

solution A box has a square base of side x and height y where x, y > 0. Its volume is V = x2y and its surface area

is S = 2x2 + 4xy.

(a) If V = x2y = 12, then y = 12/x2 and S(x) = 2x2 + 4x
(

12/x2
)

= 2x2 + 48x−1. Solve S′(x) = 4x − 48x−2 = 0

to obtain x = 121/3. Since S(x) → ∞ as x → 0+ and as x → ∞, the minimum surface area is S(121/3) = 6 (12)2/3 ≈
31.45, when x = 121/3 and y = 121/3.
(b) If S = 2x2 + 4xy = 20, then y = 5x−1 − 1

2x and V (x) = x2y = 5x − 1
2x3. Note that x must lie on the

closed interval [0,
√

10]. Solve V ′(x) = 5 − 3
2x2 for x > 0 to obtain x =

√
30
3 . Since V (0) = V (

√
10) = 0 and

V
(√

30
3

)
= 10

√
30

9 , the maximum volume is V (

√
30
3 ) = 10

9

√
30 ≈ 6.086, when x =

√
30
3 and y =

√
30
3 .

7. A rancher will use 600 m of fencing to build a corral in the shape of a semicircle on top of a rectangle (Figure 9).
Find the dimensions that maximize the area of the corral.

FIGURE 9



April 2, 2011

482 C H A P T E R 4 APPLICATIONS OF THE DERIVATIVE

solution Let x be the width of the corral and therefore the diameter of the semicircle, and let y be the height of the
rectangular section. Then the perimeter of the corral can be expressed by the equation 2y + x + π

2 x = 2y + (1 + π
2 )x =

600 m or equivalently, y = 1
2

(
600 − (1 + π

2 )x
)
. Since x and y must both be nonnegative, it follows that x must

be restricted to the interval [0, 600
1+π/2 ]. The area of the corral is the sum of the area of the rectangle and semicircle,

A = xy + π
8 x2. Making the substitution for y from the constraint equation,

A(x) = 1

2
x
(

600 − (1 + π

2
)x
)

+ π

8
x2 = 300x − 1

2

(
1 + π

2

)
x2 + π

8
x2.

Now, A′(x) = 300 − (1 + π
2

)
x + π

4 x = 0 implies x = 300(
1+ π

4

) ≈ 168.029746 m. With A(0) = 0 m2,

A

(
300

1 + π/4

)
≈ 25204.5 m2 and A

(
600

1 + π/2

)
≈ 21390.8 m2,

it follows that the corral of maximum area has dimensions

x = 300

1 + π/4
m and y = 150

1 + π/4
m.

8. What is the maximum area of a rectangle inscribed in a right triangle with 5 and 8 as in Figure 10. The sides of the
rectangle are parallel to the legs of the triangle.

5

8

FIGURE 10

solution Position the triangle with its right angle at the origin, with its side of length 8 along the positive y-axis, and
side of length 5 along the positive x-axis. Let x, y > 0 be the lengths of sides of the inscribed rectangle along the axes.
By similar triangles, we have 8

5 = y
5−x

or y = 8 − 8
5x. The area of the rectangle is thus A(x) = xy = 8x − 8

5x2. To

guarantee that both x and y remain nonnegative, we must restrict x to the interval [0, 5]. Solve A′(x) = 8 − 16
5 x = 0 to

obtain x = 5
2 . Since A(0) = A(5) = 0 and A( 5

2 ) = 10, the maximum area is A
(

5
2

)
= 10 when x = 5

2 and y = 4.

9. Find the dimensions of the rectangle of maximum area that can be inscribed in a circle of radius r = 4 (Figure 11).

r

FIGURE 11

solution Place the center of the circle at the origin with the sides of the rectangle (of lengths 2x > 0 and 2y > 0)

parallel to the coordinate axes. By the Pythagorean Theorem, x2 + y2 = r2 = 16, so that y =
√

16 − x2. Thus the area

of the rectangle is A(x) = 2x · 2y = 4x
√

16 − x2. To guarantee both x and y are real and nonnegative, we must restrict
x to the interval [0, 4]. Solve

A′(x) = 4
√

16 − x2 − 4x2√
16 − x2

= 0

for x > 0 to obtain x = 4√
2

= 2
√

2. Since A(0) = A(4) = 0 and A(2
√

2) = 32, the rectangle of maximum area has

dimensions 2x = 2y = 4
√

2.

10. Find the dimensions x and y of the rectangle inscribed in a circle of radius r that maximizes the quantity xy2.

solution Place the center of the circle of radius r at the origin with the sides of the rectangle (of lengths x > 0 and

y > 0) parallel to the coordinate axes. By the Pythagorean Theorem, we have ( x
2 )2 + (

y
2 )2 = r2, whence y2 = 4r2 − x2.

Let f (x) = xy2 = 4xr2 − x3. Allowing for degenerate rectangles, we have 0 ≤ x ≤ 2r . Solve f ′(x) = 4r2 − 3x2 for
x ≥ 0 to obtain x = 2r√

3
. Since f (0) = f (2r) = 0, the maximal value of f is f ( 2r√

3
) = 16

9

√
3r3 when x = 2r√

3
and

y = 2
√

2
3 r .



April 2, 2011

S E C T I O N 4.7 Applied Optimization 483

11. Find the point on the line y = x closest to the point (1, 0). Hint: It is equivalent and easier to minimize the square
of the distance.

solution With y = x, let’s equivalently minimize the square of the distance, f (x) = (x − 1)2 + y2 = 2x2 − 2x + 1,

which is computationally easier (when working by hand). Solve f ′(x) = 4x − 2 = 0 to obtain x = 1
2 . Since f (x) → ∞

as x → ±∞, ( 1
2 , 1

2 ) is the point on y = x closest to (1, 0).

12. Find the point P on the parabola y = x2 closest to the point (3, 0) (Figure 12).

3
x

y

P
y = x2

FIGURE 12

solution With y = x2, let’s equivalently minimize the square of the distance,

f (x) = (x − 3)2 + y2 = x4 + x2 − 6x + 9.

Then

f ′(x) = 4x3 + 2x − 6 = 2(x − 1)(2x2 + 2x + 3),

so that f ′(x) = 0 when x = 1 (plus two complex solutions, which we discard). Since f (x) → ∞ as x → ±∞,
P = (1, 1) is the point on y = x2 closest to (3, 0).

13. Find a good numerical approximation to the coordinates of the point on the graph of y = ln x − x closest to
the origin (Figure 13).

x

y

y = ln x − x

FIGURE 13

solution The distance from the origin to the point (x, ln x − x) on the graph of y = ln x − x is d =
√

x2 + (ln x − x)2.

As usual, we will minimize d2. Let d2 = f (x) = x2 + (ln x − x)2. Then

f ′(x) = 2x + 2(ln x − x)

(
1

x
− 1

)
.

To determine x, we need to solve

4x + 2 ln x

x
− 2 ln x − 2 = 0.

This yields x ≈ .632784. Thus, the point on the graph of y = ln x − x that is closest to the origin is approximately
(0.632784, −1.090410).

14. Problem of Tartaglia (1500–1557) Among all positive numbers a, b whose sum is 8, find those for which the
product of the two numbers and their difference is largest.

solution The product of a,b and their difference is ab(a − b). Since a + b = 8, b = 8 − a and a − b = 2a − 8.
Thus, let

f (a) = a(8 − a)(2a − 8) = −2a3 + 24a2 − 64a.

where a ∈ [0, 8]. Setting f ′(a) = −6a2 + 48a − 64 = 0 yields a = 4 ± 4
3

√
3. Now, f (0) = f (8) = 0, while

f

(
4 − 4

3

√
3

)
< 0 and f

(
4 + 4

3

√
3

)
> 0.

Hence the numbers a, b maximizing the product are

a = 4 + 4
√

3

3
, and b = 8 − a = 4 − 4

√
3

3
.
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15. Find the angle θ that maximizes the area of the isosceles triangle whose legs have length � (Figure 14).

q

FIGURE 14

solution The area of the triangle is

A(θ) = 1

2
�2 sin θ,

where 0 ≤ θ ≤ π . Setting

A′(θ) = 1

2
�2 cos θ = 0

yields θ = π
2 . Since A(0) = A(π) = 0 and A(π

2 ) = 1
2�2, the angle that maximizes the area of the isosceles triangle is

θ = π
2 .

16. A right circular cone (Figure 15) has volume V = π
3 r2h and surface area is S = πr

√
r2 + h2. Find the dimensions

of the cone with surface area 1 and maximal volume.

r

h

FIGURE 15

solution We have πr
√

r2 + h2 = 1 so π2r2(r2 + h2) = 1 and hence h2 = 1−π2r4

π2r2 and now we must maximize

V = 1

3
πr2h = 1

3
π

(
r2

√
1 − π2r4

πr

)
= 1

3
r
√

1 − π2r4,

where 0 < r ≤ 1/
√

π . Because

d

dr
r
√

1 − π2r4 =
√

1 − π2r4 + 1

2
r

−4π2r3√
1 − π2r4

the relevant critical point is r = (3π2)−1/4.
To find h, we back substitute our solution for r in h2 = (1 − π2r4)/(π2r2). r = (3π2)−1/4, so r4 = 1

3π2 and

r2 = 1√
3π

; hence, π2r4 = 1
3 and π2r2 = π√

3
, and:

h2 =
(

2

3

)/(
π√

3

)
= 2√

3π
.

From this, h = √
2/
(

31/4√
π
)

. Since

lim
r→0+ V (r) = 0, V

(
1√
π

)
= 0 and V

(
(3π2)−1/4

)
= 1

37/4

√
2

π
,

the cone of surface area 1 with maximal volume has dimensions

r = 1

31/4√
π

and h =
√

2

31/4√
π

.
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17. Find the area of the largest isosceles triangle that can be inscribed in a circle of radius r .

solution Consider the following diagram:

q

p −q p −q
2q

r

r r

The area of the isosceles triangle is

A(θ) = 2 · 1

2
r2 sin(π − θ) + 1

2
r2 sin(2θ) = r2 sin θ + 1

2
r2 sin(2θ),

where 0 ≤ θ ≤ π . Solve

A′(θ) = r2 cos θ + r2 cos(2θ) = 0

to obtain θ = π
3 , π . Since A(0) = A(π) = 0 and A(π

3 ) = 3
√

3
4 r2, the area of the largest isosceles triangle that can be

inscribed in a circle of radius r is 3
√

3
4 r2.

18. Find the radius and height of a cylindrical can of total surface area A whose volume is as large as possible. Does
there exist a cylinder of surface area A and minimal total volume?

solution Let a closed cylindrical can be of radius r and height h. Its total surface area is S = 2πr2 + 2πrh = A,

whence h = A

2πr
− r . Its volume is thus V (r) = πr2h = 1

2Ar − πr3, where 0 < r ≤
√

A
2π

. Solve V ′(r) = 1
2A − 3πr2

for r > 0 to obtain r =
√

A

6π
. Since V (0) = V (

√
A
2π

) = 0 and

V

(√
A

6π

)
=

√
6A3/2

18
√

π
,

the maximum volume is achieved when

r =
√

A

6π
and h = 1

3

√
6A

π
.

For a can of total surface area A, there are cans of arbitrarily small volume since lim
r→0+ V (r) = 0.

19. A poster of area 6000 cm2 has blank margins of width 10 cm on the top and bottom and 6 cm on the sides. Find the
dimensions that maximize the printed area.

solution Let x be the width of the printed region, and let y be the height. The total printed area is A = xy. Because the

total area of the poster is 6000 cm2, we have the constraint (x + 12)(y + 20) = 6000, so that xy + 12y + 20x + 240 =
6000, or y = 5760−20x

x+12 . Therefore, A(x) = 20 288x−x2

x+12 , where 0 ≤ x ≤ 288.
A(0) = A(288) = 0, so we are looking for a critical point on the interval [0, 288]. Setting A′(x) = 0 yields

20
(x + 12)(288 − 2x) − (288x − x2)

(x + 12)2
= 0

−x2 − 24x + 3456

(x + 12)2
= 0

x2 + 24x − 3456 = 0

(x − 48)(x + 72) = 0

Therefore x = 48 or x = −72. x = 48 is the only critical point of A(x) in the interval [0, 288], so A(48) = 3840 is the
maximum value of A(x) in the interval [0, 288]. Now, y = 20 288−48

48+12 = 80 cm, so the poster with maximum printed area
is 48 + 12 = 60 cm. wide by 80 + 20 = 100 cm. tall.

20. According to postal regulations, a carton is classified as “oversized” if the sum of its height and girth ( perimeter of
its base) exceeds 108 in. Find the dimensions of a carton with square base that is not oversized and has maximum volume.

solution Let h denote the height of the carton and s denote the side length of the square base. Clearly the volume
will be maximized when the sum of the height and girth equals 108; i.e., 4s + h = 108, whence h = 108 − 4s.
Allowing for degenerate cartons, the carton’s volume is V (s) = s2h = s2(108 − 4s), where 0 ≤ s ≤ 27. Solve
V ′(s) = 216s − 12s3 = 0 for s to obtain s = 0 or s = 18. Since V (0) = V (27) = 0, the maximum volume is
V (18) = 11664 in3 when s = 18 in and h = 36 in.
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21. Kepler’s Wine Barrel Problem In his work Nova stereometria doliorum vinariorum (New Solid Geometry of
a Wine Barrel), published in 1615, astronomer Johannes Kepler stated and solved the following problem: Find the
dimensions of the cylinder of largest volume that can be inscribed in a sphere of radius R. Hint: Show that an inscribed
cylinder has volume 2πx(R2 − x2), where x is one-half the height of the cylinder.

solution Place the center of the sphere at the origin in three-dimensional space. Let the cylinder be of radius y and

half-height x. The Pythagorean Theorem states, x2 + y2 = R2, so that y2 = R2 − x2. The volume of the cylinder is

V (x) = πy2 (2x) = 2π
(
R2 − x2

)
x = 2πR2x − 2πx3. Allowing for degenerate cylinders, we have 0 ≤ x ≤ R.

Solve V ′(x) = 2πR2 − 6πx2 = 0 for x ≥ 0 to obtain x = R√
3

. Since V (0) = V (R) = 0, the largest volume is

V ( R√
3
) = 4

9π
√

3R3 when x = R√
3

and y =
√

2
3R.

22. Find the angle θ that maximizes the area of the trapezoid with a base of length 4 and sides of length 2, as in Figure 16.

4

2 2

qq

FIGURE 16

solution Allowing for degenerate trapezoids, we have 0 ≤ θ ≤ π . Via trigonometry and surgery (slice off a right
triangle and rearrange the trapezoid into a rectangle), we have that the area of the trapezoid is equivalent to the area of a
rectangle of base 4 − 2 cos θ and height 2 sin θ ; i.e,

A(θ) = (4 − 2 cos θ) · 2 sin θ = 8 sin θ − 4 sin θ cos θ = 8 sin θ − 2 sin 2θ,

where 0 ≤ θ ≤ π . Solve

A′(θ) = 8 cos θ − 4 cos 2θ = 4 + 8 cos θ − 8 cos2 θ = 0

for 0 ≤ θ ≤ π to obtain

θ = θ0 = cos−1

(
1 − √

3

2

)
≈ 1.94553.

Since A(0) = A(π) = 0 and A(θ0) = 31/4(3 + √
3)

√
2, the area of the trapezoid is maximized when θ = cos−1

(
1−√

3
2

)
.

23. A landscape architect wishes to enclose a rectangular garden of area 1,000 m2 on one side by a brick wall costing
$90/m and on the other three sides by a metal fence costing $30/m. Which dimensions minimize the total cost?

solution Let x be the length of the brick wall and y the length of an adjacent side with x, y > 0. With xy = 1000 or

y = 1000
x , the total cost is

C(x) = 90x + 30 (x + 2y) = 120x + 60000x−1.

Solve C′(x) = 120 − 60000x−2 = 0 for x > 0 to obtain x = 10
√

5. Since C(x) → ∞ as x → 0+ and as x → ∞, the
minimum cost is C(10

√
5) = 2400

√
5 ≈ $5366.56 when x = 10

√
5 ≈ 22.36 m and y = 20

√
5 ≈ 44.72 m.

24. The amount of light reaching a point at a distance r from a light source A of intensity IA is IA/r2. Suppose that a
second light source B of intensity IB = 4IA is located 10 m from A. Find the point on the segment joining A and B

where the total amount of light is at a minimum.

solution Place the segment in the xy-plane with A at the origin and B at (10, 0). Let x be the distance from A. Then
10 − x is the distance from B. The total amount of light is

f (x) = IA

x2
+ IB

(10 − x)2
= IA

(
1

x2
+ 4

(10 − x)2

)
.

Solve

f ′(x) = IA

(
8

(10 − x)3
− 2

x3

)
= 0

for 0 ≤ x ≤ 10 to obtain

4 = (10 − x)3

x3
=
(

10

x
− 1

)3
or x = 10

1 + 3√4
≈ 3.86 m.

Since f (x) → ∞ as x → 0+ and x → 10− we conclude that the minimal amount of light occurs 3.86 m from A.
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25. Find the maximum area of a rectangle inscribed in the region bounded by the graph of y = 4 − x

2 + x
and the axes

(Figure 17).

2

4

y = 4 − x
2 + x

x

y

FIGURE 17

solution Let s be the width of the rectangle. The height of the rectangle is h = 4−s
2+s

, so that the area is

A(s) = s
4 − s

2 + s
= 4s − s2

2 + s
.

We are maximizing on the closed interval [0, 4]. It is obvious from the pictures that A(0) = A(4) = 0, so we look for
critical points of A.

A′(s) = (2 + s)(4 − 2s) − (4s − s2)

(2 + s)2
= − s2 + 4s − 8

(s + 2)2
.

The only point where A′(s) doesn’t exist is s = −2 which isn’t under consideration.
Setting A′(s) = 0 gives, by the quadratic formula,

s = −4 ± √
48

2
= −2 ± 2

√
3.

Of these, only −2 + 2
√

3 is positive, so this is our lone critical point. A(−2 + 2
√

3) ≈ 1.0718 > 0. Since we are finding
the maximum over a closed interval and −2 + 2

√
3 is the only critical point, the maximum area is A(−2 + 2

√
3) ≈ 1.0718.

26. Find the maximum area of a triangle formed by the axes and a tangent line to the graph of y = (x + 1)−2 with x > 0.

solution Let P
(
t, 1

(t+1)2

)
be a point on the graph of the curve y = 1

(x+1)2 in the first quadrant. The tangent line to

the curve at P is

L(x) = 1

(t + 1)2
− 2(x − t)

(t + 1)3
,

which has x-intercept a = 3t+1
2 and y-intercept b = 3t+1

(t+1)3 . The area of the triangle in question is

A(t) = 1

2
ab = (3t + 1)2

4(t + 1)3
.

Solve

A′(t) = (3t + 1)(3 − 3t)

4(t + 1)4
= 0

for 0 ≤ t to obtain t = 1. Because A(0) = 1
4 , A(1) = 1

2 and A(t) → 0 as t → ∞, it follows that the maximum area is

A(1) = 1
2 .

27. Find the maximum area of a rectangle circumscribed around a rectangle of sides L and H . Hint: Express the area in
terms of the angle θ (Figure 18).

H

q

L

FIGURE 18
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solution Position the L × H rectangle in the first quadrant of the xy-plane with its “northwest” corner at the origin.
Let θ be the angle the base of the circumscribed rectangle makes with the positive x-axis, where 0 ≤ θ ≤ π

2 . Then the area

of the circumscribed rectangle is A = LH + 2 · 1
2 (H sin θ)(H cos θ) + 2 · 1

2 (L sin θ)(L cos θ) = LH + 1
2 (L2 + H 2)

sin 2θ , which has a maximum value of LH + 1
2 (L2 + H 2) when θ = π

4 because sin 2θ achieves its maximum when
θ = π

4 .

28. A contractor is engaged to build steps up the slope of a hill that has the shape of the graph of y = x2(120 − x)/6400
for 0 ≤ x ≤ 80 with x in meters (Figure 19). What is the maximum vertical rise of a stair if each stair has a horizontal
length of one-third meter.

20 40 60 80

20

40

y

x

FIGURE 19

solution Let f (x) = x2(120 − x)/6400. Because the horizontal length of each stair is one-third meter, the vertical
rise of each stair is

r(x) = f

(
x + 1

3

)
− f (x) = 1

6400

(
x + 1

3

)2 (359

3
− x

)
− 1

6400
x2(120 − x)

= 1

6400

(
−x2 + 239

3
x + 359

27

)
,

where x denotes the location of the beginning of the stair. This is the equation of a downward opening parabola; thus, the
maximum occurs when r ′(x) = 0. Now,

r ′(x) = 1

6400

(
−2x + 239

3

)
= 0

when x = 239/6. Because the stair must start at a location of the form n/3 for some integer n, we evaluate r(x) at
x = 119/3 and x = 120/3 = 40. We find

r

(
119

3

)
= r(40) = 43199

172800
≈ 0.249994

meters. Thus, the maximum vertical rise of any stair is just below 0.25 meters.

29. Find the equation of the line through P = (4, 12) such that the triangle bounded by this line and the axes in the first
quadrant has minimal area.

solution Let P = (4, 12) be a point in the first quadrant and y − 12 = m(x − 4), −∞ < m < 0, be a line
through P that cuts the positive x- and y-axes. Then y = L(x) = m(x − 4) + 12. The line L(x) intersects the y-axis at

H (0, 12 − 4m) and the x-axis at W
(

4 − 12
m , 0

)
. Hence the area of the triangle is

A(m) = 1

2
(12 − 4m)

(
4 − 12

m

)
= 48 − 8m − 72m−1.

Solve A′(m) = 72m−2 − 8 = 0 for m < 0 to obtain m = −3. Since A → ∞ as m → −∞ or m → 0−, we
conclude that the minimal triangular area is obtained when m = −3. The equation of the line through P = (4, 12) is
y = −3(x − 4) + 12 = −3x + 24.

30. Let P = (a, b) lie in the first quadrant. Find the slope of the line through P such that the triangle bounded by this line
and the axes in the first quadrant has minimal area. Then show that P is the midpoint of the hypotenuse of this triangle.

solution Let P(a, b) be a point in the first quadrant (thus a, b > 0) and y − b = m(x − a), −∞ < m < 0, be a line
through P that cuts the positive x- and y-axes. Then y = L(x) = m(x − a) + b. The line L(x) intersects the y-axis at

H (0, b − am) and the x-axis at W
(
a − b

m , 0
)

. Hence the area of the triangle is

A(m) = 1

2
(b − am)

(
a − b

m

)
= ab − 1

2
a2m − 1

2
b2m−1.

Solve A′(m) = 1
2b2m−2 − 1

2a2 = 0 for m < 0 to obtain m = − b
a . Since A → ∞ as m → −∞ or m → 0−, we

conclude that the minimal triangular area is obtained when m = − b
a . For m = −b/a, we have H(0, 2b) and W(2a, 0).

The midpoint of the line segment connecting H and W is thus P(a, b).
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31. Archimedes’ Problem A spherical cap (Figure 20) of radius r and height h has volume V = πh2(r − 1
3h
)

and
surface area S = 2πrh. Prove that the hemisphere encloses the largest volume among all spherical caps of fixed surface
area S.

r

h

FIGURE 20

solution Consider all spherical caps of fixed surface area S. Because S = 2πrh, it follows that

r = S

2πh

and

V (h) = πh2
(

S

2πh
− 1

3
h

)
= S

2
h − π

3
h3.

Now

V ′(h) = S

2
− πh2 = 0

when

h2 = S

2π
or h = S

2πh
= r.

Hence, the hemisphere encloses the largest volume among all spherical caps of fixed surface area S.

32. Find the isosceles triangle of smallest area (Figure 21) that circumscribes a circle of radius 1 (from Thomas Simpson’s
The Doctrine and Application of Fluxions, a calculus text that appeared in 1750).

q

1

FIGURE 21

solution From the diagram, we see that the height h and base b of the triangle are h = 1 + csc θ and b = 2h tan θ =
2(1 + csc θ) tan θ . Thus, the area of the triangle is

A(θ) = 1

2
hb = (1 + csc θ)2 tan θ,

where 0 < θ < π . We now set the derivative equal to zero:

A′(θ) = (1 + csc θ)(−2 csc θ + sec2 θ(1 + csc θ)) = 0.

The first factor gives θ = 3π/2 which is not in the domain of the problem. To find the roots of the second factor, multiply
through by cos2 θ sin θ to obtain

−2 cos2 θ + sin θ + 1 = 0,

or

2 sin2 θ + sin θ − 1 = 0.

This is a quadratic equation in sin θ with roots sin θ = −1 and sin θ = 1/2. Only the second solution is relevant and gives
us θ = π/6. Since A(θ) → ∞ as θ → 0+ and as θ → π−, we see that the minimum area occurs when the triangle is
an equilateral triangle.
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33. A box of volume 72 m3 with square bottom and no top is constructed out of two different materials. The cost of the
bottom is $40/m2 and the cost of the sides is $30/m2. Find the dimensions of the box that minimize total cost.

solution Let s denote the length of the side of the square bottom of the box and h denote the height of the box. Then

V = s2h = 72 or h = 72

s2
.

The cost of the box is

C = 40s2 + 120sh = 40s2 + 8640

s
,

so

C′(s) = 80s − 8640

s2
= 0

when s = 3 3√4 m and h = 2 3√4 m. Because C → ∞ as s → 0− and as s → ∞, we conclude that the critical point
gives the minimum cost.

34. Find the dimensions of a cylinder of volume 1 m3 of minimal cost if the top and bottom are made of material that
costs twice as much as the material for the side.

solution Let r be the radius in meters of the top and bottom of the cylinder. Let h be the height in meters of the

cylinder. Since V = πr2h = 1, we get h = 1
πr2 . Ignoring the actual cost, and using only the proportion, suppose that

the sides cost 1 monetary unit per square meter and the top and the bottom 2. The cost of the top and bottom is 2(2πr2)

and the cost of the sides is 1(2πrh) = 2πr( 1
πr2 ) = 2

r . Let C(r) = 4πr2 + 2
r . Because C(r) → ∞ as r → 0+ and as

r → ∞, we are looking for critical points of C(r). Setting C′(r) = 8πr − 2
r2 = 0 yields 8πr = 2

r2 , so that r3 = 1
4π

.

This yields r = 1
(4π)1/3 ≈ 0.430127. The dimensions that minimize cost are

r = 1

(4π)1/3
m, h = 1

πr2
= 42/3π−1/3 m.

35. Your task is to design a rectangular industrial warehouse consisting of three separate spaces of equal size as in
Figure 22. The wall materials cost $500 per linear meter and your company allocates $2,400,000 for the project.

(a) Which dimensions maximize the area of the warehouse?

(b) What is the area of each compartment in this case?

FIGURE 22

solution Let one compartment have lengthx and widthy. Then total length of the wall of the warehouse isP = 4x + 6y

and the constraint equation is cost = 2,400,000 = 500(4x + 6y), which gives y = 800 − 2
3x.

(a) Area is given by A = 3xy = 3x
(

800 − 2
3x
)

= 2400x − 2x2, where 0 ≤ x ≤ 1200. Then A′(x) = 2400 − 4x = 0

yields x = 600 and consequently y = 400. Since A(0) = A(1200) = 0 and A(600) = 720, 000, the area of the warehouse
is maximized when each compartment has length of 600 m and width of 400 m.

(b) The area of one compartment is 600 · 400 = 240, 000 square meters.

36. Suppose, in the previous exercise, that the warehouse consists of n separate spaces of equal size. Find a formula in
terms of n for the maximum possible area of the warehouse.

solution For n compartments, with x and y as before, cost = 2,400,000 = 500((n + 1)x + 2ny) and y =
4800 − (n + 1)x

2n
. Then

A = nxy = x
4800 − (n + 1)x

2
= 2400x − n + 1

2
x2

and A′(x) = 2400 − (n + 1)x = 0 yields x = 2400

n + 1
and consequently y = 1200

n
. Thus the maximum area is given by

A = n

(
2400

n + 1

)(
1200

n

)
= 28,800,000

n + 1
.
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37. According to a model developed by economists E. Heady and J. Pesek, if fertilizer made from N pounds of nitrogen
and P pounds of phosphate is used on an acre of farmland, then the yield of corn (in bushels per acre) is

Y = 7.5 + 0.6N + 0.7P − 0.001N2 − 0.002P 2 + 0.001NP

A farmer intends to spend $30 per acre on fertilizer. If nitrogen costs 25 cents/lb and phosphate costs 20 cents/lb, which
combination of N and L produces the highest yield of corn?

solution The farmer’s budget for fertilizer is $30 per acre, so we have the constraint equation

0.25N + 0.2P = 30 or P = 150 − 1.25N

Substituting for P in the equation for Y , we find

Y (N) = 7.5 + 0.6N + 0.7(150 − 1.25N) − 0.001N2 − 0.002(150 − 1.25N)2 + 0.001N(150 − 1.25N)

= 67.5 + 0.625N − 0.005375N2

Both N and P must be nonnegative. Since P = 150 − 1.25N ≥ 0, we require that 0 ≤ N ≤ 120. Next,

dY

dN
= 0.625 − 0.01075N = 0 ⇒ N = 0.625

0.01075
≈ 58.14 pounds.

Now, Y (0) = 67.5, Y (120) = 65.1 and Y (58.14) ≈ 85.67, so the maximum yield of corn occurs for N ≈ 58.14 pounds
and P ≈ 77.33 pounds.

38. Experiments show that the quantities x of corn and y of soybean required to produce a hog of weight Q satisfy
Q = 0.5x1/2y1/4. The unit of x, y, and Q is the cwt, an agricultural unit equal to 100 lbs. Find the values of x and y that
minimize the cost of a hog of weight Q = 2.5 cwt if corn costs $3/cwt and soy costs $7/cwt.

solution With Q = 2.5, we find that

y =
(

2.5

0.5x1/2

)4
= 625

x2
.

The cost is then

C = 3x + 7y = 3x + 4375

x2
.

Solving

dC

dx
= 3 − 8750

x3
= 0

yields x = 3√8750/3 ≈ 14.29. From this, it follows that y = 625/14.292 ≈ 3.06. The overall cost is C = 3(14.29) +
7(3.06) ≈ $64.29.

39. All units in a 100-unit apartment building are rented out when the monthly rent is set at r = $900/month. Suppose
that one unit becomes vacant with each $10 increase in rent and that each occupied unit costs $80/month in maintenance.
Which rent r maximizes monthly profit?

solution Let n denote the number of $10 increases in rent. Then the monthly profit is given by

P(n) = (100 − n)(900 + 10n − 80) = 82000 + 180n − 10n2,

and

P ′(n) = 180 − 20n = 0

when n = 9. We know this results in maximum profit because this gives the location of vertex of a downward opening
parabola. Thus, monthly profit is maximized with a rent of $990.

40. An 8-billion-bushel corn crop brings a price of $2.40/bu. A commodity broker uses the rule of thumb: If the crop is
reduced by x percent, then the price increases by 10x cents. Which crop size results in maximum revenue and what is the
price per bu? Hint: Revenue is equal to price times crop size.

solution Let x denote the percentage reduction in crop size. Then the price for corn is 2.40 + 0.10x, the crop size is
8(1 − 0.01x) and the revenue (in billions of dollars) is

R(x) = (2.4 + 0.1x)8(1 − 0.01x) = 8(−0.001x2 + 0.076x + 2.4),

where 0 ≤ x ≤ 100. Solve

R′(x) = −0.002x + 0.076 = 0
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to obtain x = 38 percent. Since R(0) = 19.2, R(38) = 30.752, and R(100) = 0, revenue is maximized when x = 38.
So we reduce the crop size to

8(1 − 0.38) = 4.96 billion bushels.

The price would be $2.40 + 0.10(38) = 2.40 + 3.80 = $6.20.

41. The monthly output of a Spanish light bulb factory is P = 2LK2 (in millions), where L is the cost of labor and K

is the cost of equipment (in millions of euros). The company needs to produce 1.7 million units per month. Which values
of L and K would minimize the total cost L + K?

solution Since P = 1.7 and P = 2LK2, we have L = 0.85

K2
. Accordingly, the cost of production is

C(K) = L + K = K + 0.85

K2
.

Solve C′(K) = 1 − 1.7

K3
for K ≥ 0 to obtain K = 3√1.7. Since C(K) → ∞ as K → 0+ and as K → ∞, the minimum

cost of production is achieved for K = 3√1.7 ≈ 1.2 and L = 0.6. The company should invest 1.2 million euros in
equipment and 600, 000 euros in labor.

42. The rectangular plot in Figure 23 has size 100 m × 200 m. Pipe is to be laid from A to a point P on side BC and
from there to C. The cost of laying pipe along the side of the plot is $45/m and the cost through the plot is $80/m (since
it is underground).

(a) Let f (x) be the total cost, where x is the distance from P to B. Determine f (x), but note that f is discontinuous at
x = 0 (when x = 0, the cost of the entire pipe is $45/ft).

(b) What is the most economical way to lay the pipe? What if the cost along the sides is $65/m?

100

200

200 − x

A

B P C
x

FIGURE 23

solution

(a) Let x be the distance from P to B. If x > 0, then the length of the underground pipe is
√

1002 + x2 and the length
of the pipe along the side of the plot is 200 − x. The total cost is

f (x) = 80
√

1002 + x2 + 45(200 − x).

If x = 0, all of the pipe is along the side of the plot and f (0) = 45(200 + 100) = $13,500.

(b) To locate the critical points of f , solve

f ′(x) = 80x√
1002 + x2

− 45 = 0.

We find x = ±180/
√

7. Note that only the positive value is in the domain of the problem. Because f (0) = $13,500,
f (180/

√
7) = $15,614.38 and f (200) = $17,888.54, the most economical way to lay the pipe is to place the pipe along

the side of the plot.
If the cost of laying the pipe along the side of the plot is $65 per meter, then

f (x) = 80
√

1002 + x2 + 65(200 − x)

and

f ′(x) = 80x√
1002 + x2

− 65.

The only critical point in the domain of the problem is x = 1300/
√

87 ≈ 139.37. Because f (0) = $19,500, f (139.37) =
$17,663.69 and f (200) = $17,888.54, the most economical way to lay the pipe is place the underground pipe from A to
a point 139.37 meters to the right of B and continuing to C along the side of the plot.

43. Brandon is on one side of a river that is 50 m wide and wants to reach a point 200 m downstream on the opposite
side as quickly as possible by swimming diagonally across the river and then running the rest of the way. Find the best
route if Brandon can swim at 1.5 m/s and run at 4 m/s.
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solution Let lengths be in meters, times in seconds, and speeds in m/s. Suppose that Brandon swims diagonally to

a point located x meters downstream on the opposite side. Then Brandon then swims a distance
√

x2 + 502 and runs a
distance 200 − x. The total time of the trip is

f (x) =
√

x2 + 2500

1.5
+ 200 − x

4
, 0 ≤ x ≤ 200.

Solve

f ′(x) = 2x

3
√

x2 + 2500
− 1

4
= 0

to obtain x = 30 5
11 ≈ 20.2 and f (20.2) ≈ 80.9. Since f (0) ≈ 83.3 and f (200) ≈ 137.4, we conclude that the minimal

time is 80.9 s. This occurs when Brandon swims diagonally to a point located 20.2 m downstream and then runs the rest
of the way.

44. Snell’s Law When a light beam travels from a point A above a swimming pool to a point B below the water (Figure
24), it chooses the path that takes the least time. Let v1 be the velocity of light in air and v2 the velocity in water (it is
known that v1 > v2). Prove Snell’s Law of Refraction:

sin θ1

v1
= sin θ2

v2

A

h1 q1

q2

B

h2

FIGURE 24

solution The time it takes a beam of light to travel from A to B is

f (x) = a

v1
+ b

v2
=
√

x2 + h2
1

v1
+
√

(L − x)2 + h2
2

v2

(See diagram below.) Now

f ′(x) = x

v1

√
x2 + h2

1

− L − x

v2

√
(L − x)2 + h2

2

= 0

yields

x
/√

x2 + h2
1

v1
=

(L − x)
/√

(L − x)2 + h2
2

v2
or

sin θ1

v1
= sin θ2

v2
,

which is Snell’s Law. Since

f ′′(x) = h2
1

v1

(
x2 + h2

1

)3/2
+ h2

2

v2

(
(L − x)2 + h2

2

)3/2
> 0

for all x, the minimum time is realized when Snell’s Law is satisfied.

A

h1 q1
q1

q2

q2

B

x

a

b

L − x

h2
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In Exercises 45–47, a box (with no top) is to be constructed from a piece of cardboard of sides A and B by cutting out
squares of length h from the corners and folding up the sides (Figure 26).

h

A

B

FIGURE 26

45. Find the value of h that maximizes the volume of the box if A = 15 and B = 24. What are the dimensions of this
box?

solution Once the sides have been folded up, the base of the box will have dimensions (A − 2h) × (B − 2h) and the
height of the box will be h. Thus

V (h) = h(A − 2h)(B − 2h) = 4h3 − 2(A + B)h2 + ABh.

When A = 15 and B = 24, this gives

V (h) = 4h3 − 78h2 + 360h,

and we need to maximize over 0 ≤ h ≤ 15
2 . Now,

V ′(h) = 12h2 − 156h + 360 = 0

yields h = 3 and h = 10. Because h = 10 is not in the domain of the problem and V (0) = V (15/2) = 0 and V (3) = 486,
volume is maximized when h = 3. The corresponding dimensions are 9 × 18 × 3.

46. Vascular Branching A small blood vessel of radius r branches off at an angle θ from a larger vessel of radius R to
supply blood along a path from A to B. According to Poiseuille’s Law, the total resistance to blood flow is proportional to

T =
(

a − b cot θ

R4
+ b csc θ

r4

)

where a and b are as in Figure 25. Show that the total resistance is minimized when cos θ = (r/R)4.

B

A

R

r

q

b

a

FIGURE 25

solution With a, b, r, R > 0 and R > r , let T (θ) =
(

a − b cot θ

R4
+ b csc θ

r4

)
. Set

T ′(θ) =
(

b csc2 θ

R4
− b csc θ cot θ

r4

)
= 0.

Then

b
(
r4 − R4 cos θ

)
R4r4 sin2 θ

= 0,

so that cos θ =
( r

R

)4
. Since lim

θ→0+ T (θ) = ∞ and lim
θ→π− T (θ) = ∞, the minimum value of T (θ) occurs when

cos θ =
( r

R

)4
.

47. Which values of A and B maximize the volume of the box if h = 10 cm and AB = 900 cm.

solution With h = 10 and AB = 900 (which means that B = 900/A), the volume of the box is

V (A) = 10(A − 20)

(
900

A
− 20

)
= 13,000 − 200A − 180,000

A
,
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where 20 ≤ A ≤ 45. Now, solving

V ′(A) = −200 + 180,000

A2
= 0

yields A = 30. Because V (20) = V (45) = 0 and V (30) = 1000 cm3, maximum volume is achieved with A = B =
30 cm.

48. Given n numbers x1, . . . , xn, find the value of x minimizing the sum of the squares:

(x − x1)2 + (x − x2)2 + · · · + (x − xn)2

First solve for n = 2, 3 and then try it for arbitrary n.

solution Note that the sum of squares approaches ∞ as x → ±∞, so the minimum must occur at a critical point.

• For n = 2: Let f (x) = (x − x1)2 + (x − x2)2. Then setting f ′(x) = 2(x − x1) + 2(x − x2) = 0 yields
x = 1

2 (x1 + x2).

• For n = 3: Let f (x) = (x − x1)2 + (x − x2)2 + (x − x3)2, so that setting f ′(x) = 2(x − x1) + 2(x − x2) +
2(x − x3) = 0 yields x = 1

3 (x1 + x2 + x3).

• Let f (x) =∑n
k=1(x − xk)

2. Solve f ′(x) = 2
∑n

k=1(x − xk) = 0 to obtain x = x̄ = 1
n

∑n
k=1 xk .

Note that the optimum value for x is the average of x1, . . . , xn.

49. A billboard of height b is mounted on the side of a building with its bottom edge at a distance h from the street as in
Figure 27. At what distance x should an observer stand from the wall to maximize the angle of observation θ?

h

b

x

P
q θ

ψ

ψ

P

A

R

B

C

Q

FIGURE 27

solution From the upper diagram in Figure 27 and the addition formula for the cotangent function, we see that

cot θ = 1 + x
b+h

x
h

x
h

− x
b+h

= x2 + h(b + h)

bx
,

where b and h are constant. Now, differentiate with respect to x and solve

− csc2 θ
dθ

dx
= x2 − h(b + h)

bx2
= 0

to obtain x =
√

bh + h2. Since this is the only critical point, and since θ → 0 as x → 0+ and θ → 0 as x → ∞, θ(x)

reaches its maximum at x =
√

bh + h2.

50. Solve Exercise 49 again using geometry rather than calculus. There is a unique circle passing through points B and
C which is tangent to the street. Let R be the point of tangency. Note that the two angles labeled ψ in Figure 27 are equal
because they subtend equal arcs on the circle.

(a) Show that the maximum value of θ is θ = ψ . Hint: Show that ψ = θ +  PBA where A is the intersection of the
circle with PC.

(b) Prove that this agrees with the answer to Exercise 49.

(c) Show that  QRB =  RCQ for the maximal angle ψ .

solution

(a) We note that  PAB is supplementary to both ψ and θ +  PBA; hence, ψ = θ +  PBA. From here, it is clear that
θ is at a maximum when  PBA = 0; that is, when A coincides with P . This occurs when P = R.

(b) To show that the two answers agree, let O be the center of the circle. One observes that if d is the distance from R to
the wall, then O has coordinates (−d, b

2 + h). This is because the height of the center is equidistant from points B and
C and because the center must lie directly above R if the circle is tangent to the floor.
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Now we can solve for d. The radius of the circle is clearly b
2 + h, by the distance formula:

OB
2 = d2 +

(
b

2
+ h − h

)2
=
(

b

2
+ h

)2

This gives

d2 =
(

b

2
+ h

)2
−
(

b

2

)2
= bh + h2

or d =
√

bh + h2 as claimed.

(c) Observe that the arc RB on the dashed circle is subtended by  QRB and also by  RCQ. Thus, both are equal to
one-half the angular measure of the arc.

51. Optimal Delivery Schedule A gas station sells Q gallons of gasoline per year, which is delivered N times per
year in equal shipments of Q/N gallons. The cost of each delivery is d dollars and the yearly storage costs are sQT ,
where T is the length of time (a fraction of a year) between shipments and s is a constant. Show that costs are minimized
for N = √

sQ/d . (Hint: T = 1/N .) Find the optimal number of deliveries if Q = 2 million gal, d = $8000, and
s = 30 cents/gal-yr. Your answer should be a whole number, so compare costs for the two integer values of N nearest the
optimal value.

solution There are N shipments per year, so the time interval between shipments is T = 1/N years. Hence, the total
storage costs per year are sQ/N . The yearly delivery costs are dN and the total costs is C(N) = dN + sQ/N . Solving,

C′(N) = d − sQ

N2
= 0

for N yields N = √
sQ/d . For the specific case Q = 2,000,000, d = 8000 and s = 0.30,

N =
√

0.30(2,000,000)

8000
= 8.66.

With C(8) = $139,000 and C(9) = $138,667, the optimal number of deliveries per year is N = 9.

52. Victor Klee’s Endpoint Maximum Problem Given 40 meters of straight fence, your goal is to build a rectangular
enclosure using 80 additional meters of fence that encompasses the greatest area. Let A(x) be the area of the enclosure,
with x as in Figure 28.

(a) Find the maximum value of A(x).

(b) Which interval of x values is relevant to our problem? Find the maximum value of A(x) on this interval.

40

20 − x

40 + x

20 − x

x

FIGURE 28

solution

(a) From the diagram, A(x) = (40 + x)(20 − x) = 800 − 20x − x2 = 900 − (x + 10)2. Thus, the maximum value of
A(x) is 900 square meters, occurring when x = −10.

(b) For our problem, x ∈ [0, 20]. On this interval, A(x) has no critical points and A(0) = 800, while A(20) = 0. Thus,
on the relevant interval, the maximum enclosed area is 800 square meters.

53. Let (a, b) be a fixed point in the first quadrant and let S(d) be the sum of the distances from (d, 0) to the points (0, 0),
(a, b), and (a, −b).

(a) Find the value of d for which S(d) is minimal. The answer depends on whether b <
√

3a or b ≥ √
3a. Hint: Show

that d = 0 when b ≥ √
3a.

(b) Let a = 1. Plot S(d) for b = 0.5,
√

3, 3 and describe the position of the minimum.

solution

(a) If d < 0, then the distance from (d, 0) to the other three points can all be reduced by increasing the value of d.
Similarly, if d > a, then the distance from (d, 0) to the other three points can all be reduced by decreasing the value of
d. It follows that the minimum of S(d) must occur for 0 ≤ d ≤ a. Restricting attention to this interval, we find

S(d) = d + 2
√

(d − a)2 + b2.
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Solving

S′(d) = 1 + 2(d − a)√
(d − a)2 + b2

= 0

yields the critical point d = a − b/
√

3. If b <
√

3a, then d = a − b/
√

3 > 0 and the minimum occurs at this value of d.
On the other hand, if b ≥ √

3a, then the minimum occurs at the endpoint d = 0.

(b) Let a = 1. Plots of S(d) for b = 0.5, b = √
3 and b = 3 are shown below. For b = 0.5, the results of (a) indicate the

minimum should occur for d = 1 − 0.5/
√

3 ≈ 0.711, and this is confirmed in the plot. For both b = √
3 and b = 3, the

results of (a) indicate that the minimum should occur at d = 0, and both of these conclusions are confirmed in the plots.

1.6
x

0 0.2 0.4 0.6 0.8
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54. The force F (in Newtons) required to move a box of mass m kg in motion by pulling on an attached rope (Figure 29)
is

F(θ) = f mg

cos θ + f sin θ

where θ is the angle between the rope and the horizontal, f is the coefficient of static friction, and g = 9.8 m/s2. Find
the angle θ that minimizes the required force F , assuming f = 0.4. Hint: Find the maximum value of cos θ + f sin θ .

F

θ

FIGURE 29

solution Let F(α) = 3.92m

sin α + 2
5 cos α

, where 0 ≤ α ≤ π
2 . Solve

F ′(α) =
3.92m

(
2
5 sin α − cos α

)
(

sin α + 2
5 cos α

)2
= 0

for 0 ≤ α ≤ π
2 to obtain tan α = 5

2 . From the diagram below, we note that when tan α = 5
2 ,

sin α = 5√
29

and cos α = 2√
29

.

Therefore, at the critical point the force is

3.92m

5√
29

+ 2
5

2√
29

= 5
√

29

29
(3.92m) ≈ 3.64m.

Since F(0) = 5
2 (3.92m) = 9.8m and F

(
π
2

) = 3.92m, we conclude that the minimum force occurs when tan α = 5
2 .

a

2

529
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55. In the setting of Exercise 54, show that for any f the minimal force required is proportional to 1/
√

1 + f 2.

solution We minimize F(θ) by finding the maximum value g(θ) = cos θ + f sin θ . The angle θ is restricted to the
interval [0, π

2 ]. We solve for the critical points:

g′(θ) = − sin θ + f cos θ = 0

We obtain

f cos θ = sin θ ⇒ tan θ = f

From the figure below we find that cos θ = 1/
√

1 + f 2 and sin θ = f/
√

1 + f 2. Hence

g(θ) = 1

f
+ f 2√

1 + f 2
= 1 + f 2√

1 + f 2
=
√

1 + f 2

The values at the endpoints are

g(0) = 1, g
(π

2

)
= f

Both of these values are less than
√

1 + f 2. Therefore the maximum value of g(θ) is
√

1 + f 2 and the minimum value
of F(θ) is

F = f mg

g(θ)
= f mg√

1 + f 2

f

α

1
√1 + f 2

56. Bird Migration Ornithologists have found that the power (in joules per second) consumed by a certain pigeon

flying at velocity v m/s is described well by the function P(v) = 17v−1 + 10−3v3 J/s. Assume that the pigeon can store
5 × 104 J of usable energy as body fat.

(a) Show that at velocity v, a pigeon can fly a total distance of D(v) = (5 × 104)v/P (v) if it uses all of its stored energy.
(b) Find the velocity vp that minimizes P(v).
(c) Migrating birds are smart enough to fly at the velocity that maximizes distance traveled rather than minimizes power
consumption. Show that the velocity vd which maximizes D(v) satisfies P ′(vd) = P(vd)/vd. Show that vd is obtained
graphically as the velocity coordinate of the point where a line through the origin is tangent to the graph of P(v) (Figure 30).
(d) Find vd and the maximum distance D(vd).

10 155

Velocity (m/s)

Minimum power
consumption

Maximum
distance
traveled

Power (J/s)

4

FIGURE 30

solution

(a) Flying at a velocity v, the birds will exhaust their energy store after T = 5 · 104 joules

P(v) joules/sec
= 5 · 104 sec

P(v)
. The total

distance traveled is then D(v) = vT = 5 · 104v

P (v)
.

(b) Let P(v) = 17v−1 + 10−3v3. Then P ′(v) = −17v−2 + 0.003v2 = 0 implies vp =
(

17
0.003

)1/4 ≈ 8.676247. This

critical point is a minimum, because it is the only critical point and P(v) → ∞ both as v → 0+ and as v → ∞.

(c) D′(v) = P(v) · 5 · 104 − 5 · 104v · P ′(v)

(P (v))2
= 5 · 104 P(v) − vP ′(v)

(P (v))2
= 0 implies P(v) − vP ′(v) = 0, or P ′(v) =

P(v)

v
. Since D(v) → 0 as v → 0 and as v → ∞, the critical point determined by P ′(v) = P(v)/v corresponds to a

maximum.
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Graphically, the expression

P(v)

v
= P(v) − 0

v − 0

is the slope of the line passing through the origin and (v, P (v)). The condition P ′(v) = P(v)/v which defines vd therefore
indicates that vd is the velocity component of the point where a line through the origin is tangent to the graph of P(v).

(d) Using P ′(v) = P(v)

v
gives

−17v−2 + 0.003v2 = 17v−1 + 0.001v3

v
= 17v−2 + 0.001v2,

which simplifies to 0.002v4 = 34 and thus vd ≈ 11.418583. The maximum total distance is given by D(vd) =
5 · 104 · vd

P(vd)
= 191.741 kilometers.

57. The problem is to put a “roof” of side s on an attic room of height h and width b. Find the smallest length s for which
this is possible if b = 27 and h = 8 (Figure 31).

s

h

b

FIGURE 31

solution Consider the right triangle formed by the right half of the rectangle and its “roof”. This triangle has hy-
potenuse s.

h

b/2 x

sy

As shown, let y be the height of the roof, and let x be the distance from the right base of the rectangle to the base of the
roof. By similar triangles applied to the smaller right triangles at the top and right of the larger triangle, we get:

y − 8

27/2
= 8

x
or y = 108

x
+ 8.

s, y, and x are related by the Pythagorean Theorem:

s2 =
(

27

2
+ x

)2
+ y2 =

(
27

2
+ x

)2
+
(

108

x
+ 8

)2
.

Since s > 0, s2 is least whenever s is least, so we can minimize s2 instead of s. Setting the derivative equal to zero yields

2

(
27

2
+ x

)
+ 2

(
108

x
+ 8

)(
−108

x2

)
= 0

2

(
27

2
+ x

)
+ 2

8

x

(
27

2
+ x

)(
−108

x2

)
= 0

2

(
27

2
+ x

)(
1 − 864

x3

)
= 0

The zeros are x = − 27
2 (irrelevant) and x = 6 3√4. Since this is the only critical point of s with x > 0, and since s → ∞

as x → 0 and s → ∞ as x → ∞, this is the point where s attains its minimum. For this value of x,

s2 =
(

27

2
+ 6

3√
4

)2
+
(

9
3√

2 + 8
)2 ≈ 904.13,

so the smallest roof length is

s ≈ 30.07.
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58. Redo Exercise 57 for arbitrary b and h.

solution Consider the right triangle formed by the right half of the rectangle and its “roof”. This triangle has hy-
potenuse s.

h

b/2 x

sy

As shown, let y be the height of the roof, and let x be the distance from the right base of the rectangle to the base of the
roof. By similar triangles applied to the smaller right triangles at the top and right of the larger triangle, we get:

y − h

b/2
= h

x
or y = bh

2x
+ h.

s, y, and x are related by the Pythagorean Theorem:

s2 =
(

b

2
+ x

)2
+ y2 =

(
b

2
+ x

)2
+
(

bh

2x
+ h

)2
.

Since s > 0, s2 is least whenever s is least, so we can minimize s2 instead of s. Setting the derivative equal to zero yields

2

(
b

2
+ x

)
+ 2

(
bh

2x
+ h

)(
− bh

2x2

)
= 0

2

(
b

2
+ x

)
+ 2

h

x

(
b

2
+ x

)(
− bh

2x2

)
= 0

2

(
b

2
+ x

)(
1 − bh2

2x3

)
= 0

The zeros are x = − b
2 (irrelevant) and

x = b1/3h2/3

21/3
.

Since this is the only critical point of s with x > 0, and since s → ∞ as x → 0 and s → ∞ as x → ∞, this is the point
where s attains its minimum. For this value of x,

s2 =
(

b

2
+ b1/3h2/3

21/3

)2

+
(

b2/3h1/3

22/3
+ h

)2

= b2/3

22/3

(
b2/3

22/3
+ h2/3

)2

+ h2/3

(
b2/3

22/3
+ h2/3

)2

=
(

b2/3

22/3
+ h2/3

)3

,

so the smallest roof length is

s =
(

b2/3

22/3
+ h2/3

)3/2

.

59. Find the maximum length of a pole that can be carried horizontally around a corner joining corridors of widths a = 24
and b = 3 (Figure 32).

a

b

FIGURE 32
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solution In order to find the length of the longest pole that can be carried around the corridor, we have to find the
shortest length from the left wall to the top wall touching the corner of the inside wall. Any pole that does not fit in this
shortest space cannot be carried around the corner, so an exact fit represents the longest possible pole.

Let θ be the angle between the pole and a horizontal line to the right. Let c1 be the length of pole in the corridor of
width 24 and let c2 be the length of pole in the corridor of width 3. By the definitions of sine and cosine,

3

c2
= sin θ and

24

c1
= cos θ,

so that c1 = 24
cos θ , c2 = 3

sin θ
. What must be minimized is the total length, given by

f (θ) = 24

cos θ
+ 3

sin θ
.

Setting f ′(θ) = 0 yields

24 sin θ

cos2 θ
− 3 cos θ

sin2 θ
= 0

24 sin θ

cos2 θ
= 3 cos θ

sin2 θ

24 sin3 θ = 3 cos3 θ

As θ < π
2 (the pole is being turned around a corner, after all), we can divide both sides by cos3 θ , getting tan3 θ = 1

8 .

This implies that tan θ = 1
2 (tan θ > 0 as the angle is acute).

Since f (θ) → ∞ as θ → 0+ and as θ → π
2 −, we can tell that the minimum is attained at θ0 where tan θ0 = 1

2 .
Because

tan θ0 = opposite

adjacent
= 1

2
,

we draw a triangle with opposite side 1 and adjacent side 2. By Pythagoras, c = √
5, so

sin θ0 = 1√
5

and cos θ0 = 2√
5
.

From this, we get

f (θ0) = 24

cos θ0
+ 3

sin θ0
= 24

2

√
5 + 3

√
5 = 15

√
5.

60. Redo Exercise 59 for arbitrary widths a and b.

solution If the corridors have widths a and b, and if θ is the angle between the beam and the line perpendicular to the
corridor of width a, then we have to minimize

f (θ) = a

cos θ
+ b

sin θ
.

Setting the derivative equal to zero,

a sec θ tan θ − b cot θ csc θ = 0,

we obtain the critical value θ0 defined by

tan θ0 =
(

b

a

)1/3

and from this we conclude (witness the diagram below) that

cos θ0 = 1√
1 + (b/a)2/3

and sin θ0 = (b/a)1/3√
1 + (b/a)2/3

.

θ

c

1

(b/a)1/3
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This gives the minimum value as

f (θ0) = a

√
1 + (b/a)2/3 + b(b/a)−1/3

√
1 + (b/a)2/3

= a2/3
√

a2/3 + b2/3 + b2/3
√

a2/3 + b2/3

= (a2/3 + b2/3)3/2

61. Find the minimum length � of a beam that can clear a fence of height h and touch a wall located b ft behind the fence
(Figure 33).

b x

h

FIGURE 33

solution Let y be the height of the point where the beam touches the wall in feet. By similar triangles,

y − h

b
= h

x
or y = bh

x
+ h

and by Pythagoras:

�2 = (b + x)2 +
(

bh

x
+ h

)2
.

We can minimize �2 rather than �, so setting the derivative equal to zero gives:

2(b + x) + 2

(
bh

x
+ h

)(
−bh

x2

)
= 2(b + x)

(
1 − h2b

x3

)
= 0.

The zeroes are b = −x (irrelevant) and x = 3√
h2b. Since �2 → ∞ as x → 0+ and as x → ∞, x = 3√

h2b corresponds
to a minimum for �2. For this value of x, we have

�2 = (b + h2/3b1/3)2 + (h + h1/3b2/3)2

= b2/3(b2/3 + h2/3)2 + h2/3(h2/3 + b2/3)2

= (b2/3 + h2/3)3

and so

� = (b2/3 + h2/3)3/2.

A beam that clears a fence of height h feet and touches a wall b feet behind the fence must have length at least � =
(b2/3 + h2/3)3/2 ft.

62. Which value of h maximizes the volume of the box if A = B?

solution When A = B, the volume of the box is

V (h) = hxy = h (A − 2h)2 = 4h3 − 4Ah2 + A2h,

where 0 ≤ h ≤ A
2 (allowing for degenerate boxes). Solve V ′(h) = 12h2 − 8Ah + A2 = 0 for h to obtain h = A

2 or

h = A
6 . Because V (0) = V (A

2 ) = 0 and V (A
6 ) = 2

27A3, volume is maximized when h = A
6 .

63. A basketball player stands d feet from the basket. Let h and α be as in Figure 34. Using physics, one can
show that if the player releases the ball at an angle θ , then the initial velocity required to make the ball go through the
basket satisfies

v2 = 16d

cos2 θ(tan θ − tan α)

(a) Explain why this formula is meaningful only for α < θ < π
2 . Why does v approach infinity at the endpoints of this

interval?
(b) Take α = π

6 and plot v2 as a function of θ for π
6 < θ < π

2 . Verify that the minimum occurs at θ = π
3 .
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(c) Set F(θ) = cos2 θ(tan θ − tan α). Explain why v is minimized for θ such that F(θ) is maximized.

(d) Verify that F ′(θ) = cos(α − 2θ) sec α (you will need to use the addition formula for cosine) and show that the
maximum value of F(θ) on

[
α, π

2

]
occurs at θ0 = α

2 + π
4 .

(e) For a given α, the optimal angle for shooting the basket is θ0 because it minimizes v2 and therefore minimizes the
energy required to make the shot (energy is proportional to v2). Show that the velocity vopt at the optimal angle θ0 satisfies

v2
opt = 32d cos α

1 − sin α
= 32 d2

−h +
√

d2 + h2

(f) Show with a graph that for fixed d (say, d = 15 ft, the distance of a free throw), v2
opt is an increasing function

of h. Use this to explain why taller players have an advantage and why it can help to jump while shooting.

q
a

h

d

FIGURE 34

solution
(a) α = 0 corresponds to shooting the ball directly at the basket while α = π/2 corresponds to shooting the ball directly
upward. In neither case is it possible for the ball to go into the basket.

If the angle α is extremely close to 0, the ball is shot almost directly at the basket, so that it must be launched with
great speed, as it can only fall an extremely short distance on the way to the basket.

On the other hand, if the angle α is extremely close to π/2, the ball is launched almost vertically. This requires the
ball to travel a great distance upward in order to travel the horizontal distance. In either one of these cases, the ball has to
travel at an enormous speed.

(b)

π
6

π
4

π
3

5π
12

π
2

The minimum clearly occurs where θ = π/3.

(c) If F(θ) = cos2 θ (tan θ − tan α),

v2 = 16d

cos2 θ (tan θ − tan α)
= 16d

F(θ)
.

Since α ≤ θ , F(θ) > 0, hence v2 is smallest whenever F(θ) is greatest.

(d) F ′(θ) = −2 sin θ cos θ (tan θ − tan α) + cos2 θ
(

sec2 θ
)

= −2 sin θ cos θ tan θ + 2 sin θ cos θ tan α + 1. We will

apply all the double angle formulas:

cos(2θ) = cos2 θ − sin2 θ = 1 − 2 sin2 θ; sin 2θ = 2 sin θ cos θ,

getting:

F ′(θ) = 2 sin θ cos θ tan α − 2 sin θ cos θ tan θ + 1

= 2 sin θ cos θ
sin α

cos α
− 2 sin θ cos θ

sin θ

cos θ
+ 1

= sec α
(
−2 sin2 θ cos α + 2 sin θ cos θ sin α + cos α

)
= sec α

(
cos α

(
1 − 2 sin2 θ

)
+ sin α (2 sin θ cos θ)

)
= sec α (cos α(cos 2θ) + sin α(sin 2θ))

= sec α cos(α − 2θ)
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A critical point of F(θ) occurs where cos(α − 2θ) = 0, so that α − 2θ = −π
2 (negative because 2θ > θ > α), and this

gives us θ = α/2 + π/4. The minimum value F(θ0) takes place at θ0 = α/2 + π/4.

(e) Plug in θ0 = α/2 + π/4. To find v2
opt we must simplify

cos2 θ0(tan θ0 − tan α) = cos θ0(sin θ0 cos α − cos θ0 sin α)

cos α

By the addition law for sine:

sin θ0 cos α − cos θ0 sin α = sin(θ0 − α) = sin(−α/2 + π/4)

and so

cos θ0(sin θ0 cos α − cos θ0 sin α) = cos(α/2 + π/4) sin(−α/2 + π/4)

Now use the identity (that follows from the addition law):

sin x cos y = 1

2
(sin(x + y) + sin(x − y))

to get

cos(α/2 + π/4) sin(−α/2 + π/4) = (1/2)(1 − sin α)

So we finally get

cos2 θ0(tan θ0 − tan α) = (1/2)(1 − sin α)

cos α

and therefore

v2
opt = 32d cos α

1 − sin α

as claimed. From Figure 34 we see that

cos α = d√
d2 + h2

and sin α = h√
d2 + h2

.

Substituting these values into the expression for v2
opt yields

v2
opt = 32d2

−h +
√

d2 + h2
.

(f) A sketch of the graph of v2
opt versus h for d = 15 feet is given below: v2

opt increases with respect to basket height
relative to the shooter. This shows that the minimum velocity required to launch the ball to the basket drops as shooter
height increases. This shows one of the ways height is an advantage in free throws; a taller shooter need not shoot the ball
as hard to reach the basket.

100

200

300

400

500

600

4 50 321

64. Three towns A, B, and C are to be joined by an underground fiber cable as illustrated in Figure 35(A). Assume that
C is located directly below the midpoint of AB. Find the junction point P that minimizes the total amount of cable used.

(a) First show that P must lie directly above C. Hint: Use the result of Example 6 to show that if the junction is placed
at point Q in Figure 35(B), then we can reduce the cable length by moving Q horizontally over to the point P lying
above C.
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(b) With x as in Figure 35(A), let f (x) be the total length of cable used. Show that f (x) has a unique critical point c.
Compute c and show that 0 ≤ c ≤ L if and only if D ≤ 2

√
3 L.

(c) Find the minimum of f (x) on [0, L] in two cases: D = 2, L = 4 and D = 8, L = 2.

D

PCable

(A)

L

x x

C

A B

(B)

PQ

C

A B

FIGURE 35

solution

(a) Look at diagram 35(B). Let T be the point directly above Q on AB. Let s = AT and D = AB so that T B = D − s.
Let � be the total length of cable from A to Q and B to Q. By the Pythagorean Theorem applied to �AQT and �BQT ,
we get:

� =
√

s2 + x2 +
√

(D − s)2 + x2.

From here, it follows that

d�

ds
= s√

s2 + x2
− D − s√

(D − s)2 + x2
.

Since s and D − s must be non-negative, the only critical point occurs when s = D/2. As d�
ds

changes sign from negative
to positive at s = D/2, it follows that � is minimized when s = D/2, that is, when Q = P . Since it is obvious that
PC ≤ QC (QC is the hypotenuse of the triangle �PQC), it follows that total cable length is minimized at Q = P .

(b) Let f (x) be the total cable length. From diagram 35(A), we get:

f (x) = (L − x) + 2
√

x2 + D2/4.

Then

f ′(x) = −1 + 2x√
x2 + D2/4

= 0

gives

2x =
√

x2 + D2/4

or

4x2 = x2 + D2/4

and the critical point is

c = D/2
√

3.

This is the only critical point of f . It lies in the interval [0, L] if and only if c ≤ L, or

D ≤ 2
√

3L.

(c) The minimum of f will depend on whether D ≤ 2
√

3L.

• D = 2, L = 4; 2
√

3L = 8
√

3 > D, so c = D/(2
√

3) = √
3/3 ∈ [0, L]. f (0) = L + D = 6, f (L) =

2
√

L2 + D2/4 = 2
√

17 ≈ 8.24621, and f (c) = 4 − (
√

3/3) + 2
√

1
3 + 1 = 4 + √

3 ≈ 5.73204. Therefore, the

total length is minimized where x = c = √
3/3.

• D = 8, L = 2; 2
√

3L = 4
√

3 < D, so c does not lie in the interval [0, L]. f (0) = 2 + 2
√

64/4 = 10, and
f (L) = 0 + 2

√
4 + 64/4 = 2

√
20 = 4

√
5 ≈ 8.94427. Therefore, the total length is minimized where x = L, or

where P = C.
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Further Insights and Challenges
65. Tom and Ali drive along a highway represented by the graph of f (x) in Figure 36. During the trip, Ali views a
billboard represented by the segment BC along the y-axis. Let Q be the y-intercept of the tangent line to y = f (x). Show
that θ is maximized at the value of x for which the angles  QPB and  QCP are equal. This generalizes Exercise 50 (c)
(which corresponds to the case f (x) = 0). Hints:

(a) Show that dθ/dx is equal to

(b − c) · (x2 + (xf ′(x))2) − (b − (f (x) − xf ′(x)))(c − (f (x) − xf ′(x)))

(x2 + (b − f (x))2)(x2 + (c − f (x))2)

(b) Show that the y-coordinate of Q is f (x) − xf ′(x).
(c) Show that the condition dθ/dx = 0 is equivalent to

PQ2 = BQ · CQ

(d) Conclude that �QPB and �QCP are similar triangles.

x
x

y

billboard

highway

P = (x, f (x))

y = f (x)
B = (0, b)

C = (0, c)

FIGURE 36

solution
(a) From the figure, we see that

θ(x) = tan−1 c − f (x)

x
− tan−1 b − f (x)

x
.

Then

θ ′(x) = b − (f (x) − xf ′(x))

x2 + (b − f (x))2
− c − (f (x) − xf ′(x))

x2 + (c − f (x))2

= (b − c)
x2 − bc + (b + c)(f (x) − xf ′(x)) − (f (x))2 + 2xf (x)f ′(x)

(x2 + (b − f (x))2)(x2 + (c − f (x))2)

= (b − c)
(x2 + (xf ′(x))2 − (bc − (b + c)(f (x) − xf ′(x)) + (f (x) − xf ′(x))2)

(x2 + (b − f (x))2)(x2 + (c − f (x))2)

= (b − c)
(x2 + (xf ′(x))2 − (b − (f (x) − xf ′(x)))(c − (f (x) − xf ′(x)))

(x2 + (b − f (x))2)(x2 + (c − f (x))2)
.

(b) The point Q is the y-intercept of the line tangent to the graph of f (x) at point P . The equation of this tangent line is

Y − f (x) = f ′(x)(X − x).

The y-coordinate of Q is then f (x) − xf ′(x).
(c) From the figure, we see that

BQ = b − (f (x) − xf ′(x)),

CQ = c − (f (x) − xf ′(x))

and

PQ =
√

x2 + (f (x) − (f (x) − xf ′(x)))2 =
√

x2 + (xf ′(x))2.

Comparing these expressions with the numerator of dθ/dx, it follows that
dθ

dx
= 0 is equivalent to

PQ2 = BQ · CQ.
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(d) The equation PQ2 = BQ · CQ is equivalent to

PQ

BQ
= CQ

PQ
.

In other words, the sides CQ and PQ from the triangle �QCP are proportional in length to the sides PQ and BQ from
the triangle �QPB. As  PQB =  CQP , it follows that triangles �QCP and �QPB are similar.

Seismic Prospecting Exercises 66–68 are concerned with determining the thickness d of a layer of soil that lies on top
of a rock formation. Geologists send two sound pulses from point A to point D separated by a distance s. The first pulse
travels directly from A to D along the surface of the earth. The second pulse travels down to the rock formation, then
along its surface, and then back up to D (path ABCD), as in Figure 37. The pulse travels with velocity v1 in the soil and
v2 in the rock.

A

B C

s D

Soil

Rock

q q d

FIGURE 37

66. (a) Show that the time required for the first pulse to travel from A to D is t1 = s/v1.
(b) Show that the time required for the second pulse is

t2 = 2d

v1
sec θ + s − 2d tan θ

v2

provided that

tan θ ≤ s

2d
2

(Note: If this inequality is not satisfied, then point B does not lie to the left of C.)
(c) Show that t2 is minimized when sin θ = v1/v2.

solution
(a) We have time t1 = distance/velocity = s/v1.
(b) Let p be the length of the base of the right triangle (opposite the angle θ ) and h the length of the hypotenuse of this
right triangle. Then cos θ = d

h
and h = d sec θ . Moreover, tan θ = p

d
gives p = d tan θ . Hence

t2 = tAB + tCD + tBC = h

v1
+ h

v1
+ s − 2p

v2
= 2d

v1
sec θ + s − 2d tan θ

v2

(c) Solve
dt2

dθ
= 2d sec θ tan θ

v1
− 2d sec2 θ

v2
= 0 to obtain

tan θ

v1
= sec θ

v2
. Therefore

sin θ/ cos θ

1/ cos θ
= v1

v2
or sin θ = v1

v2
.

67. In this exercise, assume that v2/v1 ≥
√

1 + 4(d/s)2.

(a) Show that inequality (2) holds if sin θ = v1/v2.
(b) Show that the minimal time for the second pulse is

t2 = 2d

v1
(1 − k2)1/2 + s

v2

where k = v1/v2.

(c) Conclude that
t2

t1
= 2d(1 − k2)1/2

s
+ k.

solution
(a) If sin θ = v1

v2
, then

tan θ = v1√
v2

2 − v2
1

= 1√(
v2
v1

)2 − 1

.

Because v2
v1

≥
√

1 + 4( d
s )2, it follows that

√(
v2

v1

)2
− 1 ≥

√
1 + 4

(
d

s

)2
− 1 = 2d

s
.

Hence, tan θ ≤ s
2d

as required.
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(b) For the time-minimizing choice of θ , we have sin θ = v1

v2
from which sec θ = v2√

v2
2 − v2

1

and tan θ = v1√
v2

2 − v2
1

.

Thus

t2 = 2d

v1
sec θ + s − 2d tan θ

v2
= 2d

v1

v2√
v2

2 − v2
1

+
s − 2d

v1√
v2

2−v2
1

v2

= 2d

v1

⎛
⎜⎝ v2√

v2
2 − v2

1

− v2
1

v2

√
v2

2 − v2
1

⎞
⎟⎠+ s

v2

= 2d

v1

⎛
⎜⎝ v2

2 − v2
1

v2

√
v2

2 − v2
1

⎞
⎟⎠+ s

v2
= 2d

v1

⎛
⎜⎝
√

v2
2 − v2

1√
v2

2

⎞
⎟⎠+ s

v2

= 2d

v1

√
1 −

(
v1

v2

)2
+ s

v2
=

2d
(

1 − k2
)1/2

v1
+ s

v2
.

(c) Recall that t1 = s

v1
. We therefore have

t2

t1
=

2d
(
1−k2

)1/2

v1
+ s

v2
s
v1

=
2d
(

1 − k2
)1/2

s
+ v1

v2
=

2d
(

1 − k2
)1/2

s
+ k.

68. Continue with the assumption of the previous exercise.

(a) Find the thickness of the soil layer, assuming that v1 = 0.7v2, t2/t1 = 1.3, and s = 400 m.
(b) The times t1 and t2 are measured experimentally. The equation in Exercise 67(c) shows that t2/t1 is a linear function
of 1/s. What might you conclude if experiments were formed for several values of s and the points (1/s, t2/t1) did not
lie on a straight line?

solution
(a) Substituting k = v1/v2 = 0.7, t2/t1 = 1.3, and s = 400 into the equation for t2/t1 in Exercise 67(c) gives

1.3 = 2d

√
1 − (0.7)2

400
+ 0.7. Solving for d yields d ≈ 168.03 m.

(b) If several experiments for different values of s showed that plots of the points

(
1

s
,
t2

t1

)
did not lie on a straight line,

then we would suspect that
t2

t1
is not a linear function of

1

s
and that a different model is required.

69. In this exercise we use Figure 38 to prove Heron’s principle of Example 6 without calculus. By definition, C
is the reflection of B across the line MN (so that BC is perpendicular to MN and BN = CN . Let P be the intersection
of AC and MN . Use geometry to justify:

(a) �PNB and �PNC are congruent and θ1 = θ2.
(b) The paths APB and APC have equal length.
(c) Similarly AQB and AQC have equal length.
(d) The path APC is shorter than AQC for all Q = P .

Conclude that the shortest path AQB occurs for Q = P .

A
B

h1
h2

P

h2

Q

C

M N

θ1

θ1

θ2

FIGURE 38
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solution

(a) By definition, BC is orthogonal to QM , so triangles �PNB and �PNC are congruent by side–angle–side. Therefore
θ1 = θ2

(b) Because �PNB and �PNC are congruent, it follows that PB and PC are of equal length. Thus, paths APB and
APC have equal length.

(c) The same reasoning used in parts (a) and (b) lead us to conclude that �QNB and �QNC are congruent and that
PB and PC are of equal length. Thus, paths AQB and AQC are of equal length.

(d) Consider triangle �AQC. By the triangle inequality, the length of side AC is less than or equal to the sum of the
lengths of the sides AQ and QC. Thus, the path APC is shorter than AQC for all Q = P .

Finally, the shortest path AQB occurs for Q = P .

70. A jewelry designer plans to incorporate a component made of gold in the shape of a frustum of a cone of height 1 cm
and fixed lower radius r (Figure 39). The upper radius x can take on any value between 0 and r . Note that x = 0 and x = r

correspond to a cone and cylinder, respectively. As a function of x, the surface area (not including the top and bottom)
is S(x) = πs(r + x), where s is the slant height as indicated in the figure. Which value of x yields the least expensive
design [the minimum value of S(x) for 0 ≤ x ≤ r]?

(a) Show that S(x) = π(r + x)
√

1 + (r − x)2.

(b) Show that if r <
√

2, then S(x) is an increasing function. Conclude that the cone (x = 0) has minimal area in this
case.

(c) Assume that r >
√

2. Show that S(x) has two critical points x1 < x2 in (0, r), and that S(x1) is a local maximum,
and S(x2) is a local minimum.

(d) Conclude that the minimum occurs at x = 0 or x2.

(e) Find the minimum in the cases r = 1.5 and r = 2.

(f) Challenge: Let c =
√

(5 + 3
√

3)/4 ≈ 1.597. Prove that the minimum occurs at x = 0 (cone) if
√

2 < r < c, but the
minimum occurs at x = x2 if r > c.

s

r

x

FIGURE 39 Frustrum of height 1 cm.

solution

(a) Consider a cross-section of the object and notice a triangle can be formed with height 1, hypotenuse s, and base r − x.
Then, by the Pythagorean Theorem, s =

√
1 + (r − x)2 and the surface area is S = π(r + x)s = π(r + x)

√
1 + (r − x)2.

(b) S′(x) = π
(√

1 + (r − x)2 − (r + x)(1 + (r − x)2)−1/2(r − x)
)

= π
2x2 − 2rx + 1√

1 + (r − x)2
= 0 yields critical points

x = 1
2 r ± 1

2

√
r2 − 2. If r <

√
2 then there are no real critical points and S′(x) > 0 for x > 0. Hence, S(x) is increasing

everywhere and thus the minimum must occur at the left endpoint, x = 0.

(c) For r >
√

2, there are two critical points, x1 = 1
2 r − 1

2

√
r2 − 2 and x2 = 1

2 r + 1
2

√
r2 − 2. Both values are on

the interval [0, r] since r >
√

r2 − 2. Sign analysis reveals that S(x) is increasing for 0 < x < x1, decreasing for
x1 < x < x2 and increasing for x2 < x < r . Hence, S(x1) is a local maximum, and S(x2) is a local minimum.

(d) The minimum value of S must occur at an endpoint or a critical point. Since S(x1) is a local maximum and S increases
for x2 < x < r , we conclude that the minimum of S must occur either at x = 0 or at x = x2.

(e) If r = 1.5 cm, S(x2) = 8.8357 cm2 and S(0) = 8.4954 cm2, so S(0) = 8.4954 cm2 is the minimum (cone). If r = 2
cm, S(x2) = 12.852 cm2 and S(0) = 14.0496 cm2, so S(x2) = 12.852 cm2 is the minimum.

(f) Take a deep breath. Setting S(x2) = S(0) produces an equation in r (x2 is given in r , and so is S(0)). By means of

a great deal of algebraic labor and a clever substitution, we are going to solve for r . S(0) = πr
√

1 + r2, while, since

x2 = 1
2 r + 1

2

√
r2 − 2,

S(x2) = π

(
3

2
r + 1

2

√
r2 − 2

)√
1 + (

1

2
r − 1

2

√
r2 − 2)2

= π

2

(
3r +

√
r2 − 2

)√
1 + 1

4
(r2 − 2r

√
r2 − 2 + r2 − 2)

= π

2

(
3r +

√
r2 − 2

)√
1 + 1

2
(r2 − r

√
r2 − 2 − 1)
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From this, we simplify by squaring and taking out constants:

S(x2)/π = 1

2

(
3r +

√
r2 − 2

)√
1 + 1

2
(r2 − r

√
r2 − 2 − 1)

(S(x2)/π)2 = 1

8

(
3r +

√
r2 − 2

)2 (
2 + (r2 − r

√
r2 − 2 − 1)

)

8(S(x2)/π)2 =
(

3r +
√

r2 − 2
)2 (

r2 − r
√

r2 − 2 + 1
)

To solve the equation S(x2) = S(0), we solve the equivalent equation 8(S(x2)/π)2 = 8(S(0)/π)2. 8(S(0)/π)2 =
8r2(1 + r2) = 8r2 + 8r4. Let u = r2 − 2, so that

√
r2 − 2 = √

u, r2 = u + 2, and r = √
u + 2. The expression for

8(S(x2)/π)2 is, then:

8(S(x2)/π)2 =
(

3
√

u + 2 + √
u
)2 (

(u + 2) − √
u + 2

√
u + 1

)
while

8(S(0)/π)2 = 8r2 + 8r4 = 8(u + 2)(u + 3) = 8u2 + 40u + 48.

We compute:

(
3
√

u + 2 + √
u
)2 = 9(u + 2) + 6

√
u
√

u + 2 + u

= 10u + 6
√

u
√

u + 2 + 18(
10u + 6

√
u
√

u + 2 + 18
) (

u − √
u
√

u + 2 + 3
)

= 10u2 + 6u3/2√
u + 2 + 18u − 10u3/2√

u + 2 − 6u2 − 12u

− 18
√

u + 2
√

u + 30u + 18
√

u + 2
√

u + 54

= 4u2 − 4u
(√

u
√

u + 2
)

+ 36u + 54

Therefore the equation becomes:

8(S(0)/π)2 = 8(S(x2)/π)2

8u2 + 40u + 48 = 4u2 − 4u(
√

u
√

u + 2) + 36u + 54

4u2 + 4u − 6 = −4u(
√

u
√

u + 2)

16u4 + 32u3 − 32u2 − 48u + 36 = 16u2(u)(u + 2)

16u4 + 32u3 − 32u2 − 48u + 36 = 16u4 + 32u3

−32u2 − 48u + 36 = 0

8u2 + 12u − 9 = 0.

The last quadratic has positive solution:

u = −12 + √
144 + 4(72)

16
= −12 + 12

√
3

16
= −3 + 3

√
3

4
.

Therefore

r2 − 2 = −3 + 3
√

3

4
,

so

r2 = 5 + 3
√

3

4
.

This gives us that S(x2) = S(0) when

r = c =
√

5 + 3
√

3

4
.

From part (e) we know that for r = 1.5 < c, S(0) is the minimum value for S, but for r = 2 > c, S(x2) is the minimum
value. Since r = c is the only solution of S(0) = S(x2) for r >

√
2, it follows that S(0) provides the minimum value for√

2 < r < c and S(x2) provides the minimum when r > c.
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4.8 Newton’s Method

Preliminary Questions
1. How many iterations of Newton’s Method are required to compute a root if f (x) is a linear function?

solution Remember that Newton’s Method uses the linear approximation of a function to estimate the location of a
root. If the original function is linear, then only one iteration of Newton’s Method will be required to compute the root.

2. What happens in Newton’s Method if your initial guess happens to be a zero of f ?

solution If x0 happens to be a zero of f, then

x1 = x0 − f (x0)

f ′(x0)
= x0 − 0 = x0;

in other words, every term in the Newton’s Method sequence will remain x0.

3. What happens in Newton’s Method if your initial guess happens to be a local min or max of f ?

solution Assuming that the function is differentiable, then the derivative is zero at a local maximum or a local
minimum. If Newton’s Method is started with an initial guess such that f ′(x0) = 0, then Newton’s Method will fail in
the sense that x1 will not be defined. That is, the tangent line will be parallel to the x-axis and will never intersect it.

4. Is the following a reasonable description of Newton’s Method: “A root of the equation of the tangent line to f (x) is
used as an approximation to a root of f (x) itself”? Explain.

solution Yes, that is a reasonable description. The iteration formula for Newton’s Method was derived by solving the
equation of the tangent line to y = f (x) at x0 for its x-intercept.

Exercises
In this exercise set, all approximations should be carried out using Newton’s Method.

In Exercises 1–6, apply Newton’s Method to f (x) and initial guess x0 to calculate x1, x2, x3.

1. f (x) = x2 − 6, x0 = 2

solution Let f (x) = x2 − 6 and define

xn+1 = xn − f (xn)

f ′(xn)
= xn − x2

n − 6

2xn
.

With x0 = 2, we compute

n 1 2 3

xn 2.5 2.45 2.44948980

2. f (x) = x2 − 3x + 1, x0 = 3

solution Let f (x) = x2 − 3x + 1 and define

xn+1 = xn − f (xn)

f ′(xn)
= xn − x2

n − 3xn + 1

2xn − 3
.

With x0 = 3, we compute

n 1 2 3

xn 2.66666667 2.61904762 2.61803445

3. f (x) = x3 − 10, x0 = 2

solution Let f (x) = x3 − 10 and define

xn+1 = xn − f (xn)

f ′(xn)
= xn − x3

n − 10

3x2
n

.

With x0 = 2 we compute

n 1 2 3

xn 2.16666667 2.15450362 2.15443469
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4. f (x) = x3 + x + 1, x0 = −1

solution Let f (x) = x3 + x + 1 and define

xn+1 = xn − f (xn)

f ′(xn)
= xn − x3

n + xn + 1

3x2
n + 1

.

With x0 = −1 we compute

n 1 2 3

xn −0.75 −0.68604651 −0.68233958

5. f (x) = cos x − 4x, x0 = 1

solution Let f (x) = cos x − 4x and define

xn+1 = xn − f (xn)

f ′(xn)
= xn − cos xn − 4xn

− sin xn − 4
.

With x0 = 1 we compute

n 1 2 3

xn 0.28540361 0.24288009 0.24267469

6. f (x) = 1 − x sin x, x0 = 7

solution Let f (x) = 1 − x sin x and define

xn+1 = xn − f (xn)

f ′(xn)
= xn − 1 − xn sin xn

−xn cos xn − sin xn
.

With x0 = 7 we compute

n 1 2 3

xn 6.39354183 6.43930706 6.43911724

7. Use Figure 6 to choose an initial guess x0 to the unique real root of x3 + 2x + 5 = 0 and compute the first three
Newton iterates.

21−2 −1
x

y

FIGURE 6 Graph of y = x3 + 2x + 5.

solution Let f (x) = x3 + 2x + 5 and define

xn+1 = xn − f (xn)

f ′(xn)
= xn − x3

n + 2xn + 5

3x2
n + 2

.

We take x0 = −1.4, based on the figure, and then calculate

n 1 2 3

xn −1.330964467 −1.328272820 −1.328268856

8. Approximate a solution of sin x = cos 2x in the interval
[
0, π

2

]
to three decimal places. Then find the exact solution

and compare with your approximation.

solution Let f (x) = sin x − cos 2x and define

xn+1 = xn − f (xn)

f ′(xn)
= xn − sin xn − cos 2xn

cos xn + 2 sin 2xn
.
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With x0 = 0.5 we find

n 1 2

xn 0.523775116 0.523598785

The root, to three decimal places, is 0.524. The exact root is π
6 , which is equal to 0.524 to three decimal places.

9. Approximate both solutions of ex = 5x to three decimal places (Figure 7).

321
x

y

10

20
y = ex

y = 5x

FIGURE 7 Graphs of ex and 5x.

solution We need to solve ex − 5x = 0, so let f (x) = ex − 5x. Then f ′(x) = ex − 5. With an initial guess of
x0 = 0.2, we calculate

Newton’s Method (First root) x0 = 0.2 (guess)

x1 = 0.2 − f (0.2)

f ′(0.2)
x1 ≈ 0.25859

x2 = 0.25859 − f (0.25859)

f ′(0.25859)
x2 ≈ 0.25917

x3 = 0.25917 − f (0.25917)

f ′(0.25917)
x3 ≈ 0.25917

For the second root, we use an initial guess of x0 = 2.5.

Newton’s Method (Second root) x0 = 2.5 (guess)

x1 = 2.5 − f (2.5)

f ′(2.5)
x1 ≈ 2.54421

x2 = 2.54421 − f (2.54421)

f ′(2.54421)
x2 ≈ 2.54264

x3 = 2.54264 − f (2.54264)

f ′(2.54264)
x3 ≈ 2.54264

Thus the two solutions of ex = 5x are approximately r1 ≈ 0.25917 and r2 ≈ 2.54264.

10. The first positive solution of sin x = 0 is x = π . Use Newton’s Method to calculate π to four decimal places.

solution Let f (x) = sin x. Taking x0 = 3, we have

n 1 2 3

xn 3.142546543 3.141592653 3.141592654

Hence, π ≈ 3.1416 to four decimal places.

In Exercises 11–14, approximate to three decimal places using Newton’s Method and compare with the value from a
calculator.

11.
√

11

solution Let f (x) = x2 − 11, and let x0 = 3. Newton’s Method yields:

n 1 2 3

xn 3.33333333 3.31666667 3.31662479

A calculator yields 3.31662479.
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12. 51/3

solution Let f (x) = x3 − 5, and let x0 = 2. Here are approximations to the root of f (x), which is 51/3.

n 1 2 3 4

xn 1.75 1.710884354 1.709976429 1.709975947

A calculator yields 1.709975947.

13. 27/3

solution Note that 27/3 = 4 · 21/3. Let f (x) = x3 − 2, and let x0 = 1. Newton’s Method yields:

n 1 2 3

xn 1.33333333 1.26388889 1.25993349

Thus, 27/3 ≈ 4 · 1.25993349 = 5.03973397. A calculator yields 5.0396842.

14. 3−1/4

solution Let f (x) = x−4 − 3, and let x0 = 0.8. Here are approximations to the root of f (x), which is 3−1/4.

n 1 2 3 4

xn 0.75424 0.75973342 0.75983565 0.75983569

A calculator yields 0.75983569.

15. Approximate the largest positive root of f (x) = x4 − 6x2 + x + 5 to within an error of at most 10−4. Refer to
Figure 5.

solution Figure 5 from the text suggests the largest positive root of f (x) = x4 − 6x2 + x + 5 is near 2. So let

f (x) = x4 − 6x2 + x + 5 and take x0 = 2.

n 1 2 3 4

xn 2.111111111 2.093568458 2.093064768 2.093064358

The largest positive root of x4 − 6x2 + x + 5 is approximately 2.093064358.

In Exercises 16–19, approximate the root specified to three decimal places using Newton’s Method. Use a plot to
choose an initial guess.

16. Largest positive root of f (x) = x3 − 5x + 1.

solution Let f (x) = x3 − 5x + 1. The graph of f (x) shown below suggests the largest positive root is near x = 2.2.
Taking x0 = 2.2, Newton’s Method gives

n 1 2 3

xn 2.13193277 2.12842820 2.12841906

The largest positive root of x3 − 5x + 1 is approximately 2.1284.

−10

−5

5

10

−3 −2 −1 1 2 3

y

x

17. Negative root of f (x) = x5 − 20x + 10.

solution Let f (x) = x5 − 20x + 10. The graph of f (x) shown below suggests taking x0 = −2.2. Starting from
x0 = −2.2, the first three iterates of Newton’s Method are:

n 1 2 3

xn −2.22536529 −2.22468998 −2.22468949
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Thus, to three decimal places, the negative root of f (x) = x5 − 20x + 10 is −2.225.

−150

−100

−50
−2.5 −2.0 −1.5 −1.0 −0.5

y

x

18. Positive solution of sin θ = 0.8θ .

solution From the graph below, we see that the positive solution to the equation sin θ = 0.8θ is approximately
x = 1.1. Now, let f (θ) = sin θ − 0.8θ and define

θn+1 = θn − f (θn)

f ′(θn)
= θn − sin θn − 0.8θn

cos θn − 0.8
.

With θ0 = 1.1 we find

n 1 2 3

θn 1.13235345 1.13110447 1.13110259

Thus, to three decimal places, the positive solution to the equation sin θ = 0.8θ is 1.131.

0.5

1.0

1.5

0.5 1.0 1.5 2.0 2.5 3.0

y

x

19. Solution of ln(x + 4) = x.

solution From the graph below, we see that the positive solution to the equation ln(x + 4) = x is approximately
x = 2. Now, let f (x) = ln(x + 4) − x and define

xn+1 = xn − f (xn)

f ′(xn)
= xn − ln(xn + 4) − xn

1
xn+4 − 1

.

With x0 = 2 we find

n 1 2 3

xn 1.750111363 1.749031407 1.749031386

Thus, to three decimal places, the positive solution to the equation ln(x + 4) = x is 1.749.

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

y = ln(x + 4)

y = x

20. Let x1, x2 be the estimates to a root obtained by applying Newton’s Method with x0 = 1 to the function graphed in
Figure 8. Estimate the numerical values of x1 and x2, and draw the tangent lines used to obtain them.

31 2−1
x

y

FIGURE 8
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solution The graph with tangent lines drawn on it appears below. The tangent line to the curve at (x0, f (x0)) has an
x-intercept at approximately x1 = 3.0. The tangent line to the curve at (x1, f (x1)) has an x-intercept at approximately
x2 = 2.2.

31 2−1
x

y

21. Find the smallest positive value of x at which y = x and y = tan x intersect. Hint: Draw a plot.

solution Here is a plot of tan x and x on the same axes:

431 2
x

y

−5

5

The first intersection with x > 0 lies on the second “branch” of y = tan x, between x = 5π
4 and x = 3π

2 . Let

f (x) = tan x − x. The graph suggests an initial guess x0 = 5π
4 , from which we get the following table:

n 1 2 3 4

xn 6.85398 21.921 4480.8 7456.27

This is clearly leading nowhere, so we need to try a better initial guess. Note: This happens with Newton’s Method—it is
sometimes difficult to choose an initial guess. We try the point directly between 5π

4 and 3π
2 , x0 = 11π

8 :

n 1 2 3 4 5 6 7

xn 4.64662 4.60091 4.54662 4.50658 4.49422 4.49341 4.49341

The first point where y = x and y = tan x cross is at approximately x = 4.49341, which is approximately 1.4303π .

22. In 1535, the mathematician Antonio Fior challenged his rival Niccolo Tartaglia to solve this problem: A tree stands
12 braccia high; it is broken into two parts at such a point that the height of the part left standing is the cube root of the
length of the part cut away. What is the height of the part left standing? Show that this is equivalent to solving x3 + x = 12
and find the height to three decimal places. Tartaglia, who had discovered the secret of the cubic equation, was able to
determine the exact answer:

x =
(

3
√√

2919 + 54 − 3
√√

2919 − 54

)/
3√

9

solution Suppose that x is the part of the tree left standing, so that x3 is the part cut away. Since the tree is 12 braccia

high, this gives that x + x3 = 12. Let f (x) = x + x3 − 12. We are looking for a point where f (x) = 0. Using the initial
guess x = 2 (it seems that most of the tree is cut away), we get the following table:

n 1 2 3 4
xn 2.15384615385 2.14408201873 2.14404043328 2.14404043253

Hence x ≈ 2.14404043253. Tartaglia’s exact answer is 2.14404043253, so the 4th Newton’s Method approximation
is accurate to at least 11 decimal places.

23. Find (to two decimal places) the coordinates of the point P in Figure 9 where the tangent line to y = cos x passes
through the origin.

P

y = cos x

2π

1

x

y

FIGURE 9
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solution Let (xr , cos(xr )) be the coordinates of the point P . The slope of the tangent line is − sin(xr ), so we are
looking for a tangent line:

y = − sin(xr )(x − xr ) + cos(xr )

such that y = 0 when x = 0. This gives us the equation:

− sin(xr )(−xr ) + cos(xr ) = 0.

Let f (x) = cos x + x sin x. We are looking for the first point x = r where f (r) = 0. The sketch given indicates that
x0 = 3π/4 would be a good initial guess. The following table gives successive Newton’s Method approximations:

n 1 2 3 4

xn 2.931781309 2.803636974 2.798395826 2.798386046

The point P has approximate coordinates (2.7984, −0.941684).

Newton’s Method is often used to determine interest rates in financial calculations. In Exercises 24–26, r denotes a yearly
interest rate expressed as a decimal (rather than as a percent).

24. If P dollars are deposited every month in an account earning interest at the yearly rate r , then the value S of the
account after N years is

S = P

(
b12N+1 − b

b − 1

)
where b = 1 + r

12

You have decided to deposit P = 100 dollars per month.

(a) Determine S after 5 years if r = 0.07 (that is, 7%).

(b) Show that to save $10,000 after 5 years, you must earn interest at a rate r determined bys the equation b61 − 101b +
100 = 0. Use Newton’s Method to solve for b. Then find r . Note that b = 1 is a root, but you want the root satisfying
b > 1.

solution

(a) If r = 0.07, b = 1 + r/12 ≈ 1.00583, and :

S = 100
(b61 − b)

b − 1
= 7201.05.

(b) If our goal is to get $10,000 after five years, we need S = 10,000 when N = 5.

10,000 = 100

(
b61 − b

b − 1

)
,

So that:

10,000(b − 1) = 100
(
b61 − b

)
100b − 100 = b61 − b

b61 − 101b + 100 = 0

b = 1 is a root, but, since b − 1 appears in the denominator of our original equation, it does not satisfy the original
equation. Let f (b) = b61 − 101b + 100. Let’s use the initial guess r = 0.2, so that x0 = 1 + r/12 = 1.016666.

n 1 2 3

xn 1.01576 1.01569 1.01569

The solution is approximately b = 1.01569. The interest rate r required satisfies 1 + r/12 = 1.01569, so that r =
0.01569 × 12 = 0.18828. An annual interest rate of 18.828% is required to have $10,000 after five years.
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25. If you borrow L dollars for N years at a yearly interest rate r , your monthly payment of P dollars is calculated using
the equation

L = P

(
1 − b−12N

b − 1

)
where b = 1 + r

12

(a) Find P if L = $5000, N = 3, and r = 0.08 (8%).
(b) You are offered a loan of L = $5000 to be paid back over 3 years with monthly payments of P = $200. Use Newton’s
Method to compute b and find the implied interest rate r of this loan. Hint: Show that (L/P )b12N+1 − (1 + L/P )b12N +
1 = 0.

solution
(a) b = (1 + 0.08/12) = 1.00667

P = L

(
b − 1

1 − b−12N

)
= 5000

(
1.00667 − 1

1 − 1.00667−36

)
≈ $156.69

(b) Starting from

L = P

(
1 − b−12N

b − 1

)
,

divide by P , multiply by b − 1, multiply by b12N and collect like terms to arrive at

(L/P )b12N+1 − (1 + L/P )b12N + 1 = 0.

Since L/P = 5000/200 = 25, we must solve

25b37 − 26b36 + 1 = 0.

Newton’s Method gives b ≈ 1.02121 and

r = 12(b − 1) = 12(0.02121) ≈ 0.25452

So the interest rate is around 25.45%.

26. If you deposit P dollars in a retirement fund every year for N years with the intention of then withdrawing Q dollars
per year for M years, you must earn interest at a rate r satisfying P(bN − 1) = Q(1 − b−M), where b = 1 + r . Assume
that $2,000 is deposited each year for 30 years and the goal is to withdraw $10,000 per year for 25 years. Use Newton’s
Method to compute b and then find r . Note that b = 1 is a root, but you want the root satisfying b > 1.

solution Substituting P = 2000, Q = 10,000, N = 30 and M = 25 into the equation P(bN − 1) = Q(1 − b−M)

and then rearranging terms, we find that b must satisfy the equation b55 − 6b25 + 5 = 0. Newton’s Method with a starting
value of b0 = 1.1 yields b ≈ 1.05217. Thus, r ≈ 0.05217 = 5.217%.

27. There is no simple formula for the position at time t of a planet P in its orbit (an ellipse) around the sun. Introduce
the auxiliary circle and angle θ in Figure 10 (note that P determines θ because it is the central angle of point B on the
circle). Let a = OA and e = OS/OA (the eccentricity of the orbit).

(a) Show that sector BSA has area (a2/2)(θ − e sin θ).
(b) By Kepler’s Second Law, the area of sector BSA is proportional to the time t elapsed since the planet passed point
A, and because the circle has area πa2, BSA has area (πa2)(t/T ), where T is the period of the orbit. Deduce Kepler’s
Equation:

2πt

T
= θ − e sin θ

(c) The eccentricity of Mercury’s orbit is approximately e = 0.2. Use Newton’s Method to find θ after a quarter of
Mercury’s year has elapsed (t = T/4). Convert θ to degrees. Has Mercury covered more than a quarter of its orbit at
t = T/4?

O

P

A
S

Auxiliary circle

Elliptical orbit

Sun
q

B

FIGURE 10
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solution
(a) The sector SAB is the slice OAB with the triangle OPS removed. OAB is a central sector with arc θ and radius

OA = a, and therefore has area a2θ
2 . OPS is a triangle with height a sin θ and base length OS = ea. Hence, the area of

the sector is

a2

2
θ − 1

2
ea2 sin θ = a2

2
(θ − e sin θ).

(b) Since Kepler’s second law indicates that the area of the sector is proportional to the time t since the planet passed
point A, we get

πa2 (t/T ) = a2/2 (θ − e sin θ)

2π
t

T
= θ − e sin θ.

(c) If t = T/4, the last equation in (b) gives:

π

2
= θ − e sin θ = θ − .2 sin θ.

Let f (θ) = θ − .2 sin θ − π
2 . We will use Newton’s Method to find the point where f (θ) = 0. Since a quarter of the year

on Mercury has passed, a good first estimate θ0 would be π
2 .

n 1 2 3 4

xn 1.7708 1.76696 1.76696 1.76696

From the point of view of the Sun, Mercury has traversed an angle of approximately 1.76696 radians = 101.24◦. Mercury
has therefore traveled more than one fourth of the way around (from the point of view of central angle) during this time.

28. The roots of f (x) = 1
3x3 − 4x + 1 to three decimal places are −3.583, 0.251, and 3.332 (Figure 11). Determine the

root to which Newton’s Method converges for the initial choices x0 = 1.85, 1.7, and 1.55. The answer shows that a small
change in x0 can have a significant effect on the outcome of Newton’s Method.

0.2513

4

−4

−3.583

3.332
x

y

FIGURE 11 Graph of f (x) = 1
3x3 − 4x + 1.

solution Let f (x) = 1
3x3 − 4x + 1, and define

xn+1 = xn − f (xn)

f ′(xn)
= xn −

1
3x3

n − 4xn + 1

x2
n − 4

.

• Taking x0 = 1.85, we have

n 1 2 3 4 5 6 7

xn −5.58 −4.31 −3.73 −3.59 −3.58294362 −3.582918671 −3.58291867

• Taking x0 = 1.7, we have

n 1 2 3 4 5 6 7 8 9

xn −2.05 −33.40 −22.35 −15.02 −10.20 −7.08 −5.15 −4.09 −3.66

n 10 11 12 13

xn −3.585312288 −3.582920989 −3.58291867 −3.58291867

• Taking x0 = 1.55, we have

n 1 2 3 4 5 6

xn −0.928 0.488 0.245 0.251320515 0.251322863 0.251322863
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29. What happens when you apply Newton’s Method to find a zero of f (x) = x1/3? Note that x = 0 is the only zero.

solution Let f (x) = x1/3. Define

xn+1 = xn − f (xn)

f ′(xn)
= xn − x

1/3
n

1
3x

−2/3
n

= xn − 3xn = −2xn.

Take x0 = 0.5. Then the sequence of iterates is −1, 2, −4, 8, −16, 32, −64, . . . That is, for any nonzero starting value,
the sequence of iterates diverges spectacularly, since xn = (−2)n x0. Thus limn→∞ |xn| = limn→∞ 2n |x0| = ∞.

30. What happens when you apply Newton’s Method to the equation x3 − 20x = 0 with the unlucky initial guess x0 = 2?

solution Let f (x) = x3 − 20x. Define

xn+1 = xn − f (xn)

f ′(xn)
= xn − x3

n − 20xn

3x2
n − 20

.

Take x0 = 2. Then the sequence of iterates is −2, 2, −2, 2, . . ., which diverges by oscillation.

Further Insights and Challenges
31. Newton’s Method can be used to compute reciprocals without performing division. Let c > 0 and set f (x) = x−1 − c.

(a) Show that x − (f (x)/f ′(x)) = 2x − cx2.

(b) Calculate the first three iterates of Newton’s Method with c = 10.3 and the two initial guesses x0 = 0.1 and x0 = 0.5.

(c) Explain graphically why x0 = 0.5 does not yield a sequence converging to 1/10.3.

solution

(a) Let f (x) = 1
x − c. Then

x − f (x)

f ′(x)
= x −

1
x − c

−x−2
= 2x − cx2.

(b) For c = 10.3, we have f (x) = 1
x − 10.3 and thus xn+1 = 2xn − 10.3x2

n .

• Take x0 = 0.1.

n 1 2 3
xn 0.097 0.0970873 0.09708738

• Take x0 = 0.5.

n 1 2 3
xn −1.575 −28.7004375 −8541.66654

(c) The graph is disconnected. If x0 = .5, (x1, f (x1)) is on the other portion of the graph, which will never converge to
any point under Newton’s Method.

In Exercises 32 and 33, consider a metal rod of length L fastened at both ends. If you cut the rod and weld on an additional
segment of length m, leaving the ends fixed, the rod will bow up into a circular arc of radius R (unknown), as indicated
in Figure 12.

R

h

q

L

FIGURE 12 The bold circular arc has length L + m.

32. Let h be the maximum vertical displacement of the rod.

(a) Show that L = 2R sin θ and conclude that

h = L(1 − cos θ)

2 sin θ
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(b) Show that L + m = 2Rθ and then prove

sin θ

θ
= L

L + m
2

solution

(a) From the figure, we have sin θ = L/2
R

, so that L = 2R sin θ . Hence

h = R − R cos θ = R (1 − cos θ) =
1
2L

sin θ
(1 − cos θ) = L (1 − cos θ)

2 sin θ

(b) The arc length L + m is also given by radius × angle = R · 2θ . Thus, L + m = 2Rθ . Dividing L = 2R sin θ by
L + m = 2Rθ yields

L

L + m
= 2R sin θ

2Rθ
= sin θ

θ
.

33. Let L = 3 and m = 1. Apply Newton’s Method to Eq. (2) to estimate θ , and use this to estimate h.

solution We let L = 3 and m = 1. We want the solution of:

sin θ

θ
= L

L + m

sin θ

θ
− L

L + m
= 0

sin θ

θ
− 3

4
= 0.

Let f (θ) = sin θ
θ − 3

4 .

1.50.5 1
x

y

−0.2
−0.2

0.2
0.1

The figure above suggests that θ0 = 1.5 would be a good initial guess. The Newton’s Method approximations for the
solution follow:

n 1 2 3 4

θn 1.2854388 1.2757223 1.2756981 1.2756981

The angle where sin θ
θ = L

L+m
is approximately 1.2757. Hence

h = L
1 − cos θ

2 sin θ
≈ 1.11181.

34. Quadratic Convergence to Square Roots Let f (x) = x2 − c and let en = xn − √
c be the error in xn.

(a) Show that xn+1 = 1
2 (xn + c/xn) and en+1 = e2

n/2xn.

(b) Show that if x0 >
√

c, then xn >
√

c for all n. Explain graphically.

(c) Show that if x0 >
√

c, then en+1 ≤ e2
n/(2

√
c).

solution

(a) Let f (x) = x2 − c. Then

xn + 1 = xn − f (xn)

f ′(xn)
= xn − x2

n − c

2xn
= x2

n + c

2xn
= 1

2

(
xn + c

xn

)
,

as long as xn = 0. Now

e2
n

2xn
=
(
xn − √

c
)2

2xn
= x2

n − 2xn
√

c + c

2xn
= 1

2
xn − √

c + c

2xn

= 1

2

(
xn + c

xn

)
− √

c = xn+1 − √
c = en+1.
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(b) Since x0 >
√

c ≥ 0, we have e0 = x0 − √
c > 0. Now assume that ek > 0 for k = n. Then 0 < ek = en = xn − √

c,

whence xn >
√

c ≥ 0; i.e., xn > 0 and en > 0. By part (a), we have for k = n + 1 that ek = en+1 = e2
n

2xn
> 0 since

xn > 0. Thus en+1 > 0. Therefore by induction en > 0 for all n ≥ 0. Hence en = xn − √
c > 0 for all n ≥ 0. Therefore

xn >
√

c for all n ≥ 0.
The figure below shows the graph of f (x) = x2 − c. The x-intercept of the graph is, of course, x = √

c. We see that
for any xn >

√
c, the tangent line to the graph of f intersects the x-axis at a value xn+1 >

√
c.

y

x

(c) By part (b), if x0 >
√

c, then xn >
√

c for all n ≥ 0. Accordingly, for all n ≥ 0 we have en+1 = e2
n

2xn
<

e2
n

2
√

c
. In

other words, en+1 <
e2
n

2
√

c
for all n ≥ 0.

In Exercises 35–37, a flexible chain of length L is suspended between two poles of equal height separated by a distance
2M (Figure 13). By Newton’s laws, the chain describes a catenary y = a cosh

(
x
a

)
, where a is the number such that

L = 2a sinh
(
M
a

)
. The sag s is the vertical distance from the highest to the lowest point on the chain.

y = a cosh(x/a)

2 M

s

x

y

FIGURE 13 Chain hanging between two poles.

35. Suppose that L = 120 and M = 50.

(a) Use Newton’s Method to find a value of a (to two decimal places) satisfying L = 2a sinh(M/a).

(b) Compute the sag s.

solution
(a) Let

f (a) = 2a sinh

(
50

a

)
− 120.

The graph of f shown below suggests a ≈ 47 is a root of f . Starting with a0 = 47, we find the following approximations
using Newton’s method:

a1 = 46.95408 and a2 = 46.95415

Thus, to two decimal places, a = 46.95.

40 42 44 46 48

−2

0

2

4

6

y

x

(b) The sag is given by

s = y(M) − y(0) =
(

a cosh
M

a
+ C

)
−
(

a cosh
0

a
+ C

)
= a cosh

M

a
− a.

Using M = 50 and a = 46.95, we find s = 29.24.



April 2, 2011

S E C T I O N 4.8 Newton’s Method 523

36. Assume that M is fixed.

(a) Calculate ds
da

. Note that s = a cosh
(
M
a

)− a.

(b) Calculate da
dL

by implicit differentiation using the relation L = 2a sinh
(
M
a

)
.

(c) Use (a) and (b) and the Chain Rule to show that

ds

dL
= ds

da

da

dL
= cosh(M/a) − (M/a) sinh(M/a) − 1

2 sinh(M/a) − (2M/a) cosh(M/a)
3

solution The sag in the curve is

s = y(M) − y(0) = a cosh

(
M

a

)
+ C − (a cosh 0 + C) = a cosh

(
M

a

)
− a.

(a)
ds

da
= cosh

(
M

a

)
− M

a
sinh

(
M

a

)
− 1

(b) If we differentiate the relation L = 2a sinh

(
M

a

)
with respect to a, we find

0 = 2
da

dL
sinh

(
M

a

)
− 2M

a

da

dL
cosh

(
M

a

)
.

Solving for da/dL yields

da

dL
=
(

2 sinh

(
M

a

)
− 2M

a
cosh

(
M

a

))−1
.

(c) By the Chain Rule,

ds

dL
= ds

da
· da

dL
.

The formula for ds/dL follows upon substituting the results from parts (a) and (b).

37. Suppose that L = 160 and M = 50.

(a) Use Newton’s Method to find a value of a (to two decimal places) satisfying L = 2a sinh(M/a).

(b) Use Eq. (3) and the Linear Approximation to estimate the increase in sag �s for changes in length �L = 1 and
�L = 5.

(c) Compute s(161) − s(160) and s(165) − s(160) directly and compare with your estimates in (b).

solution
(a) Let f (x) = 2x sinh(50/x) − 160. Using the graph below, we select an initial guess of x0 = 30. Newton’s Method
then yields:

n 1 2 3

xn 28.30622107 28.45653356 28.45797517

Thus, to two decimal places, a ≈ 28.46.

10 20 30 40

50

100

150

200

250
y = 2a sinh(50/a)

(b) With M = 50 and a ≈ 28.46, we find using Eq. (3) that

ds

dL
= 0.61.

By the Linear Approximation,

�s ≈ ds

dL
· �L.

If L increases from 160 to 161, then �L = 1 and �s ≈ 0.61; if L increases from 160 to 165, then �L = 5 and �s ≈ 3.05.
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(c) When L = 160, a ≈ 28.46 and

s(160) = 28.46 cosh

(
50

28.46

)
− 28.46 ≈ 56.45;

whereas, when L = 161, a ≈ 28.25 and

s(161) = 28.25 cosh

(
50

28.25

)
− 28.25 ≈ 57.07.

Therefore, s(161) − s(160) = 0.62, very close to the approximation obtained from the Linear Approximation. Moreover,
when L = 165, a ≈ 27.49 and

s(165) = 27.49 cosh

(
50

27.49

)
− 27.49 ≈ 59.47;

thus, s(165) − s(160) = 3.02, again very close to the approximation obtained from the Linear Approximation.

4.9 Antiderivatives

Preliminary Questions
1. Find an antiderivative of the function f (x) = 0.

solution Since the derivative of any constant is zero, any constant function is an antiderivative for the function
f (x) = 0.

2. Is there a difference between finding the general antiderivative of a function f (x) and evaluating
∫

f (x) dx?

solution No difference. The indefinite integral is the symbol for denoting the general antiderivative.

3. Jacques was told that f (x) and g(x) have the same derivative, and he wonders whether f (x) = g(x). Does Jacques
have sufficient information to answer his question?

solution No. Knowing that the two functions have the same derivative is only good enough to tell Jacques that the
functions may differ by at most an additive constant. To determine whether the functions are equal for all x, Jacques needs
to know the value of each function for a single value of x. If the two functions produce the same output value for a single
input value, they must take the same value for all input values.

4. Suppose that F ′(x) = f (x) and G′(x) = g(x). Which of the following statements are true? Explain.

(a) If f = g, then F = G.
(b) If F and G differ by a constant, then f = g.
(c) If f and g differ by a constant, then F = G.

solution
(a) False. Even if f (x) = g(x), the antiderivatives F and G may differ by an additive constant.
(b) True. This follows from the fact that the derivative of any constant is 0.
(c) False. If the functions f and g are different, then the antiderivatives F and G differ by a linear function: F(x) − G(x) =
ax + b for some constants a and b.

5. Is y = x a solution of the following Initial Value Problem?

dy

dx
= 1, y(0) = 1

solution Although d
dx

x = 1, the function f (x) = x takes the value 0 when x = 0, so y = x is not a solution of the
indicated initial value problem.

Exercises
In Exercises 1–8, find the general antiderivative of f (x) and check your answer by differentiating.

1. f (x) = 18x2

solution ∫
18x2 dx = 18

∫
x2 dx = 18 · 1

3
x3 + C = 6x3 + C.

As a check, we have

d

dx
(6x3 + C) = 18x2

as needed.
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2. f (x) = x−3/5

solution

∫
x−3/5 dx = x2/5

2/5
+ C = 5

2
x2/5 + C.

As a check, we have

d

dx

(
5

2
x2/5 + C

)
= x−3/5

as needed.

3. f (x) = 2x4 − 24x2 + 12x−1

solution ∫
(2x4 − 24x2 + 12x−1) dx = 2

∫
x4 dx − 24

∫
x2 dx + 12

∫
1

x
dx

= 2 · 1

5
x5 − 24 · 1

3
x3 + 12 ln |x| + C

= 2

5
x5 − 8x3 + 12 ln |x| + C.

As a check, we have

d

dx

(
2

5
x5 − 8x3 + 12 ln |x| + C

)
= 2x4 − 24x2 + 12x−1

as needed.

4. f (x) = 9x + 15x−2

solution ∫
(9x + 15x−2) dx = 9

∫
x dx + 15

∫
x−2 dx

= 9 · 1

2
x2 + 15 · x−1

−1
+ C

= 9

2
x2 − 15x−1 + C.

As a check, we have

d

dx

(
9

2
x2 − 15x−1 + C

)
= 9x + 15x−2

as needed.

5. f (x) = 2 cos x − 9 sin x

solution ∫
(2 cos x − 9 sin x) dx = 2

∫
cos x dx − 9

∫
sin x dx

= 2 sin x − 9(− cos x) + C = 2 sin x + 9 cos x + C

As a check, we have

d

dx
(2 sin x + 9 cos x + C) = 2 cos x + 9(− sin x) = 2 cos x − 9 sin x

as needed.

6. f (x) = 4x7 − 3 cos x

solution ∫
(4x7 − 3 cos x) dx = 4

∫
x7 dx − 3

∫
cos x dx

= 4 · 1

8
x8 − 3 sin x + C = 1

2
x8 − 3 sin x + C.
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As a check, we have

d

dx

(
1

2
x8 − 3 sin x + C

)
= 4x7 − 3 cos x,

as needed.

7. f (x) = 12ex − 5x−2

solution

∫
(12ex − 5x−2) dx = 12

∫
ex dx − 5

∫
x−2 dx = 12ex − 5(−x−1) + C = 12ex + 5x−1 + C.

As a check, we have

d

dx

(
12ex + 5x−1 + C

)
= 12ex + 5(−x−2) = 12ex − 5x−2

as needed.

8. f (x) = ex − 4 sin x

solution

∫
(ex − 4 sin x) dx = ex − 4

∫
sin x dx

= ex − 4(− cos x) + C = ex + 4 cos x + C.

As a check, we have

d

dx

(
ex + 4 cos x + C

) = ex − 4 sin x

as needed.

9. Match functions (a)–(d) with their antiderivatives (i)–(iv).

(a) f (x) = sin x (i) F(x) = cos(1 − x)

(b) f (x) = x sin(x2) (ii) F(x) = − cos x

(c) f (x) = sin(1 − x) (iii) F(x) = − 1
2 cos(x2)

(d) f (x) = x sin x (iv) F(x) = sin x − x cos x

solution

(a) An antiderivative of sin x is − cos x, which is (ii). As a check, we have d
dx

(− cos x) = − (− sin x) = sin x.

(b) An antiderivative of x sin(x2) is − 1
2 cos(x2), which is (iii). This is because, by the Chain Rule, we have

d
dx

(
− 1

2 cos(x2)
)

= − 1
2

(
− sin(x2)

)
· 2x = x sin(x2).

(c) An antiderivative of sin (1 − x) is cos (1 − x) or (i). As a check, we have d
dx

cos(1 − x) = − sin(1 − x) · (−1) =
sin(1 − x).

(d) An antiderivative of x sin x is sin x − x cos x, which is (iv). This is because

d

dx
(sin x − x cos x) = cos x − (x (− sin x) + cos x · 1) = x sin x

In Exercises 10–39, evaluate the indefinite integral.

10.
∫

(9x + 2) dx

solution
∫

(9x + 2) dx = 9

2
x2 + 2x + C.
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11.
∫

(4 − 18x) dx

solution
∫

(4 − 18x) dx = 4x − 9x2 + C.

12.
∫

x−3 dx

solution
∫

x−3 dx = x−2

−2
+ C = −1

2
x−2 + C.

13.
∫

t−6/11 dt

solution
∫

t−6/11 dt = t5/11

5/11
+ C = 11

5
t5/11 + C.

14.
∫

(5t3 − t−3) dt

solution
∫

(5t3 − t−3) dt = 5

4
t4 − t−2

−2
+ C = 5

4
t4 + 1

2
t−2 + C.

15.
∫

(18t5 − 10t4 − 28t) dt

solution
∫

(18t5 − 10t4 − 28t) dt = 3t6 − 2t5 − 14t2 + C.

16.
∫

14s9/5 ds

solution
∫

14s9/5 ds = 14 · s14/5

14/5
+ C = 5s14/5 + C.

17.
∫

(z−4/5 − z2/3 + z5/4) dz

solution
∫

((z−4/5 − z2/3 + z5/4) dz = z1/5

1/5
− z5/3

5/3
+ z9/4

9/4
+ C = 5z1/5 − 3

5
z5/3 + 4

9
z9/4 + C.

18.
∫

3

2
dx

solution
∫

3

2
dx = 3

2
x + C.

19.
∫

1
3√x

dx

solution
∫

1
3√x

dx =
∫

x−1/3 dx = x2/3

2/3
+ C = 3

2
x2/3 + C.

20.
∫

dx

x4/3

solution
∫

dx

x4/3
=
∫

x−4/3 dx = x−1/3

−1/3
+ C = − 3

x1/3
+ C.

21.
∫

36 dt

t3

solution
∫

36

t3
dt =

∫
36t−3 dt = 36

t−2

−2
+ C = −18

t2
+ C.

22.
∫

x(x2 − 4) dx

solution
∫

x(x2 − 4) dx =
∫

(x3 − 4x) dx = 1

4
x4 − 2x2 + C.
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23.
∫

(t1/2 + 1)(t + 1) dt

solution ∫
(t1/2 + 1)(t + 1) dt =

∫
(t3/2 + t + t1/2 + 1) dt

= t5/2

5/2
+ 1

2
t2 + t3/2

3/2
+ t + C

= 2

5
t5/2 + 1

2
t2 + 2

3
t3/2 + t + C

24.
∫

12 − z√
z

dz

solution
∫

12 − z√
z

dz =
∫

(12z−1/2 − z1/2) dz = 24z1/2 − 2

3
z3/2 + C.

25.
∫

x3 + 3x − 4

x2
dx

solution

∫
x3 + 3x − 4

x2
dx =

∫
(x + 3x−1 − 4x−2) dx

= 1

2
x2 + 3 ln |x| + 4x−1 + C

26.
∫ (

1

3
sin x − 1

4
cos x

)
dx

solution
∫ (

1

3
sin x − 1

4
cos x

)
dx = −1

3
cos x − 1

4
sin x + C.

27.
∫

12 sec x tan x dx

solution
∫

12 sec x tan x dx = 12 sec x + C.

28.
∫

(θ + sec2 θ) dθ

solution
∫

(θ + sec2 θ) dθ = 1

2
θ2 + tan θ + C.

29.
∫

(csc t cot t) dt

solution
∫

(csc t cot t) dt = − csc t + C.

30.
∫

sin(7x − 5) dx

solution
∫

sin(7x − 5) dx = −1

7
cos(7x − 5) + C.

31.
∫

sec2(7 − 3θ) dθ

solution
∫

sec2(7 − 3θ) dθ = −1

3
tan(7 − 3θ) + C.

32.
∫

(θ − cos(1 − θ)) dθ

solution
∫

(θ − cos(1 − θ)) dθ = 1

2
θ2 + sin(1 − θ) + C.

33.
∫

25 sec2(3z + 1) dz

solution
∫

25 sec2(3z + 1) dz = 25

3
tan(3z + 1) + C.

34.
∫

sec(x + 5) tan(x + 5) dx

solution
∫

sec(x + 5) tan(x + 5) dx = sec(x + 5) + C.
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35.
∫ (

cos(3θ) − 1

2
sec2

(
θ

4

))
dθ

solution
∫ (

cos(3θ) − 1

2
sec2

(
θ

4

))
dθ = 1

3
sin(3θ) − 2 tan

(
θ

4

)
+ C.

36.
∫ (

4

x
− ex

)
dx

solution
∫ (

4

x
− ex

)
dx = 4 ln |x| − ex + C.

37.
∫

(3e5x) dx

solution
∫

(3e5x) dx = 3

5
e5x + C.

38.
∫

e3t−4 dt

solution
∫

e3t−4 dt = 1

3
e3t−4 + C.

39.
∫

(8x − 4e5−2x) dx

solution
∫

(8x − 4e5−2x) dx = 4x2 + 2e5−2x + C.

40. In Figure 3, is graph (A) or graph (B) the graph of an antiderivative of f (x)?

f (x) (A) (B)

x

x

x

yy y

FIGURE 3

solution Let F(x) be an antiderivative of f (x). By definition, this means F ′(x) = f (x). In other words, f (x)

provides information as to the increasing/decreasing behavior of F(x). Since, moving left to right, f (x) transitions from
− to + to − to + to − to +, it follows that F(x) must transition from decreasing to increasing to decreasing to increasing
to decreasing to increasing. This describes the graph in (A)!

41. In Figure 4, which of graphs (A), (B), and (C) is not the graph of an antiderivative of f (x)? Explain.

f (x)

(C)(B)(A)

x

x

y

x

y

x

y

y

FIGURE 4

solution Let F(x) be an antiderivative of f (x). Notice that f (x) = F ′(x) changes sign from − to + to − to +.
Hence, F(x) must transition from decreasing to increasing to decreasing to increasing.

• Both graph (A) and graph (C) meet the criteria discussed above and only differ by an additive constant. Thus either
could be an antiderivative of f (x).

• Graph (B) does not have the same local extrema as indicated by f (x) and therefore is not an antiderivative of f (x).
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42. Show that F(x) = 1
3 (x + 13)3 is an antiderivative of f (x) = (x + 13)2.

solution Note that

d

dx
F(x) = d

dx

1

3
(x + 13)3 = (x + 13)2.

Thus, F(x) = 1
3 (x + 13)3 is an antiderivative of f (x) = (x + 13)2.

In Exercises 43–46, verify by differentiation.

43.
∫

(x + 13)6 dx = 1

7
(x + 13)7 + C

solution
d

dx

(
1

7
(x + 13)7 + C

)
= (x + 13)6 as required.

44.
∫

(x + 13)−5 dx = −1

4
(x + 13)−4 + C

solution
d

dx

(
−1

4
(x + 13)−4 + C

)
= (x + 13)−5 as required.

45.
∫

(4x + 13)2 dx = 1

12
(4x + 13)3 + C

solution
d

dx

(
1

12
(4x + 13)3 + C

)
= 1

4
(4x + 13)2(4) = (4x + 13)2 as required.

46.
∫

(ax + b)n dx = 1

a(n + 1)
(ax + b)n+1 + C

solution
d

dx

(
1

a(n + 1)
(ax + b)n+1 + C

)
= (ax + b)n as required.

In Exercises 47–62, solve the initial value problem.

47.
dy

dx
= x3, y(0) = 4

solution Since dy
dx

= x3, we have

y =
∫

x3 dx = 1

4
x4 + C.

Thus,

4 = y(0) = 1

4
04 + C = C,

so that C = 4. Therefore, y = 1
4x4 + 4.

48.
dy

dt
= 3 − 2t , y(0) = −5

solution Since dy
dt

= 3 − 2t , we have

y =
∫

(3 − 2t) dt = 3t − t2 + C.

Thus,

−5 = y(0) = 3(0) − (0)2 + C = C,

so that C = −5. Therefore, y = 3t − t2 − 5.

49.
dy

dt
= 2t + 9t2, y(1) = 2

solution Since dy
dt

= 2t + 9t2, we have

y =
∫

(2t + 9t2) dt = t2 + 3t3 + C.

Thus,

2 = y(1) = 12 + 3(1)3 + C,

so that C = −2. Therefore y = t2 + 3t3 − 2.
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50.
dy

dx
= 8x3 + 3x2, y(2) = 0

solution Since dy
dx

= 8x3 + 3x2, we have

y =
∫

(8x3 + 3x2) dx = 2x4 + x3 + C.

Thus

0 = y(2) = 2(2)4 + 23 + C,

so that C = −40. Therefore, y = 2x4 + x3 − 40.

51.
dy

dt
= √

t , y(1) = 1

solution Since dy
dt

= √
t = t1/2, we have

y =
∫

t1/2 dt = 2

3
t3/2 + C.

Thus

1 = y(1) = 2

3
+ C,

so that C = 1
3 . Therefore, y = 2

3 t3/2 + 1
3 .

52.
dz

dt
= t−3/2, z(4) = −1

solution Since dz
dt

= t−3/2, we have

z =
∫

t−3/2 dt = −2t−1/2 + C.

Thus

−1 = z(4) = −2(4)−1/2 + C,

so that C = 0. Therefore, z = −2t−1/2.

53.
dy

dx
= (3x + 2)3, y(0) = 1

solution Since dy
dx

= (3x + 2)3, we have

y =
∫

(3x + 2)3 dx = 1

4
· 1

3
(3x + 2)4 + C = 1

12
(3x + 2)4 + C.

Thus,

1 = y(0) = 1

12
(2)4 + C,

so that C = 1 − 4
3 = − 1

3 . Therefore, y = 1
12 (3x + 2)4 − 1

3 .

54.
dy

dt
= (4t + 3)−2, y(1) = 0

solution Since dy
dt

= (4t + 3)−2, we have

y =
∫

(4t + 3)−2 dt = 1

−1
· 1

4
(4t + 3)−1 + C = −1

4
(4t + 3)−1 + C.

Thus,

0 = y(1) = −1

4
(7)−1 + C,

so that C = 1
28 . Therefore, y = − 1

4 (4t + 3)−1 + 1
28 .
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55.
dy

dx
= sin x, y

(π

2

)
= 1

solution Since dy
dx

= sin x, we have

y =
∫

sin x dx = − cos x + C.

Thus

1 = y
(π

2

)
= 0 + C,

so that C = 1. Therefore, y = 1 − cos x.

56.
dy

dz
= sin 2z, y

(π

4

)
= 4

solution Since dy
dz

= sin 2z, we have

y =
∫

sin 2z dz = −1

2
cos 2z + C.

Thus

4 = y
(π

4

)
= 0 + C,

so that C = 4. Therefore, y = 4 − 1
2 cos 2z.

57.
dy

dx
= cos 5x, y(π) = 3

solution Since dy
dx

= cos 5x, we have

y =
∫

cos 5x dx = 1

5
sin 5x + C.

Thus 3 = y(π) = 0 + C, so that C = 3. Therefore, y = 3 + 1
5 sin 5x.

58.
dy

dx
= sec2 3x, y

(π

4

)
= 2

solution Since dy
dx

= sec2 3x, we have

y =
∫

sec2(3x) dx = 1

3
tan(3x) + C.

Since y
(
π
4

) = 2, we get:

2 = 1

3
tan
(

3
π

4

)
+ C

2 = 1

3
(−1) + C

7

3
= C.

Therefore, y = 1
3 tan(3x) + 7

3 .

59.
dy

dx
= ex , y(2) = 0

solution Since dy
dx

= ex , we have

y =
∫

ex dx = ex + C.

Thus,

0 = y(2) = e2 + C,

so that C = −e2. Therefore, y = ex − e2.
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60.
dy

dt
= e−t , y(0) = 0

solution Since dy
dt

= e−t , we have

y =
∫

e−t dt = −e−t + C.

Thus,

0 = y(0) = −e0 + C,

so that C = 1. Therefore, y = −e−t + 1.

61.
dy

dt
= 9e12−3t , y(4) = 7

solution Since dy
dt

= 9e12−3t , we have

y =
∫

9e12−3t dt = −3e12−3t + C.

Thus,

7 = y(4) = −3e0 + C,

so that C = 10. Therefore, y = −3e12−3t + 10.

62.
dy

dt
= t + 2et−9, y(9) = 4

solution Since dy
dt

= t + 2et−9, we have

y =
∫

(t + 2et−9) dt = 1

2
t2 + 2et−9 + C.

Thus,

4 = y(9) = 1

2
(9)2 + 2e0 + C,

so that C = − 77
2 . Therefore, y = 1

2 t2 + 2et−9 − 77
2 .

In Exercises 63–69, first find f ′ and then find f .

63. f ′′(x) = 12x, f ′(0) = 1, f (0) = 2

solution Let f ′′(x) = 12x. Then f ′(x) = 6x2 + C. Given f ′(0) = 1, it follows that 1 = 6(0)2 + C and C = 1.

Thus, f ′(x) = 6x2 + 1. Next, f (x) = 2x3 + x + C. Given f (0) = 2, it follows that 2 = 2(0)3 + 0 + C and C = 2.
Finally, f (x) = 2x3 + x + 2.

64. f ′′(x) = x3 − 2x, f ′(1) = 0, f (1) = 2

solution Let f ′′(x) = x3 − 2x. Then f ′(x) = 1
4x4 − x2 + C. Given f ′(1) = 0, it follows that 0 = 1

4 (1)4 − (1)2 + C

and C = 3
4 . Thus, f ′(x) = 1

4x4 − x2 + 3
4 . Next, f (x) = 1

20x5 − 1
3x3 + 3

4x + C. Given f (1) = 2, it follows that

2 = 1
20 (1)5 − 1

3 (1)3 + 3
4 + C and C = 23

15 . Finally, f (x) = 1
20x5 − 1

3x3 + 3
4x + 23

15 .

65. f ′′(x) = x3 − 2x + 1, f ′(0) = 1, f (0) = 0

solution Let g(x) = f ′(x). The statement gives us g′(x) = x3 − 2x + 1, g(0) = 1. From this, we get g(x) =
1
4x4 − x2 + x + C. g(0) = 1 gives us 1 = C, so f ′(x) = g(x) = 1

4x4 − x2 + x + 1. f ′(x) = 1
4x4 − x2 + x + 1, so

f (x) = 1
20x5 − 1

3x3 + 1
2x2 + x + C. f (0) = 0 gives C = 0, so

f (x) = 1

20
x5 − 1

3
x3 + 1

2
x2 + x.

66. f ′′(x) = x3 − 2x + 1, f ′(1) = 0, f (1) = 4

solution Let g(x) = f ′(x). The problem statement gives us g′(x) = x3 − 2x + 1, g(0) = 0. From g′(x), we get

g(x) = 1
4x4 − x2 + x + C, and from g(1) = 0, we get 0 = 1

4 − 1 + 1 + C, so that C = − 1
4 . This gives f ′(x) = g(x) =

1
4x4 − x2 + x − 1

4 . From f ′(x), we get f (x) = 1
4 ( 1

5x5) − 1
3x3 + 1

2x2 − 1
4x + C = 1

20x5 − 1
3x3 + 1

2x2 − 1
4x + C.

From f (1) = 4, we get

1

20
− 1

3
+ 1

2
− 1

4
+ C = 4,
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so that C = 121
30 . Hence,

f (x) = 1

20
x5 − 1

3
x3 + 1

2
x2 − 1

4
x + 121

30
.

67. f ′′(t) = t−3/2, f ′(4) = 1, f (4) = 4

solution Let g(t) = f ′(t). The problem statement is g′(t) = t−3/2, g(4) = 1. From g′(t) we get g(t) = 1
−1/2 t−1/2 +

C = −2t−1/2 + C. From g(4) = 1 we get −1 + C = 1 so that C = 2. Hence f ′(t) = g(t) = −2t−1/2 + 2. From
f ′(t) we get f (t) = −2 1

1/2 t1/2 + 2t + C = −4t1/2 + 2t + C. From f (4) = 4 we get −8 + 8 + C = 4, so that C = 4.

Hence, f (t) = −4t1/2 + 2t + 4.

68. f ′′(θ) = cos θ , f ′ (π

2

)
= 1, f

(π

2

)
= 6

solution Let g(θ) = f ′(θ). The problem statement gives

g′(θ) = cos θ, g
(π

2

)
= 1.

From g′(θ) we get g(θ) = sin θ + C. From g(π
2 ) = 1 we get 1 + C = 1, so C = 0. Hence f ′(θ) = g(θ) = sin θ . From

f ′(θ) we get f (θ) = − cos θ + C. From f (π
2 ) = 6 we get C = 6, so

f (θ) = − cos θ + 6.

69. f ′′(t) = t − cos t , f ′(0) = 2, f (0) = −2

solution Let g(t) = f ′(t). The problem statement gives

g′(t) = t − cos t, g(0) = 2.

From g′(t), we get g(t) = 1
2 t2 − sin t + C. From g(0) = 2, we get C = 2. Hence f ′(t) = g(t) = 1

2 t2 − sin t + 2. From

f ′(t), we get f (t) = 1
2 ( 1

3 t3) + cos t + 2t + C. From f (0) = −2, we get 1 + C = −2, hence C = −3, and

f (t) = 1

6
t3 + cos t + 2t − 3.

70. Show that F(x) = tan2 x and G(x) = sec2 x have the same derivative. What can you conclude about the relation
between F and G? Verify this conclusion directly.

solution Let f (x) = tan2 x and g(x) = sec2 x. Then f ′(x) = 2 tan x sec2 x and g′(x) = 2 sec x · sec x tan x =
2 tan x sec2 x; hence f ′(x) = g′(x). Accordingly, f (x) and g(x) must differ by a constant; i.e., f (x) − g(x) = tan2 x −
sec2 x = C for some constant C. To see that this is true directly, divide the identity sin2 x + cos2 x = 1 by cos2 x. This
yields tan2 x + 1 = sec2 x, so that tan2 x − sec2 x = −1.

71. A particle located at the origin at t = 1 s moves along the x-axis with velocity v(t) = (6t2 − t) m/s. State the
differential equation with initial condition satisfied by the position s(t) of the particle, and find s(t).

solution The differential equation satisfied by s(t) is

ds

dt
= v(t) = 6t2 − t,

and the associated initial condition is s(1) = 0. From the differential equation, we find

s(t) =
∫

(6t2 − t) dt = 2t3 − 1

2
t2 + C.

Using the initial condition, it follows that

0 = s(1) = 2 − 1

2
+ C so C = −3

2
.

Finally,

s(t) = 2t3 − 1

2
t2 − 3

2
.
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72. A particle moves along the x-axis with velocity v(t) = (6t2 − t) m/s. Find the particle’s position s(t) assuming that
s(2) = 4.

solution The differential equation satisfied by s(t) is

ds

dt
= v(t) = 6t2 − t,

and the associated initial condition is s(2) = 4. From the differential equation, we find

s(t) =
∫

(6t2 − t) dt = 2t3 − 1

2
t2 + C.

Using the initial condition, it follows that

4 = s(2) = 16 − 2 + C so C = −10.

Finally,

s(t) = 2t3 − 1

2
t2 − 10.

73. A mass oscillates at the end of a spring. Let s(t) be the displacement of the mass from the equilibrium position at time
t . Assuming that the mass is located at the origin at t = 0 and has velocity v(t) = sin(πt/2) m/s, state the differential
equation with initial condition satisfied by s(t), and find s(t).

solution The differential equation satisfied by s(t) is

ds

dt
= v(t) = sin(πt/2),

and the associated initial condition is s(0) = 0. From the differential equation, we find

s(t) =
∫

sin(πt/2) dt = − 2

π
cos(πt/2) + C.

Using the initial condition, it follows that

0 = s(0) = − 2

π
+ C so C = 2

π
.

Finally,

s(t) = 2

π
(1 − cos(πt/2)).

74. Beginning at t = 0 with initial velocity 4 m/s, a particle moves in a straight line with acceleration a(t) = 3t1/2 m/s2.
Find the distance traveled after 25 seconds.

solution Given a(t) = 3t1/2 and an initial velocity of 4 m/s, it follows that v(t) satisfies

dv

dt
= 3t1/2, v(0) = 4.

Thus,

v(t) =
∫

3t1/2 dt = 2t3/2 + C.

Using the initial condition, we find

4 = v(0) = 2(0)3/2 + C so C = 4

and v(t) = 2t3/2 + 4. Next,

s =
∫

v(t) dt =
∫

(2t3/2 + 4) dt = 4

5
t5/2 + 4t + C.

Finally, the distance traveled after 25 seconds is

s(25) − s(0) = 4

5
(25)5/2 + 4(25) = 2600

meters.



April 2, 2011

536 C H A P T E R 4 APPLICATIONS OF THE DERIVATIVE

75. A car traveling 25 m/s begins to decelerate at a constant rate of 4 m/s2. After how many seconds does the car come
to a stop and how far will the car have traveled before stopping?

solution Since the acceleration of the car is a constant −4m/s2, v is given by the differential equation:

dv

dt
= −4, v(0) = 25.

From dv
dt

, we get v(t) = ∫ −4 dt = −4t + C. Since v(0)25, C = 25. From this, v(t) = −4t + 25 m
s . To find the time

until the car stops, we must solve v(t) = 0:

−4t + 25 = 0

4t = 25

t = 25/4 = 6.25 s.

Now we have a differential equation for s(t). Since we want to know how far the car has traveled from the beginning of
its deceleration at time t = 0, we have s(0) = 0 by definition, so:

ds

dt
= v(t) = −4t + 25, s(0) = 0.

From this, s(t) = ∫ (−4t + 25) dt = −2t2 + 25t + C. Since s(0) = 0, we have C = 0, and

s(t) = −2t2 + 25t.

At stopping time t = 0.25 s, the car has traveled

s(6.25) = −2(6.25)2 + 25(6.25) = 78.125 m.

76. At time t = 1 s, a particle is traveling at 72 m/s and begins to decelerate at the rate a(t) = −t−1/2 until it stops. How
far does the particle travel before stopping?

solution With a(t) = −t−1/2 and a velocity of 72 m/s at t = 1 s, it follows that v(t) satisfies

dv

dt
= −t−1/2, v(1) = 72.

Thus,

v(t) =
∫

−t−1/2 dt = −2t1/2 + C.

Using the initial condition, we find

72 = v(1) = −2 + C so C = 74,

and v(t) = 74 − 2t1/2. The particle comes to rest when

74 − 2t1/2 = 0 or when t = 372 = 1369

seconds. Now,

s(t) =
∫

v(t) dt =
∫

(74 − 2t1/2) dt = 74t − 4

3
t3/2 + C.

The distance traveled by the particle before it comes to rest is then

s(1369) − s(1) = 74(1369) − 202612

3
− 74 + 4

3
= 33696

meters.

77. A 900-kg rocket is released from a space station. As it burns fuel, the rocket’s mass decreases and its velocity
increases. Let v(m) be the velocity (in meters per second) as a function of mass m. Find the velocity when m = 729 if
dv/dm = −50m−1/2. Assume that v(900) = 0.

solution Since dv
dm

= −50m−1/2, we have v(m) = ∫ −50m−1/2 dm = −100m1/2 + C. Thus 0 = v(900) =
−100

√
900 + C = −3000 + C, and C = 3000. Therefore, v(m) = 3000 − 100

√
m. Accordingly,

v(729) = 3000 − 100
√

729 = 3000 − 100(27) = 300 meters/sec.
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78. As water flows through a tube of radius R = 10 cm, the velocity v of an individual water particle depends only on
its distance r from the center of the tube. The particles at the walls of the tube have zero velocity and dv/dr = −0.06r .
Determine v(r).

solution The statement amounts to the differential equation and initial condition:

dv

dr
= −0.06r, v(R) = 0.

From dv
dr

= −0.06r , we get

v(r) =
∫

−0.06r dr = −0.06
r2

2
+ C = −0.03r2 + C.

Plugging in v(R) = 0, we get −0.03R2 + C = 0, so that C = 0.03R2. Therefore,

v(r) = −0.03r2 + 0.03R2 = 0.03(R2 − r2) cm/s.

If R = 10 centimeters, we get:

v(r) = 0.03(102 − r2).

79. Verify the linearity properties of the indefinite integral stated in Theorem 4.

solution To verify the Sum Rule, let F(x) and G(x) be any antiderivatives of f (x) and g(x), respectively. Because

d

dx
(F (x) + G(x)) = d

dx
F(x) + d

dx
G(x) = f (x) + g(x),

it follows that F(x) + G(x) is an antiderivative of f (x) + g(x); i.e.,∫
(f (x) + g(x)) dx =

∫
f (x) dx +

∫
g(x) dx.

To verify the Multiples Rule, again let F(x) be any antiderivative of f (x) and let c be a constant. Because

d

dx
(cF (x)) = c

d

dx
F(x) = cf (x),

it follows that cF (x) is and antiderivative of cf (x); i.e.,∫
(cf (x)) dx = c

∫
f (x) dx.

Further Insights and Challenges
80. Find constants c1 and c2 such that F(x) = c1x sin x + c2 cos x is an antiderivative of f (x) = x cos x.

solution Let F(x) = c1x sin x + c2 cos x. If F(x) is to be an antiderivative of f (x) = x cos x, we must have
F ′(x) = f (x) for all x. Hence c1 (x cos x + sin x) − c2 sin x = x cos x for all x. Equating coefficients on the left- and
right-hand sides, we have c1 = 1 (i.e., the coefficients of x cos x are equal) and c1 − c2 = 0 (i.e., the coefficients of sin x

are equal). Thus c1 = c2 = 1 and hence F(x) = x sin x + cos x. As a check, we have F ′(x) = x cos x + sin x − sin x =
x cos x = f (x), as required.

81. Find constants c1 and c2 such that F(x) = c1xex + c2ex is an antiderivative of f (x) = xex .

solution Let F(x) = c1xex + c2ex . If F(x) is to be an antiderivative of f (x) = xex , we must have F ′(x) = f (x)

for all x. Hence,

c1xex + (c1 + c2)ex = xex = 1 · xex + 0 · ex.

Equating coefficients of like terms we have c1 = 1 and c1 + c2 = 0. Thus, c1 = 1 and c2 = −1.

82. Suppose that F ′(x) = f (x) and G′(x) = g(x). Is it true that F(x)G(x) is an antiderivative of f (x)g(x)? Confirm
or provide a counterexample.

solution Let f (x) = x2 and g(x) = x3. Then F(x) = 1
3x3 and G(x) = 1

4x4 are antiderivatives for f (x) and

g(x), respectively. Let h(x) = f (x)g(x) = x5, the general antiderivative of which is H(x) = 1
6x6 + C. There is no

value of the constant C for which F(x)G(x) = 1
12x7 equals H(x). Accordingly, F(x)G(x) is not an antiderivative of

h(x) = f (x)g(x).
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83. Suppose that F ′(x) = f (x).
(a) Show that 1

2F(2x) is an antiderivative of f (2x).
(b) Find the general antiderivative of f (kx) for k = 0.

solution Let F ′(x) = f (x).
(a) By the Chain Rule, we have

d

dx

(
1

2
F(2x)

)
= 1

2
F ′(2x) · 2 = F ′(2x) = f (2x).

Thus 1
2F(2x) is an antiderivative of f (2x).

(b) For nonzero constant k, the Chain Rules gives

d

dx

(
1

k
F (kx)

)
= 1

k
F ′(kx) · k = F ′(kx) = f (kx).

Thus 1
k
F (kx) is an antiderivative of f (kx). Hence the general antiderivative of f (kx) is 1

k
F (kx) + C, where C is a

constant.

84. Find an antiderivative for f (x) = |x|.
solution Let f (x) = |x| =

{
x for x ≥ 0

−x for x < 0
. Then the general antiderivative of f (x) is

F(x) =
∫

f (x) dx =
{∫

x dx for x ≥ 0∫ −x dx for x < 0
=
{

1
2x2 + C for x ≥ 0

− 1
2x2 + C for x < 0

.

85. Using Theorem 1, prove that F ′(x) = f (x) where f (x) is a polynomial of degree n − 1, then F(x) is a polynomial
of degree n. Then prove that if g(x) is any function such that g(n)(x) = 0, then g(x) is a polynomial of degree at most n.

solution Suppose F ′(x) = f (x) where f (x) is a polynomial of degree n − 1. Now, we know that the derivative of a
polynomial of degree n is a polynomial of degree n − 1, and hence an antiderivative of a polynomial of degree n − 1 is a
polynomial of degree n. Thus, by Theorem 1, F(x) can differ from a polynomial of degree n by at most a constant term,
which is still a polynomial of degree n. Now, suppose that g(x) is any function such that g(n+1)(x) = 0. We know that
the n + 1-st derivative of any polynomial of degree at most n is zero, so by repeated application of Theorem 1, g(x) can
differ from a polynomial of degree at most n by at most a constant term. Hence, g(x) is a polynomial of degree at most n.

86. Show that F(x) = xn+1 − 1

n + 1
is an antiderivative of y = xn for n = −1. Then use L’Hôpital’s Rule to prove that

lim
n→−1

F(x) = ln x

In this limit, x is fixed and n is the variable. This result shows that, although the Power Rule breaks down for n = −1,
the antiderivative of y = x−1 is a limit of antiderivatives of xn as n → −1.

solution If n = −1, then

d

dx
F(x) = d

dx

(
xn+1 − 1

n + 1

)
= xn.

Therefore, F(x) is an antiderivative of y = xn. Using L’Hôpital’s Rule,

lim
n→−1

F(x) = lim
n→−1

xn+1 − 1

n + 1
= lim

n→−1

xn+1 ln x

1
= ln x.

CHAPTER REVIEW EXERCISES

In Exercises 1–6, estimate using the Linear Approximation or linearization, and use a calculator to estimate the error.

1. 8.11/3 − 2

solution Let f (x) = x1/3, a = 8 and �x = 0.1. Then f ′(x) = 1
3x−2/3, f ′(a) = 1

12 and, by the Linear Approxima-
tion,

�f = 8.11/3 − 2 ≈ f ′(a)�x = 1

12
(0.1) = 0.00833333.

Using a calculator, 8.11/3 − 2 = 0.00829885. The error in the Linear Approximation is therefore

|0.00829885 − 0.00833333| = 3.445 × 10−5.
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2.
1√
4.1

− 1

2

solution Let f (x) = x−1/2, a = 4 and �x = 0.1. Then f ′(x) = − 1
2x−3/2, f ′(a) = − 1

16 and, by the Linear
Approximation,

�f = 1√
4.1

− 1

2
≈ f ′(a)�x = − 1

16
(0.1) = −0.00625.

Using a calculator,

1√
4.1

− 1

2
= −0.00613520.

The error in the Linear Approximation is therefore

| − 0.00613520 − (−0.00625)| = 1.148 × 10−4.

3. 6251/4 − 6241/4

solution Let f (x) = x1/4, a = 625 and �x = −1. Then f ′(x) = 1
4x−3/4, f ′(a) = 1

500 and, by the Linear
Approximation,

�f = 6241/4 − 6251/4 ≈ f ′(a)�x = 1

500
(−1) = −0.002.

Thus 6251/4 − 6241/4 ≈ 0.002. Using a calculator,

6251/4 − 6241/4 = 0.00200120.

The error in the Linear Approximation is therefore

|0.00200120 − (0.002)| = 1.201 × 10−6.

4.
√

101

solution Let f (x) = √
x and a = 100. Then f (a) = 10, f ′(x) = 1

2x−1/2 and f ′(a) = 1
20 . The linearization of

f (x) at a = 100 is therefore

L(x) = f (a) + f ′(a)(x − a) = 10 + 1

20
(x − 100),

and
√

101 ≈ L(101) = 10.05. Using a calculator,
√

101 = 10.049876, so the error in the Linear Approximation is

|10.049876 − 10.05| = 1.244 × 10−4.

5.
1

1.02

solution Let f (x) = x−1 and a = 1. Then f (a) = 1, f ′(x) = −x−2 and f ′(a) = −1. The linearization of f (x) at
a = 1 is therefore

L(x) = f (a) + f ′(a)(x − a) = 1 − (x − 1) = 2 − x,

and 1
1.02 ≈ L(1.02) = 0.98. Using a calculator, 1

1.02 = 0.980392, so the error in the Linear Approximation is

|0.980392 − 0.98| = 3.922 × 10−4.

6. 5√33

solution Let f (x) = x1/5 and a = 32. Then f (a) = 2, f ′(x) = 1
5x−4/5 and f ′(a) = 1

80 . The linearization of f (x)

at a = 32 is therefore

L(x) = f (a) + f ′(a)(x − a) = 2 + 1

80
(x − 32),

and 5√33 ≈ L(33) = 2.0125. Using a calculator, 5√33 = 2.012347, so the error in the Linear Approximation is

|2.012347 − 2.0125| = 1.534 × 10−4.
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In Exercises 7–12, find the linearization at the point indicated.

7. y = √
x, a = 25

solution Let y = √
x and a = 25. Then y(a) = 5, y′ = 1

2x−1/2 and y′(a) = 1
10 . The linearization of y at a = 25 is

therefore

L(x) = y(a) + y′(a)(x − 25) = 5 + 1

10
(x − 25).

8. v(t) = 32t − 4t2, a = 2

solution Let v(t) = 32t − 4t2 and a = 2. Then v(a) = 48, v′(t) = 32 − 8t and v′(a) = 16. The linearization of
v(t) at a = 2 is therefore

L(t) = v(a) + v′(a)(t − a) = 48 + 16(t − 2) = 16t + 16.

9. A(r) = 4
3πr3, a = 3

solution Let A(r) = 4
3πr3 and a = 3. Then A(a) = 36π , A′(r) = 4πr2 and A′(a) = 36π . The linearization of

A(r) at a = 3 is therefore

L(r) = A(a) + A′(a)(r − a) = 36π + 36π(r − 3) = 36π(r − 2).

10. V (h) = 4h(2 − h)(4 − 2h), a = 1

solution Let V (h) = 4h(2 − h)(4 − 2h) = 32h − 32h2 + 8h3 and a = 1. Then V (a) = 8, V ′(h) = 32 − 64h + 24h2

and V ′(a) = −8. The linearization of V (h) at a = 1 is therefore

L(h) = V (a) + V ′(a)(h − a) = 8 − 8(h − 1) = 16 − 8h.

11. P(x) = e−x2/2, a = 1

solution Let P(x) = e−x2/2 and a = 1. Then P(a) = e−1/2, P ′(x) = −xe−x2/2, and P ′(a) = −e−1/2. The
linearization of P(x) at a = 1 is therefore

L(x) = P(a) + P ′(a)(x − a) = e−1/2 − e−1/2(x − 1) = 1√
e
(2 − x).

12. f (x) = ln(x + e), a = e

solution Let f (x) = ln(x + e) and a = e. Then f (a) = ln(2e) = 1 + ln 2, P ′(x) = 1
x+e , and P ′(a) = 1

2e
. The

linearization of f (x) at a = e is therefore

L(x) = f (a) + f ′(a)(x − a) = 1 + ln 2 + 1

2e
(x − e).

In Exercises 13–18, use the Linear Approximation.

13. The position of an object in linear motion at time t is s(t) = 0.4t2 + (t + 1)−1. Estimate the distance traveled over
the time interval [4, 4.2].
solution Let s(t) = 0.4t2 + (t + 1)−1, a = 4 and �t = 0.2. Then s′(t) = 0.8t − (t + 1)−2 and s′(a) = 3.16. Using
the Linear Approximation, the distance traveled over the time interval [4, 4.2] is approximately

�s = s(4.2) − s(4) ≈ s′(a)�t = 3.16(0.2) = 0.632.

14. A bond that pays $10,000 in 6 years is offered for sale at a price P . The percentage yield Y of the bond is

Y = 100

((
10,000

P

)1/6
− 1

)

Verify that if P = $7500, then Y = 4.91%. Estimate the drop in yield if the price rises to $7700.

solution Let P = $7500. Then

Y = 100

((
10,000

7500

)1/6
− 1

)
= 4.91%.
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If the price is raised to $7700, then �P = 200. With

dY

dP
= −1

6
100(10,000)1/6P−7/6 = −108/3

6
P−7/6,

we estimate using the Linear Approximation that

�Y ≈ Y ′(7500)�P = −0.46%.

15. When a bus pass from Albuquerque to Los Alamos is priced at p dollars, a bus company takes in a monthly revenue
of R(p) = 1.5p − 0.01p2 (in thousands of dollars).

(a) Estimate �R if the price rises from $50 to $53.
(b) If p = 80, how will revenue be affected by a small increase in price? Explain using the Linear Approximation.

solution
(a) If the price is raised from $50 to $53, then �p = 3 and

�R ≈ R′(50)�p = (1.5 − 0.02(50))(3) = 1.5

We therefore estimate an increase of $1500 in revenue.
(b) Because R′(80) = 1.5 − 0.02(80) = −0.1, the Linear Approximation gives �R ≈ −0.1�p. A small increase in
price would thus result in a decrease in revenue.

16. A store sells 80 MP4 players per week when the players are priced at P = $75. Estimate the number N sold if P is
raised to $80, assuming that dN/dP = −4. Estimate N if the price is lowered to $69.

solution If P is raised to $80, then �P = 5. With the assumption that dN/dP = −4, we estimate, using the Linear
Approximation, that

�N ≈ dN

dP
�P = (−4)(5) = −20;

therefore, we estimate that only 60 MP4 players will be sold per week when the price is $80. On the other hand, if the
price is lowered to $69, then �P = −6 and �N ≈ (−4)(−6) = 24. We therefore estimate that 104 MP4 players will be
sold per week when the price is $69.

17. The circumference of a sphere is measured at C = 100 cm. Estimate the maximum percentage error in V if the error
in C is at most 3 cm.

solution The volume of a sphere is V = 4
3πr3 and the circumference is C = 2πr , where r is the radius of the sphere.

Thus, r = 1
2π

C and

V = 4

3
π

(
C

2π

)3
= 1

6π2
C3.

Using the Linear Approximation,

�V ≈ dV

dC
�C = 1

2π2
C2�C,

so

�V

V
≈

1
2π2 C2�C

1
6π2 C3

= 3
�C

C
.

With C = 100 cm and �C at most 3 cm, we estimate that the maximum percentage error in V is 3 3
100 = 0.09, or 9%.

18. Show that
√

a2 + b ≈ a + b
2a

if b is small. Use this to estimate
√

26 and find the error using a calculator.

solution Let a > 0 and let f (b) =
√

a2 + b. Then

f ′(b) = 1

2
√

a2 + b
.

By the Linear Approximation, f (b) ≈ f (0) + f ′(0)b, so√
a2 + b ≈ a + b

2a
.

To estimate
√

26, let a = 5 and b = 1. Then

√
26 =

√
52 + 1 ≈ 5 + 1

10
= 5.1.

The error in this estimate is |√26 − 5.1| = 9.80 × 10−4.
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19. Use the Intermediate Value Theorem to prove that sin x − cos x = 3x has a solution, and use Rolle’s Theorem to
show that this solution is unique.

solution Let f (x) = sin x − cos x − 3x, and observe that each root of this function corresponds to a solution of the
equation sin x − cos x = 3x. Now,

f
(
−π

2

)
= −1 + 3π

2
> 0 and f (0) = −1 < 0.

Because f is continuous on (−π
2 , 0) and f (−π

2 ) and f (0) are of opposite sign, the Intermediate Value Theorem guarantees
there exists a c ∈ (−π

2 , 0) such that f (c) = 0. Thus, the equation sin x − cos x = 3x has at least one solution.
Next, suppose that the equation sin x − cos x = 3x has two solutions, and therefore f (x) has two roots, say a and

b. Because f is continuous on [a, b], differentiable on (a, b) and f (a) = f (b) = 0, Rolle’s Theorem guarantees there
exists c ∈ (a, b) such that f ′(c) = 0. However,

f ′(x) = cos x + sin x − 3 ≤ −1

for all x. We have reached a contradiction. Consequently, f (x) has a unique root and the equation sin x − cos x = 3x has
a unique solution.

20. Show that f (x) = 2x3 + 2x + sin x + 1 has precisely one real root.

solution We have f (0) = 1 and f (−1) = −3 + sin(−1) = −3.84 < 0. Therefore f (x) has a root in the interval
[−1, 0]. Now, suppose that f (x) has two real roots, say a and b. Because f (x) is continuous on [a, b] and differentiable
on (a, b) and f (a) = f (b) = 0, Rolle’s Theorem guarantees that there exists c ∈ (a, b) such that f ′(c) = 0. However

f ′(x) = 6x2 + 2 + cos x > 0

for all x (since 2 + cos x ≥ 0). We have reached a contradiction. Consequently, f (x) must have precisely one real root.

21. Verify the MVT for f (x) = ln x on [1, 4].
solution Let f (x) = ln x. On the interval [1, 4], this function is continuous and differentiable, so the MVT applies.

Now, f ′(x) = 1
x , so

1

c
= f ′(c) = f (b) − f (a)

b − a
= ln 4 − ln 1

4 − 1
= 1

3
ln 4,

or

c = 3

ln 4
≈ 2.164 ∈ (1, 4).

22. Suppose that f (1) = 5 and f ′(x) ≥ 2 for x ≥ 1. Use the MVT to show that f (8) ≥ 19.

solution Because f is continuous on [1, 8] and differentiable on (1, 8), the Mean Value Theorem guarantees there
exists a c ∈ (1, 8) such that

f ′(c) = f (8) − f (1)

8 − 1
or f (8) = f (1) + 7f ′(c).

Now, we are given that f (1) = 5 and that f ′(x) ≥ 2 for x ≥ 1. Therefore,

f (8) ≥ 5 + 7(2) = 19.

23. Use the MVT to prove that if f ′(x) ≤ 2 for x > 0 and f (0) = 4, then f (x) ≤ 2x + 4 for all x ≥ 0.

solution Let x > 0. Because f is continuous on [0, x] and differentiable on (0, x), the Mean Value Theorem guarantees
there exists a c ∈ (0, x) such that

f ′(c) = f (x) − f (0)

x − 0
or f (x) = f (0) + xf ′(c).

Now, we are given that f (0) = 4 and that f ′(x) ≤ 2 for x > 0. Therefore, for all x ≥ 0,

f (x) ≤ 4 + x(2) = 2x + 4.
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24. A function f (x) has derivative f ′(x) = 1

x4 + 1
. Where on the interval [1, 4] does f (x) take on its maximum value?

solution Let

f ′(x) = 1

x4 + 1
.

Because f ′(x) is never 0 and exists for all x, the function f has no critical points on the interval [1, 4] and so must take
its maximum value at one of the interval endpoints. Moveover, as f ′(x) > 0 for all x, the function f is increasing for all
x. Consequently, on the interval [1, 4], the function f must take its maximum value at x = 4.

In Exercises 25–30, find the critical points and determine whether they are minima, maxima, or neither.

25. f (x) = x3 − 4x2 + 4x

solution Let f (x) = x3 − 4x2 + 4x. Then f ′(x) = 3x2 − 8x + 4 = (3x − 2)(x − 2), so that x = 2
3 and x = 2 are

critical points. Next, f ′′(x) = 6x − 8, so f ′′( 2
3 ) = −4 < 0 and f ′′(2) = 4 > 0. Therefore, by the Second Derivative

Test, f ( 2
3 ) is a local maximum while f (2) is a local minimum.

26. s(t) = t4 − 8t2

solution Let s(t) = t4 − 8t2. Then s′(t) = 4t3 − 16t = 4t (t − 2)(t + 2), so that t = 0, t = −2 and t = 2 are

critical points. Next, s′′(t) = 12t2 − 16, so s′′(−2) = 32 > 0, s′′(0) = −16 < 0 and s′′(2) = 32 > 0. Therefore, by the
Second Derivative Test, s(0) is a local maximum while s(−2) and s(2) are local minima.

27. f (x) = x2(x + 2)3

solution Let f (x) = x2(x + 2)3. Then

f ′(x) = 3x2(x + 2)2 + 2x(x + 2)3 = x(x + 2)2(3x + 2x + 4) = x(x + 2)2(5x + 4),

so that x = 0, x = −2 and x = − 4
5 are critical points. The sign of the first derivative on the intervals surrounding the

critical points is indicated in the table below. Based on this information, f (−2) is neither a local maximum nor a local
minimum, f (− 4

5 ) is a local maximum and f (0) is a local minimum.

Interval (−∞, −2) (−2, − 4
5 ) (− 4

5 , 0) (0, ∞)

Sign of f ′ + + − +

28. f (x) = x2/3(1 − x)

solution Let f (x) = x2/3(1 − x) = x2/3 − x5/3. Then

f ′(x) = 2

3
x−1/3 − 5

3
x2/3 = 2 − 5x

3x1/3
,

so that x = 0 and x = 2
5 are critical points. The sign of the first derivative on the intervals surrounding the critical points

is indicated in the table below. Based on this information, f (0) is a local minimum and f ( 2
5 ) is a local maximum.

Interval (−∞, 0) (0, 2
5 ) ( 2

5 , ∞)

Sign of f ′ − + −

29. g(θ) = sin2 θ + θ

solution Let g(θ) = sin2 θ + θ . Then

g′(θ) = 2 sin θ cos θ + 1 = 2 sin 2θ + 1,

so the critical points are

θ = 3π

4
+ nπ

for all integers n. Because g′(θ) ≥ 0 for all θ , it follows that g

(
3π

4
+ nπ

)
is neither a local maximum nor a local

minimum for all integers n.
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30. h(θ) = 2 cos 2θ + cos 4θ

solution Let h(θ) = 2 cos 2θ + cos 4θ . Then

h′(θ) = −4 sin 2θ − 4 sin 4θ = −4 sin 2θ(1 + 2 cos 2θ),

so the critical points are

θ = nπ

2
, θ = π

3
+ πn and θ = 2π

3
+ πn

for all integers n. Now,

h′′(θ) = −8 cos 2θ − 16 cos 4θ,

so

h′′ (nπ

2

)
= −8 cos nπ − 16 cos 2nπ = −8(−1)n − 16 < 0;

h′′ (π

3
+ nπ

)
= −8 cos

2π

3
− 16 cos

4π

3
= 12 > 0; and

h′′
(

2π

3
+ nπ

)
= −8 cos

4π

3
− 16 cos

8π

3
= 12 > 0,

for all integers n. Therefore, by the Second Derivative Test, h
(
nπ
2

)
is a local maximum, and h

(
π
3 + nπ

)
and h

(
2π
3 + nπ

)
are local minima for all integers n.

In Exercises 31–38, find the extreme values on the interval.

31. f (x) = x(10 − x), [−1, 3]
solution Let f (x) = x(10 − x) = 10x − x2. Then f ′(x) = 10 − 2x, so that x = 5 is the only critical point. As this
critical point is not in the interval [−1, 3], we only need to check the value of f at the endpoints to determine the extreme
values. Because f (−1) = −11 and f (3) = 21, the maximum value of f (x) = x(10 − x) on the interval [−1, 3] is 21
while the minimum value is −11.

32. f (x) = 6x4 − 4x6, [−2, 2]
solution Let f (x) = 6x4 − 4x6. Then f ′(x) = 24x3 − 24x5 = 24x3(1 − x2), so that the critical points are x = −1,
x = 0 and x = 1. The table below lists the value of f at each of the critical points and the endpoints of the interval
[−2, 2]. Based on this information, the minimum value of f (x) = 6x4 − 4x6 on the interval [−2, 2] is −170 and the
maximum value is 2.

x −2 −1 0 1 2

f (x) −170 2 0 2 −170

33. g(θ) = sin2 θ − cos θ , [0, 2π ]
solution Let g(θ) = sin2 θ − cos θ . Then

g′(θ) = 2 sin θ cos θ + sin θ = sin θ(2 cos θ + 1) = 0

when θ = 0, 2π
3 , π, 4π

3 , 2π . The table below lists the value of g at each of the critical points and the endpoints of the
interval [0, 2π ]. Based on this information, the minimum value of g(θ) on the interval [0, 2π ] is −1 and the maximum
value is 5

4 .

θ 0 2π/3 π 4π/3 2π

g(θ) −1 5/4 1 5/4 −1

34. R(t) = t

t2 + t + 1
, [0, 3]

solution Let R(t) = t
t2+t+1

. Then

R′(t) = t2 + t + 1 − t (2t + 1)

(t2 + t + 1)2
= 1 − t2

(t2 + t + 1)2
,

so that the critical points are t = ±1. Note that only t = 1 is on the interval [0, 3]. With R(0) = 0, R(1) = 1
3 and

R(3) = 3
13 , it follows that the minimum value of R(t) on the interval [0, 3] is 0 and the maximum value is 1

3 .
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35. f (x) = x2/3 − 2x1/3, [−1, 3]
solution Let f (x) = x2/3 − 2x1/3. Then f ′(x) = 2

3x−1/3 − 2
3x−2/3 = 2

3x−2/3(x1/3 − 1), so that the critical

points are x = 0 and x = 1. With f (−1) = 3, f (0) = 0, f (1) = −1 and f (3) = 3√9 − 2 3√3 ≈ −0.804, it follows that
the minimum value of f (x) on the interval [−1, 3] is −1 and the maximum value is 3.

36. f (x) = x − tan x,
[− π

2 , π
2

]
solution Let f (x) = x − tan x. Then f ′(x) = 1 − sec2 x, so that x = 0 is the only critical point on [−1, 1]. With
f (−1) = −1 − tan(−1) > 0, f (0) = 0 and f (1) = 1 − tan 1 < 0, it follows that the minimum value of f (x) on the
interval [−1, 1] is 1 − tan 1 ≈ −0.557 and the maximum value is −1 − tan(−1) = −1 + tan 1 ≈ 0.557.

37. f (x) = x − 12 ln x, [5, 40]
solution Let f (x) = x − 12 ln x. Then f ′(x) = 1 − 12

x , whence x = 12 is the only critical point. The minimum
value of f is then 12 − 12 ln 12 ≈ −17.818880, and the maximum value is 40 − 12 ln 40 ≈ −4.266553. Note that
f (5) = 5 − 12 ln 5 ≈ −14.313255.

38. f (x) = ex − 20x − 1, [0, 5]
solution Let f (x) = ex − 20x − 1. Then f ′(x) = ex − 20, whence x = ln 20 is the only critical point. The minimum

value of f is then 20 − 20 ln 20 − 1 ≈ − − 40.914645, and the maximum value is e5 − 101 ≈ 47.413159. Note that
f (0) = 0.

39. Find the critical points and extreme values of
f (x) = |x − 1| + |2x − 6| in [0, 8].
solution Let

f (x) = |x − 1| + |2x − 6| =

⎧⎪⎨
⎪⎩

7 − 3x, x < 1

5 − x, 1 ≤ x < 3

3x − 7, x ≥ 3

.

The derivative of f (x) is never zero but does not exist at the transition points x = 1 and x = 3. Thus, the critical points
of f are x = 1 and x = 3. With f (0) = 7, f (1) = 4, f (3) = 2 and f (8) = 17, it follows that the minimum value of
f (x) on the interval [0, 8] is 2 and the maximum value is 17.

40. Match the description of f (x) with the graph of its derivative f ′(x) in Figure 1.

(a) f (x) is increasing and concave up.

(b) f (x) is decreasing and concave up.

(c) f (x) is increasing and concave down.

y y y

x

x x

(ii) (iii)(i)

FIGURE 1 Graphs of the derivative.

solution

(a) If f (x) is increasing and concave up, then f ′(x) is positive and increasing. This matches the graph in (ii).

(b) If f (x) is decreasing and concave up, then f ′(x) is negative and increasing. This matches the graph in (i).

(c) If f (x) is increasing and concave down, then f ′(x) is positive and decreasing. This matches the graph in (iii).

In Exercises 41–46, find the points of inflection.

41. y = x3 − 4x2 + 4x

solution Let y = x3 − 4x2 + 4x. Then y′ = 3x2 − 8x + 4 and y′′ = 6x − 8. Thus, y′′ > 0 and y is concave up for

x > 4
3 , while y′′ < 0 and y is concave down for x < 4

3 . Hence, there is a point of inflection at x = 4
3 .

42. y = x − 2 cos x

solution Let y = x − 2 cos x. Then y′ = 1 + 2 sin x and y′′ = 2 cos x. Thus, y′′ > 0 and y is concave up on each
interval of the form (

(4n − 1)π

2
,
(4n + 1)π

2

)
,
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while y′′ < 0 and y is concave down on each interval of the form(
(4n + 1)π

2
,
(4n + 3)π

2

)
,

where n is any integer. Hence, there is a point of inflection at

x = (2n + 1)π

2

for each integer n.

43. y = x2

x2 + 4

solution Let y = x2

x2 + 4
= 1 − 4

x2 + 4
. Then y′ = 8x

(x2 + 4)2
and

y′′ = (x2 + 4)2(8) − 8x(2)(2x)(x2 + 4)

(x2 + 4)4
= 8(4 − 3x2)

(x2 + 4)3
.

Thus, y′′ > 0 and y is concave up for

− 2√
3

< x <
2√
3
,

while y′′ < 0 and y is concave down for

|x| ≥ 2√
3
.

Hence, there are points of inflection at

x = ± 2√
3
.

44. y = x

(x2 − 4)1/3

solution Let y = x

(x2 − 4)1/3
. Then

y′ = (x2 − 4)1/3 − 1
3x(x2 − 4)−2/3(2x)

(x2 − 4)2/3
= 1

3

x2 − 12

(x2 − 4)4/3

and

y′′ = 1

3

(x2 − 4)4/3(2x) − (x2 − 12) 4
3 (x2 − 4)1/3(2x)

(x2 − 4)8/3
= 2x(36 − x2)

9(x2 − 4)7/3
.

Thus, y′′ > 0 and y is concave up for x < −6, −2 < x < 0, 2 < x < 6, while y′′ < 0 and y is concave down for
−6 < x < −2, 0 < x < 2, x > 6. Hence, there are points of inflection at x = ±6 and x = 0. Note that x = ±2 are not
points of inflection because these points are not in the domain of the function.

45. f (x) = (x2 − x)e−x

solution Let f (x) = (x2 − x)e−x . Then

y′ = −(x2 − x)e−x + (2x − 1)e−x = −(x2 − 3x + 1)e−x,

and

y′′ = (x2 − 3x + 1)e−x − (2x − 3)e−x = e−x(x2 − 5x + 4) = e−x(x − 1)(x − 4).

Thus, y′′ > 0 and y is concave up for x < 1 and for x > 4, while y′′ < 0 and y is concave down for 1 < x < 4. Hence,
there are points of inflection at x = 1 and x = 4.

46. f (x) = x(ln x)2

solution Let f (x) = x(ln x)2. Then

y′ = x · 2 ln x · 1

x
+ (ln x)2 = 2 ln x + (ln x)2,
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and

y′′ = 2

x
+ 2

x
ln x = 2

x
(1 + ln x).

Thus, y′′ > 0 and y is concave up for x > 1
e , while y′′ < 0 and y is concave down for 0 < x < 1

e . Hence, there is a point

of inflection at x = 1
e .

In Exercises 47–56, sketch the graph, noting the transition points and asymptotic behavior.

47. y = 12x − 3x2

solution Let y = 12x − 3x2. Then y′ = 12 − 6x and y′′ = −6. It follows that the graph of y = 12x − 3x2 is
increasing for x < 2, decreasing for x > 2, has a local maximum at x = 2 and is concave down for all x. Because

lim
x→±∞(12x − 3x2) = −∞,

the graph has no horizontal asymptotes. There are also no vertical asymptotes. The graph is shown below.

5
x

−1 1 2 3 54

y

10

−5
−10

48. y = 8x2 − x4

solution Let y = 8x2 − x4. Then y′ = 16x − 4x3 = 4x(4 − x2) and y′′ = 16 − 12x2 = 4(4 − 3x2). It follows that

the graph of y = 8x2 − x4 is increasing for x < −2 and 0 < x < 2, decreasing for −2 < x < 0 and x > 2, has local
maxima at x = ±2, has a local minimum at x = 0, is concave down for |x| > 2/

√
3, is concave up for |x| < 2/

√
3 and

has inflection points at x = ±2/
√

3. Because

lim
x→±∞(8x2 − x4) = −∞,

the graph has no horizontal asymptotes. There are also no vertical asymptotes. The graph is shown below.

x

10

15

5

21−1−2
−5

y

49. y = x3 − 2x2 + 3

solution Let y = x3 − 2x2 + 3. Then y′ = 3x2 − 4x and y′′ = 6x − 4. It follows that the graph of y = x3 − 2x2 + 3

is increasing for x < 0 and x > 4
3 , is decreasing for 0 < x < 4

3 , has a local maximum at x = 0, has a local minimum at

x = 4
3 , is concave up for x > 2

3 , is concave down for x < 2
3 and has a point of inflection at x = 2

3 . Because

lim
x→−∞(x3 − 2x2 + 3) = −∞ and lim

x→∞(x3 − 2x2 + 3) = ∞,

the graph has no horizontal asymptotes. There are also no vertical asymptotes. The graph is shown below.

5

x
−1 1 2

y

10

−5

−10
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50. y = 4x − x3/2

solution Let y = 4x − x3/2. First note that the domain of this function is x ≥ 0. Now, y′ = 4 − 3
2x1/2 and

y′′ = − 3
4x−1/2. It follows that the graph of y = 4x − x3/2 is increasing for 0 < x < 64

9 , is decreasing for x > 64
9 , has

a local maximum at x = 64
9 and is concave down for all x > 0. Because

lim
x→∞(4x − x3/2) = −∞,

the graph has no horizontal asymptotes. There are also no vertical asymptotes. The graph is shown below.

x
5 10 15

5

−5

y

51. y = x

x3 + 1

solution Let y = x

x3 + 1
. Then

y′ = x3 + 1 − x(3x2)

(x3 + 1)2
= 1 − 2x3

(x3 + 1)2

and

y′′ = (x3 + 1)2(−6x2) − (1 − 2x3)(2)(x3 + 1)(3x2)

(x3 + 1)4
= −6x2(2 − x3)

(x3 + 1)3
.

It follows that the graph of y = x

x3 + 1
is increasing for x < −1 and −1 < x < 3

√
1
2 , is decreasing for x > 3

√
1
2 , has a

local maximum at x = 3
√

1
2 , is concave up for x < −1 and x >

3√2, is concave down for −1 < x < 0 and 0 < x <
3√2

and has a point of inflection at x = 3√2. Note that x = −1 is not an inflection point because x = −1 is not in the domain
of the function. Now,

lim
x→±∞

x

x3 + 1
= 0,

so y = 0 is a horizontal asymptote. Moreover,

lim
x→−1−

x

x3 + 1
= ∞ and lim

x→−1+
x

x3 + 1
= −∞,

so x = −1 is a vertical asymptote. The graph is shown below.

2

x
−1−2−3 1 2 3

y

4

−2

−4

52. y = x

(x2 − 4)2/3

solution Let y = x

(x2 − 4)2/3
. Then

y′ = (x2 − 4)2/3 − 2
3x(x2 − 4)−1/3(2x)

(x2 − 4)4/3
= −1

3

x2 + 12

(x2 − 4)5/3

and

y′′ = −1

3

(x2 − 4)5/3(2x) − (x2 + 12) 5
3 (x2 − 4)2/3(2x)

(x2 − 4)10/3
= 4x(x2 + 36)

9(x2 − 4)8/3
.
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It follows that the graph of y = x

(x2 − 4)2/3
is increasing for −2 < x < 2, is decreasing for |x| > 2, has no local extreme

values, is concave up for 0 < x < 2, x > 2, is concave down for x < −2, −2 < x < 0 and has a point of inflection at
x = 0. Note that x = ±2 are neither local extreme values nor inflection points because x = ±2 are not in the domain of
the function. Now,

lim
x→±∞

x

(x2 − 4)2/3
= 0,

so y = 0 is a horizontal asymptote. Moreover,

lim
x→−2−

x

(x2 − 4)2/3
= −∞ and lim

x→−2+
x

(x2 − 4)2/3
= −∞

while

lim
x→2−

x

(x2 − 4)2/3
= ∞ and lim

x→2+
x

(x2 − 4)2/3
= ∞,

so x = ±2 are vertical asymptotes. The graph is shown below.

x

4

2

21 3−1−2

−4

−2

y

53. y = 1

|x + 2| + 1

solution Let y = 1

|x + 2| + 1
. Because

lim
x→±∞

1

|x + 2| + 1
= 0,

the graph of this function has a horizontal asymptote of y = 0. The graph has no vertical asymptotes as |x + 2| + 1 ≥ 1
for all x. The graph is shown below. From this graph we see there is a local maximum at x = −2.

0.8

x
−4 −2−6−8 2 4

y

1

0.4

0.2

0.6

54. y =
√

2 − x3

solution Let y =
√

2 − x3. Note that the domain of this function is x ≤ 3√2. Moreover, the graph has no vertical and
no horizontal asymptotes. With

y′ = 1

2
(2 − x3)−1/2(−3x2) = − 3x2

2
√

2 − x3

and

y′′ = 1

2
(2 − x3)−1/2(−6x) − 3

4
x2(2 − x3)−3/2(3x2) = 3x(x3 − 8)

4(2 − x3)3/2
,

it follows that the graph of y =
√

2 − x3 is decreasing over its entire domain, is concave up for x < 0, is concave down
for 0 < x <

3√2 and has a point of inflection at x = 0. The graph is shown below.
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x

4

6

2

1−1−2−3−4

8

10

y

55. y = √
3 sin x − cos x on [0, 2π ]

solution Let y = √
3 sin x − cos x. Then y′ = √

3 cos x + sin x and y′′ = −√
3 sin x + cos x. It follows that the graph

of y = √
3 sin x − cos x is increasing for 0 < x < 5π/6 and 11π/6 < x < 2π , is decreasing for 5π/6 < x < 11π/6, has

a local maximum at x = 5π/6, has a local minimum at x = 11π/6, is concave up for 0 < x < π/3 and 4π/3 < x < 2π ,
is concave down for π/3 < x < 4π/3 and has points of inflection at x = π/3 and x = 4π/3. The graph is shown below.

x

−1
1

4

5 62 3

y

1

56. y = 2x − tan x on [0, 2π ]
solution Let y = 2x − tan x. Then y′ = 2 − sec2 x and y′′ = −2 sec2 x tan x. It follows that the graph of y =
2x − tan x is increasing for 0 < x < π/4, 3π/4 < x < 5π/4, 7π/4 < x < 2π , is decreasing for π/4 < x <

π/2, π/2 < x < 3π/4, 5π/4 < x < 3π/2, 3π/2 < x < 7π/4, has local minima at x = 3π/4 and x = 7π/4, has
local maxima at x = π/4 and x = 5π/4, is concave up for π/2 < x < π and 3π/2 < x < 2π , is concave down for
0 < x < π/2 and π < x < 3π/2 and has an inflection point at x = π . Moreover, because

lim
x→π/2−(2x − tan x) = −∞ and lim

x→π/2+(2x − tan x) = ∞,

while

lim
x→3π/2−(2x − tan x) = −∞ and lim

x→3π/2+(2x − tan x) = ∞,

the graph has vertical asymptotes at x = π/2 and x = 3π/2. The graph is shown below.

x
654321

y

5

10

15

−5

57. Draw a curve y = f (x) for which f ′ and f ′′ have signs as indicated in Figure 2.

x
−2 0

- + + + + -- -- +

1 3 5

FIGURE 2

solution The figure below depicts a curve for which f ′(x) and f ′′(x) have the required signs.

x
4 8−4

y
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58. Find the dimensions of a cylindrical can with a bottom but no top of volume 4 m3 that uses the least amount of
metal.

solution Let the cylindrical can have height h and radius r . Then

V = πr2h = 4 so h = 4

πr2
.

The amount of metal needed to make the can is then

M = 2πrh + πr2 = 8

r
+ πr2.

Now,

M ′(r) = − 8

r2
+ 2πr = 0 when r = 3

√
4

π
.

Because M → ∞ as r → 0+ and as r → ∞, M must achieve its minimum for

r = 3

√
4

π
m.

The height of the can is

h = 4

πr2
= 3

√
4

π
m.

59. A rectangular box of height h with square base of side b has volume V = 4 m3. Two of the side faces are made of
material costing $40/m2. The remaining sides cost $20/m2. Which values of b and h minimize the cost of the box?

solution Because the volume of the box is

V = b2h = 4 it follows that h = 4

b2
.

Now, the cost of the box is

C = 40(2bh) + 20(2bh) + 20b2 = 120bh + 20b2 = 480

b
+ 20b2.

Thus,

C′(b) = −480

b2
+ 40b = 0

when b = 3√12 meters. Because C(b) → ∞ as b → 0+ and as b → ∞, it follows that cost is minimized when b = 3√12
meters and h = 1

3
3√12 meters.

60. The corn yield on a certain farm is

Y = −0.118x2 + 8.5x + 12.9 (bushels per acre)

where x is the number of corn plants per acre (in thousands). Assume that corn seed costs $1.25 (per thousand seeds) and
that corn can be sold for $1.50/bushel. Let P(x) be the profit (revenue minus the cost of seeds) at planting level x.

(a) Compute P(x0) for the value x0 that maximizes yield Y .

(b) Find the maximum value of P(x). Does maximum yield lead to maximum profit?

solution

(a) Let Y = −0.118x2 + 8.5x + 12.9. Then Y ′ = −0.236x + 8.5 = 0 when

x0 = 8.5

0.236
= 36.017 thousand corn plants/acre.

Because Y ′′ = −0.236 < 0 for all x, x0 corresponds to a maximum value for Y . Thus, yield is maximized for a planting
level of 36,017 corn plants per acre. At this planting level, the profit is

1.5Y (x0) − 1.25x0 = 1.5(165.972) − 1.25(36.017) = $203.94/acre.

(b) As a function of planting level x, the profit is

P(x) = 1.5Y (x) − 1.25x = −0.177x2 + 11.5x + 19.35.
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Then, P ′(x) = −0.354x + 11.5 = 0 when

x1 = 11.5

0.354
= 32.486 thousand corn plants/acre.

Because P ′′(x) = −0.354 < 0 for all x, x1 corresponds to a maximum value for P . Thus, profit is maximized for a
planting level of 32,486 corn plants per acre.

(c) Note the planting levels obtained in parts (a) and (b) are different. Thus, a maximum yield does not lead to maximum
profit.

61. Let N(t) be the size of a tumor (in units of 106 cells) at time t (in days). According to the Gompertz Model,
dN/dt = N(a − b ln N) where a, b are positive constants. Show that the maximum value of N is e

a
b and that the tumor

increases most rapidly when N = e
a
b
−1.

solution Given dN/dt = N(a − b ln N), the critical points of N occur when N = 0 and when N = ea/b. The sign

of N ′(t) changes from positive to negative at N = ea/b so the maximum value of N is ea/b. To determine when N

changes most rapidly, we calculate

N ′′(t) = N

(
− b

N

)
+ a − b ln N = (a − b) − b ln N.

Thus, N ′(t) is increasing for N < ea/b−1, is decreasing for N > ea/b−1 and is therefore maximum when N = ea/b−1.

Therefore, the tumor increases most rapidly when N = e
a
b
−1.

62. Atruck gets 10 miles per gallon of diesel fuel traveling along an interstate highway at 50 mph. This mileage decreases
by 0.15 mpg for each mile per hour increase above 50 mph.

(a) If the truck driver is paid $30/hour and diesel fuel costs P = $3/gal, which speed v between 50 and 70 mph will
minimize the cost of a trip along the highway? Notice that the actual cost depends on the length of the trip, but the optimal
speed does not.

(b) Plot cost as a function of v (choose the length arbitrarily) and verify your answer to part (a).

(c) Do you expect the optimal speed v to increase or decrease if fuel costs go down to P = $2/gal? Plot the
graphs of cost as a function of v for P = 2 and P = 3 on the same axis and verify your conclusion.

solution
(a) If the truck travels L miles at a speed of v mph, then the time required is L/v, and the wages paid to the driver are
30L/v. The cost of the fuel is

3L

10 − 0.15(v − 50)
= 3L

17.5 − 0.15v
;

the total cost is therefore

C(v) = 30L

v
+ 3L

17.5 − 0.15v
.

Solving

C′(v) = L

(
−30

v2
+ 0.45

(17.5 − 0.15v)2

)
= 0

yields

v = 175
√

6

3 + 1.5
√

6
≈ 64.2 mph.

Because C(50) = 0.9L, C(64.2) ≈ 0.848L and C(70) ≈ 0.857L, we see that the optimal speed is v ≈ 64.2 mph.

(b) The cost as a function of speed is shown below for L = 100. The optimal speed is clearly around 64 mph.

85

84

86

87

88

89

90

706560
Speed (mph)

C
os

t (
$)

5550

(c) We expect v to increase if P goes down to $2 per gallon. When gas is cheaper, it is better to drive faster and thereby
save on the driver’s wages. The cost as a function of speed for P = 2 and P = 3 is shown below (with L = 100). When
P = 2, the optimal speed is v = 70 mph, which is an increase over the optimal speed when P = 3.
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75

70

80

85

90

706560
Speed (mph)

C
os

t (
$)

5550

P = $2

P = $3

63. Find the maximum volume of a right-circular cone placed upside-down in a right-circular cone of radius R = 3 and
height H = 4 as in Figure 3. A cone of radius r and height h has volume 1

3πr2h.

R

H

FIGURE 3

solution Let r denote the radius and h the height of the upside down cone. By similar triangles, we obtain the relation

4 − h

r
= 4

3
so h = 4

(
1 − r

3

)
and the volume of the upside down cone is

V (r) = 1

3
πr2h = 4

3
π

(
r2 − r3

3

)

for 0 ≤ r ≤ 3. Thus,

dV

dr
= 4

3
π
(

2r − r2
)

,

and the critical points are r = 0 and r = 2. Because V (0) = V (3) = 0 and

V (2) = 4

3
π

(
4 − 8

3

)
= 16

9
π,

the maximum volume of a right-circular cone placed upside down in a right-circular cone of radius 3 and height 4 is

16

9
π.

64. Redo Exercise 63 for arbitrary R and H .

solution Let r denote the radius and h the height of the upside down cone. By similar triangles, we obtain the relation

H − h

r
= H

R
so h = H

(
1 − r

R

)
and the volume of the upside down cone is

V (r) = 1

3
πr2h = 1

3
πH

(
r2 − r3

R

)

for 0 ≤ r ≤ R. Thus,

dV

dr
= 1

3
πH

(
2r − 3r2

R

)
,

and the critical points are r = 0 and r = 2R/3. Because V (0) = V (R) = 0 and

V

(
2R

3

)
= 1

3
πH

(
4R2

9
− 8R2

27

)
= 4

81
πR2H,
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the maximum volume of a right-circular cone placed upside down in a right-circular cone of radius R and height H is

4

81
πR2H.

65. Show that the maximum area of a parallelogram ADEF that is inscribed in a triangle ABC, as in Figure 4, is equal
to one-half the area of �ABC.

D E

B

F CA

FIGURE 4

solution Let θ denote the measure of angle BAC. Then the area of the parallelogram is given by AD · AF sin θ .
Now, suppose that

BE/BC = x.

Then, by similar triangles, AD = (1 − x)AB, AF = DE = xAC, and the area of the parallelogram becomes AB ·
ACx(1 − x) sin θ . The function x(1 − x) achieves its maximum value of 1

4 when x = 1
2 . Thus, the maximum area of a

parallelogram inscribed in a triangle �ABC is

1

4
AB · AC sin θ = 1

2

(
1

2
AB · AC sin θ

)
= 1

2
(area of �ABC) .

66. A box of volume 8 m3 with a square top and bottom is constructed out of two types of metal. The metal for the top
and bottom costs $50/m2 and the metal for the sides costs $30/m2. Find the dimensions of the box that minimize total
cost.

solution Let the square base have side length s and the box have height h. Then

V = s2h = 8 so h = 8

s2
.

The cost of the box is then

C = 100s2 + 120sh = 100s2 + 960

s
.

Now,

C′(s) = 200s − 960

s2
= 0 when s = 3√4.8.

Because C(s) → ∞ as s → 0+ and as s → ∞, it follows that total cost is minimized when s = 3√4.8 ≈ 1.69 meters.
The height of the box is

h = 8

s2
≈ 2.81 meters.

67. Let f (x) be a function whose graph does not pass through the x-axis and let Q = (a, 0). Let P = (x0, f (x0)) be
the point on the graph closest to Q (Figure 5). Prove that PQ is perpendicular to the tangent line to the graph of x0. Hint:
Find the minimum value of the square of the distance from (x, f (x)) to (a, 0).

y

x

y = f (x)

P = (x0, f (x0))

Q = (a, 0)

FIGURE 5
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solution Let P = (a, 0) and let Q = (x0, f (x0)) be the point on the graph of y = f (x) closest to P . The slope of
the segment joining P and Q is then

f (x0)

x0 − a
.

Now, let

q(x) =
√

(x − a)2 + (f (x))2,

the distance from the arbitrary point (x, f (x)) on the graph of y = f (x) to the point P . As (x0, f (x0)) is the point closest
to P , we must have

q ′(x0) = 2(x0 − a) + 2f (x0)f ′(x0)√
(x0 − a)2 + (f (x0))2

= 0.

Thus,

f ′(x0) = −x0 − a

f (x0)
= −

(
f (x0)

x0 − a

)−1
.

In other words, the slope of the segment joining P and Q is the negative reciprocal of the slope of the line tangent to the
graph of y = f (x) at x = x0; hence; the two lines are perpendicular.

68. Take a circular piece of paper of radius R, remove a sector of angle θ (Figure 6), and fold the remaining piece into
a cone-shaped cup. Which angle θ produces the cup of largest volume?

θ

R

FIGURE 6

solution Let r denote the radius and h denote the height of the cone-shaped cup. Having removed an angle of θ from
the paper, there is an arc of length (2π − θ)R remaining to form the circumference of the cup; hence

r = (2π − θ)R

2π
=
(

1 − θ

2π

)
R.

The height of the cup is then

h =
√

R2 −
(

1 − θ

2π

)2
R2 = R

√
1 −

(
1 − θ

2π

)2
,

and the volume of the cup is

V (θ) = 1

3
πR3

(
1 − θ

2π

)2
√

1 −
(

1 − θ

2π

)2

for 0 ≤ θ ≤ 2π . Now,

dV

dθ
= 2

(
1 − θ

2π

)(
− 1

2π

)√
1 −

(
1 − θ

2π

)2
+
(

1 − θ

2π

)2 (−2)
(

1 − θ
2π

) (
− 1

2π

)
√

1 −
(

1 − θ
2π

)2

=
(

1 − θ

2π

)(
− 1

2π

) 2

(
1 −

(
1 − θ

2π

)2
)

−
(

1 − θ
2π

)2

√
1 −

(
1 − θ

2π

)2
,

so that θ = 2π and θ = 2π ± 2π
√

6
3 are critical points. With V (0) = V (2π) = 0 and

V

(
2π − 2π

√
6

3

)
= 2

√
3

27
πR3,

the volume of the cup is maximized when θ = 2π − 2π
√

6
3 .
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69. Use Newton’s Method to estimate 3√25 to four decimal places.

solution Let f (x) = x3 − 25 and define

xn+1 = xn − f (xn)

f ′(xn)
= xn − x3

n − 25

3x2
n

.

With x0 = 3, we find

n 1 2 3

xn 2.925925926 2.924018982 2.924017738

Thus, to four decimal places 3√25 = 2.9240.

70. Use Newton’s Method to find a root of f (x) = x2 − x − 1 to four decimal places.

solution Let f (x) = x2 − x − 1 and define

xn+1 = xn − f (xn)

f ′(xn)
= xn − x2

n − xn − 1

2xn − 1
.

The graph below suggests the two roots of f (x) are located near x = −1 and x = 2.

x

4

6

2

2 3−1−2

8

10

y

With x0 = −1, we find

n 1 2 3 4

xn −0.6666666667 −0.6190476191 −0.6180344477 −0.6180339889

On the other hand, with x0 = 2, we find

n 1 2 3 4

xn 1.666666667 1.619047619 1.618034448 1.618033989

Thus, to four decimal places, the roots of f (x) = x2 − x − 1 are −0.6180 and 1.6180.

In Exercises 71–84, calculate the indefinite integral.

71.
∫ (

4x3 − 2x2) dx

solution
∫

(4x3 − 2x2) dx = x4 − 2

3
x3 + C.

72.
∫

x9/4 dx

solution
∫

x9/4 dx = 4

13
x13/4 + C.

73.
∫

sin(θ − 8) dθ

solution
∫

sin(θ − 8) dθ = − cos(θ − 8) + C.

74.
∫

cos(5 − 7θ) dθ

solution
∫

cos(5 − 7θ) dθ = −1

7
sin(5 − 7θ) + C.
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75.
∫

(4t−3 − 12t−4) dt

solution
∫

(4t−3 − 12t−4) dt = −2t−2 + 4t−3 + C.

76.
∫

(9t−2/3 + 4t7/3) dt

solution
∫

(9t−2/3 + 4t7/3) dt = 27t1/3 + 6

5
t10/3 + C.

77.
∫

sec2 x dx

solution
∫

sec2 x dx = tan x + C.

78.
∫

tan 3θ sec 3θ dθ

solution
∫

tan 3θ sec 3θ dθ = 1

3
sec 3θ + C.

79.
∫

(y + 2)4 dy

solution
∫

(y + 2)4 dy = 1

5
(y + 2)5 + C.

80.
∫

3x3 − 9

x2
dx

solution
∫

3x3 − 9

x2
dx =

∫
(3x − 9x−2) dx = 3

2
x2 + 9x−1 + C.

81.
∫

(ex − x) dx

solution
∫

(ex − x) dx = ex − 1

2
x2 + C.

82.
∫

e−4x dx

solution
∫

e−4x dx = −1

4
e−4x + C.

83.
∫

4x−1 dx

solution
∫

4x−1 dx = 4 ln |x| + C.

84.
∫

sin(4x − 9) dx

solution
∫

sin(4x − 9) dx = −1

4
cos(4x − 9) + C.

In Exercises 85–90, solve the differential equation with the given initial condition.

85.
dy

dx
= 4x3, y(1) = 4

solution Let dy
dx

= 4x3. Then

y(x) =
∫

4x3 dx = x4 + C.

Using the initial condition y(1) = 4, we find y(1) = 14 + C = 4, so C = 3. Thus, y(x) = x4 + 3.
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86.
dy

dt
= 3t2 + cos t , y(0) = 12

solution Let dy
dt

= 3t2 + cos t . Then

y(t) =
∫

(3t2 + cos t) dt = t3 + sin t + C.

Using the initial condition y(0) = 12, we find y(0) = 03 + sin 0 + C = 12, so C = 12. Thus, y(t) = t3 + sin t + 12.

87.
dy

dx
= x−1/2, y(1) = 1

solution Let dy
dx

= x−1/2. Then

y(x) =
∫

x−1/2 dx = 2x1/2 + C.

Using the initial condition y(1) = 1, we find y(1) = 2
√

1 + C = 1, so C = −1. Thus, y(x) = 2x1/2 − 1.

88.
dy

dx
= sec2 x, y

(
π
4

) = 2

solution Let dy
dx

= sec2 x. Then

y(x) =
∫

sec2 x dx = tan x + C.

Using the initial condition y(π
4 ) = 2, we find y(π

4 ) = tan π
4 + C = 2, so C = 1. Thus, y(x) = tan x + 1.

89.
dy

dx
= e−x , y(0) = 3

solution Let dy
dx

= e−x . Then

y(x) =
∫

e−x dx = −e−x + C.

Using the initial condition y(0) = 3, we find y(0) = −e0 + C = 3, so C = 4. Thus, y(x) = 4 − e−x .

90.
dy

dx
= e4x , y(1) = 1

solution Let dy
dx

= e4x . Then

y(x) =
∫

e4x dx = 1

4
e4x + C.

Using the initial condition y(1) = 1, we find y(1) = 1
4 e4 + C = 1, so C = 1 − 1

4 e4. Thus, y(x) = 1
4 e4x + 1 − 1

4 e4.

91. Find f (t) if f ′′(t) = 1 − 2t , f (0) = 2, and f ′(0) = −1.

solution Suppose f ′′(t) = 1 − 2t . Then

f ′(t) =
∫

f ′′(t) dt =
∫

(1 − 2t) dt = t − t2 + C.

Using the initial condition f ′(0) = −1, we find f ′(0) = 0 − 02 + C = −1, so C = −1. Thus, f ′(t) = t − t2 − 1. Now,

f (t) =
∫

f ′(t) dt =
∫

(t − t2 − 1) dt = 1

2
t2 − 1

3
t3 − t + C.

Using the initial condition f (0) = 2, we find f (0) = 1
2 02 − 1

3 03 − 0 + C = 2, so C = 2. Thus,

f (t) = 1

2
t2 − 1

3
t3 − t + 2.

92. At time t = 0, a driver begins decelerating at a constant rate of −10 m/s2 and comes to a halt after traveling 500 m.
Find the velocity at t = 0.

solution From the constant deceleration of −10 m/s2, we determine

v(t) =
∫

(−10) dt = −10t + v0,
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where v0 is the velocity of the automobile at t = 0. Note the automobile comes to a halt when v(t) = 0, which occurs at

t = v0

10
s.

The distance traveled during the braking process is

s(t) =
∫

v(t) dt = −5t2 + v0t + C,

for some arbitrary constant C. We are given that the braking distance is 500 meters, so

s
( v0

10

)
− s(0) = −5

( v0

10

)2 + v0

( v0

10

)
+ C − C = 500,

leading to

v0 = 100 m/s.

93. Find the local extrema of f (x) = e2x + 1

ex+1
.

solution To simplify the differentiation, we first rewrite f (x) = e2x+1
ex+1 using the Laws of Exponents:

f (x) = e2x

ex+1
+ 1

ex+1
= e2x−(x+1) + e−(x+1) = ex−1 + e−x−1.

Now,

f ′(x) = ex−1 − e−x−1.

Setting the derivative equal to zero yields

ex−1 − e−x−1 = 0 or ex−1 = e−x−1.

Thus,

x − 1 = −x − 1 or x = 0.

Next, we use the Second Derivative Test. With f ′′(x) = ex−1 + e−x−1, it follows that

f ′′(0) = e−1 + e−1 = 2

e
> 0.

Hence, x = 0 is a local minimum. Since f (0) = e0−1 + e−0−1 = 2
e , we conclude that the point (0, 2

e ) is a local
minimum.

94. Find the points of inflection of f (x) = ln(x2 + 1), and at each point, determine whether the concavity changes
from up to down or from down to up.

solution With f (x) = ln(x2 + 1), we find

f ′(x) = 2x

x2 + 1
; and

f ′′(x) =
2
(
x2 + 1

)
− 2x · 2x

(x2 + 1)
2

= 2(1 − x2)

(x2 + 1)
2

Thus, f ′′(x) > 0 for −1 < x < 1, whereas f ′′(x) < 0 for x < −1 and for x > 1. It follows that there are points of
inflection at x = ±1, and that the concavity of f changes from down to up at x = −1 and from up to down at x = 1.

In Exercises 95–98, find the local extrema and points of inflection, and sketch the graph. Use L’Hôpital’s Rule to determine
the limits as x → 0+ or x → ±∞ if necessary.

95. y = x ln x (x > 0)

solution Let y = x ln x. Then

y′ = ln x + x

(
1

x

)
= 1 + ln x,
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and y′′ = 1
x . Solving y′ = 0 yields the critical point x = e−1. Since y′′(e−1) = e > 0, the function has a local minimum

at x = e−1. y′′ is positive for x > 0, hence the function is concave up for x > 0 and there are no points of inflection. As
x → 0+ and as x → ∞, we find

lim
x→0+ x ln x = lim

x→0+
ln x

x−1
= lim

x→0+
x−1

−x−2
= lim

x→0+(−x) = 0;

lim
x→∞ x ln x = ∞.

The graph is shown below:

2

1 2 3 4

4

6

y

x

96. y = ex−x2

solution Let y = ex−x2
. Then y′ = (1 − 2x)ex−x2

and

y′′ = (1 − 2x)2ex−x2 − 2ex−x2 = (4x2 − 4x − 1)ex−x2
.

Solving y′ = 0 yields the critical point x = 1
2 . Since

y′′
(

1

2

)
= −2e1/4 < 0,

the function has a local maximum at x = 1
2 . Using the quadratic formula, we find that y′′ = 0 when x = 1

2 ± 1
2

√
2.

y′′ > 0 and the function is concave up for x < 1
2 − 1

2

√
2 and for x > 1

2 + 1
2

√
2, whereas y′′ < 0 and the function

is concave down for 1
2 − 1

2

√
2 < x < 1

2 + 1
2

√
2; hence, there are inflection points at x = 1

2 ± 1
2

√
2. As x → ±∞,

x − x2 → −∞ so

lim
x→±∞ ex−x2 = 0.

The graph is shown below.

–1 1 2 3 4

0.2

0.4

0.6

0.8

1

1.2

97. y = x(ln x)2 (x > 0)

solution Let y = x(ln x)2. Then

y′ = x
2 ln x

x
+ (ln x)2 = 2 ln x + (ln x)2 = ln x(2 + ln x),

and

y′′ = 2

x
+ 2 ln x

x
= 2

x
(1 + ln x).

Solving y′ = 0 yields the critical points x = e−2 and x = 1. Since y′′(e−2) = −2e2 < 0 and y′′(1) = 2 > 0, the
function has a local maximum at x = e−2 and a local minimum at x = 1. y′′ < 0 and the function is concave down for
x < e−1, whereas y′′ > 0 and the function is concave up for x > e−1; hence, there is a point of inflection at x = e−1.
As x → 0+ and as x → ∞, we find

lim
x→0+ x(ln x)2 = lim

x→0+
(ln x)2

x−1
= lim

x→0+
2 ln x · x−1

−x−2
= lim

x→0+
2 ln x

−x−1
= lim

x→0+
2x−1

x−2
= lim

x→0+ 2x = 0;

lim
x→∞ x(ln x)2 = ∞.
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The graph is shown below:

0.5 1 1.5

0.2

0.4

0.6

0.8

98. y = tan−1

(
x2

4

)

solution Let y = tan−1
(

x2

4

)
. Then

y′ = 1

1 +
(

x2

4

)2

x

2
= 8x

x4 + 16
,

and

y′′ = 8(x4 + 16) − 8x · 4x3

(x4 + 16)2
= 128 − 24x4

(x4 + 16)2
.

Solving y′ = 0 yields x = 0 as the only critical point. Because y′′(0) = 1
2 > 0, we conclude the function has

a local minimum at x = 0. Moreover, y′′ < 0 for x < −2 · 3−1/4 and for x > 2 · 3−1/4, whereas y′′ > 0 for
−2 · 3−1/4 < x < 2 · 3−1/4. Therefore, there are points of inflection at x = ±2 · 3−1/4. As x → ±∞, we find

lim
x→±∞ tan−1

(
x2

4

)
= π

2
.

The graph is shown below:

0.2

−6 −4 −2 2 4 6

0.4

0.6

0.8
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y

x

99. Explain why L’Hôpital’s Rule gives no information about lim
x→∞

2x − sin x

3x + cos 2x
. Evaluate the limit by another

method.

solution As x → ∞, both 2x − sin x and 3x + cos 2x tend toward infinity, so L’Hôpital’s Rule applies to

lim
x→∞

2x − sin x

3x + cos 2x
; however, the resulting limit, lim

x→∞
2 − cos x

3 − 2 sin 2x
, does not exist due to the oscillation of sin x and

cos x and further applications of L’Hôpital’s rule will not change this situation.
To evaluate the limit, we note

lim
x→∞

2x − sin x

3x + cos 2x
= lim

x→∞
2 − sin x

x

3 + cos 2x
x

= 2

3
.

100. Let f (x) be a differentiable function with inverse g(x) such that f (0) = 0 and f ′(0) = 0. Prove that

lim
x→0

f (x)

g(x)
= f ′(0)2

solution Since g and f are inverse functions, we have g (f (x)) = x for all x in the domain of f . In particular, for
x = 0 we have

g(0) = g (f (0)) = 0.
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Therefore, the limit is an indeterminate form of type 0
0 , so we may apply L’Hôpital’s Rule. By the Theorem on the

derivative of the inverse function, we have

g′(x) = 1

f ′ (g(x))
.

Therefore,

lim
x→0

f (x)

g(x)
= lim

x→0

f ′(x)

1
f ′(g(x))

= lim
x→0

f ′(x)f ′ (g(x)) = f ′(0)f ′ (g(0)) = f ′(0) · f ′(0) = f ′(0)2.

In Exercises 101–112, verify that L’Hôpital’s Rule applies and evaluate the limit.

101. lim
x→3

4x − 12

x2 − 5x + 6

solution The given expression is an indeterminate form of type 0
0 , therefore L’Hôpital’s Rule applies. We find

lim
x→3

4x − 12

x2 − 5x + 6
= lim

x→3

4

2x − 5
= 4.

102. lim
x→−2

x3 + 2x2 − x − 2

x4 + 2x3 − 4x − 8

solution The given expression is an indeterminate form of type 0
0 , therefore L’Hôpital’s Rule applies. We find

lim
x→−2

x3 + 2x2 − x − 2

x4 + 2x3 − 4x − 8
= lim

x→−2

3x2 + 4x − 1

4x3 + 6x2 − 4
= − 3

12
= −1

4
.

103. lim
x→0+ x1/2 ln x

solution First rewrite

x1/2 ln x as
ln x

x−1/2
.

The rewritten expression is an indeterminate form of type ∞∞ , therefore L’Hôpital’s Rule applies. We find

lim
x→0+ x1/2 ln x = lim

x→0+
ln x

x−1/2
= lim

x→0+
1/x

− 1/2
x

−3/2
= lim

x→0+ −x1/2

2
= 0.

104. lim
t→∞

ln(et + 1)

t

solution The given expression is an indeterminate form of type ∞∞ ; hence, we may apply L’Hôpital’s Rule. We find

lim
t→∞

ln(et + 1)

t
= lim

t→∞

et

et+1

1
= lim

t→∞
1

1 + e−t
= 1.

105. lim
θ→0

2 sin θ − sin 2θ

sin θ − θ cos θ

solution The given expression is an indeterminate form of type 0
0 ; hence, we may apply L’Hôpital’s Rule. We find

lim
θ→0

2 sin θ − sin 2θ

sin θ − θ cos θ
= lim

θ→0

2 cos θ − 2 cos 2θ

cos θ − (cos θ − θ sin θ)
= lim

θ→0

2 cos θ − 2 cos 2θ

θ sin θ

= lim
θ→0

−2 sin θ + 4 sin 2θ

sin θ + θ cos θ
= lim

θ→0

−2 cos θ + 8 cos 2θ

cos θ + cos θ − θ sin θ
= −2 + 8

1 + 1 − 0
= 3.

106. lim
x→0

√
4 + x − 2 8√1 + x

x2

solution The given expression is an indeterminate form of type 0
0 ; hence, we may apply L’Hôpital’s Rule. We find

lim
x→0

√
4 + x − 2 8√1 + x

x2
= lim

x→0

1
2 (4 + x)−1/2 − 1

4 (1 + x)−7/8

2x

= lim
x→0

− 1
4 (4 + x)−3/2 + 7

32 (1 + x)−15/8

2
= − 1

4 · 1
8 + 7

32
2

= 3

32
.
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107. lim
t→∞

ln(t + 2)

log2 t

solution The limit is an indeterminate form of type ∞∞ ; hence, we may apply L’Hôpital’s Rule. We find

lim
t→∞

ln(t + 2)

log2 t
= lim

t→∞
1

t+2
1

t ln 2

= lim
t→∞

t ln 2

t + 2
= lim

t→∞
ln 2

1
= ln 2.

108. lim
x→0

(
ex

ex − 1
− 1

x

)

solution First rewrite the function as a quotient:

ex

ex − 1
− 1

x
= xex − ex + 1

x(ex − 1)
.

The limit is now an indeterminate form of type 0
0 ; hence, we may apply L’Hôpital’s Rule. We find

lim
x→0

(
ex

ex − 1
− 1

x

)
= lim

x→0

xex + ex − ex

xex + ex − 1
= lim

x→0

xex

xex + ex − 1

= lim
x→0

xex + ex

xex + ex + ex
= 1

1 + 1
= 1

2
.

109. lim
y→0

sin−1 y − y

y3

solution The limit is an indeterminate form of type 0
0 ; hence, we may apply L’Hôpital’s Rule. We find

lim
y→0

sin−1 y − y

y3
= lim

y→0

1√
1−y2

− 1

3y2
= lim

y→0

y(1 − y2)−3/2

6y
= lim

y→0

(1 − y2)−3/2

6
= 1

6
.

110. lim
x→1

√
1 − x2

cos−1 x

solution The limit is an indeterminate form 0
0 ; hence, we may apply L’Hôpital’s Rule. We find

lim
x→1

√
1 − x2

cos−1 x
= lim

x→1

− x√
1−x2

− 1√
1−x2

= lim
x→1

x = 1.

111. lim
x→0

sinh(x2)

cosh x − 1

solution The limit is an indeterminate form of type 0
0 ; hence, we may apply L’Hôpital’s Rule. We find

lim
x→0

sinh(x2)

cosh x − 1
= lim

x→0

2x cosh(x2)

sinh x
= lim

x→0

2 cosh(x2) + 4x2 sinh(x2)

cosh x
= 2 + 0

1
= 2.

112. lim
x→0

tanh x − sinh x

sin x − x

solution The limit is an indeterminate form of type 0
0 ; hence, we may apply L’Hôpital’s Rule. We find

lim
x→0

tanh x − sinh x

sin x − x
= lim

x→0

sech2 x − cosh x

cos x − 1
= lim

x→0

2 sech x(− sech x tanh x) − sinh x

− sin x

= lim
x→0

2 sech2 x tanh x + sinh x

sin x
= lim

x→0

−4 sech2 x tanh2 x + 2 sech4 x + cosh x

cos x

= −4 · 1 · 0 + 2 · 1 + 1

1
= 3.

113. Let f (x) = e−Ax2/2, where A > 0. Given any n numbers a1, a2, . . . , an, set

�(x) = f (x − a1)f (x − a2) · · · f (x − an)

(a) Assume n = 2 and prove that �(x) attains its maximum value at the average x = 1
2 (a1 + a2). Hint: Calculate �′(x)

using logarithmic differentiation.
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(b) Show that for any n, �(x) attains its maximum value at x = 1
n (a1 + a2 + · · · + an). This fact is related to the role

of f (x) (whose graph is a bell-shaped curve) in statistics.

solution

(a) For n = 2 we have,

�(x) = f (x − a1) f (x − a2) = e− A
2 (x−a1)

2 · e− A
2 (x−a2)

2 = e− A
2

(
(x−a1)

2+(x−a2)
2)

.

Since e− A
2 y is a decreasing function of y, it attains its maximum value where y is minimum. Therefore, we must find the

minimum value of

y = (x − a1)2 + (x − a2)2 = 2x2 − 2 (a1 + a2) x + a2
1 + a2

2 .

Now, y′ = 4x − 2(a1 + a2) = 0 when

x = a1 + a2

2
.

We conclude that �(x) attains a maximum value at this point.

(b) We have

�(x) = e− A
2 (x−a1)

2 · e− A
2 (x−a2)

2 · · · · · e− A
2 (x−an)2 = e− A

2

(
(x−a1)

2+···+(x−an)2)
.

Since the function e− A
2 y is a decreasing function of y, it attains a maximum value where y is minimum. Therefore we

must minimize the function

y = (x − a1)2 + (x − a2)2 + · · · + (x − an)2.

We find the critical points by solving:

y′ = 2 (x − a1) + 2 (x − a2) + · · · + 2 (x − an) = 0

2nx = 2 (a1 + a2 + · · · + an)

x = a1 + · · · + an

n
.

We verify that this point corresponds the minimum value of y by examining the sign of y′′ at this point: y′′ = 2n > 0. We
conclude that y attains a minimum value at the point x = a1+···+an

n , hence �(x) attains a maximum value at this point.
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5.1 Approximating and Computing Area

Preliminary Questions
1. What are the right and left endpoints if [2, 5] is divided into six subintervals?

solution If the interval [2, 5] is divided into six subintervals, the length of each subinterval is 5−2
6 = 1

2 . The right

endpoints of the subintervals are then 5
2 , 3, 7

2 , 4, 9
2 , 5, while the left endpoints are 2, 5

2 , 3, 7
2 , 4, 9

2 .

2. The interval [1, 5] is divided into eight subintervals.

(a) What is the left endpoint of the last subinterval?

(b) What are the right endpoints of the first two subintervals?

solution Note that each of the 8 subintervals has length 5−1
8 = 1

2 .

(a) The left endpoint of the last subinterval is 5 − 1
2 = 9

2 .

(b) The right endpoints of the first two subintervals are 1 + 1
2 = 3

2 and 1 + 2
(

1
2

)
= 2.

3. Which of the following pairs of sums are not equal?

(a)
4∑

i=1

i,

4∑
�=1

� (b)
4∑

j=1

j2,

5∑
k=2

k2

(c)
4∑

j=1

j,

5∑
i=2

(i − 1) (d)
4∑

i=1

i(i + 1),

5∑
j=2

(j − 1)j

solution

(a) Only the name of the index variable has been changed, so these two sums are the same.

(b) These two sums are not the same; the second squares the numbers two through five while the first squares the numbers
one through four.

(c) These two sums are the same. Note that when i ranges from two through five, the expression i − 1 ranges from one
through four.

(d) These two sums are the same. Both sums are 1 · 2 + 2 · 3 + 3 · 4 + 4 · 5.

4. Explain:
100∑
j=1

j =
100∑
j=0

j but
100∑
j=1

1 is not equal to
100∑
j=0

1.

solution The first term in the sum
∑100

j=0 j is equal to zero, so it may be dropped. More specifically,

100∑
j=0

j = 0 +
100∑
j=1

j =
100∑
j=1

j.

On the other hand, the first term in
∑100

j=0 1 is not zero, so this term cannot be dropped. In particular,

100∑
j=0

1 = 1 +
100∑
j=1

1 �=
100∑
j=1

1.

5. Explain why L100 ≥ R100 for f (x) = x−2 on [3, 7].
solution On [3, 7], the function f (x) = x−2 is a decreasing function; hence, for any subinterval of [3, 7], the function
value at the left endpoint is larger than the function value at the right endpoint. Consequently, L100 must be larger than
R100.

565
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Exercises
1. Figure 15 shows the velocity of an object over a 3-min interval. Determine the distance traveled over the intervals

[0, 3] and [1, 2.5] (remember to convert from km/h to km/min).

3
min

km/h

21

20

30

10

FIGURE 15

solution The distance traveled by the object can be determined by calculating the area underneath the velocity graph
over the specified interval. During the interval [0, 3], the object travels(

10

60

)(
1

2

)
+
(

25

60

)
(1) +

(
15

60

)(
1

2

)
+
(

20

60

)
(1) = 23

24
≈ 0.96 km.

During the interval [1, 2.5], it travels(
25

60

)(
1

2

)
+
(

15

60

)(
1

2

)
+
(

20

60

)(
1

2

)
= 1

2
= 0.5 km.

2. An ostrich (Figure 16) runs with velocity 20 km/h for 2 minutes, 12 km/h for 3 minutes, and 40 km/h for another
minute. Compute the total distance traveled and indicate with a graph how this quantity can be interpreted as an area.

FIGURE 16 Ostriches can reach speeds as high as 70 km/h.

solution The total distance traveled by the ostrich is(
20

60

)
(2) +

(
12

60

)
(3) +

(
40

60

)
(1) = 2

3
+ 3

5
+ 2

3
= 29

15

km. This distance is the area under the graph below which shows the ostrich’s velocity as a function of time.

10

0

20

30

40

0 1 2 3 4 5 6

y

x

3. A rainstorm hit Portland, Maine, in October 1996, resulting in record rainfall. The rainfall rate R(t) on October 21
is recorded, in centimeters per hour, in the following table, where t is the number of hours since midnight. Compute the
total rainfall during this 24-hour period and indicate on a graph how this quantity can be interpreted as an area.

t (h) 0–2 2–4 4–9 9–12 12–20 20–24

R(t) (cm) 0.5 0.3 1.0 2.5 1.5 0.6

solution Over each interval, the total rainfall is the time interval in hours times the rainfall in centimeters per hour.
Thus

R = 2(0.5) + 2(0.3) + 5(1.0) + 3(2.5) + 8(1.5) + 4(0.6) = 28.5 cm.

The figure below is a graph of the rainfall as a function of time. The area of the shaded region represents the total rainfall.
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0.5

1.0

1.5

2.0

2.5

5 10 15 20 25

y

x

4. The velocity of an object is v(t) = 12t m/s. Use Eq. (2) and geometry to find the distance traveled over the time
intervals [0, 2] and [2, 5].
solution By equation Eq. (2), the distance traveled over the time interval [a, b] is

∫ b

a
v(t) dt =

∫ b

a
12t dt;

that is, the distance traveled is the area under the graph of the velocity function over the interval [a, b]. The graph below
shows the area under the velocity function v(t) = 12t m/s over the intervals [0, 2] and [2, 5]. Over the interval [0, 2], the
area is a triangle of base 2 and height 24; therefore, the distance traveled is

1

2
(2)(24) = 24 meters.

Over the interval [2, 5], the area is a trapezoid of height 3 and base lengths 24 and 60; therefore, the distance traveled is

1

2
(3)(24 + 60) = 126 meters.

10
20

30
40
50
60

1 2 3 4 5

y

x

5. Compute R5 and L5 over [0, 1] using the following values.

x 0 0.2 0.4 0.6 0.8 1

f (x) 50 48 46 44 42 40

solution �x = 1−0
5 = 0.2. Thus,

L5 = 0.2 (50 + 48 + 46 + 44 + 42) = 0.2(230) = 46,

and

R5 = 0.2 (48 + 46 + 44 + 42 + 40) = 0.2(220) = 44.

The average is

46 + 44

2
= 45.

This estimate is frequently referred to as the Trapezoidal Approximation.

6. Compute R6, L6, and M3 to estimate the distance traveled over [0, 3] if the velocity at half-second intervals is as
follows:

t (s) 0 0.5 1 1.5 2 2.5 3

v (m/s) 0 12 18 25 20 14 20

solution For R6 and L6, �t = 3−0
6 = 0.5. For M3, �t = 3−0

3 = 1. Then

R6 = 0.5 s (12 + 18 + 25 + 20 + 14 + 20) m/s = 0.5(109) m = 54.5 m,



April 1, 2011

568 C H A P T E R 5 THE INTEGRAL

L6 = 0.5 sec (0 + 12 + 18 + 25 + 20 + 14) m/sec = 0.5(89) m = 44.5 m,

and

M3 = 1 sec (12 + 25 + 14) m/sec = 51 m.

7. Let f (x) = 2x + 3.

(a) Compute R6 and L6 over [0, 3].
(b) Use geometry to find the exact area A and compute the errors |A − R6| and |A − L6| in the approximations.

solution Let f (x) = 2x + 3 on [0, 3].

(a) We partition [0, 3] into 6 equally-spaced subintervals. The left endpoints of the subintervals are
{

0, 1
2 , 1, 3

2 , 2, 5
2

}
whereas the right endpoints are

{
1
2 , 1, 3

2 , 2, 5
2 , 3
}

.

• Let a = 0, b = 3, n = 6, �x = (b − a) /n = 1
2 , and xk = a + k�x, k = 0, 1, . . . , 5 (left endpoints). Then

L6 =
5∑

k=0

f (xk)�x = �x

5∑
k=0

f (xk) = 1

2
(3 + 4 + 5 + 6 + 7 + 8) = 16.5.

• With xk = a + k�x, k = 1, 2, . . . , 6 (right endpoints), we have

R6 =
6∑

k=1

f (xk)�x = �x

6∑
k=1

f (xk) = 1

2
(4 + 5 + 6 + 7 + 8 + 9) = 19.5.

(b) Via geometry (see figure below), the exact area is A = 1
2 (3) (6) + 32 = 18. Thus, L6 underestimates the true area

(L6 − A = −1.5), while R6 overestimates the true area (R6 − A = +1.5).

0.5 1 1.5 2 2.5 3

3

6

9

x

y

8. Repeat Exercise 7 for f (x) = 20 − 3x over [2, 4].
solution Let f (x) = 20 − 3x on [2, 4].

(a) We partition [2, 4] into 6 equally-spaced subintervals. The left endpoints of the subintervals are
{

2, 7
3 , 8

3 , 3, 10
3 , 11

3

}
whereas the right endpoints are

{
7
3 , 8

3 , 3, 10
3 , 11

3 , 3
}

.

• Let a = 2, b = 4, n = 6, �x = (b − a) /n = 1
3 , and xk = a + k�x, k = 0, 1, . . . , 5 (left endpoints). Then

L6 =
5∑

k=0

f (xk)�x = �x

5∑
k=0

f (xk) = 1

3
(14 + 13 + 12 + 11 + 10 + 9) = 23.

• With xk = a + k�x, k = 1, 2, . . . , 6 (right endpoints), we have

R6 =
6∑

k=1

f (xk)�x = �x

6∑
k=1

f (xk) = 1

3
(13 + 12 + 11 + 10 + 9 + 8) = 21.

(b) Via geometry (see figure below), the exact area is A = 1
2 (2) (14 + 8) = 22. Thus, L6 overestimates the true area

(L6 − A = 1), while R6 underestimates the true area (R6 − A = −1).

2
4
6
8

10
12

14

1 2 3 4

y

x
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9. Calculate R3 and L3

for f (x) = x2 − x + 4 over [1, 4]
Then sketch the graph of f and the rectangles that make up each approximation. Is the area under the graph larger or
smaller than R3? Is it larger or smaller than L3?

solution Let f (x) = x2 − x + 4 and set a = 1, b = 4, n = 3, �x = (b − a) /n = (4 − 1) /3 = 1.

(a) Let xk = a + k�x, k = 0, 1, 2, 3.

• Selecting the left endpoints of the subintervals, xk , k = 0, 1, 2, or {1, 2, 3}, we have

L3 =
2∑

k=0

f (xk)�x = �x

2∑
k=0

f (xk) = (1) (4 + 6 + 10) = 20.

• Selecting the right endpoints of the subintervals, xk , k = 1, 2, 3, or {2, 3, 4}, we have

R3 =
3∑

k=1

f (xk)�x = �x

3∑
k=1

f (xk) = (1) (6 + 10 + 16) = 32.

(b) Here are figures of the three rectangles that approximate the area under the curve f (x) over the interval [1, 4]. Clearly,
the area under the graph is larger than L3 but smaller than R3.

4

1.0 1.5 2.0 2.5 3.0 3.5

6
8

10

12

14

y

x

L3

4

1.0 1.5 2.0 2.5 3.0 3.5

6
8

10

12

14

y

x

R3

10. Let f (x) =
√

x2 + 1 and �x = 1
3 . Sketch the graph of f (x) and draw the right-endpoint rectangles whose area is

represented by the sum
6∑

i=1

f (1 + i�x)�x.

solution Because �x = 1
3 and the sum evaluates f at 1 + i�x for i from 1 through 6, it follows that the interval

over which we are considering f is [1, 3]. The sketch of f together with the six rectangles is shown below.

0.5

1.0
1.5

2.0

2.5
3.0

0.5 1.0 1.5 2.0 2.5 3.0

y

x

11. Estimate R3, M3, and L6 over [0, 1.5] for the function in Figure 17.

1

2

3

4

5

x

y

0.5 1 1.5

FIGURE 17

solution Let f (x) on [0, 3
2 ] be given by Figure 17. For n = 3, �x = ( 3

2 − 0)/3 = 1
2 , {xk}3

k=0 =
{

0, 1
2 , 1, 3

2

}
.

Therefore

R3 = 1

2

3∑
k=1

f (xk) = 1

2
(2 + 1 + 2) = 2.5,
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M3 = 1

2

6∑
k=1

f

(
xk − 1

2
�x

)
= 1

2
(3.25 + 1.25 + 1.25) = 2.875.

For n = 6, �x = ( 3
2 − 0)/6 = 1

4 , {xk}6
k=0 =

{
0, 1

4 , 1
2 , 3

4 , 1, 5
4 , 3

2

}
. Therefore

L6 = 1

4

5∑
k=0

f (xk) = 1

4
(5 + 3.25 + 2 + 1.25 + 1 + 1.25) = 3.4375.

12. Calculate the area of the shaded rectangles in Figure 18. Which approximation do these rectangles represent?

1 32−1−3 −2
x

y

y =
1 + x2
4 − x

FIGURE 18

solution Each rectangle in Figure 18 has a width of 1 and the height is taken as the value of the function at the
midpoint of the interval. Thus, the area of the shaded rectangles is

1

(
26

29
+ 22

13
+ 18

5
+ 14

5
+ 10

13
+ 6

29

)
= 18784

1885
≈ 9.965.

Because there are six rectangles and the height of each rectangle is taken as the value of the function at the midpoint of
the interval, the shaded rectangles represent the approximation M6 to the area under the curve.

In Exercises 13–20, calculate the approximation for the given function and interval.

13. R3, f (x) = 7 − x, [3, 5]
solution Let f (x) = 7 − x on [3, 5]. For n = 3, �x = (5 − 3)/3 = 2

3 , and {xk}3
k=0 =

{
3, 11

3 , 13
3 , 5

}
. Therefore

R3 = 2

3

3∑
k=1

(7 − xk)

= 2

3

(
10

3
+ 8

3
+ 2

)
= 2

3
(8) = 16

3
.

14. L6, f (x) = √
6x + 2, [1, 3]

solution Let f (x) = √
6x + 2 on [1, 3]. For n = 6, �x = (3 − 1)/6 = 1

3 , and {xk}6
k=0 =

{
1, 4

3 , 5
3 , 2, 7

3 , 8
3 , 3
}

.

Therefore

L6 = 1

3

5∑
k=0

√
6xk + 2

= 1

3

(√
8 + √

10 + √
12 + √

14 + 4 + √
18
)

≈ 7.146368.

15. M6, f (x) = 4x + 3, [5, 8]
solution Let f (x) = 4x + 3 on [5, 8]. For n = 6, �x = (8 − 5)/6 = 1

2 , and {x∗
k
}5
k=0 = {5.25, 5.75, 6.25, 6.75,

7.25, 7.75}. Therefore,

M6 = 1

2

5∑
k=0

(
4x∗

k + 3
)

= 1

2
(24 + 26 + 28 + 30 + 32 + 34)

= 1

2
(174) = 87.
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16. R5, f (x) = x2 + x, [−1, 1]
solution Let f (x) = x2 + x on [−1, 1]. For n = 5, �x = (1 − (−1))/5 = 2

5 , and {xk}5
k=0 =

{
−1, − 3

5 , − 1
5 , 1

5 ,

3
5 , 1
}

. Therefore

R5 = 2

5

5∑
k=1

(x2
k + xk) = 2

5

((
9

25
− 3

5

)
+
(

1

25
− 1

5

)
+
(

1

25
+ 1

5

)
+
(

9

25
+ 3

5

)
+ 2

)

= 2

5

(
14

5

)
= 28

25
.

17. L6, f (x) = x2 + 3|x|, [−2, 1]
solution Let f (x) = x2 + 3 |x| on [−2, 1]. For n = 6, �x = (1 − (−2))/6 = 1

2 , and {xk}6
k=0 = {−2, −1.5, −1,

−0.5, 0, 0.5, 1}. Therefore

L6 = 1

2

5∑
k=0

(x2
k + 3 |xk |) = 1

2
(10 + 6.75 + 4 + 1.75 + 0 + 1.75) = 12.125.

18. M4, f (x) = √
x, [3, 5]

solution Let f (x) = √
x on [3, 5]. For n = 4, �x = (5 − 3)/4 = 1

2 , and {x∗
k
}3
k=0 = { 13

4 , 15
4 , 17

4 , 19
4 }. Therefore,

M4 = 1

2

3∑
k=0

√
x∗
k

= 1

2

(√
13

2
+

√
15

2
+

√
17

2
+

√
19

2

)
≈ 3.990135.

19. L4, f (x) = cos2 x,
[
π
6 , π

2

]
solution Let f (x) = cos2 x on [π

6 , π
2 ]. For n = 4,

�x = (π/2 − π/6)

4
= π

12
and {xk}4

k=0 =
{

π

6
,
π

4
,
π

3
,

5π

12
,
π

2

}
.

Therefore

L4 = π

12

3∑
k=0

cos2 xk ≈ 0.410236.

20. M5, f (x) = ln x, [1, 3]
solution Let f (x) = ln x on [1, 3]. For n = 5, �x = (3 − 1)/5 = 2

5 , and {x∗
k
}4
k=0 = { 6

5 , 8
5 , 2, 12

5 , 14
5 }. Therefore,

M5 = 2

5

4∑
k=0

ln x∗
k

= 2

5

(
ln

6

5
+ ln

8

5
+ ln 2 + ln

12

5
+ ln

14

5

)
≈ 1.300224.

In Exercises 21–26, write the sum in summation notation.

21. 47 + 57 + 67 + 77 + 87

solution The first term is 47, and the last term is 87, so it seems the kth term is k7. Therefore, the sum is:

8∑
k=4

k7.

22. (22 + 2) + (32 + 3) + (42 + 4) + (52 + 5)

solution The first term is 22 + 2, and the last term is 52 + 5, so it seems that the sum limits are 2 and 5, and the kth

term is k2 + k. Therefore, the sum is:

5∑
k=2

(k2 + k).
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23. (22 + 2) + (23 + 2) + (24 + 2) + (25 + 2)

solution The first term is 22 + 2, and the last term is 25 + 2, so it seems the sum limits are 2 and 5, and the kth term

is 2k + 2. Therefore, the sum is:

5∑
k=2

(2k + 2).

24.
√

1 + 13 +
√

2 + 23 + · · · +
√

n + n3

solution The first term is
√

1 + 13 and the last term is
√

n + n3, so it seems the summation limits are 1 through n,

and the k-th term is
√

k + k3. Therefore, the sum is

n∑
k=1

√
k + k3.

25.
1

2 · 3
+ 2

3 · 4
+ · · · + n

(n + 1)(n + 2)

solution The first summand is 1
(1+1)·(1+2)

. This shows us

1

2 · 3
+ 2

3 · 4
+ · · · + n

(n + 1)(n + 2)
=

n∑
i=1

i

(i + 1)(i + 2)
.

26. eπ + eπ/2 + eπ/3 + · · · + eπ/n

solution The first term is eπ/1 and the last term is eπ/n, so it seems the sum limits are 1 and n and the kth term is

eπ/k . Therefore, the sum is

n∑
k=1

eπ/k.

27. Calculate the sums:

(a)
5∑

i=1

9 (b)
5∑

i=0

4 (c)
4∑

k=2

k3

solution

(a)
5∑

i=1

9 = 9 + 9 + 9 + 9 + 9 = 45. Alternatively,
5∑

i=1

9 = 9
5∑

i=1

1 = (9)(5) = 45.

(b)
5∑

i=0

4 = 4 + 4 + 4 + 4 + 4 + 4 = 24. Alternatively,
5∑

i=0

4 = 4
5∑

i=0

= (4)(6) = 24.

(c)
4∑

k=2

k3 = 23 + 33 + 43 = 99. Alternatively,

4∑
k=2

k3 =
⎛
⎝ 4∑

k=1

k3

⎞
⎠−

⎛
⎝ 1∑

k=1

k3

⎞
⎠ =

(
44

4
+ 43

2
+ 42

4

)
−
(

14

4
+ 13

2
+ 12

4

)
= 99.

28. Calculate the sums:

(a)
4∑

j=3

sin
(
j

π

2

)
(b)

5∑
k=3

1

k − 1
(c)

2∑
j=0

3j−1

solution

(a)
4∑

j=3

sin

(
jπ

2

)
= sin

(
3π

2

)
+ sin

(
4π

2

)
= −1 + 0 = −1.

(b)
5∑

k=3

1

k − 1
= 1

2
+ 1

3
+ 1

4
= 13

12
.

(c)
2∑

j=0

3j−1 = 1

3
+ 1 + 3 = 13

3
.
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29. Let b1 = 4, b2 = 1, b3 = 2, and b4 = −4. Calculate:

(a)
4∑

i=2

bi (b)
2∑

j=1

(2bj − bj ) (c)
3∑

k=1

kbk

solution

(a)
4∑

i=2

bi = b2 + b3 + b4 = 1 + 2 + (−4) = −1.

(b)
2∑

j=1

(
2bj − bj

)
= (24 − 4) + (21 − 1) = 13.

(c)
3∑

k=1

kbk = 1(4) + 2(1) + 3(2) = 12.

30. Assume that a1 = −5,
10∑
i=1

ai = 20, and
10∑
i=1

bi = 7. Calculate:

(a)
10∑
i=1

(4ai + 3) (b)
10∑
i=2

ai (c)
10∑
i=1

(2ai − 3bi)

solution

(a)
10∑
i=1

(4ai + 3) = 4
10∑
i=1

ai + 3
10∑
i=1

1 = 4(20) + 3(10) = 110.

(b)
10∑
i=2

ai =
10∑
i=1

ai − a1 = 20 − (−5) = 25.

(c)
10∑
i=1

(2ai − 3bi) = 2
10∑
i=1

ai − 3
10∑
i=1

bi = 2(20) − 3(7) = 19.

31. Calculate
200∑

j=101

j . Hint: Write as a difference of two sums and use formula (3).

solution

200∑
j=101

j =
200∑
j=1

j −
100∑
j=1

j =
(

2002

2
+ 200

2

)
−
(

1002

2
+ 100

2

)
= 20100 − 5050 = 15050.

32. Calculate
30∑

j=1

(2j + 1)2. Hint: Expand and use formulas (3)–(4).

solution

30∑
j=1

(2j + 1)2 = 4
30∑

j=1

j2 + 4
30∑

j=1

j +
30∑

j=1

1

= 4

(
303

3
+ 302

2
+ 30

6

)
+ 4

(
302

2
+ 30

2

)
+ 30

= 39,710.

In Exercises 33–40, use linearity and formulas (3)–(5) to rewrite and evaluate the sums.

33.
20∑

j=1

8j3

solution
20∑

j=1

8j3 = 8
20∑

j=1

j3 = 8

(
204

4
+ 203

2
+ 202

4

)
= 8(44,100) = 352,800.
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34.
30∑

k=1

(4k − 3)

solution

30∑
k=1

(4k − 3) = 4
30∑

k=1

k − 3
30∑

k=1

1

= 4

(
302

2
+ 30

2

)
− 3(30) = 4(465) − 90 = 1770.

35.
150∑

n=51

n2

solution

150∑
n=51

n2 =
150∑
n=1

n2 −
50∑

n=1

n2

=
(

1503

3
+ 1502

2
+ 150

6

)
−
(

503

3
+ 502

2
+ 50

6

)

= 1,136,275 − 42,925 = 1,093,350.

36.
200∑

k=101

k3

solution

200∑
k=101

k3 =
200∑
k=1

k3 −
100∑
k=1

k3

=
(

2004

4
+ 2003

2
+ 2002

4

)
−
(

1004

4
+ 1003

2
+ 1002

4

)

= 404,010,000 − 25,502,500 = 378,507,500.

37.
50∑

j=0

j (j − 1)

solution

50∑
j=0

j (j − 1) =
50∑

j=0

(j2 − j) =
50∑

j=0

j2 −
50∑

j=0

j

=
(

503

3
+ 502

2
+ 50

6

)
−
(

502

2
+ 50

2

)
= 503

3
− 50

3
= 124,950

3
= 41,650.

The power sum formula is usable because
50∑

j=0

j (j − 1) =
50∑

j=1

j (j − 1).

38.
30∑

j=2

(
6j + 4j2

3

)

solution

30∑
j=2

(
6j + 4j2

3

)
= 6

30∑
j=2

j + 4

3

30∑
j=2

j2 = 6

⎛
⎝ 30∑

j=1

j −
1∑

j=1

j

⎞
⎠+ 4

3

⎛
⎝ 30∑

j=1

j2 −
1∑

j=1

j2

⎞
⎠

= 6

(
302

2
+ 30

2
− 1

)
+ 4

3

(
303

3
+ 302

2
+ 30

6
− 1

)

= 6 (464) + 4

3
(9454) = 2784 + 37,816

3
= 46,168

3
.
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39.
30∑

m=1

(4 − m)3

solution

30∑
m=1

(4 − m)3 =
30∑

m=1

(64 − 48m + 12m2 − m3)

= 64
30∑

m=1

1 − 48
30∑

m=1

m + 12
30∑

m=1

m2 −
30∑

m=1

m3

= 64(30) − 48
(30)(31)

2
+ 12

(
303

3
+ 302

2
+ 30

6

)
−
(

304

4
+ 303

2
+ 302

4

)

= 1920 − 22,320 + 113,460 − 216,225 = −123,165.

40.
20∑

m=1

(
5 + 3m

2

)2

solution

20∑
m=1

(
5 + 3m

2

)2
= 25

20∑
m=1

1 + 15
20∑

m=1

m + 9

4

20∑
m=1

m2

= 25(20) + 15

(
202

2
+ 20

2

)
+ 9

4

(
203

3
+ 202

2
+ 20

6

)

= 500 + 15(210) + 9

4
(2870) = 10107.5.

In Exercises 41–44, use formulas (3)–(5) to evaluate the limit.

41. lim
N→∞

N∑
i=1

i

N2

solution Let sN =
N∑

i=1

i

N2
. Then,

sN =
N∑

i=1

i

N2
= 1

N2

N∑
i=1

i = 1

N2

(
N2

2
+ N

2

)
= 1

2
+ 1

2N
.

Therefore, lim
N→∞ sN = 1

2
.

42. lim
N→∞

N∑
j=1

j3

N4

solution Let sN =
N∑

j=1

j3

N4
. Then

sN = 1

N4

N∑
j=1

j3 = 1

N4

(
N4

4
+ N3

2
+ N2

4

)
= 1

4
+ 1

2N
+ 1

4N2
.

Therefore, lim
N→∞ sN = 1

4
.
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43. lim
N→∞

N∑
i=1

i2 − i + 1

N3

solution Let sN =
N∑

i=1

i2 − i + 1

N3
. Then

sN =
N∑

i=1

i2 − i + 1

N3
= 1

N3

⎡
⎣
⎛
⎝ N∑

i=1

i2

⎞
⎠−

⎛
⎝ N∑

i=1

i

⎞
⎠+

⎛
⎝ N∑

i=1

1

⎞
⎠
⎤
⎦

= 1

N3

[(
N3

3
+ N2

2
+ N

6

)
−
(

N2

2
+ N

2

)
+ N

]
= 1

3
+ 2

3N2
.

Therefore, lim
N→∞ sN = 1

3
.

44. lim
N→∞

N∑
i=1

(
i3

N4
− 20

N

)

solution Let sN =
N∑

i=1

(
i3

N4
− 20

N

)
. Then

sN = 1

N4

N∑
i=1

i3 − 20

N

N∑
i=1

1 = 1

N4

(
N4

4
+ N3

2
+ N2

4

)
− 20 = 1

4
+ 1

2N
+ 1

4N2
− 20.

Therefore, lim
N→∞ sN = 1

4
− 20 = −79

4
.

In Exercises 45–50, calculate the limit for the given function and interval. Verify your answer by using geometry.

45. lim
N→∞ RN , f (x) = 9x, [0, 2]

solution Let f (x) = 9x on [0, 2]. Let N be a positive integer and set a = 0, b = 2, and �x = (b − a)/N =
(2 − 0)/N = 2/N . Also, let xk = a + k�x = 2k/N , k = 1, 2, . . . , N be the right endpoints of the N subintervals of
[0, 2]. Then

RN = �x

N∑
k=1

f (xk) = 2

N

N∑
k=1

9

(
2k

N

)
= 36

N2

N∑
k=1

k = 36

N2

(
N2

2
+ N

2

)
= 18 + 18

N
.

The area under the graph is

lim
N→∞ RN = lim

N→∞

(
18 + 18

N

)
= 18.

The region under the graph is a triangle with base 2 and height 18. The area of the region is then 1
2 (2)(18) = 18, which

agrees with the value obtained from the limit of the right-endpoint approximations.

46. lim
N→∞ RN , f (x) = 3x + 6, [1, 4]

solution Let f (x) = 3x + 6 on [1, 4]. Let N be a positive integer and set a = 1, b = 4, and �x = (b − a)/N =
(4 − 1)/N = 3/N . Also, let xk = a + k�x = 1 + 3k/N , k = 1, 2, . . . , N be the right endpoints of the N subintervals
of [1, 4]. Then

RN = �x

N∑
k=1

f (xk) = 3

N

N∑
k=1

(
9 + 9k

N

)

= 27

N

N∑
k=1

1 + 27

N2

N∑
k=1

j = 27

N
(N) + 27

N2

(
N2

2
+ N

2

)

= 81

2
+ 27

2N
.

The area under the graph is

lim
N→∞ RN = lim

N→∞

(
81

2
+ 27

2N

)
= 81

2
.
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The region under the graph is a trapezoid with base width 3 and heights 9 and 18. The area of the region is then
1
2 (3)(9 + 18) = 81

2 , which agrees with the value obtained from the limit of the right-endpoint approximations.

47. lim
N→∞ LN , f (x) = 1

2x + 2, [0, 4]

solution Let f (x) = 1
2x + 2 on [0, 4]. Let N > 0 be an integer, and set a = 0, b = 4, and �x = (4 − 0)/N = 4

N
.

Also, let xk = 0 + k�x = 4k
N

, k = 0, 1, . . . , N − 1 be the left endpoints of the N subintervals. Then

LN = �x

N−1∑
k=0

f (xk) = 4

N

N−1∑
k=0

(
1

2

(
4k

N

)
+ 2

)
= 8

N

N−1∑
k=0

1 + 8

N2

N−1∑
k=0

k

= 8 + 8

N2

(
(N − 1)2

2
+ N − 1

2

)
= 12 − 4

N
.

The area under the graph is

lim
N→∞ LN = 12.

The region under the curve over [0, 4] is a trapezoid with base width 4 and heights 2 and 4. From this, we get that the
area is 1

2 (4)(2 + 4) = 12, which agrees with the answer obtained from the limit of the left-endpoint approximations.

48. lim
N→∞ LN , f (x) = 4x − 2, [1, 3]

solution Let f (x) = 4x − 2 on [1, 3]. Let N > 0 be an integer, and set a = 1, b = 3, and �x = (3 − 1)/N = 2
N

.

Also, let xk = a + k�x = 1 + 2k
N

, k = 0, 1, . . . , N − 1 be the left endpoints of the N subintervals. Then

LN = �x

N−1∑
k=0

f (xk) = 2

N

N−1∑
k=0

(
8k

N
+ 2

)
= 16

N2

N−1∑
k=0

k + 4

N

N−1∑
k=0

1

= 16

N2

(
(N − 1)2

2
+ N − 1

2

)
+ 4

N
(N − 1)

= 12 − 12

N

The area under the graph is

lim
N→∞ LN = 12.

The region under the curve over [1, 3] is a trapezoid with base width 2 and heights 2 and 10. From this, we get that the
area is 1

2 (2)(2 + 10) = 12, which agrees with the answer obtained from the limit of the left-endpoint approximations.

49. lim
N→∞ MN , f (x) = x, [0, 2]

solution Let f (x) = x on [0, 2]. Let N > 0 be an integer and set a = 0, b = 2, and �x = (b − a)/N = 2
N

. Also,

let x∗
k

= 0 + (k − 1
2 )�x = 2k−1

N
, k = 1, 2, . . . N , be the midpoints of the N subintervals of [0, 2]. Then

MN = �x

N∑
k=1

f (x∗
k ) = 2

N

N∑
k=1

2k − 1

N
= 2

N2

N∑
k=1

(2k − 1)

= 2

N2

⎛
⎝2

N∑
k=1

k − N

⎞
⎠ = 4

N2

(
N2

2
+ N

2

)
− 2

N
= 2.

The area under the curve over [0, 2] is

lim
N→∞ MN = 2.

The region under the curve over [0, 2] is a triangle with base and height 2, and thus area 2, which agrees with the answer
obtained from the limit of the midpoint approximations.
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50. lim
N→∞ MN , f (x) = 12 − 4x, [2, 6]

solution Let f (x) = 12 − 4x on [2, 6]. Let N > 0 be an integer and set a = 2, b = 6, and �x = (b − a)/N = 4
N

.

Also, let x∗
k

= a + (k − 1
2 )�x = 2 + 4k−2

N
, k = 1, 2, . . . N , be the midpoints of the N subintervals of [2, 6]. Then

MN = �x

N∑
k=1

f (x∗
k ) = 4

N

N∑
k=1

(
4 − 16k − 8

N

)

= 16

N

N∑
k=1

1 − 64

N2

N∑
k=1

k + 32

N2

N∑
k=1

1

= 16

N
(N) − 64

N2

(
N2

2
+ N

2

)
+ 32

N2
(N) = −16.

The area under the curve over [2, 6] is

lim
N→∞ MN = −16.

The region under the curve over [2, 6] consists of a triangle of base 1 and height 4 above the axis and a triangle of base 3
and height 12 below the axis. The area of this region is therefore

1

2
(1)(4) − 1

2
(3)(12) = −16,

which agrees with the answer obtained from the limit of the midpoint approximations.

51. Show, for f (x) = 3x2 + 4x over [0, 2], that

RN = 2

N

N∑
j=1

(
24j2

N2
+ 16j

N

)

Then evaluate lim
N→∞ RN .

solution Let f (x) = 3x2 + 4x on [0, 2]. Let N be a positive integer and set a = 0, b = 2, and �x = (b − a)/N =
(2 − 0)/N = 2/N . Also, let xj = a + j�x = 2j/N , j = 1, 2, . . . , N be the right endpoints of the N subintervals of
[0, 3]. Then

RN = �x

N∑
j=1

f (xj ) = 2

N

N∑
j=1

(
3

(
2j

N

)2
+ 4

2j

N

)

= 2

N

N∑
j=1

(
12j2

N2
+ 8j

N

)

Continuing, we find

RN = 24

N3

N∑
j=1

j2 + 16

N2

N∑
j=1

j

= 24

N3

(
N3

3
+ N2

2
+ N

6

)
+ 16

N2

(
N2

2
+ N

2

)

= 16 + 20

N
+ 4

N2

Thus,

lim
N→∞ RN = lim

N→∞

(
16 + 20

N
+ 4

N2

)
= 16.

52. Show, for f (x) = 3x3 − x2 over [1, 5], that

RN = 4

N

N∑
j=1

(
192j3

N3
+ 128j2

N2
+ 28j

N
+ 2

)

Then evaluate lim
N→∞ RN .
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solution Let f (x) = 3x3 − x2 on [1, 5]. Let N be a positive integer and set a = 1, b = 5, and �x = (b − a)/N =
(5 − 1)/N = 4/N . Also, let xj = a + j�x = 1 + 4j/N , j = 1, 2, . . . , N be the right endpoints of the N subintervals
of [1, 5]. Then

f (xj ) = 3

(
1 + 4j

N

)3
−
(

1 + 4j

N

)2

= 3

(
1 + 12j

N
+ 48j2

N2
+ 64j3

N3

)
−
(

1 + 8j

N
+ 16j2

N2

)

= 192j3

N3
+ 128j2

N2
+ 28j

N
+ 2.

and

RN =
N∑

j=1

f (xj )�x = 4

N

N∑
j=1

(
192j3

N3
+ 128j2

N2
+ 28j

N
+ 2

)
.

Continuing, we find

RN = 768

N4

N∑
j=1

j3 + 512

N3

N∑
j=1

j2 + 112

N2

N∑
j=1

j + 8

N

N∑
j=1

1

= 768

N4

(
N4

4
+ N3

2
+ N2

2

)
+ 512

N3

(
N3

3
+ N2

2
+ N

6

)

+ 112

N2

(
N2

2
+ N

2

)
+ 8

N
(N)

= 1280

3
+ 696

N
+ 832

3N2
.

Thus,

lim
N→∞ RN = lim

N→∞

(
1280

3
+ 696

N
+ 832

3N2

)
= 1280

3
.

In Exercises 53–60, find a formula for RN and compute the area under the graph as a limit.

53. f (x) = x2, [0, 1]
solution Let f (x) = x2 on the interval [0, 1]. Then �x = 1 − 0

N
= 1

N
and a = 0. Hence,

RN = �x

N∑
j=1

f (0 + j�x) = 1

N

N∑
j=1

j2 1

N2
= 1

N3

(
N3

3
+ N2

2
+ N

6

)
= 1

3
+ 1

2N
+ 1

6N2

and

lim
N→∞ RN = lim

N→∞

(
1

3
+ 1

2N
+ 1

6N2

)
= 1

3
.

54. f (x) = x2, [−1, 5]
solution Let f (x) = x2 on the interval [−1, 5]. Then �x = 5 − (−1)

N
= 6

N
and a = −1. Hence,

RN = �x

N∑
j=1

f (−1 + j�x) = 6

N

N∑
j=1

(
−1 + 6j

N

)2

= 6

N

N∑
j=1

1 − 72

N2

N∑
j=1

j + 216

N3

N∑
j=1

j2

= 6

N
(N) − 72

N2

(
N2

2
+ N

2

)
+ 216

N3

(
N3

3
+ N2

2
+ N

6

)

= 42 + 72

N
+ 36

N2
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and

lim
N→∞ RN = lim

N→∞

(
42 + 72

N
+ 36

N2

)
= 42.

55. f (x) = 6x2 − 4, [2, 5]
solution Let f (x) = 6x2 − 4 on the interval [2, 5]. Then �x = 5 − 2

N
= 3

N
and a = 2. Hence,

RN = �x

N∑
j=1

f (2 + j�x) = 3

N

N∑
j=1

(
6

(
2 + 3j

N

)2
− 4

)
= 3

N

N∑
j=1

(
20 + 72j

N
+ 54j2

N2

)

= 60 + 216

N2

N∑
j=1

j + 162

N3

N∑
j=1

j2

= 60 + 216

N2

(
N2

2
+ N

2

)
+ 162

N3

(
N3

3
+ N2

2
+ N

6

)

= 222 + 189

N
+ 27

N2

and

lim
N→∞ RN = lim

N→∞

(
222 + 189

N
+ 27

N2

)
= 222.

56. f (x) = x2 + 7x, [6, 11]
solution Let f (x) = x2 + 7x on the interval [6, 11]. Then �x = 11 − 6

N
= 5

N
and a = 6. Hence,

RN = �x

N∑
j=1

f (6 + j�x) = 5

N

N∑
j=1

[(
6 + 5j

N

)2
+ 7

(
6 + 5j

N

)]

= 5

N

N∑
j=1

(
25j2

N2
+ 95j

N
+ 78

)

= 125

N3

N∑
j=1

j3 + 475

N2

N∑
j=1

j + 390

N

N∑
j=1

1

= 125

N3

(
N3

3
+ N2

2
+ N

6

)
+ 475

N2

(
N2

2
+ N

2

)
+ 390

= 4015

6
+ 300

N
+ 125

6N2

and

lim
N→∞ RN = lim

N→∞

(
4015

6
+ 300

N
+ 125

6N2

)
= 4015

6
.

57. f (x) = x3 − x, [0, 2]
solution Let f (x) = x3 − x on the interval [0, 2]. Then �x = 2 − 0

N
= 2

N
and a = 0. Hence,

RN = �x

N∑
j=1

f (0 + j�x) = 2

N

N∑
j=1

((
2j

N

)3
− 2j

N

)
= 2

N

N∑
j=1

(
8j3

N3
− 2j

N

)

= 16

N4

N∑
j=1

j3 − 4

N2

N∑
j=1

j

= 16

N4

(
N4

4
+ N3

2
+ N2

2

)
− 4

N2

(
N2

2
+ N

2

)

= 2 + 6

N
+ 8

N2
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and

lim
N→∞ RN = lim

N→∞

(
2 + 6

N
+ 8

N2

)
= 2.

58. f (x) = 2x3 + x2, [−2, 2]
solution Let f (x) = 2x3 + x2 on the interval [−2, 2]. Then �x = 2 − (−2)

N
= 4

N
and a = −2. Hence,

RN = �x

N∑
j=1

f (−2 + j�x) = 4

N

N∑
j=1

[
2

(
−2 + 4j

N

)3
+
(

−2 + 4j

N

)2
]

= 4

N

N∑
j=1

(
128j3

N3
− 176j2

N2
+ 80j

N
− 12

)

= 512

N4

(
N4

4
+ N3

2
+ N2

4

)
− 704

N3

(
N3

3
+ N2

2
+ N

6

)
+ 320

N2

(
N2

2
+ N

2

)
− 48

= 16

3
+ 64

N
+ 32

3N2

and

lim
N→∞ RN = lim

N→∞

(
16

3
+ 64

N
+ 32

3N2

)
= 16

3
.

59. f (x) = 2x + 1, [a, b] (a, b constants with a < b)

solution Let f (x) = 2x + 1 on the interval [a, b]. Then �x = b − a

N
. Hence,

RN = �x

N∑
j=1

f (a + j�x) = (b − a)

N

N∑
j=1

(
2

(
a + j

(b − a)

N

)
+ 1

)

= (b − a)

N
(2a + 1)

N∑
j=1

1 + 2(b − a)2

N2

N∑
j=1

j

= (b − a)

N
(2a + 1)N + 2(b − a)2

N2

(
N2

2
+ N

2

)

= (b − a)(2a + 1) + (b − a)2 + (b − a)2

N

and

lim
N→∞ RN = lim

N→∞

(
(b − a)(2a + 1) + (b − a)2 + (b − a)2

N

)

= (b − a)(2a + 1) + (b − a)2 = (b2 + b) − (a2 + a).

60. f (x) = x2, [a, b] (a, b constants with a < b)

solution Let f (x) = x2 on the interval [a, b]. Then �x = b − a

N
. Hence,

RN = �x

N∑
j=1

f (a + j�x) = (b − a)

N

N∑
j=1

(
a2 + 2aj

(b − a)

N
+ j2 (b − a)2

N2

)

= a2(b − a)

N

N∑
j=1

1 + 2a(b − a)2

N2

N∑
j=1

j + (b − a)3

N3

N∑
j=1

j2

= a2(b − a)

N
N + 2a(b − a)2

N2

(
N2

2
+ N

2

)
+ (b − a)3

N3

(
N3

3
+ N2

2
+ N

6

)

= a2(b − a) + a(b − a)2 + a(b − a)2

N
+ (b − a)3

3
+ (b − a)3

2N
+ (b − a)3

6N2
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and

lim
N→∞ RN = lim

N→∞

(
a2(b − a) + a(b − a)2 + a(b − a)2

N
+ (b − a)3

3
+ (b − a)3

2N
+ (b − a)3

6N2

)

= a2(b − a) + a(b − a)2 + (b − a)3

3
= 1

3
b3 − 1

3
a3.

In Exercises 61–64, describe the area represented by the limits.

61. lim
N→∞

1

N

N∑
j=1

(
j

N

)4

solution The limit

lim
N→∞ RN = lim

N→∞
1

N

N∑
j=1

(
j

N

)4

represents the area between the graph of f (x) = x4 and the x-axis over the interval [0, 1].

62. lim
N→∞

3

N

N∑
j=1

(
2 + 3j

N

)4

solution The limit

lim
N→∞ RN = lim

N→∞
3

N

N∑
j=1

(
2 + j · 3

N

)4

represents the area between the graph of f (x) = x4 and the x-axis over the interval [2, 5].

63. lim
N→∞

5

N

N−1∑
j=0

e−2+5j/N

solution The limit

lim
N→∞ LN = lim

N→∞
5

N

N−1∑
j=0

e−2+5j/N

represents the area between the graph of y = ex and the x-axis over the interval [−2, 3].

64. lim
N→∞

π

2N

N∑
j=1

sin

(
π

3
− π

4N
+ jπ

2N

)

solution The limit

lim
N→∞

π

2N

N∑
j=1

sin

(
π

3
− π

4N
+ jπ

2N

)

represents the area between the graph of y = sin x and the x-axis over the interval [π
3 , 5π

6 ].
In Exercises 65–70, express the area under the graph as a limit using the approximation indicated (in summation notation),
but do not evaluate.

65. RN , f (x) = sin x over [0, π]
solution Let f (x) = sin x over [0, π] and set a = 0, b = π , and �x = (b − a) /N = π/N . Then

RN = �x

N∑
k=1

f (xk) = π

N

N∑
k=1

sin

(
kπ

N

)
.

Hence

lim
N→∞ RN = lim

N→∞
π

N

N∑
k=1

sin

(
kπ

N

)

is the area between the graph of f (x) = sin x and the x-axis over [0, π].
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66. RN , f (x) = x−1 over [1, 7]
solution Let f (x) = x−1 over the interval [1, 7]. Then �x = 7 − 1

N
= 6

N
and a = 1. Hence,

RN = �x

N∑
j=1

f (1 + j�x) = 6

N

N∑
j=1

(
1 + j

6

N

)−1

and

lim
N→∞ RN = lim

N→∞
6

N

N∑
j=1

(
1 + j

6

N

)−1

is the area between the graph of f (x) = x−1 and the x-axis over [1, 7].
67. LN , f (x) = √

2x + 1 over [7, 11]
solution Let f (x) = √

2x + 1 over the interval [7, 11]. Then �x = 11 − 7

N
= 4

N
and a = 7. Hence,

LN = �x

N−1∑
j=0

f (7 + j�x) = 4

N

N−1∑
j=0

√
2(7 + j

4

N
) + 1

and

lim
N→∞ LN = lim

N→∞
4

N

N−1∑
j=0

√
15 + 8j

N

is the area between the graph of f (x) = √
2x + 1 and the x-axis over [7, 11].

68. LN , f (x) = cos x over
[
π
8 , π

4

]
solution Let f (x) = cos x over the interval

[
π
8 , π

4

]
. Then �x =

π
4 − π

8
N

=
π
8
N

= π

8N
and a = π

8 , Hence:

LN = �x

N−1∑
j=0

f
(π

8
+ j�x

)
= π

8N

N−1∑
j=0

cos
(π

8
+ j

π

8N

)

and

lim
N→∞ LN = lim

N→∞
π

8N

N−1∑
j=0

cos
(π

8
+ j

π

8N

)

is the area between the graph of f (x) = cos x and the x-axis over [π
8 , π

4 ].
69. MN , f (x) = tan x over

[ 1
2 , 1
]

solution Let f (x) = tan x over the interval [ 1
2 , 1]. Then �x = 1− 1

2
N

= 1
2N

and a = 1
2 . Hence

MN = �x

N∑
j=1

f

(
1

2
+
(

j − 1

2

)
�x

)
= 1

2N

N∑
j=1

tan

(
1

2
+ 1

2N

(
j − 1

2

))

and so

lim
N→∞ MN = lim

N→∞
1

2N

N∑
j=1

tan

(
1

2
+ 1

2N

(
j − 1

2

))

is the area between the graph of f (x) = tan x and the x-axis over [ 1
2 , 1].

70. MN , f (x) = x−2 over [3, 5]
solution Let f (x) = x−2 over the interval [3, 5]. Then �x = 5−3

N
= 2

N
and a = 3. Hence

MN = �x

N∑
j=1

f

(
3 +

(
j − 1

2

)
�x

)
= 2

N

N∑
j=1

(
3 + 2

N

(
j − 1

2

))−2
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and so

lim
N→∞ MN = lim

N→∞
2

N

N∑
j=1

(
3 + 2

N

(
j − 1

2

))−2

is the area between the graph of f (x) = x−2 and the x-axis over [3, 5].

71. Evaluate lim
N→∞

1

N

N∑
j=1

√
1 −

(
j

N

)2
by interpreting it as the area of part of a familiar geometric figure.

solution The limit

lim
N→∞ RN = lim

N→∞
1

N

N∑
j=1

√
1 −

(
j

N

)2

represents the area between the graph of y = f (x) =
√

1 − x2 and the x-axis over the interval [0, 1]. This is the portion
of the circular disk x2 + y2 ≤ 1 that lies in the first quadrant. Accordingly, its area is 1

4π (1)2 = π
4 .

In Exercises 72–74, let f (x) = x2 and let RN , LN , and MN be the approximations for the interval [0, 1].

72. Show that RN = 1

3
+ 1

2N
+ 1

6N2
. Interpret the quantity

1

2N
+ 1

6N2
as the area of a region.

solution Let f (x) = x2 on [0, 1]. Let N > 0 be an integer and set a = 0, b = 1 and �x = 1−0
N

= 1
N

. Then

RN = �x

N∑
j=1

f (0 + j�x) = 1

N

N∑
j=1

j2 1

N2
= 1

N3

(
N3

3
+ N2

2
+ N

6

)
= 1

3
+ 1

2N
+ 1

6N2
.

The quantity

1

2N
+ 6

N2
in RN = 1

3
+ 1

2N
+ 1

6N2

represents the collective area of the parts of the rectangles that lie above the graph of f (x). It is the error between RN

and the true area A = 1
3 .

0.2 0.4 0.6 0.8 1

0.8

1

0.6

0.4

0.2

x

y

73. Show that

LN = 1

3
− 1

2N
+ 1

6N2
, MN = 1

3
− 1

12N2

Then rank the three approximations RN , LN , and MN in order of increasing accuracy (use Exercise 72).

solution Let f (x) = x2 on [0, 1]. Let N be a positive integer and set a = 0, b = 1, and �x = (b − a) /N = 1/N .

Let xk = a + k�x = k/N , k = 0, 1, . . . , N and let x∗
k

= a + (k + 1
2 )�x = (k + 1

2 )/N , k = 0, 1, . . . , N − 1. Then

LN = �x

N−1∑
k=0

f (xk) = 1

N

N−1∑
k=0

(
k

N

)2
= 1

N3

N−1∑
k=1

k2

= 1

N3

(
(N − 1)3

3
+ (N − 1)2

2
+ N − 1

6

)
= 1

3
− 1

2N
+ 1

6N2
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MN = �x

N−1∑
k=0

f (x∗
k ) = 1

N

N−1∑
k=0

(
k + 1

2
N

)2

= 1

N3

N−1∑
k=0

(
k2 + k + 1

4

)

= 1

N3

⎛
⎝
⎛
⎝N−1∑

k=1

k2

⎞
⎠+

⎛
⎝N−1∑

k=1

k

⎞
⎠+ 1

4

⎛
⎝N−1∑

k=0

1

⎞
⎠
⎞
⎠

= 1

N3

((
(N − 1)3

3
+ (N − 1)2

2
+ N − 1

6

)
+
(

(N − 1)2

2
+ N − 1

2

)
+ 1

4
N

)
= 1

3
− 1

12N2

The error of RN is given by
1

2N
+ 1

6N2
, the error of LN is given by − 1

2N
+ 1

6N2
and the error of MN is given by

− 1

12N2
. Of the three approximations, RN is the least accurate, then LN and finally MN is the most accurate.

74. For each of RN , LN , and MN , find the smallest integer N for which the error is less than 0.001.

solution

• For RN , the error is less than 0.001 when:

1

2N
+ 1

6N2
< 0.001.

We find an adequate solution in N :

1

2N
+ 1

6N2
< 0.001

3N + 1 < 0.006(N2)

0 < 0.006N2 − 3N − 1,

in particular, if N > 3+√
9.024

0.012 = 500.333. Hence R501 is within 0.001 of A.
• For LN , the error is less than 0.001 if ∣∣∣∣− 1

2N
+ 1

6N2

∣∣∣∣ < 0.001.

We solve this equation for N : ∣∣∣∣ 1

2N
− 1

6N2

∣∣∣∣ < 0.001

∣∣∣∣3N − 1

6N2

∣∣∣∣ < 0.001

3N − 1 < 0.006N2

0 < 0.006N2 − 3N + 1,

which is satisfied if N > 3+√
9−0.024

0.012 = 499.666. Therefore, L500 is within 0.001 units of A.

• For MN , the error is given by − 1
12N2 , so the error is less than 0.001 if

1

12N2
< 0.001

1000 < 12N2

9.13 < N

Therefore, M10 is within 0.001 units of the correct answer.

In Exercises 75–80, use the Graphical Insight on page 291 to obtain bounds on the area.

75. Let A be the area under f (x) = √
x over [0, 1]. Prove that 0.51 ≤ A ≤ 0.77 by computing R4 and L4. Explain your

reasoning.

solution For n = 4, �x = 1−0
4 = 1

4 and {xi}4
i=0 = {0 + i�x} = {0, 1

4 , 1
2 , 3

4 , 1}. Therefore,

R4 = �x

4∑
i=1

f (xi) = 1

4

(
1

2
+

√
2

2
+

√
3

2
+ 1

)
≈ 0.768
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L4 = �x

3∑
i=0

f (xi) = 1

4

(
0 + 1

2
+

√
2

2
+

√
3

2

)
≈ 0.518.

In the plot below, you can see the rectangles whose area is represented by L4 under the graph and the top of those whose
area is represented by R4 above the graph. The area A under the curve is somewhere between L4 and R4, so

0.518 ≤ A ≤ 0.768.

L4, R4 and the graph of f (x).

76. Use R5 and L5 to show that the area A under y = x−2 over [10, 13] satisfies 0.0218 ≤ A ≤ 0.0244.

solution Let f (x) = x−2 over the interval [10, 13]. Because f is a decreasing function over this interval, it follows
that RN ≤ A ≤ LN for all N . Taking N = 5, we have �x = 3/5 and

R5 = 3

5

(
1

10.62
+ 1

11.22
+ 1

11.82
+ 1

12.42
+ 1

132

)
= 0.021885.

Moreover,

L5 = 3

5

(
1

102
+ 1

10.62
+ 1

11.22
+ 1

11.82
+ 1

12.42

)
= 0.0243344.

Thus,

0.0218 < R5 ≤ A ≤ L5 < 0.0244.

77. Use R4 and L4 to show that the area A under the graph of y = sin x over
[
0, π

2

]
satisfies 0.79 ≤ A ≤ 1.19.

solution Let f (x) = sin x. f (x) is increasing over the interval [0, π/2], so the Insight on page 291 applies, which

indicates that L4 ≤ A ≤ R4. For n = 4, �x = π/2−0
4 = π

8 and {xi}4
i=0 = {0 + i�x}4

i=0 = {0, π
8 , π

4 , 3π
8 , π

2 }. From
this,

L4 = π

8

3∑
i=0

f (xi) ≈ 0.79, R4 = π

8

4∑
i=1

f (xi) ≈ 1.18.

Hence A is between 0.79 and 1.19.

Left and Right endpoint approximations to A.

78. Show that the area A under f (x) = x−1 over [1, 8] satisfies

1
2 + 1

3 + 1
4 + 1

5 + 1
6 + 1

7 + 1
8 ≤ A ≤ 1 + 1

2 + 1
3 + 1

4 + 1
5 + 1

6 + 1
7

solution Let f (x) = x−1, 1 ≤ x ≤ 8. Since f is decreasing, the left endpoint approximation L7 overestimates
the true area between the graph of f and the x-axis, whereas the right endpoint approximation R7 underestimates it.
Accordingly,

1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

7
+ 1

8
= R7 < A < L7 = 1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

7

Left endpoint approximation, n = 7

21 3 4 5 7 86

1

0.8

0.6

0.4

0.2

0

Right endpoint approximation, n = 7

21 3 4 5 7 86

1

0.8

0.6

0.4

0.2

0
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79. Show that the area A under y = x1/4 over [0, 1] satisfies LN ≤ A ≤ RN for all N . Use a computer algebra
system to calculate LN and RN for N = 100 and 200, and determine A to two decimal places.

solution On [0, 1], f (x) = x1/4 is an increasing function; therefore, LN ≤ A ≤ RN for all N . We find

L100 = 0.793988 and R100 = 0.80399,

while

L200 = 0.797074 and R200 = 0.802075.

Thus, A = 0.80 to two decimal places.

80. Show that the area A under y = 4/(x2 + 1) over [0, 1] satisfies RN ≤ A ≤ LN for all N . Determine A to
at least three decimal places using a computer algebra system. Can you guess the exact value of A?

solution On [0, 1], the function f (x) = 4/(x2 + 1) is decreasing, so RN ≤ A ≤ LN for all N . From the values in
the table below, we find A = 3.142 to three decimal places. It appears that the exact value of A is π .

N RN LN

10 3.03993 3.23992
100 3.13158 3.15158

1000 3.14059 3.14259
10000 3.14149 3.14169

100000 3.14158 3.14160

81. In this exercise, we evaluate the area A under the graph of y = ex over [0, 1] [Figure 19(A)] using the formula for a
geometric sum (valid for r �= 1):

1 + r + r2 + · · · + rN−1 =
N−1∑
j=0

rj = rN − 1

r − 1
8

(a) Show that LN = 1

N

N−1∑
j=0

ej/N .

(b) Apply Eq. (8) with r = e1/N to prove LN = e − 1

N(e1/N − 1)
.

(c) Compute A = lim
N→∞ LN using L’Hôpital’s Rule.

y = ex

y = ln x

y

A B

3

y

2

e

1

1
x x

1 e

(A) (B)

1

FIGURE 19

solution
(a) Let f (x) = ex on [0, 1]. With n = N , �x = (1 − 0)/N = 1/N and

xj = a + j�x = j

N

for j = 0, 1, 2, . . . , N . Therefore,

LN = �x

N−1∑
j=0

f (xj ) = 1

N

N−1∑
j=0

ej/N .

(b) Applying Eq. (8) with r = e1/N , we have

LN = 1

N

(e1/N )N − 1

e1/N − 1
= e − 1

N(e1/N − 1)
.
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Therefore,

A = lim
N→∞ LN = (e − 1) lim

N→∞
1

N(e1/N − 1)
.

(c) Using L’Hôpital’s Rule,

A = (e − 1) lim
N→∞

N−1

e1/N − 1
= (e − 1) lim

N→∞
−N−2

−N−2e1/N
= (e − 1) lim

N→∞ e−1/N = e − 1.

82. Use the result of Exercise 81 to show that the area B under the graph of f (x) = ln x over [1, e] is equal to 1. Hint:
Relate B in Figure 19(B) to the area A computed in Exercise 81.

solution Because y = ln x and y = ex are inverse functions, we note that if the area B is reflected across the line
y = x and then combined with the area A, we create a rectangle of width 1 and height e. The area of this rectangle is
therefore e, and it follows that the area B is equal to e minus the area A. Using the result of Exercise 81, the area B is
equal to

e − (e − 1) = 1.

Further Insights and Challenges
83. Although the accuracy of RN generally improves as N increases, this need not be true for small values of N . Draw
the graph of a positive continuous function f (x) on an interval such that R1 is closer than R2 to the exact area under the
graph. Can such a function be monotonic?

solution Let δ be a small positive number less than 1
4 . (In the figures below, δ = 1

10 . But imagine δ being very tiny.)
Define f (x) on [0, 1] by

f (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if 0 ≤ x < 1
2 − δ

1
2δ

− x
δ if 1

2 − δ ≤ x < 1
2

x
δ − 1

2δ
if 1

2 ≤ x < 1
2 + δ

1 if 1
2 + δ ≤ x ≤ 1

Then f is continuous on [0, 1]. (Again, just look at the figures.)

• The exact area between f and the x-axis is A = 1 − 1
2bh = 1 − 1

2 (2δ)(1) = 1 − δ. (For δ = 1
10 , we have A = 9

10 .)

• With R1 = 1, the absolute error is |E1| = |R1 − A| = |1 − (1 − δ)| = δ. (For δ = 1
10 , this absolute error is

|E1| = 1
10 .)

• With R2 = 1
2 , the absolute error is |E2| = |R2 − A| = ∣∣ 12 − (1 − δ)

∣∣ = ∣∣δ − 1
2

∣∣ = 1
2 − δ. (For δ = 1

10 , we have

|E2| = 2
5 .)

• Accordingly, R1 is closer to the exact area A than is R2. Indeed, the tinier δ is, the more dramatic the effect.

• For a monotonic function, this phenomenon cannot occur. Successive approximations from either side get progres-
sively more accurate.

x

Right endpt approx, n = 1Graph of f(x)

0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0
0.5 1

1

0.5

0

Right endpt approx, n = 2

0.5 1

1

0.5

0

84. Draw the graph of a positive continuous function on an interval such that R2 and L2 are both smaller than the exact
area under the graph. Can such a function be monotonic?

solution In the plot below, the area under the saw-tooth function f (x) is 3, whereas L2 = R2 = 2. Thus L2 and R2
are both smaller than the exact area. Such a function cannot be monotonic; if f (x) is increasing, then LN underestimates
and RN overestimates the area for all N , and, if f (x) is decreasing, then LN overestimates and RN underestimates the
area for all N .
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1 2

1

2

Left/right-endpoint approximation, n = 2

85. Explain graphically: The endpoint approximations are less accurate when f ′(x) is large.

solution When f ′ is large, the graph of f is steeper and hence there is more gap between f and LN or RN . Recall that
the top line segments of the rectangles involved in an endpoint approximation constitute a piecewise constant function.
If f ′ is large, then f is increasing more rapidly and hence is less like a constant function.

1 2 4

1

2

3

0 x

y

Smaller f'

3 100 2 4

1

2

3

0 x

y

Larger f'

3

86. Prove that for any function f (x) on [a, b],

RN − LN = b − a

N
(f (b) − f (a)) 9

solution For any f (continuous or not) on I = [a, b], partition I into N equal subintervals. Let �x = (b − a)/N

and set xk = a + k�x, k = 0, 1, . . . N . Then we have the following approximations to the area between the graph of
f and the x-axis: the left endpoint approximation LN = �x

∑N−1
k=0 f (xk) and right endpoint approximation RN =

�x
∑N

k=1 f (xk). Accordingly,

RN − LN =
⎛
⎝�x

N∑
k=1

f (xk)

⎞
⎠−

⎛
⎝�x

N−1∑
k=0

f (xk)

⎞
⎠

= �x

⎛
⎝f (xN ) +

⎛
⎝N−1∑

k=1

f (xk)

⎞
⎠− f (x0) −

⎛
⎝N−1∑

k=1

f (xk)

⎞
⎠
⎞
⎠

= �x (f (xN ) − f (x0)) = b − a

N
(f (b) − f (a)) .

In other words, RN − LN = b − a

N
(f (b) − f (a)).

87. In this exercise, we prove that lim
N→∞ RN and lim

N→∞ LN exist and are equal if f (x) is increasing [the case

of f (x) decreasing is similar]. We use the concept of a least upper bound discussed in Appendix B.

(a) Explain with a graph why LN ≤ RM for all N, M ≥ 1.
(b) By (a), the sequence {LN } is bounded, so it has a least upper bound L. By definition, L is the smallest number such
that LN ≤ L for all N . Show that L ≤ RM for all M .
(c) According to (b), LN ≤ L ≤ RN for all N . Use Eq. (9) to show that lim

N→∞ LN = L and lim
N→∞ RN = L.

solution
(a) Let f (x) be positive and increasing, and let N and M be positive integers. From the figure below at the left, we see
that LN underestimates the area under the graph of y = f (x), while from the figure below at the right, we see that RM

overestimates the area under the graph. Thus, for all N, M ≥ 1, LN ≤ RM .

x

y

x

y
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(b) Because the sequence {LN } is bounded above by RM for any M , each RM is an upper bound for the sequence.
Furthermore, the sequence {LN } must have a least upper bound, call it L. By definition, the least upper bound must be
no greater than any other upper bound; consequently, L ≤ RM for all M .

(c) Since LN ≤ L ≤ RN , RN − L ≤ RN − LN , so |RN − L| ≤ |RN − LN |. From this,

lim
N→∞ |RN − L| ≤ lim

N→∞ |RN − LN |.

By Eq. (9),

lim
N→∞ |RN − LN | = lim

N→∞
1

N
|(b − a)(f (b) − f (a))| = 0,

so lim
N→∞ |RN − L| ≤ |RN − LN | = 0, hence lim

N→∞ RN = L.

Similarly, |LN − L| = L − LN ≤ RN − LN , so

|LN − L| ≤ |RN − LN | = (b − a)

N
(f (b) − f (a)).

This gives us that

lim
N→∞ |LN − L| ≤ lim

N→∞
1

N
|(b − a)(f (b) − f (a))| = 0,

so lim
N→∞ LN = L.

This proves lim
N→∞ LN = lim

N→∞ RN = L.

88. Use Eq. (9) to show that if f (x) is positive and monotonic, then the area A under its graph over [a, b] satisfies

|RN − A| ≤ b − a

N
|f (b) − f (a)| 10

solution Let f (x) be continuous, positive, and monotonic on [a, b]. Let A be the area between the graph of f and
the x-axis over [a, b]. For specificity, say f is increasing. (The case for f decreasing on [a, b] is similar.) As noted in the
text, we have LN ≤ A ≤ RN . By Exercise 86 and the fact that A lies between LN and RN , we therefore have

0 ≤ RN − A ≤ RN − LN = b − a

N
(f (b) − f (a)) .

Hence

|RN − A| ≤ b − a

N
(f (b) − f (a)) = b − a

N
|f (b) − f (a)| ,

where f (b) − f (a) = |f (b) − f (a)| because f is increasing on [a, b].
In Exercises 89 and 90, use Eq. (10) to find a value of N such that |RN − A| < 10−4 for the given function and interval.

89. f (x) = √
x, [1, 4]

solution Let f (x) = √
x on [1, 4]. Then b = 4, a = 1, and

|RN − A| ≤ 4 − 1

N
(f (4) − f (1)) = 3

N
(2 − 1) = 3

N
.

We need 3
N

< 10−4, which gives N > 30,000. Thus |R30,001 − A| < 10−4 for f (x) = √
x on [1, 4].

90. f (x) =
√

9 − x2, [0, 3]
solution Let f (x) =

√
9 − x2 on [0, 3]. Then b = 3, a = 0, and

|RN − A| ≤ b − a

N
|f (b) − f (a)| = 3

N
(3) = 9

N
.

We need 9
N

< 10−4, which gives N > 90,000. Thus |R90,001 − A| < 10−4 for f (x) =
√

9 − x2 on [0, 3].

91. Prove that if f (x) is positive and monotonic, then MN lies between RN and LN and is closer to the actual
area under the graph than both RN and LN . Hint: In the case that f (x) is increasing, Figure 20 shows that the part of the
error in RN due to the ith rectangle is the sum of the areas A + B + D, and for MN it is |B − E|. On the other hand,
A ≥ E.
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x
xi − 1 ximidpoint

A

F

D
E

B

C

FIGURE 20

solution Suppose f (x) is monotonic increasing on the interval [a, b], �x = b − a

N
,

{xk}Nk=0 = {a, a + �x, a + 2�x, . . . , a + (N − 1)�x, b}

and

{
x∗
k

}N−1
k=0 =

{
a + (a + �x)

2
,
(a + �x) + (a + 2�x)

2
, . . . ,

(a + (N − 1)�x) + b

2

}
.

Note that xi < x∗
i

< xi+1 implies f (xi) < f (x∗
i
) < f (xi+1) for all 0 ≤ i < N because f (x) is monotone increasing.

Then ⎛
⎝LN = b − a

N

N−1∑
k=0

f (xk)

⎞
⎠ <

⎛
⎝MN = b − a

N

N−1∑
k=0

f (x∗
k )

⎞
⎠ <

⎛
⎝RN = b − a

N

N∑
k=1

f (xk)

⎞
⎠

Similarly, if f (x) is monotone decreasing,

⎛
⎝LN = b − a

N

N−1∑
k=0

f (xk)

⎞
⎠ >

⎛
⎝MN = b − a

N

N−1∑
k=0

f (x∗
k )

⎞
⎠ >

⎛
⎝RN = b − a

N

N∑
k=1

f (xk)

⎞
⎠

Thus, if f (x) is monotonic, then MN always lies in between RN and LN .
Now, as in Figure 20, consider the typical subinterval [xi−1, xi ] and its midpoint x∗

i
. We let A, B, C, D, E, and F

be the areas as shown in Figure 20. Note that, by the fact that x∗
i

is the midpoint of the interval, A = D + E and
F = B + C. Let ER represent the right endpoint approximation error ( = A + B + D), let EL represent the left endpoint
approximation error ( = C + F + E) and let EM represent the midpoint approximation error ( = |B − E|).

• If B > E, then EM = B − E. In this case,

ER − EM = A + B + D − (B − E) = A + D + E > 0,

so ER > EM , while

EL − EM = C + F + E − (B − E) = C + (B + C) + E − (B − E) = 2C + 2E > 0,

so EL > EM . Therefore, the midpoint approximation is more accurate than either the left or the right endpoint
approximation.

• If B < E, then EM = E − B. In this case,

ER − EM = A + B + D − (E − B) = D + E + D − (E − B) = 2D + B > 0,

so that ER > EM while

EL − EM = C + F + E − (E − B) = C + F + B > 0,

so EL > EM . Therefore, the midpoint approximation is more accurate than either the right or the left endpoint
approximation.

• If B = E, the midpoint approximation is exactly equal to the area.

Hence, for B < E, B > E, or B = E, the midpoint approximation is more accurate than either the left endpoint or the
right endpoint approximation.
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5.2 The Definite Integral

Preliminary Questions

1. What is
∫ 5

3
dx [the function is f (x) = 1]?

solution
∫ 5

3
dx =

∫ 5

3
1 · dx = 1(5 − 3) = 2.

2. Let I =
∫ 7

2
f (x) dx, where f (x) is continuous. State whether true or false:

(a) I is the area between the graph and the x-axis over [2, 7].
(b) If f (x) ≥ 0, then I is the area between the graph and the x-axis over [2, 7].
(c) If f (x) ≤ 0, then −I is the area between the graph of f (x) and the x-axis over [2, 7].
solution

(a) False.
∫ b
a f (x) dx is the signed area between the graph and the x-axis.

(b) True.
(c) True.

3. Explain graphically:
∫ π

0
cos x dx = 0.

solution Because cos(π − x) = − cos x, the “negative” area between the graph of y = cos x and the x-axis over
[π

2 , π ] exactly cancels the “positive” area between the graph and the x-axis over [0, π
2 ].

4. Which is negative,
∫ −5

−1
8 dx or

∫ −1

−5
8 dx?

solution Because −5 − (−1) = −4,
∫ −5

−1
8 dx is negative.

Exercises
In Exercises 1–10, draw a graph of the signed area represented by the integral and compute it using geometry.

1.
∫ 3

−3
2x dx

solution The region bounded by the graph of y = 2x and the x-axis over the interval [−3, 3] consists of two right

triangles. One has area 1
2 (3)(6) = 9 below the axis, and the other has area 1

2 (3)(6) = 9 above the axis. Hence,∫ 3

−3
2x dx = 9 − 9 = 0.

−3 −2 −2
−4
−6

−1 1 2 3

2
4
6

x

y

2.
∫ 3

−2
(2x + 4) dx

solution The region bounded by the graph of y = 2x + 4 and the x-axis over the interval [−2, 3] consists of a single

right triangle of area 1
2 (5)(10) = 25 above the axis. Hence,∫ 3

−2
(2x + 4) dx = 25.

−2 −1 1 2 3

2

4

8

6

10

x

y
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3.
∫ 1

−2
(3x + 4) dx

solution The region bounded by the graph of y = 3x + 4 and the x-axis over the interval [−2, 1] consists of two

right triangles. One has area 1
2 ( 2

3 )(2) = 2
3 below the axis, and the other has area 1

2 ( 7
3 )(7) = 49

6 above the axis. Hence,

∫ 1

−2
(3x + 4) dx = 49

6
− 2

3
= 15

2
.

−2
−2

−1 1

2

4

8

6

x

y

4.
∫ 1

−2
4 dx

solution The region bounded by the graph of y = 4 and the x-axis over the interval [−2, 1] is a rectangle of area
(3)(4) = 12 above the axis. Hence, ∫ 1

−2
4 dx = 12.

−2 −1 1

1

2

4

3

x

y

5.
∫ 8

6
(7 − x) dx

solution The region bounded by the graph of y = 7 − x and the x-axis over the interval [6, 8] consists of two right

triangles. One triangle has area 1
2 (1)(1) = 1

2 above the axis, and the other has area 1
2 (1)(1) = 1

2 below the axis. Hence,

∫ 8

6
(7 − x) dx = 1

2
− 1

2
= 0.

−1

8642

0.5

−0.5

1

x

y

6.
∫ 3π/2

π/2
sin x dx

solution The region bounded by the graph of y = sin x and the x-axis over the interval [π
2 , 3π

2 ] consists of two parts
of equal area, one above the axis and the other below the axis. Hence,∫ 3π/2

π/2
sin x dx = 0.

−0.5

−1

41 2 3

1

0.5

x

y
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7.
∫ 5

0

√
25 − x2 dx

solution The region bounded by the graph of y =
√

25 − x2 and the x-axis over the interval [0, 5] is one-quarter of
a circle of radius 5. Hence, ∫ 5

0

√
25 − x2 dx = 1

4
π(5)2 = 25π

4
.

54321

3

4

5

1

2

x

y

8.
∫ 3

−2
|x| dx

solution The region bounded by the graph of y = |x| and the x-axis over the interval [−2, 3] consists of two right

triangles, both above the axis. One triangle has area 1
2 (2)(2) = 2, and the other has area 1

2 (3)(3) = 9
2 . Hence,

∫ 3

−2
|x| dx = 9

2
+ 2 = 13

2
.

−2 −1 1 2 3

3

2

1

x

y

9.
∫ 2

−2
(2 − |x|) dx

solution The region bounded by the graph of y = 2 − |x| and the x-axis over the interval [−2, 2] is a triangle above
the axis with base 4 and height 2. Consequently,∫ 2

−2
(2 − |x|) dx = 1

2
(2)(4) = 4.

−2 −1 21

2

1

x

y

10.
∫ 5

−2
(3 + x − 2|x|) dx

solution The region bounded by the graph of y = 3 + x − 2|x| and the x-axis over the interval [−2, 5] consists of a
triangle below the axis with base 1 and height 3, a triangle above the axis of base 4 and height 3 and a triangle below the
axis of base 2 and height 2. Consequently,∫ 5

−2
(3 + x − 2|x|) dx = −1

2
(1)(3) + 1

2
(4)(3) − 1

2
(2)(2) = 5

2
.

−2

−3
−2
−1

1
2
3

2

4

y

x
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11. Calculate
∫ 10

0
(8 − x) dx in two ways:

(a) As the limit lim
N→∞ RN

(b) By sketching the relevant signed area and using geometry

solution Let f (x) = 8 − x over [0, 10]. Consider the integral
∫ 10

0 f (x) dx = ∫ 10
0 (8 − x) dx.

(a) Let N be a positive integer and set a = 0, b = 10, �x = (b − a) /N = 10/N . Also, let xk = a + k�x = 10k/N ,
k = 1, 2, . . . , N be the right endpoints of the N subintervals of [0, 10]. Then

RN = �x

N∑
k=1

f (xk) = 10

N

N∑
k=1

(
8 − 10k

N

)
= 10

N

⎛
⎝8

⎛
⎝ N∑

k=1

1

⎞
⎠− 10

N

⎛
⎝ N∑

k=1

k

⎞
⎠
⎞
⎠

= 10

N

(
8N − 10

N

(
N2

2
+ N

2

))
= 30 − 50

N
.

Hence lim
N→∞ RN = lim

N→∞

(
30 − 50

N

)
= 30.

(b) The region bounded by the graph of y = 8 − x and the x-axis over the interval [0, 10] consists of two right triangles.
One triangle has area 1

2 (8)(8) = 32 above the axis, and the other has area 1
2 (2)(2) = 2 below the axis. Hence,

∫ 10

0
(8 − x) dx = 32 − 2 = 30.

2

2

4

6

8

4 6 8

10

y

x

12. Calculate
∫ 4

−1
(4x − 8) dx in two ways: As the limit lim

N→∞ RN and using geometry.

solution Let f (x) = 4x − 8 over [−1, 4]. Consider the integral
∫ 4

−1
f (x) dx =

∫ 4

−1
(4x − 8) dx.

• Let N be a positive integer and set a = −1, b = 4, �x = (b − a) /N = 5/N . Then xk = a + k�x = −1 + 5k/N ,
k = 1, 2, . . . , N are the right endpoints of the N subintervals of [−1, 4]. Then

RN = �x

N∑
k=1

f (xk) = 5

N

N∑
k=1

(
−4 + 20k

N
− 8

)
= −60

N

⎛
⎝ N∑

k=1

1

⎞
⎠+ 100

N2

⎛
⎝ N∑

k=1

k

⎞
⎠

= −60

N
(N) + 100

N2

(
N2

2
+ N

2

)

= −60 + 50 + 50

N
= −10 + 50

N
.

Hence lim
N→∞ RN = lim

N→∞

(
−10 + 50

N

)
= −10.

• The region bounded by the graph of y = 4x − 8 and the x-axis over the interval [−1, 4] consists of a triangle below
the axis with base 3 and height 12 and a triangle above the axis with base 2 and height 8. Hence,

∫ 4

−1
(4x − 8) dx = −1

2
(3)(12) + 1

2
(2)(8) = −10.

5

−5

−1

1 2 3 4

−10

y

x



April 1, 2011

596 C H A P T E R 5 THE INTEGRAL

In Exercises 13 and 14, refer to Figure 14.

y = f (x)

642

y

x

FIGURE 14 The two parts of the graph are semicircles.

13. Evaluate: (a)
∫ 2

0
f (x) dx (b)

∫ 6

0
f (x) dx

solution Let f (x) be given by Figure 14.

(a) The definite integral
∫ 2

0 f (x) dx is the signed area of a semicircle of radius 1 which lies below the x-axis. Therefore,

∫ 2

0
f (x) dx = −1

2
π (1)2 = −π

2
.

(b) The definite integral
∫ 6

0 f (x) dx is the signed area of a semicircle of radius 1 which lies below the x-axis and a
semicircle of radius 2 which lies above the x-axis. Therefore,∫ 6

0
f (x) dx = 1

2
π (2)2 − 1

2
π (1)2 = 3π

2
.

14. Evaluate: (a)
∫ 4

1
f (x) dx (b)

∫ 6

1
|f (x)| dx

solution Let f (x) be given by Figure 14.

(a) The definite integral
∫ 4

1 f (x) dx is the signed area of one-quarter of a circle of radius 1 which lies below the x-axis
and one-quarter of a circle of radius 2 which lies above the x-axis. Therefore,

∫ 4

1
f (x) dx = 1

4
π (2)2 − 1

4
π (1)2 = 3

4
π.

(b) The definite integral
∫ 6

1 |f (x)| dx is the signed area of one-quarter of a circle of radius 1 and a semicircle of radius
2, both of which lie above the x-axis. Therefore,∫ 6

1
|f (x)| dx = 1

2
π (2)2 + 1

4
π (1)2 = 9π

4
.

In Exercises 15 and 16, refer to Figure 15.

1 2 3 4 5

2

1

−1

−2

y = g (t)

t

y

FIGURE 15

15. Evaluate
∫ 3

0
g(t) dt and

∫ 5

3
g(t) dt .

solution

• The region bounded by the curve y = g(x) and the x-axis over the interval [0, 3] is comprised of two right triangles,
one with area 1

2 below the axis, and one with area 2 above the axis. The definite integral is therefore equal to

2 − 1
2 = 3

2 .
• The region bounded by the curve y = g(x) and the x-axis over the interval [3, 5] is comprised of another two right

triangles, one with area 1 above the axis and one with area 1 below the axis. The definite integral is therefore equal
to 0.
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16. Find a, b, and c such that
∫ a

0
g(t) dt and

∫ c

b
g(t) dt are as large as possible.

solution To make the value of
∫ a

0
g(t) dt as large as possible, we want to include as much positive area as possible.

This happens when we take a = 4. Now, to make the value of
∫ c

b
g(t) dt as large as possible, we want to make sure to

include all of the positive area and only the positive area. This happens when we take b = 1 and c = 4.

17. Describe the partition P and the set of sample points C for the Riemann sum shown in Figure 16. Compute the value
of the Riemann sum.

x
1 32.5 3.220.5 4.5 5

34.25

20

15

8

y

FIGURE 16

solution The partition P is defined by

x0 = 0 < x1 = 1 < x2 = 2.5 < x3 = 3.2 < x4 = 5

The set of sample points is given by C = {c1 = 0.5, c2 = 2, c3 = 3, c4 = 4.5}. Finally, the value of the Riemann sum is

34.25(1 − 0) + 20(2.5 − 1) + 8(3.2 − 2.5) + 15(5 − 3.2) = 96.85.

18. Compute R(f, P, C) for f (x) = x2 + x for the partition P and the set of sample points C in Figure 16.

solution

R(f, P, C) = f (0.5)(1 − 0) + f (2)(2.5 − 1) + f (3)(3.2 − 2.5) + f (4.5)(5 − 3.2)

= 34.25(1) + 20(1.5) + 8(0.7) + 15(1.8) = 96.85

In Exercises 19–22, calculate the Riemann sum R(f, P, C) for the given function, partition, and choice of sample points.
Also, sketch the graph of f and the rectangles corresponding to R(f, P, C).

19. f (x) = x, P = {1, 1.2, 1.5, 2}, C = {1.1, 1.4, 1.9}
solution Let f (x) = x. With

P = {x0 = 1, x1 = 1.2, x2 = 1.5, x3 = 2} and C = {c1 = 1.1, c2 = 1.4, c3 = 1.9},
we get

R(f, P, C) = �x1f (c1) + �x2f (c2) + �x3f (c3)

= (1.2 − 1)(1.1) + (1.5 − 1.2)(1.4) + (2 − 1.5)(1.9) = 1.59.

Here is a sketch of the graph of f and the rectangles.

0.5 1 1.5 2 2.5

0.5

1

2

1.5

x

y

20. f (x) = 2x + 3, P = {−4, −1, 1, 4, 8}, C = {−3, 0, 2, 5}
solution Let f (x) = 2x + 3. With

P = {x0 = −4, x1 = −1, x2 = 1, x3 = 4, x4 = 8} and C = {c1 = −3, c2 = 0, c3 = 2, c4 = 5},
we get

R(f, P, C) = �x1f (c1) + �x2f (c2) + �x3f (c3) + �x4f (c4)

= (−1 − (−4))(−3) + (1 − (−1))(3) + (4 − 1)(7) + (8 − 4)(13) = 70.
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Here is a sketch of the graph of f and the rectangles.

−4 −2

2 4 6 8−5

5

10

15

20

y

x

21. f (x) = x2 + x, P = {2, 3, 4.5, 5}, C = {2, 3.5, 5}
solution Let f (x) = x2 + x. With

P = {x0 = 2, x1 = 3, x3 = 4.5, x4 = 5} and C = {c1 = 2, c2 = 3.5, c3 = 5},
we get

R(f, P, C) = �x1f (c1) + �x2f (c2) + �x3f (c3)

= (3 − 2)(6) + (4.5 − 3)(15.75) + (5 − 4.5)(30) = 44.625.

Here is a sketch of the graph of f and the rectangles.

5

10

15

20

25

30

y

x
51 42 3

22. f (x) = sin x, P = {0, π
6 , π

3 , π
2

}
, C = {0.4, 0.7, 1.2}

solution Let f (x) = sin x. With

P =
{
x0 = 0, x1 = π

6
, x3 = π

3
, x4 = π

2

}
and C = {c1 = 0.4, c2 = 0.7, c3 = 1.2},

we get

R(f, P, C) = �x1f (c1) + �x2f (c2) + �x3f (c3)

=
(π

6
− 0
)

(sin 0.4) +
(π

3
− π

6

)
(sin 0.7) +

(π

2
− π

3

)
(sin 1.2) = 1.029225.

Here is a sketch of the graph of f and the rectangles.

1

0.8

0.6

0.4

0.2

y

x
1.60.2 1.40.6 1.20.4 10.8

In Exercises 23–28, sketch the signed area represented by the integral. Indicate the regions of positive and negative area.

23.
∫ 5

0
(4x − x2) dx

solution Here is a sketch of the signed area represented by the integral
∫ 5

0 (4x − x2) dx.

1 2 3 4

5

−4

−2

2

4

y

x
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24.
∫ π/4

−π/4
tan x dx

solution Here is a sketch of the signed area represented by the integral
∫ π/4
−π/4 tan x dx.

−0.6 −0.2

0.2 0.4 0.6

−1.0

−0.5

0.5

1.0

y

x

+

−

25.
∫ 2π

π
sin x dx

solution Here is a sketch of the signed area represented by the integral
∫ 2π
π sin x dx.

−0.4

−0.8

−1.2

7531 642

0.4

x

y

−

26.
∫ 3π

0
sin x dx

solution Here is a sketch of the signed area represented by the integral
∫ 3π

0 sin x dx.

−1

−0.5

+ +

−
2 4 6 8 10

1

0.5

x

y

27.
∫ 2

1/2
ln x dx

solution Here is a sketch of the signed area represented by the integral
∫ 2

1/2 ln x dx.

0.5 1 1.5 2

–0.6

–0.4

–0.2

0.2

0.4

0.6

–

+

28.
∫ 1

−1
tan−1 x dx

solution Here is a sketch of the signed area represented by the integral
∫ 1
−1 tan−1 x dx.

−1 −0.5 0.5 1

−0.5

0.5
+

−

y

x
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In Exercises 29–32, determine the sign of the integral without calculating it. Draw a graph if necessary.

29.
∫ 1

−2
x4 dx

solution The integrand is always positive. The integral must therefore be positive, since the signed area has only
positive part.

30.
∫ 1

−2
x3 dx

solution By symmetry, the positive area from the interval [0, 1] is cancelled by the negative area from [−1, 0]. With
the interval [−2, −1] contributing more negative area, the definite integral must be negative.

31.
∫ 2π

0
x sin x dx

solution As you can see from the graph below, the area below the axis is greater than the area above the axis. Thus,
the definite integral is negative.

−0.2

−0.4

−0.6

7531 642

0.2

x

y

−

+

32.
∫ 2π

0

sin x

x
dx

solution From the plot below, you can see that the area above the axis is bigger than the area below the axis, hence
the integral is positive.

0.4
0.2

4 5 61 2 3

0.8
0.6

1

x

y

+

−

In Exercises 33–42, use properties of the integral and the formulas in the summary to calculate the integrals.

33.
∫ 4

0
(6t − 3) dt

solution
∫ 4

0
(6t − 3) dt = 6

∫ 4

0
t dt − 3

∫ 4

0
1 dt = 6 · 1

2
(4)2 − 3(4 − 0) = 36.

34.
∫ 2

−3
(4x + 7) dx

solution

∫ 2

−3
(4x + 7) dx = 4

∫ 2

−3
x dx + 7

∫ 2

−3
dx

= 4

(∫ 0

−3
x dx +

∫ 2

0
x dx

)
+ 7(2 − (−3))

= 4

(∫ 2

0
x dx −

∫ −3

0
x dx

)
+ 35

= 4

(
1

2
22 − 1

2
(−3)2

)
+ 35 = 25.

35.
∫ 9

0
x2 dx

solution By formula (5),
∫ 9

0
x2 dx = 1

3
(9)3 = 243.
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36.
∫ 5

2
x2 dx

solution
∫ 5

2
x2 dx =

∫ 5

0
x2 dx −

∫ 2

0
x2dx = 1

3
(5)3 − 1

3
(2)3 = 39.

37.
∫ 1

0
(u2 − 2u) du

solution ∫ 1

0
(u2 − 2u) du =

∫ 1

0
u2 du − 2

∫ 1

0
u du = 1

3
(1)3 − 2

(
1

2

)
(1)2 = 1

3
− 1 = −2

3
.

38.
∫ 1/2

0
(12y2 + 6y) dy

solution ∫ 1/2

0
(12y2 + 6y) dy = 12

∫ 1/2

0
y2 dy + 6

∫ 1/2

0
y dy

= 12 · 1

3

(
1

2

)3
+ 6 · 1

2

(
1

2

)2

= 1

2
+ 3

4
= 5

4
.

39.
∫ 1

−3
(7t2 + t + 1) dt

solution First, write ∫ 1

−3
(7t2 + t + 1) dt =

∫ 0

−3
(7t2 + t + 1) dt +

∫ 1

0
(7t2 + t + 1) dt

= −
∫ −3

0
(7t2 + t + 1) dt +

∫ 1

0
(7t2 + t + 1) dt

Then, ∫ 1

−3
(7t2 + t + 1) dt = −

(
7 · 1

3
(−3)3 + 1

2
(−3)2 − 3

)
+
(

7 · 1

3
13 + 1

2
12 + 1

)

= −
(

−63 + 9

2
− 3

)
+
(

7

3
+ 1

2
+ 1

)
= 196

3
.

40.
∫ 3

−3
(9x − 4x2) dx

solution First write ∫ 3

−3
(9x − 4x2) dx =

∫ 0

−3
(9x − 4x2) dx +

∫ 3

0
(9x − 4x2) dx

= −
∫ −3

0
(9x − 4x2) dx +

∫ 3

0
(9x − 4x2) dx.

Then, ∫ 3

−3
(9x − 4x2) dx = −

(
9 · 1

2
(−3)2 − 4 · 1

3
(−3)3

)
+
(

9 · 1

2
(3)2 − 4 · 1

3
(3)3

)

= −
(

81

2
+ 36

)
+
(

81

2
− 36

)
= −72.

41.
∫ 1

−a
(x2 + x) dx

solution First,
∫ b

0 (x2 + x) dx = ∫ b
0 x2 dx + ∫ b

0 x dx = 1
3b3 + 1

2b2. Therefore∫ 1

−a
(x2 + x) dx =

∫ 0

−a
(x2 + x) dx +

∫ 1

0
(x2 + x) dx =

∫ 1

0
(x2 + x) dx −

∫ −a

0
(x2 + x) dx

=
(

1

3
· 13 + 1

2
· 12
)

−
(

1

3
(−a)3 + 1

2
(−a)2

)
= 1

3
a3 − 1

2
a2 + 5

6
.
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42.
∫ a2

a
x2 dx

solution

∫ a2

a
x2 dx =

∫ a2

0
x2 dx −

∫ a

0
x2 dx = 1

3

(
a2
)3 − 1

3
(a)3 = 1

3
a6 − 1

3
a3.

In Exercises 43–47, calculate the integral, assuming that

∫ 5

0
f (x) dx = 5,

∫ 5

0
g(x) dx = 12

43.
∫ 5

0
(f (x) + g(x)) dx

solution
∫ 5

0
(f (x) + g(x)) dx =

∫ 5

0
f (x) dx +

∫ 5

0
g(x) dx = 5 + 12 = 17.

44.
∫ 5

0

(
2f (x) − 1

3
g(x)

)
dx

solution
∫ 5

0

(
2f (x) − 1

3
g(x)

)
dx = 2

∫ 5

0
f (x) dx − 1

3

∫ 5

0
g(x) dx = 2(5) − 1

3
(12) = 6.

45.
∫ 0

5
g(x) dx

solution
∫ 0

5
g(x) dx = −

∫ 5

0
g(x) dx = −12.

46.
∫ 5

0
(f (x) − x) dx

solution
∫ 5

0
(f (x) − x) dx =

∫ 5

0
f (x) dx −

∫ 5

0
x dx = 5 − 1

2
(5)2 = −15

2
.

47. Is it possible to calculate
∫ 5

0
g(x)f (x) dx from the information given?

solution It is not possible to calculate
∫ 5

0 g(x)f (x) dx from the information given.

48. Prove by computing the limit of right-endpoint approximations:

∫ b

0
x3 dx = b4

4
9

solution Let f (x) = x3, a = 0 and �x = (b − a)/N = b/N . Then

RN = �x

N∑
k=1

f (xk) = b

N

N∑
k=1

(
k3 · b3

N3

)
= b4

N4

⎛
⎝ N∑

k=1

k3

⎞
⎠ = b4

N4

(
N4

4
+ N3

2
+ N2

4

)
= b4

4
+ b4

2N
+ b4

4N2
.

Hence
∫ b

0
x3 dx = lim

N→∞ RN = lim
N→∞

(
b4

4
+ b4

2N
+ b4

4N2

)
= b4

4
.

In Exercises 49–54, evaluate the integral using the formulas in the summary and Eq. (9).

49.
∫ 3

0
x3 dx

solution By Eq. (9),
∫ 3

0
x3 dx = 34

4
= 81

4
.

50.
∫ 3

1
x3 dx

solution
∫ 3

1
x3 dx =

∫ 3

0
x3 dx −

∫ 1

0
x3 dx = 1

4
(3)4 − 1

4
(1)4 = 20.
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51.
∫ 3

0
(x − x3) dx

solution
∫ 3

0
(x − x3) dx =

∫ 3

0
x dx −

∫ 3

0
x3 dx = 1

2
32 − 1

4
34 = −63

4
.

52.
∫ 1

0
(2x3 − x + 4) dx

solution Applying the linearity of the definite integral, Eq. (9), the formula from Example 4 and the formula for the
definite integral of a constant:∫ 1

0
(2x3 − x + 4) dx = 2

∫ 1

0
x3 dx −

∫ 1

0
x dx +

∫ 1

0
4 dx = 2 · 1

4
(1)4 − 1

2
(1)2 + 4 = 4.

53.
∫ 1

0
(12x3 + 24x2 − 8x) dx

solution ∫ 1

0
(12x3 + 24x2 − 8x) dx = 12

∫ 1

0
x3 dx + 24

∫ 1

0
x2 − 8

∫ 1

0
x dx

= 12 · 1

4
14 + 24 · 1

3
13 − 8 · 1

2
12

= 3 + 8 − 4 = 7

54.
∫ 2

−2
(2x3 − 3x2) dx

solution ∫ 2

−2
(2x3 − 3x2) dx =

∫ 0

−2
(2x3 − 3x2) dx +

∫ 2

0
(2x3 − 3x2) dx

=
∫ 2

0
(2x3 − 3x2) dx −

∫ −2

0
(2x3 − 3x2) dx

= 2
∫ 2

0
x3 dx − 3

∫ 2

0
x2 dx − 2

∫ −2

0
x3 dx + 3

∫ −2

0
x2 dx

= 2 · 1

4
(2)4 − 3 · 1

3
(2)3 − 2 · 1

4
(−2)4 + 3 · 1

3
(−2)3

= 8 − 8 − 8 − 8 = −16.

In Exercises 55–58, calculate the integral, assuming that∫ 1

0
f (x) dx = 1,

∫ 2

0
f (x) dx = 4,

∫ 4

1
f (x) dx = 7

55.
∫ 4

0
f (x) dx

solution
∫ 4

0
f (x) dx =

∫ 1

0
f (x) dx +

∫ 4

1
f (x) dx = 1 + 7 = 8.

56.
∫ 2

1
f (x) dx

solution
∫ 2

1
f (x) dx =

∫ 2

0
f (x) dx −

∫ 1

0
f (x) dx = 4 − 1 = 3.

57.
∫ 1

4
f (x) dx

solution
∫ 1

4
f (x) dx = −

∫ 4

1
f (x) dx = −7.

58.
∫ 4

2
f (x) dx

solution From Exercise 55,
∫ 4

0 f (x) dx = 8. Accordingly,∫ 4

2
f (x) dx =

∫ 4

0
f (x) dx −

∫ 2

0
f (x) dx = 8 − 4 = 4.
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In Exercises 59–62, express each integral as a single integral.

59.
∫ 3

0
f (x) dx +

∫ 7

3
f (x) dx

solution
∫ 3

0
f (x) dx +

∫ 7

3
f (x) dx =

∫ 7

0
f (x) dx.

60.
∫ 9

2
f (x) dx −

∫ 9

4
f (x) dx

solution
∫ 9

2
f (x) dx −

∫ 9

4
f (x) dx =

(∫ 4

2
f (x) dx +

∫ 9

4
f (x) dx

)
−
∫ 9

4
f (x) dx =

∫ 4

2
f (x) dx.

61.
∫ 9

2
f (x) dx −

∫ 5

2
f (x) dx

solution
∫ 9

2
f (x) dx −

∫ 5

2
f (x) dx =

(∫ 5

2
f (x) dx +

∫ 9

5
f (x) dx

)
−
∫ 5

2
f (x) dx =

∫ 9

5
f (x) dx.

62.
∫ 3

7
f (x) dx +

∫ 9

3
f (x) dx

solution
∫ 3

7
f (x) dx +

∫ 9

3
f (x) dx = −

∫ 7

3
f (x) dx +

(∫ 7

3
f (x) dx +

∫ 9

7
f (x) dx

)
=
∫ 9

7
f (x) dx.

In Exercises 63–66, calculate the integral, assuming that f is integrable and
∫ b

1
f (x) dx = 1 − b−1 for all b > 0.

63.
∫ 5

1
f (x) dx

solution
∫ 5

1
f (x) dx = 1 − 5−1 = 4

5
.

64.
∫ 5

3
f (x) dx

solution
∫ 5

3
f (x) dx =

∫ 5

1
f (x) dx −

∫ 3

1
f (x) dx =

(
1 − 1

5

)
−
(

1 − 1

3

)
= 2

15
.

65.
∫ 6

1
(3f (x) − 4) dx

solution
∫ 6

1
(3f (x) − 4) dx = 3

∫ 6

1
f (x) dx − 4

∫ 6

1
1 dx = 3(1 − 6−1) − 4(6 − 1) = −35

2
.

66.
∫ 1

1/2
f (x) dx

solution
∫ 1

1/2
f (x) dx = −

∫ 1/2

1
f (x) dx = −

(
1 −

(
1

2

)−1
)

= 1.

67. Explain the difference in graphical interpretation between
∫ b

a
f (x) dx and

∫ b

a
|f (x)| dx.

solution When f (x) takes on both positive and negative values on [a, b], ∫ b
a f (x) dx represents the signed area

between f (x) and the x-axis, whereas
∫ b
a |f (x)| dx represents the total (unsigned) area between f (x) and the x-axis.

Any negatively signed areas that were part of
∫ b
a f (x) dx are regarded as positive areas in

∫ b
a |f (x)| dx. Here is a graphical

example of this phenomenon.

−20

2 4−4 −2

10

−30

−10

x

Graph of f (x)

2 4−4 −2

10

20

30

x

Graph of | f (x)|
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68. Use the graphical interpretation of the definite integral to explain the inequality∣∣∣∣∣
∫ b

a
f (x) dx

∣∣∣∣∣ ≤
∫ b

a
|f (x)| dx

where f (x) is continuous. Explain also why equality holds if and only if either f (x) ≥ 0 for all x or f (x) ≤ 0 for all x.

solution Let A+ denote the unsigned area under the graph of y = f (x) over the interval [a, b] where f (x) ≥ 0.
Similarly, let A− denote the unsigned area when f (x) < 0. Then∫ b

a
f (x) dx = A+ − A−.

Moreover, ∣∣∣∣∣
∫ b

a
f (x) dx

∣∣∣∣∣ ≤ A+ + A− =
∫ b

a
|f (x)| dx.

Equality holds if and only if one of the unsigned areas is equal to zero; in other words, if and only if either f (x) ≥ 0 for
all x or f (x) ≤ 0 for all x.

69. Let f (x) = x. Find an interval [a, b] such that∣∣∣∣∣
∫ b

a
f (x) dx

∣∣∣∣∣ = 1

2
and

∫ b

a
|f (x)| dx = 3

2

solution If a > 0, then f (x) ≥ 0 for all x ∈ [a, b], so∣∣∣∣∣
∫ b

a
f (x) dx

∣∣∣∣∣ =
∫ b

a
|f (x)| dx

by the previous exercise. We find a similar result if b < 0. Thus, we must have a < 0 and b > 0. Now,∫ b

a
|f (x)| dx = 1

2
a2 + 1

2
b2.

Because ∫ b

a
f (x) dx = 1

2
b2 − 1

2
a2,

then ∣∣∣∣∣
∫ b

a
f (x) dx

∣∣∣∣∣ = 1

2
|b2 − a2|.

If b2 > a2, then

1

2
a2 + 1

2
b2 = 3

2
and

1

2
(b2 − a2) = 1

2

yield a = −1 and b = √
2. On the other hand, if b2 < a2, then

1

2
a2 + 1

2
b2 = 3

2
and

1

2
(a2 − b2) = 1

2

yield a = −√
2 and b = 1.

70. Evaluate I =
∫ 2π

0
sin2 x dx and J =

∫ 2π

0
cos2 x dx as follows. First show with a graph that I = J . Then

prove that I + J = 2π .

solution The graphs of f (x) = sin2 x and g(x) = cos2 x are shown below at the left and right, respectively. It is
clear that the shaded areas in the two graphs are equal, thus

I =
∫ 2π

0
sin2 x dx =

∫ 2π

0
cos2 x dx = J.

Now, using the fundamental trigonometric identity, we find

I + J =
∫ 2π

0
(sin2 x + cos2 x) dx =

∫ 2π

0
1 · dx = 2π.

Combining this last result with I = J yields I = J = π .
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2 61 543

0.8

1

0.6

0.4

0.2

x

y

2 61 543

0.8

1

0.6

0.4

0.2

x

y

In Exercises 71–74, calculate the integral.

71.
∫ 6

0
|3 − x| dx

solution Over the interval, the region between the curve and the interval [0, 6] consists of two triangles above the x

axis, each of which has height 3 and width 3, and so area 9
2 . The total area, hence the definite integral, is 9.

654321

1

2

3

x

y

Alternately, ∫ 6

0
|3 − x| dx =

∫ 3

0
(3 − x) dx +

∫ 6

3
(x − 3) dx

= 3
∫ 3

0
dx −

∫ 3

0
x dx +

(∫ 6

0
x dx −

∫ 3

0
x dx

)
− 3

∫ 6

3
dx

= 9 − 1

2
32 + 1

2
62 − 1

2
32 − 9 = 9.

72.
∫ 3

1
|2x − 4| dx

solution The area between |2x − 4| and the x axis consists of two triangles above the x-axis, each with width 1 and
height 2, and hence with area 1. The total area, and hence the definite integral, is 2.

1 30.5 2.521.5
x

0.5

1

2

1.5

y

Alternately,∫ 3

1
|2x − 4| dx =

∫ 2

1
(4 − 2x) dx +

∫ 3

2
(2x − 4) dx

= 4
∫ 2

1
dx − 2

(∫ 2

0
x dx −

∫ 1

0
x dx

)
+ 2

(∫ 3

0
x dx −

∫ 2

0
x dx

)
− 4

∫ 3

2
dx

= 4 − 2

(
1

2
22 − 1

2
12
)

+ 2

(
1

2
32 − 1

2
22
)

− 4 = 2.

73.
∫ 1

−1
|x3| dx

solution

|x3| =
{

x3 x ≥ 0

−x3 x < 0.
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Therefore,

∫ 1

−1
|x3| dx =

∫ 0

−1
−x3 dx +

∫ 1

0
x3 dx =

∫ −1

0
x3 dx +

∫ 1

0
x3 dx = 1

4
(−1)4 + 1

4
(1)4 = 1

2
.

74.
∫ 2

0
|x2 − 1| dx

solution

|x2 − 1| =
{

x2 − 1 1 ≤ x ≤ 2

−(x2 − 1) 0 ≤ x < 1.

Therefore,

∫ 2

0
|x2 − 1| dx =

∫ 1

0
(1 − x2) dx +

∫ 2

1
(x2 − 1) dx

=
∫ 1

0
dx −

∫ 1

0
x2 dx +

(∫ 2

0
x2 dx −

∫ 1

0
x2 dx

)
−
∫ 2

1
1 dx

= 1 − 1

3
(1) +

(
1

3
(8) − 1

3
(1)

)
− 1 = 2.

75. Use the Comparison Theorem to show that

∫ 1

0
x5 dx ≤

∫ 1

0
x4 dx,

∫ 2

1
x4 dx ≤

∫ 2

1
x5 dx

solution On the interval [0, 1], x5 ≤ x4, so, by Theorem 5,

∫ 1

0
x5 dx ≤

∫ 1

0
x4 dx.

On the other hand, x4 ≤ x5 for x ∈ [1, 2], so, by the same Theorem,

∫ 2

1
x4 dx ≤

∫ 2

1
x5 dx.

76. Prove that
1

3
≤
∫ 6

4

1

x
dx ≤ 1

2
.

solution On the interval [4, 6], 1
6 ≤ 1

x , so, by Theorem 5,

1

3
=
∫ 6

4

1

6
dx ≤

∫ 6

4

1

x
dx.

On the other hand, 1
x ≤ 1

4 on the interval [4, 6], so

∫ 6

4

1

x
dx ≤

∫ 6

4

1

4
dx = 1

4
(6 − 4) = 1

2
.

Therefore 1
3 ≤ ∫ 6

4
1
x dx ≤ 1

2 , as desired.

77. Prove that 0.0198 ≤ ∫ 0.3
0.2 sin x dx ≤ 0.0296. Hint: Show that 0.198 ≤ sin x ≤ 0.296 for x in [0.2, 0.3].

solution For 0 ≤ x ≤ π
6 ≈ 0.52, we have d

dx
(sin x) = cos x > 0. Hence sin x is increasing on [0.2, 0.3].

Accordingly, for 0.2 ≤ x ≤ 0.3, we have

m = 0.198 ≤ 0.19867 ≈ sin 0.2 ≤ sin x ≤ sin 0.3 ≈ 0.29552 ≤ 0.296 = M

Therefore, by the Comparison Theorem, we have

0.0198 = m(0.3 − 0.2) =
∫ 0.3

0.2
m dx ≤

∫ 0.3

0.2
sin x dx ≤

∫ 0.3

0.2
M dx = M(0.3 − 0.2) = 0.0296.
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78. Prove that 0.277 ≤
∫ π/4

π/8
cos x dx ≤ 0.363.

solution cos x is decreasing on the interval [π/8, π/4]. Hence, for π/8 ≤ x ≤ π/4,

cos(π/4) ≤ cos x ≤ cos(π/8).

Since cos(π/4) = √
2/2,

0.277 ≤ π

8
·
√

2

2
=
∫ π/4

π/8

√
2

2
dx ≤

∫ π/4

π/8
cos x dx.

Since cos(π/8) ≤ 0.924, ∫ π/4

π/8
cos x dx ≤

∫ π/4

π/8
0.924 dx = π

8
(0.924) ≤ 0.363.

Therefore 0.277 ≤ ∫ π/4
π/8 cos x ≤ 0.363.

79. Prove that 0 ≤
∫ π/2

π/4

sin x

x
dx ≤

√
2

2
.

solution Let

f (x) = sin x

x
.

As we can see in the sketch below, f (x) is decreasing on the interval [π/4, π/2]. Therefore f (x) ≤ f (π/4) for all x in

[π/4, π/2]. f (π/4) = 2
√

2
π , so:

∫ π/2

π/4

sin x

x
dx ≤

∫ π/2

π/4

2
√

2

π
dx = π

4

2
√

2

π
=

√
2

2
.

2

x

y

2/p

2/p

p /4 p /2

y = sin x
x

80. Find upper and lower bounds for
∫ 1

0

dx√
5x3 + 4

.

solution Let

f (x) = 1√
5x3 + 4

.

f (x) is decreasing for x on the interval [0, 1], so f (1) ≤ f (x) ≤ f (0) for all x in [0, 1]. f (0) = 1
2 and f (1) = 1

3 , so

∫ 1

0

1

3
dx ≤

∫ 1

0
f (x) dx ≤

∫ 1

0

1

2
dx

1

3
≤
∫ 1

0
f (x) dx ≤ 1

2
.

81. Suppose that f (x) ≤ g(x) on [a, b]. By the Comparison Theorem,
∫ b
a f (x) dx ≤ ∫ b

a g(x) dx. Is it also true
that f ′(x) ≤ g′(x) for x ∈ [a, b]? If not, give a counterexample.

solution The assertion f ′(x) ≤ g′(x) is false. Consider a = 0, b = 1, f (x) = x, g(x) = 2. f (x) ≤ g(x) for all x in
the interval [0, 1], but f ′(x) = 1 while g′(x) = 0 for all x.

82. State whether true or false. If false, sketch the graph of a counterexample.

(a) If f (x) > 0, then
∫ b

a
f (x) dx > 0.

(b) If
∫ b

a
f (x) dx > 0, then f (x) > 0.
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solution

(a) It is true that if f (x) > 0 for x ∈ [a, b], then
∫ b
a f (x) dx > 0.

(b) It is false that if
∫ b
a f (x) dx > 0, then f (x) > 0 for x ∈ [a, b]. Indeed, in Exercise 3, we saw that

∫ 1
−2(3x + 4) dx =

7.5 > 0, yet f (−2) = −2 < 0. Here is the graph from that exercise.

−2
−2

−1 1

2

6

4

x

y

Further Insights and Challenges
83. Explain graphically: If f (x) is an odd function, then∫ a

−a
f (x) dx = 0.

solution If f is an odd function, then f (−x) = −f (x) for all x. Accordingly, for every positively signed area in the
right half-plane where f is above the x-axis, there is a corresponding negatively signed area in the left half-plane where
f is below the x-axis. Similarly, for every negatively signed area in the right half-plane where f is below the x-axis,
there is a corresponding positively signed area in the left half-plane where f is above the x-axis. We conclude that the
net area between the graph of f and the x-axis over [−a, a] is 0, since the positively signed areas and negatively signed
areas cancel each other out exactly.

1 2−2

−1

−2

−4

2

4

x

y

84. Compute
∫ 1

−1
sin(sin(x))(sin2(x) + 1) dx.

solution Let f (x) = sin(sin(x))(sin2(x) + 1)). sin x is an odd function, while sin2 x is an even function, so:

f (−x) = sin(sin(−x))(sin2(−x) + 1) = sin(− sin(x))(sin2(x) + 1)

= − sin(sin(x))(sin2(x) + 1) = −f (x).

Therefore, f (x) is an odd function. The function is odd and the interval is symmetric around the origin so, by the previous
exercise, the integral must be zero.

85. Let k and b be positive. Show, by comparing the right-endpoint approximations, that

∫ b

0
xk dx = bk+1

∫ 1

0
xk dx

solution Let k and b be any positive numbers. Let f (x) = xk on [0, b]. Since f is continuous, both
∫ b

0 f (x) dx

and
∫ 1

0 f (x) dx exist. Let N be a positive integer and set �x = (b − 0) /N = b/N . Let xj = a + j�x = bj/N , j =
1, 2, . . . , N be the right endpoints of the N subintervals of [0, b]. Then the right-endpoint approximation to

∫ b
0 f (x) dx =∫ b

0 xk dx is

RN = �x

N∑
j=1

f (xj ) = b

N

N∑
j=1

(
bj

N

)k

= bk+1

⎛
⎝ 1

Nk+1

N∑
j=1

jk

⎞
⎠ .

In particular, if b = 1 above, then the right-endpoint approximation to
∫ 1

0 f (x) dx = ∫ 1
0 xk dx is

SN = �x

N∑
j=1

f (xj ) = 1

N

N∑
j=1

(
j

N

)k

= 1

Nk+1

N∑
j=1

jk = 1

bk+1
RN
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In other words, RN = bk+1SN . Therefore,

∫ b

0
xk dx = lim

N→∞ RN = lim
N→∞ bk+1SN = bk+1 lim

N→∞ SN = bk+1
∫ 1

0
xk dx.

86. Verify for 0 ≤ b ≤ 1 by interpreting in terms of area:

∫ b

0

√
1 − x2 dx = 1

2
b
√

1 − b2 + 1

2
sin−1 b

solution The function f (x) =
√

1 − x2 is the quarter circle of radius 1 in the first quadrant. For 0 ≤ b ≤ 1, the area

represented by the integral
∫ b

0

√
1 − x2 dx can be divided into two parts. The area of the triangular part is 1

2 (b)
√

1 − b2

using the Pythagorean Theorem. The area of the sector with angle θ where sin θ = b, is given by 1
2 (1)2(θ). Thus

∫ b

0

√
1 − x2 dx = 1

2
b
√

1 − b2 + 1

2
θ = 1

2
b
√

1 − b2 + 1

2
sin−1 b.

1

1

θ

b
x

y

87. Suppose that f and g are continuous functions such that, for all a,

∫ a

−a
f (x) dx =

∫ a

−a
g(x) dx

Give an intuitive argument showing that f (0) = g(0). Explain your idea with a graph.

solution Let c = −b. Since b < 0, c > 0, so by Eq. (5),

∫ c

0
x2 dx = 1

3
c3.

Furthermore, x2 is an even function, so symmetry of the areas gives

∫ 0

−c
x2 dx =

∫ c

0
x2 dx.

Finally,

∫ b

0
x2 dx =

∫ −c

0
x2 dx = −

∫ 0

−c
x2 dx = −

∫ c

0
x2 dx = −1

3
c3 = 1

3
b3.

88. Theorem 4 remains true without the assumption a ≤ b ≤ c. Verify this for the cases b < a < c and c < a < b.

solution The additivity property of definite integrals states for a ≤ b ≤ c, we have
∫ c
a f (x) dx = ∫ b

a f (x) dx +∫ c
b f (x) dx.

• Suppose that we have b < a < c. By the additivity property, we have
∫ c
b f (x) dx = ∫ a

b f (x) dx + ∫ c
a f (x) dx.

Therefore,
∫ c
a f (x) dx = ∫ c

b f (x) dx − ∫ a
b f (x) dx = ∫ b

a f (x) dx + ∫ c
b f (x) dx.

• Now suppose that we have c < a < b. By the additivity property, we have
∫ b
c f (x) dx = ∫ a

c f (x) dx + ∫ b
a f (x) dx.

Therefore,
∫ c
a f (x) dx = − ∫ a

c f (x) dx = ∫ b
a f (x) dx − ∫ b

c f (x) dx = ∫ b
a f (x) dx + ∫ c

b f (x) dx.

• Hence the additivity property holds for all real numbers a, b, and c, regardless of their relationship amongst each
other.



April 1, 2011

S E C T I O N 5.3 The Fundamental Theorem of Calculus, Part I 611

5.3 The Fundamental Theorem of Calculus, Part I

Preliminary Questions
1. Suppose that F ′(x) = f (x) and F(0) = 3, F(2) = 7.

(a) What is the area under y = f (x) over [0, 2] if f (x) ≥ 0?

(b) What is the graphical interpretation of F(2) − F(0) if f (x) takes on both positive and negative values?

solution

(a) If f (x) ≥ 0 over [0, 2], then the area under y = f (x) is F(2) − F(0) = 7 − 3 = 4.

(b) If f (x) takes on both positive and negative values, then F(2) − F(0) gives the signed area between y = f (x) and
the x-axis.

2. Suppose that f (x) is a negative function with antiderivative F such that F(1) = 7 and F(3) = 4. What is the area
(a positive number) between the x-axis and the graph of f (x) over [1, 3]?

solution
∫ 3

1
f (x) dx represents the signed area bounded by the curve and the interval [1, 3]. Since f (x) is negative

on [1, 3],
∫ 3

1
f (x) dx is the negative of the area. Therefore, if A is the area between the x-axis and the graph of f (x),

we have:

A = −
∫ 3

1
f (x) dx = − (F (3) − F(1)) = −(4 − 7) = −(−3) = 3.

3. Are the following statements true or false? Explain.

(a) FTC I is valid only for positive functions.

(b) To use FTC I, you have to choose the right antiderivative.

(c) If you cannot find an antiderivative of f (x), then the definite integral does not exist.

solution

(a) False. The FTC I is valid for continuous functions.

(b) False. The FTC I works for any antiderivative of the integrand.

(c) False. If you cannot find an antiderivative of the integrand, you cannot use the FTC I to evaluate the definite integral,
but the definite integral may still exist.

4. Evaluate
∫ 9

2
f ′(x) dx where f (x) is differentiable and f (2) = f (9) = 4.

solution Because f is differentiable,
∫ 9

2
f ′(x) dx = f (9) − f (2) = 4 − 4 = 0.

Exercises
In Exercises 1–4, sketch the region under the graph of the function and find its area using FTC I.

1. f (x) = x2, [0, 1]
solution

0.2 0.4 0.6 0.8 1

0.2

0.4

0.8

0.6

1

x

y

We have the area

A =
∫ 1

0
x2 dx = 1

3
x3
∣∣∣∣1
0

= 1

3
.
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2. f (x) = 2x − x2, [0, 2]
solution

0.2

0.4

0.8

0.6

1

y

1.5 210.5
x

Let A be the area indicated. Then:

A =
∫ 2

0
(2x − x2) dx =

∫ 2

0
2x dx −

∫ 2

0
x2 dx = x2

∣∣∣∣2
0

− 1

3
x3
∣∣∣∣2
0

= (4 − 0) −
(

8

3
− 0

)
= 4

3
.

3. f (x) = x−2, [1, 2]
solution

1.0
0.2

0.4

0.6

0.8

1.0

1.2 1.4 1.6 1.8 2.0

y

x

We have the area

A =
∫ 2

1
x−2 dx = x−1

−1

∣∣∣∣∣
2

1

= −1

2
+ 1 = 1

2
.

4. f (x) = cos x,
[
0, π

2

]
solution

0.2

0.4

0.8

0.6

1

y

1.60.2 0.4 1.40.6 0.8 1 1.2
x

Let A be the shaded area. Then

A =
∫ π/2

0
cos x dx = sin x

∣∣∣∣π/2

0
= 1 − 0 = 1.

In Exercises 5–42, evaluate the integral using FTC I.

5.
∫ 6

3
x dx

solution
∫ 6

3
x dx = 1

2
x2
∣∣∣∣6
3

= 1

2
(6)2 − 1

2
(3)2 = 27

2
.

6.
∫ 9

0
2 dx

solution
∫ 9

0
2 dx = 2x

∣∣∣∣9
0

= 2(9) − 2(0) = 18.

7.
∫ 1

0
(4x − 9x2) dx

solution
∫ 1

0
(4x − 9x2) dx = (2x2 − 3x3)

∣∣∣∣1
0

= (2 − 3) − (0 − 0) = −1.



April 1, 2011

S E C T I O N 5.3 The Fundamental Theorem of Calculus, Part I 613

8.
∫ 2

−3
u2 du

solution
∫ 2

−3
u2 du = 1

3
u3
∣∣∣∣2−3

= 1

3
(2)3 − 1

3
(−3)3 = 35

3
.

9.
∫ 2

0
(12x5 + 3x2 − 4x) dx

solution
∫ 2

0
(12x5 + 3x2 − 4x) dx = (2x6 + x3 − 2x2)

∣∣∣∣2
0

= (128 + 8 − 8) − (0 + 0 − 0) = 128.

10.
∫ 2

−2
(10x9 + 3x5) dx

solution
∫ 2

−2
(10x9 + 3x5) dx =

(
x10 + 1

2
x6
) ∣∣∣∣2−2

=
(

210 + 1

2
26
)

−
(

210 + 1

2
26
)

= 0.

11.
∫ 0

3
(2t3 − 6t2) dt

solution
∫ 0

3
(2t3 − 6t2) dt =

(
1

2
t4 − 2t3

)∣∣∣∣0
3

= (0 − 0) −
(

81

2
− 54

)
= 27

2
.

12.
∫ 1

−1
(5u4 + u2 − u) du

solution
∫ 1

−1
(5u4 + u2 − u) du =

(
u5 + 1

3
u3 − 1

2
u2
)∣∣∣∣1−1

=
(

1 + 1

3
− 1

2

)
−
(

−1 − 1

3
− 1

2

)
= 8

3
.

13.
∫ 4

0

√
y dy

solution
∫ 4

0

√
y dy =

∫ 4

0
y1/2 dy = 2

3
y3/2

∣∣∣∣4
0

= 2

3
(4)3/2 − 2

3
(0)3/2 = 16

3
.

14.
∫ 8

1
x4/3 dx

solution
∫ 8

1
x4/3 dx = 3

7
x7/3

∣∣∣∣8
1

= 3

7
(128 − 1) = 381

7
.

15.
∫ 1

1/16
t1/4 dt

solution
∫ 1

1/16
t1/4 dt = 4

5
t5/4

∣∣∣∣1
1/16

= 4

5
− 1

40
= 31

40
.

16.
∫ 1

4
t5/2 dt

solution
∫ 1

4
t5/2 dt = 2

7
t7/2

∣∣∣∣1
4

= 2

7
(1 − 128) = −254

7
.

17.
∫ 3

1

dt

t2

solution
∫ 3

1

dt

t2
=
∫ 3

1
t−2 dt = −t−1

∣∣∣∣3
1

= −1

3
+ 1 = 2

3
.

18.
∫ 4

1
x−4 dx

solution
∫ 4

1
x−4 dx = −1

3
x−3

∣∣∣∣4
1

= −1

3
(4)−3 + 1

3
= 21

64
.

19.
∫ 1

1/2

8

x3
dx

solution
∫ 1

1/2

8

x3
dx =

∫ 1

1/2
8x−3 dx = −4x−2

∣∣∣∣1
1/2

= −4 + 16 = 12.
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20.
∫ −1

−2

1

x3
dx

solution
∫ −1

−2

1

x3
dx = −1

2
x−2

∣∣∣∣−1

−2
= −1

2
(−1)−2 + 1

2
(−2)−2 = −3

8
.

21.
∫ 2

1
(x2 − x−2) dx

solution
∫ 2

1
(x2 − x−2) dx =

(
1

3
x3 + x−1

) ∣∣∣∣2
1

=
(

8

3
+ 1

2

)
−
(

1

3
+ 1

)
= 11

6
.

22.
∫ 9

1
t−1/2 dt

solution
∫ 9

1
t−1/2 dt = 2t1/2

∣∣∣∣9
1

= 2(9)1/2 − 2(1)1/2 = 4.

23.
∫ 27

1

t + 1√
t

dt

solution

∫ 27

1

t + 1√
t

dt =
∫ 27

1
(t1/2 + t−1/2) dt =

(
2

3
t3/2 + 2t1/2

) ∣∣∣∣27

1

=
(

2

3
(81

√
3) + 6

√
3

)
−
(

2

3
+ 2

)
= 60

√
3 − 8

3
.

24.
∫ 1

8/27

10t4/3 − 8t1/3

t2
dt

solution

∫ 1

8/27

10t4/3 − 8t1/3

t2
dt =

∫ 1

8/27
(10t−2/3 − 8t−5/3) dt

= (30t1/3 + 12t−2/3)

∣∣∣∣1
8/27

= (30 + 12) − (20 + 27) = −5.

25.
∫ 3π/4

π/4
sin θ dθ

solution
∫ 3π/4

π/4
sin θ dθ = − cos θ

∣∣∣∣3π/4

π/4
=

√
2

2
+

√
2

2
= √

2.

26.
∫ 4π

2π
sin x dx

solution
∫ 4π

2π
sin x dx = − cos x

∣∣∣∣4π

2π

= −1 − (−1) = 0.

27.
∫ π/2

0
cos

(
1

3
θ

)
dθ

solution
∫ π/2

0
cos

(
1

3
θ

)
dθ = 3 sin

(
1

3
θ

)∣∣∣∣π/2

0
= 3

2
.

28.
∫ 5π/8

π/4
cos 2x dx

solution
∫ 5π/8

π/4
cos 2x dx = 1

2
sin 2x

∣∣∣∣5π/8

π/4
= 1

2
sin

5π

4
− 1

2
sin

π

2
= −

√
2

4
− 1

2
.

29.
∫ π/6

0
sec2

(
3t − π

6

)
dt

solution
∫ π/6

0
sec2

(
3t − π

6

)
dt = 1

3
tan
(

3t − π

6

)∣∣∣∣π/6

0
= 1

3

(√
3 + 1√

3

)
= 4

3
√

3
.
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30.
∫ π/6

0
sec θ tan θ dθ

solution
∫ π/6

0
sec θ tan θ dθ = sec θ

∣∣∣∣π/6

0
= sec

π

6
− sec 0 = 2

√
3

3
− 1.

31.
∫ π/10

π/20
csc 5x cot 5x dx

solution
∫ π/10

π/20
csc 5x cot 5x dx = −1

5
csc 5x

∣∣∣∣π/10

π/20
= −1

5

(
1 − √

2
)

= 1

5
(
√

2 − 1).

32.
∫ π/14

π/28
csc2 7y dy

solution
∫ π/14

π/28
csc2 7y dy = −1

7
cot 7y

∣∣∣∣π/14

π/28
= −1

7
cot

π

2
+ 1

7
cot

π

4
= 1

7
.

33.
∫ 1

0
ex dx

solution
∫ 1

0
ex dx = ex

∣∣∣∣1
0

= e − 1.

34.
∫ 5

3
e−4x dx

solution
∫ 5

3
e−4x dx = −1

4
e−4x

∣∣∣∣5
3

= −1

4
e−20 + 1

4
e−12.

35.
∫ 3

0
e1−6t dt

solution
∫ 3

0
e1−6t dt = −1

6
e1−6t

∣∣∣∣3
0

= −1

6
e−17 + 1

6
e = 1

6
(e − e−17).

36.
∫ 3

2
e4t−3 dt

solution
∫ 3

2
e4t−3 dt = 1

4
e4t−3

∣∣∣∣3
2

= 1

4
e9 − 1

4
e5.

37.
∫ 10

2

dx

x

solution
∫ 10

2

dx

x
= ln |x|

∣∣∣∣10

2
= ln 10 − ln 2 = ln 5.

38.
∫ −4

−12

dx

x

solution
∫ −4

−12

dx

x
= ln |x|

∣∣∣∣−4

−12
= ln |−4| − ln |−12| = ln

1

3
= − ln 3.

39.
∫ 1

0

dt

t + 1

solution
∫ 1

0

dt

t + 1
= ln |t + 1|

∣∣∣∣1
0

= ln 2 − ln 1 = ln 2.

40.
∫ 4

1

dt

5t + 4

solution
∫ 4

1

dt

5t + 4
= 1

5
ln |5t + 4|

∣∣∣∣4
1

= 1

5
ln 24 − 1

5
ln 9 = 1

5
ln

24

9
.

41.
∫ 0

−2
(3x − 9e3x) dx

solution
∫ 0

−2
(3x − 9e3x) dx =

(
3

2
x2 − 3e3x

)∣∣∣∣0−2
= (0 − 3) − (6 − 3e−6) = 3e−6 − 9.
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42.
∫ 6

2

(
x + 1

x

)
dx

solution
∫ 6

2

(
x + 1

x

)
dx =

(
1

2
x2 + ln |x|

)∣∣∣∣6
2

= (18 + ln 6) − (2 + ln 2) = 16 + ln 3.

In Exercises 43–48, write the integral as a sum of integrals without absolute values and evaluate.

43.
∫ 1

−2
|x| dx

solution

∫ 1

−2
|x| dx =

∫ 0

−2
(−x) dx +

∫ 1

0
x dx = −1

2
x2
∣∣∣∣0−2

+ 1

2
x2
∣∣∣∣1
0

= 0 −
(

−1

2
(4)

)
+ 1

2
= 5

2
.

44.
∫ 5

0
|3 − x| dx

solution

∫ 5

0
|3 − x| dx =

∫ 3

0
(3 − x) dx +

∫ 5

3
(x − 3) dx =

(
3x − 1

2
x2
) ∣∣∣∣3

0
+
(

1

2
x2 − 3x

) ∣∣∣∣5
3

=
(

9 − 9

2

)
− 0 +

(
25

2
− 15

)
−
(

9

2
− 9

)
= 13

2
.

45.
∫ 3

−2
|x3| dx

solution

∫ 3

−2
|x3| dx =

∫ 0

−2
(−x3) dx +

∫ 3

0
x3 dx = −1

4
x4
∣∣∣∣0−2

+ 1

4
x4
∣∣∣∣3
0

= 0 + 1

4
(−2)4 + 1

4
34 − 0 = 97

4
.

46.
∫ 3

0
|x2 − 1| dx

solution

∫ 3

0
|x2 − 1| dx =

∫ 1

0
(1 − x2) dx +

∫ 3

1
(x2 − 1) dx =

(
x − 1

3
x3
) ∣∣∣∣1

0
+
(

1

3
x3 − x

) ∣∣∣∣3
1

=
(

1 − 1

3

)
− 0 + (9 − 3) −

(
1

3
− 1

)
= 22

3
.

47.
∫ π

0
|cos x| dx

solution

∫ π

0
|cos x| dx =

∫ π/2

0
cos x dx +

∫ π

π/2
(− cos x) dx = sin x

∣∣∣∣π/2

0
− sin x

∣∣∣∣π
π/2

= 1 − 0 − (−1 − 0) = 2.

48.
∫ 5

0
|x2 − 4x + 3| dx

solution

∫ 5

0
|x2 − 4x + 3| dx =

∫ 5

0
|(x − 3)(x − 1)| dx

=
∫ 1

0
(x2 − 4x + 3) dx +

∫ 3

1
−(x2 − 4x + 3) dx +

∫ 5

3
(x2 − 4x + 3) dx
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=
(

1

3
x3 − 2x2 + 3x

) ∣∣∣∣1
0

−
(

1

3
x3 − 2x2 + 3x

) ∣∣∣∣3
1

+
(

1

3
x3 − 2x2 + 3x

) ∣∣∣∣5
3

=
(

1

3
− 2 + 3

)
− 0 − (9 − 18 + 9) +

(
1

3
− 2 + 3

)
+
(

125

3
− 50 + 15

)
− (9 − 18 + 9)

= 28

3
.

In Exercises 49–54, evaluate the integral in terms of the constants.

49.
∫ b

1
x3 dx

solution
∫ b

1
x3 dx = 1

4
x4
∣∣∣∣b
1

= 1

4
b4 − 1

4
(1)4 = 1

4

(
b4 − 1

)
for any number b.

50.
∫ a

b
x4 dx

solution
∫ a

b
x4 dx = 1

5
x5
∣∣∣∣a
b

= 1

5
a5 − 1

5
b5 for any numbers a, b.

51.
∫ b

1
x5 dx

solution
∫ b

1
x5 dx = 1

6
x6
∣∣∣∣b
1

= 1

6
b6 − 1

6
(1)6 = 1

6
(b6 − 1) for any number b.

52.
∫ x

−x
(t3 + t) dt

solution

∫ x

−x
(t3 + t) dt =

(
1

4
t4 + 1

2
t2
) ∣∣∣∣x−x

=
(

1

4
x4 + 1

2
x2
)

−
(

1

4
x4 + 1

2
x2
)

= 0.

53.
∫ 5a

a

dx

x

solution
∫ 5a

a

dx

x
= ln |x|

∣∣∣∣5a

a

= ln |5a| − ln |a| = ln 5.

54.
∫ b2

b

dx

x

solution
∫ b2

b

dx

x
= ln |x|

∣∣∣∣b
2

b

= ln |b2| − ln |b| = ln |b|.

55. Calculate
∫ 3

−2
f (x) dx, where

f (x) =
{

12 − x2 for x ≤ 2

x3 for x > 2

solution

∫ 3

−2
f (x) dx =

∫ 2

−2
f (x) dx +

∫ 3

2
f (x) dx =

∫ 2

−2
(12 − x2) dx +

∫ 3

2
x3 dx

=
(

12x − 1

3
x3
)∣∣∣∣2−2

+ 1

4
x4
∣∣∣∣3
2

=
(

12(2) − 1

3
23
)

−
(

12(−2) − 1

3
(−2)3

)
+ 1

4
34 − 1

4
24

= 128

3
+ 65

4
= 707

12
.
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56. Calculate
∫ 2π

0
f (x) dx, where

f (x) =
{

cos x for x ≤ π

cos x − sin 2x for x > π

solution

∫ 2π

0
f (x) dx =

∫ π

0
f (x) dx +

∫ 2π

π
f (x) dx =

∫ π

0
cos x dx +

∫ 2π

π
(cos x − sin 2x) dx

= sin x

∣∣∣∣π
0

+
(

sin x + 1

2
cos 2x

)∣∣∣∣2π

π

= (0 − 0) +
((

0 + 1

2

)
−
(

0 + 1

2

))
= 0.

57. Use FTC I to show that
∫ 1

−1
xn dx = 0 if n is an odd whole number. Explain graphically.

solution We have

∫ 1

−1
xn dx = xn+1

n + 1

∣∣∣∣1−1
= (1)n+1

n + 1
− (−1)n+1

n + 1
.

Because n is odd, n + 1 is even, which means that (−1)n+1 = (1)n+1 = 1. Hence

(1)n+1

n + 1
− (−1)n+1

n + 1
= 1

n + 1
− 1

n + 1
= 0.

Graphically speaking, for an odd function such as x3 shown here, the positively signed area from x = 0 to x = 1 cancels
the negatively signed area from x = −1 to x = 0.

0.5 1−1

−0.5

−0.5

−1

0.5

1

x

y

58. Plot the function f (x) = sin 3x − x. Find the positive root of f (x) to three places and use it to find the area
under the graph of f (x) in the first quadrant.

solution The graph of f (x) = sin 3x − x is shown below at the left. In the figure below at the right, we zoom in on
the positive root of f (x) and find that, to three decimal places, this root is approximately x = 0.760. The area under the
graph of f (x) in the first quadrant is then∫ 0.760

0
(sin 3x − x) dx =

(
−1

3
cos 3x − 1

2
x2
)∣∣∣∣0.760

0

= −1

3
cos(2.28) − 1

2
(0.760)2 + 1

3
≈ 0.262

−0.2

−0.5

10.2 0.4 0.6 0.8

0.5

x

y

0.756 0.758 0.76 0.762 0.764
x

59. Calculate F(4) given that F(1) = 3 and F ′(x) = x2. Hint: Express F(4) − F(1) as a definite integral.

solution By FTC I,

F(4) − F(1) =
∫ 4

1
x2 dx = 43 − 13

3
= 21

Therefore F(4) = F(1) + 21 = 3 + 21 = 24.
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60. Calculate G(16), where dG/dt = t−1/2 and G(9) = −5.

solution By FTC I,

G(16) − G(9) =
∫ 16

9
t−1/2 dt = 2(161/2) − 2(91/2) = 2

Therefore G(16) = −5 + 2 = −3.

61. Does
∫ 1

0
xn dx get larger or smaller as n increases? Explain graphically.

solution Let n ≥ 0 and consider
∫ 1

0 xn dx. (Note: for n < 0 the integrand xn → ∞ as x → 0+, so we exclude this
possibility.) Now

∫ 1

0
xn dx =

(
1

n + 1
xn+1

)∣∣∣∣1
0

=
(

1

n + 1
(1)n+1

)
−
(

1

n + 1
(0)n+1

)
= 1

n + 1
,

which decreases as n increases. Recall that
∫ 1

0 xn dx represents the area between the positive curve f (x) = xn and the
x-axis over the interval [0, 1]. Accordingly, this area gets smaller as n gets larger. This is readily evident in the following
graph, which shows curves for several values of n.

1

y

10

1/4
1/2

1
2

4
8

x

62. Show that the area of the shaded parabolic arch in Figure 8 is equal to four-thirds the area of the triangle shown.

a b

y

x

2
a + b

FIGURE 8 Graph of y = (x − a)(b − x).

solution We first calculate the area of the parabolic arch:

∫ b

a
(x − a)(b − x) dx = −

∫ b

a
(x − a)(x − b) dx = −

∫ b

a
(x2 − ax − bx + ab) dx

= −
(

1

3
x3 − a

2
x2 − b

2
x2 + abx

)∣∣∣∣b
a

= −1

6

(
2x3 − 3ax2 − 3bx2 + 6abx

)∣∣∣b
a

= −1

6

(
(2b3 − 3ab2 − 3b3 + 6ab2) − (2a3 − 3a3 − 3ba2 + 6a2b)

)

= −1

6

(
(−b3 + 3ab2) − (−a3 + 3a2b)

)

= −1

6

(
a3 + 3ab2 − 3a2b − b3

)
= 1

6
(b − a)3.

The indicated triangle has a base of length b − a and a height of(
a + b

2
− a

)(
b − a + b

2

)
=
(

b − a

2

)2
.

Thus, the area of the triangle is

1

2
(b − a)

(
b − a

2

)2
= 1

8
(b − a)3.
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Finally, we note that

1

6
(b − a)3 = 4

3
· 1

8
(b − a)3,

as required.

Further Insights and Challenges
63. Prove a famous result of Archimedes (generalizing Exercise 62): For r < s, the area of the shaded region in Figure 9
is equal to four-thirds the area of triangle �ACE, where C is the point on the parabola at which the tangent line is parallel
to secant line AE.

(a) Show that C has x-coordinate (r + s)/2.

(b) Show that ABDE has area (s − r)3/4 by viewing it as a parallelogram of height s − r and base of length CF .

(c) Show that �ACE has area (s − r)3/8 by observing that it has the same base and height as the parallelogram.

(d) Compute the shaded area as the area under the graph minus the area of a trapezoid, and prove Archimedes’ result.

r s

y

B C D

A F E
x

2
r + s

FIGURE 9 Graph of f (x) = (x − a)(b − x).

solution

(a) The slope of the secant line AE is

f (s) − f (r)

s − r
= (s − a)(b − s) − (r − a)(b − r)

s − r
= a + b − (r + s)

and the slope of the tangent line along the parabola is

f ′(x) = a + b − 2x.

If C is the point on the parabola at which the tangent line is parallel to the secant line AE, then its x-coordinate must
satisfy

a + b − 2x = a + b − (r + s) or x = r + s

2
.

(b) Parallelogram ABDE has height s − r and base of length CF . Since the equation of the secant line AE is

y = [a + b − (r + s)] (x − r) + (r − a)(b − r),

the length of the segment CF is(
r + s

2
− a

)(
b − r + s

2

)
− [a + b − (r + s)]

(
r + s

2
− r

)
− (r − a)(b − r) = (s − r)2

4
.

Thus, the area of ABDE is (s−r)3

4 .

(c) Triangle ACE is comprised of �ACF and �CEF . Each of these smaller triangles has height s−r
2 and base of length

(s−r)2

4 . Thus, the area of �ACE is

1

2

s − r

2
· (s − r)2

4
+ 1

2

s − r

2
· (s − r)2

4
= (s − r)3

8
.

(d) The area under the graph of the parabola between x = r and x = s is∫ s

r
(x − a)(b − x) dx =

(
−abx + 1

2
(a + b)x2 − 1

3
x3
)∣∣∣∣s

r

= −abs + 1

2
(a + b)s2 − 1

3
s3 + abr − 1

2
(a + b)r2 + 1

3
r3

= ab(r − s) + 1

2
(a + b)(s − r)(s + r) + 1

3
(r − s)(r2 + rs + s2),
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while the area of the trapezoid under the shaded region is

1

2
(s − r) [(s − a)(b − s) + (r − a)(b − r)]

= 1

2
(s − r)

[
−2ab + (a + b)(r + s) − r2 − s2

]

= ab(r − s) + 1

2
(a + b)(s − r)(r + s) + 1

2
(r − s)(r2 + s2).

Thus, the area of the shaded region is

(r − s)

(
1

3
r2 + 1

3
rs + 1

3
s2 − 1

2
r2 − 1

2
s2
)

= (s − r)

(
1

6
r2 − 1

3
rs + 1

6
s2
)

= 1

6
(s − r)3,

which is four-thirds the area of the triangle ACE.

64. (a) Apply the Comparison Theorem (Theorem 5 in Section 5.2) to the inequality sin x ≤ x (valid for x ≥ 0) to prove
that

1 − x2

2
≤ cos x ≤ 1

(b) Apply it again to prove that

x − x3

6
≤ sin x ≤ x (for x ≥ 0)

(c) Verify these inequalities for x = 0.3.

solution

(a) We have
∫ x

0
sin t dt = − cos t

∣∣∣∣x
0

= − cos x + 1 and
∫ x

0
t dt = 1

2
t2
∣∣∣∣x
0

= 1

2
x2. Hence

− cos x + 1 ≤ x2

2
.

Solving, this gives cos x ≥ 1 − x2

2 . cos x ≤ 1 follows automatically.

(b) The previous part gives us 1 − t2

2 ≤ cos t ≤ 1, for t > 0. Theorem 5 gives us, after integrating over the interval
[0, x],

x − x3

6
≤ sin x ≤ x.

(c) Substituting x = 0.3 into the inequalities obtained in (a) and (b) yields

0.955 ≤ 0.955336489 ≤ 1 and 0.2955 ≤ 0.2955202069 ≤ 0.3,

respectively.

65. Use the method of Exercise 64 to prove that

1 − x2

2
≤ cos x ≤ 1 − x2

2
+ x4

24

x − x3

6
≤ sin x ≤ x − x3

6
+ x5

120
(for x ≥ 0)

Verify these inequalities for x = 0.1. Why have we specified x ≥ 0 for sin x but not for cos x?

solution By Exercise 64, t − 1
6 t3 ≤ sin t ≤ t for t > 0. Integrating this inequality over the interval [0, x], and then

solving for cos x, yields:

1

2
x2 − 1

24
x4 ≤ 1 − cos x ≤ 1

2
x2

1 − 1

2
x2 ≤ cos x ≤ 1 − 1

2
x2 + 1

24
x4.

These inequalities apply for x ≥ 0. Since cos x, 1 − x2

2 , and 1 − x2

2 + x4

24 are all even functions, they also apply for
x ≤ 0.
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Having established that

1 − t2

2
≤ cos t ≤ 1 − t2

2
+ t4

24
,

for all t ≥ 0, we integrate over the interval [0, x], to obtain:

x − x3

6
≤ sin x ≤ x − x3

6
+ x5

120
.

The functions sin x, x − 1
6x3 and x − 1

6x3 + 1
120x5 are all odd functions, so the inequalities are reversed for x < 0.

Evaluating these inequalities at x = 0.1 yields

0.995000000 ≤ 0.995004165 ≤ 0.995004167

0.0998333333 ≤ 0.0998334166 ≤ 0.0998334167,

both of which are true.

66. Calculate the next pair of inequalities for sin x and cos x by integrating the results of Exercise 65. Can you guess the
general pattern?

solution Integrating

t − t3

6
≤ sin t ≤ t − t3

6
+ t5

120
(for t ≥ 0)

over the interval [0, x] yields

x2

2
− x4

24
≤ 1 − cos x ≤ x2

2
− x4

24
+ x6

720
.

Solving for cos x and yields

1 − x2

2
+ x4

24
− x6

720
≤ cos x ≤ 1 − x2

2
+ x4

24
.

Replacing each x by t and integrating over the interval [0, x] produces

x − x3

6
+ x5

120
− x7

5040
≤ sin x ≤ x − x3

6
+ x5

120
.

To see the pattern, it is best to compare consecutive inequalities for sin x and those for cos x:

0 ≤ sin x ≤ x

x − x3

6
≤ sin x ≤ x

x − x3

6
≤ sin x ≤ x − x3

6
+ x5

120
.

Each iteration adds an additional term. Looking at the highest order terms, we get the following pattern:

0
x

−x3

6
= −x3

3!
x5

5!
We guess that the leading term of the polynomials are of the form

(−1)n
x2n+1

(2n + 1)! .

Similarly, for cos x, the leading terms of the polynomials in the inequality are of the form

(−1)n
x2n

(2n)! .
67. Use FTC I to prove that if |f ′(x)| ≤ K for x ∈ [a, b], then |f (x) − f (a)| ≤ K|x − a| for x ∈ [a, b].
solution Let a > b be real numbers, and let f (x) be such that |f ′(x)| ≤ K for x ∈ [a, b]. By FTC,∫ x

a
f ′(t) dt = f (x) − f (a).
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Since f ′(x) ≥ −K for all x ∈ [a, b], we get:

f (x) − f (a) =
∫ x

a
f ′(t) dt ≥ −K(x − a).

Since f ′(x) ≤ K for all x ∈ [a, b], we get:

f (x) − f (a) =
∫ x

a
f ′(t) dt ≤ K(x − a).

Combining these two inequalities yields

−K(x − a) ≤ f (x) − f (a) ≤ K(x − a),

so that, by definition,

|f (x) − f (a)| ≤ K|x − a|.
68. (a) Use Exercise 67 to prove that | sin a − sin b| ≤ |a − b| for all a, b.
(b) Let f (x) = sin(x + a) − sin x. Use part (a) to show that the graph of f (x) lies between the horizontal lines y = ±a.
(c) Plot f (x) and the lines y = ±a to verify (b) for a = 0.5 and a = 0.2.

solution
(a) Let f (x) = sin x, so that f ′(x) = cos x, and

|f ′(x)| ≤ 1

for all x. From Exercise 67, we get:

|sin a − sin b| ≤ |a − b|.
(b) Let f (x) = sin(x + a) − sin(x). Applying (a), we get the inequality:

|f (x)| = |sin(x + a) − sin(x)| ≤ |(x + a − x)| = |a|.
This is equivalent, by definition, to the two inequalities:

−a ≤ sin(x + a) − sin(x) ≤ a.

(c) The plots of y = sin(x + 0.5) − sin(x) and of y = sin(x + 0.2) − sin(x) are shown below. The inequality is satisfied
in both plots.

−4 −2 −4 −2

−0.5

2 4

0.25

−0.25

0.5

x

y

−0.2

2 4

0.1

−0.1

0.2

x

y

5.4 The Fundamental Theorem of Calculus, Part II

Preliminary Questions

1. Let G(x) =
∫ x

4

√
t3 + 1 dt .

(a) Is the FTC needed to calculate G(4)?
(b) Is the FTC needed to calculate G′(4)?

solution

(a) No. G(4) = ∫ 4
4

√
t3 + 1 dt = 0.

(b) Yes. By the FTC II, G′(x) =
√

x3 + 1, so G′(4) = √
65.

2. Which of the following is an antiderivative F(x) of f (x) = x2 satisfying F(2) = 0?

(a)
∫ x

2
2t dt (b)

∫ 2

0
t2 dt (c)

∫ x

2
t2 dt

solution The correct answer is (c):
∫ x

2
t2 dt .
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3. Does every continuous function have an antiderivative? Explain.

solution Yes. All continuous functions have an antiderivative, namely
∫ x

a
f (t) dt .

4. Let G(x) =
∫ x3

4
sin t dt . Which of the following statements are correct?

(a) G(x) is the composite function sin(x3).
(b) G(x) is the composite function A(x3), where

A(x) =
∫ x

4
sin(t) dt

(c) G(x) is too complicated to differentiate.
(d) The Product Rule is used to differentiate G(x).
(e) The Chain Rule is used to differentiate G(x).
(f) G′(x) = 3x2 sin(x3).

solution Statements (b), (e), and (f) are correct.

Exercises
1. Write the area function of f (x) = 2x + 4 with lower limit a = −2 as an integral and find a formula for it.

solution Let f (x) = 2x + 4. The area function with lower limit a = −2 is

A(x) =
∫ x

a
f (t) dt =

∫ x

−2
(2t + 4) dt.

Carrying out the integration, we find∫ x

−2
(2t + 4) dt = (t2 + 4t)

∣∣∣∣x−2
= (x2 + 4x) − ((−2)2 + 4(−2)) = x2 + 4x + 4

or (x + 2)2. Therefore, A(x) = (x + 2)2.

2. Find a formula for the area function of f (x) = 2x + 4 with lower limit a = 0.

solution The area function for f (x) = 2x + 4 with lower limit a = 0 is given by

A(x) =
∫ x

0
(2t + 4) dt = (t2 + 4t)

∣∣∣∣x
0

= x2 + 4x.

3. Let G(x) = ∫ x
1 (t2 − 2) dt . Calculate G(1), G′(1) and G′(2). Then find a formula for G(x).

solution Let G(x) = ∫ x
1 (t2 − 2) dt . Then G(1) = ∫ 1

1 (t2 − 2) dt = 0. Moreover, G′(x) = x2 − 2, so that
G′(1) = −1 and G′(2) = 2. Finally,

G(x) =
∫ x

1
(t2 − 2) dt =

(
1

3
t3 − 2t

)∣∣∣∣x
1

=
(

1

3
x3 − 2x

)
−
(

1

3
(1)3 − 2(1)

)
= 1

3
x3 − 2x + 5

3
.

4. Find F(0), F ′(0), and F ′(3), where F(x) =
∫ x

0

√
t2 + t dt .

solution By definition, F(0) = ∫ 0
0

√
t2 + t dt = 0. By FTC, F ′(x) =

√
x2 + x, so that F ′(0) =

√
02 + 0 = 0 and

F ′(3) =
√

32 + 3 = √
12 = 2

√
3.

5. Find G(1), G′(0), and G′(π/4), where G(x) =
∫ x

1
tan t dt .

solution By definition, G(1) = ∫ 1
1 tan t dt = 0. By FTC, G′(x) = tan x, so that G′(0) = tan 0 = 0 and G′( π

4 ) =
tan π

4 = 1.

6. Find H(−2) and H ′(−2), where H(x) =
∫ x

−2

du

u2 + 1
.

solution By definition, H(−2) =
∫ −2

−2

du

u2 + 1
= 0. By FTC, H ′(x) = 1

x2 + 1
, so H ′(−2) = 1

5
.

In Exercises 7–16, find formulas for the functions represented by the integrals.

7.
∫ x

2
u4 du

solution F(x) =
∫ x

2
u4 du = 1

5
u5
∣∣∣∣x
2

= 1

5
x5 − 32

5
.
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8.
∫ x

2
(12t2 − 8t) dt

solution F(x) =
∫ x

2
(12t2 − 8t) dt = (4t3 − 4t2)

∣∣∣∣x
2

= 4x3 − 4x2 − 16.

9.
∫ x

0
sin u du

solution F(x) =
∫ x

0
sin u du = (− cos u)

∣∣∣∣x
0

= 1 − cos x.

10.
∫ x

−π/4
sec2 θ dθ

solution F(x) =
∫ x

−π/4
sec2 θ dθ = tan θ

∣∣∣∣x−π/4
= tan x − tan(−π/4) = tan x + 1.

11.
∫ x

4
e3u du

solution F(x) =
∫ x

4
e3u du = 1

3
e3u

∣∣∣∣x
4

= 1

3
e3x − 1

3
e12.

12.
∫ 0

x
e−t dt

solution F(x) =
∫ 0

x
e−t dt = −e−t

∣∣∣∣0
x

= −1 + e−x .

13.
∫ x2

1
t dt

solution F(x) =
∫ x2

1
t dt = 1

2
t2
∣∣∣∣x

2

1
= 1

2
x4 − 1

2
.

14.
∫ x/4

x/2
sec2 u du

solution F(x) =
∫ x/4

x/2
sec2 u du = tan u

∣∣∣∣x/4

x/2
= tan

x

4
− tan

x

2
.

15.
∫ 9x+2

3x
e−u du

solution F(x) =
∫ 9x+2

3x
e−u du = −e−u

∣∣∣∣9x+2

3x

= −e−9x−2 + e−3x .

16.
∫ √

x

2

dt

t

solution
∫ √

x

2

dt

t
= ln |t |

∣∣∣∣
√

x

2
= ln

√
x − ln 2 = 1

2
ln x − ln 2.

In Exercises 17–20, express the antiderivative F(x) of f (x) satisfying the given initial condition as an integral.

17. f (x) =
√

x3 + 1, F(5) = 0

solution The antiderivative F(x) of
√

x3 + 1 satisfying F(5) = 0 is F(x) =
∫ x

5

√
t3 + 1 dt .

18. f (x) = x + 1

x2 + 9
, F(7) = 0

solution The antiderivative F(x) of f (x) = x + 1

x2 + 9
satisfying F(7) = 0 is F(x) =

∫ x

7

t + 1

t2 + 9
dt .

19. f (x) = sec x, F(0) = 0

solution The antiderivative F(x) of f (x) = sec x satisfying F(0) = 0 is F(x) =
∫ x

0
sec t dt .

20. f (x) = e−x2
, F(−4) = 0

solution The antiderivative F(x) of f (x) = e−x2
satisfying F(−4) = 0 is

F(x) =
∫ x

−4
e−t2

dt.
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In Exercises 21–24, calculate the derivative.

21.
d

dx

∫ x

0
(t5 − 9t3) dt

solution By FTC II,
d

dx

∫ x

0
(t5 − 9t3) dt = x5 − 9x3.

22.
d

dθ

∫ θ

1
cot u du

solution By FTC II,
d

dθ

∫ θ

1
cot u du = cot θ.

23.
d

dt

∫ t

100
sec(5x − 9) dx

solution By FTC II,
d

dt

∫ t

100
sec(5x − 9) dx = sec(5t − 9).

24.
d

ds

∫ s

−2
tan

(
1

1 + u2

)
du

solution By FTC II,
d

ds

∫ s

−2
tan
( 1

1 + u2

)
du = tan

( 1

1 + s2

)
.

25. Let A(x) =
∫ x

0
f (t) dt for f (x) in Figure 8.

(a) Calculate A(2), A(3), A′(2), and A′(3).
(b) Find formulas for A(x) on [0, 2] and [2, 4] and sketch the graph of A(x).

4321

2

3

4

1

x

y

y = f (x)

FIGURE 8

solution

(a) A(2) = 2 · 2 = 4, the area under f (x) from x = 0 to x = 2, while A(3) = 2 · 3 + 1
2 = 6.5, the area under f (x)

from x = 0 to x = 3. By the FTC, A′(x) = f (x) so A′(2) = f (2) = 2 and A′(3) = f (3) = 3.
(b) For each x ∈ [0, 2], the region under the graph of y = f (x) is a rectangle of length x and height 2; for each x ∈ [2, 4],
the region is comprised of a square of side length 2 and a trapezoid of height x − 2 and bases 2 and x. Hence,

A(x) =
{

2x, 0 ≤ x < 2
1
2x2 + 2, 2 ≤ x ≤ 4

A graph of the area function A(x) is shown below.

4321
x

Area Function
A(x)

2

4

8

6

10

y

26. Make a rough sketch of the graph of A(x) =
∫ x

0
g(t) dt for g(x) in Figure 9.

4321

y = g(x)

x

y

FIGURE 9
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solution The graph of y = g(x) lies above the x-axis over the interval [0, 1], below the x-axis over [1, 3], and above
the x-axis over [3, 4]. The corresponding area function should therefore be increasing on (0, 1), decreasing on (1, 3) and
increasing on (3, 4). Further, it appears from Figure 9 that the local minimum of the area function at x = 3 should be
negative. One possible graph of the area function is the following.

1 2 3 4

−2

−1

−3

1

2

3

4

x

y

27. Verify:
∫ x

0
|t | dt = 1

2
x|x|. Hint: Consider x ≥ 0 and x ≤ 0 separately.

solution Let f (t) = |t | =
{

t for t ≥ 0

−t for t < 0
. Then

F(x) =
∫ x

0
f (t) dt =

⎧⎪⎪⎨
⎪⎪⎩

∫ x

0
t dt for x ≥ 0

∫ x

0
−t dt for x < 0

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
t2
∣∣∣∣x
0

= 1

2
x2 for x ≥ 0

(
−1

2
t2
)∣∣∣∣x

0
= −1

2
x2 for x < 0

For x ≥ 0, we have F(x) = 1
2x2 = 1

2x |x| since |x| = x, while for x < 0, we have F(x) = − 1
2x2 = 1

2x |x| since

|x| = −x. Therefore, for all real x we have F(x) = 1
2x |x|.

28. Find G′(1), where G(x) =
∫ x2

0

√
t3 + 3 dt .

solution By combining the Chain Rule and FTC, G′(x) =
√

x6 + 3 · 2x, so G′(1) = √
1 + 3 · 2 = 4.

In Exercises 29–34, calculate the derivative.

29.
d

dx

∫ x2

0

t dt

t + 1

solution By the Chain Rule and the FTC,
d

dx

∫ x2

0

t dt

t + 1
= x2

x2 + 1
· 2x = 2x3

x2 + 1
.

30.
d

dx

∫ 1/x

1
cos3 t dt

solution By the Chain Rule and the FTC,
d

dx

∫ 1/x

1
cos3 t dt = cos3

(
1

x

)
·
(

− 1

x2

)
= − 1

x2
cos3

(
1

x

)
.

31.
d

ds

∫ cos s

−6
u4 du

solution By the Chain Rule and the FTC,
d

ds

∫ cos s

−6
u4 du = cos4 s(− sin s) = − cos4 s sin s.

32.
d

dx

∫ x4

x2

√
t dt

Hint for Exercise 32: F(x) = A(x4) − A(x2).

solution Let

F(x) =
∫ x4

x2

√
t dt =

∫ x4

0

√
t dt −

∫ x2

0

√
t dt.

Applying the Chain Rule combined with FTC, we have

F ′(x) =
√

x4 · 4x3 −
√

x2 · 2x = 4x5 − 2x |x| .
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33.
d

dx

∫ x2

√
x

tan t dt

solution Let

G(x) =
∫ x2

√
x

tan t dt =
∫ x2

0
tan t dt −

∫ √
x

0
tan t dt.

Applying the Chain Rule combined with FTC twice, we have

G′(x) = tan(x2) · 2x − tan(
√

x) · 1

2
x−1/2 = 2x tan(x2) − tan(

√
x)

2
√

x
.

34.
d

du

∫ 3u

−u

√
x2 + 1 dx

solution Let

G(x) =
∫ 3u

−u

√
x2 + 1 dx =

∫ 3u

0

√
x2 + 1 dx −

∫ −u

0

√
x2 + 1 dx.

Applying the Chain Rule combined with FTC twice, we have

G′(x) = 3
√

9u2 + 1 +
√

u2 + 1.

In Exercises 35–38, with f (x) as in Figure 10 let

A(x) =
∫ x

0
f (t) dt and B(x) =

∫ x

2
f (t) dt .

x

y

63 4 521

2

1

0

−1

−2

y = f (x)

FIGURE 10

35. Find the min and max of A(x) on [0, 6].
solution The minimum values of A(x) on [0, 6] occur where A′(x) = f (x) goes from negative to positive. This
occurs at one place, where x = 1.5. The minimum value of A(x) is therefore A(1.5) = −1.25. The maximum values of
A(x) on [0, 6] occur where A′(x) = f (x) goes from positive to negative. This occurs at one place, where x = 4.5. The
maximum value of A(x) is therefore A(4.5) = 1.25.

36. Find the min and max of B(x) on [0, 6].
solution The minimum values of B(x) on [0, 6] occur where B ′(x) = f (x) goes from negative to positive. This
occurs at one place, where x = 1.5. The minimum value of A(x) is therefore B(1.5) = −0.25. The maximum values of
B(x) on [0, 6] occur where B ′(x) = f (x) goes from positive to negative. This occurs at one place, where x = 4.5. The
maximum value of B(x) is therefore B(4.5) = 2.25.

37. Find formulas for A(x) and B(x) valid on [2, 4].

solution On the interval [2, 4], A′(x) = B ′(x) = f (x) = 1. A(2) =
∫ 2

0
f (t) dt = −1 and B(2) =

∫ 2

2
f (t) dt = 0.

Hence A(x) = (x − 2) − 1 and B(x) = (x − 2).

38. Find formulas for A(x) and B(x) valid on [4, 5].

solution On the interval [4, 5], A′(x) = B ′(x) = f (x) = −2(x − 4.5) = 9 − 2x. A(4) =
∫ 4

0
f (t) dt = 1 and

B(4) =
∫ 4

2
f (t) dt = 2. Hence A(x) = 9x − x2 − 19 and B(x) = 9x − x2 − 18.

39. Let A(x) =
∫ x

0
f (t) dt , with f (x) as in Figure 11.

(a) Does A(x) have a local maximum at P ?

(b) Where does A(x) have a local minimum?
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(c) Where does A(x) have a local maximum?
(d) True or false? A(x) < 0 for all x in the interval shown.

x

y

SR

Q

P
y = f (x)

FIGURE 11 Graph of f (x).

solution
(a) In order for A(x) to have a local maximum, A′(x) = f (x) must transition from positive to negative. As this does not
happen at P , A(x) does not have a local maximum at P .
(b) A(x) will have a local minimum when A′(x) = f (x) transitions from negative to positive. This happens at R, so
A(x) has a local minimum at R.
(c) A(x) will have a local maximum when A′(x) = f (x) transitions from positive to negative. This happens at S, so
A(x) has a local maximum at S.
(d) It is true that A(x) < 0 on I since the signed area from 0 to x is clearly always negative from the figure.

40. Determine f (x), assuming that
∫ x

0
f (t) dt = x2 + x.

solution Let F(x) =
∫ x

0
f (t) dt = x2 + x. Then F ′(x) = f (x) = 2x + 1.

41. Determine the function g(x) and all values of c such that∫ x

c
g(t) dt = x2 + x − 6

solution By the FTC II we have

g(x) = d

dx
(x2 + x − 6) = 2x + 1

and therefore, ∫ x

c
g(t) dt = x2 + x − (c2 + c)

We must choose c so that c2 + c = 6. We can take c = 2 or c = −3.

42. Find a ≤ b such that
∫ b

a
(x2 − 9) dx has minimal value.

solution Let a be given, and let Fa(x) = ∫ x
a (t2 − 9) dt . Then F ′

a(x) = x2 − 9, and the critical points are x = ±3.
Because F ′′

a (−3) = −6 and F ′′
a (3) = 6, we see that Fa(x) has a minimum at x = 3. Now, we find a minimizing∫ 3

a (x2 − 9) dx. Let G(x) = ∫ 3
x (x2 − 9) dx. Then G′(x) = −(x2 − 9), yielding critical points x = 3 or x = −3. With

x = −3,

G(−3) =
∫ 3

−3
(x2 − 9) dx =

(
1

3
x3 − 9x

)∣∣∣∣3−3
= −36.

With x = 3,

G(3) =
∫ 3

3
(x2 − 9) dx = 0.

Hence a = −3 and b = 3 are the values minimizing
∫ b

a
(x2 − 9) dx.

In Exercises 43 and 44, let A(x) =
∫ x

a
f (t) dt .

43. Area Functions and Concavity Explain why the following statements are true. Assume f (x) is differen-
tiable.

(a) If c is an inflection point of A(x), then f ′(c) = 0.
(b) A(x) is concave up if f (x) is increasing.
(c) A(x) is concave down if f (x) is decreasing.
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solution

(a) If x = c is an inflection point of A(x), then A′′(c) = f ′(c) = 0.

(b) If A(x) is concave up, then A′′(x) > 0. Since A(x) is the area function associated with f (x), A′(x) = f (x) by FTC
II, so A′′(x) = f ′(x). Therefore f ′(x) > 0, so f (x) is increasing.

(c) If A(x) is concave down, then A′′(x) < 0. Since A(x) is the area function associated with f (x), A′(x) = f (x) by
FTC II, so A′′(x) = f ′(x). Therefore, f ′(x) < 0 and so f (x) is decreasing.

44. Match the property of A(x) with the corresponding property of the graph of f (x). Assume f (x) is differentiable.

Area function A(x)

(a) A(x) is decreasing.

(b) A(x) has a local maximum.

(c) A(x) is concave up.

(d) A(x) goes from concave up to concave down.

Graph of f (x)

(i) Lies below the x-axis.

(ii) Crosses the x-axis from positive to negative.

(iii) Has a local maximum.

(iv) f (x) is increasing.

solution Let A(x) = ∫ x
a f (t) dt be an area function of f (x). Then A′(x) = f (x) and A′′(x) = f ′(x).

(a) A(x) is decreasing when A′(x) = f (x) < 0, i.e., when f (x) lies below the x-axis. This is choice (i).

(b) A(x) has a local maximum (at x0) when A′(x) = f (x) changes sign from + to 0 to − as x increases through x0, i.e.,
when f (x) crosses the x-axis from positive to negative. This is choice (ii).

(c) A(x) is concave up when A′′(x) = f ′(x) > 0, i.e., when f (x) is increasing. This corresponds to choice (iv).

(d) A(x) goes from concave up to concave down (at x0) when A′′(x) = f ′(x) changes sign from + to 0 to − as x

increases through x0, i.e., when f (x) has a local maximum at x0. This is choice (iii).

45. Let A(x) =
∫ x

0
f (t) dt , with f (x) as in Figure 12. Determine:

(a) The intervals on which A(x) is increasing and decreasing

(b) The values x where A(x) has a local min or max

(c) The inflection points of A(x)

(d) The intervals where A(x) is concave up or concave down

2 4 6 8 10 12
x

y

y = f (x)

FIGURE 12

solution

(a) A(x) is increasing when A′(x) = f (x) > 0, which corresponds to the intervals (0, 4) and (8, 12). A(x) is decreasing
when A′(x) = f (x) < 0, which corresponds to the intervals (4, 8) and (12, ∞).

(b) A(x) has a local minimum when A′(x) = f (x) changes from − to +, corresponding to x = 8. A(x) has a local
maximum when A′(x) = f (x) changes from + to −, corresponding to x = 4 and x = 12.

(c) Inflection points of A(x) occur where A′′(x) = f ′(x) changes sign, or where f changes from increasing to decreasing
or vice versa. Consequently, A(x) has inflection points at x = 2, x = 6, and x = 10.

(d) A(x) is concave up when A′′(x) = f ′(x) is positive or f (x) is increasing, which corresponds to the intervals (0, 2)

and (6, 10). Similarly, A(x) is concave down when f (x) is decreasing, which corresponds to the intervals (2, 6) and
(10, ∞).

46. Let f (x) = x2 − 5x − 6 and F(x) =
∫ x

0
f (t) dt .

(a) Find the critical points of F(x) and determine whether they are local minima or local maxima.

(b) Find the points of inflection of F(x) and determine whether the concavity changes from up to down or from down to
up.

(c) Plot f (x) and F(x) on the same set of axes and confirm your answers to (a) and (b).
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solution

(a) If F(x) = ∫ x
0 (t2 − 5t − 6) dt , then F ′(x) = x2 − 5x − 6 and F ′′(x) = 2x − 5. Solving F ′(x) = x2 − 5x − 6 = 0

yields critical points x = −1 and x = 6. Since F ′′(−1) = −7 < 0, there is a local maximum value of F at x = −1.
Moreover, since F ′′(6) = 7 > 0, there is a local minimum value of F at x = 6.

(b) As noted in part (a),

F ′(x) = x2 − 5x − 6 and F ′′(x) = 2x − 5.

A candidate point of inflection occurs where F ′′(x) = 2x − 5 = 0. Thus x = 5
2 . F ′′(x) changes from negative to positive

at this point, so there is a point of inflection at x = 5
2 and concavity changes from down to up.

(c) From the graph below, we clearly note that F(x) has a local maximum at x = −1, a local minimum at x = 6 and a
point of inflection at x = 5

2 .

−2 62 4
x

y

f (x)

F(x)

47. Sketch the graph of an increasing function f (x) such that both f ′(x) and A(x) = ∫ x
0 f (t) dt are decreasing.

solution If f ′(x) is decreasing, then f ′′(x) must be negative. Furthermore, if A(x) =
∫ x

0
f (t) dt is decreasing, then

A′(x) = f (x) must also be negative. Thus, we need a function which is negative but increasing and concave down. The
graph of one such function is shown below.

x

y

48. Figure 13 shows the graph of f (x) = x sin x. Let F(x) =
∫ x

0
t sin t dt .

(a) Locate the local max and absolute max of F(x) on [0, 3π ].
(b) Justify graphically: F(x) has precisely one zero in [π, 2π ].
(c) How many zeros does F(x) have in [0, 3π ]?
(d) Find the inflection points of F(x) on [0, 3π ]. For each one, state whether the concavity changes from up to down or
from down to up.

−4

8

4

0 x
p
2

3p2pp 3p
2

5p
2

y

FIGURE 13 Graph of f (x) = x sin x.

solution Let F(x) = ∫ x
0 t sin t dt . A graph of f (x) = x sin x is depicted in Figure 13. Note that F ′(x) = f (x) and

F ′′(x) = f ′(x).

(a) For F to have a local maximum at x0 ∈ (0, 3π) we must have F ′(x0) = f (x0) = 0 and F ′ = f must change sign
from + to 0 to − as x increases through x0. This occurs at x = π . The absolute maximum of F(x) on [0, 3π ] occurs at
x = 3π since (from the figure) the signed area between x = 0 and x = c is greatest for x = c = 3π .

(b) At x = π , the value of F is positive since f (x) > 0 on (0, π). As x increases along the interval [π, 2π ], we see that
F decreases as the negatively signed area accumulates. Eventually the additional negatively signed area “outweighs” the
prior positively signed area and F attains the value 0, say at b ∈ (π, 2π). Thereafter, on (b, 2π), we see that f is negative
and thus F becomes and continues to be negative as the negatively signed area accumulates. Therefore, F(x) takes the
value 0 exactly once in the interval [π, 2π ].
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(c) F(x) has two zeroes in [0, 3π ]. One is described in part (b) and the other must occur in the interval [2π, 3π ] because
F(x) < 0 at x = 2π but clearly the positively signed area over [2π, 3π ] is greater than the previous negatively signed
area.
(d) Since f is differentiable, we have that F is twice differentiable on I . Thus F(x) has an inflection point at x0 provided
F ′′(x0) = f ′(x0) = 0 and F ′′(x) = f ′(x) changes sign at x0. If F ′′ = f ′ changes sign from + to 0 to − at x0, then f

has a local maximum at x0. There is clearly such a value x0 in the figure in the interval [π/2, π ] and another around 5π/2.
Accordingly, F has two inflection points where F(x) changes from concave up to concave down. If F ′′ = f ′ changes
sign from − to 0 to + at x0, then f has a local minimum at x0. From the figure, there is such an x0 around 3π/2; so F

has one inflection point where F(x) changes from concave down to concave up.

49. Find the smallest positive critical point of

F(x) =
∫ x

0
cos(t3/2) dt

and determine whether it is a local min or max. Then find the smallest positive inflection point of F(x) and use a graph
of y = cos(x3/2) to determine whether the concavity changes from up to down or from down to up.

solution A critical point of F(x) occurs where F ′(x) = cos(x3/2) = 0. The smallest positive critical points occurs

where x3/2 = π/2, so that x = (π/2)2/3. F ′(x) goes from positive to negative at this point, so x = (π/2)2/3 corresponds
to a local maximum..

Candidate inflection points of F(x) occur where F ′′(x) = 0. By FTC, F ′(x) = cos(x3/2), so F ′′(x) =
−(3/2)x1/2 sin(x3/2). Finding the smallest positive solution of F ′′(x) = 0, we get:

−(3/2)x1/2 sin(x3/2) = 0

sin(x3/2) = 0 (since x > 0)

x3/2 = π

x = π2/3 ≈ 2.14503.

From the plot below, we see that F ′(x) = cos(x3/2) changes from decreasing to increasing at π2/3, so F(x) changes
from concave down to concave up at that point.

x

y

3

−1

−0.5

0.5

1

21

Further Insights and Challenges
50. Proof of FTC II The proof in the text assumes that f (x) is increasing. To prove it for all continuous functions, let
m(h) and M(h) denote the minimum and maximum of f (t) on [x, x + h] (Figure 14). The continuity of f (x) implies that
lim
h→0

m(h) = lim
h→0

M(h) = f (x). Show that for h > 0,

hm(h) ≤ A(x + h) − A(x) ≤ hM(h)

For h < 0, the inequalities are reversed. Prove that A′(x) = f (x).

x + hxa
x

y

M(h) m (h)

y = f (x)

FIGURE 14 Graphical interpretation of A(x + h) − A(x).

solution Let f (x) be continuous on [a, b]. For h > 0, let m(h) and M(h) denote the minimum and maximum
values of f on [x, x + h]. Since f is continuous, we have lim

h→0+ m(h) = lim
h→0+ M(h) = f (x). If h > 0, then since

m(h) ≤ f (x) ≤ M(h) on [x, x + h], we have

hm(h) =
∫ x+h

x
m(h) dt ≤

∫ x+h

x
f (t) dt = A(x + h) − A(x) =

∫ x+h

x
f (t) dt ≤

∫ x+h

x
M(h) dt = hM(h).
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In other words, hm(h) ≤ A(x + h) − A(x) ≤ hM(h). Since h > 0, it follows that m(h) ≤ A(x + h) − A(x)

h
≤ M(h).

Letting h → 0+ yields

f (x) ≤ lim
h→0+

A(x + h) − A(x)

h
≤ f (x),

whence

lim
h→0+

A(x + h) − A(x)

h
= f (x)

by the Squeeze Theorem. If h < 0, then

−hm(h) =
∫ x

x+h
m(h) dt ≤

∫ x

x+h
f (t) dt = A(x) − A(x + h) =

∫ x

x+h
f (t) dt ≤

∫ x

x+h
M(h) dt = −hM(h).

Since h < 0, we have −h > 0 and thus

m(h) ≤ A(x) − A(x + h)

−h
≤ M(h)

or

m(h) ≤ A(x + h) − A(x)

h
≤ M(h).

Letting h → 0− gives

f (x) ≤ lim
h→0−

A(x + h) − A(x)

h
≤ f (x),

so that

lim
h→0−

A(x + h) − A(x)

h
= f (x)

by the Squeeze Theorem. Since the one-sided limits agree, we therefore have

A′(x) = lim
h→0

A(x + h) − A(x)

h
= f (x).

51. Proof of FTC I FTC I asserts that
∫ b
a f (t) dt = F(b) − F(a) if F ′(x) = f (x). Use FTC II to give a new proof of

FTC I as follows. Set A(x) = ∫ x
a f (t) dt .

(a) Show that F(x) = A(x) + C for some constant.

(b) Show that F(b) − F(a) = A(b) − A(a) =
∫ b

a
f (t) dt .

solution Let F ′(x) = f (x) and A(x) = ∫ x
a f (t) dt .

(a) Then by the FTC, Part II, A′(x) = f (x) and thus A(x) and F(x) are both antiderivatives of f (x). Hence F(x) =
A(x) + C for some constant C.
(b)

F(b) − F(a) = (A(b) + C) − (A(a) + C) = A(b) − A(a)

=
∫ b

a
f (t) dt −

∫ a

a
f (t) dt =

∫ b

a
f (t) dt − 0 =

∫ b

a
f (t) dt

which proves the FTC, Part I.

52. Can EveryAntiderivative Be Expressed as an Integral? The area function
∫ x
a f (t) dt is an antiderivative of f (x)

for every value of a. However, not all antiderivatives are obtained in this way. The general antiderivative of f (x) = x is
F(x) = 1

2x2 + C. Show that F(x) is an area function if C ≤ 0 but not if C > 0.

solution Let f (x) = x. The general antiderivative of f (x) is F(x) = 1
2x2 + C. Let A(x) = ∫ x

a f (t) dt = ∫ x
a t dt =

1
2 t2
∣∣∣x
a

= 1
2x2 − 1

2a2 be an area function of f (x) = x. To express F(x) as an area function, we must find a value for a

such that 1
2x2 − 1

2a2 = 1
2x2 + C, whence a = ±√−2C. If C ≤ 0, then −2C ≥ 0 and we may choose either a = √−2C

or a = −√−2C. However, if C > 0, then there is no real solution for a and F(x) cannot be expressed as an area function.

53. Prove the formula

d

dx

∫ v(x)

u(x)
f (t) dt = f (v(x))v′(x) − f (u(x))u′(x)
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solution Write

∫ v(x)

u(x)
f (x) dx =

∫ 0

u(x)
f (x) dx +

∫ v(x)

0
f (x) dx =

∫ v(x)

0
f (x) dx −

∫ u(x)

0
f (x) dx.

Then, by the Chain Rule and the FTC,

d

dx

∫ v(x)

u(x)
f (x) dx = d

dx

∫ v(x)

0
f (x) dx − d

dx

∫ u(x)

0
f (x) dx

= f (v(x))v′(x) − f (u(x))u′(x).

54. Use the result of Exercise 53 to calculate

d

dx

∫ ex

ln x
sin t dt

solution By Exercise 53,

d

dx

∫ ex

ln x
sin t dt = ex sin ex − 1

x
sin ln x.

5.5 Net Change as the Integral of a Rate

Preliminary Questions
1. A hot metal object is submerged in cold water. The rate at which the object cools (in degrees per minute) is a function

f (t) of time. Which quantity is represented by the integral
∫ T

0 f (t) dt?

solution The definite integral
∫ T

0 f (t) dt represents the total drop in temperature of the metal object in the first T
minutes after being submerged in the cold water.

2. A plane travels 560 km from Los Angeles to San Francisco in 1 hour. If the plane’s velocity at time t is v(t) km/h,
what is the value of

∫ 1
0 v(t) dt?

solution The definite integral
∫ 1

0 v(t) dt represents the total distance traveled by the airplane during the one hour

flight from Los Angeles to San Francisco. Therefore the value of
∫ 1

0 v(t) dt is 560 km.

3. Which of the following quantities would be naturally represented as derivatives and which as integrals?

(a) Velocity of a train

(b) Rainfall during a 6-month period

(c) Mileage per gallon of an automobile

(d) Increase in the U.S. population from 1990 to 2010

solution Quantities (a) and (c) involve rates of change, so these would naturally be represented as derivatives.
Quantities (b) and (d) involve an accumulation, so these would naturally be represented as integrals.

Exercises
1. Water flows into an empty reservoir at a rate of 3000 + 20t liters per hour. What is the quantity of water in the

reservoir after 5 hours?

solution The quantity of water in the reservoir after five hours is

∫ 5

0
(3000 + 20t) dt =

(
3000t + 10t2

) ∣∣∣∣5
0

= 15,250 gallons.

2. A population of insects increases at a rate of 200 + 10t + 0.25t2 insects per day. Find the insect population after 3
days, assuming that there are 35 insects at t = 0.

solution The increase in the insect population over three days is

∫ 3

0

(
200 + 10t + 1

4
t2
)

dt =
(

200t + 5t2 + 1

12
t3
)∣∣∣∣3

0
= 2589

4
= 647.25.

Accordingly, the population after 3 days is 35 + 647.25 = 682.25 or 682 insects.
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3. A survey shows that a mayoral candidate is gaining votes at a rate of 2000t + 1000 votes per day, where t is the
number of days since she announced her candidacy. How many supporters will the candidate have after 60 days, assuming
that she had no supporters at t = 0?

solution The number of supporters the candidate has after 60 days is

∫ 60

0
(2000t + 1000) dt = (1000t2 + 1000t)

∣∣∣∣60

0
= 3,660,000.

4. A factory produces bicycles at a rate of 95 + 3t2 − t bicycles per week. How many bicycles were produced from the
beginning of week 2 to the end of week 3?

solution The rate of production is r(t) = 95 + 3t2 − t bicycles per week and the period from the beginning of week 2
to the end of week 3 corresponds to the second and third weeks of production. Accordingly, the number of bikes produced
from the beginning of week 2 to the end of week 3 is

∫ 3

1
r(t) dt =

∫ 3

1

(
95 + 3t2 − t

)
dt =

(
95t + t3 − 1

2
t2
)∣∣∣∣3

1
= 212

bicycles.

5. Find the displacement of a particle moving in a straight line with velocity v(t) = 4t − 3 m/s over the time interval
[2, 5].
solution The displacement is given by

∫ 5

2
(4t − 3) dt = (2t2 − 3t)

∣∣∣∣5
2

= (50 − 15) − (8 − 6) = 33m.

6. Find the displacement over the time interval [1, 6] of a helicopter whose (vertical) velocity at time t is v(t) =
0.02t2 + t m/s.

solution Given v(t) = 1
50 t2 + t m/s, the change in height over [1, 6] is

∫ 6

1
v(t) dt =

∫ 6

1

(
1

50
t2 + t

)
dt =

(
1

150
t3 + 1

2
t2
)∣∣∣∣6

1
= 284

15
≈ 18.93 m.

7. A cat falls from a tree (with zero initial velocity) at time t = 0. How far does the cat fall between t = 0.5 and t = 1 s?
Use Galileo’s formula v(t) = −9.8t m/s.

solution Given v(t) = −9.8t m/s, the total distance the cat falls during the interval [ 1
2 , 1] is

∫ 1

1/2
|v(t)| dt =

∫ 1

1/2
9.8t dt = 4.9t2

∣∣∣∣1
1/2

= 4.9 − 1.225 = 3.675 m.

8. A projectile is released with an initial (vertical) velocity of 100 m/s. Use the formula v(t) = 100 − 9.8t for velocity
to determine the distance traveled during the first 15 seconds.

solution The distance traveled is given by

∫ 15

0
|100 − 9.8t | dt =

∫ 100/9.8

0
(100 − 9.8t) dt +

∫ 15

100/9.8
(9.8t − 100) dt

=
(

100t − 4.9t2
) ∣∣∣∣100/9.8

0
+
(

4.9t2 − 100t
) ∣∣∣∣15

100/9.8
≈ 622.9 m.

In Exercises 9–12, a particle moves in a straight line with the given velocity (in m/s). Find the displacement and distance
traveled over the time interval, and draw a motion diagram like Figure 3 (with distance and time labels).

9. v(t) = 12 − 4t , [0, 5]

solution Displacement is given by
∫ 5

0
(12 − 4t) dt = (12t − 2t2)

∣∣∣∣5
0

= 10 ft, while total distance is given by

∫ 5

0
|12 − 4t | dt =

∫ 3

0
(12 − 4t) dt +

∫ 5

3
(4t − 12) dt = (12t − 2t2)

∣∣∣∣3
0

+ (2t2 − 12t)

∣∣∣∣5
3

= 26 ft.

The displacement diagram is given here.
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0 18

t  = 0

t  = 5
t  = 3

10
Distance

10. v(t) = 36 − 24t + 3t2, [0, 10]
solution Let v(t) = 36 − 24t + 3t2 = 3(t − 2)(t − 6). Displacement is given by

∫ 10

0
(36 − 24t + 3t2) dt = (36t − 12t2 + t3)

∣∣∣∣10

0
= 160

meters. Total distance traveled is given by∫ 10

0
|36 − 24t + 3t2| dt =

∫ 2

0
(36 − 24t + 3t2) dt +

∫ 6

2
(24t − 36 − 3t2) dt +

∫ 10

6
(36 − 24t + 3t2) dt

= (36t − 12t2 + t3)

∣∣∣∣2
0

+ (12t2 − 36t − t3)

∣∣∣∣10

0
+ (36t − 12t2 + t3)

∣∣∣∣10

6

= 224 meters.

The displacement diagram is given here.

0

y

x
20 40 60 80 100 120 140 160

t = 10

t = 6

t = 2

11. v(t) = t−2 − 1, [0.5, 2]

solution Displacement is given by
∫ 2

0.5
(t−2 − 1) dt = (−t−1 − t)

∣∣∣∣2
0.5

= 0 m, while total distance is given by

∫ 2

0.5

∣∣∣t−2 − 1
∣∣∣ dt =

∫ 1

0.5
(t−2 − 1) dt +

∫ 2

1
(1 − t−2) dt = (−t−1 − t)

∣∣∣∣1
0.5

+ (t + t−1)

∣∣∣∣2
1

= 1 m.

The displacement diagram is given here.

0 0.5

t  = 0

t  = 2
t  = 1

Distance

12. v(t) = cos t , [0, 3π ]

solution Displacement is given by
∫ 3π

0
cos t dt = sin t

∣∣∣∣3π

0
= 0 meters, while the total distance traveled is given by

∫ 3π

0
| cos t | dt =

∫ π/2

0
cos t dt −

∫ 3π/2

π/2
cos t dt +

∫ 5π/2

3π/2
cos t dt −

∫ 3π

5π/2
cos t , dt

= sin t

∣∣∣∣π/2

0
− sin t

∣∣∣∣3π/2

π/2
+ sin t

∣∣∣∣5π/2

3π/2
− sin t

∣∣∣∣3π

5π/2

= 6 meters.

The displacement diagram is given here.

−1.0

t = 3π

−0.5

y

x
0.5 1.0

3π

2
t =

5π

2
t =

π

2
t =
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13. Find the net change in velocity over [1, 4] of an object with a(t) = 8t − t2 m/s2.

solution The net change in velocity is

∫ 4

1
a(t) dt =

∫ 4

1
(8t − t2) dt =

(
4t2 − 1

3
t3
)∣∣∣∣4

1
= 39 m/s.

14. Show that if acceleration is constant, then the change in velocity is proportional to the length of the time interval.

solution Let a(t) = a be the constant acceleration. Let v(t) be the velocity. Let [t1, t2] be the time interval concerned.
We know that v′(t) = a, and, by FTC,

v(t2) − v(t1) =
∫ t2

t1

a dt = a(t2 − t1),

So the net change in velocity is proportional to the length of the time interval with constant of proportionality a.

15. The traffic flow rate past a certain point on a highway is q(t) = 3000 + 2000t − 300t2 (t in hours), where t = 0 is
8 am. How many cars pass by in the time interval from 8 to 10 am?

solution The number of cars is given by

∫ 2

0
q(t) dt =

∫ 2

0
(3000 + 2000t − 300t2) dt =

(
3000t + 1000t2 − 100t3

) ∣∣∣∣2
0

= 3000(2) + 1000(4) − 100(8) = 9200 cars.

16. The marginal cost of producing x tablet computers is C′(x) = 120 − 0.06x + 0.00001x2 What is the cost of producing
3000 units if the setup cost is $90,000? If production is set at 3000 units, what is the cost of producing 200 additional
units?

solution The production coot for producing 3000 units is

∫ 3000

0
(120 − 0.06x + 0.00001x2) dx =

(
120x − 0.03x2 + 1

3
0.00001x3

)∣∣∣∣3000

0

= 360,000 − 270,000 + 90,000 = 180,000

dollars. Adding in the setup cost, we find the total cost of producing 3000 units is $270,000. If production is set at 3000
units, the cost of producing an additional 200 units is

∫ 3200

3000
(120 − 0.06x + 0.00001x2) dx =

(
120x − 0.03x2 + 1

3
0.00001x3

)∣∣∣∣3200

3000

= 384,000 − 307,200 + 109,226.67 − 180,000

or $6026.67.

17. A small boutique produces wool sweaters at a marginal cost of 40 − 5[[x/5]] for 0 ≤ x ≤ 20, where [[x]] is the
greatest integer function. Find the cost of producing 20 sweaters. Then compute the average cost of the first 10 sweaters
and the last 10 sweaters.

solution The total cost of producing 20 sweaters is

∫ 20

0
(40 − 5[[x/5]]) dx =

∫ 5

0
40 dx +

∫ 10

5
35 dx +

∫ 15

10
30 dx +

∫ 20

15
25 dx

= 40(5) + 35(5) + 30(5) + 25(5) = 650 dollars.

From this calculation, we see that the cost of the first 10 sweaters is $375 and the cost of the last ten sweaters is $275;
thus, the average cost of the first ten sweaters is $37.50 and the average cost of the last ten sweaters is $27.50.

18. The rate (in liters per minute) at which water drains from a tank is recorded at half-minute intervals. Compute the
average of the left- and right-endpoint approximations to estimate the total amount of water drained during the first
3 minutes.

t (min) 0 0.5 1 1.5 2 2.5 3

r (l/min) 50 48 46 44 42 40 38
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solution Let �t = 0.5. Then

RN = 0.5(48 + 46 + 44 + 42 + 40 + 38) = 129.0 liters

LN = 0.5(50 + 48 + 46 + 44 + 42 + 40) = 135.0 liters

The average of RN and LN is 1
2 (129 + 135) = 132 liters.

19. The velocity of a car is recorded at half-second intervals (in feet per second). Use the average of the left- and
right-endpoint approximations to estimate the total distance traveled during the first 4 seconds.

t 0 0.5 1 1.5 2 2.5 3 3.5 4

v(t) 0 12 20 29 38 44 32 35 30

solution Let �t = .5. Then

RN = 0.5 · (12 + 20 + 29 + 38 + 44 + 32 + 35 + 30) = 120 ft.

LN = 0.5 · (0 + 12 + 20 + 29 + 38 + 44 + 32 + 35) = 105 ft.

The average of RN and LN is 112.5 ft.

20. To model the effects of a carbon tax on CO2 emissions, policymakers study the marginal cost of abatement B(x),
defined as the cost of increasing CO2 reduction from x to x + 1 tons (in units of ten thousand tons—Figure 4). Which
quantity is represented by the area under the curve over [0, 3] in Figure 4?

321

B(x) ($/ton)

Tons reduced (in ten thousands)

75

100

50

25

x

FIGURE 4 Marginal cost of abatement B(x).

solution The area under the curve over [0, 3] represents the total cost of reducing the amount of CO2 released into
the atmosphere by 3 tons.

21. A megawatt of power is 106 W, or 3.6 × 109 J/hour. Which quantity is represented by the area under the graph in
Figure 5? Estimate the energy (in joules) consumed during the period 4 pm to 8 pm.

18
19
20
21
22
23
24
25
26
27
28

00 02 04 06 08 10 12 14 16 18 20 22 24

Megawatts (in thousands)

Hour of the day

FIGURE 5 Power consumption over 1-day period in California (February 2010).

solution The area under the graph in Figure 5 represents the total power consumption over one day in California.
Assuming t = 0 corresponds to midnight, the period 4 pm to 8 pm corresponds to t = 16 to t = 20. The left and right
endpoint approximations are

L = 1(22.8 + 23.5 + 26.1 + 26.7) = 99.1megawatt · hours

R = 1(23.5 + 26.1 + 26.7 + 26.1) = 102.4megawatt · hours

The average of these values is

100.75megawatt · hours = 3.627 × 1011 joules.
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22. Figure 6 shows the migration rate M(t) of Ireland in the period 1988–1998. This is the rate at which people
(in thousands per year) move into or out of the country.

(a) Is the following integral positive or negative? What does this quantity represent?

∫ 1998

1988
M(t) dt

(b) Did migration in the period 1988–1998 result in a net influx of people into Ireland or a net outflow of people from
Ireland?

(c) During which two years could the Irish prime minister announce, “We’ve hit an inflection point. We are still losing
population, but the trend is now improving.”

2000199819961990 1992

1994

1988

30
20
10
0

−50
−40
−30
−20
−10

M
ig
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tio

n 
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n 
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FIGURE 6 Irish migration rate (in thousands per year).

solution

(a) Because there appears to be more area below the t-axis than above in Figure 6,

∫ 1998

1988
M(t) dt

is negative. This quantity represents the net migration from Ireland during the period 1988–1998.

(b) As noted in part (a), there appears to be more area below the t-axis than above in Figure 6, so migration in the period
1988–1998 resulted in a net outflow of people from Ireland.

(c) The prime minister can make this statement when the graph of M is at a local minimum, which appears to be in the
years 1989 and 1993.

23. Let N(d) be the number of asteroids of diameter ≤ d kilometers. Data suggest that the diameters are distributed
according to a piecewise power law:

N ′(d) =
{

1.9 × 109d−2.3 for d < 70

2.6 × 1012d−4 for d ≥ 70

(a) Compute the number of asteroids with diameter between 0.1 and 100 km.

(b) Using the approximation N(d + 1) − N(d) ≈ N ′(d), estimate the number of asteroids of diameter 50 km.

solution

(a) The number of asteroids with diameter between 0.1 and 100 km is

∫ 100

0.1
N ′(d) dd =

∫ 70

0.1
1.9 × 109d−2.3 dd +

∫ 100

70
2.6 × 1012d−4 dd

= −1.9 × 109

1.3
d−1.3

∣∣∣∣∣
70

0.1

− 2.6 × 1012

3
d−3

∣∣∣∣∣
100

70

= 2.916 × 1010 + 1.66 × 106 ≈ 2.916 × 1010.

(b) Taking d = 49.5,

N(50.5) − N(49.5) ≈ N ′(49.5) = 1.9 × 10949.5−2.3 = 240,525.79.

Thus, there are approximately 240,526 asteroids of diameter 50 km.

24. Heat Capacity The heat capacity C(T ) of a substance is the amount of energy (in joules) required to raise the
temperature of 1 g by 1◦C at temperature T .

(a) Explain why the energy required to raise the temperature from T1 to T2 is the area under the graph of C(T ) over
[T1, T2].
(b) How much energy is required to raise the temperature from 50 to 100◦C if C(T ) = 6 + 0.2

√
T ?
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solution
(a) Since C(T ) is the energy required to raise the temperature of one gram of a substance by one degree when its
temperature is T , the total energy required to raise the temperature from T1 to T2 is given by the definite integral∫ T2

T1

C(T ) dT . As C(T ) > 0, the definite integral also represents the area under the graph of C(T ).

(b) If C(T ) = 6 + .2
√

T = 6 + 1
5T 1/2, then the energy required to raise the temperature from 50◦C to 100◦C is∫ 100

50 C(T ) dT or

∫ 100

50

(
6 + 1

5
T 1/2

)
dT =

(
6T + 2

15
T 3/2

)∣∣∣∣100

50
=
(

6(100) + 2

15
(100)3/2

)
−
(

6(50) + 2

15
(50)3/2

)

= 1300 − 100
√

2

3
≈ 386.19 Joules

25. Figure 7 shows the rate R(t) of natural gas consumption (in billions of cubic feet per day) in the mid-Atlantic states
(New York, New Jersey, Pennsylvania). Express the total quantity of natural gas consumed in 2009 as an integral (with
respect to time t in days). Then estimate this quantity, given the following monthly values of R(t):

3.18, 2.86, 2.39, 1.49, 1.08, 0.80,
1.01, 0.89, 0.89, 1.20, 1.64, 2.52

Keep in mind that the number of days in a month varies with the month.

1

2

3

J A S O N DJ F M A M J

Natural gas consumption  (109 cubic ft/day)

FIGURE 7 Natural gas consumption in 2009 in the mid-Atlantic states

solution The total quantity of natural gas consumed is given by∫ 365

0
R(t) dt.

With the given data, we find∫ 365

0
R(t) dt ≈ 31(3.18) + 28(2.86) + 31(2.39) + 30(1.49) + 31(1.08) + 30(0.80)

+31(1.01) + 31(0.89) + 30(0.89) + 31(1.20) + 30(1.64) + 31(2.52)

= 605.05 billion cubic feet.

26. Cardiac output is the rate R of volume of blood pumped by the heart per unit time (in liters per minute).
Doctors measure R by injecting A mg of dye into a vein leading into the heart at t = 0 and recording the concentration
c(t) of dye (in milligrams per liter) pumped out at short regular time intervals (Figure 8).
(a) Explain: The quantity of dye pumped out in a small time interval [t, t + �t] is approximately Rc(t)�t .
(b) Show that A = R

∫ T
0 c(t) dt , where T is large enough that all of the dye is pumped through the heart but not so large

that the dye returns by recirculation.
(c) Assume A = 5 mg. Estimate R using the following values of c(t) recorded at 1-second intervals from t = 0 to
t = 10:

0, 0.4, 2.8, 6.5, 9.8, 8.9,
6.1, 4, 2.3, 1.1, 0

Blood flow

Inject dye
here

Measure
concentration

here

t (s)

c(t) (mg/l)

y = c(t)

FIGURE 8
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solution

(a) Over a short time interval, c(t) is nearly constant. Rc(t) is the rate of volume of dye (amount of fluid × concentration
of dye in fluid) flowing out of the heart (in mg per minute). Over the short time interval [t, t + �t], the rate of flow of
dye is approximately constant at Rc(t) mg/minute. Therefore, the flow of dye over the interval is approximately Rc(t)�t

mg.

(b) The rate of flow of dye is Rc(t). Therefore the net flow between time t = 0 and time t = T is

∫ T

0
Rc(t) dt = R

∫ T

0
c(t) dt.

If T is great enough that all of the dye is pumped through the heart, the net flow is equal to all of the dye, so

A = R

∫ T

0
c(t) dt.

(c) In the table, �t = 1
60 minute, and N = 10. The right and left hand approximations of

∫ T

0
c(t) dt are:

R10 = 1

60
(0.4 + 2.8 + 6.5 + 9.8 + 8.9 + 6.1 + 4 + 2.3 + 1.1 + 0) = 0.6983

mg · minute

liter

L10 = 1

60
(0 + 0.4 + 2.8 + 6.5 + 9.8 + 8.9 + 6.1 + 4 + 2.3 + 1.1) = 0.6983

mg · minute

liter

Both LN and RN are the same, so the average of LN and RN is 0.6983. Hence,

A = R

∫ T

0
c(t)dt

5 mg = R

(
0.6983

mg · minute

liter

)

R = 5

0.6983

liters

minute
= 7.16

liters

minute
.

Exercises 27 and 28: A study suggests that the extinction rate r(t) of marine animal families during the Phanerozoic Eon
can be modeled by the function r(t) = 3130/(t + 262) for 0 ≤ t ≤ 544, where t is time elapsed (in millions of years)
since the beginning of the eon 544 million years ago. Thus, t = 544 refers to the present time, t = 540 is 4 million years
ago, and so on.

27. Compute the average of RN and LN with N = 5 to estimate the total number of families that became extinct in the
periods 100 ≤ t ≤ 150 and 350 ≤ t ≤ 400.

solution

• (100 ≤ t ≤ 150) For N = 5,

�t = 150 − 100

5
= 10.

The table of values {r(ti )}i=0...5 is given below:

ti 100 110 120 130 140 150

r(ti ) 8.64641 8.41398 8.19372 7.98469 7.78607 7.59709

The endpoint approximations are:

RN = 10(8.41398 + 8.19372 + 7.98469 + 7.78607 + 7.59709) ≈ 399.756 families

LN = 10(8.64641 + 8.41398 + 8.19372 + 7.98469 + 7.78607) ≈ 410.249 families

The right endpoint approximation estimates 399.756 families became extinct in the period 100 ≤ t ≤ 150, the
left endpoint approximation estimates 410.249 families became extinct during this time. The average of the two is
405.362 families.

• (350 ≤ t ≤ 400) For N = 10,

�t = 400 − 350

5
= 19.
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The table of values {r(ti )}i=0...5 is given below:

ti 350 360 370 380 390 400

r(ti ) 5.11438 5.03215 4.95253 4.87539 4.80061 4.72810

The endpoint approximations are:

RN = 10(5.03215 + 4.95253 + 4.87539 + 4.80061 + 4.72810) ≈ 243.888 families

LN = 10(5.11438 + 5.03215 + 4.95253 + 4.87539 + 4.80061) ≈ 247.751 families

The right endpoint approximation estimates 243.888 families became extinct in the period 350 ≤ t ≤ 400, the
left endpoint approximation estimates 247.751 families became extinct during this time. The average of the two is
245.820 families.

28. Estimate the total number of extinct families from t = 0 to the present, using MN with N = 544.

solution We are estimating

∫ 544

0

3130

(t + 262)
dt

using MN with N = 544. If N = 544, �t = 544 − 0

544
= 1 and {t∗

i
}i=1,...N = i�t − (�t/2) = i − 1

2 .

MN = �t

N∑
i=1

r(t∗i ) = 1 ·
544∑
i=1

3130

261.5 + i
= 3517.3021.

Thus, we estimate that 3517 families have become extinct over the past 544 million years.

Further Insights and Challenges
29. Show that a particle, located at the origin at t = 1 and moving along the x-axis with velocity v(t) = t−2, will never
pass the point x = 2.

solution The particle’s velocity is v(t) = s′(t) = t−2, an antiderivative for which is F(t) = −t−1. Hence, the
particle’s position at time t is

s(t) =
∫ t

1
s′(u) du = F(u)

∣∣∣∣t
1

= F(t) − F(1) = 1 − 1

t
< 1

for all t ≥ 1. Thus, the particle will never pass x = 1, which implies it will never pass x = 2 either.

30. Show that a particle, located at the origin at t = 1 and moving along the x-axis with velocity v(t) = t−1/2 moves
arbitrarily far from the origin after sufficient time has elapsed.

solution The particle’s velocity is v(t) = s′(t) = t−1/2, an antiderivative for which is F(t) = 2t1/2. Hence, the
particle’s position at time t is

s(t) =
∫ t

1
s′(u) du = F(u)

∣∣∣∣t
1

= F(t) − F(1) = 2
√

t − 1

for all t ≥ 1. Let S > 0 denote an arbitrarily large distance from the origin. We see that for

t >

(
S + 1

2

)2
,

the particle will be more than S units from the origin. In other words, the particle moves arbitrarily far from the origin
after sufficient time has elapsed.

5.6 Substitution Method

Preliminary Questions
1. Which of the following integrals is a candidate for the Substitution Method?

(a)
∫

5x4 sin(x5) dx (b)
∫

sin5 x cos x dx (c)
∫

x5 sin x dx
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solution The function in (c): x5 sin x is not of the form g(u(x))u′(x). The function in (a) meets the prescribed pattern

with g(u) = sin u and u(x) = x5. Similarly, the function in (b) meets the prescribed pattern with g(u) = u5 and
u(x) = sin x.

2. Find an appropriate choice of u for evaluating the following integrals by substitution:

(a)
∫

x(x2 + 9)4 dx (b)
∫

x2 sin(x3) dx (c)
∫

sin x cos2 x dx

solution

(a) x(x2 + 9)4 = 1
2 (2x)(x2 + 9)4; hence, c = 1

2 , f (u) = u4, and u(x) = x2 + 9.

(b) x2 sin(x3) = 1
3 (3x2) sin(x3); hence, c = 1

3 , f (u) = sin u, and u(x) = x3.

(c) sin x cos2 x = −(− sin x) cos2 x; hence, c = −1, f (u) = u2, and u(x) = cos x.

3. Which of the following is equal to
∫ 2

0
x2(x3 + 1) dx for a suitable substitution?

(a)
1

3

∫ 2

0
u du (b)

∫ 9

0
u du (c)

1

3

∫ 9

1
u du

solution With the substitution u = x3 + 1, the definite integral
∫ 2

0 x2(x3 + 1) dx becomes 1
3

∫ 9
1 u du. The correct

answer is (c).

Exercises
In Exercises 1–6, calculate du.

1. u = x3 − x2

solution Let u = x3 − x2. Then du = (3x2 − 2x) dx.

2. u = 2x4 + 8x−1

solution Let u = 2x4 + 8x−1. Then du = (8x3 − 8x−2) dx.

3. u = cos(x2)

solution Let u = cos(x2). Then du = − sin(x2) · 2x dx = −2x sin(x2) dx.

4. u = tan x

solution Let u = tan x. Then du = sec2 x dx.

5. u = e4x+1

solution Let u = e4x+1. Then du = 4e4x+1 dx.

6. u = ln(x4 + 1)

solution Let u = ln(x4 + 1). Then du = 4x3

x4 + 1
dx.

In Exercises 7–22, write the integral in terms of u and du. Then evaluate.

7.
∫

(x − 7)3 dx, u = x − 7

solution Let u = x − 7. Then du = dx. Hence∫
(x − 7)3 dx =

∫
u3 du = 1

4
u4 + C = 1

4
(x − 7)4 + C.

8.
∫

(x + 25)−2 dx, u = x + 25

solution Let u = x + 25. Then du = dx and∫
(x + 25)−2 dx =

∫
u−2 du = −u−1 + C = − 1

x + 25
+ C.

9.
∫

t
√

t2 + 1 dt , u = t2 + 1

solution Let u = t2 + 1. Then du = 2t dt . Hence,∫
t
√

t2 + 1 dt = 1

2

∫
u1/2 du = 1

3
u3/2 + C = 1

3
(t2 + 1)3/2 + C.
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10.
∫

(x3 + 1) cos(x4 + 4x) dx, u = x4 + 4x

solution Let u = x4 + 4x. Then du = (4x3 + 4) dx = 4(x3 + 1) dx and∫
(x3 + 1) cos(x4 + 4x) dx = 1

4

∫
cos u du = 1

4
sin u + C = 1

4
sin(x4 + 4x) + C.

11.
∫

t3

(4 − 2t4)11
dt , u = 4 − 2t4

solution Let u = 4 − 2t4. Then du = −8t3 dt . Hence,

∫
t3

(4 − 2t4)11
dt = −1

8

∫
u−11 du = 1

80
u−10 + C = 1

80
(4 − 2t4)−10 + C.

12.
∫ √

4x − 1 dx, u = 4x − 1

solution Let u = 4x − 1. Then du = 4 dx or 1
4du = dx. Hence

∫ √
4u − 1 dx = 1

4

∫
u1/2 du = 1

4

(
2

3
u3/2

)
+ C = 1

6
(4x − 1)3/2 + C.

13.
∫

x(x + 1)9 dx, u = x + 1

solution Let u = x + 1. Then x = u − 1 and du = dx. Hence∫
x(x + 1)9 dx =

∫
(u − 1)u9 du =

∫
(u10 − u9) du

= 1

11
u11 − 1

10
u10 + C = 1

11
(x + 1)11 − 1

10
(x + 1)10 + C.

14.
∫

x
√

4x − 1 dx, u = 4x − 1

solution Let u = 4x − 1. Then x = 1
4 (u + 1) and du = 4 dx or 1

4 du = dx. Hence,∫
x
√

4x − 1 dx = 1

16

∫
(u + 1)u1/2 du = 1

16

∫
(u3/2 + u1/2) du

= 1

16

(
2

5
u5/2

)
+ 1

16

(
2

3
u3/2

)
+ C

= 1

40
(4x − 1)5/2 + 1

24
(4x − 1)3/2 + C.

15.
∫

x2√
x + 1 dx, u = x + 1

solution Let u = x + 1. Then x = u − 1 and du = dx. Hence

∫
x2√

x + 1 dx =
∫

(u − 1)2u1/2 du =
∫

(u5/2 − 2u3/2 + u1/2) du

= 2

7
u7/2 − 4

5
u5/2 + 2

3
u3/2 + C

= 2

7
(x + 1)7/2 − 4

5
(x + 1)5/2 + 2

3
(x + 1)3/2 + C.

16.
∫

sin(4θ − 7) dθ , u = 4θ − 7

solution Let u = 4θ − 7. Then du = 4 dθ and∫
sin(4θ − 7) dθ = 1

4

∫
sin u du = −1

4
cos u + C = −1

4
cos(4θ − 7) + C.
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17.
∫

sin2 θ cos θ dθ , u = sin θ

solution Let u = sin θ . Then du = cos θ dθ . Hence,∫
sin2 θ cos θ dθ =

∫
u2 du = 1

3
u3 + C = 1

3
sin3 θ + C.

18.
∫

sec2 x tan x dx, u = tan x

solution Let u = tan x. Then du = sec2 x dx. Hence∫
sec2 x tan x dx =

∫
u du = 1

2
u2 + C = 1

2
tan2 x + C.

19.
∫

xe−x2
dx, u = −x2

solution Let u = −x2. Then du = −2x dx or − 1
2 du = x dx. Hence,∫

xe−x2
dx = −1

2

∫
eu du = −1

2
eu + C = −1

2
e−x2 + C.

20.
∫

(sec2 t)etan t dt , u = tan t

solution Let u = tan t . Then du = sec2 t dt and∫
(sec2 t)etan t dt =

∫
eu du = eu + C = etan t + C.

21.
∫

(ln x)2 dx

x
, u = ln x

solution Let u = ln x. Then du = 1
x dx, and

∫
(ln x)2

x
dx =

∫
u2 du = 1

3
u3 + C = 1

3
(ln x)3 + C.

22.
∫

(tan−1 x)2 dx

x2 + 1
, u = tan−1 x

solution Let u = tan−1 x. Then du = 1
1+x2 dx, and

∫
(tan−1 x)2

x2 + 1
dx =

∫
u2 du = 1

3
u3 + C = 1

3
(tan−1 x)3 + C.

In Exercises 23–26, evaluate the integral in the form a sin(u(x)) + C for an appropriate choice of u(x) and constant a.

23.
∫

x3 cos(x4) dx

solution Let u = x4. Then du = 4x3 dx or 1
4 du = x3dx. Hence∫

x3 cos(x4) dx = 1

4

∫
cos u du = 1

4
sin u + C = 1

4
sin(x4) + C.

24.
∫

x2 cos(x3 + 1) dx

solution Let u = x3 + 1. Then du = 3x2 dx or 1
3 du = x2 dx. Hence∫

x2 cos(x3 + 1) dx = 1

3

∫
cos u du = 1

3
sin u + C.

25.
∫

x1/2 cos(x3/2) dx

solution Let u = x3/2. Then du = 3
2x1/2 dx or 2

3 du = x1/2 dx. Hence∫
x1/2 cos(x3/2) dx = 2

3

∫
cos u du = 2

3
sin u + C = 2

3
sin(x3/2) + C.
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26.
∫

cos x cos(sin x) dx

solution Let u = sin x. Then du = cos x dx. Hence∫
cos x cos(sin x) dx =

∫
cos u du = sin u + C.

In Exercises 27–72, evaluate the indefinite integral.

27.
∫

(4x + 5)9 dx

solution Let u = 4x + 5. Then du = 4 dx and

∫
(4x + 5)9 dx = 1

4

∫
u9 du = 1

40
u10 + C = 1

40
(4x + 5)10 + C.

28.
∫

dx

(x − 9)5

solution Let u = x − 9. Then du = dx and

∫
dx

(x − 9)5 =
∫

u−5 du = −1

4
u−4 + C = − 1

4(x − 9)4
+ C.

29.
∫

dt√
t + 12

solution Let u = t + 12. Then du = dt and∫
dt√

t + 12
=
∫

u−1/2 du = 2u1/2 + C = 2
√

t + 12 + C.

30.
∫

(9t + 2)2/3 dt

solution Let u = 9t + 2. Then du = 9 dt and

∫
(9t + 2)2/3 dt = 1

9

∫
u2/3 du = 1

9
· 3

5
u5/3 + C = 1

15
(9t + 2)5/3 + C.

31.
∫

x + 1

(x2 + 2x)3
dx

solution Let u = x2 + 2x. Then du = (2x + 2) dx or 1
2du = (x + 1) dx. Hence

∫
x + 1

(x2 + 2x)3
dx = 1

2

∫
1

u3
du = 1

2

(
−1

2
u−2

)
+ C = −1

4
(x2 + 2x)−2 + C = −1

4(x2 + 2x)2
+ C.

32.
∫

(x + 1)(x2 + 2x)3/4 dx

solution Let u = x2 + 2x. Then du = (2x + 2) dx = 2(x + 1) dx and

∫
(x + 1)(x2 + 2x)3/4 dx = 1

2

∫
u3/4 du = 1

2
· 4

7
u7/4 + C

= 2

7
(x2 + 2x)7/4 + C.

33.
∫

x√
x2 + 9

dx

solution Let u = x2 + 9. Then du = 2x dx or 1
2du = x dx. Hence

∫
x√

x2 + 9
dx = 1

2

∫
1√
u

du = 1

2

√
u

1
2

+ C =
√

x2 + 9 + C.
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34.
∫

2x2 + x

(4x3 + 3x2)2
dx

solution Let u = 4x3 + 3x2. Then du = (12x2 + 6x) dx or 1
6du = (2x2 + x) dx. Hence∫

(4x3 + 3x2)−2(2x2 + x) dx = 1

6

∫
u−2 du = −1

6
u−1 + C = −1

6
(4x3 + 3x2)−1 + C.

35.
∫

(3x2 + 1)(x3 + x)2 dx

solution Let u = x3 + x. Then du = (3x2 + 1) dx. Hence∫
(3x2 + 1)(x3 + x)2 dx =

∫
u2 du = 1

3
u3 + C = 1

3
(x3 + x)3 + C.

36.
∫

5x4 + 2x

(x5 + x2)3
dx

solution Let u = x5 + x2. Then du = (5x4 + 2x) dx. Hence∫
5x4 + 2x

(x5 + x2)3
dx =

∫
1

u3
du = −1

2

1

u2
+ C = −1

2

1

(x5 + x2)2
+ C.

37.
∫

(3x + 8)11 dx

solution Let u = 3x + 8. Then du = 3 dx and∫
(3x + 8)11 dx = 1

3

∫
u11 du = 1

36
u12 + C = 1

36
(3x + 8)12 + C.

38.
∫

x(3x + 8)11 dx

solution Let u = 3x + 8. Then du = 3 dx, x = u − 8

3
, and

∫
x(3x + 8)11 dx = 1

9

∫
(u − 8)u11 du = 1

9

∫
(u12 − 8u11) du

= 1

9

(
1

13
u13 − 2

3
u12
)

+ C

= 1

117
(3x + 8)13 − 2

27
(3x + 8)12 + C.

39.
∫

x2
√

x3 + 1 dx

solution Let u = x3 + 1. Then du = 3x2 dx and∫
x2
√

x3 + 1 dx = 1

3

∫
u1/2 du = 2

9
u3/2 + C = 2

9
(x3 + 1)3/2 + C.

40.
∫

x5
√

x3 + 1 dx

solution Let u = x3 + 1. Then du = 3x2 dx, x3 = u − 1 and∫
x5
√

x3 + 1 dx = 1

3

∫
(u − 1)

√
u du = 1

3

∫
(u3/2 − u1/2) du

= 1

3

(
2

5
u5/2 − 2

3
u3/2

)
+ C

= 2

15
(x3 + 1)5/2 − 2

9
(x3 + 1)3/2 + C.

41.
∫

dx

(x + 5)3

solution Let u = x + 5. Then du = dx and∫
dx

(x + 5)3
=
∫

u−3 du = −1

2
u−2 + C = −1

2
(x + 5)−2 + C.
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42.
∫

x2 dx

(x + 5)3

solution Let u = x + 5. Then du = dx, x = u − 5 and

∫
x2 dx

(x + 5)3
=
∫

(u − 5)2

u3
du =

∫
(u−1 − 10u−2 + 25u−3) du

= ln |u| + 10u−1 − 25

2
u−2 + C

= ln |x + 5| + 10

x + 5
− 25

2(x + 5)2
+ C.

43.
∫

z2(z3 + 1)12 dz

solution Let u = z3 + 1. Then du = 3z2 dz and∫
z2(z3 + 1)12 dz = 1

3

∫
u12 du = 1

39
u13 + C = 1

39
(z3 + 1)13 + C.

44.
∫

(z5 + 4z2)(z3 + 1)12 dz

solution Let u = z3 + 1. Then du = 3z2 dz, z3 = u − 1 and∫
(z5 + 4z2)(z3 + 1)12 dz = 1

3

∫
(u + 3)u12 du = 1

3

∫
(u13 + 3u12) du

= 1

3

(
1

14
u14 + 3

13
u13
)

+ C

= 1

42
(z3 + 1)14 + 1

13
(z3 + 1)13 + C.

45.
∫

(x + 2)(x + 1)1/4 dx

solution Let u = x + 1. Then x = u − 1, du = dx and∫
(x + 2)(x + 1)1/4 dx =

∫
(u + 1)u1/4 du =

∫
(u5/4 + u1/4) du

= 4

9
u9/4 + 4

5
u5/4 + C

= 4

9
(x + 1)9/4 + 4

5
(x + 1)5/4 + C.

46.
∫

x3(x2 − 1)3/2 dx

solution Let u = x2 − 1. Then u + 1 = x2 and du = 2x dx or 1
2 du = x dx. Hence∫

x3(x2 − 1)3/2 dx =
∫

x2 · x(x2 − 1)3/2 dx

= 1

2

∫
(u + 1)u3/2 du = 1

2

∫
(u5/2 + u3/2) du

= 1

2

(
2

7
u7/2

)
+ 1

2

(
2

5
u5/2

)
+ C = 1

7
(x2 − 1)7/2 + 1

5
(x2 − 1)5/2 + C.

47.
∫

sin(8 − 3θ) dθ

solution Let u = 8 − 3θ . Then du = −3 dθ and∫
sin(8 − 3θ) dθ = −1

3

∫
sin u du = 1

3
cos u + C = 1

3
cos(8 − 3θ) + C.
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48.
∫

θ sin(θ2) dθ

solution Let u = θ2. Then du = 2θ dθ and∫
θ sin(θ2) dθ = 1

2

∫
sin u du = −1

2
cos u + C = −1

2
cos(θ2) + C.

49.
∫

cos
√

t√
t

dt

solution Let u = √
t = t1/2. Then du = 1

2 t−1/2 dt and

∫
cos

√
t√

t
dt = 2

∫
cos u du = 2 sin u + C = 2 sin

√
t + C.

50.
∫

x2 sin(x3 + 1) dx

solution Let u = x3 + 1. Then du = 3x2 dx or 1
3du = x2 dx. Hence∫

x2 sin(x3 + 1) dx = 1

3

∫
sin u du = −1

3
cos u + C = −1

3
cos(x3 + 1) + C.

51.
∫

tan(4θ + 9) dθ

solution Let u = 4θ + 9. Then du = 4 dθ and∫
tan(4θ + 9) dθ = 1

4

∫
tan u du = 1

4
ln | sec u| + C = 1

4
ln | sec(4θ + 9)| + C.

52.
∫

sin8 θ cos θ dθ

solution Let u = sin θ . Then du = cos θ dθ and∫
sin8 θ cos θ dθ =

∫
u8 du = 1

9
u9 + C = 1

9
sin9 θ + C.

53.
∫

cot x dx

solution Let u = sin x. Then du = cos x dx, and∫
cot x dx =

∫
cos x

sin x
dx =

∫
du

u
= ln |u| + C = ln | sin x| + C.

54.
∫

x−1/5 tan x4/5 dx

solution Let u = x4/5. Then du = 4

5
x−1/5 dx and

∫
x−1/5 tan x4/5 dx = 5

4

∫
tan u du = 5

4
ln | sec u| + C = 5

4
ln | sec x4/5| + C.

55.
∫

sec2(4x + 9) dx

solution Let u = 4x + 9. Then du = 4 dx or 1
4 du = dx. Hence∫

sec2(4x + 9) dx = 1

4

∫
sec2 u du = 1

4
tan u + C = 1

4
tan(4x + 9) + C.

56.
∫

sec2 x tan4 x dx

solution Let u = tan x. Then du = sec2 x dx. Hence∫
sec2 x tan4 x dx =

∫
u4 du = 1

5
u5 + C = 1

5
tan5 x + C.
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57.
∫

sec2(
√

x) dx√
x

solution Let u = √
x. Then du = 1

2
√

x
dx or 2 du = 1√

x
dx. Hence,

∫
sec2(

√
x) dx√
x

= 2
∫

sec2 u dx = 2 tan u + C = 2 tan(
√

x) + C.

58.
∫

cos 2x

(1 + sin 2x)2
dx

solution Let u = 1 + sin 2x. Then du = 2 cos 2x or 1
2du = cos 2x dx. Hence∫

(1 + sin 2x)−2 cos 2x dx = 1

2

∫
u−2 du = −1

2
u−1 + C = −1

2
(1 + sin 2x)−1 + C.

59.
∫

sin 4x
√

cos 4x + 1 dx

solution Let u = cos 4x + 1. Then du = −4 sin 4x or − 1
4du = sin 4x. Hence∫

sin 4x
√

cos 4x + 1 dx = −1

4

∫
u1/2 du = −1

4

(
2

3
u3/2

)
+ C = −1

6
(cos 4x + 1)3/2 + C.

60.
∫

cos x(3 sin x − 1) dx

solution Let u = 3 sin x − 1. Then du = 3 cos x dx or 1
3du = cos x dx. Hence∫

(3 sin x − 1) cos x dx = 1

3

∫
u du = 1

3

(
1

2
u2
)

+ C = 1

6
(3 sin x − 1)2 + C.

61.
∫

sec θ tan θ(sec θ − 1) dθ

solution Let u = sec θ − 1. Then du = sec θ tan θ dθ and∫
sec θ tan θ(sec θ − 1) dθ =

∫
u du = 1

2
u2 + C = 1

2
(sec θ − 1)2 + C.

62.
∫

cos t cos(sin t) dt

solution Let u = sin t . Then du = cos t dt and∫
cos t cos(sin t) dt =

∫
cos u du = sin u + C = sin(sin t) + C.

63.
∫

e14x−7 dx

solution Let u = 14x − 7. Then du = 14 dx or 1
14 du = dx. Hence,∫

e14x−7 dx = 1

14

∫
eu du = 1

14
eu + C = 1

14
e14x−7 + C.

64.
∫

(x + 1)ex2+2x dx

solution Let u = x2 + 2x. Then du = (2x + 2) dx or 1
2 du = (x + 1) dx. Hence,∫

(x + 1)ex2+2x dx = 1

2

∫
eu du = 1

2
eu + C = 1

2
ex2+2x + C.

65.
∫

ex dx

(ex + 1)4

solution Let u = ex + 1. Then du = ex dx, and∫
ex

(ex + 1)4
dx =

∫
u−4 du = − 1

3u3
+ C = − 1

3(ex + 1)3
+ C.
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66.
∫

(sec2 θ) etan θ dθ

solution Let u = tan θ . Then du = sec2 θ dθ , and∫
(sec2 θ) etan θ dθ =

∫
eu du = eu + C = etan θ + C.

67.
∫

et dt

e2t + 2et + 1

solution Let u = et . Then du = et dt , and

∫
et dt

e2t + 2et + 1
=
∫

du

u2 + 2u + 1
=
∫

du

(u + 1)2
= − 1

u + 1
+ C = − 1

et + 1
+ C.

68.
∫

dx

x(ln x)2

solution Let u = ln x. Then du = 1
x dx, and∫
dx

x(ln x)2
=
∫

u−2 du = − 1

u
+ C = − 1

ln x
+ C.

69.
∫

(ln x)4 dx

x

solution Let u = ln x. Then du = 1
x dx, and

∫
(ln x)4

x
dx =

∫
u4 du = 1

5
u5 + C = 1

5
(ln x)5 + C.

70.
∫

dx

x ln x

solution Let u = ln x. Then du = 1
x dx, and∫
dx

x ln x
=
∫

du

u
= ln |u| + C = ln | ln x| + C.

71.
∫

tan(ln x)

x
dx

solution Let u = cos(ln x). Then du = − 1
x sin(ln x) dx or −du = 1

x sin(ln x) dx. Hence,

∫
tan(ln x)

x
dx =

∫
sin(ln x)

x cos(ln x)
dx = −

∫
du

u
= − ln |u| + C = − ln | cos(ln x)| + C.

72.
∫

(cot x) ln(sin x) dx

solution Let u = ln(sin x). Then

du = 1

sin x
cos x = cot x,

and ∫
(cot x) ln(sin x) dx =

∫
u du = 1

2
u2 + C = 1

2
(ln(sin x))2 + C.

73. Evaluate
∫

dx

(1 + √
x)3

using u = 1 + √
x. Hint: Show that dx = 2(u − 1)du.

solution Let u = 1 + √
x. Then

du = 1

2
√

x
dx or dx = 2

√
x du = 2(u − 1) du.
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Hence, ∫
dx

(1 + √
x)3

= 2
∫

u − 1

u3
du = 2

∫
(u−2 − u−3) du

= −2u−1 + u−2 + C = − 2

1 + √
x

+ 1

(1 + √
x)2

+ C.

74. Can They Both Be Right? Hannah uses the substitution u = tan x and Akiva uses u = sec x to evaluate∫
tan x sec2 x dx. Show that they obtain different answers, and explain the apparent contradiction.

solution With the substitution u = tan x, Hannah finds du = sec2 x dx and∫
tan x sec2 x dx =

∫
u du = 1

2
u2 + C1 = 1

2
tan2 x + C1.

On the other hand, with the substitution u = sec x, Akiva finds du = sec x tan x dx and∫
tan x sec2 x dx =

∫
sec x(tan x sec x) dx = 1

2
sec2 x + C2

Hannah and Akiva have each found a correct antiderivative. To resolve what appears to be a contradiction, recall that any
two antiderivatives of a specified function differ by a constant. To show that this is true in their case, note that(

1

2
sec2 x + C2

)
−
(

1

2
tan2 x + C1

)
= 1

2
(sec2 x − tan2 x) + C2 − C1

= 1

2
(1) + C2 − C1 = 1

2
+ C2 − C1, a constant

Here we used the trigonometric identity tan2 x + 1 = sec2 x.

75. Evaluate
∫

sin x cos x dx using substitution in two different ways: first using u = sin x and then using u = cos x.
Reconcile the two different answers.

solution First, let u = sin x. Then du = cos x dx and∫
sin x cos x dx =

∫
u du = 1

2
u2 + C1 = 1

2
sin2 x + C1.

Next, let u = cos x. Then du = − sin x dx or −du = sin x dx. Hence,∫
sin x cos x dx = −

∫
u du = −1

2
u2 + C2 = −1

2
cos2 x + C2.

To reconcile these two seemingly different answers, recall that any two antiderivatives of a specified function differ by a
constant. To show that this is true here, note that ( 1

2 sin2 x + C1) − (− 1
2 cos2 x + C2) = 1

2 + C1 − C2, a constant. Here

we used the trigonometric identity sin2 x + cos2 x = 1.

76. Some Choices Are Better Than Others Evaluate∫
sin x cos2 x dx

twice. First use u = sin x to show that ∫
sin x cos2 x dx =

∫
u
√

1 − u2 du

and evaluate the integral on the right by a further substitution. Then show that u = cos x is a better choice.

solution Consider the integral
∫

sin x cos2 x dx. If we let u = sin x, then cos x =
√

1 − u2 and du = cos x dx.
Hence ∫

sin x cos2 x dx =
∫

u
√

1 − u2 du.

Now let w = 1 − u2. Then dw = −2u du or − 1
2dw = u du. Therefore,∫

u
√

1 − u2 du = −1

2

∫
w1/2 dw = −1

2

(
2

3
w3/2

)
+ C

= −1

3
w3/2 + C = −1

3
(1 − u2)3/2 + C

= −1

3
(1 − sin2 x)3/2 + C = −1

3
cos3 x + C.
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A better substitution choice is u = cos x. Then du = − sin x dx or −du = sin x dx. Hence∫
sin x cos2 x dx = −

∫
u2 du = −1

3
u3 + C = −1

3
cos3 x + C.

77. What are the new limits of integration if we apply the substitution u = 3x + π to the integral
∫ π

0 sin(3x + π) dx?

solution The new limits of integration are u(0) = 3 · 0 + π = π and u(π) = 3π + π = 4π .

78. Which of the following is the result of applying the substitution u = 4x − 9 to the integral
∫ 8

2 (4x − 9)20 dx?

(a)
∫ 8

2
u20 du (b)

1

4

∫ 8

2
u20 du

(c) 4
∫ 23

−1
u20 du (d)

1

4

∫ 23

−1
u20 du

solution Let u = 4x − 9. Then du = 4 dx or 1
4 du = dx. Furthermore, when x = 2, u = −1, and when x = 8,

u = 23. Hence ∫ 8

2
(4x − 9)20 dx = 1

4

∫ 23

−1
u20 du.

The answer is therefore (d).

In Exercises 79–90, use the Change-of-Variables Formula to evaluate the definite integral.

79.
∫ 3

1
(x + 2)3 dx

solution Let u = x + 2. Then du = dx. Hence

∫ 3

1
(x + 2)3 dx =

∫ 5

3
u3 du = 1

4
u4
∣∣∣∣5
3

= 54

4
− 34

4
= 136.

80.
∫ 6

1

√
x + 3 dx

solution Let u = x + 3. Then du = dx. Hence

∫ 6

1

√
x + 3 dx =

∫ 9

4

√
u du = 2

3
u3/2

∣∣∣∣9
4

= 2

3
(27 − 8) = 38

3
.

81.
∫ 1

0

x

(x2 + 1)3
dx

solution Let u = x2 + 1. Then du = 2x dx or 1
2 du = x dx. Hence

∫ 1

0

x

(x2 + 1)3
dx = 1

2

∫ 2

1

1

u3
du = 1

2

(
−1

2
u−2

)∣∣∣∣2
1

= − 1

16
+ 1

4
= 3

16
= 0.1875.

82.
∫ 2

−1

√
5x + 6 dx

solution Let u = 5x + 6. Then du = 5 dx or 1
5 du = dx. Hence

∫ 2

−1

√
5x + 6 dx = 1

5

∫ 16

1

√
u du = 1

5

(
2

3
u3/2

)∣∣∣∣16

1
= 2

15
(64 − 1) = 42

5
.

83.
∫ 4

0
x
√

x2 + 9 dx

solution Let u = x2 + 9. Then du = 2x dx or 1
2 du = x dx. Hence

∫ 4

0

√
x2 + 9 dx = 1

2

∫ 25

9

√
u du = 1

2

(
2

3
u3/2

)∣∣∣∣25

9
= 1

3
(125 − 27) = 98

3
.
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84.
∫ 2

1

4x + 12

(x2 + 6x + 1)2
dx

solution Let u = x2 + 6x + 1. Then du = (2x + 6) dx and

∫ 2

1

4x + 12

(x2 + 6x + 1)2
dx = 2

∫ 17

8
u−2 du = − 2

u

∣∣∣∣17

8

= − 2

17
+ 1

4
= 9

68
.

85.
∫ 1

0
(x + 1)(x2 + 2x)5 dx

solution Let u = x2 + 2x. Then du = (2x + 2) dx = 2(x + 1) dx, and

∫ 1

0
(x + 1)(x2 + 2x)5 dx = 1

2

∫ 3

0
u5 du = 1

12
u6
∣∣∣∣3
0

= 729

12
= 243

4
.

86.
∫ 17

10
(x − 9)−2/3 dx

solution Let u = x − 9. Then du = dx. Hence

∫ 17

10
(x − 9)−2/3 dx =

∫ 8

1
u−2/3 dx = 3u1/3

∣∣∣∣8
1

= 3 (2 − 1) = 3.

87.
∫ 1

0
θ tan(θ2) dθ

solution Let u = cos θ2. Then du = −2θ sin θ2 dθ or − 1
2du = θ sin θ2 dθ . Hence,

∫ 1

0
θ tan(θ2) dθ =

∫ 1

0

θ sin(θ2)

cos(θ2)
dθ = −1

2

∫ cos 1

1

du

u
= −1

2
ln |u|

∣∣∣∣cos 1

1
= −1

2
[ln(cos 1) + ln 1] = 1

2
ln(sec 1).

88.
∫ π/6

0
sec2

(
2x − π

6

)
dx

solution Let u = 2x − π

6
. Then du = 2 dx and

∫ π/6

0
sec2

(
2x − π

6

)
dx = 1

2

∫ π/6

−π/6
sec2 u du = 1

2
tan u

∣∣∣∣π/6

−π/6

= 1

2

(√
3

3
+

√
3

3

)
=

√
3

3
.

89.
∫ π/2

0
cos3 x sin x dx

solution Let u = cos x. Then du = − sin x dx. Hence

∫ π/2

0
cos3 x sin x dx = −

∫ 0

1
u3 du =

∫ 1

0
u3 du = 1

4
u4
∣∣∣∣1
0

= 1

4
− 0 = 1

4
.

90.
∫ π/2

π/3
cot2

x

2
csc2 x

2
dx

solution Let u = cot
x

2
. Then du = −1

2
csc2 x

2
and

∫ π/2

π/3
cot2

x

2
csc2 x

2
dx = −2

∫ 1

√
3
u2 du

= −2

3
u3
∣∣∣∣1√

3
= 2

3
(3

√
3 − 1).
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91. Evaluate
∫ 2

0
r

√
5 −

√
4 − r2 dr .

solution Let u = 5 −
√

4 − r2. Then

du = r dr√
4 − r2

= r dr

5 − u

so that

r dr = (5 − u) du.

Hence, the integral becomes:

∫ 2

0
r

√
5 −

√
4 − r2 dr =

∫ 5

3

√
u(5 − u) du =

∫ 5

3

(
5u1/2 − u3/2

)
du =

(
10

3
u3/2 − 2

5
u5/2

)∣∣∣∣5
3

=
(

50

3

√
5 − 10

√
5

)
−
(

10
√

3 − 18

5

√
3

)
= 20

3

√
5 − 32

5

√
3.

92. Find numbers a and b such that ∫ b

a
(u2 + 1) du =

∫ π/4

−π/4
sec4 θ dθ

and evaluate. Hint: Use the identity sec2 θ = tan2 θ + 1.

solution Let u = tan θ . Then u2 + 1 = tan2 θ + 1 = sec2 θ and du = sec2 θ dθ . Moreover, because

tan
(
−π

4

)
= −1 and tan

π

4
= 1,

it follows that a = −1 and b = 1. Thus,

∫ π/4

−π/4
sec4 θ dθ =

∫ 1

−1
(u2 + 1) du =

(
1

3
u3 + u

)∣∣∣∣1−1
= 8

3
.

93. Wind engineers have found that wind speed v (in meters/second) at a given location follows a Rayleigh distribution
of the type

W(v) = 1

32
ve−v2/64

This means that at a given moment in time, the probability that v lies between a and b is equal to the shaded area in
Figure 4.

(a) Show that the probability that v ∈ [0, b] is 1 − e−b2/64.

(b) Calculate the probability that v ∈ [2, 5].

20

0.05

0.1

a b

y = W(v)

v (m/s)

y

FIGURE 4 The shaded area is the probability that v lies betweena and b.

solution

(a) The probability that v ∈ [0, b] is

∫ b

0

1

32
ve−v2/64 dv.

Let u = −v2/64. Then du = −v/32 dv and

∫ b

0

1

32
ve−v2/64 dv = −

∫ −b2/64

0
eu du = −eu

∣∣∣∣−b2/64

0
= −e−b2/64 + 1.
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(b) The probability that v ∈ [2, 5] is the probability that v ∈ [0, 5] minus the probability that v ∈ [0, 2]. By part (a), the
probability that v ∈ [2, 5] is (

1 − e−25/64
)

−
(

1 − e−1/16
)

= e−1/16 − e−25/64.

94. Evaluate
∫ π/2

0
sinn x cos x dx for n ≥ 0.

solution Let u = sin x. Then du = cos x dx. Hence

∫ π/2

0
sinn x cos x dx =

∫ 1

0
un du = un+1

n + 1

∣∣∣∣∣
1

0

= 1

n + 1
.

In Exercises 95–96, use substitution to evaluate the integral in terms of f (x).

95.
∫

f (x)3 f ′(x) dx

solution Let u = f (x). Then du = f ′(x) dx. Hence∫
f (x)3 f ′(x) dx =

∫
u3 du = 1

4
u4 + C = 1

4
f (x)4 + C.

96.
∫

f ′(x)

f (x)2
dx

solution Let u = f (x). Then du = f ′(x) dx. Hence

∫
f ′(x)

f (x)2
dx =

∫
u−2 du = −u−1 + C = −1

f (x)
+ C.

97. Show that
∫ π/6

0
f (sin θ) dθ =

∫ 1/2

0
f (u)

1√
1 − u2

du.

solution Let u = sin θ . Then u(π/6) = 1/2 and u(0) = 0, as required. Furthermore, du = cos θ dθ , so that

dθ = du

cos θ
.

If sin θ = u, then u2 + cos2 θ = 1, so that cos θ =
√

1 − u2. Therefore dθ = du/
√

1 − u2. This gives∫ π/6

0
f (sin θ) dθ =

∫ 1/2

0
f (u)

1√
1 − u2

du.

Further Insights and Challenges
98. Use the substitution u = 1 + x1/n to show that∫ √

1 + x1/n dx = n

∫
u1/2(u − 1)n−1 du

Evaluate for n = 2, 3.

solution Let u = 1 + x1/n. Then x = (u − 1)n and dx = n(u − 1)n−1 du. Accordingly,
∫ √

1 + x1/n dx =

n

∫
u1/2(u − 1)n−1 du.

For n = 2, we have∫ √
1 + x1/2 dx = 2

∫
u1/2(u − 1)1 du = 2

∫
(u3/2 − u1/2) du

= 2

(
2

5
u5/2 − 2

3
u3/2

)
+ C = 4

5
(1 + x1/2)5/2 − 4

3
(1 + x1/2)3/2 + C.

For n = 3, we have∫ √
1 + x1/3 dx = 3

∫
u1/2(u − 1)2 du = 3

∫
(u5/2 − 2u3/2 + u1/2) du
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= 3

(
2

7
u7/2 − (2)

(
2

5

)
u5/2 + 2

3
u3/2

)
+ C

= 6

7
(1 + x1/3)7/2 − 12

5
(1 + x1/3)5/2 + 2(1 + x1/3)3/2 + C.

99. Evaluate I =
∫ π/2

0

dθ

1 + tan6,000 θ
. Hint: Use substitution to show that I is equal to J =

∫ π/2

0

dθ

1 + cot6,000 θ
and

then check that I + J =
∫ π/2

0
dθ .

solution To evaluate

I =
∫ π/2

0

dx

1 + tan6000 x
,

we substitute t = π/2 − x. Then dt = −dx, x = π/2 − t , t (0) = π/2, and t (π/2) = 0. Hence,

I =
∫ π/2

0

dx

1 + tan6000 x
= −

∫ 0

π/2

dt

1 + tan6000(π/2 − t)
=
∫ π/2

0

dt

1 + cot6000 t
.

Let J = ∫ π/2
0

dt

1 + cot6000(t)
. We know I = J , so I + J = 2I . On the other hand, by the definition of I and J and the

linearity of the integral,

I + J =
∫ π/2

0

dx

1 + tan6000 x
+ dx

1 + cot6000 x
=
∫ π/2

0

(
1

1 + tan6000 x
+ 1

1 + cot6000 x

)
dx

=
∫ π/2

0

(
1

1 + tan6000 x
+ 1

1 + (1/ tan6000 x)

)
dx

=
∫ π/2

0

(
1

1 + tan6000 x
+ 1

(tan6000 x + 1)/ tan6000 x

)
dx

=
∫ π/2

0

(
1

1 + tan6000 x
+ tan6000 x

1 + tan6000 x

)
dx

=
∫ π/2

0

(
1 + tan6000 x

1 + tan6000 x

)
dx =

∫ π/2

0
1 dx = π/2.

Hence, I + J = 2I = π/2, so I = π/4.

100. Use substitution to prove that
∫ a

−a
f (x) dx = 0 if f is an odd function.

solution We assume that f is continuous. If f (x) is an odd function, then f (−x) = −f (x). Let u = −x. Then
x = −u and du = −dx or −du = dx. Accordingly,

∫ a

−a
f (x) dx =

∫ 0

−a
f (x) dx +

∫ a

0
f (x) dx = −

∫ 0

a
f (−u) du +

∫ a

0
f (x) dx

=
∫ a

0
f (x) dx −

∫ a

0
f (u) du = 0.

101. Prove that
∫ b
a

1
x dx = ∫ b/a

1
1
x dx for a, b > 0. Then show that the regions under the hyperbola over the intervals

[1, 2], [2, 4], [4, 8], . . . all have the same area (Figure 5).

1
2

1
8

1
4

1 2 4 8

1

x

y

y = 1
x

Equal area

FIGURE 5 The area under y = 1
x over [2n, 2n+1] is the same for all n = 0, 1, 2, . . . .
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solution

(a) Let u = x
a . Then au = x and du = 1

a dx or a du = dx. Hence

∫ b

a

1

x
dx =

∫ b/a

1

a

au
du =

∫ b/a

1

1

u
du.

Note that
∫ b/a

1

1

u
du =

∫ b/a

1

1

x
dx after the substitution x = u.

(b) The area under the hyperbola over the interval [1, 2] is given by the definite integral
∫ 2

1
1
x dx. Denote this definite

integral by A. Using the result from part (a), we find the area under the hyperbola over the interval [2, 4] is∫ 4

2

1

x
dx =

∫ 4/2

1

1

x
dx =

∫ 2

1

1

x
dx = A.

Similarly, the area under the hyperbola over the interval [4, 8] is∫ 8

4

1

x
dx =

∫ 8/4

1

1

x
dx =

∫ 2

1

1

x
dx = A.

In general, the area under the hyperbola over the interval [2n, 2n+1] is

∫ 2n+1

2n

1

x
dx =

∫ 2n+1/2n

1

1

x
dx =

∫ 2

1

1

x
dx = A.

102. Show that the two regions in Figure 6 have the same area. Then use the identity cos2 u = 1
2 (1 + cos 2u) to compute

the second area.

(A) (B)

x
1 1

1 1

u

y = cos2 u

y y

y = �1 − x2

FIGURE 6

solution The area of the region in Figure 6(A) is given by
∫ 1

0

√
1 − x2 dx. Let x = sin u. Then dx = cos u du and√

1 − x2 =
√

1 − sin2 u = cos u. Hence,∫ 1

0

√
1 − x2 dx =

∫ π/2

0
cos u · cos u du =

∫ π/2

0
cos2 u du.

This last integral represents the area of the region in Figure 6(B). The two regions in Figure 6 therefore have the same
area.

Let’s now focus on the definite integral
∫ π/2

0 cos2 u du. Using the trigonometric identity cos2 u = 1
2 (1 + cos 2u), we

have ∫ π/2

0
cos2 u du = 1

2

∫ π/2

0
1 + cos 2u du = 1

2

(
u + 1

2
sin 2u

)∣∣∣∣π/2

0
= 1

2
· π

2
− 0 = π

4
.

103. Area of an Ellipse Prove the formula A = πab for the area of the ellipse with equation (Figure 7)

x2

a2
+ y2

b2
= 1

Hint: Use a change of variables to show that A is equal to ab times the area of the unit circle.

x

y
b

−b

a−a

FIGURE 7 Graph of
x2

a2
+ y2

b2
= 1.
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solution Consider the ellipse with equation x2

a2 + y2

b2 = 1; here a, b > 0. The area between the part of the ellipse in

the upper half-plane, y = f (x) =
√

b2
(

1 − x2

a2

)
, and the x-axis is

∫ a
−a f (x) dx. By symmetry, the part of the elliptical

region in the lower half-plane has the same area. Accordingly, the area enclosed by the ellipse is

2
∫ a

−a
f (x) dx = 2

∫ a

−a

√
b2
(

1 − x2

a2

)
dx = 2b

∫ a

−a

√
1 − (x/a)2 dx

Now, let u = x/a. Then x = au and a du = dx. Accordingly,

2b

∫ a

−a

√
1 −

(x

a

)2
dx = 2ab

∫ 1

−1

√
1 − u2 du = 2ab

(π

2

)
= πab

Here we recognized that
∫ 1
−1

√
1 − u2 du represents the area of the upper unit semicircular disk, which by Exercise 102

is 2( π
4 ) = π

2 .

5.7 Further Transcendental Functions

Preliminary Questions

1. Find b such that
∫ b

1

dx

x
is equal to

(a) ln 3 (b) 3

solution For b > 0,

∫ b

1

dx

x
= ln |x|

∣∣∣∣b
1

= ln b − ln 1 = ln b.

(a) For the value of the definite integral to equal ln 3, we must have b = 3.
(b) For the value of the definite integral to equal 3, we must have b = e3.

2. Find b such that
∫ b

0

dx

1 + x2
= π

3
.

solution In general,

∫ b

0

dx

1 + x2
= tan−1 x

∣∣∣∣b
0

= tan−1 b − tan−1 0 = tan−1 b.

For the value of the definite integral to equal π
3 , we must have

tan−1 b = π

3
or b = tan

π

3
= √

3.

3. Which integral should be evaluated using substitution?

(a)
∫

9 dx

1 + x2
(b)

∫
dx

1 + 9x2

solution Use the substitution u = 3x on the integral in (b).

4. Which relation between x and u yields
√

16 + x2 = 4
√

1 + u2?

solution To transform
√

16 + x2 into 4
√

1 + u2, make the substitution x = 4u.

Exercises
In Exercises 1–10, evaluate the definite integral.

1.
∫ 9

1

dx

x

solution
∫ 9

1

1

x
dx = ln |x|

∣∣∣∣9
1

= ln 9 − ln 1 = ln 9.

2.
∫ 20

4

dx

x

solution
∫ 20

4

1

x
dx = ln |x|

∣∣∣∣20

4
= ln 20 − ln 4 = ln 5.
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3.
∫ e3

1

1

t
dt

solution
∫ e3

1

1

t
dt = ln |t |

∣∣∣∣e
3

1
= ln e3 − ln 1 = 3.

4.
∫ −e

−e2

1

t
dt

solution
∫ −e

−e2

1

t
dt = ln |t |

∣∣∣∣−e

−e2
= ln | − e| − ln | − e2| = ln

e

e2
= ln(1/e) = −1.

5.
∫ 12

2

dt

3t + 4

solution Let u = 3t + 4. Then du = 3 dt and

∫ 12

2

dt

3t + 4
= 1

3

∫ 40

10

du

u
= 1

3
ln |u|

∣∣∣∣40

10
= 1

3
(ln 40 − ln 10) = 1

3
ln 4.

6.
∫ e3

e

dt

t ln t

solution Let u = ln t . Then du = (1/t)dt and

∫ e3

e

1

t ln t
dt =

∫ 3

1

du

u
= ln |u|

∣∣∣3
1

= ln 3 − ln 1 = ln 3.

7.
∫ tan 8

tan 1

dx

x2 + 1

solution
∫ tan 8

tan 1

dx

1 + x2
= tan−1 x

∣∣∣∣tan 8

tan 1
= tan−1(tan 8) − tan−1(tan 1) = 8 − 1 = 7.

8.
∫ 7

2

x dx

x2 + 1

solution Let u = x2 + 1. Then du = 2x dx and

∫ 7

2

x dx

x2 + 1
= 1

2

∫ 50

5

du

u
= 1

2
ln |u|

∣∣∣∣50

5
= 1

2
(ln 50 − ln 5) = 1

2
ln 10.

9.
∫ 1/2

0

dx√
1 − x2

solution
∫ 1/2

0

dx√
1 − x2

= sin−1 x

∣∣∣∣1/2

0
= sin−1 1

2
− sin−1 0 = π

6
.

10.
∫ −2/

√
3

−2

dx

|x|
√

x2 − 1

solution
∫ −2/

√
3

−2

dx

|x|
√

x2 − 1
= sec−1 x

∣∣∣∣−2/
√

3

−2
= sec−1

(
− 2√

3

)
− sec−1(−2) = 5π

6
− 2π

3
= π

6
.

11. Use the substitution u = x/3 to prove ∫
dx

9 + x2
= 1

3
tan−1 x

3
+ C

solution Let u = x/3. Then, x = 3u, dx = 3 du, 9 + x2 = 9(1 + u2), and∫
dx

9 + x2
=
∫

3 du

9(1 + u2)
= 1

3

∫
du

1 + u2
= 1

3
tan−1 u + C = 1

3
tan−1 x

3
+ C.

12. Use the substitution u = 2x to evaluate
∫

dx

4x2 + 1
.

solution Let u = 2x. Then, x = u/2, dx = 1
2 du, 4x2 + 1 = u2 + 1, and∫

dx

4x2 + 1
= 1

2

∫
du

u2 + 1
= 1

2
tan−1 u + C = 1

2
tan−1 2x + C.
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In Exercises 13–32, calculate the integral.

13.
∫ 3

0

dx

x2 + 3

solution Let x = √
3u. Then dx = √

3 du and

∫ 3

0

dx

x2 + 3
= 1√

3

∫ √
3

0

du

u2 + 1
= 1√

3
tan−1 u

∣∣∣∣
√

3

0
= 1√

3
(tan−1

√
3 − tan−1 0) = π

3
√

3
.

14.
∫ 4

0

dt

4t2 + 9

solution Let t = (3/2)u. Then dt = (3/2) du, 4t2 + 9 = 9t2 + 9 = 9(t2 + 1), and

∫ 4

0

dt

4t2 + 9
= 1

6

∫ 8/3

0

du

u2 + 1
= 1

6
tan−1 u

∣∣∣∣8/3

0
= 1

6
tan−1 8

3
.

15.
∫

dt√
1 − 16t2

solution Let u = 4t . Then du = 4 dt , and∫
dt√

1 − 16t2
=
∫

du

4
√

1 − u2
= 1

4
sin−1 u + C = 1

4
sin−1(4t) + C.

16.
∫ 1/5

−1/5

dx√
4 − 25x2

solution Let x = 2u/5. Then

dx = 2

5
du, 4 − 25x2 = 4(1 − u2),

and ∫ 1/5

−1/5

dx√
4 − 25x2

= 2

5

∫ 1/2

−1/2

1√
4(1 − u2)

du

= 1

5
sin−1 u

∣∣∣∣1/2

−1/2

= 1

5

(
sin−1 1

2
− sin−1

(
−1

2

))
= π

15
.

17.
∫

dt√
5 − 3t2

solution Let t = √
5/3u. Then dt = √

5/3 du and

∫
dt√

5 − 3t2
=
∫ √

5/3 du√
5
√

1 − t2
= 1√

3

∫
du√

1 − u2
= 1√

3
sin−1 u + C = 1√

3
sin−1

√
3

5
t + C.

18.
∫ 1/2

1/2
√

2

dx

x
√

16x2 − 1

solution Let x = u/4. Then dx = du/4, 16x2 − 1 = u2 − 1 and

∫ 1/2

1/2
√

2

dx

x
√

16x2 − 1
=
∫ 2

√
2

du

u
√

u2 − 1
= sec−1 u

∣∣∣2√
2

= sec−1 2 − sec−1
√

2 = π

12
.

19.
∫

dx

x
√

12x2 − 3

solution Let u = 2x. Then du = 2 dx and∫
dx

x
√

12x2 − 3
= 1√

3

∫
du

u
√

u2 − 1
= 1√

3
sec−1 u + C = 1√

3
sec−1(2x) + C.
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20.
∫

x dx

x4 + 1

solution Let u = x2. Then du = 2x dx and∫
x dx

x4 + 1
= 1

2

∫
du

u2 + 1
= 1

2
tan−1 u + C = 1

2
tan−1 x2 + C.

21.
∫

dx

x
√

x4 − 1

solution Let u = x2. Then du = 2x dx, and∫
dx

x
√

x4 − 1
=
∫

du

2u
√

u2 − 1
= 1

2
sec−1 u + C = 1

2
sec−1 x2 + C.

22.
∫ 0

−1/2

(x + 1) dx√
1 − x2

solution Observe that ∫
(x + 1) dx√

1 − x2
=
∫

x dx√
1 − x2

+
∫

dx√
1 − x2

.

In the first integral on the right, we let u = 1 − x2, du = −2x dx. Thus∫
(x + 1) dx√

1 − x2
= −1

2

∫
du

u1/2
+
∫

1 dx√
1 − x2

= −
√

1 − x2 + sin−1 x + C.

Finally,

∫ 0

−1/2

(x + 1) dx√
1 − x2

= (−
√

1 − x2 + sin−1 x)

∣∣∣∣0−1/2
= −1 +

√
3

2
+ π

6
.

23.
∫ 0

− ln 2

ex dx

1 + e2x

solution Let u = ex . Then du = exdx, and

∫ 0

− ln 2

ex dx

1 + e2x
=
∫ 1

1/2

du

1 + u2
= tan−1 u

∣∣∣∣1
1/2

= π

4
− tan−1(1/2).

24.
∫

ln(cos−1 x) dx

(cos−1 x)
√

1 − x2

solution Let u = ln cos−1 x. Then du = 1

cos−1 x
· −1√

1 − x2
, and

∫
ln(cos−1 x) dx

(cos−1 x)
√

1 − x2
= −

∫
u du = −1

2
u2 + C = −1

2
(ln cos−1 x)2 + C.

25.
∫

tan−1 x dx

1 + x2

solution Let u = tan−1 x. Then du = dx

1 + x2
, and

∫
tan−1 x dx

1 + x2
=
∫

u du = 1

2
u2 + C = (tan−1 x)2

2
+ C.

26.
∫ √

3

1

dx

(tan−1 x)(1 + x2)

solution Let u = tan−1 x. Then du = dx

1 + x2
, and

∫ √
3

1

dx

(tan−1 x)(1 + x2)
=
∫ π/3

π/4

1

u
du = ln |u|

∣∣∣∣π/3

π/4
= ln

π

3
− ln

π

4
= ln

4

3
.
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27.
∫ 1

0
3x dx

solution
∫ 1

0
3x dx = 3x

ln 3

∣∣∣∣1
0

= 1

ln 3
(3 − 1) = 2

ln 3
.

28.
∫ 1

0
3−x dx

solution Let u = −x. Then du = −dx and

∫ 1

0
3−x dx = −

∫ −1

0
3u du = − 3u

ln 3

∣∣∣∣−1

0
= 1

ln 3

(
−1

3
+ 1

)
= 2

3 ln 3
.

29.
∫ log4(3)

0
4x dx

solution
∫ log4(3)

0
4x dx = 4x

ln 4

∣∣∣∣log4 3

0
= 1

ln 4
(3 − 1) = 2

ln 4
= 1

ln 2
.

30.
∫ 1

0
t5t2

dt

solution Let u = t2. Then du = 2t dt and

∫ 1

0
t5t2

dt = 1

2

∫ 1

0
5u du = 5u

2 ln 5

∣∣∣∣1
0

= 5

2 ln 5
− 1

2 ln 5
= 2

ln 5
.

31.
∫

9x sin(9x) dx

solution Let u = 9x . Then du = 9x ln 9 dx and∫
9x sin(9x) dx = 1

ln 9

∫
sin u du = − 1

ln 9
cos u + C = − 1

ln 9
cos(9x) + C.

32.
∫

dx√
52x − 1

solution First, rewrite ∫
dx√

52x − 1
=
∫

dx

5x
√

1 − 5−2x
=
∫

5−x dx√
1 − 5−2x

.

Now, let u = 5−x . Then du = −5−x ln 5 dx and∫
dx√

52x − 1
= − 1

ln 5

∫
du√

1 − u2
= − 1

ln 5
sin−1 u + C = − 1

ln 5
sin−1(5−x) + C.

In Exercises 33–70, evaluate the integral using the methods covered in the text so far.

33.
∫

yey2
dy

solution Use the substitution u = y2, du = 2y dy. Then∫
yey2

dy = 1

2

∫
eu du = 1

2
eu + C = 1

2
ey2 + C.

34.
∫

dx

3x + 5

solution Let u = 3x + 5. Then du = 3 dx and∫
dx

3x + 5
= 1

3

∫
du

u
= 1

3
ln |u| + C = 1

3
ln |3x + 5| + C.

35.
∫

x dx√
4x2 + 9

solution Let u = 4x2 + 9. Then du = 8x dx and∫
x√

4x2 + 9
dx = 1

8

∫
u−1/2 du = 1

4
u1/2 + C = 1

4

√
4x2 + 9 + C.
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36.
∫

(x − x−2)2 dx

solution
∫

(x − x−2)2 dx =
∫

(x2 − 2x−1 + x−4) dx = 1

3
x3 − 2 ln |x| − 1

3
x−3 + C.

37.
∫

7−x dx

solution Let u = −x. Then du = −dx and∫
7−x dx = −

∫
7u du = − 7u

ln 7
+ C = −7−x

ln 7
+ C.

38.
∫

e9−12t dt

solution Let u = 9 − 12t . Then du = −12 dt and∫
e9−12t dt = − 1

12

∫
eu du = − 1

12
eu + C = − 1

12
e9−12t + C.

39.
∫

sec2 θ tan7 θ dθ

solution Let u = tan θ . Then du = sec2 θ dθ and∫
sec2 θ tan7 θ dθ =

∫
u7 du = 1

8
u8 + C = 1

8
tan8 θ + C.

40.
∫

cos(ln t) dt

t

solution Let u = ln t . Then du = dt/t and∫
cos(ln t) dt

t
=
∫

cos u du = sin u + C = sin(ln t) + C.

41.
∫

t dt√
7 − t2

solution Let u = 7 − t2. Then du = −2t dt and∫
t dt√
7 − t2

= −1

2

∫
u−1/2 du = −u1/2 + C = −

√
7 − t2 + C.

42.
∫

2xe4x dx

solution First, note that

2x = ex ln 2 so 2xe4x = e(4+ln 2)x .

Thus, ∫
2xe4x dx =

∫
e(4+ln 2)x dx = 1

4 + ln 2
e(4+ln 2)x + C.

43.
∫

(3x + 2) dx

x2 + 4

solution Write ∫
(3x + 2) dx

x2 + 4
=
∫

3x dx

x2 + 4
+
∫

2 dx

x2 + 4
.

In the first integral, let u = x2 + 4. Then du = 2x dx and∫
3x dx

x2 + 4
= 3

2

∫
du

u
− 3

2
ln |u| + C1 = 3

2
ln(x2 + 4) + C1.

For the second integral, let x = 2u. Then dx = 2 du and∫
2 dx

x2 + 4
=
∫

du

u2 + 1
= tan−1 u + C2 = tan−1(x/2) + C2.
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Combining these two results yields∫
(3x + 2) dx

x2 + 4
= 3

2
ln(x2 + 4) + tan−1(x/2) + C.

44.
∫

tan(4x + 1) dx

solution First we rewrite
∫

tan(4x + 1) dx as
∫ sin(4x+1)

cos(4x+1)
dx. Let u = cos(4x + 1). Then du = −4 sin(4x + 1) dx,

and ∫
sin(4x + 1)

cos(4x + 1)
dx = −1

4

∫
du

u
= −1

4
ln | cos(4x + 1)| + C.

45.
∫

dx√
1 − 16x2

solution Let u = 4x. Then du = 4 dx and∫
dx√

1 − 16x2
= 1

4

∫
du√

1 − u2
= 1

4
sin−1 u + C = 1

4
sin−1(4x) + C.

46.
∫

et
√

et + 1 dt

solution Use the substitution u = et + 1, du = et dt . Then∫
et
√

et + 1 dt =
∫ √

u du = 2

3
u3/2 + C = 2

3
(et + 1)3/2 + C.

47.
∫

(e−x − 4x) dx

solution First, observe that∫
(e−x − 4x) dx =

∫
e−x dx −

∫
4x dx =

∫
e−x dx − 2x2.

In the remaining integral, use the substitution u = −x, du = −dx. Then∫
e−x dx = −

∫
eu du = −eu + C = −e−x + C.

Finally, ∫
(e−x − 4x) dx = −e−x − 2x2 + C.

48.
∫

(7 − e10x) dx

solution First, observe that∫
(7 − e10x) dx =

∫
7 dx −

∫
e10x dx = 7x −

∫
e10x dx.

In the remaining integral, use the substitution u = 10x, du = 10 dx. Then∫
e10x dx = 1

10

∫
eu du = 1

10
eu + C = 1

10
e10x + C.

Finally, ∫
(7 − e10x) dx = 7x − 1

10
e10x + C.

49.
∫

e2x − e4x

ex
dx

solution

∫ (
e2x − e4x

ex

)
dx =

∫
(ex − e3x) dx = ex − e3x

3
+ C.
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50.
∫

dx

x
√

25x2 − 1

solution Let u = 5x. Then du = 5 dx and∫
dx

x
√

25x2 − 1
=
∫

du

u
√

u2 − 1
= sec−1 u + C = sec−1(5x) + C.

51.
∫

(x + 5) dx√
4 − x2

solution Write ∫
(x + 5) dx√

4 − x2
=
∫

x dx√
4 − x2

+
∫

5 dx√
4 − x2

.

In the first integral, let u = 4 − x2. Then du = −2x dx and∫
x dx√
4 − x2

= −1

2

∫
u−1/2 du = −u1/2 + C1 = −

√
4 − x2 + C1.

In the second integral, let x = 2u. Then dx = 2 du and∫
5 dx√
4 − x2

= 5
∫

du√
1 − u2

= 5 sin−1 u + C2 = 5 sin−1(x/2) + C2.

Combining these two results yields∫
(x + 5) dx√

4 − x2
= −

√
4 − x2 + 5 sin−1(x/2) + C.

52.
∫

(t + 1)
√

t + 1 dt

solution Let u = t + 1. Then du = dt and∫
(t + 1)

√
t + 1 dt =

∫
u3/2 du = 2

5
u5/2 + C = 2

5
(t + 1)5/2 + C.

53.
∫

ex cos(ex) dx

solution Use the substitution u = ex, du = ex dx. Then∫
ex cos(ex) dx =

∫
cos u du = sin u + C = sin(ex) + C.

54.
∫

ex

√
ex + 1

dx

solution Use the substitution u = ex + 1, du = ex dx. Then∫
ex

√
ex + 1

dx =
∫

du√
u

= 2
√

u + C = 2
√

ex + 1 + C.

55.
∫

dx√
9 − 16x2

solution First rewrite ∫
dx√

9 − 16x2
= 1

3

∫
dx√

1 −
(

4
3x
)2

.

Now, let u = 4
3x. Then du = 4

3 dx and

∫
dx√

9 − 16x2
= 1

4

∫
du√

1 − u2
= 1

4
sin−1 u + C = 1

4
sin−1

(
4x

3

)
+ C.
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56.
∫

dx

(4x − 1) ln(8x − 2)

solution Let u = ln(8x − 2). Then du = 8

8x − 2
dx = 4

4x − 1
dx, and

∫
dx

(4x − 1) ln(8x − 2)
= 1

4

∫
du

u
= 1

4
ln |u| + C = 1

4
ln | ln(8x − 2)| + C.

57.
∫

ex(e2x + 1)3 dx

solution Use the substitution u = ex, du = ex dx. Then∫
ex(e2x + 1)3 dx =

∫ (
u2 + 1

)3
du =

∫ (
u6 + 3u4 + 3u2 + 1

)
du

= 1

7
u7 + 3

5
u5 + u3 + u + C = 1

7
(ex)7 + 3

5
(ex)5 + (ex)3 + ex + C

= e7x

7
+ 3e5x

5
+ e3x + ex + C.

58.
∫

dx

x(ln x)5

solution Let u = ln x. Then du = dx/x and∫
dx

x(ln x)5 =
∫

u−5 du = −1

4
u−4 + C = − 1

4(ln x)4
+ C.

59.
∫

x2 dx

x3 + 2

solution Let u = x3 + 2. Then du = 3x2 dx, and

∫
x2 dx

x3 + 2
= 1

3

∫
du

u
= 1

3
ln |x3 + 2| + C.

60.
∫

(3x − 1) dx

9 − 2x + 3x2

solution Let u = 9 − 2x + 3x2. Then du = (−2 + 6x) dx = 2(3x − 1) dx, and∫
(3x − 1)dx

9 − 2x + 3x2
= 1

2

∫
du

u
= 1

2
ln(9 − 2x + 3x2) + C.

61.
∫

cot x dx

solution We rewrite
∫

cot x dx as
∫ cos x

sin x
dx. Let u = sin x. Then du = cos x dx, and∫

cos x

sin x
dx =

∫
du

u
= ln | sin x| + C.

62.
∫

cos x

2 sin x + 3
dx

solution Let u = 2 sin x + 3. Then du = 2 cos x dx, and∫
cos x

2 sin x + 3
dx = 1

2

∫
du

u
= 1

2
ln(2 sin x + 3) + C,

where we have used the fact that 2 sin x + 3 ≥ 1 to drop the absolute value.

63.
∫

4 ln x + 5

x
dx

solution Let u = 4 ln x + 5. Then du = (4/x)dx, and∫
4 ln x + 5

x
dx = 1

4

∫
u du = 1

8
u2 + C = 1

8
(4 ln x + 5)2 + C.
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64.
∫

(sec θ tan θ)5sec θ dθ

solution Let u = sec θ . Then du = sec θ tan θ dθ and

∫
(sec θ tan θ)5sec θ dθ =

∫
5u du = 5u

ln 5
+ C = 5sec θ

ln 5
+ C.

65.
∫

x3x2
dx

solution Let u = x2. Then du = 2x dx, and

∫
x3x2

dx = 1

2

∫
3udu = 1

2

3u

ln 3
+ C = 3x2

2 ln 3
+ C.

66.
∫

ln(ln x)

x ln x
dx

solution Let u = ln(ln x). Then du = 1

ln x
· 1

x
dx and

∫
ln(ln x)

x ln x
dx =

∫
u du = u2

2
+ C = (ln(ln x))2

2
+ C.

67.
∫

cot x ln(sin x) dx

solution Let u = ln(sin x). Then

du = 1

sin x
· cos x dx = cot x dx,

and ∫
cot x ln(sin x) dx =

∫
u du = u2

2
+ C = (ln(sin x))2

2
+ C.

68.
∫

t dt√
1 − t4

solution Let u = t2. Then du = 2t dt and∫
t dt√
1 − t4

= 1

2

∫
du√

1 − u2
= 1

2
sin−1 u + C = 1

2
sin−1 t2 + C.

69.
∫

t2√
t − 3 dt

solution Let u = t − 3. Then t = u + 3, du = dt and∫
t2√

t − 3 dt =
∫

(u + 3)2√
u du

=
∫

(u2 + 6u + 9)
√

u du =
∫

(u5/2 + 6u3/2 + 9u1/2) du

= 2

7
u7/2 + 12

5
u5/2 + 6u3/2 + C

= 2

7
(t − 3)7/2 + 12

5
(t − 3)5/2 + 6(t − 3)3/2 + C.

70.
∫

cos x5−2 sin x dx

solution Let u = −2 sin x. Then du = −2 cos x dx and

∫
cos x5−2 sin x dx = −1

2

∫
5u du = − 5u

2ln5
+ C = −5−2 sin x

2 ln 5
+ C.
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71. Use Figure 4 to prove ∫ x

0

√
1 − t2 dt = 1

2
x
√

1 − x2 + 1

2
sin−1 x

x
x

y

1

FIGURE 4

solution The definite integral
∫ x

0

√
1 − t2 dt represents the area of the region under the upper half of the unit circle

from 0 to x. The region consists of a sector of the circle and a right triangle. The sector has a central angle of π
2 − θ ,

where cos θ = x. Hence, the sector has an area of

1

2
(1)2

(π

2
− cos−1 x

)
= 1

2
sin−1 x.

The right triangle has a base of length x, a height of
√

1 − x2, and hence an area of 1
2x
√

1 − x2. Thus,∫ x

0

√
1 − t2 dt = 1

2
x
√

1 − x2 + 1

2
sin−1 x.

72. Use the substitution u = tan x to evaluate ∫
dx

1 + sin2 x
.

Hint: Show that

dx

1 + sin2 x
= du

1 + 2u2

solution If u = tan x, then du = sec2 x dx and

du

1 + 2u2
= sec2 x dx

1 + 2 tan2 x
= dx

cos2 x + 2 sin2 x
= dx

cos2 x + sin2 x + sin2 x
= dx

1 + sin2 x
.

Thus ∫
dx

1 + sin2 x
=
∫

du

1 + 2u2
=
∫

du

1 + (
√

2u)2
= 1√

2
tan−1(

√
2u) + C = 1√

2
tan−1((tan x)

√
2) + C.

73. Prove: ∫
sin−1 t dt =

√
1 − t2 + t sin−1 t .

solution Let G(t) =
√

1 − t2 + t sin−1 t . Then

G′(t) = d

dt

√
1 − t2 + d

dt

(
t sin−1 t

)
= −t√

1 − t2
+
(

t · d

dt
sin−1 t + sin−1 t

)

= −t√
1 − t2

+
(

t√
1 − t2

+ sin−1 t

)
= sin−1 t.

This proves the formula
∫

sin−1 t dt =
√

1 − t2 + t sin−1 t .

74. (a) Verify for r �= 0: ∫ T

0
tert dt = erT (rT − 1) + 1

r2
6

Hint: For fixed r , let F(T ) be the value of the integral on the left. By FTC II, F ′(t) = tert and F(0) = 0. Show that the
same is true of the function on the right.
(b) Use L’Hôpital’s Rule to show that for fixed T , the limit as r → 0 of the right-hand side of Eq. (6) is equal to the value
of the integral for r = 0.
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solution
(a) Let

f (t) = ert

r2
(rt − 1) + 1

r2
.

Then

f ′(t) = 1

r2

(
ert r + (rt − 1)(rert )

) = tert

and

f (0) = − 1

r2
+ 1

r2
= 0,

as required.
(b) Using L’Hôpital’s Rule,

lim
r→0

erT (rT − 1) + 1

r2
= lim

r→0

T erT + (rT − 1)(T erT )

2r
= lim

r→0

rT 2erT

2r
= lim

r→0

T 2erT

2
= T 2

2
.

If r = 0 then,
∫ T

0
tert dt =

∫ T

0
t dt = t2

2

∣∣∣∣T
0

= T 2

2
.

Further Insights and Challenges
75. Recall that if f (t) ≥ g(t) for t ≥ 0, then for all x ≥ 0,∫ x

0
f (t) dt ≥

∫ x

0
g(t) dt 7

The inequality et ≥ 1 holds for t ≥ 0 because e > 1. Use Eq. (7) to prove that ex ≥ 1 + x for x ≥ 0. Then prove, by
successive integration, the following inequalities (for x ≥ 0):

ex ≥ 1 + x + 1

2
x2, ex ≥ 1 + x + 1

2
x2 + 1

6
x3

solution Integrating both sides of the inequality et ≥ 1 yields∫ x

0
et dt = ex − 1 ≥ x or ex ≥ 1 + x.

Integrating both sides of this new inequality then gives∫ x

0
et dt = ex − 1 ≥ x + x2/2 or ex ≥ 1 + x + x2/2.

Finally, integrating both sides again gives∫ x

0
et dt = ex − 1 ≥ x + x2/2 + x3/6 or ex ≥ 1 + x + x2/2 + x3/6

as requested.

76. Generalize Exercise 75; that is, use induction (if you are familiar with this method of proof) to prove that for all
n ≥ 0,

ex ≥ 1 + x + 1

2
x2 + 1

6
x3 + · · · + 1

n!x
n (x ≥ 0)

solution For n = 1, ex ≥ 1 + x by Exercise 75. Assume the statement is true for n = k. We need to prove the
statement is true for n = k + 1. By the Induction Hypothesis,

ex ≥ 1 + x + x2/2 + · · · + xk/k!.
Integrating both sides of this inequality yields∫ x

0
et dt = ex − 1 ≥ x + x2/2 + · · · + xk+1/(k + 1)!

or

ex ≥ 1 + x + x2/2 + · · · + xk+1/(k + 1)!
as required.
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77. Use Exercise 75 to show that ex/x2 ≥ x/6 and conclude that lim
x→∞ ex/x2 = ∞. Then use Exercise 76 to prove more

generally that lim
x→∞ ex/xn = ∞ for all n.

solution By Exercise 75, ex ≥ 1 + x + x2

2 + x3

6 . Thus

ex

x2
≥ 1

x2
+ 1

x
+ 1

2
+ x

6
≥ x

6
.

Since lim
x→∞ x/6 = ∞, lim

x→∞ ex/x2 = ∞. More generally, by Exercise 76,

ex ≥ 1 + x2

2
+ · · · + xn+1

(n + 1)! .

Thus

ex

xn
≥ 1

xn
+ · · · + x

(n + 1)! ≥ x

(n + 1)! .

Since lim
x→∞

x
(n+1)! = ∞, lim

x→∞
ex

xn = ∞.

Exercises 78–80 develop an elegant approach to the exponential and logarithm functions. Define a function G(x) for
x > 0:

G(x) =
∫ x

1

1

t
dt

78. Defining ln x as an Integral This exercise proceeds as if we didn’t know that G(x) = ln x and shows directly that
G(x) has all the basic properties of the logarithm. Prove the following statements.

(a)
∫ ab
a

1
t dt = ∫ b

1
1
t dt for all a, b > 0. Hint: Use the substitution u = t/a.

(b) G(ab) = G(a) + G(b). Hint: Break up the integral from 1 to ab into two integrals and use (a).

(c) G(1) = 0 and G(a−1) = −G(a) for a > 0.

(d) G(an) = nG(a) for all a > 0 and integers n.

(e) G(a1/n) = 1

n
G(a) for all a > 0 and integers n �= 0.

(f) G(ar ) = rG(a) for all a > 0 and rational numbers r .

(g) G(x) is increasing. Hint: Use FTC II.

(h) There exists a number a such that G(a) > 1. Hint: Show that G(2) > 0 and take a = 2m for m > 1/G(2).

(i) lim
x→∞ G(x) = ∞ and lim

x→0+ G(x) = −∞
(j) There exists a unique number E such that G(E) = 1.

(k) G(Er) = r for every rational number r .

solution

(a) Let u = t/a. Then du = dt/a, u(a) = 1, u(ab) = b and

∫ ab

a

1

t
dt =

∫ ab

a

a

at
dt =

∫ b

1

1

u
du =

∫ b

1

1

t
dt.

(b) Using part (a),

G(ab) =
∫ ab

1

1

t
dt =

∫ a

1

1

t
dt +

∫ ab

a

1

t
dt =

∫ a

1

1

t
dt +

∫ b

1

1

t
dt = G(a) + G(b).

(c) First,

G(1) =
∫ 1

1

1

t
dt = 0.

Next,

G(a−1) = G

(
1

a

)
=
∫ 1/a

1

1

t
dt =

∫ 1

a

1

t
dt by part (a) with b = 1

a

= −
∫ a

1

1

t
dt = −G(a).
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(d) Using part (a),

G(an) =
∫ an

1

1

t
dt =

∫ a

1

1

t
dt +

∫ a2

a

1

t
dt + · · · +

∫ an

an−1

1

t
dt

=
∫ a

1

1

t
dt +

∫ a

1

1

t
dt + · · · +

∫ a

1

1

t
dt = nG(a).

(e) G(a) = G((a1/n)n = nG(a1/n). Thus, G(a1/n) = 1

n
G(a).

(f) Let r = m/n where m and n are integers. Then

G(ar ) = G(am/n) = G((am)1/n)

= 1

n
G(am) by part (e)

= m

n
G(a) by part d

= rG(a).

(g) By the Fundamental Theorem of Calculus, G(x) is continuous on (0, ∞) and G′(x) = 1
x > 0 for x > 0. Thus, G(x)

is increasing and one-to-one for x > 0.

(h) First note that

G(2) =
∫ 2

1

1

t
dt >

1

2
> 0

because
1

t
>

1

2
for t ∈ (1, 2). Now, let a = 2m for m an integer greater than 1/G(2). Then

G(a) = G(2m) = mG(2) >
1

G(2)
· G(2) = 1.

(i) First, let a be the value from part (h) for which G(a) > 1 (note that a itself is greater than 1). Now,

lim
x→∞ G(x) = lim

m→∞ G(am) = G(a) lim
m→∞ m = ∞.

For the other limit, let t = 1/x and note

lim
x→0+ G(x) = lim

t→∞ G

(
1

t

)
= − lim

t→∞ G(t) = −∞.

(j) By part (c), G(1) = 0 and by part (h) there exists an a such that G(a) > 1. the Intermediate Value Theorem then
guarantees there exists a number E such that 1 < E < a and G(E) = 1. We know that E is unique because G is
one-to-one.

(k) Using part (f) and then part (j),

G(Er) = rG(E) = r · 1 = r.

79. Defining ex Use Exercise 78 to prove the following statements.

(a) G(x) has an inverse with domain R and range {x : x > 0}. Denote the inverse by F(x).

(b) F(x + y) = F(x)F (y) for all x, y. Hint: It suffices to show that G(F(x)F (y)) = G(F(x + y)).

(c) F(r) = Er for all numbers. In particular, F(0) = 1.

(d) F ′(x) = F(x). Hint: Use the formula for the derivative of an inverse function.

This shows that E = e and F(x) is the function ex as defined in the text.

solution
(a) The domain of G(x) is x > 0 and, by part (i) of the previous exercise, the range of G(x) is R. Now,

G′(x) = 1

x
> 0

for all x > 0. Thus, G(x) is increasing on its domain, which implies that G(x) has an inverse. The domain of the inverse
is R and the range is {x : x > 0}. Let F(x) denote the inverse of G(x).

(b) Let x and y be real numbers and suppose that x = G(w) and y = G(z) for some positive real numbers w and z.
Then, using part (b) of the previous exercise

F(x + y) = F(G(w) + G(z)) = F(G(wz)) = wz = F(x) + F(y).
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(c) Let r be any real number. By part (k) of the previous exercise, G(Er) = r . By definition of an inverse function, it
then follows that F(r) = Er .

(d) By the formula for the derivative of an inverse function

F ′(x) = 1

G′(F (x))
= 1

1/F (x)
= F(x).

80. Defining bx Let b > 0 and let f (x) = F(xG(b)) with F as in Exercise 79. Use Exercise 78 (f) to prove that
f (r) = br for every rational number r . This gives us a way of defining bx for irrational x, namely bx = f (x). With this
definition, bx is a differentiable function of x (because F is differentiable).

solution By Exercise 78 (f),

f (r) = F(rG(b)) = F(G(br )) = br ,

for every rational number r .

81. The formula
∫

xn dx = xn+1

n + 1
+ C is valid for n �= −1. Show that the exceptional case n = −1 is a limit of the

general case by applying L’Hôpital’s Rule to the limit on the left.

lim
n→−1

∫ x

1
tn dt =

∫ x

1
t−1 dt (for fixed x > 0)

Note that the integral on the left is equal to
xn+1 − 1

n + 1
.

solution

lim
n→−1

∫ x

1
tn dt = lim

n→−1

tn+1

n + 1

∣∣∣∣∣
x

1

= lim
n→−1

(
xn+1

n + 1
− 1n+1

n + 1

)

= lim
n→−1

xn+1 − 1

n + 1
= lim

n→−1
(xn+1) ln x = ln x =

∫ x

1
t−1 dt

Note that when using L’Hôpital’s Rule in the second line, we need to differentiate with respect to n.

82. The integral on the left in Exercise 81 is equal to fn(x) = xn+1 − 1

n + 1
. Investigate the limit graphically by

plotting fn(x) for n = 0, −0.3, −0.6, and −0.9 together with ln x on a single plot.

solution

−1

1

2

y

x

y = ln x

n = 0
n = −0.3

n = −0.6
n = −0.9

54321

83. (a) Explain why the shaded region in Figure 5 has area
∫ ln a

0 ey dy.

(b) Prove the formula
∫ a

1 ln x dx = a ln a − ∫ ln a
0 ey dy.

(c) Conclude that
∫ a

1 ln x dx = a ln a − a + 1.

(d) Use the result of (a) to find an antiderivative of ln x.

x

y

a

ln a

y = ln x

1

FIGURE 5
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solution

(a) Interpreting the graph with y as the independent variable, we see that the function is x = ey . Integrating in y then

gives the area of the shaded region as
∫ ln a

0 ey dy

(b) We can obtain the area under the graph of y = ln x from x = 1 to x = a by computing the area of the rectangle
extending from x = 0 to x = a horizontally and from y = 0 to y = ln a vertically and then subtracting the area of the
shaded region. This yields

∫ a

1
ln x dx = a ln a −

∫ ln a

0
ey dy.

(c) By direct calculation

∫ ln a

0
ey dy = ey

∣∣∣∣ln a

0
= a − 1.

Thus, ∫ a

1
ln x dx = a ln a − (a − 1) = a ln a − a + 1.

(d) Based on these results it appears that ∫
ln x dx = x ln x − x + C.

5.8 Exponential Growth and Decay

Preliminary Questions
1. Two quantities increase exponentially with growth constants k = 1.2 and k = 3.4, respectively. Which quantity

doubles more rapidly?

solution Doubling time is inversely proportional to the growth constant. Consequently, the quantity with k = 3.4
doubles more rapidly.

2. A cell population grows exponentially beginning with one cell. Which takes longer: increasing from one to two cells
or increasing from 15 million to 20 million cells?

solution It takes longer for the population to increase from one cell to two cells, because this requires doubling the
population. Increasing from 15 million to 20 million is less than doubling the population.

3. Referring to his popular book A Brief History of Time, the renowned physicist Stephen Hawking said, “Someone told
me that each equation I included in the book would halve its sales.” Find a differential equation satisfied by the function
S(n), the number of copies sold if the book has n equations.

solution Let S(0) denote the sales with no equations in the book. Translating Hawking’s observation into an equation
yields

S(n) = S(0)

2n
.

Differentiating with respect to n then yields

dS

dn
= S(0)

d

dn
2−n = − ln 2S(0)2−n = − ln 2S(n).

4. The PV of N dollars received at time T is (choose the correct answer):

(a) The value at time T of N dollars invested today

(b) The amount you would have to invest today in order to receive N dollars at time T

solution The correct response is (b): the PV of N dollars received at time T is the amount you would have to invest
today in order to receive N dollars at time T .

5. In one year, you will be paid $1. Will the PV increase or decrease if the interest rate goes up?

solution If the interest rate goes up, the present value of $1 a year from now will decrease.
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Exercises
1. A certain population P of bacteria obeys the exponential growth law P(t) = 2000e1.3t (t in hours).

(a) How many bacteria are present initially?
(b) At what time will there be 10,000 bacteria?

solution

(a) P(0) = 2000e0 = 2000 bacteria initially.
(b) We solve 2000e1.3t = 10, 000 for t . Thus, e1.3t = 5 or

t = 1

1.3
ln 5 ≈ 1.24 hours.

2. A quantity P obeys the exponential growth law P(t) = e5t (t in years).

(a) At what time t is P = 10?
(b) What is the doubling time for P ?

solution

(a) e5t = 10 when t = 1
5 ln 10 ≈ 0.46 years.

(b) The doubling time is 1
5 ln 2 ≈ 0.14 years.

3. Write f (t) = 5(7)t in the form f (t) = P0ekt for some P0 and k.

solution Because 7 = eln 7, it follows that

f (t) = 5(7)t = 5(eln 7)t = 5et ln 7.

Thus, P0 = 5 and k = ln 7.

4. Write f (t) = 9e1.4t in the form f (t) = P0bt for some P0 and b.

solution Observe that

f (t) = 9e1.4t = 9
(
e1.4
)t

,

so P0 = 9 and b = e1.4 ≈ 4.0552.

5. A certain RNA molecule replicates every 3 minutes. Find the differential equation for the number N(t) of molecules
present at time t (in minutes). How many molecules will be present after one hour if there is one molecule at t = 0?

solution The doubling time is
ln 2

k
so k = ln 2

doubling time
. Thus, the differential equation is N ′(t) = kN(t) =

ln 2

3
N(t). With one molecule initially,

N(t) = e(ln 2/3)t = 2t/3.

Thus, after one hour, there are

N(60) = 260/3 = 1,048,576

molecules present.

6. A quantity P obeys the exponential growth law P(t) = Cekt (t in years). Find the formula for P(t), assuming that
the doubling time is 7 years and P(0) = 100.

solution The doubling time is 7 years, so 7 = ln 2/k, or k = ln 2/7 = 0.099 years−1. With P(0) = 100, it follows

that P(t) = 100e0.099t .

7. Find all solutions to the differential equation y′ = −5y. Which solution satisfies the initial condition y(0) = 3.4?

solution y′ = −5y, so y(t) = Ce−5t for some constant C. The initial condition y(0) = 3.4 determines C = 3.4.

Therefore, y(t) = 3.4e−5t .

8. Find the solution to y′ = √
2y satisfying y(0) = 20.

solution y′ = √
2y, so y(t) = Ce

√
2t for some constant C. The initial condition y(0) = 20 determines C = 20.

Therefore, y(t) = 20e
√

2t .

9. Find the solution to y′ = 3y satisfying y(2) = 1000.

solution y′ = 3y, so y(t) = Ce3t for some constant C. The initial condition y(2) = 1000 determines C = 1000

e6
.

Therefore, y(t) = 1000

e6
e3t = 1000e3(t−2).
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10. Find the function y = f (t) that satisfies the differential equation y′ = −0.7y and the initial condition y(0) = 10.

solution Given that y′ = −0.7y and y(0) = 10, then f (t) = 10e−0.7t .

11. The decay constant of cobalt-60 is 0.13 year−1. Find its half-life.

solution Half-life = ln 2

0.13
≈ 5.33 years.

12. The half-life radium-226 is 1622 years. Find its decay constant.

solution Half-life = ln 2

k
so k = ln 2

half-life
= ln 2

1622
= 4.27 × 10−4 years−1.

13. One of the world’s smallest flowering plants, Wolffia globosa (Figure 13), has a doubling time of approximately 30
hours. Find the growth constant k and determine the initial population if the population grew to 1000 after 48 hours.

FIGURE 13 The tiny plants are Wolffia, with plant bodies smaller than the head of a pin.

solution By the formula for the doubling time, 30 = ln 2

k
. Therefore,

k = ln 2

30
≈ 0.023 hours−1.

The plant population after t hours is P(t) = P0e0.023t . If P(48) = 1000, then

P0e(0.023)48 = 1000 ⇒ P0 = 1000e−(0.023)48 ≈ 332

14. A 10-kg quantity of a radioactive isotope decays to 3 kg after 17 years. Find the decay constant of the isotope.

solution P(t) = 10e−kt . Thus P(17) = 3 = 10e−17k , so k = ln(3/10)

−17
≈ 0.071 years−1.

15. The population of a city is P(t) = 2 · e0.06t (in millions), where t is measured in years. Calculate the time it takes
for the population to double, to triple, and to increase seven-fold.

solution Since k = 0.06, the doubling time is

ln 2

k
≈ 11.55 years.

The tripling time is calculated in the same way as the doubling time. Solve for � in the equation

P(t + �) = 3P(t)

2 · e0.06(t+�) = 3(2e0.06t )

2 · e0.06t e0.06� = 3(2e0.06t )

e0.06� = 3

0.06� = ln 3,

or � = ln 3/0.06 ≈ 18.31 years. Working in a similar fashion, we find that the time required for the population to increase
seven-fold is

ln 7

k
= ln 7

0.06
≈ 32.43 years.

16. What is the differential equation satisfied by P(t), the number of infected computer hosts in Example 4? Over which
time interval would P(t) increase one hundred-fold?

solution Because the rate constant is k = 0.0815 s−1, the differential equation for P(t) is

dP

dt
= 0.0815P.
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The time for the number of infected computers to increase one hundred-fold is

ln 100

k
= ln 100

0.0815
≈ 56.51 s.

17. The decay constant for a certain drug is k = 0.35 day−1. Calculate the time it takes for the quantity present in the
bloodstream to decrease by half, by one-third, and by one-tenth.

solution The time required for the quantity present in the bloodstream to decrease by half is

ln 2

k
= ln 2

0.35
≈ 1.98 days.

To decay by one-third, the time is

ln 3

k
= ln 3

0.35
≈ 3.14 days.

Finally, to decay by one-tenth, the time is

ln 10

k
= ln 10

0.35
≈ 6.58 days.

18. Light Intensity The intensity of light passing through an absorbing medium decreases exponentially with the

distance traveled. Suppose the decay constant for a certain plastic block is k = 4 m−1. How thick must the block be to
reduce the intensity by a factor of one-third?

solution Since intensity decreases exponentially, it can be modeled by an exponential decay equation I (d) = I0e−kd .

Assuming I (0) = 1, I (d) = e−kd . Since the decay constant is k = 4, we have I (d) = e−4d . Intensity will be reduced

by a factor of one-third when e−4d = 1
3 or when d = ln(1/3)

−4
≈ 0.275 m.

19. Assuming that population growth is approximately exponential, which of the following two sets of data is most likely
to represent the population (in millions) of a city over a 5-year period?

Year 2000 2001 2002 2003 2004

Set I 3.14 3.36 3.60 3.85 4.11
Set II 3.14 3.24 3.54 4.04 4.74

solution If the population growth is approximately exponential, then the ratio between successive years’ data needs
to be approximately the same.

Year 2000 2001 2002 2003 2004

Data I 3.14 3.36 3.60 3.85 4.11
Ratios 1.07006 1.07143 1.06944 1.06753

Data II 3.14 3.24 3.54 4.04 4.74
Ratios 1.03185 1.09259 1.14124 1.17327

As you can see, the ratio of successive years in the data from “Data I” is very close to 1.07. Therefore, we would expect
exponential growth of about P(t) ≈ (3.14)(1.07t ).

20. The atmospheric pressure P(h) (in kilopascals) at a height h meters above sea level satisfies a differential equation
P ′ = −kP for some positive constant k.

(a) Barometric measurements show that P(0) = 101.3 and P(30, 900) = 1.013. What is the decay constant k?

(b) Determine the atmospheric pressure at h = 500.

solution

(a) Because P ′ = −kP for some positive constant k, P(h) = Ce−kh where C = P(0) = 101.3. Therefore, P(h) =
101.3e−kh. We know that P(30,900) = 101.3e−30,900k = 1.013. Solving for k yields

k = − 1

30,900
ln

(
1.013

101.3

)
≈ 0.000149 meters−1.

(b) P(500) = 101.3e−0.000149(500) ≈ 94.03 kilopascals.
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21. Degrees in Physics One study suggests that from 1955 to 1970, the number of bachelor’s degrees in physics awarded
per year by U.S. universities grew exponentially, with growth constant k = 0.1.
(a) If exponential growth continues, how long will it take for the number of degrees awarded per year to increase 14-fold?
(b) If 2500 degrees were awarded in 1955, in which year were 10,000 degrees awarded?

solution
(a) The time required for the number of degrees to increase 14-fold is

ln 14

k
= ln 14

0.1
≈ 26.39 years.

(b) The doubling time is (ln 2)/0.1 ≈ 0.693/0.1 = 6.93 years. Since degrees are usually awarded once a year, we round
off the doubling time to 7 years. The number quadruples after 14 years, so 10, 000 degrees would be awarded in 1969.

22. The Beer–Lambert Law is used in spectroscopy to determine the molar absorptivity α or the concentration c of a
compound dissolved in a solution at low concentrations (Figure 14). The law states that the intensity I of light as it passes
through the solution satisfies ln(I/I0) = αcx, where I0 is the initial intensity and x is the distance traveled by the light.
Show that I satisfies a differential equation dI/dx = −kI for some constant k.

Distance

Solution

Intensity I

0 x

I0

x

FIGURE 14 Light of intensity passing through a solution.

solution ln

(
I

I0

)
= αcI so

I

I0
= eαcI or I = I0eαcI . Therefore,

dI

dx
= I0eαcI (αc) = I (αc) = −kI,

where k = −αc is a constant.

23. A sample of sheepskin parchment discovered by archaeologists had a C14-to-C12 ratio equal to 40% of that found in
the atmosphere. Approximately how old is the parchment?

solution The ratio of C14 to C12 is Re−0.000121t = 0.4R so −0.000121t = ln(0.4) or t = 7572.65 ≈ 7600 years.

24. Chauvet Caves In 1994, three French speleologists (geologists specializing in caves) discovered a cave in southern

France containing prehistoric cave paintings. A C14 analysis carried out by archeologist Helene Valladas showed the
paintings to be between 29,700 and 32,400 years old, much older than any previously known human art. Given that the
C14-to-C12 ratio of the atmosphere is R = 10−12, what range of C14-to-C12 ratios did Valladas find in the charcoal
specimens?

solution The C14-C12 ratio found in the specimens ranged from

10−12e−0.000121(32,400) ≈ 1.98 × 10−14

to

10−12e−0.000121(29,700) ≈ 2.75 × 10−14.

25. A paleontologist discovers remains of animals that appear to have died at the onset of the Holocene ice age, between
10,000 and 12,000 years ago. What range of C14-to-C12 ratio would the scientist expect to find in the animal remains?

solution The scientist would expect to find C14-C12 ratios ranging from

10−12e−0.000121(12,000) ≈ 2.34 × 10−13

to

10−12e−0.000121(10,000) ≈ 2.98 × 10−13.

26. Inversion of Sugar When cane sugar is dissolved in water, it converts to invert sugar over a period of several hours.
The percentage f (t) of unconverted cane sugar at time t (in hours) satisfies f ′ = −0.2f . What percentage of cane sugar
remains after 5 hours? After 10 hours?

solution f ′ = −0.2f , so f (t) = Ce−0.2t . Since f is a percentage, at t = 0, C = 100 percent. Therefore.

f (t) = 100e−0.2t . Thus f (5) = 100e−0.2(5) ≈ 36.79 percent and f (10) = 100e−0.2(10) ≈ 13.53 percent.
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27. Continuing with Exercise 26, suppose that 50 grams of sugar are dissolved in a container of water. After how many
hours will 20 grams of invert sugar be present?

solution If there are 20 grams of invert sugar present, then there are 30 grams of unconverted sugar. This means that
f = 60. Solving

100e−0.2t = 60

for t yields

t = − 1

0.2
ln 0.6 ≈ 2.55 hours.

28. Two bacteria colonies are cultivated in a laboratory. The first colony has a doubling time of 2 hours and the second a
doubling time of 3 hours. Initially, the first colony contains 1000 bacteria and the second colony 3000 bacteria. At what
time t will the sizes of the colonies be equal?

solution P1(t) = 1000ek1t and P2(t) = 3000ek2t . Knowing that k1 = ln 2

2
hours−1 and k2 = ln 2

3
hours−1, we

need to solve ek1t = 3ek2t for t . Thus

k1t = ln(3ek2t ) = ln 3 + ln(ek2t ) = ln 3 + k2t,

so

t = ln 3

k1 − k2
= 6 ln 3

ln 2
≈ 9.51 hours.

29. Moore’s Law In 1965, Gordon Moore predicted that the number N of transistors on a microchip would increase
exponentially.

(a) Does the table of data below confirm Moore’s prediction for the period from 1971 to 2000? If so, estimate the growth
constant k.
(b) Plot the data in the table.

(c) Let N(t) be the number of transistors t years after 1971. Find an approximate formula N(t) ≈ Cekt , where t is the
number of years after 1971.
(d) Estimate the doubling time in Moore’s Law for the period from 1971 to 2000.
(e) How many transistors will a chip contain in 2015 if Moore’s Law continues to hold?
(f) Can Moore have expected his prediction to hold indefinitely?

Processor Year No. Transistors

4004 1971 2250
8008 1972 2500
8080 1974 5000
8086 1978 29,000
286 1982 120,000
386 processor 1985 275,000
486 DX processor 1989 1,180,000
Pentium processor 1993 3,100,000
Pentium II processor 1997 7,500,000
Pentium III processor 1999 24,000,000
Pentium 4 processor 2000 42,000,000

Xeon processor 2008 1,900,000,000

solution
(a) Yes, the graph looks like an exponential graph especially towards the latter years. We estimate the growth constant
by setting 1971 as our starting point, so P0 = 2250. Therefore, P(t) = 2250ekt . In 2008, t = 37. Therefore, P(37) =
2250e37k = 1,900,000,000, so k = ln 844,444.444

37 ≈ 0.369. Note: A better estimate can be found by calculating k for
each time period and then averaging the k values.
(b)

y

x

1×107

2×107

3×107

4×107

20001995199019851980
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(c) N(t) = 2250e0.369t

(d) The doubling time is ln 2/0.369 ≈ 1.88 years.
(e) In 2015, t = 44 years. Therefore, N(44) = 2250e0.369(44) ≈ 2.53 × 1010.
(f) No, you can’t make a microchip smaller than an atom.

30. Assume that in a certain country, the rate at which jobs are created is proportional to the number of people who
already have jobs. If there are 15 million jobs at t = 0 and 15.1 million jobs 3 months later, how many jobs will there be
after 2 years?

solution Let J (t) denote the number of people, in millions, who have jobs at time t , in months. Because the rate at
which jobs are created is proportional to the number of people who already have jobs, J ′(t) = kJ (t), for some constant
k. Given that J (0) = 15, it then follows that J (t) = 15ekt . To determine k, we use J (3) = 15.1; therefore,

k = 1

3
ln

(
15.1

15

)
≈ 2.215 × 10−3 months−1.

Finally, after two years, there are

J (24) = 15e0.002215(24) ≈ 15.8 million

jobs.

31. The only functions with a constant doubling time are the exponential functions P0ekt with k > 0. Show that the
doubling time of linear function f (t) = at + b at time t0 is t0 + b/a (which increases with t0). Compute the doubling
times of f (t) = 3t + 12 at t0 = 10 and t0 = 20.

solution Let f (t) = at + b and suppose f (t0) = P0. The time it takes for the value of f to double is the solution of
the equation

2P0 = 2(at0 + b) = at + b or t = 2t0 + b/a.

For the function f (t) = 3t + 12, a = 3, b = 12 and b/a = 4. With t0 = 10, the doubling time is then 24; with t0 = 20,
the doubling time is 44.

32. Verify that the half-life of a quantity that decays exponentially with decay constant k is equal to (ln 2)/k.

solution Let y = Ce−kt be an exponential decay function. Let t be the half-life of the quantity y, that is, the time t

when y = C

2
. Solving

C

2
= Ce−kt for t we get − ln 2 = −kt , so t = ln 2/k.

33. Compute the balance after 10 years if $2000 is deposited in an account paying 9% interest and interest is compounded
(a) quarterly, (b) monthly, and (c) continuously.

solution

(a) P(10) = 2000(1 + 0.09/4)4(10) = $4870.38
(b) P(10) = 2000(1 + 0.09/12)12(10) = $4902.71
(c) P(10) = 2000e0.09(10) = $4919.21

34. Suppose $500 is deposited into an account paying interest at a rate of 7%, continuously compounded. Find a formula
for the value of the account at time t . What is the value of the account after 3 years?

solution Let P(t) denote the value of the account at time t . Because the initial deposit is $500 and the account pays

interest at a rate of 7%, compounded continuously, it follows that P(t) = 500e0.07t . After three years, the value of the
account is P(3) = 500e0.07(3) = $616.84.

35. A bank pays interest at a rate of 5%. What is the yearly multiplier if interest is compounded

(a) three times a year? (b) continuously?

solution

(a) P(t) = P0

(
1 + 0.05

3

)3t

, so the yearly multiplier is

(
1 + 0.05

3

)3
≈ 1.0508.

(b) P(t) = P0e0.05t , so the yearly multiplier is e0.05 ≈ 1.0513.

36. How long will it take for $4000 to double in value if it is deposited in an account bearing 7% interest, continuously
compounded?

solution The doubling time is
ln 2

0.7
≈ 9.9 years.

37. How much must one invest today in order to receive $20,000 after 5 years if interest is compounded continuously at
the rate r = 9%?

solution Solving 20,000 = P0e0.09(5) for P0 yields

P0 = 20,000

e0.45
≈ $12,752.56.
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38. An investment increases in value at a continuously compounded rate of 9%. How large must the initial investment
be in order to build up a value of $50,000 over a 7-year period?

solution Solving 50,000 = P0e0.09(7) for P0 yields

P0 = 50,000

e0.63
≈ $26,629.59.

39. Compute the PV of $5000 received in 3 years if the interest rate is (a) 6% and (b) 11%. What is the PV in these two
cases if the sum is instead received in 5 years?

solution In 3 years:

(a) PV = 5000e−0.06(3) = $4176.35

(b) PV = 5000e−0.11(3) = $3594.62

In 5 years:

(a) PV = 5000e−0.06(5) = $3704.09

(b) PV = 5000e−0.11(5) = $2884.75

40. Is it better to receive $1000 today or $1300 in 4 years? Consider r = 0.08 and r = 0.03.

solution Assuming continuous compounding, if r = 0.08, then the present value of $1300 four years from now is

1300e−0.08(4) = $943.99. It is better to get $1000 now. On the other hand, if r = 0.03, the present value of $1300 four
years from now is 1300e−0.03(4) = $1153.00, so it is better to get the $1,300 in four years.

41. Find the interest rate r if the PV of $8000 to be received in 1 year is $7300.

solution Solving 7300 = 8000e−r(1) for r yields

r = − ln

(
7300

8000

)
= 0.0916,

or 9.16%.

42. A company can earn additional profits of $500,000/year for 5 years by investing $2 million to upgrade its factory. Is
the investment worthwhile if the interest rate is 6%? (Assume the savings are received as a lump sum at the end of each
year.)

solution The present value of the stream of additional profits is

500,000(e−0.06 + e−0.12 + e−0.18 + e−0.24 + e−0.3) = $2,095,700.63.

This is more than the $2 million cost of the upgrade, so the upgrade should be made.

43. A new computer system costing $25,000 will reduce labor costs by $7000/year for 5 years.

(a) Is it a good investment if r = 8%?

(b) How much money will the company actually save?

solution

(a) The present value of the reduced labor costs is

7000(e−0.08 + e−0.16 + e−0.24 + e−0.32 + e−0.4) = $27,708.50.

This is more than the $25,000 cost of the computer system, so the computer system should be purchased.

(b) The present value of the savings is

$27,708.50 − $25,000 = $2708.50.

44. After winning $25 million in the state lottery, Jessica learns that she will receive five yearly payments of $5 million
beginning immediately.

(a) What is the PV of Jessica’s prize if r = 6%?

(b) How much more would the prize be worth if the entire amount were paid today?

solution

(a) The present value of the prize is

5,000,000(e−0.24 + e−0.18 + e−0.12 + e−0.06 + e−0.06(0)) = $22,252,915.21.

(b) If the entire amount were paid today, the present value would be $25 million, or $2,747,084.79 more than the stream
of payments made over five years.
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45. Use Eq. (3) to compute the PV of an income stream paying out R(t) = $5000/year continuously for 10 years,
assuming r = 0.05.

solution PV =
∫ 10

0
5000e−0.05t dt = −100,000e−0.05t

∣∣∣∣10

0
= $39,346.93.

46. Find the PV of an investment that pays out continuously at a rate of $800/year for 5 years, assuming r = 0.08.

solution PV =
∫ 5

0
800e−0.08t dt = −10,000e−0.08t

∣∣∣∣5
0

= $3296.80.

47. Find the PV of an income stream that pays out continuously at a rate R(t) = $5000e0.1t /year for 7 years, assuming
r = 0.05.

solution PV =
∫ 7

0
5000e0.1t e−0.05t dt =

∫ 7

0
5000e0.05t dt = 100,000e0.05t

∣∣∣∣7
0

= $41,906.75.

48. A commercial property generates income at the rate R(t). Suppose that R(0) = $70,000/year and that R(t) increases
at a continuously compounded rate of 5%. Find the PV of the income generated in the first 4 years if r = 6%.

solution PV =
∫ 4

0
70,000e0.05t e−0.06t dt = −70,000

0.01
e−0.01t

∣∣∣∣4
0

= $274,473.93.

49. Show that an investment that pays out R dollars per year continuously for T years has a PV of R(1 − e−rT )/r .

solution The present value of an investment that pays out R dollars/year continuously for T years is

PV =
∫ T

0
Re−rt dt.

Let u = −rt, du = −r dt . Then

PV = −1

r

∫ −rT

0
Reu du = −R

r
eu

∣∣∣∣−rT

0
= −R

r
(e−rT − 1) = R

r
(1 − e−rT ).

50. Explain this statement: If T is very large, then the PV of the income stream described in Exercise 49 is
approximately R/r .

solution Because

lim
T →∞ e−rT = lim

T →∞
1

ert
= 0,

it follows that

lim
T →∞

R

r
(1 − e−rT ) = R

r
.

51. Suppose that r = 0.06. Use the result of Exercise 50 to estimate the payout rate R needed to produce an income
stream whose PV is $20,000, assuming that the stream continues for a large number of years.

solution From Exercise 50, PV = R

r
so 20,000 = R

0.06
or R = $1200.

52. Verify by differentiation: ∫
te−rt dt = − e−rt (1 + rt)

r2
+ C 5

Use Eq. (5) to compute the PV of an investment that pays out income continuously at a rate R(t) = (5000 + 1000t)

dollars per year for 5 years, assuming r = 0.05.

solution

d

dt

(
− e−rt (1 + rt)

r2

)
= −1

r2

(
e−rt (r) + (1 + rt)(−re−rt )

) = −1

r

(
e−rt − e−rt − rte−rt

) = te−rt

Therefore

PV =
∫ 5

0
(5000 + 1000t)e−0.05t dt =

∫ 5

0
5000e−0.05t dt +

∫ 5

0
1000te−0.05t dt

= 5000

−0.05
(e−0.05(5) − 1) − 1000

(
e−0.05(5)(1 + 0.05(5))

(0.05)2

)
+ 1000

1

(0.05)2

= 22,119.92 − 389,400.39 + 400,000 ≈ $32,719.53.
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53. Use Eq. (5) to compute the PV of an investment that pays out income continuously at a rate R(t) = (5000 +
1000t)e0.02t dollars per year for 10 years, assuming r = 0.08.

solution

PV =
∫ 10

0
(5000 + 1000t)(e0.02t )e−0.08t dt =

∫ 10

0
5000e−0.06t dt +

∫ 10

0
1000te−0.06t dt

= 5000

−0.06
(e−0.06(10) − 1) − 1000

(
e−0.06(10)(1 + 0.06(10))

(0.06)2

)
+ 1000

1

(0.06)2

= 37,599.03 − 243,916.28 + 277,777.78 ≈ $71,460.53.

54. Banker’s Rule of 70 If you earn an interest rate of R percent, continuously compounded, your money
doubles after approximately 70/R years. For example, at R = 5%, your money doubles after 70/5 or 14 years. Use the
concept of doubling time to justify the Banker’s Rule. (Note: Sometimes, the rule 72/R is used. It is less accurate but
easier to apply because 72 is divisible by more numbers than 70.)

solution The doubling time is

t = ln 2

r
= ln 2 · 100

r%
= 69.93

r%
≈ 70

r%
.

55. Drug Dosing Interval Let y(t) be the drug concentration (in mg/kg) in a patient’s body at time t . The
initial concentration is y(0) = L. Additional doses that increase the concentration by an amount d are administered at
regular time intervals of length T . In between doses, y(t) decays exponentially—that is, y′ = −ky. Find the value of T

(in terms of k and d) for which the the concentration varies between L and L − d as in Figure 15.

L

L − d

t

y (mcg/ml)

T 2T 3T

Exponential decay

Dose administered

FIGURE 15 Drug concentration with periodic doses.

solution Because y′ = −ky and y(0) = L, it follows that y(t) = Le−kt . We want y(T ) = L − d, thus

Le−kT = L − d or T = −1

k
ln

(
1 − d

L

)
.

Exercises 56 and 57: The Gompertz differential equation

dy

dt
= ky ln

( y

M

)
6

(where M and k are constants) was introduced in 1825 by the English mathematician Benjamin Gompertz and is still
used today to model aging and mortality.

56. Show that y = Meaekt
satisfies Eq. (6) for any constant a.

solution Let y = Meaekt
. Then

dy

dt
= M(kaekt )eaekt

and, since

ln(y/M) = aekt ,

we have

ky ln(y/M) = Mkaekt eaekt = dy

dt
.
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57. To model mortality in a population of 200 laboratory rats, a scientist assumes that the number P(t) of rats alive at
time t (in months) satisfies Eq. (6) with M = 204 and k = 0.15 month−1 (Figure 16). Find P(t) [note that P(0) = 200]
and determine the population after 20 months.

40302010

Rat population P(t)

t (mo)

100

200

FIGURE 16

solution The solution to the Gompertz equation with M = 204 and k = 0.15 is of the form:

P(t) = 204eae0.15t

Applying the initial condition allows us to solve for a:

200 = 204ea

200

204
= ea

ln

(
200

204

)
= a

so that a ≈ −0.02. After t = 20 months,

P(20) = 204e−0.02e0.15(20) = 136.51,

so there are 136 rats.

58. Isotopes for Dating Which of the following would be most suitable for dating extremely old rocks: carbon-
14 (half-life 5570 years), lead-210 (half-life 22.26 years), or potassium-49 (half-life 1.3 billion years)? Explain why.

solution For extremely old rocks, you need to have an isotope that decays very slowly. In other words, you want a
very large half-life such as Potassium-49; otherwise, the amount of undecayed isotope in the rock sample would be too
small to accurately measure.

59. Let P = P(t) be a quantity that obeys an exponential growth law with growth constant k. Show that P increases
m-fold after an interval of (ln m)/k years.

solution For m-fold growth, P(t) = mP0 for some t . Solving mP0 = P0ekt for t , we find t = ln m

k

Further Insights and Challenges
60. Average Time of Decay Physicists use the radioactive decay law R = R0e−kt to compute the average

or mean time M until an atom decays. Let F(t) = R/R0 = e−kt be the fraction of atoms that have survived to time t

without decaying.

(a) Find the inverse function t (F ).
(b) By definition of t (F ), a fraction 1/N of atoms decays in the time interval[

t

(
j

N

)
, t

(
j − 1

N

)]

Use this to justify the approximation M ≈ 1

N

N∑
j=1

t

(
j

N

)
. Then argue, by passing to the limit as N → ∞, that

M = ∫ 1
0 t (F ) dF . Strictly speaking, this is an improper integral because t (0) is infinite (it takes an infinite amount

of time for all atoms to decay). Therefore, we define M as a limit

M = lim
c→0

∫ 1

c
t (F ) dF

(c) Verify the formula
∫

ln x dx = x ln x − x by differentiation and use it to show that for c > 0,

M = lim
c→0

(
1

k
+ 1

k
(c ln c − c)

)
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(d) Show that M = 1/k by evaluating the limit (use L’Hôpital’s Rule to compute lim
c→0

c ln c).

(e) What is the mean time to decay for radon (with a half-life of 3.825 days)?

solution

(a) F = e−kt so ln F = −kt and t (F ) = ln F

−k

(b) M ≈ 1

N

∑N
j=1 t (j/N). For the interval [0, 1], from the approximation given, the subinterval length is 1/N and thus

the right-hand endpoints have x-coordinate (j/N). Thus we have a Riemann sum and by definition,

lim
N→∞

1

N

N∑
j=1

t (j/N) =
∫ 1

0
t (F )dF.

(c)
d

dx
(x ln x − x) = x

(
1

x

)
+ ln x − 1 = ln x. Thus

∫ 1

c
t (F ) dF = −1

k
(F ln F − F)

∣∣∣∣1
c

= 1

k
(F − F ln F)

∣∣∣∣1
c

= 1

k
(1 − 1 ln 1 − (c − c ln c))

= 1

k
+ 1

k
(c ln c − c).

(d) By, L’Hôpital’s Rule,

lim
c→0+ c ln c = lim

c→0+
ln c

c−1
= lim

c→0+
c−1

−c−2
= − lim

c→0+ c = 0.

Thus, M = lim
c→0

∫ 1

c
t (F )dF = lim

c→0

(
1

k
+ 1

k
(c ln c − c)

)
= 1

k
.

(e) Since the half-life is 3.825 days, k = ln 2

3.825
and

1

k
= 5.52. Thus, M = 5.52 days.

61. Modify the proof of the relation e = lim
n→∞

(
1 + 1

n

)n given in the text to prove ex = lim
n→∞

(
1 + x

n

)n. Hint: Express

ln(1 + xn−1) as an integral and estimate above and below by rectangles.

solution Start by expressing

ln
(

1 + x

n

)
=
∫ 1+x/n

1

dt

t
.

Following the proof in the text, we note that

x

n + x
≤ ln

(
1 + x

n

)
≤ x

n

provided x > 0, while

x

n
≤ ln

(
1 + x

n

)
≤ x

n + x

when x < 0. Multiplying both sets of inequalities by n and passing to the limit as n → ∞, the squeeze theorem guarantees
that

lim
n→∞

(
ln
(

1 + x

n

))n = x.

Finally,

lim
n→∞

(
1 + x

n

)n = ex .

62. Prove that, for n > 0, (
1 + 1

n

)n

≤ e ≤
(

1 + 1

n

)n+1

Hint: Take logarithms and use Eq. (4).

solution Taking logarithms throughout the desired inequality, we find the equivalent inequality

n ln

(
1 + 1

n

)
≤ 1 ≤ (n + 1) ln

(
1 + 1

n

)
.
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Multiplying Eq. (4) by n yields

n

n + 1
≤ n ln

(
1 + 1

n

)
≤ 1,

which establishes the left-hand side of the desired inequality. On the other hand, multiplying Eq. (4) by n + 1 yields

1 ≤ (n + 1) ln

(
1 + 1

n

)
≤ 1 + 1

n
,

which establishes the right-hand side of the desired inequality.

63. A bank pays interest at the rate r , compounded M times yearly. The effective interest rate re is the rate at which
interest, if compounded annually, would have to be paid to produce the same yearly return.

(a) Find re if r = 9% compounded monthly.
(b) Show that re = (1 + r/M)M − 1 and that re = er − 1 if interest is compounded continuously.
(c) Find re if r = 11% compounded continuously.
(d) Find the rate r that, compounded weekly, would yield an effective rate of 20%.

solution

(a) Compounded monthly, P(t) = P0(1 + r/12)12t . By the definition of re,

P0(1 + 0.09/12)12t = P0(1 + re)
t

so

(1 + 0.09/12)12t = (1 + re)
t or re = (1 + 0.09/12)12 − 1 = 0.0938,

or 9.38%
(b) In general,

P0(1 + r/M)Mt = P0(1 + re)
t ,

so (1 + r/M)Mt = (1 + re)
t or re = (1 + r/M)M − 1. If interest is compounded continuously, then P0ert = P0(1 + re)

t

so ert = (1 + re)
t or re = er − 1.

(c) Using part (b), re = e0.11 − 1 ≈ 0.1163 or 11.63%.
(d) Solving

0.20 =
(

1 + r

52

)52 − 1

for r yields r = 52(1.21/52 − 1) = 0.1826 or 18.26%.

CHAPTER REVIEW EXERCISES

In Exercises 1–4, refer to the function f (x) whose graph is shown in Figure 1.

1

2

3

1 2 3 4

y

x

FIGURE 1

1. Estimate L4 and M4 on [0, 4].
solution With n = 4 and an interval of [0, 4], �x = 4−0

4 = 1. Then,

L4 = �x(f (0) + f (1) + f (2) + f (3)) = 1

(
1

4
+ 1 + 5

2
+ 2

)
= 23

4

and

M4 = �x

(
f

(
1

2

)
+ f

(
3

2

)
+ f

(
5

2

)
+ f

(
7

2

))
= 1

(
1

2
+ 2 + 9

4
+ 9

4

)
= 7.
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2. Estimate R4, L4, and M4 on [1, 3].
solution With n = 4 and an interval of [1, 3], �x = 3−1

4 = 1
2 . Then,

R4 = �x

(
f

(
3

2

)
+ f (2) + f

(
5

2

)
+ f (3)

)
= 1

2

(
2 + 5

2
+ 9

4
+ 2

)
= 35

8
;

L4 = �x

(
f (1) + f

(
3

2

)
+ f (2) + f

(
5

2

))
= 1

2

(
1 + 2 + 5

2
+ 9

4

)
= 31

8
; and

M4 = �x

(
f

(
5

4

)
+ f

(
7

4

)
+ f

(
9

4

)
+ f

(
11

4

))
= 1

2

(
3

2
+ 9

4
+ 5

2
+ 17

8

)
= 67

16
.

3. Find an interval [a, b] on which R4 is larger than
∫ b

a
f (x) dx. Do the same for L4.

solution In general, RN is larger than
∫ b
a f (x) dx on any interval [a, b] over which f (x) is increasing. Given the

graph of f (x), we may take [a, b] = [0, 2]. In order for L4 to be larger than
∫ b
a f (x) dx, f (x) must be decreasing over

the interval [a, b]. We may therefore take [a, b] = [2, 3].

4. Justify
3

2
≤
∫ 2

1
f (x) dx ≤ 9

4
.

solution Because f (x) is increasing on [1, 2], we know that

LN ≤
∫ 2

1
f (x) dx ≤ RN

for any N . Now,

L2 = 1

2
(1 + 2) = 3

2
and R2 = 1

2

(
2 + 5

2

)
= 9

4
,

so

3

2
≤
∫ 2

1
f (x) dx ≤ 9

4
.

In Exercises 5–8, let f (x) = x2 + 3x.

5. Calculate R6, M6, and L6 for f (x) on the interval [2, 5]. Sketch the graph of f (x) and the corresponding rectangles
for each approximation.

solution Let f (x) = x2 + 3x. A uniform partition of [2, 5] with N = 6 subintervals has

�x = 5 − 2

6
= 1

2
, xj = a + j�x = 2 + j

2
,

and

x∗
j = a +

(
j − 1

2

)
�x = 7

4
+ j

2
.

Now,

R6 = �x

6∑
j=1

f (xj ) = 1

2

(
f

(
5

2

)
+ f (3) + f

(
7

2

)
+ f (4) + f

(
9

2

)
+ f (5)

)

= 1

2

(
55

4
+ 18 + 91

4
+ 28 + 135

4
+ 40

)
= 625

8
.

The rectangles corresponding to this approximation are shown below.

10

2.0 2.5 3.0 3.5 4.0 4.5

15

20
25

30
35

y

x
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Next,

M6 = �x

6∑
j=1

f (x∗
j ) = 1

2

(
f

(
9

4

)
+ f

(
11

4

)
+ f

(
13

4

)
+ f

(
15

4

)
+ f

(
17

4

)
+ f

(
19

4

))

= 1

2

(
189

16
+ 253

16
+ 325

16
+ 405

16
+ 493

16
+ 589

16

)
= 2254

32
= 1127

16
.

The rectangles corresponding to this approximation are shown below.

10

2.0 2.5 3.0 3.5 4.0 4.5

15

20
25

30
35

y

x

Finally,

L6 = �x

5∑
j=0

f (xj ) = 1

2

(
f (2) + f

(
5

2

)
+ f (3) + f

(
7

2

)
+ f (4) + f

(
9

2

))

= 1

2

(
10 + 55

4
+ 18 + 91

4
+ 28 + 135

4

)
= 505

8
.

The rectangles corresponding to this approximation are shown below.

10

2.0 2.5 3.0 3.5 4.0 4.5

15

20
25

30
35

y

x

6. Use FTC I to evaluate A(x) =
∫ x

−2
f (t) dt .

solution Let f (x) = x2 + 3x. Then

A(x) =
∫ x

−2
(t2 + 3t) dt =

(
1

3
t3 + 3

2
t2
)∣∣∣∣x−2

= 1

3
x3 + 3

2
x2 −

(
−8

3
+ 6

)
= 1

3
x3 + 3

2
x2 − 10

3
.

7. Find a formula for RN for f (x) on [2, 5] and compute
∫ 5

2
f (x) dx by taking the limit.

solution Let f (x) = x2 + 3x on the interval [2, 5]. Then �x = 5 − 2

N
= 3

N
and a = 2. Hence,

RN = �x

N∑
j=1

f (2 + j�x) = 3

N

N∑
j=1

((
2 + 3j

N

)2
+ 3

(
2 + 3j

N

))
= 3

N

N∑
j=1

(
10 + 21j

N
+ 9j2

N2

)

= 30 + 63

N2

N∑
j=1

j + 27

N3

N∑
j=1

j2

= 30 + 63

N2

(
N2

2
+ N

2

)
+ 27

N3

(
N3

3
+ N2

2
+ N

6

)

= 141

2
+ 45

N
+ 9

2N2

and

lim
N→∞ RN = lim

N→∞

(
141

2
+ 45

N
+ 9

2N2

)
= 141

2
.
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8. Find a formula for LN for f (x) on [0, 2] and compute
∫ 2

0
f (x) dx by taking the limit.

solution Let f (x) = x2 + 3x and N be a positive integer. Then

�x = 2 − 0

N
= 2

N

and

xj = a + j�x = 0 + 2j

N
= 2j

N

for 0 ≤ j ≤ N . Thus,

LN = �x

N−1∑
j=0

f (xj ) = 2

N

N−1∑
j=0

(
4j2

N2
+ 6j

N

)
= 8

N3

N−1∑
j=0

j2 + 12

N2

N−1∑
j=0

j

= 4(N − 1)(2N − 1)

3N2
+ 6(N − 1)

N
= 26

3
− 10

N
+ 4

3N2
.

Finally,

∫ 2

0
f (x) dx = lim

N→∞

(
26

3
− 10

N
+ 4

3N2

)
= 26

3
.

9. Calculate R5, M5, and L5 for f (x) = (x2 + 1)−1 on the interval [0, 1].
solution Let f (x) = (x2 + 1)−1. A uniform partition of [0, 1] with N = 5 subintervals has

�x = 1 − 0

5
= 1

5
, xj = a + j�x = j

5
,

and

x∗
j = a +

(
j − 1

2

)
�x = 2j − 1

10
.

Now,

R5 = �x

5∑
j=1

f (xj ) = 1

5

(
f

(
1

5

)
+ f

(
2

5

)
+ f

(
3

5

)
+ f

(
4

5

)
+ f (1)

)

= 1

5

(
25

26
+ 25

29
+ 25

34
+ 25

41
+ 1

2

)
≈ 0.733732.

Next,

M5 = �x

5∑
j=1

f (x∗
j ) = 1

5

(
f

(
1

10

)
+ f

(
3

10

)
+ f

(
1

2

)
+ f

(
7

10

)
+ f

(
9

10

))

= 1

5

(
100

101
+ 100

109
+ 4

5
+ 100

149
+ 100

181

)
≈ 0.786231.

Finally,

L5 = �x

4∑
j=0

f (xj ) = 1

5

(
f (0) + f

(
1

5

)
+ f

(
2

5

)
+ f

(
3

5

)
+ f

(
4

5

))

= 1

5

(
1 + 25

26
+ 25

29
+ 25

34
+ 25

41

)
≈ 0.833732.
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10. Let RN be the N th right-endpoint approximation for f (x) = x3 on [0, 4] (Figure 2).

(a) Prove that RN = 64(N + 1)2

N2
.

(b) Prove that the area of the region within the right-endpoint rectangles above the graph is equal to

64(2N + 1)

N2

y

32

64

x
1 2 3 4

FIGURE 2 Approximation RN for f (x) = x3 on [0, 4].
solution

(a) Let f (x) = x3 and N be a positive integer. Then

�x = 4 − 0

N
= 4

N
and xj = a + j�x = 0 + 4j

N
= 4j

N

for 0 ≤ j ≤ N . Thus,

RN = �x

N∑
j=1

f (xj ) = 4

N

N∑
j=1

64j3

N3
= 256

N4

N∑
j=1

j3 = 256

N4

N2(N + 1)2

4
= 64(N + 1)2

N2
.

(b) The area between the graph of y = x3 and the x-axis over [0, 4] is

∫ 4

0
x3 dx = 1

4
x4
∣∣∣∣4
0

= 64.

The area of the region below the right-endpoint rectangles and above the graph is therefore

64(N + 1)2

N2
− 64 = 64(2N + 1)

N2
.

11. Which approximation to the area is represented by the shaded rectangles in Figure 3? Compute R5 and L5.

x

y

30

18

6

1 2 3 4 5

FIGURE 3

solution There are five rectangles and the height of each is given by the function value at the right endpoint of the
subinterval. Thus, the area represented by the shaded rectangles is R5.

From the figure, we see that �x = 1. Then

R5 = 1(30 + 18 + 6 + 6 + 30) = 90 and L5 = 1(30 + 30 + 18 + 6 + 6) = 90.

12. Calculate any two Riemann sums for f (x) = x2 on the interval [2, 5], but choose partitions with at least five
subintervals of unequal widths and intermediate points that are neither endpoints nor midpoints.

solution Let f (x) = x2. Riemann sums will, of course, vary. Here are two possibilities. Take N = 5,

P = {x0 = 2, x1 = 2.7, x2 = 3.1, x3 = 3.6, x4 = 4.2, x5 = 5}
and

C = {c1 = 2.5, c2 = 3, c3 = 3.5, c4 = 4, c5 = 4.5}.
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Then,

R(f, P, C) =
5∑

j=1

�xjf (cj ) = 0.7(6.25) + 0.4(9) + 0.5(12.25) + 0.6(16) + 0.8(20.25) = 39.9.

Alternately, take N = 6,

P = {x0 = 2, x1 = 2.5, x2 = 3.5, x3 = 4, x4 = 4.25, x5 = 4.75, x6 = 5}
and

C = {c1 = 2.1, c2 = 3, c3 = 3.7, c4 = 4.2, c5 = 4.5, c6 = 4.8}.
Then,

R(f, P, C) =
6∑

j=1

�xjf (cj )

= 0.5(4.41) + 1(9) + 0.5(13.69) + 0.25(17.64) + 0.5(20.25) + 0.25(23.04) = 38.345.

In Exercises 13–16, express the limit as an integral (or multiple of an integral) and evaluate.

13. lim
N→∞

π

6N

N∑
j=1

sin

(
π

3
+ πj

6N

)

solution Let f (x) = sin x and N be a positive integer. A uniform partition of the interval [π/3, π/2] with N

subintervals has

�x = π

6N
and xj = π

3
+ πj

6N

for 0 ≤ j ≤ N . Then

π

6N

N∑
j=1

sin

(
π

3
+ πj

6N

)
= �x

N∑
j=1

f (xj ) = RN ;

consequently,

lim
N→∞

π

6N

N∑
j=1

sin

(
π

3
+ πj

6N

)
=
∫ π/2

π/3
sin x dx = − cos x

∣∣∣∣π/2

π/3
= 0 + 1

2
= 1

2
.

14. lim
N→∞

3

N

N−1∑
k=0

(
10 + 3k

N

)

solution Let f (x) = x and N be a positive integer. A uniform partition of the interval [10, 13] with N subintervals
has

�x = 3

N
and xj = 10 + 3j

N

for 0 ≤ j ≤ N . Then

3

N

N−1∑
k=0

(
10 + 3k

N

)
= �x

N−1∑
j=0

f (xj ) = LN ;

consequently,

lim
N→∞

3

N

N−1∑
k=0

(
10 + 3k

N

)
=
∫ 13

10
x dx = 1

2
x2
∣∣∣∣13

10

= 169

2
− 100

2
= 69

2
.
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15. lim
N→∞

5

N

N∑
j=1

√
4 + 5j/N

solution Let f (x) = √
x and N be a positive integer. A uniform partition of the interval [4, 9] with N subintervals

has

�x = 5

N
and xj = 4 + 5j

N

for 0 ≤ j ≤ N . Then

5

N

N∑
j=1

√
4 + 5j/N = �x

N∑
j=1

f (xj ) = RN ;

consequently,

lim
N→∞

5

N

N∑
j=1

√
4 + 5j/N =

∫ 9

4

√
x dx = 2

3
x3/2

∣∣∣∣9
4

= 54

3
− 16

3
= 38

3
.

16. lim
N→∞

1k + 2k + · · · + Nk

Nk+1
(k > 0)

solution Observe that

1k + 2k + 3k + · · · + Nk

Nk+1
= 1

N

[(
1

N

)k

+
(

2

N

)k

+
(

3

N

)k

+ · · ·
(

N

N

)k
]

= 1

N

N∑
j=1

(
j

N

)k

.

Now, let f (x) = xk and N be a positive integer. A uniform partition of the interval [0, 1] with N subintervals has

�x = 1

N
and xj = j

N

for 0 ≤ j ≤ N . Then

1

N

N∑
j=1

(
j

N

)k

= �x

N∑
j=1

f (xj ) = RN ;

consequently,

lim
N→∞

1

N

N∑
j=1

(
j

N

)k

=
∫ 1

0
xk dx = 1

k + 1
xk+1

∣∣∣∣1
0

= 1

k + 1
.

In Exercises 17–20, use the given substitution to evaluate the integral.

17.
∫ 2

0

dt

4t + 12
, u = 4t + 12

solution Let u = 4t + 12. Then du = 4dt , and the new limits of integration are u = 12 and u = 20. Thus,

∫ 2

0

dt

4t + 12
= 1

4

∫ 20

12

du

u
= 1

4
ln u

∣∣∣∣20

12
= 1

4
(ln 20 − ln 12) = 1

4
ln

20

12
= 1

4
ln

5

3
.

18.
∫

(x2 + 1) dx

(x3 + 3x)4
, u = x3 + 3x

solution Let u = x3 + 3x. Then du = (3x2 + 3) dx = 3(x2 + 1) dx and

∫
(x2 + 1) dx

(x3 + 3x)4
= 1

3

∫
u−4 du = −1

9
u−3 + C = −1

9
(x3 + 3x)−3 + C.
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19.
∫ π/6

0
sin x cos4 x dx, u = cos x

solution Let u = cos x. Then du = − sin x dx and the new limits of integration are u = 1 and u = √
3/2. Thus,

∫ π/6

0
sin x cos4 x dx = −

∫ √
3/2

1
u4 du

= −1

5
u5
∣∣∣∣
√

3/2

1

= 1

5

(
1 − 9

√
3

32

)
.

20.
∫

sec2(2θ) tan(2θ) dθ , u = tan(2θ)

solution Let u = tan(2θ). Then du = 2 sec2(2θ) dθ and

∫
sec2(2θ) tan(2θ) dθ = 1

2

∫
u du = 1

4
u2 + C = 1

4
tan2(2θ) + C.

In Exercises 21–70, evaluate the integral.

21.
∫

(20x4 − 9x3 − 2x) dx

solution
∫

(20x4 − 9x3 − 2x) dx = 4x5 − 9

4
x4 − x2 + C.

22.
∫ 2

0
(12x3 − 3x2) dx

solution
∫ 2

0
(12x3 − 3x2) dx = (3x4 − x3)

∣∣∣∣2
0

= (48 − 8) − 0 = 40.

23.
∫

(2x2 − 3x)2 dx

solution
∫

(2x2 − 3x)2 dx =
∫

(4x4 − 12x3 + 9x2) dx = 4

5
x5 − 3x4 + 3x3 + C.

24.
∫ 1

0
(x7/3 − 2x1/4) dx

solution
∫ 1

0
(x7/3 − 2x1/4) dx =

(
3

10
x10/3 − 8

5
x5/4

)∣∣∣∣1
0

= 3

10
− 8

5
= −13

10
.

25.
∫

x5 + 3x4

x2
dx

solution
∫

x5 + 3x4

x2
dx =

∫
(x3 + 3x2) dx = 1

4
x4 + x3 + C.

26.
∫ 3

1
r−4 dr

solution
∫ 3

1
r−4 dr = −1

3
r−3
∣∣∣∣3
1

= −1

3

(
1

27
− 1

)
= 26

81
.
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27.
∫ 3

−3
|x2 − 4| dx

solution

∫ 3

−3
|x2 − 4| dx =

∫ 2

−3
(x2 − 4) dx +

∫ 2

−2
(4 − x2) dx +

∫ 3

2
(x2 − 4) dx

=
(

1

3
x3 − 4x

)∣∣∣∣−2

−3
+
(

4x − 1

3
x3
)∣∣∣∣2−2

+
(

1

3
x3 − 4x

)∣∣∣∣3
2

=
(

16

3
− 3

)
+
(

16

3
+ 16

3

)
+
(

−3 + 16

3

)

= 46

3
.

28.
∫ 4

−2
|(x − 1)(x − 3)| dx

solution

∫ 4

−2
|(x − 1)(x − 3)| dx =

∫ 1

−2
(x2 − 4x + 3) dx +

∫ 3

1
(−x2 + 4x − 3) dx +

∫ 4

3
(x2 − 4x + 3) dx

=
(

1

3
x3 − 2x2 + 3x

)∣∣∣∣1−2
+
(

−1

3
x3 + 2x2 − 3x

)∣∣∣∣3
1

+
(

1

3
x3 − 2x2 + 3x

)∣∣∣∣4
3

= 4

3
−
(

−50

3

)
+ 0 −

(
−4

3

)
+ 4

3
− 0

= 62

3
.

29.
∫ 3

1
[t] dt

solution

∫ 3

1
[t] dt =

∫ 2

1
[t] dt +

∫ 3

2
[t] dt =

∫ 2

1
dt +

∫ 3

2
2 dt = t

∣∣∣∣2
1

+ 2t

∣∣∣∣3
2

= (2 − 1) + (6 − 4) = 3.

30.
∫ 2

0
(t − [t])2 dt

solution

∫ 2

0
(t − [t])2 dt =

∫ 1

0
t2 dt +

∫ 2

1
(t − 1)2 dt

= 1

3
t3
∣∣∣∣1
0

+ 1

3
(t − 1)3

∣∣∣∣2
1

= 1

3
+ 1

3
= 2

3
.

31.
∫

(10t − 7)14 dt

solution Let u = 10t − 7. Then du = 10dt and∫
(10t − 7)14 dt = 1

10

∫
u14 du = 1

150
u15 + C = 1

150
(10t − 7)15 + C.

32.
∫ 3

2

√
7y − 5 dy

solution Let u = 7y − 5. Then du = 7dy and when y = 2, u = 9 and when y = 3, u = 16. Finally,

∫ 3

2

√
7y − 5 dy = 1

7

∫ 16

9
u1/2 du = 1

7
· 2

3
u3/2

∣∣∣∣16

9
= 2

21
(64 − 27) = 74

21
.
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33.
∫

(2x3 + 3x) dx

(3x4 + 9x2)5

solution Let u = 3x4 + 9x2. Then du = (12x3 + 18x) dx = 6(2x3 + 3x) dx and∫
(2x3 + 3x) dx

(3x4 + 9x2)5
= 1

6

∫
u−5 du = − 1

24
u−4 + C = − 1

24
(3x4 + 9x2)−4 + C.

34.
∫ −1

−3

x dx

(x2 + 5)2

solution Let u = x2 + 5. Then du = 2x dx and

∫ −1

−3

x dx

(x2 + 5)2
= 1

2

∫ 6

14
u−2 du = −1

2
u−1

∣∣∣∣6
14

= −1

2

(
1

6
− 1

14

)
= − 1

21
.

35.
∫ 5

0
15x

√
x + 4 dx

solution Let u = x + 4. Then x = u − 4, du = dx and the new limits of integration are u = 4 and u = 9. Thus,∫ 5

0
15x

√
x + 4 dx =

∫ 9

4
15(u − 4)

√
u du

= 15
∫ 9

4
(u3/2 − 4u1/2) du

= 15

(
2

5
u5/2 − 8

3
u3/2

)∣∣∣∣9
4

= 15

((
486

5
− 72

)
−
(

64

5
− 64

3

))

= 506.

36.
∫

t2√
t + 8 dt

solution Let u = t + 8. Then du = dt , t = u − 8, and∫
t2√

t + 8 dt =
∫

(u − 8)2√
u du =

∫
(u5/2 − 16u3/2 + 64u1/2) du

= 2

7
u7/2 − 32

5
u5/2 + 128

3
u3/2 + C

= 2

7
(t + 8)7/2 − 32

5
(t + 8)5/2 + 128

3
(t + 8)3/2 + C.

37.
∫ 1

0
cos
(π

3
(t + 2)

)
dt

solution
∫ 1

0
cos
(π

3
(t + 2)

)
dt = 3

π
sin
(π

3
(t + 2)

)∣∣∣∣1
0

= −3
√

3

2π
.

38.
∫ π

π/2
sin

(
5θ − π

6

)
dθ

solution Let

u = 5θ − π

6
so that du = 5

6
dθ.

Then ∫ π

π/2
sin

(
5θ − π

6

)
dθ = 6

5

∫ 2π/3

π/4
sin u du

= −6

5
cos u

∣∣∣∣2π

π/4
3

= −6

5

(
−1

2
−

√
2

2

)
= 3

5
(1 + √

2).
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39.
∫

t2 sec2(9t3 + 1) dt

solution Let u = 9t3 + 1. Then du = 27t2 dt and∫
t2 sec2(9t3 + 1) dt = 1

27

∫
sec2 u du = 1

27
tan u + C = 1

27
tan(9t3 + 1) + C.

40.
∫

sin2(3θ) cos(3θ) dθ

solution Let u = sin(3θ). Then du = 3 cos(3θ)dθ and∫
sin2(3θ) cos(3θ) dθ = 1

3

∫
u2 du = 1

9
u3 + C = 1

9
sin3(3θ) + C.

41.
∫

csc2(9 − 2θ) dθ

solution Let u = 9 − 2θ . Then du = −2 dθ and∫
csc2(9 − 2θ) dθ = −1

2

∫
csc2 u du = 1

2
cot u + C = 1

2
cot(9 − 2θ) + C.

42.
∫

sin θ
√

4 − cos θ dθ

solution Let u = 4 − cos θ . Then du = sin θ dθ and∫
sin θ

√
4 − cos θ dθ =

∫
u1/2 du = 2

3
u3/2 + C = 2

3
(4 − cos θ)3/2 + C.

43.
∫ π/3

0

sin θ

cos2/3 θ
dθ

solution Let u = cos θ . Then du = − sin θ dθ and when θ = 0, u = 1 and when θ = π
3 , u = 1

2 . Finally,

∫ π/3

0

sin θ

cos2/3 θ
dθ = −

∫ 1/2

1
u−2/3 du = −3u1/3

∣∣∣∣1/2

1
= −3(2−1/3 − 1) = 3 − 3 3√4

2
.

44.
∫

sec2 t dt

(tan t − 1)2

solution Let u = tan t − 1. Then du = sec2 t dt and

∫
sec2 t dt

(tan t − 1)2
=
∫

u−2 du = −u−1 + C = − 1

tan t − 1
+ C.

45.
∫

e9−2x dx

solution Let u = 9 − 2x. Then du = −2 dx, and∫
e9−2x dx = −1

2

∫
eu du = −1

2
eu + C = −1

2
e9−2x + C.

46.
∫ 3

1
e4x−3 dx

solution
∫ 3

1
e4x−3 dx = 1

4
e4x−3

∣∣∣∣3
1

= 1

4
(e9 − e).

47.
∫

x2ex3
dx

solution Let u = x3. Then du = 3x2 dx, and∫
x2ex3

dx = 1

3

∫
eudu = 1

3
eu + C = 1

3
ex3 + C.
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48.
∫ ln 3

0
ex−ex

dx

solution Note ex−ex = exe−ex
. Now, let u = ex . Then du = exdx, and the new limits of integration are u = e0 = 1

and u = eln 3 = 3. Thus,

∫ ln 3

0
ex−ex

dx =
∫ ln 3

0
exe−ex

dx =
∫ 3

1
e−u du = −e−t

∣∣∣∣3
1

= −(e−3 − e−1) = e−1 − e−3.

49.
∫

ex10x dx

solution
∫

ex10x dx =
∫

(10e)x dx = (10e)x

ln(10e)
+ C = (10e)x

ln 10 + ln e
+ C = 10xex

ln 10 + 1
+ C.

50.
∫

e−2x sin(e−2x) dx

solution Let u = e−2x . Then du = −2e−2xdx, and

∫
e−2x sin

(
e−2x

)
dx = −1

2

∫
sin u du = cos u

2
+ C = 1

2
cos
(
e−2x

)
+ C.

51.
∫

e−x dx

(e−x + 2)3

solution Let u = e−x + 2. Then du = −e−x dx and

∫
e−x dx

(e−x + 2)3
= −

∫
u−3 du = 1

2u2
+ C = 1

2(e−x + 2)2
+ C.

52.
∫

sin θ cos θecos2 θ+1 dθ

solution Let u = cos2 θ + 1. Then du = −2 sin θ cos θ dθ and

∫
sin θ cos θecos2 θ+1 dθ = −1

2

∫
eu du = −1

2
eu + C = −1

2
ecos2 θ+1 + C.

53.
∫ π/6

0
tan 2θ dθ

solution
∫ π/6

0
tan 2θ dθ = 1

2
ln | sec 2θ |

∣∣∣∣π/6

0
= 1

2
ln 2.

54.
∫ 2π/3

π/3
cot

(
1

2
θ

)
dθ

solution

∫ 2π/3

π/3
cot

(
1

2
θ

)
dθ = 2 ln

∣∣∣∣sin
θ

2

∣∣∣∣
∣∣∣∣
2π

π/3
3

= 2
(

ln sin
π

3
− ln sin

π

6

)

= 2

(
ln

√
3

2
− ln

1

2

)
= ln 3.

55.
∫

dt

t (1 + (ln t)2)

solution Let u = ln t . Then, du = 1
t dt and

∫
dt

t (1 + (ln t)2)
=
∫

du

1 + u2
= tan−1u + C = tan−1(ln t) + C.
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56.
∫

cos(ln x) dx

x

solution Let u = ln x. Then du = dx
x , and∫

cos(ln x)

x
dx =

∫
cos u du = sin u + C = sin(ln x) + C.

57.
∫ e

1

ln x dx

x

solution Let u = ln x. Then du = dx
x and the new limits of integration are u = ln 1 = 0 and u = ln e = 1. Thus,

∫ e

1

ln x dx

x
=
∫ 1

0
u du = 1

2
u2
∣∣∣∣1
0

= 1

2
.

58.
∫

dx

x
√

ln x

solution Let u = ln x. Then du = 1
x dx, and∫

dx

x
√

ln x
=
∫

u−1/2 du = 2
√

u + C = 2
√

ln x + C.

59.
∫

dx

4x2 + 9

solution Let u = 2x
3 . Then x = 3

2u, dx = 3
2 du, and

∫
dx

4x2 + 9
=
∫ 3

2 du

4 · 9
4u2 + 9

= 1

6

∫
du

u2 + 1
= 1

6
tan−1u + C = 1

6
tan−1

(
2x

3

)
+ C.

60.
∫ 0.8

0

dx√
1 − x2

solution
∫ 0.8

0

dx√
1 − x2

= sin−1 x

∣∣∣∣0.8

0
= sin−1 0.8 − sin−1 0 = sin−1 0.8.

61.
∫ 12

4

dx

x
√

x2 − 1

solution
∫ 12

4

dx

x
√

x2 − 1
= sec−1 x

∣∣∣∣12

4
= sec−112 − sec−14.

62.
∫ 3

0

x dx

x2 + 9

solution Let u = x2 + 9. Then du = 2x dx, and the new limits of integration are u = 9 and u = 18. Thus,

∫ 3

0

x dx

x2 + 9
= 1

2

∫ 18

9

du

u
= 1

2
ln u

∣∣∣∣18

9
= 1

2
(ln 18 − ln 9) = 1

2
ln

18

9
= 1

2
ln 2.

63.
∫ 3

0

dx

x2 + 9

solution Let u = x
3 . Then du = dx

3 , and the new limits of integration are u = 0 and u = 1. Thus,

∫ 3

0

dx

x2 + 9
= 1

3

∫ 1

0

dt

t2 + 1
= 1

3
tan−1t

∣∣∣∣1
0

= 1

3
(tan−11 − tan−10) = 1

3

(π

4
− 0
)

= π

12
.

64.
∫

dx√
e2x − 1

solution Let u = ex . Then

du = ex dx ⇒ du = u dx ⇒ u−1du = dx
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By substitution, we obtain ∫
dx√

e2x − 1
=
∫

du

u
√

u2 − 1

= sec−1 u + C = sec−1(ex) + C

65.
∫

x dx√
1 − x4

solution Let u = x2. Then du = 2x dx, and
√

1 − x4 =
√

1 − u2. Thus,∫
x dx√
1 − x4

= 1

2

∫
du√

1 − u2
= 1

2
sin−1u + C = 1

2
sin−1(x2) + C.

66.
∫ 1

0

dx

25 − x2

solution Let x = 5u. Then dx = 5 du, and the new limits of integration are u = 0 and u = 1
5 . Thus,

∫ 1

0

dx

25 − x2
= 1

25

∫ 1/5

0

5 du

1 − u2
= 5

25

∫ 1/5

0

du

1 − u2

= 1

5
tanh−1u

∣∣∣∣1/5

0
= 1

5

(
tanh−1 1

5
− tanh−10

)
= 1

5
tanh−1 1

5
.

67.
∫ 4

0

dx

2x2 + 1

solution Let u = √
2x. Then du = √

2 dx, and the new limits of integration are u = 0 and u = 4
√

2. Thus,

∫ 4

0

dx

2x2 + 1
=
∫ 4

√
2

0

1√
2

du

u2 + 1
= 1√

2

∫ 4
√

2

0

du

u2 + 1

= 1√
2

tan−1u

∣∣∣∣4
√

2

0
= 1√

2

(
tan−1(4

√
2) − tan−10

)
= 1√

2
tan−1(4

√
2).

68.
∫ 8

5

dx

x
√

x2 − 16

solution Let x = 4u. Then dx = 4 du, and the new limits of integration are u = 5
4 and u = 2. Thus,

∫ 8

5

dx

x
√

x2 − 16
= 1

4

∫ 2

5/4

du

u
√

u2 − 1
= 1

4

(
sec−1 u

) ∣∣∣∣2
5/4

= 1

4

(
sec−1 2 − sec−1 5

4

)
= 1

4

(
π

3
− sec−1 5

4

)
.

69.
∫ 1

0

(tan−1 x)3 dx

1 + x2

solution Let u = tan−1 x. Then

du = 1

1 + x2
dx

and ∫ 1

0

(tan−1 x)3 dx

1 + x2
=
∫ π/4

0
u3 du = 1

4
u4
∣∣∣∣π/4

0
= 1

4

(π

4

)4 = π4

1024
.

70.
∫

cos−1 t dt√
1 − t2

solution Let u = cos−1t . Then du = − 1√
1−t2

dt , and

∫
cos−1t√

1 − t2
dt = −

∫
u du = −1

2
u2 + C = −1

2
(cos−1t)

2 + C.
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71. Combine to write as a single integral:∫ 8

0
f (x) dx +

∫ 0

−2
f (x) dx +

∫ 6

8
f (x) dx

solution First, rewrite

∫ 8

0
f (x) dx =

∫ 6

0
f (x) dx +

∫ 8

6
f (x) dx

and observe that ∫ 6

8
f (x) dx = −

∫ 8

6
f (x) dx.

Thus, ∫ 8

0
f (x) dx +

∫ 6

8
f (x) dx =

∫ 6

0
f (x) dx.

Finally, ∫ 8

0
f (x) dx +

∫ 0

−2
f (x) dx +

∫ 6

8
f (x) dx =

∫ 6

0
f (x) dx +

∫ 0

−2
f (x) dx =

∫ 6

−2
f (x) dx.

72. Let A(x) = ∫ x
0 f (x) dx, where f (x) is the function shown in Figure 4. Identify the location of the local minima,

the local maxima, and points of inflection of A(x) on the interval [0, E], as well as the intervals where A(x) is increasing,
decreasing, concave up, or concave down. Where does the absolute max of A(x) occur?

x

y

A B C D E

FIGURE 4

solution Let f (x) be the function shown in Figure 4 and define

A(x) =
∫ x

0
f (x) dx.

Then A′(x) = f (x) and A′′(x) = f ′(x). Hence, A(x) is increasing when f (x) is positive, is decreasing when f (x) is
negative, is concave up when f (x) is increasing and is concave down when f (x) is decreasing. Thus, A(x) is increasing
for 0 < x < B, is decreasing for B < x < D and for D < x < E, has a local maximum at x = B and no local minima.
Moreover, A(x) is concave up for 0 < x < A and for C < x < D, is concave down for A < x < C and for D < x < E,
and has a point of inflection at x = A, x = C and x = D. The absolute maximum value for A(x) occurs at x = B.

73. Find the local minima, the local maxima, and the inflection points of A(x) =
∫ x

3

t dt

t2 + 1
.

solution Let

A(x) =
∫ x

3

t dt

t2 + 1
.

Then

A′(x) = x

x2 + 1

and

A′′(x) = (x2 + 1)(1) − x(2x)

(x2 + 1)2
= 1 − x2

(x2 + 1)2
.

Now, x = 0 is the only critical point of A; because A′′(0) > 0, it follows that A has a local minimum at x = 0. There are
no local maxima. Moreover, A(x) is concave down for |x| > 1 and concave up for |x| < 1. A(x) therefore has inflection
points at x = ±1.
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74. A particle starts at the origin at time t = 0 and moves with velocity v(t) as shown in Figure 5.

(a) How many times does the particle return to the origin in the first 12 seconds?
(b) What is the particle’s maximum distance from the origin?
(c) What is particle’s maximum distance to the left of the origin?

2

4

−4

−2

5

10

v(t) m/s

t (s)

FIGURE 5

solution Because the particle starts at the origin, the position of the particle is given by

s(t) =
∫ t

0
v(τ) dτ ;

that is by the signed area between the graph of the velocity and the t-axis over the interval [0, t]. Using the geometry
in Figure 5, we see that s(t) is increasing for 0 < t < 4 and for 8 < t < 10 and is decreasing for 4 < t < 8 and for
10 < t < 12. Furthermore,

s(0) = 0 m, s(4) = 4 m, s(8) = −4 m, s(10) = −2 m, and s(12) = −6 m.

(a) In the first 12 seconds, the particle returns to the origin once, sometime between t = 4 and t = 8 seconds.
(b) The particle’s maximum distance from the origin is 6 meters (to the left at t = 12 seconds).
(c) The particle’s distance to the left of the origin is 6 meters.

75. On a typical day, a city consumes water at the rate of r(t) = 100 + 72t − 3t2 (in thousands of gallons per hour),
where t is the number of hours past midnight. What is the daily water consumption? How much water is consumed
between 6 pm and midnight?

solution With a consumption rate of r(t) = 100 + 72t − 3t2 thousand gallons per hour, the daily consumption of
water is ∫ 24

0
(100 + 72t − 3t2) dt = (100t + 36t2 − t3)∣∣∣∣24

0
= 100(24) + 36(24)2 − (24)3 = 9312,

or 9.312 million gallons. From 6 PM to midnight, the water consumption is∫ 24

18
(100 + 72t − 3t2) dt =

(
100t + 36t2 − t3

)∣∣∣24

18

= 100(24) + 36(24)2 − (24)3 − (100(18) + 36(18)2 − (18)3)
= 9312 − 7632 = 1680,

or 1.68 million gallons.

76. The learning curve in a certain bicycle factory is L(x) = 12x−1/5 (in hours per bicycle), which means that it takes
a bike mechanic L(n) hours to assemble the nth bicycle. If a mechanic has produced 24 bicycles, how long does it take
her or him to produce the second batch of 12?

solution The second batch of 12 bicycles consists of bicycles 13 through 24. The time it takes to produce these
bicycles is ∫ 24

13
12x−1/5 dx = 15x4/5

∣∣∣∣24

13
= 15

(
244/5 − 134/5) ≈ 73.91 hours.

77. Cost engineers at NASA have the task of projecting the cost P of major space projects. It has been found that the
cost C of developing a projection increases with P at the rate dC/dP ≈ 21P−0.65, where C is in thousands of dollars
and P in millions of dollars. What is the cost of developing a projection for a project whose cost turns out to be P = $35
million?

solution Assuming it costs nothing to develop a projection for a project with a cost of $0, the cost of developing a
projection for a project whose cost turns out to be $35 million is∫ 35

0
21P−0.65 dP = 60P 0.35

∣∣∣∣35

0
= 60(35)0.35 ≈ 208.245,

or $208,245.
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78. An astronomer estimates that in a certain constellation, the number of stars per magnitude m, per degree-squared of
sky, is equal to A(m) = 2.4 × 10−6m7.4 (fainter stars have higher magnitudes). Determine the total number of stars of
magnitude between 6 and 15 in a one-degree-squared region of sky.

solution The total number of stars of magnitude between 6 and 15 in a one-degree-squared region of sky is∫ 15

6
A(m) dm =

∫ 15

6
2.4 × 10−6m7.4 dm

= 2

7
× 10−6m8.4

∣∣∣∣15

6

≈ 2162

79. Evaluate
∫ 8

−8

x15 dx

3 + cos2 x
, using the properties of odd functions.

solution Let f (x) = x15

3+cos2 x
and note that

f (−x) = (−x)15

3 + cos2(−x)
= − x15

cos2 x
= −f (x).

Because f (x) is an odd function and the interval −8 ≤ x ≤ 8 is symmetric about x = 0, it follows that∫ 8

−8

x15 dx

3 + cos2 x
= 0.

80. Evaluate
∫ 1

0 f (x) dx, assuming that f (x) is an even continuous function such that∫ 2

1
f (x) dx = 5,

∫ 1

−2
f (x) dx = 8

solution Using the given information∫ 2

−2
f (x) dx =

∫ 1

−2
f (x) dx +

∫ 2

1
f (x) dx = 13.

Because f (x) is an even function, it follows that∫ 0

−2
f (x) dx =

∫ 2

0
f (x) dx,

so ∫ 2

0
f (x) dx = 13

2
.

Finally, ∫ 1

0
f (x) dx =

∫ 2

0
f (x) dx −

∫ 2

1
f (x) dx = 13

2
− 5 = 3

2
.

81. Plot the graph of f (x) = sin mx sin nx on [0, π] for the pairs (m, n) = (2, 4), (3, 5) and in each case guess
the value of I = ∫ π

0 f (x) dx. Experiment with a few more values (including two cases with m = n) and formulate a
conjecture for when I is zero.

solution The graphs of f (x) = sin mx sin nx with (m, n) = (2, 4) and (m, n) = (3, 5) are shown below. It appears
as if the positive areas balance the negative areas, so we expect that

I =
∫ π

0
f (x) dx = 0

in these cases.

−0.5

32.521.510.5

0.5

(2, 4)

x

y

−0.5

32.521.510.5

0.5

(3, 5)

x

y
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We arrive at the same conclusion for the cases (m, n) = (4, 1) and (m, n) = (5, 2).

−0.5

32.521.510.5

0.5

(4, 1)

x

y

−0.5

32.521.510.5

0.5

(5, 2)

x

y

However, when (m, n) = (3, 3) and when (m, n) = (5, 5), the value of

I =
∫ π

0
f (x) dx

is clearly not zero as there is no negative area.

−0.5

32.521.510.5

0.5

(3, 3)

x

y

−0.5

32.521.510.5

0.5

(5, 5)

x

y

We therefore conjecture that I is zero whenever m �= n.

82. Show that ∫
x f (x) dx = xF(x) − G(x)

where F ′(x) = f (x) and G′(x) = F(x). Use this to evaluate
∫

x cos x dx.

solution Suppose F ′(x) = f (x) and G′(x) = F(x). Then

d

dx
(xF (x) − G(x)) = xF ′(x) + F(x) − G′(x) = xf (x) + F(x) − F(x) = xf (x).

Therefore, xF(x) − G(x) is an antiderivative of xf (x) and∫
xf (x) dx = xF(x) − G(x) + C.

To evaluate
∫

x cos x dx, note that f (x) = cos x. Thus, we may take F(x) = sin x and G(x) = − cos x. Finally,∫
x cos x dx = x sin x + cos x + C.

83. Prove

2 ≤
∫ 2

1
2x dx ≤ 4 and

1

9
≤
∫ 2

1
3−x dx ≤ 1

3

solution The function f (x) = 2x is increasing, so 1 ≤ x ≤ 2 implies that 2 = 21 ≤ 2x ≤ 22 = 4. Consequently,

2 =
∫ 2

1
2 dx ≤

∫ 2

1
2x dx ≤

∫ 2

1
4 dx = 4.

On the other hand, the function f (x) = 3−x is decreasing, so 1 ≤ x ≤ 2 implies that

1

9
= 3−2 ≤ 3−x ≤ 3−1 = 1

3
.

It then follows that

1

9
=
∫ 2

1

1

9
dx ≤

∫ 2

1
3−x dx ≤

∫ 2

1

1

3
dx = 1

3
.
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84. Plot the graph of f (x) = x−2 sin x, and show that 0.2 ≤
∫ 2

1
f (x) dx ≤ 0.9.

solution Let f (x) = x−2 sin x. From the figure below, we see that

0.2 ≤ f (x) ≤ 0.9

for 1 ≤ x ≤ 2. Therefore,

0.2 =
∫ 1

0
0.2 dx ≤

∫ 1

0
f (x) dx ≤

∫ 1

0
0.9 dx = 0.9.

21.510.5

0.2

0.4

0.6

0.8

1

x

x−2sin x

y

85. Find upper and lower bounds for
∫ 1

0
f (x) dx, for f (x) in Figure 6.

1

1

2

y

x

f (x)y = x2 + 1

y = x1/2 + 1

FIGURE 6

solution From the figure, we see that the inequalities x2 + 1 ≤ f (x) ≤ √
x + 1 hold for 0 ≤ x ≤ 1. Because

∫ 1

0
(x2 + 1) dx =

(
1

3
x3 + x

)∣∣∣∣1
0

= 4

3

and ∫ 1

0
(
√

x + 1) dx =
(

2

3
x3/2 + x

)∣∣∣∣1
0

= 5

3
,

it follows that

4

3
≤
∫ 1

0
f (x) dx ≤ 5

3
.

In Exercises 86–91, find the derivative.

86. A′(x), where A(x) =
∫ x

3
sin(t3) dt

solution Let A(x) =
∫ x

3
sin(t3) dt . Then A′(x) = sin(x3).

87. A′(π), where A(x) =
∫ x

2

cos t

1 + t
dt

solution Let A(x) =
∫ x

2

cos t

1 + t
dt . Then A′(x) = cos x

1 + x
and

A′(π) = cos π

1 + π
= − 1

1 + π
.

88.
d

dy

∫ y

−2
3x dx

solution
d

dy

∫ y

−2
3x dx = 3y .
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89. G′(x), where G(x) =
∫ sin x

−2
t3 dt

solution Let G(x) =
∫ sin x

−2
t3 dt . Then

G′(x) = sin3 x
d

dx
sin x = sin3 x cos x.

90. G′(2), where G(x) =
∫ x3

0

√
t + 1 dt

solution Let G(x) =
∫ x3

0

√
t + 1 dt . Then

G′(x) =
√

x3 + 1
d

dx
x3 = 3x2

√
x3 + 1

and G′(2) = 3(2)2√
8 + 1 = 36.

91. H ′(1), where H(x) =
∫ 9

4x2

1

t
dt

solution Let H(x) =
∫ 9

4x2

1

t
dt = −

∫ 4x2

9

1

t
dt . Then

H ′(x) = − 1

4x2

d

dx
4x2 = − 8x

4x2
= − 2

x

and H ′(1) = −2.

92. Explain with a graph: If f (x) is increasing and concave up on [a, b], then LN is more accurate than RN .
Which is more accurate if f (x) is increasing and concave down?

solution Consider the figure below, which displays a portion of the graph of an increasing, concave up function.

x

y

The shaded rectangles represent the differences between the right-endpoint approximation RN and the left-endpoint
approximation LN . In particular, the portion of each rectangle that lies below the graph of y = f (x) is the amount by
which LN underestimates the area under the graph, whereas the portion of each rectangle that lies above the graph of
y = f (x) is the amount by which RN overestimates the area. Because the graph of y = f (x) is increasing and concave up,
the lower portion of each shaded rectangle is smaller than the upper portion. Therefore, LN is more accurate (introduces
less error) than RN . By similar reasoning, if f (x) is increasing and concave down, then RN is more accurate than LN .

93. Explain with a graph: If f (x) is linear on [a, b], then the
∫ b

a
f (x) dx = 1

2
(RN + LN) for all N .

solution Consider the figure below, which displays a portion of the graph of a linear function.

x

y

The shaded rectangles represent the differences between the right-endpoint approximation RN and the left-endpoint
approximation LN . In particular, the portion of each rectangle that lies below the graph of y = f (x) is the amount by
which LN underestimates the area under the graph, whereas the portion of each rectangle that lies above the graph of
y = f (x) is the amount by which RN overestimates the area. Because the graph of y = f (x) is a line, the lower portion
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of each shaded rectangle is exactly the same size as the upper portion. Therefore, if we average LN and RN , the error in
the two approximations will exactly cancel, leaving

1

2
(RN + LN) =

∫ b

a
f (x) dx.

94. In this exercise, we prove

x − x2

2
≤ ln(1 + x) ≤ x (for x > 0) 1

(a) Show that ln(1 + x) =
∫ x

0

dt

1 + t
for x > 0.

(b) Verify that 1 − t ≤ 1

1 + t
≤ 1 for all t > 0.

(c) Use (b) to prove Eq. (1).
(d) Verify Eq. (1) for x = 0.5, 0.1, and 0.01.

solution
(a) Let x > 0. Then ∫ x

0

dt

1 + t
= ln(1 + t)

∣∣∣∣x
0

= ln(1 + x) − ln 1 = ln(1 + x).

(b) For t > 0, 1 + t > 1, so 1
1+t

< 1. Moreover, (1 − t)(1 + t) = 1 − t2 < 1. Because 1 + t > 0, it follows that

1 − t < 1
1+t

. Hence,

1 − t ≤ 1

1 + t
≤ 1.

(c) Integrating each expression in the result from part (b) from t = 0 to t = x yields

x − x2

2
≤ ln(1 + x) ≤ x.

(d) For x = 0.5, x = 0.1 and x = 0.01, we obtain the string of inequalities

0.375 ≤ 0.405465 ≤ 0.5

0.095 ≤ 0.095310 ≤ 0.1

0.00995 ≤ 0.00995033 ≤ 0.01,

respectively.

95. Let

F(x) = x
√

x2 − 1 − 2
∫ x

1

√
t2 − 1 dt

Prove that F(x) and cosh−1 x differ by a constant by showing that they have the same derivative. Then prove they are
equal by evaluating both at x = 1.

solution Let

F(x) = x
√

x2 − 1 − 2
∫ x

1

√
t2 − 1 dt.

Then

dF

dx
=
√

x2 − 1 + x2√
x2 − 1

− 2
√

x2 − 1 = x2√
x2 − 1

−
√

x2 − 1 = 1√
x2 − 1

.

Also, d
dx

(cosh−1x) = 1√
x2−1

; therefore, F(x) and cosh−1x have the same derivative. We conclude that F(x) and

cosh−1x differ by a constant:

F(x) = cosh−1x + C.

Now, let x = 1. Because F(1) = 0 and cosh−1 1 = 0, it follows that C = 0. Therefore,

F(x) = cosh−1x.
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96. Let f (x) be a positive increasing continuous function on [a, b], where 0 ≤ a < b as in Figure 7. Show that
the shaded region has area

I = bf (b) − af (a) −
∫ b

a
f (x) dx 2

y

x
ba

y = f (x)

f (b)

f (a)

FIGURE 7

solution We can construct the shaded region in Figure 7 by taking a rectangle of length b and height f (b) and
removing a rectangle of length a and height f (a) as well as the region between the graph of y = f (x) and the x-axis
over the interval [a, b]. The area of the resulting region is then the area of the large rectangle minus the area of the small
rectangle and minus the area under the curve y = f (x); that is,

I = bf (b) − af (a) −
∫ b

a
f (x) dx.

97. How can we interpret the quantity I in Eq. (2) if a < b ≤ 0? Explain with a graph.

solution We will consider each term on the right-hand side of (2) separately. For convenience, let I, II, III and IV
denote the area of the similarly labeled region in the diagram below.

y

x
ba

I

III

II

IV

f (b)

f (a)

Because b < 0, the expression bf (b) is the opposite of the area of the rectangle along the right; that is,

bf (b) = −II − IV.

Similarly,

−af (a) = III + IV and −
∫ b

a
f (x) dx = −I − III.

Therefore,

bf (b) − af (a) −
∫ b

a
f (x) dx = −I − II;

that is, the opposite of the area of the shaded region shown below.

y

x
ba

f (b)

f (a)

98. The isotope thorium-234 has a half-life of 24.5 days.

(a) What is the differential equation satisfied by y(t), the amount of thorium-234 in a sample at time t?

(b) At t = 0, a sample contains 2 kg of thorium-234. How much remains after 40 days?
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solution

(a) By the equation for half-life,

24.5 = ln 2

k
, so k = ln 2

24.5
≈ 0.028 days−1.

Therefore, the differential equation for y(t) is

y′ = −0.028y.

(b) If there are 2 kg of thorium-234 at t = 0, then y(t) = 2e−0.028t . After 40 days, the amount of thorium-234 is

y(40) = 2e−0.028(40) = 0.653 kg.

99. The Oldest Snack Food? In Bat Cave, New Mexico, archaeologists found ancient human remains, including cobs

of popping corn whose C14-to-C12 ratio was approximately 48% of that found in living matter. Estimate the age of the
corn cobs.

solution Let t be the age of the corn cobs. The C14 to C12 ratio decreased by a factor of e−0.000121t which is equal
to 0.48. That is:

e−0.000121t = 0.48,

so

−0.000121t = ln 0.48,

and

t = − 1

0.000121
ln 0.48 ≈ 6065.9.

We conclude that the age of the corn cobs is approximately 6065.9 years.

100. The C14-to-C12 ratio of a sample is proportional to the disintegration rate (number of beta particles emitted per
minute) that is measured directly with a Geiger counter. The disintegration rate of carbon in a living organism is 15.3 beta
particles per minute per gram. Find the age of a sample that emits 9.5 beta particles per minute per gram.

solution Let t be the age of the sample in years. Because the disintegration rate for the sample has dropped from

15.3 beta particles/min per gram to 9.5 beta particles/min per gram and the C14 to C12 ratio is proportional to the
disintegration rate, it follows that

e−0.000121t = 9.5

15.3
,

so

t = − 1

0.000121
ln

9.5

15.3
≈ 3938.5.

We conclude that the sample is approximately 3938.5 years old.

101. What is the interest rate if the PV of $50,000 to be delivered in 3 years is $43,000?

solution Let r denote the interest rate. The present value of $50,000 received in 3 years with an interest rate of r is

50,000e−3r . Thus, we need to solve

43,000 = 50,000e−3r

for r . This yields

r = −1

3
ln

43

50
= 0.0503.

Thus, the interest rate is 5.03%.

102. An equipment upgrade costing $1 million will save a company $320,000 per year for 4 years. Is this a good investment
if the interest rate is r = 5%? What is the largest interest rate that would make the investment worthwhile? Assume that
the savings are received as a lump sum at the end of each year.

solution With an interest rate of r = 5%, the present value of the four payments is

$320,000
(
e−0.05 + e−0.1 + e−0.15 + e−0.2) = $1,131,361.78.
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As this is greater than the $1 million cost of the upgrade, this is a good investment. To determine the largest interest rate
that would make the investment worthwhile, we must solve the equation

320,000
(
e−r + e−2r + e−3r + e−4r

) = 1,000,000

for r . Using a computer algebra system, we find r = 10.13%.

103. Find the PV of an income stream paying out continuously at a rate of 5000e−0.1t dollars per year for 5 years,
assuming an interest rate of r = 4%.

solution PV =
∫ 5

0
5000e−0.1t e−0.04t dt =

∫ 5

0
5000e−0.14t dt = 5000

−0.14
e−0.14t

∣∣∣∣5
0

= $17, 979.10.

104. Calculate the limit:

(a) lim
n→∞

(
1 + 4

n

)n

(b) lim
n→∞

(
1 + 1

n

)4n

(c) lim
n→∞

(
1 + 4

n

)3n

solution

(a) lim
n→∞

(
1 + 4

n

)n

= lim
n→∞

[(
1 + 1

n/4

)n/4
]4

= e4.

(b) lim
n→∞

(
1 + 1

n

)4n

= lim
n→∞

[(
1 + 1

n

)n]4

= e4.

(c) lim
n→∞

(
1 + 4

n

)3n

= lim
n→∞

[(
1 + 1

n/4

)n/4
]12

= e12.
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6.1 Area Between Two Curves

Preliminary Questions

1. What is the area interpretation of
∫ b

a

(
f (x) − g(x)

)
dx if f (x) ≥ g(x)?

solution Because f (x) ≥ g(x),
∫ b
a (f (x) − g(x)) dx represents the area of the region bounded between the graphs

of y = f (x) and y = g(x), bounded on the left by the vertical line x = a and on the right by the vertical line x = b.

2. Is
∫ b

a

(
f (x) − g(x)

)
dx still equal to the area between the graphs of f and g if f (x) ≥ 0 but g(x) ≤ 0?

solution Yes. Since f (x) ≥ 0 and g(x) ≤ 0, it follows that f (x) − g(x) ≥ 0.

3. Suppose that f (x) ≥ g(x) on [0, 3] and g(x) ≥ f (x) on [3, 5]. Express the area between the graphs over [0, 5] as a
sum of integrals.

solution Remember that to calculate an area between two curves, one must subtract the equation for the lower curve
from the equation for the upper curve. Over the interval [0, 3], y = f (x) is the upper curve. On the other hand, over the
interval [3, 5], y = g(x) is the upper curve. The area between the graphs over the interval [0, 5] is therefore given by∫ 3

0
(f (x) − g(x)) dx +

∫ 5

3
(g(x) − f (x)) dx.

4. Suppose that the graph of x = f (y) lies to the left of the y-axis. Is
∫ b
a f (y) dy positive or negative?

solution If the graph of x = f (y) lies to the left of the y-axis, then for each value of y, the corresponding value of x

is less than zero. Hence, the value of
∫ b
a f (y) dy is negative.

Exercises
1. Find the area of the region between y = 3x2 + 12 and y = 4x + 4 over [−3, 3] (Figure 9).

50

25

y

x

y = 3x2 + 12

y = 4x + 4

3−1−3 1 2

FIGURE 9

solution As the graph of y = 3x2 + 12 lies above the graph of y = 4x + 4 over the interval [−3, 3], the area between
the graphs is ∫ 3

−3

(
(3x2 + 12) − (4x + 4)

)
dx =

∫ 3

−3
(3x2 − 4x + 8) dx =

(
x3 − 2x2 + 8x

)∣∣∣3−3
= 102.

2. Find the area of the region between the graphs of f (x) = 3x + 8 and g(x) = x2 + 2x + 2 over [0, 2].
solution From the diagram below, we see that the graph of f (x) = 3x + 8 lies above the graph of g(x) = x2 + 2x + 2
over the interval [0, 2]. Thus, the area between the graphs is

∫ 2

0

[
(3x + 8) −

(
x2 + 2x + 2

)]
dx =

∫ 2

0

(
−x2 + x + 6

)
dx =

(
−1

3
x3 + 1

2
x2 + 6x

)∣∣∣∣2
0

= 34

3
.

710
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y

x
2

0.5 1.0 1.5 2.0

4
6
8

10
12
14 y = 3x + 8

y = x2 + 2x + 2

3. Find the area of the region enclosed by the graphs of f (x) = x2 + 2 and g(x) = 2x + 5 (Figure 10).

g(x) = 2x + 5

f (x) = x2 + 2

−1 1 2 3

10

y

x

FIGURE 10

solution From the figure, we see that the graph of g(x) = 2x + 5 lies above the graph of f (x) = x2 + 2 over the
interval [−1, 3]. Thus, the area between the graphs is

∫ 3

−1

[
(2x + 5) −

(
x2 + 2

)]
dx =

∫ 3

−1

(
−x2 + 2x + 3

)
dx

=
(

−1

3
x3 + x2 + 3x

)∣∣∣∣3−1

= 9 −
(

−5

3

)
= 32

3
.

4. Find the area of the region enclosed by the graphs of f (x) = x3 − 10x and g(x) = 6x (Figure 11).

−4 42−2

−20

20

x

y f (x) = x3 − 10x

g(x) = 6x

FIGURE 11

solution From the figure, we see that the graph of f (x) = x3 − 10x lies above the graph of g(x) = 6x over the

interval [−4, 0], while the graph of g(x) = 6x lies above the graph of f (x) = x3 − 10x over the interval [0, 4]. Thus,
the area enclosed by the two graphs is

A =
∫ 0

−4

(
x3 − 10x − 6x

)
dx +

∫ 4

0

(
6x − (x3 − 10x)

)
dx

=
∫ 0

−4
(x3 − 16x) dx +

∫ 4

0
(16x − x3) dx

=
(

1

4
x4 − 8x2

)∣∣∣∣0−4
+

(
8x2 − 1

4
x4

)∣∣∣∣4
0

= 64 + 64 = 128.
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In Exercises 5 and 6, sketch the region between y = sin x and y = cos x over the interval and find its area.

5.
[π

4
,
π

2

]

solution Over the interval [π
4 , π

2 ], the graph of y = cos x lies below that of y = sin x (see the sketch below). Hence,
the area between the two curves is

∫ π/2

π/4
(sin x − cos x) dx = (− cos x − sin x)

∣∣∣π/2

π/4
= (0 − 1) −

(
−

√
2

2
−

√
2

2

)
= √

2 − 1.

y

x

0.2

0.5 1.0 1.5

0.4

0.6

0.8

1.0
y = sin x

y = cos x

6. [0, π ]
solution Over the interval [0, π

4 ], the graph of y = sin x lies below that of y = cos x, while over the interval [π
4 , π ],

the orientation of the graphs is reversed (see the sketch below). The area between the graphs over [0, π ] is then

∫ π/4

0
(cos x − sin x) dx +

∫ π

π/4
(sin x − cos x) dx

= (sin x + cos x)

∣∣∣π/4

0
+ (− cos x − sin x)

∣∣∣π
π/4

=
√

2

2
+

√
2

2
− (0 + 1) + (1 − 0) −

(
−

√
2

2
−

√
2

2

)
= 2

√
2.

y

x
1 2 3

1.0

0.5

−0.5

−1.0

In Exercises 7 and 8, let f (x) = 20 + x − x2 and g(x) = x2 − 5x.

7. Sketch the region enclosed by the graphs of f (x) and g(x) and compute its area.

solution Setting f (x) = g(x) gives 20 + x − x2 = x2 − 5x, which simplifies to

0 = 2x2 − 6x − 20 = 2(x − 5)(x + 2).

Thus, the curves intersect at x = −2 and x = 5. With y = 20 + x − x2 being the upper curve (see the sketch below), the
area between the two curves is

∫ 5

−2

(
(20 + x − x2) − (x2 − 5x)

)
dx =

∫ 5

−2

(
20 + 6x − 2x2

)
dx =

(
20x + 3x2 − 2

3
x3

)∣∣∣∣5−2
= 343

3
.

y

x

−5

5

10

15

−2 2 4

y = 20 + x − x2

y = x2 − 5x
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8. Sketch the region between the graphs of f (x) and g(x) over [4, 8] and compute its area as a sum of two integrals.

solution Setting f (x) = g(x) gives 20 + x − x2 = x2 − 5x, which simplifies to

0 = 2x2 − 6x − 20 = 2(x − 5)(x + 2).

Thus, the curves intersect at x = −2 and x = 5. Over the interval [4, 5], y = 20 + x − x2 is the upper curve but over the
interval [5, 8], y = x2 − 5x is the upper curve (see the sketch below). The area between the two curves over the interval
[4, 8] is then ∫ 5

4

(
(20 + x − x2) − (x2 − 5x)

)
dx +

∫ 8

5

(
(x2 − 5x) − (20 + x − x2)

)
dx

=
∫ 5

4

(
−2x2 + 6x + 20

)
dx +

∫ 8

5

(
2x2 − 6x − 20

)
dx

=
(

−2

3
x2 + 3x2 + 20x

)∣∣∣∣5
4

+
(

2

3
x3 − 3x2 − 20x

)∣∣∣∣8
5

= 19

3
+ 81 = 262

3
.

y

x

−10

10

20

−20

−30

2 6 8

y = x2 − 5x

y = 20 + x − x2

9. Find the area between y = ex and y = e2x over [0, 1].
solution As the graph of y = e2x lies above the graph of y = ex over the interval [0, 1], the area between the graphs
is ∫ 1

0
(e2x − ex) dx =

(
1

2
e2x − ex

) ∣∣∣∣1
0

= 1

2
e2 − e −

(
1

2
− 1

)
= 1

2
e2 − e + 1

2
.

10. Find the area of the region bounded by y = ex and y = 12 − ex and the y-axis.

solution The two graphs intersect when ex = 12 − ex , or when x = ln 6. As the graph of y = 12 − ex lies above the
graph of y = ex over the interval [0, ln 6], the area between the graphs is

∫ ln6

0

(
12 − ex − ex

)
dx = (12x − 2ex)

∣∣∣∣ln 6

0
= 12 ln 6 − 12 − (0 − 2) = 12 ln 6 − 10.

11. Sketch the region bounded by the line y = 2 and the graph of y = sec2 x for −π
2 < x < π

2 and find its area.

solution A sketch of the region bounded by y = sec2 x and y = 2 is shown below. Note the region extends from

x = −π
4 on the left to x = π

4 on the right. As the graph of y = 2 lies above the graph of y = sec2 x, the area between
the graphs is

∫ π/4

−π/4
(2 − sec2 x) dx = (2x − tan x)

∣∣∣∣π/4

−π/4
=

(π

2
− 1

)
−

(
−π

2
+ 1

)
= π − 2.

–0.5 0.5

0.5

1

1.5

2

y = sec2 x

12. Sketch the region bounded by

y = 1√
1 − x2

and y = − 1√
1 − x2

for − 1
2 ≤ x ≤ 1

2 and find its area.
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solution A sketch of the region bounded by y = 1√
1 − x2

and y = − 1√
1 − x2

for − 1
2 ≤ x ≤ 1

2 is shown below. As

the graph of y = 1√
1 − x2

lies above the graph of y = − 1√
1 − x2

, the area between the graphs is

∫ 1/2

−1/2

[
1√

1 − x2
−

(
− 1√

1 − x2

)]
dx = 2 sin−1 x

∣∣∣∣1/2

−1/2
= 2

[π

6
−

(
−π

6

)]
= 2π

3
.

−0.5 0.5

−1

−0.5

0.5

1

y = −(1 − x2)−1/2

y = (1 − x2)−1/2

In Exercises 13–16, find the area of the shaded region in Figures 12–15.

13.
y

x
2

y = 3x2 + 4x − 10

y = x3 − 2x2 + 10

−2

FIGURE 12

solution As the graph of y = x3 − 2x2 + 10 lies above the graph of y = 3x2 + 4x − 10, the area of the shaded
region is

∫ 2

−2

(
(x3 − 2x2 + 10) − (3x2 + 4x − 10)

)
dx =

∫ 2

−2

(
x3 − 5x2 − 4x + 20

)
dx

=
(

1

4
x4 − 5

3
x3 − 2x2 + 20x

)∣∣∣∣2−2
= 160

3
.

14.

1

−1
x

y

y = x�1 − x2

1
2

y = x

FIGURE 13

solution Setting 1
2x = x

√
1 − x2 yields x = 0 or 1

2 =
√

1 − x2, so that x = ±
√

3
2 . Over the interval [−

√
3

2 , 0],
y = 1

2x is the upper curve but over the interval [0,

√
3

2 ], y = x
√

1 − x2 is the upper curve. The area of the shaded region
is then

∫ 0

−√
3/2

(
1

2
x − x

√
1 − x2

)
dx +

∫ √
3/2

0

(
x
√

1 − x2 − 1

2
x

)
dx

=
(

1

4
x2 + 1

3
(1 − x2)3/2

)∣∣∣∣0−√
3/2

+
(

−1

3
(1 − x2)3/2 − 1

4
x2

)∣∣∣∣
√

3/2

0
= 5

48
+ 5

48
= 5

24
.
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15. π

6
�3
2

π

3
1
2

x

y

y = cos x

( )  ,

( )  ,

π

6
π

3
π

2

FIGURE 14

solution The line on the top-left has equation y = 3
√

3
π x, and the line on the bottom-right has equation y = 3

2π
x.

Thus, the area to the left of x = π
6 is

∫ π/6

0

(
3
√

3

π
x − 3

2π
x

)
dx =

(
3
√

3

2π
x2 − 3

4π
x2

)∣∣∣∣∣
π/6

0

= 3
√

3

2π

π2

36
− 3

4π

π2

36
= (2

√
3 − 1)π

48
.

The area to the right of x = π
6 is

∫ π/3

π/6

(
cos x − 3

2π
x

)
dx =

(
sin x − 3

4π
x2

)∣∣∣∣π/3

π/6
= 8

√
3 − 8 − π

16
.

The entire area is then

(2
√

3 − 1)π

48
+ 8

√
3 − 8 − π

16
= 12

√
3 − 12 + (

√
3 − 2)π

24
.

16.

y = sin x

y = cos 2x

π

6
5π

6
3π

2
2π

y

x

FIGURE 15

solution Over the interval [0, π/6], the graph of y = cos 2x lies above the graph of y = sin x. The orientation of
the two graphs reverses over [π/6, 5π/6] and reverses again over [5π/6, 2π ]. Thus, the area between the two graphs is
given by

A =
∫ π/6

0
(cos 2x − sin x) dx +

∫ 5π/6

π/6
(sin x − cos 2x) dx +

∫ 2π

5π/6
(cos 2x − sin x) dx.

Carrying out the integration and evaluation, we find

A =
(

1

2
sin 2x + cos x

)∣∣∣∣π/6

0
+

(
− cos x − 1

2
sin 2x

)∣∣∣∣5π/6

π/6
+

(
1

2
sin 2x + cos x

)∣∣∣∣2π

5π/6

=
√

3

4
+

√
3

2
− 1 +

√
3

2
+

√
3

4
−

(
−

√
3

2
−

√
3

4

)
+ 1 −

(
−

√
3

4
−

√
3

2

)

= 3
√

3.

In Exercises 17 and 18, find the area between the graphs of x = sin y and x = 1 − cos y over the given interval
(Figure 16).

x = 1 − cos y

x = sin y

x

y

−

π

2

π

2

2

2

FIGURE 16
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17. 0 ≤ y ≤ π

2

solution As shown in the figure, the graph on the right is x = sin y and the graph on the left is x = 1 − cos y.
Therefore, the area between the two curves is given by

∫ π/2

0
(sin y − (1 − cos y)) dy = (− cos y − y + sin y)

∣∣∣π/2

0
=

(
−π

2
+ 1

)
− (−1) = 2 − π

2
.

18. −π

2
≤ y ≤ π

2

solution The shaded region in the figure shows the area between the graphs from y = 0 to y = π
2 . It is bounded on

the right by x = sin y and on the left by x = 1 − cos y. Therefore, the area between the graphs from y = 0 to y = π
2 is

∫ π/2

0
(sin y − (1 − cos y)) dy = (− cos y − y + sin y)

∣∣∣π/2

0
=

(
−π

2
+ 1

)
− (−1) = 2 − π

2
.

The graphs cross at y = 0. Since x = 1 − cos y lies to the right of x = sin y on the interval [−π
2 , 0] along the y-axis, the

area between the graphs from y = −π
2 to y = 0 is

∫ 0

−π/2
((1 − cos y) − sin y) dy = (y − sin y + cos y)

∣∣∣0−π/2
= 1 −

(
−π

2
+ 1

)
= π

2
.

The total area between the graphs from y = −π
2 to y = π

2 is the sum

∫ π/2

0
(sin y − (1 − cos y)) dy +

∫ 0

−π/2
((1 − cos y) − sin y) dy = 2 − π

2
+ π

2
= 2.

19. Find the area of the region lying to the right of x = y2 + 4y − 22 and to the left of x = 3y + 8.

solution Setting y2 + 4y − 22 = 3y + 8 yields

0 = y2 + y − 30 = (y + 6)(y − 5),

so the two curves intersect at y = −6 and y = 5. The area in question is then given by

∫ 5

−6

(
(3y + 8) − (y2 + 4y − 22)

)
dy =

∫ 5

−6

(
−y2 − y + 30

)
dy =

(
−y3

3
− y2

2
+ 30y

)∣∣∣∣∣
5

−6

= 1331

6
.

20. Find the area of the region lying to the right of x = y2 − 5 and to the left of x = 3 − y2.

solution Setting y2 + 5 = 3 − y2 yields 2y2 = 8 or y = ±2. The area of the region enclosed by the two graphs is
then

∫ 2

−2

(
(3 − y2) − (y2 + 5)

)
dy =

∫ 2

−2

(
8 − 2y2

)
dy =

(
8y − 2

3
y3

)∣∣∣∣2−2
= 64

3
.

21. Figure 17 shows the region enclosed by x = y3 − 26y + 10 and x = 40 − 6y2 − y3. Match the equations with the
curves and compute the area of the region.

x

y

3

−1

−5

FIGURE 17

solution Substituting y = 0 into the equations for both curves indicates that the graph of x = y3 − 26y + 10 passes

through the point (10, 0) while the graph of x = 40 − 6y2 − y3 passes through the point (40, 0). Therefore, over the
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y-interval [−1, 3], the graph of x = 40 − 6y2 − y3 lies to the right of the graph of x = y3 − 26y + 10. The orientation
of the two graphs is reversed over the y-interval [−5, −1]. Hence, the area of the shaded region is

∫ −1

−5

(
(y3 − 26y + 10) − (40 − 6y2 − y3)

)
dy +

∫ 3

−1

(
(40 − 6y2 − y3) − (y3 − 26y + 10)

)
dy

=
∫ −1

−5

(
2y3 + 6y2 − 26y − 30

)
dy +

∫ 3

−1

(
−2y3 − 6y2 + 26y + 30

)
dy

=
(

1

2
y4 + 2y3 − 13y2 − 30y

)∣∣∣∣−1

−5
+

(
−1

2
y4 − 2y3 + 13y2 + 30y

)∣∣∣∣3−1
= 256.

22. Figure 18 shows the region enclosed by y = x3 − 6x and y = 8 − 3x2. Match the equations with the curves and
compute the area of the region.

−4

−3

−1

2

−50

x

y

FIGURE 18 Region between y = x3 − 6x and y = 8 − 3x2.

solution Setting x3 − 6x = 8 − 3x2 yields (x + 1)(x + 4)(x − 2) = 0, so the two curves intersect at x = −4,

x = −1 and x = 2. Over the interval [−4, −1], y = x3 − 6x is the upper curve, while y = 8 − 3x2 is the upper curve
over the interval [−1, 2]. The area of the region enclosed by the two curves is then

∫ −1

−4

(
(x3 − 6x) − (8 − 3x2)

)
dx +

∫ 2

−1

(
(8 − 3x2) − (x3 − 6x)

)
dx

=
(

1

4
x4 − 3x2 − 8x + x3

)∣∣∣∣−1

−4
+

(
8x − x3 − 1

4
x4 + 3x2

)∣∣∣∣2−1
= 81

4
+ 81

4
= 81

2
.

In Exercises 23 and 24, find the area enclosed by the graphs in two ways: by integrating along the x-axis and by integrating
along the y-axis.

23. x = 9 − y2, x = 5

solution Along the y-axis, we have points of intersection at y = ±2. Therefore, the area enclosed by the two curves
is ∫ 2

−2

(
9 − y2 − 5

)
dy =

∫ 2

−2

(
4 − y2

)
dy =

(
4y − 1

3
y3

)∣∣∣∣2−2
= 32

3
.

Along the x-axis, we have integration limits of x = 5 and x = 9. Therefore, the area enclosed by the two curves is

∫ 9

5
2
√

9 − x dx = −4

3
(9 − x)3/2

∣∣∣∣9
5

= 0 −
(

−32

3

)
= 32

3
.

24. The semicubical parabola y2 = x3 and the line x = 1.

solution Since y2 = x3, it follows that x ≥ 0 since y2 ≥ 0. Therefore, y = ±x3/2, and the area of the region
enclosed by the semicubical parabola and x = 1 is

∫ 1

0

(
x3/2 − (−x3/2)

)
dx =

∫ 1

0
2x3/2 dx = 4

5
x5/2

∣∣∣∣1
0

= 4

5
.

Along the y-axis, we have integration limits of y = ±1. Therefore, the area enclosed by the two curves is

∫ 1

−1

(
1 − y2/3

)
dy =

(
y − 3

5
y5/3

)∣∣∣∣1−1
=

(
1 − 3

5

)
−

(
−1 + 3

5

)
= 4

5
.
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In Exercises 25 and 26, find the area of the region using the method (integration along either the x- or the y-axis) that
requires you to evaluate just one integral.

25. Region between y2 = x + 5 and y2 = 3 − x

solution From the figure below, we see that integration along the x-axis would require two integrals, but integration

along the y-axis requires only one integral. Setting y2 − 5 = 3 − y2 yields points of intersection at y = ±2. Thus, the
area is given by

∫ 2

−2

(
(3 − y2) − (y2 + 5)

)
dy =

∫ 2

−2

(
8 − 2y2

)
dy =

(
8y − 2

3
y3

)∣∣∣∣2−2
= 64

3
.

2

1

−1

−2

y

x
2−4 −2

x = y2 − 5

x = 3 − y2

26. Region between y = x and x + y = 8 over [2, 3]
solution From the figure below, we see that integration along the y-axis would require three integrals, but integration
along the x-axis requires only one integral. The area of the region is then

∫ 3

2

(
(8 − x) − x

)
dx = (8x − x2)

∣∣∣∣3
2

= (24 − 9) − (16 − 4) = 3.

As a check, the area of a trapezoid is given by

h

2
(b1 + b2) = 1

2
(4 + 2) = 3.

1 30.5 2.521.5
x

1

2

3

4

5

6

y

x + y = 8

y = x

In Exercises 27–44, sketch the region enclosed by the curves and compute its area as an integral along the x- or y-axis.

27. y = 4 − x2, y = x2 − 4

solution Setting 4 − x2 = x2 − 4 yields 2x2 = 8 or x2 = 4. Thus, the curves y = 4 − x2 and y = x2 − 4 intersect

at x = ±2. From the figure below, we see that y = 4 − x2 lies above y = x2 − 4 over the interval [−2, 2]; hence, the
area of the region enclosed by the curves is

∫ 2

−2

(
(4 − x2) − (x2 − 4)

)
dx =

∫ 2

−2
(8 − 2x2) dx =

(
8x − 2

3
x3

)∣∣∣∣2−2
= 64

3
.

2

4

−2

−4

y

x
21−2 −1

y = x2 − 4

y = 4 − x2

28. y = x2 − 6, y = 6 − x3, y-axis

solution Setting x2 − 6 = 6 − x3 yields

0 = x3 + x2 − 12 = (x − 2)(x2 + 3x + 6),
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so the curves y = x2 − 6 and y = 6 − x3 intersect at x = 2. Using the graph shown below, we see that y = 6 − x3 lies
above y = x2 − 6 over the interval [0, 2]; hence, the area of the region enclosed by these curves and the y-axis is

∫ 2

0

(
(6 − x3) − (x2 − 6)

)
dx =

∫ 2

0
(−x3 − x2 + 12) dx =

(
−1

4
x4 − 1

3
x3 + 12x

)∣∣∣∣2
0

= 52

3
.

210.5 1.5
x

2

4

6

y

−2

−4

−6

y = 6 − x3

y = x2 − 6

29. x + y = 4, x − y = 0, y + 3x = 4

solution From the graph below, we see that the top of the region enclosed by the three lines is always bounded by
x + y = 4. On the other hand, the bottom of the region is bounded by y + 3x = 4 for 0 ≤ x ≤ 1 and by x − y = 0 for
1 ≤ x ≤ 2. The total area of the region is then

∫ 1

0
((4 − x) − (4 − 3x)) dx +

∫ 2

1
((4 − x) − x) dx =

∫ 1

0
2x dx +

∫ 2

1
(4 − 2x) dx

= x2
∣∣∣1
0

+ (4x − x2)

∣∣∣2
1

= 1 + (8 − 4) − (4 − 1) = 2.

210.5 1.5
x

y = x
y + 3x = 4

x + y = 4

1

4

3

2

y

30. y = 8 − 3x, y = 6 − x, y = 2

solution From the figure below, we see that the graph of y = 6 − x lies to the right of the graph of y = 8 − 3x, so
integration in y is most appropriate for this problem. Setting 8 − 3x = 6 − x yields x = 1, so the y-coordinate of the
point of intersection between y = 8 − 3x and y = 6 − x is 5. The area bounded by the three given curves is thus

A =
∫ 5

2

(
(6 − y) − 1

3
(8 − y)

)
dy

=
∫ 5

2

(
10

3
− 2

3
y

)
dy

=
(

10

3
y − 1

3
y2

)∣∣∣∣5
2

=
(

50

3
− 25

3

)
−

(
20

3
− 4

3

)

= 3.

y

x0
1 2 3 4

1

2

3

4

5

y = 6 − x

y = 8 − 3x

y = 2
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31. y = 8 − √
x, y = √

x, x = 0

solution Setting 8 − √
x = √

x yields
√

x = 4 or x = 16. Using the graph shown below, we see that y = 8 − √
x

lies above y = √
x over the interval [0, 16]. The area of the region enclosed by these two curves and the y-axis is then

∫ 16

0

(
8 − √

x − √
x
)

dx =
∫ 16

0

(
8 − 2

√
x
)

dx =
(

8x − 4

3
x3/2

)∣∣∣∣16

0
= 128

3
.

y

x

2

2 4 6 8 10 12 14 16

4

6

8

y = 8 − x1/2

y = x1/2

32. y = x

x2 + 1
, y = x

5

solution Setting

x

x2 + 1
= x

5
yields x = −2, 0, 2.

From the figure below, we see that the graph of y = x/5 lies above the graph of y = x/(x2 + 1) over [−2, 0] and that
the orientation is reversed over [0, 2]. Thus,

A =
∫ 0

−2

(
x

5
− x

x2 + 1

)
dx +

∫ 2

0

(
x

x2 + 1
− x

5

)
dx

=
(

x2

10
− 1

2
ln(x2 + 1)

)∣∣∣∣∣
0

−2

+
(

1

2
ln(x2 + 1) − x2

10

)∣∣∣∣∣
2

0

=
(

0 − 2

5
+ 1

2
ln 5

)
+

(
1

2
ln 5 − 2

5
− 0

)

= ln 5 − 4

5
.

y

x

0.2

0.4

−1 1

y =

y =

x
5

x
x2 + 1

33. x = |y|, x = 1 − |y|
solution From the graph below, we see that the region enclosed by the curves x = |y| and x = 1 − |y| is symmetric
with respect to the x-axis. We can therefore determine the total area by doubling the area in the first quadrant. For y > 0,
setting y = 1 − y yields y = 1

2 as the point of intersection. Moreover, x = 1 − |y| = 1 − y lies to the right of x = |y| = y,
so the total area of the region is

2
∫ 1/2

0

(
(1 − y) − y

)
dy = 2

(
y − y2)∣∣∣∣1/2

0
= 2

(
1

2
− 1

4

)
= 1

2
.

10.2 0.6 0.80.4
x

0.4

0.2

y

−0.2

−0.4 x = ⎥ y⎥
x = 1 −⎥ y⎥
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34. y = |x|, y = x2 − 6

solution From the graph below, we see that the region enclosed by the curves y = |x| and y = x2 − 6 is symmetric
with respect to the y-axis. We can therefore determine the total area of the region by doubling the area of the portion of
the region to the right of the y-axis. For x > 0, setting x = x2 − 6 yields

0 = x2 − x − 6 = (x − 3)(x + 2),

so the curves intersect at x = 3. Moreover, on the interval [0, 3], y = |x| = x lies above y = x2 − 6. Therefore, the area
of the region enclosed by the two curves is

2
∫ 3

0

(
x − (x2 − 6)

)
dx = 2

(
1

2
x2 − 1

3
x3 + 6x

)∣∣∣∣3
0

= 2

(
9

2
− 9 + 18

)
= 27.

31 2
x

2

y

−3 −2
−2

−4

−1

y = x2 − 6

y = ⎥ x⎥

35. x = y3 − 18y, y + 2x = 0

solution Setting y3 − 18y = − y
2 yields

0 = y3 − 35

2
y = y

(
y2 − 35

2

)
,

so the points of intersection occur at y = 0 and y = ±
√

70
2 . From the graph below, we see that both curves are symmetric

with respect to the origin. It follows that the portion of the region enclosed by the curves in the second quadrant is identical
to the region enclosed in the fourth quadrant. We can therefore determine the total area enclosed by the two curves by
doubling the area enclosed in the second quadrant. In the second quadrant, y + 2x = 0 lies to the right of x = y3 − 18y,
so the total area enclosed by the two curves is

2
∫ √

70/2

0

(
−y

2
− (y3 − 18y)

)
dy = 2

(
35

4
y2 − 1

4
y4

)∣∣∣∣
√

70/2

0
= 2

(
1225

8
− 1225

16

)
= 1225

8
.

2010
x

2

y

−2
−10−20

y + 2x = 0

x = y3 − 18y

36. y = x
√

x − 2, y = −x
√

x − 2, x = 4

solution Note that y = x
√

x − 2 and y = −x
√

x − 2 are the upper and lower branches, respectively, of the curve

y2 = x2(x − 2). The area enclosed by this curve and the vertical line x = 4 is∫ 4

2

(
x
√

x − 2 − (−x
√

x − 2)
)

dx =
∫ 4

2
2x

√
x − 2 dx.

Substitute u = x − 2. Then du = dx, x = u + 2 and

∫ 4

2
2x

√
x − 2 dx =

∫ 2

0
2(u + 2)

√
u du =

∫ 2

0

(
2u3/2 + 4u1/2

)
du =

(
4

5
u5/2 + 8

3
u3/2

)∣∣∣∣2
0

= 128
√

2

15
.

x
1 2 3 4

y2 = x2(x − 2)

2

4

−4

−2

y
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37. x = 2y, x + 1 = (y − 1)2

solution Setting 2y = (y − 1)2 − 1 yields

0 = y2 − 4y = y(y − 4),

so the two curves intersect at y = 0 and at y = 4. From the graph below, we see that x = 2y lies to the right of
x + 1 = (y − 1)2 over the interval [0, 4] along the y-axis. Thus, the area of the region enclosed by the two curves is

∫ 4

0

(
2y − ((y − 1)2 − 1)

)
dy =

∫ 4

0

(
4y − y2

)
dy =

(
2y2 − 1

3
y3

)∣∣∣∣4
0

= 32

3
.

x
2 4 6 8

x + 1 = ( y − 1)2

x = 2y

1

2

3

4

y

38. x + y = 1, x1/2 + y1/2 = 1

solution From the graph below, we see that the two curves intersect at x = 0 and at x = 1 and that x + y = 1 lies

above x1/2 + y1/2 = 1. The area of the region enclosed by the two curves is then

∫ 1

0

(
(1 − x) − (1 − √

x)2
)

dx =
∫ 1

0

(−2x + 2
√

x
)

dx =
(

−x2 + 4

3
x3/2

)∣∣∣∣1
0

= 1

3
.

x + y = 1

x1/2 + y1/2 = 1
10.2 0.6 0.80.4

x

0.2

0.4

0.8

0.6

1

y

39. y = cos x, y = cos 2x, x = 0, x = 2π

3

solution From the graph below, we see that y = cos x lies above y = cos 2x over the interval [0, 2π
3 ]. The area of

the region enclosed by the two curves is therefore

∫ 2π/3

0
(cos x − cos 2x) dx =

(
sin x − 1

2
sin 2x

)∣∣∣∣2π/3

0
= 3

√
3

4
.

0.5 1 1.5 2
x

1

0.5

y

−0.5

−1

y = cos x

y = cos 2x

40. y = tan x, y = − tan x, x = π

4

solution Because the graph of y = tan x lies above the graph of y = − tan x over the interval [0, π/4], the area
bounded by the two curves is

A =
∫ π/4

0
(tan x − (− tan x)) dx = 2

∫ π/4

0
tan x dx

= 2 ln | sec x|
∣∣∣∣π/4

0

= 2 ln 2 − 2 ln 1 = 2 ln 2.
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y

x

−0.5
0.4 0.6 0.8

0.5

1.0
y = tan x

y = −tan x

41. y = sin x, y = csc2 x, x = π

4

solution Over the interval [π
4 , π

2 ], y = csc2 x lies above y = sin x. The area of the region enclosed by the two curves
is then ∫ π/2

π/4

(
csc2 x − sin x

)
dx = (− cot x + cos x

)∣∣∣∣π/2

π/4
= (0 − 0) −

(
−1 +

√
2

2

)
= 1 −

√
2

2
.

y

x
0.2

0.5

1.0

1.5

2.0

0.4 0.6 0.8 1.0 1.2 1.4

y = csc2 x

y = sin x

42. x = sin y, x = 2

π
y

solution Here, integration along the y-axis will require less work than integration along the x-axis. The curves intersect

when 2y
π = sin y or when y = 0, ±π

2 . From the graph below, we see that both curves are symmetric with respect to
the origin. It follows that the portion of the region enclosed by the curves in the first quadrant is identical to the region
enclosed in the third quadrant. We can therefore determine the total area enclosed by the two curves by doubling the area
enclosed in the first quadrant. In the first quadrant, x = sin y lies to the right of x = 2y

π , so the total area enclosed by the
two curves is

2
∫ π/2

0

(
sin y − 2

π
y

)
dy = 2

(
− cos y − 1

π
y2

)∣∣∣∣π/2

0
= 2

[(
0 − π

4

)
− (−1 − 0)

]
= 2 − π

2
.

x = sin y

x = y
2

1

−1

y

x
1−1

43. y = ex , y = e−x , y = 2

solution From the figure below, we see that integration in y would be most appropriate - unfortunately, we have not
yet learned how to integrate ln y. Consequently, we will calculate the area using two integrals in x:

A =
∫ 0

− ln 2
(2 − e−x) dx +

∫ ln 2

0
(2 − ex) dx

= (
2x + e−x

) ∣∣∣∣0− ln 2
+ (

2x − ex
) ∣∣∣∣ln 2

0

= 1 − (−2 ln 2 + 2) + (2 ln 2 − 2) − (−1) = 4 ln 2 − 2.

y

x
−0.6 −0.2 0.2 0.4 0.6

0.5

1.0

2.0

1.5

y = 2

y = exy = e−x
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44. y = ln x

x
, y = (ln x)2

x

solution Setting

ln x

x
= (ln x)2

2
yields x = 1, e.

From the figure below, we see that the graph of y = ln x/x lies above the graph of y = (ln x)2/x over the interval [1, e].
Thus, the area between the two curves is

A =
∫ e

1

(
ln x

x
− (ln x)2

x

)
dx

=
(

1

2
(ln x)2 − 1

3
(ln x)3

)∣∣∣∣e
1

= 1

2
− 1

3
= 1

6
.

y

x

0.1

0.5 1.0 1.5 2.0 2.5

0.2

0.3

y = ln

y =

x
x

ln x2

x

45. Plot

y = x√
x2 + 1

and y = (x − 1)2

on the same set of axes. Use a computer algebra system to find the points of intersection numerically and compute the
area between the curves.

solution Using a computer algebra system, we find that the curves

y = x√
x2 + 1

and y = (x − 1)2

intersect at x = 0.3943285581 and at x = 1.942944418. From the graph below, we see that y = x√
x2+1

lies above

y = (x − 1)2, so the area of the region enclosed by the two curves is

∫ 1.942944418

0.3943285581

(
x√

x2 + 1
− (x − 1)2

)
dx = 0.7567130951

The value of the definite integral was also obtained using a computer algebra system.

y = (x − 1)2

21.510.5
x

1

0.8

0.6

0.4

0.2

y

y =
x2 + 1

x

46. Sketch a region whose area is represented by

∫ √
2/2

−√
2/2

(√
1 − x2 − |x|) dx

and evaluate using geometry.

solution Matching the integrand
√

1 − x2 − |x| with the yTOP − yBOT template for calculating area, we see that the

region in question is bounded along the top by the curve y =
√

1 − x2 (the upper half of the unit circle) and is bounded
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along the bottom by the curve y = |x|. Hence, the region is 1
4 of the unit circle (see the figure below). The area of the

region must then be

1

4
π(1)2 = π

4
.

0.8

0.4

y

−0.4
x

0.4

47. Athletes 1 and 2 run along a straight track with velocities v1(t) and v2(t) (in m/s) as shown in Figure 19.

(a) Which of the following is represented by the area of the shaded region over [0, 10]?
i. The distance between athletes 1 and 2 at time t = 10 s.

ii. The difference in the distance traveled by the athletes over the time interval [0, 10].
(b) Does Figure 19 give us enough information to determine who is ahead at time t = 10 s?

(c) If the athletes begin at the same time and place, who is ahead at t = 10 s? At t = 25 s?

v1

v2

5 10 15 20 25 30

1

2

3

4

5

6

7

(m/s)

t (s)

FIGURE 19

solution

(a) The area of the shaded region over [0, 10] represents (ii): the difference in the distance traveled by the athletes over
the time interval [0, 10].
(b) No, Figure 19 does not give us enough information to determine who is ahead at time t = 10 s. We would additionally
need to know the relative position of the runners at t = 0 s.

(c) If the athletes begin at the same time and place, then athlete 1 is ahead at t = 10 s because the velocity graph for
athlete 1 lies above the velocity graph for athlete 2 over the interval [0, 10]. Over the interval [10, 25], the velocity graph
for athlete 2 lies above the velocity graph for athlete 1 and appears to have a larger area than the area between the graphs
over [0, 10]. Thus, it appears that athlete 2 is ahead at t = 25 s.

48. Express the area (not signed) of the shaded region in Figure 20 as a sum of three integrals involving f (x) and g(x).

x

y

g(x)

f (x)

3 5 9

FIGURE 20

solution Because either the curve bounding the top of the region or the curve bounding the bottom of the region or
both change at x = 3 and at x = 5, the area is calculated using three integrals. Specifically, the area is

∫ 3

0
(f (x) − g(x)) dx +

∫ 5

3
(f (x) − 0) dx +

∫ 9

5
(0 − f (x)) dx

=
∫ 3

0
(f (x) − g(x)) dx +

∫ 5

3
f (x) dx −

∫ 9

5
f (x) dx.
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49. Find the area enclosed by the curves y = c − x2 and y = x2 − c as a function of c. Find the value of c for which
this area is equal to 1.

solution The curves intersect at x = ±√
c, with y = c − x2 above y = x2 − c over the interval [−√

c,
√

c]. The
area of the region enclosed by the two curves is then

∫ √
c

−√
c

(
c − x2) − (x2 − c)

)
dx =

∫ √
c

−√
c

(
2c − 2x2

)
dx =

(
2cx − 2

3
x3

)∣∣∣∣
√

c

−√
c

= 8

3
c3/2.

In order for the area to equal 1, we must have 8
3 c3/2 = 1, which gives

c = 91/3

4
≈ 0.520021.

50. Set up (but do not evaluate) an integral that expresses the area between the circles x2 + y2 = 2 and x2 + (y − 1)2 = 1.

solution Setting 2 − y2 = 1 − (y − 1)2 yields y = 1. The two circles therefore intersect at the points (1, 1) and

(−1, 1). From the graph below, we see that over the interval [−1, 1], the upper half of the circle x2 + y2 = 2 lies above
the lower half of the circle x2 + (y − 1)2 = 1. The area enclosed by the two circles is therefore given by the integral

∫ 1

−1

(√
2 − x2 − (1 −

√
1 − x2)

)
dx.

1

y

−1
x

1

x2 + (y − 1)2 = 1

x2 + y2 = 2

51. Set up (but do not evaluate) an integral that expresses the area between the graphs of y = (1 + x2)−1 and y = x2.

solution Setting (1 + x2)−1 = x2 yields x4 + x2 − 1 = 0. This is a quadratic equation in the variable x2. By the
quadratic formula,

x2 = −1 ± √
1 − 4(−1)

2
= −1 ± √

5

2
.

As x2 must be nonnegative, we discard −1−√
5

2 . Finally, we find the two curves intersect at x = ±
√

−1+√
5

2 . From the

graph below, we see that y = (1 + x2)−1 lies above y = x2. The area enclosed by the two curves is then

∫ √
−1+√

5
2

−
√

−1+√
5

2

(
(1 + x2)−1 − x2

)
dx.

y = x2

y = (1 + x2)−1

0.5 1

1

0.5

−0.5−1
x

y

52. Find a numerical approximation to the area above y = 1 − (x/π) and below y = sin x (find the points of
intersection numerically).

solution The region in question is shown in the figure below. Using a computer algebra system, we find that y =
1 − x/π and y = sin x intersect on the left at x = 0.8278585215. Analytically, we determine the two curves intersect on
the right at x = π . The area above y = 1 − x/π and below y = sin x is then∫ π

0.8278585215

(
sin x −

(
1 − x

π

))
dx = 0.8244398727,

where the definite integral was evaluated using a computer algebra system.
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y = 1 − x

y = sin x

y

x

1

0 1 2 3

53. Find a numerical approximation to the area above y = |x| and below y = cos x.

solution The region in question is shown in the figure below. We see that the region is symmetric with respect to the
y-axis, so we can determine the total area of the region by doubling the area of the portion in the first quadrant. Using
a computer algebra system, we find that y = cos x and y = |x| intersect at x = 0.7390851332. The area of the region
between the two curves is then

2
∫ 0.7390851332

0
(cos x − x) dx = 0.8009772242,

where the definite integral was evaluated using a computer algebra system.

y = cos x

y = |x|

0.5 1

1

0.5

−0.5−1
x

y

54. Use a computer algebra system to find a numerical approximation to the number c (besides zero) in
[
0, π

2

]
,

where the curves y = sin x and y = tan2 x intersect. Then find the area enclosed by the graphs over [0, c].
solution The region in question is shown in the figure below. Using a computer algebra system, we find that y = sin x

and y = tan2 x intersect at x = 0.6662394325. The area of the region enclosed by the two curves is then∫ 0.6662394325

0

(
sin x − tan2 x

)
dx = 0.09393667698,

where the definite integral was evaluated using a computer algebra system.

y = tan2 x

y = sin x

y

x

0.2

0.4

0.6

0.8

0 0.40.2 0.6

55. The back of Jon’s guitar (Figure 21) is 19 inches long. Jon measured the width at 1-in. intervals, beginning and ending
1
2 in. from the ends, obtaining the results

6, 9, 10.25, 10.75, 10.75, 10.25, 9.75, 9.5, 10, 11.25,

12.75, 13.75, 14.25, 14.5, 14.5, 14, 13.25, 11.25, 9

Use the midpoint rule to estimate the area of the back.

10
.7

5

11
.2

5
910
.2

5
96

FIGURE 21 Back of guitar.
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solution Note that the measurements were taken at the midpoint of each one-inch section of the guitar. For example,

in the 0 to 1 inch section, the midpoint would be at 1
2 inch, and thus the approximate area of the first rectangle would be

1 · 6 inches2. An approximation for the entire area is then

A = 1(6 + 9 + 10.25 + 10.75 + 10.75 + 10.25 + 9.75 + 9.5 + 10 + 11.25

+ 12.75 + 13.75 + 14.25 + 14.5 + 14.5 + 14 + 13.25 + 11.25 + 9)

= 214.75 in2.

56. Referring to Figure 1 at the beginning of this section, estimate the projected number of additional joules produced in
the years 2009–2030 as a result of government stimulus spending in 2009–2010. Note: One watt is equal to one joule per
second, and one gigawatt is 109 watts.

solution We make some rough estimates of the areas depicted in Figure 1. From 2009 through 2012, the area between
the curves is roughly a right triangle with a base of 3 and a height of 40; from 2012 through 2020, the area is roughly an
8 by 40 rectangle. Finally, from 2020 through 2030, the area is roughly a trapezoid with height 10 and bases 40 and 27.
Thus, additional energy produced is approximately

1

2
(3)(40) + 8(40) + 1

2
(10)(40 + 27) = 715 gigawatt-years.

Because 1 gigawatt is equal to 109 joules per second and 1 year (assuming 365 days) is equal to 31536000 seconds,
the additional joules produced in the years 2009–2030 as a result of government stimulus spending in 2009–2010 is
approximately 2.25 × 1019.

Exercises 57 and 58 use the notation and results of Exercises 49–51 of Section 3.4. For a given country, F(r) is the
fraction of total income that goes to the bottom rth fraction of households. The graph of y = F(r) is called the Lorenz
curve.

57. Let A be the area between y = r and y = F(r) over the interval [0, 1] (Figure 22). The Gini index is the
ratio G = A/B, where B is the area under y = r over [0, 1].
(a) Show that G = 2

∫ 1

0
(r − F(r)) dr.

(b) Calculate G if

F(r) =
{ 1

3 r for 0 ≤ r ≤ 1
2

5
3 r − 2

3 for 1
2 ≤ r ≤ 1

(c) The Gini index is a measure of income distribution, with a lower value indicating a more equal distribution. Calculate
G if F(r) = r (in this case, all households have the same income by Exercise 51(b) of Section 3.4).
(d) What is G if all of the income goes to one household? Hint: In this extreme case, F(r) = 0 for 0 ≤ r < 1.

0.8

1.0

0.4 0.6 1.00.2

0.8

0.4

0.6

0.2

y

x

y = F(r)y = r

FIGURE 22 Lorenz Curve for U.S. in 2001.

solution
(a) Because the graph of y = r lies above the graph of y = F ¨ in Figure 22,

A =
∫ 1

0
(r − F(r)) dr.

Moreover,

B =
∫ 1

0
r dr = 1

2
r2

∣∣∣∣1
0

= 1

2
.

Thus,

G = A

B
= 2

∫ 1

0
(r − F(r)) dr.
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(b) With the given F(r),

G = 2
∫ 1/2

0

(
r − 1

3
r

)
dr + 2

∫ 1

1/2

(
r −

(
5

3
r − 2

3

))
dr

= 4

3

∫ 1/2

0
r dr − 4

3

∫ 1

1/2
(r − 1) dr

= 2

3
r2

∣∣∣∣1/2

0
− 4

3

(
1

2
r2 − r

)∣∣∣∣1
1/2

= 1

6
− 4

3

(
−1

2

)
+ 4

3

(
−3

8

)
= 1

3
.

(c) If F(r) = r , then

G = 2
∫ 1

0
(r − r) dr = 0.

(d) If F(r) = 0 for 0 ≤ r < 1, then

G = 2
∫ 1

0
(r − 0) dr = 2

(
1

2
r2

)∣∣∣∣1
0

= 2

(
1

2

)
= 1.

58. Calculate the Gini index of the United States in the year 2001 from the Lorenz curve in Figure 22, which consists of
segments joining the data points in the following table.

r 0 0.2 0.4 0.6 0.8 1
F(r) 0 0.035 0.123 0.269 0.499 1

solution From part (a) of the previous exercise,

G = 2
∫ 1

0
(r − F(r)) dr = 1 − 2

∫ 1

0
F(r) dr.

Because F(r) consists of segments joining the data points in the given table, the area under the graph of y = F(r) consists
of a triangle and four trapezoids. The area is

1

2
(0.2)(0.035) + 1

2
(0.2)(0.035 + 0.123) + 1

2
(0.2)(0.123 + 0.269) + 1

2
(0.2)(0.269 + 0.499) + 1

2
(0.2)(0.499 + 1)

or 0.2852. Finally,

G = 1 − 2(0.2852) = 0.4296.

Further Insights and Challenges
59. Find the line y = mx that divides the area under the curve y = x(1 − x) over [0, 1] into two regions of equal area.

solution First note that

∫ 1

0
x(1 − x) dx =

∫ 1

0

(
x − x2

)
dx =

(
1

2
x2 − 1

3
x3

)∣∣∣∣1
0

= 1

6
.

Now, the line y = mx and the curve y = x(1 − x) intersect when mx = x(1 − x), or at x = 0 and at x = 1 − m. The
area of the region enclosed by the two curves is then

∫ 1−m

0
(x(1 − x) − mx) dx =

∫ 1−m

0

(
(1 − m)x − x2

)
dx =

(
(1 − m)

x2

2
− 1

3
x3

)∣∣∣∣∣
1−m

0

= 1

6
(1 − m)3.

To have 1
6 (1 − m)3 = 1

2 · 1
6 requires

m = 1 −
(

1

2

)1/3
≈ 0.206299.
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60. Let c be the number such that the area under y = sin x over [0, π ] is divided in half by the line y = cx

(Figure 23). Find an equation for c and solve this equation numerically using a computer algebra system.

y = sin x
y = cx1

y

π
2

π
x

FIGURE 23

solution First note that ∫ π

0
sin x dx = − cos x

∣∣∣π
0

= 2.

Now, let y = cx and y = sin x intersect at x = a. Then ca = sin a, which gives c = sin a
a and y = cx = sin a

a x. Then

∫ a

0

(
sin x − sin a

a
x

)
dx =

(
− cos x − sin a

2a
x2

)∣∣∣∣a
0

= 1 − cos a − a sin a

2
.

We need

1 − cos a − a sin a

2
= 1

2
(2) = 1,

which gives a = 2.458714176 and finally

c = sin a

a
= 0.2566498570.

61. Explain geometrically (without calculation):

∫ 1

0
xn dx +

∫ 1

0
x1/n dx = 1 (for n > 0)

solution Let A1 denote the area of region 1 in the figure below. Define A2 and A3 similarly. It is clear from the figure
that

A1 + A2 + A3 = 1.

Now, note that xn and x1/n are inverses of each other. Therefore, the graphs of y = xn and y = x1/n are symmetric
about the line y = x, so regions 1 and 3 are also symmetric about y = x. This guarantees that A1 = A3. Finally,

∫ 1

0
xn dx +

∫ 1

0
x1/n dx = A3 + (A2 + A3) = A1 + A2 + A3 = 1.

y

x

1

1

3

2

0 1

62. Let f (x) be an increasing function with inverse g(x). Explain geometrically:

∫ a

0
f (x) dx +

∫ f (a)

f (0)
g(x) dx = af (a)

solution The region whose area is represented by
∫ a

0
f (x) dx is shown as the shaded portion of the graph below on

the left, and the region whose area is represented by
∫ f (a)

f (0)
g(x) dx is shown as the shaded portion of the graph below on

the right. Because f and g are inverse functions, the graph of y = f (x) is obtained by reflecting the graph of y = g(x)
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through the line y = x. It then follows that if we were to reflect the shaded region in the graph below on the right through
the line y = x, the reflected region would coincide exactly with the region R in the graph below on the left. Thus

∫ a

0
f (x) dx +

∫ f (a)

f (0)
g(x) dx = area of a rectangle with width a and height f (a) = af (a).

y = f (x)

a

f (0)

f (a)

R

y = g (x)

f (0) f (a)

6.2 Setting Up Integrals: Volume, Density, Average Value

Preliminary Questions
1. What is the average value of f (x) on [0, 4] if the area between the graph of f (x) and the x-axis is equal to 12?

solution Assuming that f (x) ≥ 0 over the interval [1, 4], the fact that the area between the graph of f and the x-axis

is equal to 9 indicates that
∫ 4

1 f (x) dx = 9. The average value of f over the interval [1, 4] is then

∫ 4
1 f (x) dx

4 − 1
= 9

3
= 3.

2. Find the volume of a solid extending from y = 2 to y = 5 if every cross section has area A(y) = 5.

solution Because the cross-sectional area of the solid is constant, the volume is simply the cross-sectional area times
the length, or 5 × 3 = 15.

3. What is the definition of flow rate?

solution The flow rate of a fluid is the volume of fluid that passes through a cross-sectional area at a given point per
unit time.

4. Which assumption about fluid velocity did we use to compute the flow rate as an integral?

solution To express flow rate as an integral, we assumed that the fluid velocity depended only on the radial distance
from the center of the tube.

5. The average value of f (x) on [1, 4] is 5. Find
∫ 4

1
f (x) dx.

solution

∫ 4

1
f (x) dx = average value on [1, 4] × length of [1, 4]

= 5 × 3 = 15.

Exercises
1. Let V be the volume of a pyramid of height 20 whose base is a square of side 8.

(a) Use similar triangles as in Example 1 to find the area of the horizontal cross section at a height y.

(b) Calculate V by integrating the cross-sectional area.

solution

(a) We can use similar triangles to determine the side length, s, of the square cross section at height y. Using the diagram
below, we find

8

20
= s

20 − y
or s = 2

5
(20 − y).

The area of the cross section at height y is then given by 4
25 (20 − y)2.
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s
20

8

20 − y

(b) The volume of the pyramid is

∫ 20

0

4

25
(20 − y)2 dy = − 4

75
(20 − y)3

∣∣∣∣20

0
= 1280

3
.

2. Let V be the volume of a right circular cone of height 10 whose base is a circle of radius 4 [Figure 17(A)].

(a) Use similar triangles to find the area of a horizontal cross section at a height y.
(b) Calculate V by integrating the cross-sectional area.

10

(A) (B)

0

y

4
0

y

h

R

FIGURE 17 Right circular cones.

solution
(a) If r is the radius at height y (see Figure 17), then

10

4
= 10 − y

r

from similar triangles, which implies that r = 4 − 2
5y. The area of the cross-section at height y is then

A = π

(
4 − 2

5
y

)2
.

(b) The volume of the cone is

V =
∫ 10

0
π

(
4 − 2

5
y

)2
dy = −5π

6

(
4 − 2

5
y

)3
∣∣∣∣∣
10

0

= 160π

3
.

3. Use the method of Exercise 2 to find the formula for the volume of a right circular cone of height h whose base is a
circle of radius R [Figure 17(B)].

solution
(a) From similar triangles (see Figure 17),

h

h − y
= R

r0
,

where r0 is the radius of the cone at a height of y. Thus, r0 = R − Ry
h

.
(b) The volume of the cone is

π

∫ h

0

(
R − Ry

h

)2
dy = −hπ

R

(
R − Ry

h

)3

3

∣∣∣∣∣∣∣
h

0

= hπ

R

R3

3
= πR2h

3
.

4. Calculate the volume of the ramp in Figure 18 in three ways by integrating the area of the cross sections:

(a) Perpendicular to the x-axis (rectangles).
(b) Perpendicular to the y-axis (triangles).
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(c) Perpendicular to the z-axis (rectangles).

2

6

y

x

z

4

FIGURE 18 Ramp of length 6, width 4, and height 2.

solution

(a) Cross sections perpendicular to the x-axis are rectangles of width 4 and height 2 − 1
3x. The volume of the ramp is

then ∫ 6

0
4

(
−1

3
x + 2

)
dx =

(
−2

3
x2 + 8x

) ∣∣∣∣6
0

= 24.

(b) Cross sections perpendicular to the y-axis are right triangles with legs of length 2 and 6. The volume of the ramp is
then ∫ 4

0

(
1

2
· 2 · 6

)
dy = (6y)

∣∣∣∣4
0

= 24.

(c) Cross sections perpendicular to the z-axis are rectangles of length 6 − 3z and width 4. The volume of the ramp is then

∫ 2

0
4 (−3(z − 2)) dz = (−6z2 + 24z)

∣∣∣∣2
0

= 24.

5. Find the volume of liquid needed to fill a sphere of radius R to height h (Figure 19).

R

y

h

FIGURE 19 Sphere filled with liquid to height h.

solution The radius r at any height y is given by r =
√

R2 − (R − y)2. Thus, the volume of the filled portion of the
sphere is

π

∫ h

0
r2 dy = π

∫ h

0

(
R2 − (R − y)2

)
dy = π

∫ h

0
(2Ry − y2) dy = π

(
Ry2 − y3

3

)∣∣∣∣∣
h

0

= π

(
Rh2 − h3

3

)
.

6. Find the volume of the wedge in Figure 20(A) by integrating the area of vertical cross sections.

68

(A) (B)

4

ba

c

xx

FIGURE 20

solution Cross sections of the wedge taken perpendicular to the x-axis are right triangles. Using similar triangles, we

find the base and the height of the cross sections to be 3
4 (8 − x) and 1

2 (8 − x), respectively. The volume of the wedge is
then

3

16

∫ 8

0
(8 − x)2 dx = 3

16

∫ 8

0

(
64 − 16x + x2

)
dx = 3

16

(
64x − 8x2 + 1

3
x3

)∣∣∣∣8
0

= 32.
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7. Derive a formula for the volume of the wedge in Figure 20(B) in terms of the constants a, b, and c.

solution The line from c to a is given by the equation (z/c) + (x/a) = 1 and the line from b to a is given by
(y/b) + (x/a) = 1. The cross sections perpendicular to the x-axis are right triangles with height c(1 − x/a) and base
b(1 − x/a). Thus we have ∫ a

0

1

2
bc (1 − x/a)2 dx = −1

6
abc

(
1 − x

a

)3
∣∣∣∣a
0

= 1

6
abc.

8. Let B be the solid whose base is the unit circle x2 + y2 = 1 and whose vertical cross sections perpendicular to the
x-axis are equilateral triangles. Show that the vertical cross sections have area A(x) = √

3(1 − x2) and compute the
volume of B.

solution At the arbitrary location x, the side of the equilateral triangle cross section that lies in the base of the solid

extends from the top half of the unit circle (with y =
√

1 − x2) to the bottom half (with y = −
√

1 − x2). The equilateral

triangle therefore has sides of length s = 2
√

1 − x2 and an area of

A(x) = s2
√

3

4
= √

3(1 − x2).

Finally, the volume of the solid is

√
3

∫ 1

−1

(
1 − x2

)
dx = √

3

(
x − 1

3
x3

)∣∣∣∣1−1
= 4

√
3

3
.

In Exercises 9–14, find the volume of the solid with the given base and cross sections.

9. The base is the unit circle x2 + y2 = 1, and the cross sections perpendicular to the x-axis are triangles whose height
and base are equal.

solution At each location x, the side of the triangular cross section that lies in the base of the solid extends from the

top half of the unit circle (with y =
√

1 − x2) to the bottom half (with y = −
√

1 − x2). The triangle therefore has base

and height equal to 2
√

1 − x2 and area 2(1 − x2). The volume of the solid is then∫ 1

−1
2(1 − x2) dx = 2

(
x − 1

3
x3

)∣∣∣∣1−1
= 8

3
.

10. The base is the triangle enclosed by x + y = 1, the x-axis, and the y-axis. The cross sections perpendicular to the
y-axis are semicircles.

solution The diameter of the semicircle lies in the base of the solid and thus has length 1 − y for each y. The area of
the semicircle is then

1

2
π

(
1 − y

2

)2
= 1

8
π(1 − y)2.

Finally, the volume of the solid is

π

8

∫ 1

0
(1 − y)2 dy = π

8

∫ 1

0
(1 − 2y + y2) dy = π

8

(
y − y2 + 1

3
y3

)∣∣∣∣1
0

= π

24
.

11. The base is the semicircle y =
√

9 − x2, where −3 ≤ x ≤ 3. The cross sections perpendicular to the x-axis are
squares.

solution For each x, the base of the square cross section extends from the semicircle y =
√

9 − x2 to the x-axis. The

square therefore has a base with length
√

9 − x2 and an area of
(√

9 − x2
)2 = 9 − x2. The volume of the solid is then

∫ 3

−3

(
9 − x2

)
dx =

(
9x − 1

3
x3

)∣∣∣∣3−3
= 36.

12. The base is a square, one of whose sides is the interval [0, �] along the x-axis. The cross sections perpendicular to
the x-axis are rectangles of height f (x) = x2.

solution For each x, the rectangular cross section has base � and height x2. The cross-sectional area is then �x2, and
the volume of the solid is ∫ �

0

(
�x2

)
dx =

(
1

3
�x3

)∣∣∣∣�
0

= 1

3
�4.
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13. The base is the region enclosed by y = x2 and y = 3. The cross sections perpendicular to the y-axis are squares.

solution At any location y, the distance to the parabola from the y-axis is
√

y. Thus the base of the square will have
length 2

√
y. Therefore the volume is

∫ 3

0

(
2
√

y
) (

2
√

y
)

dy =
∫ 3

0
4y dy = 2y2

∣∣∣3
0

= 18.

14. The base is the region enclosed by y = x2 and y = 3. The cross sections perpendicular to the y-axis are rectangles
of height y3.

solution As in previous exercise, for each y, the width of the rectangle will be 2
√

y. Because the height is y3, the
volume of the solid is given by

2
∫ 3

0
y7/2 dy = 4

9
y9/2

∣∣∣∣3
0

= 36
√

3.

15. Find the volume of the solid whose base is the region |x| + |y| ≤ 1 and whose vertical cross sections perpendicular
to the y-axis are semicircles (with diameter along the base).

solution The region R in question is a diamond shape connecting the points (1, 0), (0, −1), (−1, 0), and (0, 1). Thus,
in the lower half of the xy-plane, the radius of the circles is y + 1 and in the upper half, the radius is 1 − y. Therefore,
the volume is

π

2

∫ 0

−1
(y + 1)2 dy + π

2

∫ 1

0
(1 − y)2 dy = π

2

(
1

3
+ 1

3

)
= π

3
.

16. Show that a pyramid of height h whose base is an equilateral triangle of side s has volume
√

3
12 hs2.

solution Using similar triangles, the side length of the equilateral triangle at height x above the base is

s(h − x)

h
;

the area of the cross section is therefore given by

√
3

4

(
s(h − x)

h

)2
.

Thus, the volume of the pyramid is

s2
√

3

4h2

∫ h

0
(h − x)2 dx =

(
− s2

√
3

12h2
(h − x)3

)∣∣∣∣∣
h

0

=
√

3

12
s2h.

17. The area of an ellipse is πab, where a and b are the lengths of the semimajor and semiminor axes (Figure 21).
Compute the volume of a cone of height 12 whose base is an ellipse with semimajor axis a = 6 and semiminor axis b = 4.

Ellipse

12

64

FIGURE 21

solution At each height y, the elliptical cross section has major axis 1
2 (12 − y) and minor axis 1

3 (12 − y). The

cross-sectional area is then π
6 (12 − y)2, and the volume is

∫ 12

0

π

6
(12 − y)2 dy = − π

18
(12 − y)3

∣∣∣∣12

0
= 96π.
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18. Find the volume V of a regular tetrahedron (Figure 22) whose face is an equilateral triangle of side s. The tetrahedron
has height h = √

2/3s.

s

s

FIGURE 22

solution Our first task is to determine the relationship between the height of the tetrahedron, h, and the side length
of the equilateral triangles, s. Let B be the orthocenter of the tetrahedron (the point directly below the apex), and let b

denote the distance from B to each corner of the base triangle. By the Law of Cosines, we have

s2 = b2 + b2 − 2b2 cos 120◦ = 3b2,

so b2 = 1
3 s2. Thus

h2 = s2 − b2 = 2

3
s2 or h = s

√
2

3
.

Therefore, using similar triangles, the side length of the equilateral triangle at height z above the base is

s

(
h − z

h

)
= s − z√

2/3
.

The volume of the tetrahedron is then given by

∫ s
√

2/3

0

√
3

4

(
s − z√

2/3

)2
dz = −

√
2

12

(
s − z√

2/3

)3
∣∣∣∣∣
s
√

2/3

0

= s3
√

2

12
.

19. A frustum of a pyramid is a pyramid with its top cut off [Figure 23(A)]. Let V be the volume of a frustum of height
h whose base is a square of side a and whose top is a square of side b with a > b ≥ 0.

(a) Show that if the frustum were continued to a full pyramid, it would have height ha/(a − b) [Figure 23(B)].

(b) Show that the cross section at height x is a square of side (1/h)(a(h − x) + bx).

(c) Show that V = 1
3h(a2 + ab + b2). A papyrus dating to the year 1850 bce indicates that Egyptian mathematicians

had discovered this formula almost 4000 years ago.

(B)(A)

h

a

b

FIGURE 23

solution

(a) Let H be the height of the full pyramid. Using similar triangles, we have the proportion

H

a
= H − h

b

which gives

H = ha

a − b
.
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(b) Let w denote the side length of the square cross section at height x. By similar triangles, we have

a

H
= w

H − x
.

Substituting the value for H from part (a) gives

w = a(h − x) + bx

h
.

(c) The volume of the frustrum is

∫ h

0

(
1

h
(a(h − x) + bx)

)2
dx = 1

h2

∫ h

0

(
a2(h − x)2 + 2ab(h − x)x + b2x2

)
dx

= 1

h2

(
−a2

3
(h − x)3 + abhx2 − 2

3
abx3 + 1

3
b2x3

)∣∣∣∣∣
h

0

= h

3

(
a2 + ab + b2

)
.

20. A plane inclined at an angle of 45◦ passes through a diameter of the base of a cylinder of radius r . Find the volume
of the region within the cylinder and below the plane (Figure 24).

FIGURE 24

solution Place the center of the base at the origin. Then, for each x, the vertical cross section taken perpendicular to

the x-axis is a rectangle of base 2
√

r2 − x2 and height x. The volume of the solid enclosed by the plane and the cylinder
is therefore

∫ r

0
2x

√
r2 − x2 dx =

∫ r2

0

√
u du =

(
2

3
u3/2

)∣∣∣∣r
2

0
= 2

3
r3.

21. The solid S in Figure 25 is the intersection of two cylinders of radius r whose axes are perpendicular.

(a) The horizontal cross section of each cylinder at distance y from the central axis is a rectangular strip. Find the strip’s
width.

(b) Find the area of the horizontal cross section of S at distance y.

(c) Find the volume of S as a function of r .

S

y

FIGURE 25 Two cylinders intersecting at right angles.

solution

(a) The horizontal cross section at distance y from the central axis (for −r ≤ y ≤ r) is a square of width w = 2
√

r2 − y2.

(b) The area of the horizontal cross section of S at distance y from the central axis is w2 = 4(r2 − y2).

(c) The volume of the solid S is then

4
∫ r

−r

(
r2 − y2

)
dy = 4

(
r2y − 1

3
y3

)∣∣∣∣r−r

= 16

3
r3.
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22. Let S be the intersection of two cylinders of radius r whose axes intersect at an angle θ . Find the volume of S as a
function of r and θ .

solution Each cross section at distance y from the central axis (for −r ≤ y ≤ r) is a rhombus with side length

2
√

r2 − y2

sin θ
. The area of each rhombus is

4(r2 − y2)

sin θ
, and thus the volume of the solid will be

4

sin θ

∫ r

−r

(
r2 − y2

)
dy = 16r3

3 sin θ
.

23. Calculate the volume of a cylinder inclined at an angle θ = 30◦ with height 10 and base of radius 4 (Figure 26).

30°

4

10

FIGURE 26 Cylinder inclined at an angle θ = 30◦.

solution The area of each circular cross section is π(4)2 = 16π , hence the volume of the cylinder is

∫ 10

0
16π dx = (16πx)

∣∣∣∣10

0
= 160π

24. The areas of cross sections of Lake Nogebow at 5-meter intervals are given in the table below. Figure 27 shows
a contour map of the lake. Estimate the volume V of the lake by taking the average of the right- and left-endpoint
approximations to the integral of cross-sectional area.

Depth (m) 0 5 10 15 20

Area (million m2) 2.1 1.5 1.1 0.835 0.217

0
5

10

20
15

FIGURE 27 Depth contour map of Lake Nogebow.

solution The volume of the lake is ∫ 20

0
A(z) dz,

where A(z) denotes the cross-sectional area of the lake at depth z. The right- and left-endpoint approximations to this
integral, with �z = 5, are

R = 5 (1.5 + 1.1 + 0.835 + 0.217) = 18.26

L = 5 (2.1 + 1.5 + 1.1 + 0.835) = 27.675

Thus

V ≈ 1

2
(18.26 + 27.675) = 22.97 million m3.

25. Find the total mass of a 1-m rod whose linear density function is ρ(x) = 10(x + 1)−2 kg/m for 0 ≤ x ≤ 1.

solution The total mass of the rod is

∫ 1

0
ρ(x) dx =

∫ 1

0

(
10(x + 1)−2

)
dx =

(
−10(x + 1)−1

) ∣∣∣∣1
0

= 5 kg.
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26. Find the total mass of a 2-m rod whose linear density function is ρ(x) = 1 + 0.5 sin(πx) kg/m for 0 ≤ x ≤ 2.

solution The total mass of the rod is

∫ 2

0
ρ(x) dx =

∫ 2

0
(1 + 0.5 sin πx) dx =

(
x − 0.5

cos πx

π

) ∣∣∣∣2
0

= 2 kg,

27. A mineral deposit along a strip of length 6 cm has density s(x) = 0.01x(6 − x) g/cm for 0 ≤ x ≤ 6. Calculate the
total mass of the deposit.

solution The total mass of the deposit is

∫ 6

0
s(x) dx =

∫ 6

0
0.01x(6 − x) dx =

(
0.03x2 − 0.01

3
x3

)∣∣∣∣6
0

= 0.36 g.

28. Charge is distributed along a glass tube of length 10 cm with linear charge density ρ(x) = x(x2 + 1)−2 × 10−4

coulombs per centimeter for 0 ≤ x ≤ 10. Calculate the total charge.

solution The total charge along the tube is

∫ 10

0
ρ(x) dx = 10−4

∫ 10

0

x

(x2 + 1)2
dx = 10−4

(
−1

2
(x2 + 1)−1

)∣∣∣∣10

0
= 5 × 10−5

(
1 − 1

101

)
= 4.95 × 10−5

coulombs.

29. Calculate the population within a 10-mile radius of the city center if the radial population density is ρ(r) = 4(1 +
r2)1/3 (in thousands per square mile).

solution The total population is

2π

∫ 10

0
r · ρ(r) dr = 2π

∫ 10

0
4r(1 + r2)1/3 dr = 3π(1 + r2)4/3

∣∣∣∣10

0

≈ 4423.59 thousand ≈ 4.4 million.

30. Odzala National Park in the Republic of the Congo has a high density of gorillas. Suppose that the radial population
density is ρ(r) = 52(1 + r2)−2 gorillas per square kilometer, where r is the distance from a grassy clearing with a source
of water. Calculate the number of gorillas within a 5-km radius of the clearing.

solution The number of gorillas within a 5-km radius of the clearing is

2π

∫ 5

0
r · ρ(r) dr =

∫ 5

0

104πr

(1 + r2)2
= − 52π

1 + r2

∣∣∣∣5
0

= 50π ≈ 157.

31. Table 1 lists the population density (in people per square kilometer) as a function of distance r (in kilometers) from
the center of a rural town. Estimate the total population within a 1.2-km radius of the center by taking the average of the
left- and right-endpoint approximations.

TABLE 1 Population Density

r ρ(r) r ρ(r)

0.0 125.0 0.8 56.2
0.2 102.3 1.0 46.0
0.4 83.8 1.2 37.6
0.6 68.6

solution The total population is given by

2π

∫ 1.2

0
r · ρ(r) dr.

With �r = 0.2, the left- and right-endpoint approximations to the required definite integral are

L6 = 0.2(2π)[0(125) + (0.2)(102.3) + (0.4)(83.8) + (0.6)(68.6) + (0.8)(56.2) + (1)(46)]
= 233.86;

R10 = 0.2(2π)[(0.2)(102.3) + (0.4)(83.8) + (0.6)(68.6) + (0.8)(56.2) + (1)(46) + (1.2)(37.6)]
= 290.56.

This gives an average of 262.21. Thus, there are roughly 262 people within a 1.2-km radius of the town center.
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32. Find the total mass of a circular plate of radius 20 cm whose mass density is the radial function ρ(r) = 0.03 +
0.01 cos(πr2) g/cm2.

solution The total mass of the plate is

2π

∫ 20

0
r · ρ(r) dr = 2π

∫ 20

0

(
0.03r + 0.01r cos(πr2)

)
dr = 2π

(
0.015r2 + 0.01

2π
sin(πr2)

)∣∣∣∣20

0
= 12π grams.

33. The density of deer in a forest is the radial function ρ(r) = 150(r2 + 2)−2 deer per square kilometer, where r is the
distance (in kilometers) to a small meadow. Calculate the number of deer in the region 2 ≤ r ≤ 5 km.

solution The number of deer in the region 2 ≤ r ≤ 5 km is

2π

∫ 5

2
r (150)

(
r2 + 2

)−2
dr = −150π

(
1

r2 + 2

)∣∣∣∣5
2

= −150π

(
1

27
− 1

6

)
≈ 61 deer.

34. Show that a circular plate of radius 2 cm with radial mass density ρ(r) = 4
r g/cm2 has finite total mass, even though

the density becomes infinite at the origin.

solution The total mass of the plate is

2π

∫ 2

0
r

(
4

r

)
dr = 2π

∫ 2

0
4 dr = 16π g.

35. Find the flow rate through a tube of radius 4 cm, assuming that the velocity of fluid particles at a distance r cm from
the center is v(r) = (16 − r2) cm/s.

solution The flow rate is

2π

∫ R

0
rv(r) dr = 2π

∫ 4

0
r
(

16 − r2
)

dr = 2π

(
8r2 − 1

4
r4

)∣∣∣∣4
0

= 128π
cm3

s
.

36. The velocity of fluid particles flowing through a tube of radius 5 cm is v(r) = (10 − 0.3r − 0.34r2) cm/s, where r cm
is the distance from the center. What quantity per second of fluid flows through the portion of the tube where 0 ≤ r ≤ 2?

solution The flow rate through the portion of the tube where 0 ≤ r ≤ 2 is

2π

∫ 2

0
rv(r) dr = 2π

∫ 2

0
r
(
10 − 0.3r − 0.34r2)

dr = 2π

∫ 2

0

(
10r − 0.3r2 − 0.34r3)

dr

= 2π
(
5r2 − 0.1r3 − 0.085r4)∣∣∣2

0

= 112.09
cm3

s

37. A solid rod of radius 1 cm is placed in a pipe of radius 3 cm so that their axes are aligned. Water flows through
the pipe and around the rod. Find the flow rate if the velocity of the water is given by the radial function v(r) =
0.5(r − 1)(3 − r) cm/s.

solution The flow rate is

2π

∫ 3

1
r(0.5)(r − 1)(3 − r) dr = π

∫ 3

1

(
−r3 + 4r2 − 3r

)
dr = π

(
−1

4
r4 + 4

3
r3 − 3

2
r2

)∣∣∣∣3
1

= 8π

3

cm3

s
.

38. Let v(r) be the velocity of blood in an arterial capillary of radius R = 4 × 10−5 m. Use Poiseuille’s Law (Example 6)
with k = 106 (m-s)−1 to determine the velocity at the center of the capillary and the flow rate (use correct units).

solution According to Poiseuille’s Law, v(r) = k(R2 − r2). With R = 4 × 10−5 m and k = 106 (m-s)−1,

v(0) = 0.0016 m/s.

The flow rate through the capillary is

2π

∫ R

0
kr(R2 − r2) dr = 2πk

(
R2r2

2
− r4

4

)∣∣∣∣∣
R

0

= 2πk
R4

4
≈ 4.02 × 10−12 m3

s
.
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In Exercises 39–48, calculate the average over the given interval.

39. f (x) = x3, [0, 4]
solution The average is

1

4 − 0

∫ 4

0
x3 dx = 1

4

∫ 4

0
x3 dx = 1

16
x4

∣∣∣∣4
0

= 16.

40. f (x) = x3, [−1, 1]
solution The average is

1

1 − (−1)

∫ 1

−1
x3 dx = 1

2

∫ 1

−1
x3 dx = 1

8
x4

∣∣∣∣1−1
= 0.

41. f (x) = cos x,
[
0, π

6

]
solution The average is

1

π/6 − 0

∫ π/6

0
cos x dx = 6

π

∫ π/6

0
cos x dx = 6

π
sin x

∣∣∣∣π/6

0
= 3

π
.

42. f (x) = sec2 x,
[
π
6 , π

3

]
solution The average is

1

π/3 − π/6

∫ π/3

π/6
sec2 x dx = 6

π

∫ π/3

π/6
sec2 x dx = 6

π
tan x

∣∣∣∣π/3

π/6
= 6

π

(√
3 −

√
3

3

)
= 4

√
3

π
.

43. f (s) = s−2, [2, 5]
solution The average is

1

5 − 2

∫ 5

2
s−2 ds = −1

3
s−1

∣∣∣∣5
2

= 1

10
.

44. f (x) = sin(π/x)

x2
, [1, 2]

solution The average is

1

2 − 1

∫ 2

1

sin(π/x)

x2
dx = 1

π

∫ π

π/2
sin u du = − 1

π
cos u

∣∣∣∣π
π/2

= 1

π
.

45. f (x) = 2x3 − 6x2, [−1, 3]
solution The average is

1

3 − (−1)

∫ 3

−1
(2x3 − 6x2) dx = 1

4

∫ 3

−1
(2x3 − 6x2) dx = 1

4

(
1

2
x4 − 2x3

)∣∣∣∣3−1
= 1

4

(
−27

2
− 5

2

)
= −4.

46. f (x) = 1

x2 + 1
, [−1, 1]

solution The average is

1

1 − (−1)

∫ 1

−1

1

x2 + 1
dx = 1

2
tan−1 x

∣∣∣∣1−1
= 1

2

[π

4
−

(
−π

4

)]
= π

4
.

47. f (x) = xn for n ≥ 0, [0, 1]
solution For n > −1, the average is

1

1 − 0

∫ 1

0
xn dx =

∫ 1

0
xn dx = 1

n + 1
xn+1

∣∣∣∣1
0

= 1

n + 1
.
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48. f (x) = e−nx , [−1, 1]
solution The average is

1

1 − (−1)

∫ 1

−1
e−nx dx = 1

2

(
− 1

n
e−nx

) ∣∣∣∣1−1
= 1

2

(
− 1

n
e−n + 1

n
en

)
= 1

n
sinh n.

49. The temperature (in ◦C) at time t (in hours) in an art museum varies according to T (t) = 20 + 5 cos
(

π
12 t

)
. Find the

average over the time periods [0, 24] and [2, 6].
solution

• The average temperature over the 24-hour period is

1

24 − 0

∫ 24

0

(
20 + 5 cos

( π

12
t
))

dt = 1

24

(
20t + 60

π
sin

( π

12
t
))∣∣∣∣24

0
= 20◦C.

• The average temperature over the 4-hour period is

1

6 − 2

∫ 6

2

(
20 + 5 cos

( π

12
t
))

dt = 1

4

(
20t + 60

π
sin

( π

12
t
))∣∣∣∣6

2
= 22.4◦C.

50. A ball thrown in the air vertically from ground level with initial velocity 18 m/s has height h(t) = 18t − 9.8t2 at
time t (in seconds). Find the average height and the average speed over the time interval extending from the ball’s release
to its return to ground level.

solution Let h(t) = 18t − 9.8t2. The ball is at ground level when t = 0 s and when

t = 18

9.8
= 9

4.9
s.

The average height of the ball is then

1
9

4.9 − 0

∫ 9/4.9

0
(18t − 9.8t2) dt = 4.9

9

(
9t2 − 9.8

3
t3

)∣∣∣∣9/4.9

0

= 4.9

9

[
9

(
9

4.9

)2
− 9.8

3

(
9

4.9

)3
]

= 5.51 m.

The average speed is given by

1
9

4.9 − 0

∫ 9/4.9

0
|v(t)| dt.

Now, v(t) = h′(t) = 18 − 19.6t . From the figure below, which shows the graph of |v(t)| over the interval [0, 9/4.9], we
see that ∫ 9/4.9

0
|v(t)| dt =

(
9

9.8

)
18.

Thus, the average speed is

4.9

9

(
9

9.8

)
18 = 9 m/s.

y

x
2

0.5 1.0 1.5

6

10

14

18
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51. Find the average speed over the time interval [1, 5] of a particle whose position at time t is s(t) = t3 − 6t2 m/s.

solution The average speed over the time interval [1, 5] is

1

5 − 1

∫ 5

1
|s′(t)| dt.

Because s′(t) = 3t2 − 12t = 3t (t − 4), it follows that

∫ 5

1
|s′(t)| dt =

∫ 4

1
(12t − 3t2) dt +

∫ 5

4
(3t2 − 12t) dt

= (6t2 − t3)

∣∣∣∣4
1

+ (t3 − 6t2)

∣∣∣∣5
4

= (96 − 64) − (6 − 1) + (125 − 150) − (64 − 96)

= 34.

Thus, the average speed is

34

4
= 17

2
m/s.

52. An object with zero initial velocity accelerates at a constant rate of 10 m/s2. Find its average velocity during the first
15 seconds.

solution An acceleration a(t) = 10 gives v(t) = 10t + c for some constant c and zero initial velocity implies c = 0.
Thus the average velocity is given by

1

15 − 0

∫ 15

0
10t dt = 1

3
t2

∣∣∣∣15

0
= 75 m/s.

53. The acceleration of a particle is a(t) = 60t − 4t3 m/s2. Compute the average acceleration and the average speed
over the time interval [2, 6], assuming that the particle’s initial velocity is zero.

solution The average acceleration over the time interval [2, 6] is

1

6 − 2

∫ 6

2
(60t − 4t3) dt = 1

4
(30t2 − t4)

∣∣∣∣6
2

= 1

4
[(1080 − 1296) − (120 − 16)]

= −320

4
= −80 m/s2.

Given a(t) = 60t − 4t3 and v(0) = 0, it follows that v(t) = 30t2 − t4. Now, average speed is given by

1

6 − 2

∫ 6

2
|v(t)| dt.

Based on the formula for v(t),

∫ 6

2
|v(t)| dt =

∫ √
30

2
(30t2 − t4) dt +

∫ 6

√
30

(t4 − 30t2) dt

=
(

10t3 − 1

5
t5

)∣∣∣∣
√

30

2
+

(
1

5
t5 − 10t3

)∣∣∣∣6√
30

= 120
√

30 − 368

5
− 3024

5
+ 120

√
30

= 240
√

30 − 3392

5
.

Finally, the average speed is

1

4

(
240

√
30 − 3392

5

)
= 60

√
30 − 848

5
≈ 159.03 m/s.
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54. What is the average area of the circles whose radii vary from 0 to R?

solution The average area is

1

R − 0

∫ R

0
πr2 dr = π

3R
r3

∣∣∣∣R
0

= 1

3
πR2.

55. Let M be the average value of f (x) = x4 on [0, 3]. Find a value of c in [0, 3] such that f (c) = M .

solution We have

M = 1

3 − 0

∫ 3

0
x4 dx = 1

3

∫ 3

0
x4 dx = 1

15
x5

∣∣∣∣3
0

= 81

5
.

Then M = f (c) = c4 = 81
5 implies c = 3

51/4 = 2.006221.

56. Let f (x) = √
x. Find a value of c in [4, 9] such that f (c) is equal to the average of f on [4, 9].

solution The average value is

1

9 − 4

∫ 9

4

√
x dx = 1

5

∫ 9

4

√
x dx = 2

15
x3/2

∣∣∣∣9
4

= 38

15
.

Then f (c) = √
c = 38

15 implies

c =
(

38

15

)2
= 1444

225
≈ 6.417778.

57. Let M be the average value of f (x) = x3 on [0, A], where A > 0. Which theorem guarantees that f (c) = M has a
solution c in [0, A]? Find c.

solution The Mean Value Theorem for Integrals guarantees that f (c) = M has a solution c in [0, A]. With f (x) = x3

on [0, A],

M = 1

A − 0

∫ A

0
x3 dx = 1

A

1

4
x4

∣∣∣∣A
0

= A3

4
.

Solving f (c) = c3 = A3

4 for c yields

c = A
3√4

.

58. Let f (x) = 2 sin x − x. Use a computer algebra system to plot f (x) and estimate:

(a) The positive root α of f (x).

(b) The average value M of f (x) on [0, α].
(c) A value c ∈ [0, α] such that f (c) = M .

solution Let f (x) = 2 sin x − x. A graph of y = f (x) is shown below. From this graph, the positive root of f (x)

appears to be roughly x = 1.9.

1.51.0 2.00.5
x

0.8
0.6
0.4
0.2

y

(a) Using a computer algebra system, solving the equation

2 sin α − α = 0

yields α = 1.895494267.

(b) The average value of f (x) on [0, α] is

M = 1

α − 0

∫ α

0
f (x) dx = 0.4439980667.
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(c) Solving

f (c) = 2 sin c − c = 0.4439980667

yields either c = 0.4805683082 or c = 1.555776337.

59. Which of f (x) = x sin2 x and g(x) = x2 sin2 x has a larger average value over [0, 1]? Over [1, 2]?
solution The functions f and g differ only in the power of x multiplying sin2 x. It is also important to note that

sin2 x ≥ 0 for all x. Now, for each x ∈ (0, 1), x > x2 so

f (x) = x sin2 x > x2 sin2 x = g(x).

Thus, over [0, 1], f (x) will have a larger average value than g(x). On the other hand, for each x ∈ (1, 2), x2 > x, so

g(x) = x2 sin2 x > x sin2 x = f (x).

Thus, over [1, 2], g(x) will have the larger average value.

60. Find the average of f (x) = ax + b over the interval [−M, M], where a, b, and M are arbitrary constants.

solution The average is

1

M − (−M)

∫ M

−M
(ax + b) dx = 1

2M

∫ M

−M
(ax + b) dx = 1

2M

(a

2
x2 + bx

)∣∣∣∣M−M

= b.

61. Sketch the graph of a function f (x) such that f (x) ≥ 0 on [0, 1] and f (x) ≤ 0 on [1, 2], whose average on
[0, 2] is negative.

solution Many solutions will exist. One could be

−1

−2

1

y

x
1 2

62. Give an example of a function (necessarily discontinuous) that does not satisfy the conclusion of the MVT for
Integrals.

solution There are an infinite number of discontinuous functions that do not satisfy the conclusion of the Mean Value
Theorem for Integrals. Consider the function on [−1, 1] such that for x < 0, f (x) = −1 and for x ≥ 0, f (x) = 1. Clearly
the average value is 0 but f (c) 
= 0 for all c in [−1, 1].

Further Insights and Challenges
63. An object is tossed into the air vertically from ground level with initial velocity v0 ft/s at time t = 0. Find the average
speed of the object over the time interval [0, T ], where T is the time the object returns to earth.

solution The height is given by h(t) = v0t − 16t2. The ball is at ground level at time t = 0 and T = v0/16. The
velocity is given by v(t) = v0 − 32t and thus the speed is given by s(t) = |v0 − 32t |. The average speed is

1

v0/16 − 0

∫ v0/16

0
|v0 − 32t | dt = 16

v0

∫ v0/32

0
(v0 − 32t) dt + 16

v0

∫ v0/16

v0/32
(32t − v0) dt

= 16

v0

(
v0t − 16t2

)∣∣∣v0/32

0
+ 16

v0

(
16t2 − v0t

)∣∣∣v0/16

v0/32
= v0/2.

64. Review the MVT stated in Section 4.3 (Theorem 1, p. 266) and show how it can be used, together with the
Fundamental Theorem of Calculus, to prove the MVT for Integrals.

solution The Mean Value Theorem essentially states that

f ′(c) = f (b) − f (a)

b − a

for some c ∈ (a, b). Let F be any antiderivative of f . Then

f (c) = F ′(c) = F(b) − F(a)

b − a
= 1

b − a
(F (b) − F(a)) = 1

b − a

∫ b

a
f (x) dx.
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6.3 Volumes of Revolution

Preliminary Questions
1. Which of the following is a solid of revolution?

(a) Sphere (b) Pyramid (c) Cylinder (d) Cube

solution The sphere and the cylinder have circular cross sections; hence, these are solids of revolution. The pyramid
and cube do not have circular cross sections, so these are not solids of revolution.

2. True or false? When the region under a single graph is rotated about the x-axis, the cross sections of the solid
perpendicular to the x-axis are circular disks.

solution True. The cross sections will be disks with radius equal to the value of the function.

3. True or false? When the region between two graphs is rotated about the x-axis, the cross sections to the solid
perpendicular to the x-axis are circular disks.

solution False. The cross sections may be washers.

4. Which of the following integrals expresses the volume obtained by rotating the area between y = f (x) and y = g(x)

over [a, b] around the x-axis? [Assume f (x) ≥ g(x) ≥ 0.]

(a) π

∫ b

a

(
f (x) − g(x)

)2
dx

(b) π

∫ b

a

(
f (x)2 − g(x)2)

dx

solution The correct answer is (b). Cross sections of the solid will be washers with outer radius f (x) and inner radius

g(x). The area of the washer is then πf (x)2 − πg(x)2 = π(f (x)2 − g(x)2).

Exercises
In Exercises 1–4, (a) sketch the solid obtained by revolving the region under the graph of f (x) about the x-axis over the
given interval, (b) describe the cross section perpendicular to the x-axis located at x, and (c) calculate the volume of the
solid.

1. f (x) = x + 1, [0, 3]
solution

(a) A sketch of the solid of revolution is shown below:

−2

2

y

x
1 2 3

(b) Each cross section is a disk with radius x + 1.

(c) The volume of the solid of revolution is

π

∫ 3

0
(x + 1)2 dx = π

∫ 3

0
(x2 + 2x + 1) dx = π

(
1

3
x3 + x2 + x

)∣∣∣∣3
0

= 21π.

2. f (x) = x2, [1, 3]
solution

(a) A sketch of the solid of revolution is shown below:

32.520.5
x

5

y

−5

(b) Each cross section is a disk of radius x2.
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(c) The volume of the solid of revolution is

π

∫ 3

1

(
x2

)2
dx = π

(
x5

5

)∣∣∣∣∣
3

1

= 242π

5
.

3. f (x) = √
x + 1, [1, 4]

solution

(a) A sketch of the solid of revolution is shown below:

−2

−1

2

1

y

x
1 2 3 4

(b) Each cross section is a disk with radius
√

x + 1.

(c) The volume of the solid of revolution is

π

∫ 4

1
(
√

x + 1)2 dx = π

∫ 4

1
(x + 1) dx = π

(
1

2
x2 + x

)∣∣∣∣4
1

= 21π

2
.

4. f (x) = x−1, [1, 4]
solution

(a) A sketch of the solid of revolution is shown below:

−1

1 2 3
x

y

−0.5

0.5

1

(b) Each cross section is a disk with radius x−1.

(c) The volume of the solid of revolution is

π

∫ 4

1
(x−1)2 dx = π

∫ 4

1
x−2 dx = π (−x)−1

∣∣∣4
1

= 3π

4
.

In Exercises 5–12, find the volume of revolution about the x-axis for the given function and interval.

5. f (x) = x2 − 3x, [0, 3]
solution The volume of the solid of revolution is

π

∫ 3

0
(x2 − 3x)2 dx = π

∫ 3

0
(x4 − 6x3 + 9x2) dx = π

(
1

5
x5 − 3

2
x4 + 3x3

)∣∣∣∣3
0

= 81π

10
.

6. f (x) = 1

x2
, [1, 4]

solution The volume of the solid of revolution is

π

∫ 4

1
(x−2)2 dx = π

∫ 4

1
x−4 dx = π

(
−1

3
x−3

)∣∣∣∣4
1

= 21π

64
.

7. f (x) = x5/3, [1, 8]
solution The volume of the solid of revolution is

π

∫ 8

1
(x5/3)2 dx = π

∫ 8

1
x10/3 dx = 3π

13
x13/3

∣∣∣∣8
1

= 3π

13
(213 − 1) = 24573π

13
.
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8. f (x) = 4 − x2, [0, 2]
solution The volume of the solid of revolution is

π

∫ 2

0
(4 − x2)2 dx = π

∫ 2

0
(16 − 8x2 + x4) dx = π

(
16x − 8

3
x3 + 1

5
x5

)∣∣∣∣2
0

= 256π

15
.

9. f (x) = 2

x + 1
, [1, 3]

solution The volume of the solid of revolution is

π

∫ 3

1

(
2

x + 1

)2
dx = 4π

∫ 3

1
(x + 1)−2 dx = −4π (x + 1)−1

∣∣∣∣3
1

= π.

10. f (x) =
√

x4 + 1, [1, 3]
solution The volume of the solid of revolution is

π

∫ 3

1
(
√

x4 + 1)2 dx = π

∫ 3

1
(x4 + 1) dx = π

(
1

5
x5 + x

)∣∣∣∣3
1

= 252π

5
.

11. f (x) = ex , [0, 1]
solution The volume of the solid of revolution is

π

∫ 1

0
(ex)2 dx = 1

2
πe2x

∣∣∣∣1
0

= 1

2
π(e2 − 1).

12. f (x) = √
cos x sin x,

[
0, π

2

]
solution The volume of the solid of revolution is

π

∫ π/2

0
(
√

cos x sin x)2 dx = π

∫ π/2

0
(cos x sin x) dx = π

2

∫ π/2

0
sin 2x dx = π

4
(− cos 2x)

∣∣∣∣π/2

0
= π

2
.

In Exercises 13 and 14, R is the shaded region in Figure 11.

x

y

a b

y = f (x)

9

−2

y = g(x)

R

FIGURE 11

13. Which of the integrands (i)–(iv) is used to compute the volume obtained by rotating region R about y = −2?
(i) (f (x)2 + 22) − (g(x)2 + 22)

(ii) (f (x) + 2)2 − (g(x) + 2)2

(iii) (f (x)2 − 22) − (g(x)2 − 22)

(iv) (f (x) − 2)2 − (g(x) − 2)2

solution when the region R is rotated about y = −2, the outer radius is f (x) − (−2) = f (x) + 2 and the inner

radius is g(x) − (−2) = g(x) + 2. Thus, the appropriate integrand is (ii): (f (x) + 2)2 − (g(x) + 2)2.

14. Which of the integrands (i)–(iv) is used to compute the volume obtained by rotating R about y = 9?
(i) (9 + f (x))2 − (9 + g(x))2

(ii) (9 + g(x))2 − (9 + f (x))2

(iii) (9 − f (x))2 − (9 − g(x))2

(iv) (9 − g(x))2 − (9 − f (x))2
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solution when the region R is rotated about y = 9, the outer radius is 9 − g(x) and the inner radius is 9 − f (x).

Thus, the appropriate integrand is (iv): (9 − g(x))2 − (9 − f (x))2.

In Exercises 15–20, (a) sketch the region enclosed by the curves, (b) describe the cross section perpendicular to the x-axis
located at x, and (c) find the volume of the solid obtained by rotating the region about the x-axis.

15. y = x2 + 2, y = 10 − x2

solution

(a) Setting x2 + 2 = 10 − x2 yields 2x2 = 8, or x2 = 4. The two curves therefore intersect at x = ±2. The region
enclosed by the two curves is shown in the figure below.

4

8

y

−2 −1
x

1 2

y = 10 − x2

y = x2 + 2

(b) When the region is rotated about the x-axis, each cross section is a washer with outer radius R = 10 − x2 and inner
radius r = x2 + 2.

(c) The volume of the solid of revolution is

π

∫ 2

−2

(
(10 − x2)2 − (x2 + 2)2

)
dx = π

∫ 2

−2
(96 − 24x2) dx = π

(
96x − 8x3

) ∣∣∣∣2−2
= 256π.

16. y = x2, y = 2x + 3

solution

(a) Setting x2 = 2x + 3 yields

0 = x2 − 2x − 3 = (x − 3)(x + 1).

The two curves therefore intersect at x = −1 and x = 3. The region enclosed by the two curves is shown in the figure
below.

1 2

2

4

6

8

x

y

y = 2x + 3

y = x2

(b) When the region is rotated about the x-axis, each cross section is a washer with outer radius R = 2x + 3 and inner
radius r = x2.

(c) The volume of the solid of revolution is

π

∫ 3

−1

(
(2x + 3)2 − (x2)2

)
dx = π

∫ 3

−1
(4x2 + 12x + 9 − x4) dx = π

(
4

3
x3 + 6x2 + 9x − 1

5
x5

)∣∣∣∣3−1
= 1088π

15
.

17. y = 16 − x, y = 3x + 12, x = −1

solution
(a) Setting 16 − x = 3x + 12, we find that the two lines intersect at x = 1. The region enclosed by the two curves is
shown in the figure below.

10

y

−1 −0.5
x

0.5 1

y = 16 − x

y = 3x + 12
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(b) When the region is rotated about the x-axis, each cross section is a washer with outer radius R = 16 − x and inner
radius r = 3x + 12.

(c) The volume of the solid of revolution is

π

∫ 1

−1

(
(16 − x)2 − (3x + 12)2

)
dx = π

∫ 1

−1
(112 − 104x − 8x2) dx = π

(
112x − 52x2 − 8

3
x3

)∣∣∣∣1−1
= 656π

3
.

18. y = 1

x
, y = 5

2
− x

solution

(a) Setting 1
x = 5

2 − x yields

0 = x2 − 5

2
x + 1 = (x − 2)

(
x − 1

2

)
.

The two curves therefore intersect at x = 2 and x = 1
2 . The region enclosed by the two curves is shown in the figure

below.

x

0.5

1

1.5

2

y

20 1.510.5

y = 2.5 − x

y = 1
x

(b) When the region is rotated about the x-axis, each cross section is a washer with outer radius R = 5
2 − x and inner

radius r = x−1.

(c) The volume of the solid of revolution is

π

∫ 2

1/2

((
5

2
− x

)2
−

(
1

x

)2
)

dx = π

∫ 2

1/2

(
25

4
− 5x + x2 − x−2

)
dx

= π

(
25

4
x − 5

2
x2 + 1

3
x3 + x−1

)∣∣∣∣2
1/2

= 9π

8
.

19. y = sec x, y = 0, x = −π

4
, x = π

4

solution

(a) The region in question is shown in the figure below.

0.8

1.2

0.4

y
y = sec x

−0.4
x

0.4

(b) When the region is rotated about the x-axis, each cross section is a circular disk with radius R = sec x.

(c) The volume of the solid of revolution is

π

∫ π/4

−π/4
(sec x)2 dx = π (tan x)

∣∣∣∣π/4

−π/4
= 2π.
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20. y = sec x, y = 0, x = 0, x = π

4
solution
(a) The region in question is shown in the figure below.

y

x
0.2

0.2 0.4 0.6

0.4
0.6
0.8
1.0
1.2
1.4

y = sec x

(b) When the region is rotated about the x-axis, each cross section is a circular disk with radius R = sec x.
(c) The volume of the solid of revolution is

π

∫ π/4

0
(sec x)2 dx = π (tan x)

∣∣∣∣π/4

0
= π.

In Exercises 21–24, find the volume of the solid obtained by rotating the region enclosed by the graphs about the y-axis
over the given interval.

21. x = √
y, x = 0; 1 ≤ y ≤ 4

solution When the region in question (shown in the figure below) is rotated about the y-axis, each cross section is a
disk with radius

√
y. The volume of the solid of revolution is

π

∫ 4

1

(√
y
)2

dy = πy2

2

∣∣∣∣4
1

= 15π

2
.

y

x

2

1

0

4

3

21 1.50.5

x = y

22. x = √
sin y, x = 0; 0 ≤ y ≤ π

solution When the region in question (shown in the figure below) is rotated about the y-axis, each cross section is a

disk with radius
√

sin y. The volume of the solid of revolution is

π

∫ π

0

(√
sin y

)2
dy = π (− cos y)

∣∣∣∣π
0

= 2π.

sin yx =

x

y

0 0.2 0.4 0.6 0.8

2

1

3

23. x = y2, x = √
y

solution Setting y2 = √
y and then squaring both sides yields

y4 = y or y4 − y = y(y3 − 1) = 0,

so the two curves intersect at y = 0 and y = 1. When the region in question (shown in the figure below) is rotated about
the y-axis, each cross section is a washer with outer radius R = √

y and inner radius r = y2. The volume of the solid of
revolution is

π

∫ 1

0

(
(
√

y)2 − (y2)2
)

dy = π

(
y2

2
− y5

5

)∣∣∣∣∣
1

0

= 3π

10
.
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x = y2

x = y

y

x

1

0 1

24. x = 4 − y, x = 16 − y2

solution Setting 4 − y = 16 − y2 yields

0 = y2 − y − 12 = (y − 4)(y + 3),

so the two curves intersect at y = −3 and y = 4. When the region enclosed by the two curves (shown in the figure below)
is rotated about the y-axis, each cross section is a washer with outer radius R = 16 − y2 and inner radius r = 4 − y. The
volume of the solid of revolution is

π

∫ 4

−3

(
(16 − y2)2 − (4 − y)2

)
dy = π

∫ 4

−3

(
y4 − 33y2 + 8y + 240

)
dy

= π

(
1

5
y5 − 11y3 + 4y2 + 240y

)∣∣∣∣4−3
= 4802π

5
.

2 4 6 8 10 1412 16
x

2

4

y

−2

−4

x = 16 − y2

x = 4 − y

25. Rotation of the region in Figure 12 about the y-axis produces a solid with two types of different cross sections.
Compute the volume as a sum of two integrals, one for −12 ≤ y ≤ 4 and one for 4 ≤ y ≤ 12.

y

2

−12

12

4

x
y

y = 12 − 4x

y = 8x − 12

FIGURE 12

solution For −12 ≤ y ≤ 4, the cross section is a disk with radius 1
8 (y + 12); for 4 ≤ y ≤ 12, the cross section is a

disk with radius 1
4 (12 − y). Therefore, the volume of the solid of revolution is

V = π

8

∫ 4

−12
(y + 12)2 dy + π

4

∫ 12

4
(12 − y)2 dy

= π

24
(y + 12)3

∣∣∣4−12
− π

12
(12 − y)3

∣∣∣12

4

= 512π

3
+ 128π

3
= 640π

3
.

26. Let R be the region enclosed by y = x2 + 2, y = (x − 2)2 and the axes x = 0 and y = 0. Compute the volume V

obtained by rotating R about the x-axis. Hint: Express V as a sum of two integrals.

solution Setting x2 + 2 = (x − 2)2 yields 4x = 2 or x = 1/2. When the region enclosed by the two curves and
the coordinate axes (shown in the figure below) is rotated about the x-axis, there are two different cross sections. For
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0 ≤ x ≤ 1/2, the cross section is a disk of radius x2 + 2; for 1/2 ≤ x ≤ 2, the cross section is a disk of radius (x − 2)2.
The volume of the solid of revolution is therefore

V = π

∫ 1/2

0
(x2 + 2) dx + π

∫ 2

1/2
(x − 2)2 dx

= π

(
1

3
x3 + 2x

)∣∣∣∣1/2

0
+ π

3
(x − 2)3

∣∣∣2
1/2

= 25π

24
+ 9π

8
= 13π

6
.

y

x

0.5

1.0

1.5

2.0

2.5

0.5 1.0 1.5 2.0

y = x2 + 2

y = (x − 2)2

In Exercises 27–32, find the volume of the solid obtained by rotating region A in Figure 13 about the given axis.

x

y

1 2

6

2

y = x2 + 2

A

B

FIGURE 13

27. x-axis

solution Rotating region A about the x-axis produces a solid whose cross sections are washers with outer radius

R = 6 and inner radius r = x2 + 2. The volume of the solid of revolution is

π

∫ 2

0

(
(6)2 − (x2 + 2)2

)
dx = π

∫ 2

0
(32 − 4x2 − x4) dx = π

(
32x − 4

3
x3 − 1

5
x5

)∣∣∣∣2
0

= 704π

15
.

28. y = −2

solution Rotating region A about y = −2 produces a solid whose cross sections are washers with outer radius

R = 6 − (−2) = 8 and inner radius r = x2 + 2 − (−2) = x2 + 4. The volume of the solid of revolution is

π

∫ 2

0

(
(8)2 − (x2 + 4)2

)
dx = π

∫ 2

0
(48 − 8x2 − x4) dx = π

(
48x − 8

3
x3 − 1

5
x5

)∣∣∣∣2
0

= 1024π

15
.

29. y = 2

solution Rotating the region A about y = 2 produces a solid whose cross sections are washers with outer radius

R = 6 − 2 = 4 and inner radius r = x2 + 2 − 2 = x2. The volume of the solid of revolution is

π

∫ 2

0

(
42 − (x2)2

)
dx = π

(
16x − 1

5
x5

)∣∣∣∣2
0

= 128π

5
.

30. y-axis

solution Rotating region A about the y-axis produces a solid whose cross sections are disks with radius R = √
y − 2.

Note that here we need to integrate along the y-axis. The volume of the solid of revolution is

π

∫ 6

2
(
√

y − 2)2 dy = π

∫ 6

2
(y − 2) dy = π

(
1

2
y2 − 2y

)∣∣∣∣6
2

= 8π.
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31. x = −3

solution Rotating region A about x = −3 produces a solid whose cross sections are washers with outer radius
R = √

y − 2 − (−3) = √
y − 2 + 3 and inner radius r = 0 − (−3) = 3. The volume of the solid of revolution is

π

∫ 6

2

(
(3 + √

y − 2)2 − (3)2
)

dy = π

∫ 6

2
(6

√
y − 2 + y − 2) dy = π

(
4(y − 2)3/2 + 1

2
y2 − 2y

)∣∣∣∣6
2

= 40π.

32. x = 2

solution Rotating region A about x = 2 produces a solid whose cross sections are washers with outer radius R =
2 − 0 = 2 and inner radius r = 2 − √

y − 2. The volume of the solid of revolution is

π

∫ 6

2

(
22 − (2 − √

y − 2)2
)

dy = π

∫ 6

2

(
4
√

y − 2 − y + 2
)

dy = π

(
8

3
(y − 2)3/2 − 1

2
y2 + 2y

)∣∣∣∣6
2

= 40π

3
.

In Exercises 33–38, find the volume of the solid obtained by rotating region B in Figure 13 about the given axis.

33. x-axis

solution Rotating region B about the x-axis produces a solid whose cross sections are disks with radius R = x2 + 2.
The volume of the solid of revolution is

π

∫ 2

0
(x2 + 2)2 dx = π

∫ 2

0
(x4 + 4x2 + 4) dx = π

(
1

5
x5 + 4

3
x3 + 4x

)∣∣∣∣2
0

= 376π

15
.

34. y = −2

solution Rotating region B about y = −2 produces a solid whose cross sections are washers with outer radius

R = x2 + 2 − (−2) = x2 + 4 and inner radius r = 0 − (−2) = 2. The volume of the solid of revolution is

π

∫ 2

0

(
(x2 + 4)2 − (2)2

)
dx = π

∫ 2

0
(x4 + 8x2 + 12) dx = π

(
1

5
x5 + 8

3
x3 + 12x

)∣∣∣∣2
0

= 776π

15
.

35. y = 6

solution Rotating region B about y = 6 produces a solid whose cross sections are washers with outer radius R =
6 − 0 = 6 and inner radius r = 6 − (x2 + 2) = 4 − x2. The volume of the solid of revolution is

π

∫ 2

0

(
62 − (4 − x2)2

)
dy = π

∫ 2

0

(
20 + 8x2 − x4

)
dy = π

(
20x + 8

3
x3 − 1

5
x5

)∣∣∣∣2
0

= 824π

15
.

36. y-axis

Hint for Exercise 36: Express the volume as a sum of two integrals along the y-axis or use Exercise 30.

solution Rotating region B about the y-axis produces a solid with two different cross sections. For each y ∈ [0, 2],
the cross section is a disk with radius R = 2; for each y ∈ [2, 6], the cross section is a washer with outer radius R = 2
and inner radius r = √

y − 2. The volume of the solid of revolution is

π

∫ 2

0
(2)2 dy + π

∫ 6

2

(
(2)2 − (

√
y − 2)2

)
dy = π

∫ 2

0
4 dy + π

∫ 6

2
(6 − y) dy

= π (4y)

∣∣∣∣2
0

+ π

(
6y − 1

2
y2

)∣∣∣∣6
2

= 16π.

Alternately, we recognize that rotating both region A and region B about the y-axis produces a cylinder of radius
R = 2 and height h = 6. The volume of this cylinder is π(2)2 · 6 = 24π . In Exercise 30, we found that the volume of the
solid generated by rotating region A about the y-axis to be 8π . Therefore, the volume of the solid generated by rotating
region B about the y-axis is 24π − 8π = 16π .
37. x = 2

solution Rotating region B about x = 2 produces a solid with two different cross sections. For each y ∈ [0, 2], the
cross section is a disk with radius R = 2; for each y ∈ [2, 6], the cross section is a disk with radius R = 2 − √

y − 2.
The volume of the solid of revolution is

π

∫ 2

0
(2)2 dy + π

∫ 6

2
(2 − √

y − 2)2 dy = π

∫ 2

0
4 dy + π

∫ 6

2
(2 + y − 4

√
y − 2) dy

= π (4y)

∣∣∣∣2
0

+ π

(
2y + 1

2
y2 − 8

3
(y − 2)3/2

)∣∣∣∣6
2

= 32π

3
.
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38. x = −3

solution Rotating region B about x = −3 produces a solid with two different cross sections. For each y ∈ [0, 2], the
cross section is a washer with outer radius R = 2 − (−3) = 5 and inner radius r = 0 − (−3) = 3; for each y ∈ [2, 6],
the cross section is a washer with outer radius R = 2 − (−3) = 5 and inner radius r = √

y − 2 − (−3) = √
y − 2 + 3.

The volume of the solid of revolution is

π

∫ 2

0

(
(5)2 − (3)2

)
dy + π

∫ 6

2

(
(5)2 − (

√
y − 2 + 3)2

)
dy

= π

∫ 2

0
16 dy + π

∫ 6

2
(18 − y − 6

√
y − 2) dy

= π (16y)

∣∣∣∣2
0

+ π

(
18y − 1

2
y2 − 4(y − 2)3/2

)∣∣∣∣6
2

= 56π.

In Exercises 39–52, find the volume of the solid obtained by rotating the region enclosed by the graphs about the given
axis.

39. y = x2, y = 12 − x, x = 0, about y = −2

solution Rotating the region enclosed by y = x2, y = 12 − x and the y-axis (shown in the figure below) about
y = −2 produces a solid whose cross sections are washers with outer radius R = 12 − x − (−2) = 14 − x and inner
radius r = x2 − (−2) = x2 + 2. The volume of the solid of revolution is

π

∫ 3

0

(
(14 − x)2 − (x2 + 2)2

)
dx = π

∫ 3

0
(192 − 28x − 3x2 − x4) dx

= π

(
192x − 14x2 − x3 − 1

5
x5

)∣∣∣∣3
0

= 1872π

5
.

y = x2

y = 12 − x

y

x

8

4

0

12

2 31

40. y = x2, y = 12 − x, x = 0, about y = 15

solution Rotating the region enclosed by y = x2, y = 12 − x and the y-axis (see the figure in the previous exercise)

about y = 15 produces a solid whose cross sections are washers with outer radius R = 15 − x2 and inner radius
r = 15 − (12 − x) = 3 + x. The volume of the solid of revolution is

π

∫ 3

0

(
(15 − x2)2 − (3 + x)2

)
dx = π

∫ 3

0
(216 − 6x − 31x2 + x4) dx

= π

(
216x − 3x2 − 31

3
x3 + 1

5
x5

)∣∣∣∣3
0

= 1953π

5
.

41. y = 16 − 2x, y = 6, x = 0, about x-axis

solution Rotating the region enclosed by y = 16 − 2x, y = 6 and the y-axis (shown in the figure below) about the
x-axis produces a solid whose cross sections are washers with outer radius R = 16 − 2x and inner radius r = 6. The
volume of the solid of revolution is

π

∫ 5

0

(
(16 − 2x)2 − 62

)
dx = π

∫ 5

0
(220 − 64x + 4x2) dx

= π

(
220x − 32x2 + 4

3
x3

)∣∣∣∣5
0

= 1400π

3
.
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y

x
1

2
4
6
8

10
12
14
16

2 3 4 5

y = 16 − 2x

y = 6

42. y = 32 − 2x, y = 2 + 4x, x = 0, about y-axis

solution Rotating the region enclosed by y = 32 − 2x, y = 2 + 4x and the y-axis (shown in the figure below)
about the y-axis produces a solid with two different cross sections. For 2 ≤ y ≤ 22, the cross section is a disk of radius
1
4 (y − 2); for 22 ≤ y ≤ 32, the cross section is a disk of radius 1

2 (32 − y). The volume of the solid of revolution is

V = π

4

∫ 22

2
(y − 2)2 dy + π

2

∫ 32

22
(32 − y)2 dy

= π

12
(y − 2)3

∣∣∣22

2
− π

6
(32 − y)3

∣∣∣32

22

= 2000π

3
+ 500π

3
= 2500π

3
.

y

x

10

1 2 3 4 5

20

30 y = 32 − 2x

y = 2 + 4x

43. y = sec x, y = 1 + 3

π
x, about x-axis

solution We first note that y = sec x and y = 1 + (3/π)x intersect at x = 0 and x = π/3. Rotating the region
enclosed by y = sec x and y = 1 + (3/π)x (shown in the figure below) about the x-axis produces a cross section that is
a washer with outer radius R = 1 + (3/π)x and inner radius r = sec x. The volume of the solid of revolution is

V = π

∫ π/3

0

((
1 + 3

π
x

)2
− sec2 x

)
dx

= π

∫ π/3

0

(
1 + 6

π
x + 9

π2
x2 − sec2 x

)
dx

= π

(
x + 3

π
x2 + 3

π2
x3 − tan x

)∣∣∣∣π/3

0

= π
(π

3
+ π

3
+ π

9
− √

3
)

= 7π2

9
− √

3π.

y

x

0.5

0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0 y = 1 + (3/π)x

y = sec x

44. x = 2, x = 3, y = 16 − x4, y = 0, about y-axis

solution Rotating the region enclosed by x = 2, x = 3, y = 16 − x4 and the x-axis (shown in the figure below) about
the y-axis produces a solid whose cross sections are washers with outer radius R = 3 and inner radius r = 4√16 − y. The
volume of the solid of revolution is

π

∫ 0

−65

(
9 − √

16 − y
)

dy =
(

9y + 2

3
(16 − y)3/2

) ∣∣∣∣0−65
= 425π

3
.
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0.5 1 1.5 2 2.5 3
x

y

−20

−40

−60

y = 16 − x4

45. y = 2
√

x, y = x, about x = −2

solution Setting 2
√

x = x and squaring both sides yields

4x = x2 or x(x − 4) = 0,

so the two curves intersect at x = 0 and x = 4. Rotating the region enclosed by y = 2
√

x and y = x (see the figure
below) about x = −2 produces a solid whose cross sections are washers with outer radius R = y − (−2) = y + 2 and
inner radius r = 1

4y2 − (−2) = 1
4y2 + 2. The volume of the solid of revolution is

V = π

∫ 4

0

(
(y + 2)2 −

(
1

4
y2 + 2

)2
)

dy

= π

∫ 4

0

(
4y − 1

16
y4

)
dy

= π

(
2y2 − 1

80
y5

)∣∣∣∣4
0

= π

(
32 − 64

5

)
= 96π

5
.

y

x

1

1 2 3 4

2

3

4

y = 2x1/2

y = x

46. y = 2
√

x, y = x, about y = 4

solution Setting 2
√

x = x and squaring both sides yields

4x = x2 or x(x − 4) = 0,

so the two curves intersect at x = 0 and x = 4. Rotating the region enclosed by y = 2
√

x and y = x (see the figure from
the previous exercise) about y = 4 produces a solid whose cross sections are washers with outer radius R = 4 − x and
inner radius r = 4 − 2

√
x. The volume of the solid of revolution is

V = π

∫ 4

0

(
(4 − x)2 − (4 − 2

√
x)2

)
dy

= π

∫ 4

0

(
x2 − 12x + 16

√
x
)

dy

= π

(
1

3
x3 − 6x2 + 32

3
x3/2

)∣∣∣∣4
0

= π

(
64

3
− 96 + 256

3

)
= 32π

3
.

47. y = x3, y = x1/3, for x ≥ 0, about y-axis

solution Rotating the region enclosed by y = x3 and y = x1/3 (shown in the figure below) about the y-axis produces

a solid whose cross sections are washers with outer radius R = y1/3 and inner radius r = y3. The volume of the solid of
revolution is

π

∫ 1

0

(
(y1/3)2 − (y3)2

)
dy = π

∫ 1

0
(y2/3 − y6) dy = π

(
3

5
y5/3 − 1

7
y7

)∣∣∣∣1
0

= 16π

35
.
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y

x

0.2

0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0
y = x1/3

y = x3

48. y = x2, y = x1/2, about x = −2

solution Rotating the region enclosed by y = x2 and y = x1/2 (shown in the figure below) about x = −2
produces a solid whose cross sections are washers with outer radius R = √

y − (−2) = √
y + 2 and inner radius

r = y2 − (−2) = y2 + 2. The volume of the solid of revolution is

π

∫ 1

0

(
(
√

y + 2)2 − (y2 + 2)2
)

dy = π

∫ 1

0

(
y + 4

√
y − y4 − 4y2

)
dy

= π

(
1

2
y2 + 8

3
y3/2 − 1

5
y5 − 4

3
y3

)∣∣∣∣1
0

= π

(
1

2
+ 8

3
− 1

5
− 4

3

)
= 49π

30
.

y

x

0.2

0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

y = x1/2

y = x2

49. y = 9

x2
, y = 10 − x2, x ≥ 0, about y = 12

solution The region enclosed by the two curves is shown in the figure below. Rotating this region about y = 12

produces a solid whose cross sections are washers with outer radius R = 12 − 9x−2 and inner radius r = 12 − (10 − x2) =
2 + x2. The volume of the solid of revolution is

π

∫ 3

1

(
(12 − 9x−2)2 − (x2 + 2)2

)
dx = π

∫ 3

1

(
140 − 4x2 − x4 − 216x−2 + 81x−4

)
dx

= π

(
140x − 4

3
x3 − 1

5
x5 + 216x−1 − 27x−3

)∣∣∣∣3
1

= 1184π

15
.

y

x

2
3
4
5
6
7
8
9

0.5 1.0 1.5 2.0 2.5 3.0

y = 10 − x2

y = 9
x2

50. y = 9

x2
, y = 10 − x2, x ≥ 0, about x = −1

solution The region enclosed by the two curves is shown in the figure from the previous exercise. Rotating this region
about x = −1 produces a solid whose cross sections are washers with outer radius R = √

10 − y − (−1) = √
10 − y + 1

and inner radius r = 3y−1/2 − (−1) = 3y−1/2 + 1. The volume of the solid of revolution is

V = π

∫ 9

1

(
(
√

10 − y + 1)2 − (3y−1/2 + 1)2
)

dy

= π

∫ 9

1

(
10 − y + 2

√
10 − y − 9y−1 − 6y−1/2

)
dy

= π

(
10y − 1

2
y2 − 4

3
(10 − y)3/2 − 9 ln y − 12

√
y

)∣∣∣∣9
1
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= π

((
90 − 81

2
− 4

3
− 9 ln 9 − 36

)
−

(
10 − 1

2
− 36 − 12

))

= π

(
73

6
− 9 ln 9 + 77

2

)
=

(
152

3
− 9 ln 9

)
π.

51. y = e−x , y = 1 − e−x , x = 0, about y = 4

solution Rotating the region enclosed by y = 1 − e−x , y = e−x and the y-axis (shown in the figure below) about
the line y = 4 produces a solid whose cross sections are washers with outer radius R = 4 − (1 − e−x) = 3 + e−x and
inner radius r = 4 − e−x . The volume of the solid of revolution is

π

∫ ln 2

0

(
(3 + e−x)2 − (4 − e−x)2

)
dx = π

∫ ln 2

0
(14e−x − 7) dx = π(−14e−x − 7x)

∣∣∣∣ln 2

0

= π(−7 − 7 ln 2 + 14) = 7π(1 − ln 2).

0.2 0.4 0.6

0.2

0.4

0.6

0.8

1

y = e–x

y = 1 – e–x

52. y = cosh x, x = ±2, about x-axis

solution Rotating the region enclosed by y = cosh x, x = ±2 and the x-axis (shown in the figure below) about the
x-axis produces a solid whose cross sections are disks with radius R = cosh x. The volume of the solid of revolution is

π

∫ 2

−2
cosh2 x dx = 1

2
π

∫ 2

−2
(1 + cosh 2x) dx = 1

2
π

(
x + 1

2
sinh 2x

) ∣∣∣∣2−2

= 1

2
π

[(
2 + 1

2
sinh 4

)
−

(
−2 + 1

2
sinh(−4)

)]
= 1

2
π(4 + sinh 4).

–2 –1 1 2

1

2

3
y = cosh x

53. The bowl in Figure 14(A) is 21 cm high, obtained by rotating the curve in Figure 14(B) as indicated. Estimate the
volume capacity of the bowl shown by taking the average of right- and left-endpoint approximations to the integral with
N = 7.

24186 12 30

(A) (B)

21 cm

y

x

19

25

16

21

12
9

30

FIGURE 14
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solution Using the given values for the inner radii and the values in Figure 14(B), which indicate the difference
between the inner and outer radii, we find

R7 = 3π
(
(232 − 142) + (252 − 132) + (262 − 102) + (272 − 82) + (282 − 72) + (292 − 42) + (302 − 02)

)
= 3π(4490) = 13470π

and

L7 = 3π
(
(202 − 202) + (232 − 142) + (252 − 132) + (262 − 102) + (272 − 82) + (282 − 72) + (292 − 42)

)
= 3π(3590) = 10770π

Averaging these two values, we estimate that the volume capacity of the bowl is

V = 12120π ≈ 38076.1 cm3.

54. The region between the graphs of f (x) and g(x) over [0, 1] is revolved about the line y = −3. Use the midpoint
approximation with values from the following table to estimate the volume V of the resulting solid.

x 0.1 0.3 0.5 0.7 0.9
f (x) 8 7 6 7 8
g(x) 2 3.5 4 3.5 2

solution The volume of the resulting solid is

V = π

∫ 1

0

(
(f (x) + 3)2 − (g(x) + 3)2

)
dx

≈ 0.2π
(
(112 − 52) + (102 − 6.52) + (92 − 72) + (102 − 6.52) + (112 − 52)

)
= 0.2π(96 + 57.75 + 32 + 57.75 + 96) = 67.9π.

55. Find the volume of the cone obtained by rotating the region under the segment joining (0, h) and (r, 0) about the
y-axis.

solution The segment joining (0, h) and (r, 0) has the equation

y = −h

r
x + h or x = r

h
(h − y).

Rotating the region under this segment about the y-axis produces a cone with volume

πr2

h2

∫ h

0
(h − y)2 dx = −πr2

3h2
(h − y)3

∣∣∣∣∣
h

0

= 1

3
πr2h.

56. The torus (doughnut-shaped solid) in Figure 15 is obtained by rotating the circle (x − a)2 + y2 = b2 around the
y-axis (assume that a > b). Show that it has volume 2π2ab2. Hint: Evaluate the integral by interpreting it as the area of
a circle.

y

x

a  + b
a

FIGURE 15 Torus obtained by rotating a circle about the y-axis.
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solution Rotating the region enclosed by the circle (x − a)2 + y2 = b2 about the y-axis produces a torus whose

cross sections are washers with outer radius R = a +
√

b2 − y2 and inner radius r = a −
√

b2 − y2. The volume of the
torus is then

π

∫ b

−b

((
a +

√
b2 − y2

)2
−

(
a −

√
b2 − y2

)2
)

dy = 4aπ

∫ b

−b

√
b2 − y2 dy.

Now, the remaining definite integral is one-half the area of a circle of radius b; therefore, the volume of the torus is

4aπ · 1

2
πb2 = 2π2ab2.

57. Sketch the hypocycloid x2/3 + y2/3 = 1 and find the volume of the solid obtained by revolving it about the
x-axis.

solution A sketch of the hypocycloid is shown below.

1

−1

y

x
1−1

For the hypocycloid, y = ±
(

1 − x2/3
)3/2

. Rotating this region about the x-axis will produce a solid whose cross sections

are disks with radius R =
(

1 − x2/3
)3/2

. Thus the volume of the solid of revolution will be

π

∫ 1

−1

(
(1 − x2/3)3/2

)2
dx = π

(
−x3

3
+ 9

7
x7/3 − 9

5
x5/3 + x

)∣∣∣∣∣
1

−1

= 32π

105
.

58. The solid generated by rotating the region between the branches of the hyperbola y2 − x2 = 1 about the x-axis is
called a hyperboloid (Figure 16). Find the volume of the hyperboloid for −a ≤ x ≤ a.

x

y

−a a

1

−1

FIGURE 16 The hyperbola with equation y2 − x2 = 1.

solution Each cross section is a disk of radius R =
√

1 + x2, so the volume of the hyperboloid is

π

∫ a

−a

(√
1 + x2

)2
dx = π

∫ a

−a
(1 + x2) dx = π

(
x + 1

3
x3

)∣∣∣∣a−a

= π

(
2a3 + 6a

3

)

59. A “bead” is formed by removing a cylinder of radius r from the center of a sphere of radius R (Figure 17). Find the
volume of the bead with r = 1 and R = 2.

y

x

h

r

y

x
R

FIGURE 17 A bead is a sphere with a cylinder removed.
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solution The equation of the outer circle is x2 + y2 = 22, and the inner cylinder intersects the sphere when y = ±√
3.

Each cross section of the bead is a washer with outer radius
√

4 − y2 and inner radius 1, so the volume is given by

π

∫ √
3

−√
3

((√
4 − y2

)2
− 12

)
dy = π

∫ √
3

−√
3

(
3 − y2

)
dy = 4π

√
3.

Further Insights and Challenges
60. Find the volume V of the bead (Figure 17) in terms of r and R. Then show that V = π

6 h3, where h is the
height of the bead. This formula has a surprising consequence: Since V can be expressed in terms of h alone, it follows
that two beads of height 1 cm, one formed from a sphere the size of an orange and the other from a sphere the size of the
earth, would have the same volume! Can you explain intuitively how this is possible?

solution The equation for the outer circle of the bead is x2 + y2 = R2, and the inner cylinder intersects the sphere

when y = ±
√

R2 − r2. Each cross section of the bead is a washer with outer radius
√

R2 − y2 and inner radius r , so the
volume is

π

∫ √
R2−r2

−
√

R2−r2

((√
R2 − y2

)2
− r2

)
dy = π

∫ √
R2−r2

−
√

R2−r2
(R2 − r2 − y2) dy

= π

(
(R2 − r2)y − 1

3
y3

)∣∣∣∣
√

R2−r2

−
√

R2−r2
= 4

3
(R2 − r2)3/2π.

Now, h = 2
√

R2 − r2 = 2(R2 − r2)1/2, which gives h3 = 8(R2 − r2)3/2 and finally (R2 − r2)3/2 = 1
8h3. Substituting

into the expression for the volume gives V = π
6 h3. The beads may have the same volume but clearly the wall of the

earth-sized bead must be extremely thin while the orange-sized bead would be thicker.

61. The solid generated by rotating the region inside the ellipse with equation
(
x
a

)2 + ( y
b

)2 = 1 around the x-axis is

called an ellipsoid. Show that the ellipsoid has volume 4
3πab2. What is the volume if the ellipse is rotated around the

y-axis?

solution

• Rotating the ellipse about the x-axis produces an ellipsoid whose cross sections are disks with radius R =
b
√

1 − (x/a)2. The volume of the ellipsoid is then

π

∫ a

−a

(
b

√
1 − (x/a)2

)2
dx = b2π

∫ a

−a

(
1 − 1

a2
x2

)
dx = b2π

(
x − 1

3a2
x3

)∣∣∣∣a−a

= 4

3
πab2.

• Rotating the ellipse about the y-axis produces an ellipsoid whose cross sections are disks with radius R =
a
√

1 − (y/b)2. The volume of the ellipsoid is then∫ b

−b

(
a

√
1 − (y/b)2

)2
dy = a2π

∫ b

−b

(
1 − 1

b2
y2

)
dy = a2π

(
y − 1

3b2
y3

)∣∣∣∣b−b

= 4

3
πa2b.

62. The curve y = f (x) in Figure 18, called a tractrix, has the following property: the tangent line at each point (x, y)

on the curve has slope
dy

dx
= −y√

1 − y2

Let R be the shaded region under the graph of 0 ≤ x ≤ a in Figure 18. Compute the volume V of the solid obtained by
revolving R around the x-axis in terms of the constant c = f (a). Hint: Use the substitution u = f (x) to show that

V = π

∫ 1

c
u
√

1 − u2 du

1

2

y

x

y = f (x)Rc

a

FIGURE 18 The tractrix.
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solution Let y = f (x) be the tractrix depicted in Figure 18. Rotating the region R about the x-axis produces a solid
whose cross sections are disks with radius f (x). The volume of the resulting solid is then

V = π

∫ a

0
[f (x)]2 dx.

Now, let u = f (x). Then

du = f ′(x) dx = −f (x)√
1 − [f (x)]2

dx = −u√
1 − u2

dx;

hence,

dx = −
√

1 − u2

u
du,

and

V = π

∫ c

1
u2

(
−

√
1 − u2

u
du

)
= π

∫ 1

c
u
√

1 − u2 du.

Carrying out the integration, we find

V = −π

3
(1 − u2)3/2

∣∣∣1
c

= π

3
(1 − c2)3/2.

63. Verify the formula ∫ x2

x1

(x − x1)(x − x2) dx = 1

6
(x1 − x2)3 3

Then prove that the solid obtained by rotating the shaded region in Figure 19 about the x-axis has volume V = π
6 BH 2,

with B and H as in the figure. Hint: Let x1 and x2 be the roots of f (x) = ax + b − (mx + c)2, where x1 < x2. Show
that

V = π

∫ x2

x1

f (x) dx

and use Eq. (3).

x

y

B

y = mx + c

y2 = ax + b

H

FIGURE 19 The line y = mx + c intersects the parabola y2 = ax + b at two points above the x-axis.

solution First, we calculate

∫ x2

x1

(x − x1)(x − x2) dx =
(

1

3
x3 − 1

2
(x1 + x2)x2 + x1x2x

)∣∣∣∣x2

x1

= 1

6
x3

1 − 1

2
x2

1x2 + 1

2
x1x2

2 − 1

6
x3

2

= 1

6

(
x3

1 − 3x2
1x2 + 3x1x2

2 − x3
2

)
= 1

6
(x1 − x2)3.

Now, consider the region enclosed by the parabola y2 = ax + b and the line y = mx + c, and let x1 and x2 denote the
x-coordinates of the points of intersection between the two curves with x1 < x2. Rotating the region about the y-axis
produces a solid whose cross sections are washers with outer radius R = √

ax + b and inner radius r = mx + c. The
volume of the solid of revolution is then

V = π

∫ x2

x1

(
ax + b − (mx + c)2

)
dx
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Because x1 and x2 are roots of the equation ax + b − (mx + c)2 = 0 and ax + b − (mx + c)2 is a quadratic polynomial
in x with leading coefficient −m2, it follows that ax + b − (mx + c)2 = −m2(x − x1)(x − x2). Therefore,

V = −πm2
∫ x2

x1

(x − x1)(x − x2) dx = π

6
m2(x2 − x1)3,

where we have used Eq. (3). From the diagram, we see that

B = x2 − x1 and H = mB,

so

V = π

6
m2B3 = π

6
B (mB)2 = π

6
BH 2.

64. Let R be the region in the unit circle lying above the cut with the line y = mx + b (Figure 20). Assume the points
where the line intersects the circle lie above the x-axis. Use the method of Exercise 63 to show that the solid obtained by
rotating R about the x-axis has volume V = π

6 hd2, with h and d as in the figure.

x2 + y2 = 1

y = mx + b

R d

h

y

x

FIGURE 20

solution Let x1 and x2 denote the x-coordinates of the points of intersection between the circle x2 + y2 = 1 and the
line y = mx + b with x1 < x2. Rotating the region enclosed by the two curves about the x-axis produces a solid whose

cross sections are washers with outer radius R =
√

1 − x2 and inner radius r = mx + b. The volume of the resulting
solid is then

V = π

∫ x2

x1

(
(1 − x2) − (mx + b)2

)
dx

Because x1 and x2 are roots of the equation (1 − x2) − (mx + b)2 = 0 and (1 − x2) − (mx + b)2 is a quadratic polynomial
in x with leading coefficient −(1 + m2), it follows that (1 − x2) − (mx + b)2 = −(1 + m2)(x − x1)(x − x2). Therefore,

V = −π(1 + m2)

∫ x2

x1

(x − x1)(x − x2) dx = π

6
(1 + m2)(x2 − x1)3.

From the diagram, we see that h = x2 − x1. Moreover, by the Pythagorean theorem, d2 = h2 + (mh)2 = (1 + m2)h2.
Thus,

V = π

6
(1 + m2)h3 = π

6
h

[
(1 + m2)h2

]
= π

6
hd2.

6.4 The Method of Cylindrical Shells

Preliminary Questions
1. Consider the region R under the graph of the constant function f (x) = h over the interval [0, r]. Give the height

and the radius of the cylinder generated when R is rotated about:

(a) the x-axis (b) the y-axis

solution
(a) When the region is rotated about the x-axis, each shell will have radius h and height r.
(b) When the region is rotated about the y-axis, each shell will have radius r and height h.

2. Let V be the volume of a solid of revolution about the y-axis.

(a) Does the Shell Method for computing V lead to an integral with respect to x or y?
(b) Does the Disk or Washer Method for computing V lead to an integral with respect to x or y?

solution
(a) The Shell method requires slicing the solid parallel to the axis of rotation. In this case, that will mean slicing the solid
in the vertical direction, so integration will be with respect to x.
(b) The Disk or Washer method requires slicing the solid perpendicular to the axis of rotation. In this case, that means
slicing the solid in the horizontal direction, so integration will be with respect to y.
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Exercises
In Exercises 1–6, sketch the solid obtained by rotating the region underneath the graph of the function over the given
interval about the y-axis, and find its volume.

1. f (x) = x3, [0, 1]
solution A sketch of the solid is shown below. Each shell has radius x and height x3, so the volume of the solid is

2π

∫ 1

0
x · x3 dx = 2π

∫ 1

0
x4 dx = 2π

(
1

5
x5

)∣∣∣∣1
0

= 2

5
π.

1

y

x
−1 1

2. f (x) = √
x, [0, 4]

solution A sketch of the solid is shown below. Each shell has radius x and height
√

x, so the volume of the solid is

2π

∫ 4

0
x
√

x dx = 2π

∫ 4

0
x3/2 dx = 2π

(
2

5
x5/2

)∣∣∣∣4
0

= 128

5
π.

4

2

1

−4
x

y

3. f (x) = x−1, [1, 3]
solution A sketch of the solid is shown below. Each shell has radius x and height x−1, so the volume of the solid is

2π

∫ 3

1
x(x−1) dx = 2π

∫ 3

1
1 dx = 2π (x)

∣∣∣∣3
1

= 4π.

321

0.2

0.6

0.8

−3 −2 −1
x

y

4. f (x) = 4 − x2, [0, 2]
solution A sketch of the solid is shown below. Each shell has radius x and height 4 − x2, so the volume of the solid is

2π

∫ 2

0
x(4 − x2) dx = 2π

∫ 2

0
(4x − x3) dx = 2π

(
2x2 − 1

4
x4

)∣∣∣∣2
0

= 8π.

2

y

x
−2 2
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5. f (x) =
√

x2 + 9, [0, 3]
solution A sketch of the solid is shown below. Each shell has radius x and height

√
x2 + 9, so the volume of the solid

is

2π

∫ 3

0
x
√

x2 + 9 dx.

Let u = x2 + 9. Then du = 2x dx and

2π

∫ 3

0
x
√

x2 + 9 dx = π

∫ 18

9

√
u du = π

(
2

3
u3/2

)∣∣∣∣18

9
= 18π(2

√
2 − 1).

321

1

2

4

−3 −2 −1
x

y

6. f (x) = x√
1 + x3

, [1, 4]

solution A sketch of the solid is shown below. Each shell has radius x and height
x√

1 + x3
, so the volume of the

solid is

2π

∫ 4

1
x

(
x√

1 + x3

)
dx = 2π

∫ 4

1

x2√
1 + x3

dx.

Let u = 1 + x3. Then du = 3x2 dx and

2π

∫ 4

1

x2√
1 + x3

dx = 2

3
π

∫ 65

2
u−1/2 du = 2

3
π

(
2u1/2

)∣∣∣∣65

2
= 4π

3

(√
65 − √

2
)

.

42

0.8

−4 −2
x

y

In Exercises 7–12, use the Shell Method to compute the volume obtained by rotating the region enclosed by the graphs as
indicated, about the y-axis.

7. y = 3x − 2, y = 6 − x, x = 0

solution The region enclosed by y = 3x − 2, y = 6 − x and x = 0 is shown below. When rotating this region about
the y-axis, each shell has radius x and height 6 − x − (3x − 2) = 8 − 4x. The volume of the resulting solid is

2π

∫ 2

0
x(8 − 4x) dx = 2π

∫ 2

0
(8x − 4x2) dx = 2π

(
4x2 − 4

3
x3

)∣∣∣∣2
0

= 32

3
π.

y

x

2

−2

4

6

0.5 1.0 1.5 2.0

y = 6 − x

y = 3x − 2
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8. y = √
x, y = x2

solution The region enclosed by y = √
x and y = x2 is shown below. When rotating this region about the y-axis,

each shell has radius x and height
√

x − x2. The volume of the resulting solid is

2π

∫ 1

0
x(

√
x − x2) dx = 2π

∫ 1

0
(x3/2 − x3) dx = 2π

(
2

5
x5/2 − 1

4
x4

)∣∣∣∣1
0

= 3

10
π.

y = x2

y = x

y

x

1

0 1

9. y = x2, y = 8 − x2, x = 0, for x ≥ 0

solution The region enclosed by y = x2, y = 8 − x2 and the y-axis is shown below. When rotating this region about

the y-axis, each shell has radius x and height 8 − x2 − x2 = 8 − 2x2. The volume of the resulting solid is

2π

∫ 2

0
x(8 − 2x2) dx = 2π

∫ 2

0
(8x − 2x3) dx = 2π

(
4x2 − 1

2
x4

)∣∣∣∣2
0

= 16π.

y = 8 − x2

y = x2

y

x

4

2

0

8

6

21 1.50.5

10. y = 8 − x3, y = 8 − 4x, for x ≥ 0

solution The region enclosed by y = 8 − x3 and y = 8 − 4x is shown below. When rotating this region about the

y-axis, each shell has radius x and height (8 − x3) − (8 − 4x) = 4x − x3. The volume of the resulting solid is

2π

∫ 2

0
x(4x − x3) dx = 2π

∫ 2

0
(4x2 − x4) dx = 2π

(
4

3
x3 − 1

5
x5

)∣∣∣∣2
0

= 128π

15
.

x

2

4

6

8

y

20 1.510.5

y = 8 − x3

y = 8 − 4x

11. y = (x2 + 1)−2, y = 2 − (x2 + 1)−2, x = 2

solution The region enclosed by y = (x2 + 1)−2, y = 2 − (x2 + 1)−2 and x = 2 is shown below. When rotating

this region about the y-axis, each shell has radius x and height 2 − (x2 + 1)−2 − (x2 + 1)−2 = 2 − 2(x2 + 1)−2. The
volume of the resulting solid is

2π

∫ 2

0
x(2 − 2(x2 + 1)−2) dx = 2π

∫ 2

0

(
2x − 2x

(x2 + 1)−2

)
dx = 2π

(
x2 + 1

x2 + 1

)∣∣∣∣2
0

= 32

5
π.
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y

x

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0

y = 2 − (x2 + 1)−2

y = (x2 + 1)−2

12. y = 1 − |x − 1|, y = 0

solution The region enclosed by y = 1 − |x − 1| and the x-axis is shown below. When rotating this region about the
y-axis, two different shells are generated. For each x ∈ [0, 1], the shell has radius x and height x; for each x ∈ [1, 2], the
shell has radius x and height 2 − x. The volume of the resulting solid is

2π

∫ 1

0
x(x) dx + 2π

∫ 2

1
x(2 − x) dx = 2π

∫ 1

0
(x2) dx + 2π

∫ 2

1
(2x − x2) dx

= 2π

(
1

3
x3

)∣∣∣∣1
0

+ 2π

(
x2 − 1

3
x3

)∣∣∣∣2
1

= 2π.

x

0.5

1

y

20 1.510.5

y = 2 − xy = x

In Exercises 13 and 14, use a graphing utility to find the points of intersection of the curves numerically and then compute
the volume of rotation of the enclosed region about the y-axis.

13. y = 1
2x2, y = sin(x2)

solution The region enclosed by y = 1
2x2 and y = sin x2 is shown below. When rotating this region about the y-axis,

each shell has radius x and height sin x2 − 1
2x2. Using a computer algebra system, we find that the x-coordinate of the

point of intersection on the right is x = 1.376769504. Thus, the volume of the resulting solid of revolution is

2π

∫ 1.376769504

0
x

(
sin x2 − 1

2
x2

)
dx = 1.321975576.

y = sin x2

y

x
0

1

1

x2

2
y =

14. y = e−x2/2, y = x, x = 0

solution The region enclosed by y = e−x2/2, y = x and the y-axis is shown below. When rotating this region about

the y-axis, each shell has radius x and height e−x2/2 − x. Using a computer algebra system, we find that the x-coordinate
of the point of intersection on the right is x = 0.7530891650. Thus, volume of the resulting solid of revolution is

2π

∫ 0.7530891650

0
x(e−x2/2 − x) dx = 0.6568505551

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

y = x

y = e–x2/2
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In Exercises 15–20, sketch the solid obtained by rotating the region underneath the graph of f (x) over the interval about
the given axis, and calculate its volume using the Shell Method.

15. f (x) = x3, [0, 1], about x = 2

solution A sketch of the solid is shown below. Each shell has radius 2 − x and height x3, so the volume of the solid is

2π

∫ 1

0
(2 − x)

(
x3

)
dx = 2π

∫ 1

0
(2x3 − x4) dx = 2π

(
x4

2
− x5

5

)∣∣∣∣∣
1

0

= 3π

5
.

y

x
0

1

4

16. f (x) = x3, [0, 1], about x = −2

solution A sketch of the solid is shown below. Each shell has radius x − (−2) = x + 2 and height x3, so the volume
of the solid is

2π

∫ 1

0
(2 + x)

(
x3

)
dx = 2π

∫ 1

0
(2x3 + x4) dx = 2π

(
x4

2
+ x5

5

)∣∣∣∣∣
1

0

= 7π

5
.

1

0.2

0.4

0.6

0.8

−3 −2−5 −4 −1
x

y

17. f (x) = x−4, [−3, −1], about x = 4

solution A sketch of the solid is shown below. Each shell has radius 4 − x and height x−4, so the volume of the solid
is

2π

∫ −1

−3
(4 − x)

(
x−4

)
dx = 2π

∫ −1

−3
(4x−4 − x−3) dx = 2π

(
1

2
x−2 − 4

3
x−3

)∣∣∣∣−1

−3
= 280π

81
.

0.8

0.4

y

−2
x

10

18. f (x) = 1√
x2 + 1

, [0, 2], about x = 0

solution A sketch of the solid is shown below. Each shell has radius x and height
1√

x2 + 1
, so the volume of the

solid is

2π

∫ 2

0
x

(
1√

x2 + 1

)
dx = 2π

(√
x2 + 1

) ∣∣∣∣2
0

= 2π(
√

5 − 1).

21

0.8

0.6

0.2

1

−2 −1
x

y
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19. f (x) = a − x with a > 0, [0, a], about x = −1

solution A sketch of the solid is shown below. Each shell has radius x − (−1) = x + 1 and height a − x, so the
volume of the solid is

2π

∫ a

0
(x + 1) (a − x) dx = 2π

∫ a

0

(
a + (a − 1)x − x2

)
dx

= 2π

(
ax + a − 1

2
x2 − 1

3
x3

)∣∣∣∣a
0

= 2π

(
a2 + a2(a − 1)

2
− a3

3

)
= a2(a + 3)

3
π.

−2 − a
−1−2

a

a

20. f (x) = 1 − x2, [−1, 1], x = c with c > 1

solution A sketch of the solid is shown below. Each shell has radius c − x and height 1 − x2, so the volume of the
solid is

2π

∫ 1

−1
(c − x)

(
1 − x2

)
dx = 2π

∫ 1

−1

(
x3 − cx2 − x + c

)
dx = 2π

(
1

4
x4 − c

3
x3 − 1

2
x2 + cx

)∣∣∣∣1−1
= 8cπ

3
.

2c + 1c 2c − 11

1

−1
x

y

In Exercises 21–26, sketch the enclosed region and use the Shell Method to calculate the volume of rotation about the
x-axis.

21. x = y, y = 0, x = 1

solution When the region shown below is rotated about the x-axis, each shell has radius y and height 1 − y. The
volume of the resulting solid is

2π

∫ 1

0
y(1 − y) dy = 2π

∫ 1

0
(y − y2) dy = 2π

(
1

2
y2 − 1

3
y3

)∣∣∣∣1
0

= π

3
.

y = x

y

x
0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

22. x = 1
4y + 1, x = 3 − 1

4y, y = 0

solution When the region shown below is rotated about the x-axis, each shell has radius y and height 2 − 1
2y. The

volume of the resulting solid is

2π

∫ 4

0
y

(
2 − 1

2
y

)
dy = 2π

∫ 4

0

(
2y − 1

2
y2

)
dy = 2π

(
y2 − 1

6
y3

)∣∣∣∣4
0

= 32π

3
.
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y
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4
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x = 1 + x = 3 − y
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4

23. x = y(4 − y), y = 0

solution When the region shown below is rotated about the x-axis, each shell has radius y and height y(4 − y). The
volume of the resulting solid is

2π

∫ 4

0
y2(4 − y) dy = 2π

∫ 4

0
(4y2 − y3) dy = 2π

(
4

3
y3 − 1

4
y4

)∣∣∣∣4
0

= 128π

3
.

y

x

1

2

3

4

1 2 3 4

x = y(4 − y)

24. x = y(4 − y), x = (y − 2)2

solution Setting y(4 − y) = (y − 2)2 yields

y2 − 4y + 2 = 0 or y = 2 ± √
2.

When the region shown below is rotated about the x-axis, each shell has radius y and height −2y2 + 8y − 4. The volume
of the resulting solid is

2π

∫ 2+√
2

2−√
2

y(−2y2 + 8y − 4) dy = 2π

∫ 2+√
2

2−√
2

(−2y3 + 8y2 − 4y) dy = 2π

(
−1

2
y4 + 8

3
y3 − 2y2

)∣∣∣∣2+√
2

2−√
2

= 64π
√

2

3
.

y

x

1

2

3

4

1 2 3 4

x = (y − 2)2
x = y(4 − y)

25. y = 4 − x2, x = 0, y = 0

solution When the region shown below is rotated about the x-axis, each shell has radius y and height
√

4 − y. The
volume of the resulting solid is

2π

∫ 4

0
y
√

4 − y dy.

Let u = 4 − y. Then du = −dy, y = 4 − u, and

2π

∫ 4

0
y
√

4 − y dy = −2π

∫ 0

4
(4 − u)

√
u du = 2π

∫ 4

0

(
4
√

u − u3/2
)

du

= 2π

(
8

3
u3/2 − 2

5
u5/2

)∣∣∣∣4
0

= 256π

15
.

x

1

2

3

4

y

20 1.510.5

y = 4 − x2
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26. y = x1/3 − 2, y = 0, x = 27

solution When the region shown below is rotated about the x-axis, each shell has radius y and height 27 − (y + 2)3.
The volume of the resulting solid is

2π

∫ 1

0
y ·

(
27 − (y + 2)3

)
dy = 2π

∫ 1

0

(
19y − 12y2 − 6y3 − y4

)
dy

= 2π

(
19

2
y2 − 4y3 − 3

2
y4 − 1

5
y5

)∣∣∣∣1
0

= 38π

5
.

y

x

0.8

1

0.4

0.6

0.2

0 20 3010 15 255

3
y = x − 2

27. Use both the Shell and Disk Methods to calculate the volume obtained by rotating the region under the graph of
f (x) = 8 − x3 for 0 ≤ x ≤ 2 about:

(a) the x-axis (b) the y-axis

solution

(a) x-axis: Using the disk method, the cross sections are disks with radius R = 8 − x3; hence the volume of the solid is

π

∫ 2

0
(8 − x3)2 dx = π

(
64x − 4x4 + 1

7
x7

)∣∣∣∣2
0

= 576π

7
.

With the shell method, each shell has radius y and height (8 − y)1/3. The volume of the solid is

2π

∫ 8

0
y (8 − y)1/3 dy

Let u = 8 − y. Then dy = −du, y = 8 − u and

2π

∫ 8

0
y (8 − y)1/3 dy = 2π

∫ 8

0
(8 − u) · u1/3 du = 2π

∫ 8

0
(8u1/3 − u4/3) du

= 2π

(
6u4/3 − 3

7
u7/3

)∣∣∣∣8
0

= 576π

7
.

(b) y-axis: With the shell method, each shell has radius x and height 8 − x3. The volume of the solid is

2π

∫ 2

0
x(8 − x3) dx = 2π

(
4x2 − 1

5
x5

)∣∣∣∣2
0

= 96π

5
.

Using the disk method, the cross sections are disks with radius R = (8 − y)1/3. The volume is then given by

π

∫ 8

0
(8 − y)2/3 dy = −3π

5
(8 − y)5/3

∣∣∣∣8
0

= 96π

5
.

28. Sketch the solid of rotation about the y-axis for the region under the graph of the constant function f (x) = c (where
c > 0) for 0 ≤ x ≤ r .

(a) Find the volume without using integration.
(b) Use the Shell Method to compute the volume.

solution

r

c

x

y
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(a) The solid is simply a cylinder with height c and radius r . The volume is given by πr2c.

(b) Each shell has radius x and height c, so the volume is

2π

∫ r

0
cx dx = 2π

(
c

1

2
x2

)∣∣∣∣r
0

= πr2c.

29. The graph in Figure 11(A) can be described by both y = f (x) and x = h(y), where h is the inverse of f . Let V be
the volume obtained by rotating the region under the graph about the y-axis.

(a) Describe the figures generated by rotating segments AB and CB about the y-axis.

(b) Set up integrals that compute V by the Shell and Disk Methods.

x

y

x

y

1.3

A´ B ´A
B

C ´C

(B)(A)

y = g(x)y = f (x)

x = h(y)

22

FIGURE 11

solution

(a) When rotated about the y-axis, the segment AB generates a disk with radius R = h(y) and the segment CB generates
a shell with radius x and height f (x).

(b) Based on Figure 11(A) and the information from part (a), when using the Shell Method,

V = 2π

∫ 2

0
xf (x) dx;

when using the Disk Method,

V = π

∫ 1.3

0
(h(y))2 dy.

30. Let W be the volume of the solid obtained by rotating the region under the graph in Figure 11(B) about the
y-axis.

(a) Describe the figures generated by rotating segments A′B ′ and A′C′ about the y-axis.

(b) Set up an integral that computes W by the Shell Method.

(c) Explain the difficulty in computing W by the Washer Method.

solution

(a) When rotated about the y-axis, the segment A′B ′ generates a washer and the segment C′A′ generates a shell with
radius x and height g(x).

(b) Using Figure 11(B) and the information from part (a),

W = 2π

∫ 2

0
xg(x) dx.

(c) The function g(x) is not one-to-one, which makes it difficult to determine the inner and outer radius of each washer.

31. Let R be the region under the graph of y = 9 − x2 for 0 ≤ x ≤ 2. Use the Shell Method to compute the volume of
rotation of R about the x-axis as a sum of two integrals along the y-axis. Hint: The shells generated depend on whether
y ∈ [0, 5] or y ∈ [5, 9].
solution The region R is sketched below. When rotating this region about the x-axis, we produce a solid with two
different shell structures. For 0 ≤ y ≤ 5, the shell has radius y and height 2; for 5 ≤ y ≤ 9, the shell has radius y and
height

√
9 − y. The volume of the solid is therefore

V = 2π

∫ 5

0
2y dy + 2π

∫ 9

5
y
√

9 − y dy

For the first integral, we calculate

2π

∫ 5

0
2y dy = 2πy2

∣∣∣∣5
0

= 50π.
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For the second integral, we make the substitution u = 9 − y, du = −dy and find

2π

∫ 9

5
y
√

9 − y dy = −2π

∫ 0

4
(9 − u)

√
u du

= 2π

∫ 4

0
(9u1/2 − u3/2) du

= 2π

(
6u3/2 − 2

5
u5/2

)∣∣∣∣4
0

= 2π

(
48 − 64

5

)
= 352π

5
.

Thus, the total volume is

V = 50π + 352π

5
= 602π

5
.

y

x

2

0.5 1.0 1.5 2.0

3
4
5
6
7
8
9

32. Let R be the region under the graph of y = 4x−1 for 1 ≤ y ≤ 4. Use the Shell Method to compute the volume of
rotation of R about the y-axis as a sum of two integrals along the x-axis.

solution The region R is sketched below. When rotating this region about the y-axis, we produce a solid with two
different shell structures. For 0 ≤ x ≤ 1, the shell has radius x and height 3; for 1 ≤ x ≤ 4, the shell has radius x and
height 4x−1 − 1. The volume of the solid is therefore

V = 2π

∫ 1

0
3x dx + 2π

∫ 4

1
x(4x−1 − 1) dx

= 2π

∫ 1

0
3x dx + 2π

∫ 4

1
(4 − x) dx

= 2π
3

2
x2

∣∣∣∣1
0

+ 2π

(
4x − 1

2
x2

)∣∣∣∣4
1

= 3π + 2π

(
8 − 7

2

)
= 12π.

y

x

1

1 2 3 4

2

3

4

y = 4x−1

In Exercises 33–38, use the Shell Method to find the volume obtained by rotating region A in Figure 12 about the given
axis.

x

y

6

2

y = x2 + 2

A

B

1 2

FIGURE 12
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33. y-axis

solution When rotating region A about the y-axis, each shell has radius x and height 6 − (x2 + 2) = 4 − x2. The
volume of the resulting solid is

2π

∫ 2

0
x(4 − x2) dx = 2π

∫ 2

0
(4x − x3) dx = 2π

(
2x2 − 1

4
x4

)∣∣∣∣2
0

= 8π.

34. x = −3

solution When rotating region A about x = −3, each shell has radius x − (−3) = x + 3 and height 6 − (x2 + 2) =
4 − x2. The volume of the resulting solid is

2π

∫ 2

0
(x + 3)(4 − x2) dx = 2π

∫ 2

0
(4x − x3 + 12 − 3x2) dx = 2π

(
2x2 − 1

4
x4 + 12x − x3

)∣∣∣∣2
0

= 40π.

35. x = 2

solution When rotating region A about x = 2, each shell has radius 2 − x and height 6 − (x2 + 2) = 4 − x2. The
volume of the resulting solid is

2π

∫ 2

0
(2 − x)

(
4 − x2

)
dx = 2π

∫ 2

0

(
8 − 2x2 − 4x + x3

)
dx = 2π

(
8x − 2

3
x3 − 2x2 + 1

4
x4

)∣∣∣∣2
0

= 40π

3
.

36. x-axis

solution When rotating region A about the x-axis, each shell has radius y and height
√

y − 2. The volume of the
resulting solid is

2π

∫ 6

2
y
√

y − 2 dy

Let u = y − 2. Then du = dy, y = u + 2 and

2π

∫ 6

2
y
√

y − 2 dy = 2π

∫ 4

0
(u + 2)

√
u du = 2π

(
2

5
u5/2 + 4

3
u3/2

)∣∣∣∣4
0

= 704π

15
.

37. y = −2

solution When rotating region A about y = −2, each shell has radius y − (−2) = y + 2 and height
√

y − 2. The
volume of the resulting solid is

2π

∫ 6

2
(y + 2)

√
y − 2 dy

Let u = y − 2. Then du = dy, y + 2 = u + 4 and

2π

∫ 6

2
(y + 2)

√
y − 2 dy = 2π

∫ 4

0
(u + 4)

√
u du = 2π

(
2

5
u5/2 + 8

3
u3/2

)∣∣∣∣4
0

= 1024π

15
.

38. y = 6

solution When rotating region A about y = 6, each shell has radius 6 − y and height
√

y − 2. The volume of the
resulting solid is

2π

∫ 6

2
(6 − y)

√
y − 2 dy

Let u = y − 2. Then du = dy, 6 − y = 4 − u and

2π

∫ 6

2
(6 − y)

√
y − 2 dy = 2π

∫ 4

0
(4 − u)

√
u du = 2π

(
8

3
u3/2 − 2

5
u5/2

)∣∣∣∣4
0

= 256π

15
.
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In Exercises 39–44, use the most convenient method (Disk or Shell Method) to find the volume obtained by rotating region
B in Figure 12 about the given axis.

39. y-axis

solution Because a vertical slice of region B will produce a solid with a single cross section while a horizontal slice
will produce a solid with two different cross sections, we will use a vertical slice. Now, because a vertical slice is parallel
to the axis of rotation, we will use the Shell Method. Each shell has radius x and height x2 + 2. The volume of the resulting
solid is

2π

∫ 2

0
x(x2 + 2) dx = 2π

∫ 2

0
(x3 + 2x) dx = 2π

(
1

4
x4 + x2

)∣∣∣∣2
0

= 16π.

40. x = −3

solution Because a vertical slice of region B will produce a solid with a single cross section while a horizontal slice
will produce a solid with two different cross sections, we will use a vertical slice. Now, because a vertical slice is parallel
to the axis of rotation, we will use the Shell Method. Each shell has radius x − (−3) = x + 3 and height x2 + 2. The
volume of the resulting solid is

2π

∫ 2

0
(x + 3)(x2 + 2) dx = 2π

∫ 2

0
(x3 + 3x2 + 2x + 6) dx = 2π

(
1

4
x4 + x3 + x2 + 6x

)∣∣∣∣2
0

= 56π.

41. x = 2

solution Because a vertical slice of region B will produce a solid with a single cross section while a horizontal slice
will produce a solid with two different cross sections, we will use a vertical slice. Now, because a vertical slice is parallel
to the axis of rotation, we will use the Shell Method. Each shell has radius 2 − x and height x2 + 2. The volume of the
resulting solid is

2π

∫ 2

0
(2 − x)

(
x2 + 2

)
dx = 2π

∫ 2

0

(
2x2 − x3 + 4 − 2x

)
dx = 2π

(
2

3
x3 − 1

4
x4 + 4x − x2

)∣∣∣∣2
0

= 32π

3
.

42. x-axis

solution Because a vertical slice of region B will produce a solid with a single cross section while a horizontal
slice will produce a solid with two different cross sections, we will use a vertical slice. Now, because a vertical slice is
perpendicular to the axis of rotation, we will use the Disk Method. Each disk has outer radius R = x2 + 2 and inner
radius r = 0. The volume of the solid is then

π

∫ 2

0
(x2 + 2)2 dx = π

∫ 2

0
(x4 + 4x2 + 4) dx

= π

(
1

5
x5 + 4

3
x3 + 4x

)∣∣∣∣2
0

= π

(
32

5
+ 32

3
+ 8

)
= 376π

15
.

43. y = −2

solution Because a vertical slice of region B will produce a solid with a single cross section while a horizontal slice will
produce a solid with two different cross sections, we will use a vertical slice. Now, because a vertical slice is perpendicular
to the axis of rotation, we will use the Disk Method. Each disk has outer radius R = x2 + 2 − (−2) = x2 + 4 and inner
radius r = 0 − (−2) = 2. The volume of the solid is then

π

∫ 2

0

(
(x2 + 4)2 − 22

)
dx = π

∫ 2

0
(x4 + 8x2 + 12) dx

= π

(
1

5
x5 + 8

3
x3 + 12x

)∣∣∣∣2
0

= π

(
32

5
+ 64

3
+ 24

)
= 776π

15
.

44. y = 8

solution Because a vertical slice of region B will produce a solid with a single cross section while a horizontal
slice will produce a solid with two different cross sections, we will use a vertical slice. Now, because a vertical slice is
perpendicular to the axis of rotation, we will use the Disk Method. Each disk has outer radius R = 8 − 0 = 8 and inner
radius r = 8 − (x2 + 2) = 6 − x2. The volume of the solid is then
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π

∫ 2

0

(
82 − (6 − x2)2

)
dx = π

∫ 2

0
(28 + 12x2 − x4) dx

= π

(
28x + 4x3 − 1

5
x5

)∣∣∣∣2
0

= π

(
56 + 32 − 32

5

)
= 408π

5
.

In Exercises 45–50, use the most convenient method (Disk or Shell Method) to find the given volume of rotation.

45. Region between x = y(5 − y) and x = 0, rotated about the y-axis

solution Examine the figure below, which shows the region bounded by x = y(5 − y) and x = 0. If the indicated
region is sliced vertically, then the top of the slice lies along one branch of the parabola x = y(5 − y) and the bottom
lies along the other branch. On the other hand, if the region is sliced horizontally, then the right endpoint of the slice
always lies along the parabola and left endpoint always lies along the y-axis. Clearly, it will be easier to slice the region
horizontally.

Now, suppose the region is rotated about the y-axis. Because a horizontal slice is perpendicular to the y-axis, we will
calculate the volume of the resulting solid using the disk method. Each cross section is a disk of radius R = y(5 − y), so
the volume is

π

∫ 5

0
y2(5 − y)2 dy = π

∫ 5

0
(25y2 − 10y3 + y4) dy = π

(
25

3
y3 − 5

2
y4 + 1

5
y5

)∣∣∣∣5
0

= 625π

6
.

y

x

1

1 2 3 4 5 6

2

3

4

5 x = y(5 − y)

46. Region between x = y(5 − y) and x = 0, rotated about the x-axis

solution Examine the figure from the previous exercise, which shows the region bounded by x = y(5 − y) and x = 0.
If the indicated region is sliced vertically, then the top of the slice lies along one branch of the parabola x = y(5 − y)

and the bottom lies along the other branch. On the other hand, if the region is sliced horizontally, then the right endpoint
of the slice always lies along the parabola and left endpoint always lies along the y-axis. Clearly, it will be easier to slice
the region horizontally.

Now, suppose the region is rotated about the x-axis. Because a horizontal slice is parallel to the x-axis, we will calculate
the volume of the resulting solid using the shell method. Each shell has a radius of y and a height of y(5 − y), so the
volume is

2π

∫ 5

0
y2(5 − y) dy = 2π

∫ 5

0
(5y2 − y3) dy = 2π

(
5

3
y3 − 1

4
y4

)∣∣∣∣5
0

= 625π

6
.

47. Region in Figure 13, rotated about the x-axis

x

y

y = x − x12

1

FIGURE 13

solution Examine Figure 13. If the indicated region is sliced vertically, then the top of the slice lies along the curve

y = x − x12 and the bottom lies along the curve y = 0 (the x-axis). On the other hand, if the region is sliced horizontally,
the equation y = x − x12 must be solved for x in order to determine the endpoint locations. Clearly, it will be easier to
slice the region vertically.

Now, suppose the region in Figure 13 is rotated about the x-axis. Because a vertical slice is perpendicular to the
x-axis, we will calculate the volume of the resulting solid using the disk method. Each cross section is a disk of radius
R = x − x12, so the volume is

π

∫ 1

0

(
x − x12

)2
dx = π

(
1

3
x3 − 1

7
x14 + 1

25
x25

)∣∣∣∣1
0

= 121π

525
.
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48. Region in Figure 13, rotated about the y-axis

solution Examine Figure 13. If the indicated region is sliced vertically, then the top of the slice lies along the curve

y = x − x12 and the bottom lies along the curve y = 0 (the x-axis). On the other hand, if the region is sliced horizontally,
the equation y = x − x12 must be solved for x in order to determine the endpoint locations. Clearly, it will be easier to
slice the region vertically.

Now suppose the region is rotated about the y-axis. Because a vertical slice is parallel to the y-axis, we will calculate
the volume of the resulting solid using the shell method. Each shell has radius x and height x − x12, so the volume is

2π

∫ 1

0
x(x − x12) dx = 2π

(
1

3
x3 − 1

14
x14

)∣∣∣∣1
0

= 11π

21
.

49. Region in Figure 14, rotated about x = 4

x

y

y = x3 + 2

y = 4 − x2

1 2

FIGURE 14

solution Examine Figure 14. If the indicated region is sliced vertically, then the top of the slice lies along the curve

y = x3 + 2 and the bottom lies along the curve y = 4 − x2. On the other hand, the left end of a horizontal slice switches
from y = 4 − x2 to y = x3 + 2 at y = 3. Here, vertical slices will be more convenient.

Now, suppose the region in Figure 14 is rotated about x = 4. Because a vertical slice is parallel to x = 4, we will
calculate the volume of the resulting solid using the shell method. Each shell has radius 4 − x and height x3 + 2 − (4 −
x2) = x3 + x2 − 2, so the volume is

2π

∫ 2

1
(4 − x)(x3 + x2 − 2) dx = 2π

(
−1

5
x5 + 3

4
x4 + 4

3
x3 + x2 − 8x

)∣∣∣∣2
1

= 563π

30
.

50. Region in Figure 14, rotated about y = −2

solution Examine Figure 14. If the indicated region is sliced vertically, then the top of the slice lies along the curve

y = x3 + 2 and the bottom lies along the curve y = 4 − x2. On the other hand, the left end of a horizontal slice switches
from y = 4 − x2 to y = x3 + 2 at y = 3. Here, vertical slices will be more convenient.

Now suppose the region is rotated about y = −2. Because a vertical slice is perpendicular to y = −2, we will
calculate the volume of the resulting solid using the disk method. Each cross section is a washer with outer radius
R = x3 + 2 − (−2) = x3 + 4 and inner radius r = 4 − x2 − (−2) = 6 − x2, so the volume is

π

∫ 2

1

(
(x3 + 4)2 − (6 − x2)2

)
dx = π

(
1

7
x7 − 1

5
x5 + 2x4 + 4x3 − 20x

)∣∣∣∣2
1

= 1748π

35
.

In Exercises 51–54, use the Shell Method to find the given volume of rotation.

51. A sphere of radius r

solution A sphere of radius r can be generated by rotating the region under the semicircle y =
√

r2 − x2 about the
x-axis. Each shell has radius y and height

√
r2 − y2 −

(
−

√
r2 − y2

)
= 2

√
r2 − y2.

Thus, the volume of the sphere is

2π

∫ r

0
2y

√
r2 − y2 dy.

Let u = r2 − y2. Then du = −2y dy and

2π

∫ r

0
2y

√
r2 − y2 dy = 2π

∫ r2

0

√
u du = 2π

(
2

3
u3/2

)∣∣∣∣r
2

0
= 4

3
πr3.
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52. The “bead” formed by removing a cylinder of radius r from the center of a sphere of radius R (compare with
Exercise 59 in Section 6.3)

solution Each shell has radius x and height 2
√

R2 − x2. The volume of the bead is then

2π

∫ R

r
2x

√
R2 − x2 dx.

Let u = R2 − x2. Then du = −2x dx and

2π

∫ R

r
2x

√
R2 − x2 dx = 2π

∫ R2−r2

0

√
u du = 2π

(
2

3
u3/2

)∣∣∣∣R
2−r2

0
= 4

3
π(R2 − r2)3/2.

53. The torus obtained by rotating the circle (x − a)2 + y2 = b2 about the y-axis, where a > b (compare with Exercise 53
in Section 5.3). Hint: Evaluate the integral by interpreting part of it as the area of a circle.

solution When rotating the region enclosed by the circle (x − a)2 + y2 = b2 about the y-axis each shell has radius
x and height √

b2 − (x − a)2 −
(

−
√

b2 − (x − a)2
)

= 2
√

b2 − (x − a)2.

The volume of the resulting torus is then

2π

∫ a+b

a−b
2x

√
b2 − (x − a)2 dx.

Let u = x − a. Then du = dx, x = u + a and

2π

∫ a+b

a−b
2x

√
b2 − (x − a)2 dx = 2π

∫ b

−b
2(u + a)

√
b2 − u2 du

= 4π

∫ b

−b
u
√

b2 − u2 du + 4aπ

∫ b

−b

√
b2 − u2 du.

Now, ∫ b

−b
u
√

b2 − u2 du = 0

because the integrand is an odd function and the integration interval is symmetric with respect to zero. Moreover, the
other integral is one-half the area of a circle of radius b; thus,∫ b

−b

√
b2 − u2 du = 1

2
πb2.

Finally, the volume of the torus is

4π(0) + 4aπ

(
1

2
πb2

)
= 2π2ab2.

54. The “paraboloid” obtained by rotating the region between y = x2 and y = c (c > 0) about the y-axis

solution When we rotate the region in the first quadrant bounded by y = x2 and y = c about the y-axis, each shell

has a radius of x and a height of c − x2. The volume of the paraboloid is then

2π

∫ √
c

0
x(c − x2) dx = 2π

∫ √
c

0
(cx − x3) dx = 2π

(
1

2
cx2 − 1

4
x4

)∣∣∣∣
√

c

0
= 1

2
πc2.

Further Insights and Challenges
55. The surface area of a sphere of radius r is 4πr2. Use this to derive the formula for the volume V of a sphere
of radius R in a new way.

(a) Show that the volume of a thin spherical shell of inner radius r and thickness �r is approximately 4πr2�r .
(b) Approximate V by decomposing the sphere of radius R into N thin spherical shells of thickness �r = R/N .
(c) Show that the approximation is a Riemann sum that converges to an integral. Evaluate the integral.

solution
(a) The volume of a thin spherical shell of inner radius r and thickness �x is given by the product of the surface area of
the shell, 4πr2 and the thickness. Thus, we have 4πr2�x.
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(b) The volume of the sphere is approximated by

RN = 4π

(
R

N

) N∑
k=1

(xk)
2

where xk = k R
N

.

(c) V = 4π lim
N→∞

(
R

N

) N∑
k=1

(xk)
2 = 4π

∫ R

0
x2 dx = 4π

(
1

3
x3

)∣∣∣∣R
0

= 4

3
πR3.

56. Show that the solid (an ellipsoid) obtained by rotating the region R in Figure 15 about the y-axis has volume 4
3πa2b.

x

y

R

b

a

FIGURE 15 The ellipse
(x

a

)2 +
(y

b

)2 = 1.

solution Let’s slice the portion of the ellipse in the first and fourth quadrants horizontally and rotate the slices about
the y-axis. The resulting ellipsoid has cross sections that are disks with radius

R =
√

a2 − a2y2

b2
.

Thus, the volume of the ellipsoid is

π

∫ b

−b

(
a2 − a2y2

b2

)
dy = π

(
a2y − a2y3

3b2

)∣∣∣∣∣
b

−b

= π

[(
a2b − a2b

3

)
−

(
−a2b + a2b

3

)]
= 4

3
πa2b.

57. The bell-shaped curve y = f (x) in Figure 16 satisfies dy/dx = −xy. Use the Shell Method and the substitution
u = f (x) to show that the solid obtained by rotating the region R about the y-axis has volume V = 2π(1 − c), where
c = f (a). Observe that as c → 0, the region R becomes infinite but the volume V approaches 2π .

1

y = f (x)

R
c

y

x
a

FIGURE 16 The bell-shaped curve.

solution Let y = f (x) be the exponential function depicted in Figure 16. When rotating the region R about the
y-axis, each shell in the resulting solid has radius x and height f (x). The volume of the solid is then

V = 2π

∫ a

0
xf (x) dx.

Now, let u = f (x). Then du = f ′(x) dx = −xf (x) dx; hence, xf (x)dx = −du, and

V = 2π

∫ c

1
(−du) = 2π

∫ 1

c
du = 2π(1 − c).

6.5 Work and Energy

Preliminary Questions
1. Why is integration needed to compute the work performed in stretching a spring?

solution Recall that the force needed to extend or compress a spring depends on the amount by which the spring has
already been extended or compressed from its equilibrium position. In other words, the force needed to move a spring is
variable. Whenever the force is variable, work needs to be computed with an integral.
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2. Why is integration needed to compute the work performed in pumping water out of a tank but not to compute the
work performed in lifting up the tank?

solution To lift a tank through a vertical distance d, the force needed to move the tank remains constant; hence, no
integral is needed to calculate the work done in lifting the tank. On the other hand, pumping water from a tank requires
that different layers of the water be lifted through different distances, and, depending on the shape of the tank, may require
different forces. Thus, pumping water from a tank requires that an integral be evaluated.

3. Which of the following represents the work required to stretch a spring (with spring constant k) a distance x beyond
its equilibrium position: kx, −kx, 1

2mk2, 1
2kx2, or 1

2mx2?

solution The work required to stretch a spring with spring constant k a distance x beyond its equilibrium position is∫ x

0
ky dy = 1

2
ky2

∣∣∣∣x
0

= 1

2
kx2.

Exercises
1. How much work is done raising a 4-kg mass to a height of 16 m above ground?

solution The force needed to lift a 4-kg object is a constant

(4 kg)(9.8 m/s2) = 39.2 N.

The work done in lifting the object to a height of 16 m is then

(39.2 N)(16 m) = 627.2 J.

2. How much work is done raising a 4-lb mass to a height of 16 ft above ground?

solution The force needed to lift a 4-lb object is a constant 4 lb. The work done in lifting the object to a height of 16
ft is then

(4 lb)(16 ft) = 64 ft-lb.

In Exercises 3–6, compute the work (in joules) required to stretch or compress a spring as indicated, assuming a spring
constant of k = 800 N/m.

3. Stretching from equilibrium to 12 cm past equilibrium

solution The work required to stretch the spring 12 cm past equilibrium is

∫ 0.12

0
800x dx = 400x2

∣∣∣0.12

0
= 5.76 J.

4. Compressing from equilibrium to 4 cm past equilibrium

solution The work required to compress the spring 4 cm past equilibrium is

∫ −0.04

0
800x dx = 400x2

∣∣∣−0.04

0
= 0.64 J.

5. Stretching from 5 cm to 15 cm past equilibrium

solution The work required to stretch the spring from 5 cm to 15 cm past equilibrium is

∫ 0.15

0.05
800x dx = 400x2

∣∣∣0.15

0.05
= 8 J.

6. Compressing 4 cm more when it is already compressed 5 cm

solution The work required to compress the spring from 5 cm to 9 cm past equilibrium is

∫ −0.09

−0.05
800x dx = 400x2

∣∣∣∣−0.09

−0.05
= 2.24 J.

7. If 5 J of work are needed to stretch a spring 10 cm beyond equilibrium, how much work is required to stretch it 15 cm
beyond equilibrium?

solution First, we determine the value of the spring constant as follows:

∫ 0.1

0
kx dx = 1

2
kx2

∣∣∣∣0.1

0
= 0.005k = 5 J.
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Thus, k = 1000 N/m. Next, we calculate the work required to stretch the spring 15 cm beyond equilibrium:

∫ 0.15

0
1000x dx = 500x2

∣∣∣∣0.15

0
= 11.25 J.

8. To create images of samples at the molecular level, atomic force microscopes use silicon micro-cantilevers that obey
Hooke’s Law F(x) = −kx, where x is the distance through which the tip is deflected (Figure 6). Suppose that 10−17 J
of work are required to deflect the tip a distance 10−8 m. Find the deflection if a force of 10−9 N is applied to the tip.

Surface
Tip

Cantilever

Laser beam

10000 nm

FIGURE 6

solution First, we determine the value of the constant k. Knowing it takes 10−17 J of work to deflect the tip a distance

10−8 m, it follows that

1

2
k(10−8)2 = 10−17 or k = 1

5
N/m.

Now, the deflection produced by a force of 10−9 N can be determined as

x = F

k
= 10−9

1/5
= 5 × 10−9 m.

9. A spring obeys a force law F(x) = −kx1.1 with k = 100 N/m. Find the work required to stretch a spring 0.3 m past
equilibrium.

solution The work required to stretch this spring 0.3 m past equilibrium is

∫ 0.3

0
100x1.1 dx = 100

1.1
x2.1

∣∣∣∣0.3

0
≈ 7.25 J.

10. Show that the work required to stretch a spring from position a to position b is 1
2k(b2 − a2), where k is the

spring constant. How do you interpret the negative work obtained when |b| < |a|?
solution The work required to stretch a spring from position a to position b is

∫ b

a
kx dx = 1

2
kx2

∣∣∣∣b
a

= 1

2
k(b2 − a2).

When |b| < |a|, the “negative work” is the work done by the spring to return to its equilibrium position.

In Exercises 11–14, use the method of Examples 2 and 3 to calculate the work against gravity required to build the
structure out of a lightweight material of density 600 kg/m3.

11. Box of height 3 m and square base of side 2 m

solution The volume of one layer is 4�y m3 and so the weight of one layer is 23520�y N. Thus, the work done
against gravity to build the tower is

W =
∫ 3

0
23520y dy = 11760y2

∣∣∣∣3
0

= 105840 J.

12. Cylindrical column of height 4 m and radius 0.8 m

solution The area of the base is 0.64π m2, so the volume of each small layer is 0.64π�y m3. The weight of one layer
is then 3763.2π�y N. Finally, the total work done against gravity to build the tower is∫ 4

0
3763.2πy dy = 30105.6π J ≈ 94579.5 J.
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13. Right circular cone of height 4 m and base of radius 1.2 m

solution By similar triangles, the layer of the cone at a height y above the base has radius r = 0.3(4 − y) meters.

Thus, the volume of the small layer at this height is 0.09π(4 − y)2�y m3, and the weight is 529.2π(4 − y)2�y N.
Finally, the total work done against gravity to build the tower is

∫ 4

0
529.2π(4 − y)2y dy = 11289.6π J ≈ 35467.3 J.

14. Hemisphere of radius 0.8 m

solution The area of one layer is π(0.64 − y2) m2, so the volume of each small layer is π(0.64 − y2)�y m3. The

weight of one layer is then 5880π(0.64 − y2)�y N. Finally, the total work done against gravity to build the tower is

∫ 0.8

0
5880π(0.64 − y2)y dy = 602.112π J ≈ 1891.6 J.

15. Built around 2600 bce, the Great Pyramid of Giza in Egypt (Figure 7) is 146 m high and has a square base of side
230 m. Find the work (against gravity) required to build the pyramid if the density of the stone is estimated at 2000 kg/m3.

FIGURE 7 The Great Pyramid in Giza, Egypt.

solution From similar triangles, the area of one layer is

(
230 − 230

146
y

)2
m2,

so the volume of each small layer is

(
230 − 230

146
y

)2
�y m3.

The weight of one layer is then

19600

(
230 − 230

146
y

)2
�y N.

Finally, the total work needed to build the pyramid was

∫ 146

0
19600

(
230 − 230

146
y

)2
y dy ≈ 1.84 × 1012 J.

16. Calculate the work (against gravity) required to build a box of height 3 m and square base of side 2 m out of material
of variable density, assuming that the density at height y is f (y) = 1000 − 100y kg/m3.

solution The volume of one layer is 4�y m3 and so the weight of one layer is (4000 − 400y)�y N. Thus, the work
done against gravity to build the tower is

W =
∫ 3

0
(4000 − 400y)y dy =

(
2000y2 − 400

3
y3

)∣∣∣∣3
0

= 14400 J.
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In Exercises 17–22, calculate the work (in joules) required to pump all of the water out of a full tank. Distances are in
meters, and the density of water is 1000 kg/m3.

17. Rectangular tank in Figure 8; water exits from a small hole at the top.

8

4

5

Water exits here.
1

FIGURE 8

solution Place the origin on the top of the box, and let the positive y-axis point downward. The volume of one layer

of water is 32�y m3, so the force needed to lift each layer is

(9.8)(1000)32�y = 313600�y N.

Each layer must be lifted y meters, so the total work needed to empty the tank is

∫ 5

0
313600y dy = 156800y2

∣∣∣∣5
0

= 3.92 × 106 J.

18. Rectangular tank in Figure 8; water exits through the spout.

solution Place the origin on the top of the box, and let the positive y-axis point downward. The volume of one layer

of water is 32�y m3, so the force needed to lift each layer is

(9.8)(1000)32�y = 313600�y N.

Each layer must be lifted y + 1 meters, so the total work needed to empty the tank is

∫ 5

0
313600(y + 1) dy = 156800(y + 1)2

∣∣∣∣5
0

= 5.488 × 106 J.

19. Hemisphere in Figure 9; water exits through the spout.

10
2

FIGURE 9

solution Place the origin at the center of the hemisphere, and let the positive y-axis point downward. The radius of a

layer of water at depth y is
√

100 − y2 m, so the volume of the layer is π(100 − y2)�y m3, and the force needed to lift
the layer is 9800π(100 − y2)�y N. The layer must be lifted y + 2 meters, so the total work needed to empty the tank is

∫ 10

0
9800π(100 − y2)(y + 2) dy = 112700000π

3
J ≈ 1.18 × 108 J.

20. Conical tank in Figure 10; water exits through the spout.

10

52

FIGURE 10
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solution Place the origin at the vertex of the inverted cone, and let the positive y-axis point upward. Consider a layer
of water at a height of y meters. From similar triangles, the area of the layer is

π
(y

2

)2
m2,

so the volume is

π
(y

2

)2
�y m3.

Thus the weight of one layer is

9800π
(y

2

)2
�y N.

The layer must be lifted 12 − y meters, so the total work needed to empty the tank is

∫ 10

0
9800π

(y

2

)2
(12 − y) dy = π(3.675 × 106) J ≈ 1.155 × 107 J.

21. Horizontal cylinder in Figure 11; water exits from a small hole at the top. Hint: Evaluate the integral by interpreting
part of it as the area of a circle.

r

Water exits here.

FIGURE 11

solution Place the origin along the axis of the cylinder. At location y, the layer of water is a rectangular slab of length

�, width 2
√

r2 − y2 and thickness �y. Thus, the volume of the layer is 2�
√

r2 − y2�y, and the force needed to lift the
layer is 19,600�

√
r2 − y2�y. The layer must be lifted a distance r − y, so the total work needed to empty the tank is

given by ∫ r

−r
19,600�

√
r2 − y2(r − y) dy = 19,600�r

∫ r

−r

√
r2 − y2 dy − 19,600�

∫ r

−r
y

√
r2 − y2 dy.

Now, ∫ r

−r
y

√
r2 − y2 du = 0

because the integrand is an odd function and the integration interval is symmetric with respect to zero. Moreover, the
other integral is one-half the area of a circle of radius r; thus,∫ r

−r

√
r2 − y2 dy = 1

2
πr2.

Finally, the total work needed to empty the tank is

19,600�r

(
1

2
πr2

)
− 19,600�(0) = 9800�πr3 J.

22. Trough in Figure 12; water exits by pouring over the sides.

a

b c

h

FIGURE 12
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solution Place the origin along the bottom edge of the trough, and let the positive y-axis point upward. From similar
triangles, the width of a layer of water at a height of y meters is

w = a + y (b − a)

h
m2,

so the volume of each layer is

c

(
a + y (b − a)

h

)
�y m3.

Thus, the force needed to lift the layer is

9800c

(
a + y (b − a)

h

)
�y N.

Each layer must be lifted h − y meters, so the total work needed to empty the tank is

∫ h

0
9800(h − y)c

(
a + y (b − a)

h

)
dy = 9800 c

(
ah2

3
+ bh2

6

)
J.

23. Find the work W required to empty the tank in Figure 8 through the hole at the top if the tank is half full of water.

solution Place the origin on the top of the box, and let the positive y-axis point downward. Note that with this
coordinate system, the bottom half of the box corresponds to y values from 2.5 to 5. The volume of one layer of water is
32�y m3, so the force needed to lift each layer is

(9.8)(1000)32�y = 313,600�y N.

Each layer must be lifted y meters, so the total work needed to empty the tank is

∫ 5

2.5
313,600y dy = 156,800y2

∣∣∣∣5
2.5

= 2.94 × 106 J.

24. Assume the tank in Figure 8 is full of water and let W be the work required to pump out half of the water
through the hole at the top. Do you expect W to equal the work computed in Exercise 23? Explain and then compute W .

solution Recall that the origin was placed at the top of the box with the positive y-axis pointing downward. Pumping
out half the water from a full tank would involve y values ranging from y = 0 to y = 2.5, whereas pumping out a half-full
tank would involve y values ranging from y = 2.5 to y = 5. Because pumping out half the water from a full tank requires
moving the layers of water a shorter distance than pumping out a half-full tank, we do not expect that W would be equal
to the work computed in Exercise 23.

To compute W , we proceed as in Exercise 17 and Exercise 23, to find

W =
∫ 2.5

0
313,600y dy = 980,000 J.

It is reassuring to note that

Work(Exercise 23) + Work(Exercise 24) = Work(Exercise 17).

25. Assume the tank in Figure 10 is full. Find the work required to pump out half of the water. Hint: First, determine the
level H at which the water remaining in the tank is equal to one-half the total capacity of the tank.

solution Our first step is to determine the level H at which the water remaining in the tank is equal to one-half the
total capacity of the tank. From Figure 10 and similar triangles, we see that the radius of the cone at level H is H/2 so
the volume of water is

V = 1

3
πr2H = 1

3
π

(
H

2

)2
H = 1

12
πH 3.

The total capacity of the tank is 250π/3 m3, so the water level when the water remaining in the tank is equal to one-half
the total capacity of the tank satisfies

1

12
πH 3 = 125

3
π or H = 10

21/3
m.

Place the origin at the vertex of the inverted cone, and let the positive y-axis point upward. Now, consider a layer of
water at a height of y meters. From similar triangles, the area of the layer is

π
(y

2

)2
m2,
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so the volume is

π
(y

2

)2
�y m3.

Thus the weight of one layer is

9800π
(y

2

)2
�y N.

The layer must be lifted 12 − y meters, so the total work needed to empty the half-full tank is

∫ 10

10/21/3
9800π

(y

2

)2
(12 − y) dy ≈ 3.79 × 106 J.

26. Assume that the tank in Figure 10 is full.

(a) Calculate the work F(y) required to pump out water until the water level has reached level y.

(b) Plot F(y).

(c) What is the significance of F ′(y) as a rate of change?

(d) If your goal is to pump out all of the water, at which water level y0 will half of the work be done?

solution

(a) Place the origin at the vertex of the inverted cone, and let the positive y-axis point upward. Consider a layer of water
at a height of y meters. From similar triangles, the area of the layer is

π
(y

2

)2
m2,

so the volume is

π
(y

2

)2
�y m3.

Thus the weight of one layer is

9800π
(y

2

)2
�y N.

The layer must be lifted 12 − y meters, so the total work needed to pump out water until the water level has reached level
y is

∫ 10

y
9800π

(y

2

)2
(12 − y) dy = 3,675,000π − 9800πy3 + 1225π

2
y4 J.

(b) A plot of F(y) is shown below.

y

x
2

2 × 106
4 × 106
6 × 106
8 × 106
1 × 107

1.2 × 107

4 6 8 10

(c) First, note that F ′(y) < 0; as y increases, less water is being pumped from the tank, so F(y) decreases. Therefore,
when the water level in the tank has reached level y, we can interpret −F ′(y) as the amount of work per meter needed to
remove the next layer of water from the tank. In other words, −F ′(y) is a “marginal work” function.

(d) The amount of work needed to empty the tank is 3,675,000π J. Half of this work will be done when the water level
reaches height y0 satisfying

3,675,000π − 9800πy3
0 + 1225π

2
y4

0 = 1,837,500π.

Using a computer algebra system, we find y0 = 6.91 m.

27. Calculate the work required to lift a 10-m chain over the side of a building (Figure 13) Assume that the chain has a
density of 8 kg/m. Hint: Break up the chain into N segments, estimate the work performed on a segment, and compute
the limit as N → ∞ as an integral.
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Segment of

length �y

y

FIGURE 13 The small segment of the chain of length �y located y meters from the top is lifted through a vertical
distance y.

solution In this example, each part of the chain is lifted a different distance. Therefore, we divide the chain into
N small segments of length �y = 10/N . Suppose that the ith segment is located a distance yi from the top of the
building. This segment weighs 8(9.8)�y kilograms and it must be lifted approximately yi meters (not exactly yi meters,
because each point along the segment is a slightly different distance from the top). The work Wi done on this segment is
approximately Wi ≈ 78.4yi�y N. The total work W is the sum of the Wi and we have

W =
N∑

j=1

Wi ≈
N∑

j=1

78.4yj �y.

Passing to the limit as N → ∞, we obtain

W =
∫ 10

0
78.4 y dy = 39.2y2

∣∣∣∣10

0
= 3920 J.

28. How much work is done lifting a 3-m chain over the side of a building if the chain has mass density 4 kg/m?

solution Consider a segment of the chain of length �y located a distance yj meters from the top of the building. The
work needed to lift this segment of the chain to the top of the building is approximately

Wj ≈ (4�y)(9.8)yj J.

Summing over all segments of the chain and passing to the limit as �y → 0, it follows that the total work is

∫ 3

0
4 · 9.8y dy = 19.6y2

∣∣∣∣3
0

= 176.4 J.

29. A 6-m chain has mass 18 kg. Find the work required to lift the chain over the side of a building.

solution First, note that the chain has a mass density of 3 kg/m. Now, consider a segment of the chain of length �y

located a distance yj feet from the top of the building. The work needed to lift this segment of the chain to the top of the
building is approximately

Wj ≈ (3�y)9.8yj ft-lb.

Summing over all segments of the chain and passing to the limit as �y → 0, it follows that the total work is

∫ 6

0
29.4y dy = 14.7y2

∣∣∣∣6
0

= 529.2 J.

30. A 10-m chain with mass density 4 kg/m is initially coiled on the ground. How much work is performed in lifting the
chain so that it is fully extended (and one end touches the ground)?

solution Consider a segment of the chain of length �y that must be lifted yj feet off the ground. The work needed to
lift this segment of the chain is approximately

Wj ≈ (4�y)9.8yj J.

Summing over all segments of the chain and passing to the limit as �y → 0, it follows that the total work is

∫ 10

0
39.2y dy = 19.6y2

∣∣∣∣10

0
= 1960 J.
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31. How much work is done lifting a 12-m chain that has mass density 3 kg/m (initially coiled on the ground) so that its
top end is 10 m above the ground?

solution Consider a segment of the chain of length �y that must be lifted yj feet off the ground. The work needed to
lift this segment of the chain is approximately

Wj ≈ (3�y)9.8yj J.

Summing over all segments of the chain and passing to the limit as �y → 0, it follows that the total work is

∫ 10

0
29.4y dy = 14.7y2

∣∣∣∣10

0
= 1470 J.

32. A 500-kg wrecking ball hangs from a 12-m cable of density 15 kg/m attached to a crane. Calculate the work done if
the crane lifts the ball from ground level to 12 m in the air by drawing in the cable.

solution We will treat the cable and the wrecking ball separately. Consider a segment of the cable of length �y that
must be lifted yj feet. The work needed to lift the cable segment is approximately

Wj ≈ (15�y)9.8yj J.

Summing over all of the segments of the cable and passing to the limit as �y → 0, it follows that lifting the cable requires

∫ 12

0
147y dy = 73.5y2

∣∣∣∣12

0
= 10,584 J.

Lifting the 500 kg wrecking ball 12 meters requires an additional 58,800 J. Thus, the total work is 69,384 J.

33. Calculate the work required to lift a 3-m chain over the side of a building if the chain has variable density of
ρ(x) = x2 − 3x + 10 kg/m for 0 ≤ x ≤ 3.

solution Consider a segment of the chain of length �x that must be lifted xj feet. The work needed to lift this segment
is approximately

Wj ≈ (
ρ(xj )�x

)
9.8xj J.

Summing over all segments of the chain and passing to the limit as �x → 0, it follows that the total work is

∫ 3

0
9.8ρ(x)x dx = 9.8

∫ 3

0

(
x3 − 3x2 + 10x

)
dx

= 9.8

(
1

4
x4 − x3 + 5x2

)∣∣∣∣3
0

= 374.85 J.

34. A 3-m chain with linear mass density ρ(x) = 2x(4 − x) kg/m lies on the ground. Calculate the work required to lift
the chain so that its bottom is 2 m above ground.

solution Consider a segment of the chain of length �x that must be lifted xj feet. The work needed to lift this segment
is approximately

Wj ≈ (
ρ(xj )�x

)
9.8xj J.

Summing over all segments of the chain and passing to the limit as �x → 0, it follows that the total work needed to fully
extend the chain is ∫ 3

0
9.8ρ(x)x dx = 9.8

∫ 3

0

(
8x2 − 2x3

)
dx

= 9.8

(
8

3
x3 − 1

2
x4

)∣∣∣∣3
0

= 308.7 J.

Lifting the entire chain, which weighs

∫ 3

0
9.8ρ(x) dx = 9.8

∫ 3

0

(
8x − 2x2

)
dx = 9.8

(
4x2 − 2

3
x3

)∣∣∣∣3
0

= 176.4 N

another two meters requires an additional 352.8 J of work. The total work is therefore 661.5 J.
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Exercises 35–37: The gravitational force between two objects of mass m and M , separated by a distance r , has magnitude
GMm/r2, where G = 6.67 × 10−11 m3kg−1s−1.

35. Show that if two objects of mass M and m are separated by a distance r1, then the work required to increase the
separation to a distance r2 is equal to W = GMm(r−1

1 − r−1
2 ).

solution The work required to increase the separation from a distance r1 to a distance r2 is

∫ r2

r1

GMm

r2
dr = −GMm

r

∣∣∣∣r2

r1

= GMm(r−1
1 − r−1

2 ).

36. Use the result of Exercise 35 to calculate the work required to place a 2000-kg satellite in an orbit 1200 km above
the surface of the earth. Assume that the earth is a sphere of radius Re = 6.37 × 106 m and mass Me = 5.98 × 1024 kg.
Treat the satellite as a point mass.

solution The satellite will move from a distance r1 = Re to a distance r2 = Re + 1,200,000. Thus, from Exercise
35,

W = (6.67 × 10−11)(5.98 × 1024)(2000)

(
1

6.37 × 106
− 1

6.37 × 106 + 1,200,000

)
≈ 1.99 × 1010 J.

37. Use the result of Exercise 35 to compute the work required to move a 1500-kg satellite from an orbit 1000 to an orbit
1500 km above the surface of the earth.

solution The satellite will move from a distance r1 = Re + 1,000,000 to a distance r2 = Re + 1,500,000. Thus,
from Exercise 35,

W = (6.67 × 10−11)(5.98 × 1024)(1500) ×
(

1

6.37 × 106 + 1,000,000
− 1

6.37 × 106 + 1,500,000

)

≈ 5.16 × 109 J.

38. The pressure P and volume V of the gas in a cylinder of length 0.8 meters and radius 0.2 meters, with a movable
piston, are related by PV 1.4 = k, where k is a constant (Figure 14). When the piston is fully extended, the gas pressure
is 2000 kilopascals (one kilopascal is 103 newtons per square meter).

(a) Calculate k.

(b) The force on the piston is PA, where A is the piston’s area. Calculate the force as a function of the length x of the
column of gas.

(c) Calculate the work required to compress the gas column from 0.8 m to 0.5 m.

x

0.2

FIGURE 14 Gas in a cylinder with a piston.

solution

(a) We have P = 2 × 106 and V = 0.032π . Thus

k = 2 × 106(0.032π)1.4 = 80,213.9.

(b) The area of the piston is A = 0.04π and the volume of the cylinder as a function of x is V = 0.04πx, which gives
P = k/V 1.4 = k/(0.04πx)1.4. Thus

F = PA = k

(0.04πx)1.4
0.04π = k(0.04π)−0.4x−1.4.

(c) Since the force is pushing against the piston, in order to calculate work, we must calculate the integral of the opposite
force, i.e., we have

W = −k(0.04π)−0.4
∫ 0.5

0.8
x−1.4 dx = −k(0.04π)−0.4 1

−0.4
x−0.4

∣∣∣∣0.5

0.8
= 103,966.7 J.
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Further Insights and Challenges
39. Work-Energy Theorem An object of mass m moves from x1 to x2 during the time interval [t1, t2] due to a force
F(x) acting in the direction of motion. Let x(t), v(t), and a(t) be the position, velocity, and acceleration at time t . The
object’s kinetic energy is KE = 1

2mv2.

(a) Use the change-of-variables formula to show that the work performed is equal to

W =
∫ x2

x1

F(x) dx =
∫ t2

t1

F(x(t))v(t) dt

(b) Use Newton’s Second Law, F(x(t)) = ma(t), to show that

d

dt

(
1

2
mv(t)2

)
= F(x(t))v(t)

(c) Use the FTC to prove the Work-Energy Theorem: The change in kinetic energy during the time interval [t1, t2] is
equal to the work performed.

solution

(a) Let x1 = x(t1) and x2 = x(t2), then x = x(t) gives dx = v(t) dt . By substitution we have

W =
∫ x2

x1

F(x) dx =
∫ t2

t1

F(x(t))v(t) dt.

(b) Knowing F(x(t)) = m · a(t), we have

d

dt

(
1

2
m · v(t)2

)
= m · v(t) v′(t) (Chain Rule)

= m · v(t) a(t)

= v(t) · F(x(t)) (Newton’s 2nd law)

(c) From the FTC,

1

2
m · v(t)2 =

∫
F(x(t)) v(t) dt.

Since KE = 1
2 m v2,

�KE = KE(t2) − KE(t1) = 1

2
m v(t2)2 − 1

2
m v(t1)2 =

∫ t2

t1

F(x(t)) v(t) dt.

(d) W =
∫ x2

x1

F(x) dx =
∫ t2

t1

F(x(t)) v(t) dt (Part (a))

= KE(t2) − KE(t1)

= �KE (as required)

40. A model train of mass 0.5 kg is placed at one end of a straight 3-m electric track. Assume that a force F(x) =
(3x − x2) N acts on the train at distance x along the track. Use the Work-Energy Theorem (Exercise 39) to determine the
velocity of the train when it reaches the end of the track.

solution We have

W =
∫ 3

0
F(x) dx =

∫ 3

0
(3x − x2) dx =

(
3

2
x2 − 1

3
x3

)∣∣∣∣3
0

= 4.5 J.

Then the change in KE must be equal to W , which gives

4.5 = 1

2
m(v(t2)2 − v(t1)2)

Note that v(t1) = 0 as the train was placed on the track with no initial velocity and m = 0.5. Thus

v(t2) = √
18 = 4.242641 m/sec.
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41. With what initial velocity v0 must we fire a rocket so it attains a maximum height r above the earth? Hint: Use the
results of Exercises 35 and 39. As the rocket reaches its maximum height, its KE decreases from 1

2mv2
0 to zero.

solution The work required to move the rocket a distance r from the surface of the earth is

W(r) = GMem

(
1

Re
− 1

r + Re

)
.

As the rocket climbs to a height r , its kinetic energy is reduced by the amount W(r). The rocket reaches its maximum
height when its kinetic energy is reduced to zero, that is, when

1

2
mv2

0 = GMem

(
1

Re
− 1

r + Re

)
.

Therefore, its initial velocity must be

v0 =
√

2GMe

(
1

Re
− 1

r + Re

)
.

42. With what initial velocity must we fire a rocket so it attains a maximum height of r = 20 km above the surface of the
earth?

solution Using the result of the previous exercise with G = 6.67 × 10−11 m3kg−1s−2, Me = 5.98 × 1024 kg,

Re = 6.37 × 106 m and r = 20,000 m,

v0 =
√

2GMe

(
1

Re
− 1

r + Re

)
= 626 m/sec.

43. Calculate escape velocity, the minimum initial velocity of an object to ensure that it will continue traveling into space
and never fall back to earth (assuming that no force is applied after takeoff). Hint: Take the limit as r → ∞ in Exercise 41.

solution The result of Exercise 41 leads to an interesting conclusion. The initial velocity v0 required to reach a height
r does not increase beyond all bounds as r tends to infinity; rather, it approaches a finite limit, called the escape velocity:

vesc = lim
r→∞

√
2GMe

(
1

Re
− 1

r + Re

)
=

√
2GMe

Re

In other words, vesc is large enough to insure that the rocket reaches a height r for every value of r! Therefore, a rocket
fired with initial velocity vesc never returns to earth. It continues traveling indefinitely into outer space.

Now, let’s see how large escape velocity actually is:

vesc =
(

2 · 6.67 × 10−11 · 5.989 × 1024

6.37 × 106

)1/2

≈ 11,190 m/sec.

Since one meter per second is equal to 2.236 miles per hour, escape velocity is approximately 11,190(2.236) = 25,020
miles per hour.

CHAPTER REVIEW EXERCISES

1. Compute the area of the region in Figure 1(A) enclosed by y = 2 − x2 and y = −2.

y

x
2−2 −2

−2
−2

y

x
1

y = 2 − x2 y = 2 − x2

y = x

(A) (B)

y = −2

FIGURE 1

solution The graphs of y = 2 − x2 and y = −2 intersect where 2 − x2 = −2, or x = ±2. Therefore, the enclosed

area lies over the interval [−2, 2]. The region enclosed by the graphs lies below y = 2 − x2 and above y = −2, so the
area is ∫ 2

−2

(
(2 − x2) − (−2)

)
dx =

∫ 2

−2
(4 − x2) dx =

(
4x − 1

3
x3

)∣∣∣∣2−2
= 32

3
.
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2. Compute the area of the region in Figure 1(B) enclosed by y = 2 − x2 and y = x.

solution The graphs of y = 2 − x2 and y = x intersect where 2 − x2 = x, which simplifies to

0 = x2 + x − 2 = (x + 2)(x − 1).

Thus, the graphs intersect at x = −2 and x = 1. As the graph of y = x lies below the graph of y = 2 − x2 over the
interval [−2, 1], the area between the graphs is

∫ 1

−2

(
(2 − x2) − x

)
dx =

(
2x − 1

3
x3 − 1

2
x2

)∣∣∣∣1−2
= 9

2
.

In Exercises 3–12, find the area of the region enclosed by the graphs of the functions.

3. y = x3 − 2x2 + x, y = x2 − x

solution The region bounded by the graphs of y = x3 − 2x2 + x and y = x2 − x over the interval [0, 2] is shown

below. For x ∈ [0, 1], the graph of y = x3 − 2x2 + x lies above the graph of y = x2 − x, whereas, for x ∈ [1, 2], the
graph of y = x2 − x lies above the graph of y = x3 − 2x2 + x. The area of the region is therefore given by

∫ 1

0

(
(x3 − 2x2 + x) − (x2 − x)

)
dx +

∫ 2

1

(
(x2 − x) − (x3 − 2x2 + x)

)
dx

=
(

1

4
x4 − x3 + x2

)∣∣∣∣1
0

+
(

x3 − x2 − 1

4
x4

)∣∣∣∣2
1

= 1

4
− 1 + 1 + (8 − 4 − 4) −

(
1 − 1 − 1

4

)
= 1

2
.

x

y

y = x3 − 2x2 + x

y = x2 − x

0.5

1

1.5

2

0.5 1 1.5 2

4. y = x2 + 2x, y = x2 − 1, h(x) = x2 + x − 2

solution The region bounded by the graphs of y = x2 + 2x, y = x2 − 1 and y = x2 + x − 2 is shown below. For

each x ∈ [−2, − 1
2 ], the graph of y = x2 + 2x lies above the graph of y = x2 + x − 2, whereas, for each x ∈ [− 1

2 , 1],
the graph of y = x2 − 1 lies above the graph of y = x2 + x − 2. The area of the region is therefore given by

∫ −1/2

−2

(
(x2 + 2x) − (x2 + x − 2)

)
dx +

∫ 1

−1/2

(
(x2 − 1) − (x2 + x − 2)

)
dx

=
(

1

2
x2 + 2x

)∣∣∣∣−1/2

−2
+

(
−1

2
x2 + x

)∣∣∣∣1−1/2

=
(

1

8
− 1

)
− (2 − 4) +

(
−1

2
+ 1

)
−

(
−1

8
− 1

2

)
= 9

4
.

y = x2 + x − 2

y = x2 − 1y = x2 + 2x

x

y

−2

1−1−2
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5. x = 4y, x = 24 − 8y, y = 0

solution The region bounded by the graphs x = 4y, x = 24 − 8y and y = 0 is shown below. For each 0 ≤ y ≤ 2,
the graph of x = 24 − 8y lies to the right of x = 4y. The area of the region is therefore

A =
∫ 2

0
(24 − 8y − 4y) dy =

∫ 2

0
(24 − 12y) dy

= (24y − 6y2)

∣∣∣∣2
0

= 24.

2.0

y

x

1.5

1.0

0.5

5 10 15 20 25

x = 4y

x = 24 − 8y

6. x = y2 − 9, x = 15 − 2y

solution Setting y2 − 9 = 15 − 2y yields

y2 + 2y − 24 = (y + 6)(y − 4) = 0,

so the two curves intersect at y = −6 and y = 4. The region bounded by the graphs x = y2 − 9 and x = 15 − 2y is
shown below. For each −6 ≤ y ≤ 4, the graph of x = 15 − 2y lies to the right of x = y2 − 9. The area of the region is
therefore

A =
∫ 4

−6

(
15 − 2y − (y2 − 9)

)
dy =

∫ 4

−6
(24 − 2y − y2) dy

=
(

24y − y2 − 1

3
y3

)∣∣∣∣4−6

=
(

176

3
− (−108)

)
= 500

3
.

y

x
−10

−4

2

4

−6

10 20 30

x = 15 − 2y

x = y2 − 9

7. y = 4 − x2, y = 3x, y = 4

solution The region bounded by the graphs of y = 4 − x2, y = 3x and y = 4 is shown below. For x ∈ [0, 1], the

graph of y = 4 lies above the graph of y = 4 − x2, whereas, for x ∈ [1, 4
3 ], the graph of y = 4 lies above the graph of

y = 3x. The area of the region is therefore given by

∫ 1

0
(4 − (4 − x2)) dx +

∫ 4/3

1
(4 − 3x) dx = 1

3
x3

∣∣∣∣1
0

+
(

4x − 3

2
x2

)∣∣∣∣4/3

1
= 1

3
+

(
16

3
− 8

3

)
−

(
4 − 3

2

)
= 1

2
.

y = 4

y = 4 − x2 y = 3x

y

x

4

2

3

1

0 0.8 1.20.4 0.6 10.2
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8. x = 1

2
y, x = y

√
1 − y2, 0 ≤ y ≤ 1

solution The region bounded by the graphs of x = y/2 and x = y
√

1 − y2 over the interval [0, 1] is shown below.

For y ∈ [0,

√
3

2 ], the graph of x = y
√

1 − y2 lies to the right of the graph of x = y/2, whereas, for y ∈ [
√

3
2 , 1], the

graph of x = y/2 lies to the right of the graph of x = y
√

1 − y2. The area of the region is therefore given by

∫ √
3/2

0

(
y

√
1 − y2 − y

2

)
dy +

∫ 1

√
3/2

(
y

2
− y

√
1 − y2

)
dy

=
(

−1

3
(1 − y2)3/2 − y2

4

)∣∣∣∣∣
√

3/2

0

+
(

y2

4
+ 1

3
(1 − y2)3/2

)∣∣∣∣∣
1

√
3/2

= − 1

24
− 3

16
+ 1

3
+ 1

4
− 3

16
− 1

24
= 1

8
.

0.50 0.1 0.3 0.40.2
x

0.2

0.4

0.8

0.6

1

y

x = y
2

x = y(1 − y2)1/2

9. y = sin x, y = cos x, 0 ≤ x ≤ 5π

4

solution The region bounded by the graphs of y = sin x and y = cos x over the interval [0, 5π
4 ] is shown below. For

x ∈ [0, π
4 ], the graph of y = cos x lies above the graph of y = sin x, whereas, for x ∈ [π

4 , 5π
4 ], the graph of y = sin x

lies above the graph of y = cos x. The area of the region is therefore given by

∫ π/4

0
(cos x − sin x) dx +

∫ 5π/4

π/4
(sin x − cos x) dx

= (sin x + cos x)

∣∣∣π/4

0
+ (− cos x − sin x)

∣∣∣5π/4

π/4

=
√

2

2
+

√
2

2
− (0 + 1) +

(√
2

2
+

√
2

2

)
−

(
−

√
2

2
−

√
2

2

)
= 3

√
2 − 1.

x

y = sin x

y = cos x

y

−0.5

0.5

1

−1

4321

10. f (x) = sin x, g(x) = sin 2x,
π

3
≤ x ≤ π

solution The region bounded by the graphs of y = sin x and y = sin 2x over the interval [π
3 , π ] is shown below. As

the graph of y = sin x lies above the graph of y = sin 2x, the area of the region is given by∫ π

π/3
(sin x − sin 2x) dx =

(
− cos x + 1

2
cos 2x

)∣∣∣∣π
π/3

=
(

1 + 1

2

)
−

(
−1

2
− 1

4

)
= 9

4
.

y = sin x

y = sin 2x

x

y

0.5

−0.5

−1

1

0.5 1 1.5 2 2.5
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11. y = ex , y = 1 − x, x = 1

solution The region bounded by the graphs of y = ex , y = 1 − x and x = 1 is shown below. As the graph of y = ex

lies above the graph of y = 1 − x, the area of the region is given by

∫ 1

0

(
ex − (1 − x)

)
dx =

(
ex − x + 1

2
x2

) ∣∣∣∣1
0

=
(

e − 1 + 1

2

)
− 1 = e − 3

2
.

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

y = 1 – x

y = ex

12. y = cosh 1 − cosh x, y = cosh x − cosh 1

solution The region bounded by the graphs of y = cosh 1 − cosh x, y = cosh x − cosh 1 is shown below. As the
graph of y = cosh 1 − cosh x lies above the graph of y = cosh x − cosh 1, the area of the region is given by

∫ 1

−1
((cosh 1 − cosh x) − (cosh x − cosh 1)) dx = (2x cosh 1 − 2 sinh x)

∣∣∣∣1−1

= (2 cosh 1 − 2 sinh 1) − (−2 cosh 1 + 2 sinh 1)

= 4 cosh 1 − 4 sinh 1 = 4e−1.

–1 –0.5 0.5 1

–0.6

–0.4

–0.2

0.2

0.4

0.6

y = cosh x – cosh 1

y = cosh 1 – cosh x

13. Use a graphing utility to locate the points of intersection of y = e−x and y = 1 − x2 and find the area
between the two curves (approximately).

solution The region bounded by the graphs of y = e−x and y = 1 − x2 is shown below. One point of intersection
clearly occurs at x = 0. Using a computer algebra system, we find that the other point of intersection occurs at x =
0.7145563847. As the graph of y = 1 − x2 lies above the graph of y = e−x , the area of the region is given by

∫ 0.7145563847

0

(
1 − x2 − e−x

)
dx = 0.08235024596

y = 1 − x2

y = e−x

y

x

0.4

0.2

0

0.8

0.6

1

0.80.4 0.60.2



April 2, 2011

Chapter Review Exercises 797

14. Figure 2 shows a solid whose horizontal cross section at height y is a circle of radius (1 + y)−2 for 0 ≤ y ≤ H . Find
the volume of the solid.

y

H

FIGURE 2

solution The area of each horizontal cross section is A(y) = π(1 + y)−4. Therefore, the volume of the solid is

∫ H

0
π(1 + y)−4 dy = π

(1 + y)−3

−3

∣∣∣∣∣
H

0

= π

(
(1 + H)−3

−3
+ 1

3

)
= π

3

(
1 − 1

(1 + H)3

)
.

15. The base of a solid is the unit circle x2 + y2 = 1, and its cross sections perpendicular to the x-axis are rectangles of
height 4. Find its volume.

solution Because the cross sections are rectangles of constant height 4, the figure is a cylinder of radius 1 and height

4. The volume is therefore πr2h = 4π .

16. The base of a solid is the triangle bounded by the axes and the line 2x + 3y = 12, and its cross sections perpendicular
to the y-axis have area A(y) = (y + 2). Find its volume.

solution The volume of this solid is

V =
∫ 4

0
A(y) dy =

∫ 4

0
(y + 2) dy =

(
1

2
y2 + 2y

)∣∣∣∣4
0

= 16.

17. Find the total mass of a rod of length 1.2 m with linear density ρ(x) = (1 + 2x + 2
9x3) kg/m.

solution The total weight of the rod is

∫ 1.2

0
ρ(x) dx =

(
x + x2 + 1

18
x4

)∣∣∣∣1.2

0
= 2.7552 kg.

18. Find the flow rate (in the correct units) through a pipe of diameter 6 cm if the velocity of fluid particles at a distance
r from the center of the pipe is v(r) = (3 − r) cm/s.

solution The flow rate through the pipe is

2π

∫ 3

0
rv(r) dr = 2π

∫ 3

0
(3r − r2) dr = 2π

(
3

2
r2 − 1

3
r3

)∣∣∣∣3
0

= 2π

(
27

2
− 9

)
= 9π

cm3

s
.

In Exercises 19–24, find the average value of the function over the interval.

19. f (x) = x3 − 2x + 2, [−1, 2]
solution The average value is

1

2 − (−1)

∫ 2

−1

(
x3 − 2x + 2

)
dx = 1

3

(
1

4
x4 − x2 + 2x

)∣∣∣∣2−1
= 1

3

[
(4 − 4 + 4) −

(
1

4
− 1 − 2

)]
= 9

4
.

20. f (x) = |x|, [−4, 4]
solution The average value is

1

4 − (−4)

∫ 4

−4
|x| dx = 1

8

(∫ 0

−4
(−x) dx +

∫ 4

0
x dx

)
= 1

8

(
−1

2
x2

∣∣∣∣0−4
+ 1

2
x2

∣∣∣∣4
0

)
= 1

8
[(0 + 8) + (8 − 0)] = 2.
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21. f (x) = x cosh(x2), [0, 1]
solution The average value is

1

1 − 0

∫ 1

0
x cosh(x2) dx.

To evaluate the integral, let u = x2. Then du = 2x dx and

1

1 − 0

∫ 1

0
x cosh(x2) dx = 1

2

∫ 1

0
cosh u du = 1

2
sinh u

∣∣∣∣1
0

= 1

2
sinh 1.

22. f (x) = ex

1 + e2x
,

[
0,

1

2

]

solution The average value is

1
1
2 − 0

∫ 1/2

0

ex

1 + e2x
dx.

To evaluate the integral, let u = ex . Then du = ex dx and

1
1
2 − 0

∫ 1/2

0

ex

1 + e2x
dx = 2

∫ √
e

1

du

1 + u2
= 2 tan−1 u

∣∣∣∣
√

e

1
= 2

(
tan−1 √

e − π

4

)
.

23. f (x) =
√

9 − x2, [0, 3] Hint: Use geometry to evaluate the integral.

solution The region below the graph of y =
√

9 − x2 but above the x-axis over the interval [0, 3] is one-quarter of a
circle of radius 3; consequently,

∫ 3

0

√
9 − x2 dx = 1

4
π(3)2 = 9π

4
.

The average value is then

1

3 − 0

∫ 3

0

√
9 − x2 dx = 1

3

(
9π

4

)
= 3π

4
.

24. f (x) = x[x], [0, 3], where [x] is the greatest integer function.

solution The average value is

1

3 − 0

∫ 3

0
x[x] dx = 1

3

(∫ 1

0
x · 0 dx +

∫ 2

1
x · 1 dx +

∫ 3

2
x · 2 dx

)

= 1

3

(
1

2
x2

∣∣∣2
1

+ x2
∣∣∣3
2

)
= 1

3

(
2 − 1

2
+ 9 − 4

)
= 13

6
.

25. Find
∫ 5

2
g(t) dt if the average value of g(t) on [2, 5] is 9.

solution The average value of the function g(t) on [2, 5] is given by

1

5 − 2

∫ 5

2
g(t) dt = 1

3

∫ 5

2
g(t) dt.

Therefore,

∫ 5

2
g(t) dt = 3(average value) = 3(9) = 27.
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26. The average value of R(x) over [0, x] is equal to x for all x. Use the FTC to determine R(x).

solution The average value of the function R(x) over [0, x] is

1

x − 0

∫ x

0
R(t) dt = 1

x

∫ x

0
R(t) dt.

Given that the average value is equal to x, it follows that∫ x

0
R(t) dt = x2.

Differentiating both sides of this equation and using the Fundamental Theorem of Calculus on the left-hand side yields

R(x) = 2x.

27. Use the Washer Method to find the volume obtained by rotating the region in Figure 3 about the x-axis.

y = x2

y = mx

y

x

FIGURE 3

solution Setting x2 = mx yields x(x − m) = 0, so the two curves intersect at (0, 0) and (m, m2). To use the washer
method, we must slice the solid perpendicular to the axis of rotation; as we are revolving about the y-axis, this implies a
horizontal slice and integration in y. For each y ∈ [0, m2], the cross section is a washer with outer radius R = √

y and
inner radius r = y

m . The volume of the solid is therefore given by

π

∫ m2

0

(
(
√

y)2 −
( y

m

)2
)

dy = π

(
1

2
y2 − y3

3m2

)∣∣∣∣∣
m2

0

= π

(
m4

2
− m4

3

)
= π

6
m4.

28. Use the Shell Method to find the volume obtained by rotating the region in Figure 3 about the x-axis.

solution Setting x2 = mx yields x(x − m) = 0, so the two curves intersect at (0, 0) and (m, m2). To use the shell
method, we must slice the solid parallel to the axis of rotation; as we are revolving about the x-axis, this implies a
horizontal slice and integration in y. For each y ∈ [0, m2], the shell has radius y and height

√
y − y

m . The volume of the
solid is therefore given by

2π

∫ m2

0
y

(√
y − y

m

)
dy = 2π

(
2

5
y5/2 − y3

3m

)∣∣∣∣∣
m2

0

= 2π

(
2m5

5
− m5

3

)
= 2π

15
m5.

In Exercises 29–40, use any method to find the volume of the solid obtained by rotating the region enclosed by the curves
about the given axis.

29. y = x2 + 2, y = x + 4, x-axis

solution Let’s choose to slice the region bounded by the graphs of y = x2 + 2 and y = x + 4 (see the figure below)
vertically. Because a vertical slice is perpendicular to the axis of rotation, we will use the washer method to calculate the
volume of the solid of revolution. For each x ∈ [−1, 2], the washer has outer radius x + 4 and inner radius x2 + 2. The
volume of the solid is therefore given by

π

∫ 2

−1
((x + 4)2 − (x2 + 2)2) dx = π

∫ 2

−1
(−x4 − 3x2 + 8x + 12) dx

= π

(
−1

5
x5 − x3 + 4x2 + 12x

)∣∣∣∣2−1

= π

(
128

5
+ 34

5

)
= 162π

5
.
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y

x
−1.0 −0.5 0.5 1.0 1.5 2.0

1

3

4
5

6 y = x + 4

y = x2 + 2

30. y = x2 + 6, y = 8x − 1, y-axis

solution Let’s choose to slice the region bounded by the graphs of y = x2 + 6 and y = 8x − 1 (see the figure below)
vertically. Because a vertical slice is parallel to the axis of rotation, we will use the shell method to calculate the volume
of the solid of revolution. For each x ∈ [1, 7], the shell has radius x and height 8x − 1 − (x2 + 6) = −x2 + 8x − 7. The
volume of the solid is therefore given by

2π

∫ 7

1
x(−x2 + 8x − 7) dx = 2π

∫ 7

1
(−x3 + 8x2 − 7x) dx

= 2π

(
−1

4
x4 + 8

3
x3 − 7

2
x2

)∣∣∣∣7
1

= 2π

(
1715

12
+ 13

12

)
= 288π.

y

x

60

50

40

30

20

10

1 2 3 4 5 6 7

y = 8x − 1

y = x2 + 6

31. x = y2 − 3, x = 2y, axis y = 4

solution Let’s choose to slice the region bounded by the graphs of x = y2 − 3 and x = 2y (see the figure below)
horizontally. Because a horizontal slice is parallel to the axis of rotation, we will use the shell method to calculate the
volume of the solid of revolution. For each y ∈ [−1, 3], the shell has radius 4 − y and height 2y − (y2 − 3) = 3 + 2y − y2.
The volume of the solid is therefore given by

2π

∫ 3

−1
(4 − y)(3 + 2y − y2) dy = 2π

∫ 3

−1
(12 + 5y − 6y2 + y3) dy

= 2π

(
12y + 5

2
y2 − 2y3 + 1

4
y4

)∣∣∣∣3−1

= 2π

(
99

4
+ 29

4

)
= 64π.

y

x

−1
−2−3 1 2 3 4 5 6

1

2

3 x = y2 − 3

x = 2y

32. y = 2x, y = 0, x = 8, axis x = −3

solution Let’s choose to slice the region bounded by the graphs of y = 2x, y = 0 and x = 8 (see the figure below)
vertically. Because a vertical slice is parallel to the axis of rotation, we will use the shell method to calculate the volume
of the solid of revolution. For each x ∈ [0, 8], the shell has radius x − (−3) = x + 3 and height 2x. The volume of the
solid is therefore given by

2π

∫ 8

0
(x + 3)(2x) dx = 4π

(
1

3
x3 + 3

2
x2

)∣∣∣∣8
0

= 4π

(
512

3
+ 96

)
= 3200π

3
.
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y

x
2

2 4 6 8

4
6
8

10
12
14
16

y = 2x

33. y = x2 − 1, y = 2x − 1, axis x = −2

solution The region bounded by the graphs of y = x2 − 1 and y = 2x − 1 is shown below. Let’s choose to
slice the region vertically. Because a vertical slice is parallel to the axis of rotation, we will use the shell method to
calculate the volume of the solid of revolution. For each x ∈ [0, 2], the shell has radius x − (−2) = x + 2 and height
(2x − 1) − (x2 − 1) = 2x − x2. The volume of the solid is therefore given by

2π

∫ 2

0
(x + 2)(2x − x2) dx = 2π

(
2x2 − 1

4
x4

)∣∣∣∣2
0

= 2π(8 − 4) = 8π.

y = x2 − 1

x

y = 2x − 1

y

2

1

3

−1

21

34. y = x2 − 1, y = 2x − 1, axis y = 4

solution Let’s choose to slice the region bounded by the graphs of y = x2 − 1 and y = 2x − 1 (see the figure in
the previous exercise) vertically. Because a vertical slice is perpendicular to the axis of rotation, we will use the washer
method to calculate the volume of the solid of revolution. For each x ∈ [0, 2], the cross section is a washer with outer
radius R = 4 − (x2 − 1) = 5 − x2 and inner radius r = 4 − (2x − 1) = 5 − 2x. The volume of the solid is therefore
given by

π

∫ 2

0

(
(5 − x2)2 − (5 − 2x)2

)
dx = π

(
10x2 − 14

3
x3 + 1

5
x5

)∣∣∣∣2
0

= π

(
40 − 112

3
+ 32

5

)
= 136π

15
.

35. y = −x2 + 4x − 3, y = 0, axis y = −1

solution The region bounded by the graph of y = −x2 + 4x − 3 and the x-axis is shown below. Let’s choose to
slice the region vertically. Because a vertical slice is perpendicular to the axis of rotation, we will use the washer method
to calculate the volume of the solid of revolution. For each x ∈ [1, 3], the cross section is a washer with outer radius
R = −x2 + 4x − 3 − (−1) = −x2 + 4x − 2 and inner radius r = 0 − (−1) = 1. The volume of the solid is therefore
given by

π

∫ 3

1

(
(−x2 + 4x − 2)2 − 1

)
dx = π

(
1

5
x5 − 2x4 + 20

3
x3 − 8x2 + 3x

)∣∣∣∣3
1

= π

[(
243

5
− 162 + 180 − 72 + 9

)
−

(
1

5
− 2 + 20

3
− 8 + 3

)]
= 56π

15
.

y = −x2 + 4x − 3

y

x

0.8

1

0.4

0.6

0.2

0 2 31 1.5 2.50.5



April 2, 2011

802 C H A P T E R 6 APPLICATIONS OF THE INTEGRAL

36. y = −x2 + 4x − 3, y = 0, axis x = 4

solution The region bounded by the graph of y = −x2 + 4x − 3 and the x-axis is shown in the previous exercise.
Let’s choose to slice the region vertically. Because a vertical slice is parallel to the axis of rotation, we will use the shell
method to calculate the volume of the solid of revolution. For each x ∈ [1, 3], the shell has radius 4 − x and height
−x2 + 4x − 3. The volume of the solid is therefore given by

2π

∫ 3

1
(4 − x)(−x2 + 4x − 3) dx = 2π

∫ 3

1
(x3 − 8x2 + 19x − 12) dx

= 2π

(
1

4
x4 − 8

3
x3 + 19

2
x2 − 12x

)∣∣∣∣3
1

= 2π

(
−9

4
+ 59

12

)
= 16π

3
.

y = −x2 + 4x − 3

y

x

0.8

1
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0.2

0 2 31 1.5 2.50.5

37. x = 4y − y3, x = 0, y ≥ 0, x-axis

solution The region bounded by the graphs of x = 4y − y3 and x = 0 for y ≥ 0 is shown below. Let’s choose to
slice this region horizontally. Because a horizontal slice is parallel to the axis of rotation, we will use the shell method to
calculate the volume of the solid of revolution. For each y ∈ [0, 2], the shell has radius y and height 4y − y3. The volume
of the solid is therefore given by

2π

∫ 2

0
y(4y − y3) dy = 2π

∫ 2

0
(4y2 − y4) dy

= 2π

(
4

3
y3 − 1

5
y5

)∣∣∣∣2
0

= 2π

(
32

3
− 32

5

)
= 128π

15
.

x = 4y − y3

0.5 1 1.5 2 2.5 30
x

0.5

1

1.5

2

y

38. y2 = x−1, x = 1, x = 3, axis y = −3

solution The region bounded by the graphs of y2 = x−1, x = 1 and x = 3 is shown below. Let’s choose to slice
the region vertically. Because a vertical slice is perpendicular to the axis of rotation, we will use the washer method
to calculate the volume of the solid of revolution. For each x ∈ [1, 3], the cross section is a washer with outer radius
R = 1√

x
− (−3) = 3 + 1√

x
and inner radius r = − 1√

x
− (−3) = 3 − 1√

x
. The volume of the solid is therefore given by

π

∫ 3

1

((
3 + 1√

x

)2
−

(
3 − 1√

x

)2
)

dx = 12π

∫ 3

1
x−1/2 dx = 24π

√
x

∣∣∣∣3
1

= 24π(
√

3 − 1).

x

y

0.5

−0.5

−1

1

0.5 1 1.5 2 32.5

y2 = x−1



April 2, 2011

Chapter Review Exercises 803

39. y = e−x2/2, y = −e−x2/2, x = 0, x = 1, y-axis

solution Let’s choose to slice the region bounded by the graphs of y = e−x2/2 and y = −e−x2/2 (see the figure
below) vertically. Because a vertical slice is parallel to the axis of rotation, we will use the shell method to calculate the

volume of the solid of revolution. For each x ∈ [0, 1], the shell has radius x and height e−x2/2 − (−e−x2/2) = 2e−x2/2.
The volume of the solid is therefore given by

2π

∫ 1

0
2xe−x2/2 dx = −4πe−x2/2

∣∣∣∣1
0

= −4π(e−1/2 − 1) = 4π(1 − e−1/2).

y

x
0.2 0.4 0.6 0.8 1.0−0.5

0.5
1.0
1.5

−1.0
−1.5

40. y = sec x, y = csc x, y = 0, x = 0, x = π

2
, x-axis

solution
(a) The region in question is shown in the figure below.

y = sec x y = csc x

x

0.5

1

1.5

y

0 1.510.5

(b) When the region is rotated about the x-axis, cross sections for x ∈ [0, π/4] are circular disks with radius R = sec x,
whereas cross sections for x ∈ [π/4, π/2] are circular disks with radius R = csc x.
(c) The volume of the solid of revolution is

π

∫ π/4

0
sec2 x dx + π

∫ π/2

π/4
csc2 x dx = π (tan x)

∣∣∣∣π/4

0
+ π (− cot x)

∣∣∣∣π/2

π/4
= π (1) + π (1) = 2π.

In Exercises 41–44, find the volume obtained by rotating the region about the given axis. The regions refer to the graph
of the hyperbola y2 − x2 = 1 in Figure 4.

x

y

−c c

3

2

1

−1

−2

−3

y = x

y2 − x2 = 1

FIGURE 4

41. The shaded region between the upper branch of the hyperbola and the x-axis for −c ≤ x ≤ c, about the x-axis.

solution Let’s choose to slice the region vertically. Because a vertical slice is perpendicular to the axis of rotation,
we will use the washer method to calculate the volume of the solid of revolution. For each x ∈ [−c, c], cross sections are
circular disks with radius R =

√
1 + x2. The volume of the solid is therefore given by

π

∫ c

−c
(1 + x2) dx = π

(
x + 1

3
x3

)∣∣∣∣c−c

= π

[(
c + c3

3

)
−

(
−c − c3

3

)]
= 2π

(
c + c3

3

)
.
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42. The region between the upper branch of the hyperbola and the x-axis for 0 ≤ x ≤ c, about the y-axis.

solution Let’s choose to slice the region vertically. Because a vertical slice is parallel to the axis of rotation, we will
use the shell method to calculate the volume of the solid of revolution. For each x ∈ [0, c], the shell has radius x and
height

√
1 + x2. The volume of the solid is therefore given by

2π

∫ c

0
x
√

1 + x2 dx = 2π

3
(1 + x2)3/2

∣∣∣∣c
0

= 2π

3

(
(1 + c2)3/2 − 1

)
.

43. The region between the upper branch of the hyperbola and the line y = x for 0 ≤ x ≤ c, about the x-axis.

solution Let’s choose to slice the region vertically. Because a vertical slice is perpendicular to the axis of rotation,
we will use the washer method to calculate the volume of the solid of revolution. For each x ∈ [0, c], cross sections are
washers with outer radius R =

√
1 + x2 and inner radius r = x. The volume of the solid is therefore given by

π

∫ c

0

(
(1 + x2) − x2

)
dx = πx

∣∣∣∣c
0

= cπ.

44. The region between the upper branch of the hyperbola and y = 2, about the y-axis.

solution The upper branch of the hyperbola and the horizontal line y = 2 intersect when x = ±√
3. Using the shell

method, each shell has radius x and height 2 −
√

1 + x2. The volume of the solid is therefore given by

2π

∫ √
3

0
x

(
2 −

√
1 + x2

)
dx = 2π

(
x2 − 1

3
(1 + x2)3/2

)∣∣∣∣
√

3

0
= 2π

(
3 − 8

3
+ 1

3

)
= 4π

3
.

45. Let R be the intersection of the circles of radius 1 centered at (1, 0) and (0, 1). Express as an integral (but do not
evaluate): (a) the area of R and (b) the volume of revolution of R about the x-axis.

solution The region R is shown below.

x2 + (y − 1)2 = 1

(x − 1)2 + y2 = 1

y

x
0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

(a) A vertical slice of R has its top along the upper left arc of the circle (x − 1)2 + y2 = 1 and its bottom along the lower
right arc of the circle x2 + (y − 1)2 = 1. The area of R is therefore given by

∫ 1

0

(√
1 − (x − 1)2 − (1 −

√
1 − x2)

)
dx.

(b) If we revolve R about the x-axis and use the washer method, each cross section is a washer with outer radius√
1 − (x − 1)2 and inner radius 1 −

√
1 − x2. The volume of the solid is therefore given by

π

∫ 1

0

[
(1 − (x − 1)2) − (1 −

√
1 − x2)2

]
dx.

46. Let a > 0. Show that the volume obtained when the region between y = a
√

x − ax2 and the x-axis is rotated about
the x-axis is independent of the constant a.

solution Setting a
√

x − ax2 = 0 yields x = 0 and x = 1/a. Using the washer method, cross sections are circular

disks with radius R = a
√

x − ax2. The volume of the solid is therefore given by

π

∫ 1/a

0
a2(x − ax2) dx = π

(
1

2
a2x2 − 1

3
a3x3

)∣∣∣∣1/a

0
= π

(
1

2
− 1

3

)
= π

6
,

which is independent of the constant a.
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47. If 12 J of work are needed to stretch a spring 20 cm beyond equilibrium, how much work is required to compress it
6 cm beyond equilibrium?

solution First, we determine the value of the spring constant k as follows:

1

2
k(0.2)2 = 12 so k = 600 N/m.

Now, the work needed to compress the spring 6 cm beyond equilibrium is

W =
∫ 0.06

0
600x dx = 300x2

∣∣∣∣0.06

0
= 1.08 J.

48. A spring whose equilibrium length is 15 cm exerts a force of 50 N when it is stretched to 20 cm. Find the work
required to stretch the spring from 22 to 24 cm.

solution A force of 50 N is exerted when the spring is stretched 5 cm = 0.05 m from its equilibrium length; therefore,
the value of the spring constant is k = 1000 N/m. The work required to stretch the spring from a length of 22 cm to a
length of 24 cm is then

∫ 0.09

0.07
1000x dx = 500x2

∣∣∣∣0.09

0.07
= 500(0.092 − 0.072) = 1.6 J.

49. If 18 ft-lb of work are needed to stretch a spring 1.5 ft beyond equilibrium, how far will the spring stretch if a 12-lb
weight is attached to its end?

solution First, we determine the value of the spring constant as follows:

1

2
k(1.5)2 = 18 so k = 16 lb/ft.

Now, if a 12-lb weight is attached to the end of the spring, balancing the forces acting on the weight, we have 12 = 16d,
which implies d = 0.75 ft. A 12-lb weight will therefore stretch the spring 9 inches.

50. Let W be the work (against the sun’s gravitational force) required to transport an 80-kg person from Earth to Mars
when the two planets are aligned with the sun at their minimal distance of 55.7 × 106 km. Use Newton’s Universal
Law of Gravity (see Exercises 35–37 in Section 6.5) to express W as an integral and evaluate it. The sun has mass
Ms = 1.99 × 1030 kg, and the distance from the sun to the earth is 149.6 × 106 km.

solution According to Newton’s Universal Law of Gravity, the gravitational force between the person and the sun is

GMsm

r2
,

where G = 6.67 × 10−11 m3kg−1s−1 is a constant, Ms = 1.99 × 1030 kg is the mass of the sun, m = 80 kg is the
mass of the person, and r is the distance between the sun and the person. The work against the sun’s gravitational force
required to transport the person from Earth to Mars when the two planets are aligned with the sun is therefore given by

W =
∫ rse+rem

rse

GMsm

r2
dr = GMsm

(
1

rse
− 1

rse + rem

)
,

where rse = 149.6 × 106 km is the distance from the sun to Earth and rem = 55.7 × 106 km is the distance from Earth
to Mars. Converting the distances to meters and substituting the known values into the formula for W yields

W = (6.67 × 10−11)(1.99 × 1030)(80)

(
1

149.6 × 109
− 1

205.3 × 109

)
≈ 1.93 × 1010 J.

In Exercises 51 and 52, water is pumped into a spherical tank of radius 2 m from a source located 1 m below a hole at
the bottom (Figure 5). The density of water is 1000 kg/m3.

2

1

Water source

FIGURE 5



April 2, 2011

806 C H A P T E R 6 APPLICATIONS OF THE INTEGRAL

51. Calculate the work required to fill the tank.

solution Place the origin at the base of the sphere with the positive y-axis pointing upward. The equation for the

great circle of the sphere is then x2 + (y − 2)2 = 4. At location y, the horizontal cross section is a circle of radius√
4 − (y − 2)2 =

√
4y − y2; the volume of the layer is then π(4y − y2)�y m3, and the force needed to lift the layer is

1000(9.8)π(4y − y2)�y N. The layer of water must be lifted y + 1 meters, so the work required to fill the tank is given
by

9800π

∫ 4

0
(y + 1)(4y − y2) dy = 9800π

∫ 4

0
(3y2 + 4y − y3) dy

= 9800π

(
y3 + 2y2 − 1

4
y4

)∣∣∣∣4
0

= 313,600π ≈ 985,203.5 J.

52. Calculate the work F(h) required to fill the tank to level h meters in the sphere.

solution Place the origin at the base of the sphere with the positive y-axis pointing upward. The equation for the

great circle of the sphere is then x2 + (y − 2)2 = 4. At location y, the horizontal cross section is a circle of radius√
4 − (y − 2)2 =

√
4y − y2; the volume of the layer is then π(4y − y2)�y m3, and the force needed to lift the layer is

1000(9.8)π(4y − y2)�y N. The layer of water must be lifted y + 1 meters, so the work required to fill the tank is given
by

9800π

∫ h

0
(y + 1)(4y − y2) dy = 9800π

∫ h

0
(3y2 + 4y − y3) dy

= 9800π

(
y3 + 2y2 − 1

4
y4

)∣∣∣∣h
0

= 9800π

(
h3 + 2h2 − 1

4
h4

)
J.

53. A tank of mass 20 kg containing 100 kg of water (density 1000 kg/m3) is raised vertically at a constant speed of
100 m/min for one minute, during which time it leaks water at a rate of 40 kg/min. Calculate the total work performed in
raising the container.

solution Let t denote the elapsed time in minutes and let y denote the height of the container. Given that the speed of
ascent is 100 m/min, y = 100t ; moreover, the mass of water in the container is

100 − 40t = 100 − 0.4ykg.

The force needed to lift the container and its contents is then

9.8 (20 + (100 − 0.4y)) = 1176 − 3.92y N,

and the work required to lift the container and its contents is

∫ 100

0
(1176 − 3.92y) dy = (1176y − 1.96y2)

∣∣∣∣100

0
= 98,000J.
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7 TECHNIQUES OF
INTEGRATION

7.1 Integration by Parts

Preliminary Questions
1. Which derivative rule is used to derive the Integration by Parts formula?

solution The Integration by Parts formula is derived from the Product Rule.

2. For each of the following integrals, state whether substitution or Integration by Parts should be used:∫
x cos(x2) dx,

∫
x cos x dx,

∫
x2ex dx,

∫
xex2

dx

solution

(a)
∫

x cos(x2) dx: use the substitution u = x2.

(b)
∫

x cos x dx: use Integration by Parts.

(c)
∫

x2ex dx; use Integration by Parts.

(d)
∫

xex2
dx; use the substitution u = x2.

3. Why is u = cos x, v′ = x a poor choice for evaluating
∫

x cos x dx?

solution Transforming v′ = x into v = 1
2x2 increases the power of x and makes the new integral harder than the

original.

Exercises
In Exercises 1–6, evaluate the integral using the Integration by Parts formula with the given choice of u and v′.

1.
∫

x sin x dx; u = x, v′ = sin x

solution Using the given choice of u and v′ results in

u = x v = − cos x

u′ = 1 v′ = sin x

Using Integration by Parts,∫
x sin x dx = x(− cos x) −

∫
(1)(− cos x) dx = −x cos x +

∫
cos x dx = −x cos x + sin x + C.

2.
∫

xe2x dx; u = x, v′ = e2x

solution Using u = x and v′ = e2x gives us

u = x v = 1
2 e2x

u′ = 1 v′ = e2x

Integration by Parts gives us∫
xe2x dx = x

(
1

2
e2x

)
−
∫

(1)
1

2
e2x dx = 1

2
xe2x − 1

2

(
1

2

)
e2x + C = 1

4
e2x (2x − 1) + C.

807
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3.
∫

(2x + 9)ex dx; u = 2x + 9, v′ = ex

solution Using u = 2x + 9 and v′ = ex gives us

u = 2x + 9 v = ex

u′ = 2 v′ = ex

Integration by Parts gives us∫
(2x + 9)ex dx = (2x + 9)ex −

∫
2exdx = (2x + 9)ex − 2ex + C = ex(2x + 7) + C.

4.
∫

x cos 4x dx; u = x, v′ = cos 4x

solution Using u = x and v′ = cos 4x gives us

u = x v = 1
4 sin 4x

u′ = 1 v′ = cos 4x

Integration by Parts gives us∫
x cos 4x dx = 1

4
x sin 4x −

∫
(1)

1

4
sin 4x dx = 1

4
x sin 4x − 1

4

(
−1

4
cos 4x

)
+ C

= 1

4
x sin 4x + 1

16
cos 4x + C.

5.
∫

x3 ln x dx; u = ln x, v′ = x3

solution Using u = ln x and v′ = x3 gives us

u = ln x v = 1
4x4

u′ = 1
x v′ = x3

Integration by Parts gives us∫
x3 ln x dx = (ln x)

(
1

4
x4
)

−
∫ (

1

x

)(
1

4
x4
)

dx

= 1

4
x4 ln x − 1

4

∫
x3 dx = 1

4
x4 ln x − 1

16
x4 + C = x4

16
(4 ln x − 1) + C.

6.
∫

tan−1 x dx; u = tan−1 x, v′ = 1

solution Using u = tan−1 x and v′ = 1 gives us

u = tan−1 x v = x

u′ = 1

x2 + 1
v′ = 1

Integration by Parts gives us ∫
tan−1 x dx = x tan−1 x −

∫ (
1

x2 + 1

)
x dx.

For the integral on the right we’ll use the substitution w = x2 + 1, dw = 2x dx. Then we have∫
tan−1 x dx = x tan−1 x − 1

2

∫ (
1

x2 + 1

)
2x dx = x tan−1 x − 1

2

∫
dw

w

= x tan−1 x − 1

2
ln |w| + C = x tan−1 x − 1

2
ln |x2 + 1| + C.
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In Exercises 7–36, evaluate using Integration by Parts.

7.
∫

(4x − 3)e−x dx

solution Let u = 4x − 3 and v′ = e−x . Then we have

u = 4x − 3 v = −e−x

u′ = 4 v′ = e−x

Using Integration by Parts, we get∫
(4x − 3)e−x dx = (4x − 3)(−e−x) −

∫
(4)(−e−x) dx

= −e−x(4x − 3) + 4
∫

e−x dx = −e−x(4x − 3) − 4e−x + C = −e−x(4x + 1) + C.

8.
∫

(2x + 1)ex dx

solution Let u = 2x + 1 and v′ = e−x . Then we have

u = 2x + 1 v = −e−x

u′ = 2 v′ = e−x

Using Integration by Parts, we get∫
(2x + 1) e−x dx = (2x + 1)(−e−x) −

∫
(2)(−e−x) dx

= −(2x + 1)e−x + 2
∫

e−x dx = −(2x + 1)e−x − 2e−x + C = −e−x(2x + 3) + C.

9.
∫

x e5x+2 dx

solution Let u = x and v′ = e5x+2. Then we have

u = x v = 1

5
e5x+2

u′ = 1 v′ = e5x+2

Using Integration by Parts, we get∫
xe5x+2 dx = x

(
1

5
e5x+2

)
−
∫

(1)

(
1

5
e5x+2

)
dx = 1

5
xe5x+2 − 1

5

∫
e5x+2 dx

= 1

5
xe5x+2 − 1

25
e5x+2 + C =

(
x

5
− 1

25

)
e5x+2 + C

10.
∫

x2ex dx

solution Let u = x2 and v′ = ex . Then we have

u = x2 v = ex

u′ = 2x v′ = ex

Using Integration by Parts, we get ∫
x2 ex dx = x2ex − 2

∫
xex dx.

We must apply Integration by Parts again to evaluate
∫

xex dx. Taking u = x and v′ = ex , we get

∫
xex dx = xex −

∫
(1)ex dx = xex − ex + C.

Plugging this into the original equation gives us∫
x2 ex dx = x2ex − 2

(
xex − ex

)+ C = ex(x2 − 2x + 2) + C.
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11.
∫

x cos 2x dx

solution Let u = x and v′ = cos 2x. Then we have

u = x v = 1
2 sin 2x

u′ = 1 v′ = cos 2x

Using Integration by Parts, we get∫
x cos 2x dx = x

(
1

2
sin 2x

)
−
∫

(1)

(
1

2
sin 2x

)
dx

= 1

2
x sin 2x − 1

2

∫
sin 2x dx = 1

2
x sin 2x + 1

4
cos 2x + C.

12.
∫

x sin(3 − x) dx

solution Let u = x and v′ = sin(3 − x). Then we have

u = x v = cos(3 − x)

u′ = 1 v′ = sin(3 − x)

Using Integration by Parts, we get∫
x sin(3 − x) dx = x cos(3 − x) −

∫
(1) cos(3 − x) dx = x cos(3 − x) + sin(3 − x) + C

13.
∫

x2 sin x dx

solution Let u = x2 and v′ = sin x. Then we have

u = x2 v = − cos x

u′ = 2x v′ = sin x

Using Integration by Parts, we get∫
x2 sin x dx = x2(− cos x) −

∫
2x(− cos x) dx = −x2 cos x + 2

∫
x cos x dx.

We must apply Integration by Parts again to evaluate
∫

x cos x dx. Taking u = x and v′ = cos x, we get

∫
x cos x dx = x sin x −

∫
sin x dx = x sin x + cos x + C.

Plugging this into the original equation gives us∫
x2 sin x dx = −x2 cos x + 2(x sin x + cos x) + C = −x2 cos x + 2x sin x + 2 cos x + C.

14.
∫

x2 cos 3x dx

solution Let u = x2 and v′ = cos 3x. Then we have

u = x2 v = 1

3
sin 3x

u′ = 2x v′ = cos 3x

Using Integration by Parts, we get∫
x2 cos 3x dx = 1

3
x2 sin 3x −

∫
(2x)

1

3
sin 3x dx = 1

3
x2 sin 3x − 2

3

∫
x sin 3x dx

Use Integration by Parts again on this integral, with u = x and v′ = sin 3x to get∫
x2 cos 3x dx = 1

3
x2 sin 3x − 2

3

(
−1

3
x cos 3x + 1

3

∫
cos 3x dx

)

= 1

3
x2 sin 3x + 2

9
x cos 3x − 2

27
sin 3x + C
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15.
∫

e−x sin x dx

solution Let u = e−x and v′ = sin x. Then we have

u = e−x v = − cos x

u′ = −e−x v′ = sin x

Using Integration by Parts, we get∫
e−x sin x dx = −e−x cos x −

∫
(−e−x)(− cos x) dx = −e−x cos x −

∫
e−x cos x dx.

We must apply Integration by Parts again to evaluate
∫

e−x cos x dx. Using u = e−x and v′ = cos x, we get

∫
e−x cos x dx = e−x sin x −

∫
(−e−x)(sin x) dx = e−x sin x +

∫
e−x sin x dx.

Plugging this into the original equation, we get∫
e−x sin x dx = −e−x cos x −

[
e−x sin x +

∫
e−x sin x dx

]
.

Solving this equation for
∫

e−x sin x dx gives us

∫
e−x sin x dx = −1

2
e−x(sin x + cos x) + C.

16.
∫

ex sin 2x dx

solution Let u = sin 2x and v′ = ex . Then we have

u = sin 2x v = ex

u′ = 2 cos 2x v′ = ex

Using Integration by Parts, we get ∫
ex sin 2x dx = ex sin 2x − 2

∫
ex cos 2x dx.

We must apply Integration by Parts again to evaluate
∫

ex cos 2x dx. Using u = cos 2x and v′ = ex , we get

∫
ex cos 2x dx = ex cos 2x −

∫
(−2 sin 2x)ex dx = ex cos 2x + 2

∫
ex sin 2x dx.

Plugging this into the original equation, we get∫
ex sin 2x dx = ex sin 2x − 2

[
ex cos 2x + 2

∫
ex sin 2x dx

]
= ex sin 2x − 2ex cos 2x − 4

∫
ex sin 2x dx.

Solving this equation for
∫

ex sin 2x dx gives us

∫
ex sin 2x dx = 1

5
ex(sin 2x − 2 cos 2x) + C.

17.
∫

e−5x sin x dx

solution Let u = sin x and v′ = e−5x . Then we have

u = sin x v = −1

5
e−5x

u′ = cos x v′ = e−5x

Using Integration by Parts, we get∫
e−5x sin x dx = −1

5
e−5x sin x −

∫
cos x

(
−1

5
e−5x

)
dx = −1

5
e−5x sin x + 1

5

∫
e−5x cos x dx
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Apply Integration by Parts again to this integral, with u = cos x and v′ = e−5x to get∫
e−5x cos x dx = −1

5
e−5x cos x − 1

5

∫
e−5x sin x dx

Plugging this into the original equation, we get∫
e−5x sin x dx = −1

5
e−5x sin x + 1

5

(
−1

5
e−5x cos x − 1

5

∫
e−5x sin x dx

)

= −1

5
e−5x sin x − 1

25
e−5x cos x − 1

25

∫
e−5x sin x dx

Solving this equation for
∫

e−5x sin x dx gives us

∫
e−5x sin x dx = − 5

26
e−5x sin x − 1

26
e−5x cos x + C = − 1

26
e−5x(5 sin x + cos x) + C

18.
∫

e3x cos 4x dx

solution Let u = cos 4x and v′ = e3x . Then we have

u = cos 4x v = 1

3
e3x

u′ = −4 sin 4x v′ = e3x

Using Integration by Parts, we get∫
e3x cos 4x dx = 1

3
e3x cos 4x −

∫
1

3
e3x(−4 sin 4x) dx = 1

3
e3x cos 4x + 4

3

∫
e3x sin 4x dx

Apply Integration by Parts again to this integral, with u = sin 4x and v′ = e3x , to get∫
e3x sin 4x dx = 1

3
e3x sin 4x −

∫
1

3
e3x · 4 cos 4x dx = 1

3
e3x sin 4x − 4

3

∫
e3x cos 4x dx

Plugging this into the original equation, we get∫
e3x cos 4x dx = 1

3
e3x cos 4x + 4

3

(
1

3
e3x sin 4x − 4

3

∫
e3x cos 4x dx

)

= 1

3
e3x cos 4x + 4

9
e3x sin 4x − 16

9

∫
e3x cos 4x dx

Solving this equation for
∫

e3x cos 4x dx gives us

∫
e3x cos 4x dx = 3

25
e3x cos 4x + 4

25
e3x sin 4x = 1

25
e3x(3 cos 4x + 4 sin 4x) + C

19.
∫

x ln x dx

solution Let u = ln x and v′ = x. Then we have

u = ln x v = 1
2x2

u′ = 1
x v′ = x

Using Integration by Parts, we get∫
x ln x dx = 1

2
x2 ln x −

∫ (
1

x

)(
1

2
x2
)

dx

= 1

2
x2 ln x − 1

2

∫
x dx = 1

2
x2 ln x − 1

2

(
x2

2

)
+ C = 1

4
x2(2 ln x − 1) + C.
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20.
∫

ln x

x2
dx

solution Let u = ln x and v′ = x−2. Then we have

u = ln x v = −x−1

u′ = 1
x v′ = x−2

Using Integration by Parts, we get∫
ln x

x2
dx = − 1

x
ln x −

∫
1

x

(−1

x

)
dx = − 1

x
ln x +

∫
x−2 dx

= − 1

x
ln x − 1

x
+ C = − 1

x
(ln x + 1) + C.

21.
∫

x2 ln x dx

solution Let u = ln x and v′ = x2. Then we have

u = ln x v = 1
3x3

u′ = 1
x v′ = x2

Using Integration by Parts, we get∫
x2 ln x dx = 1

3
x3 ln x −

∫
1

x

(
1

3
x3
)

dx = 1

3
x3 ln x − 1

3

∫
x2 dx

= 1

3
x3 ln x − 1

3

(
x3

3

)
+ C = x3

3

(
ln x − 1

3

)
+ C.

22.
∫

x−5 ln x dx

solution Let u = ln x and v′ = x−5. Then we have

u = ln x v = −1

4
x−4

u′ = 1

x
v = x−5

Using Integration by Parts, we get∫
x−5 ln x dx = −1

4
x−4 ln x +

∫
1

4
x−4 1

x
dx = −1

4
x−4 ln x + 1

4

∫
x−5 dx

= −1

4
x−4 ln x − 1

16
x−4 + C = − 1

4x4

(
ln x + 1

4

)
+ C

23.
∫

(ln x)2 dx

solution Let u = (ln x)2 and v′ = 1. Then we have

u = (ln x)2 v = x

u′ = 2

x
ln x v′ = 1

Using Integration by Parts, we get∫
(ln x)2 dx = (ln x)2(x) −

∫ (
2

x
ln x

)
x dx = x(ln x)2 − 2

∫
ln x dx.

We must apply Integration by Parts again to evaluate
∫

ln x dx. Using u = ln x and v′ = 1, we have

∫
ln x dx = x ln x −

∫
1

x
· x dx = x ln x −

∫
dx = x ln x − x + C.

Plugging this into the original equation, we get∫
(ln x)2 dx = x(ln x)2 − 2 (x ln x − x) + C = x

[
(ln x)2 − 2 ln x + 2

]
+ C.
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24.
∫

x(ln x)2 dx

solution Let u = (ln x)2, v′ = x. Then we have

u = (ln x)2 v = 1

2
x2

u′ = 2 ln x

x
v′ = x

Using Integration by Parts, we get∫
x(ln x)2 dx = 1

2
x2(ln x)2 −

∫
x2 ln x

x
dx = 1

2
x2(ln x)2 −

∫
x ln x dx

Apply Integration by Parts again to this integral, with u = ln x, v′ = x, to get∫
x ln x dx = 1

2
x2 ln x − 1

2

∫
x2 1

x
dx = 1

2
x2 ln x − 1

4
x2

Plug this back into the first formula to get∫
x(ln x)2 dx = 1

2
x2(ln x)2 −

(
1

2
x2 ln x − 1

4
x2
)

+ C = 1

2
x2
(

(ln x)2 − ln x + 1

2

)
+ C

25.
∫

x sec2 x dx

solution Let u = x and v′ = sec2 x. Then we have

u = x v = tan x

u′ = 1 v′ = sec2 x

Using Integration by Parts, we get∫
x sec2 x dx = x tan x −

∫
(1) tan x dx = x tan x − ln | sec x| + C.

26.
∫

x tan x sec x dx

solution Let u = x and v′ = tan x sec x. Then we have

u = x v = sec x

u′ = 1 v′ = tan x sec x

Using Integration by Parts, we get∫
x tan x sec x dx = x sec x −

∫
sec x dx = x sec x − ln |sec x + tan x| + C

27.
∫

cos−1 x dx

solution Let u = cos−1 x and v′ = 1. Then we have

u = cos−1 x v = x

u′ = −1√
1 − x2

v′ = 1

Using Integration by Parts, we get ∫
cos−1 x dx = x cos−1 x −

∫ −x√
1 − x2

dx.

We can evaluate
∫ −x√

1 − x2
dx by making the substitution w = 1 − x2. Then dw = −2x dx, and we have

∫
cos−1 x dx = x cos−1 x − 1

2

∫ −2x dx√
1 − x2

= x cos−1 x − 1

2

∫
w−1/2 dw

= x cos−1 x − 1

2
(2w1/2) + C = x cos−1 x −

√
1 − x2 + C.
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28.
∫

sin−1 x dx

solution Let u = sin−1 x and v′ = 1. Then we have

u = sin−1 x v = x

u′ = 1√
1 − x2

v′ = 1

Using Integration by Parts, we get ∫
sin−1 x dx = x sin−1 x −

∫
x√

1 − x2
dx.

We can evaluate
∫

x√
1 − x2

dx by making the substitution w = 1 − x2. Then dw = −2x dx, and we have

∫
sin−1 x dx = x sin−1 x + 1

2

∫ −2x dx√
1 − x2

= x sin−1 x + 1

2

∫
w−1/2 dw

= x sin−1 x + 1

2
(2w1/2) + C = x sin−1 x +

√
1 − x2 + C.

29.
∫

sec−1 x dx

solution We are forced to choose u = sec−1 x, v′ = 1, so that u′ = 1
x
√

x2−1
and v = x. Using Integration by parts,

we get: ∫
sec−1 x dx = x sec−1 x −

∫
x dx

x
√

x2 − 1
= x sec−1 x −

∫
dx√

x2 − 1
.

Via the substitution
√

x2 − 1 = tan θ (so that x = sec θ and dx = sec θ tan θdθ ), we get:∫
sec−1 x dx = x sec−1 x −

∫
sec θ tan θdθ

tan θ
= x sec−1 x −

∫
sec θdθ

= x sec−1 x − ln | sec θ + tan θ | + C = x sec−1 x − ln |x +
√

x2 − 1| + C.

30.
∫

x5x dx

solution Let u = x and v′ = 5x . Then we have

u = x v = 5x

ln 5

u′ = 1 v′ = 5x

Using Integration by Parts, we get∫
x 5x dx = x

(
5x

ln 5

)
−
∫

(1)
5x

ln 5
dx = x 5x

ln 5
− 1

ln 5

∫
5x dx

= x 5x

ln 5
− 1

ln 5

(
5x

ln 5

)
+ C = 5x

ln 5

(
x − 1

ln 5

)
+ C.

31.
∫

3x cos x dx

solution Let u = cos x and v′ = 3x . Then we have

u = cos x v = 3x

ln 3

u′ = − sin x v′ = 3x

Using Integration by Parts, we get ∫
3x cos x dx = 3x

ln 3
cos x + 1

ln 3

∫
3x sin x dx
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Apply Integration by Parts to the remaining integral, with u = sin x and v′ = 3x ; then∫
3x sin x dx = 3x

ln 3
sin x − 1

ln 3

∫
3x cos x dx

Plug this into the first equation to get∫
3x cos x dx = 3x

ln 3
cos x + 1

ln 3

(
3x

ln 3
sin x − 1

ln 3

∫
3x cos x dx

)

= 3x

ln 3
cos x + 3x

(ln 3)2
sin x − 1

(ln 3)2

∫
3x cos x dx

Solving for
∫

3x cos x dx gives

∫
3x cos x dx = 3x ln 3 cos x

1 + (ln 3)2
+ 3x sin x

1 + (ln 3)2
+ C = 3x

1 + (ln 3)2
(ln 3 cos x + sin x) + C

32.
∫

x sinh x dx

solution Let u = x, v′ = sinh x. Then

u = x v = cosh x

u′ = 1 v′ = sinh x

Integration by Parts gives us∫
x sinh x dx = x cosh x −

∫
cosh x dx = x cosh x − sinh x + C

33.
∫

x2 cosh x dx

solution Let u = x2, v′ = cosh x. Then

u = x2 v = sinh x

u′ = 2x v′ = cosh x

Integration by Parts gives us (along with Exercise 32)∫
x2 cosh x dx = x2 sinh x − 2

∫
x sinh x, dx = x2 sinh x − 2x cosh x + 2 sinh x + C

34.
∫

cos x cosh x dx

solution Let u = cos x and v′ = cosh x. Then

u = cos x v = sinh x

u′ = − sin x v′ = cosh x

Integration by Parts gives us∫
cos x cosh x dx = cos x sinh x −

∫
(− sin x) sinh x dx = cos x sinh x +

∫
sin x sinh x dx.

We must apply Integration by Parts again to evaluate
∫

sin x sinh x dx. Using u = sin x and v′ = sinh x, we find

∫
sin x sinh x dx = sin x cosh x −

∫
cos x cosh x dx.

Plugging this into the original equation, we have∫
cos x cosh x dx = cos x sinh x + sin x cosh x −

∫
cos x cosh x dx.
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Solving this equation for
∫

cos x cosh x dx yields

∫
cos x cosh x dx = 1

2
(cos x sinh x + sin x cosh x) + C.

35.
∫

tanh−1 4x dx

solution Using u = tanh−1 4x and v′ = 1 gives us

u = tanh−1 4x v = x

u′ = 4

1 − 16x2
v′ = 1

Integration by Parts gives us ∫
tanh−1 4x dx = x tanh−1 4x −

∫ (
4

1 − 16x2

)
x dx.

For the integral on the right we’ll use the substitution w = 1 − 16x2, dw = −32x dx. Then we have∫
tanh−1 4x dx = x tanh−1 4x + 1

8

∫
dw

w
= x tanh−1 4x + 1

8
ln |w| + C

= x tanh−1 4x + 1

8
ln |1 − 16x2| + C.

36.
∫

sinh−1 x dx

solution Using u = sinh−1 x and v′ = 1 gives us

u = sinh−1 x v = x

u′ = 1√
1 + x2

v′ = 1

Integration by Parts gives us

∫
sinh−1 x dx = x sinh−1 x −

∫ (
1√

1 + x2

)
x dx.

For the integral on the right we’ll use the substitution w = 1 + x2, dw = 2x dx. Then we have∫
sinh−1 x dx = x sinh−1 x − 1

2

∫
dw√

w
= x sinh−1 x − √

w + C

= x sinh−1 x −
√

1 + x2 + C.

In Exercises 37 and 38, evaluate using substitution and then Integration by Parts.

37.
∫

e
√

x dx Hint: Let u = x1/2

solution Let w = x1/2. Then dw = 1
2x−1/2dx, or dx = 2 x1/2 dw = 2w dw. Now,

∫
e
√

x dx = 2
∫

wew dw.

Using Integration by Parts with u = w and v′ = ew , we get

2
∫

wew dw = 2(wew − ew) + C.

Substituting back, we find ∫
e
√

x dx = 2e
√

x(
√

x − 1) + C.
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38.
∫

x3ex2
dx

solution Let w = x2. Then dw = 2x dx, and∫
x3ex2

dx = 1

2

∫
wewdw.

Using Integration by Parts, we let u = w and v′ = ew . Then we have∫
wew dw = wew −

∫
(1)ew dw = wew − ew + C.

Substituting back in terms of x, we get ∫
x3 ex2

dx = 1

2

(
x2ex2 − ex2

)
+ C.

In Exercises 39–48, evaluate using Integration by Parts, substitution, or both if necessary.

39.
∫

x cos 4x dx

solution Let u = x and v′ = cos 4x. Then we have

u = x v = 1
4 sin 4x

u′ = 1 v′ = cos 4x

Using Integration by Parts, we get∫
x cos 4x dx = 1

4
x sin 4x −

∫
(1)

1

4
sin 4x dx = 1

4
x sin 4x − 1

4

(
−1

4
cos 4x

)
+ C

= 1

4
x sin 4x + 1

16
cos 4x + C.

40.
∫

ln(ln x) dx

x

solution Let w = ln x. Then dw = dx/x, and we have∫
ln(ln x) dx

x
=
∫

ln w dw

Now we can use Integration by Parts, letting u = ln w and v′ = 1. Then u′ = 1/w, v = w, and∫
ln w dw = w ln w −

∫
1

w
(w) dw = w ln w − w + C.

Substituting back in terms of x, we get∫
ln(ln x) dx

x
= (ln x) ln(ln x) − ln x + C.

41.
∫

x dx√
x + 1

solution Let u = x + 1. Then du = dx, x = u − 1, and∫
x dx√
x + 1

=
∫

(u − 1) du√
u

=
∫ (

u√
u

− 1√
u

)
du =

∫
(u1/2 − u−1/2) du

= 2

3
u3/2 − 2u1/2 + C = 2

3
(x + 1)3/2 − 2(x + 1)1/2 + C.

42.
∫

x2(x3 + 9)15 dx

solution Note that (x3 + 0)′ = 3x2, so use substitution with u = x3 + 9, du = 3x2 dx. Then∫
x2(x3 + 9)15 dx = 1

3

∫
u15 du = 1

48
u16 + C = 1

48
(x3 + 9)16 + C
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43.
∫

cos x ln(sin x) dx

solution Let w = sin x. Then dw = cos x dx, and∫
cos x ln(sin x) dx =

∫
ln w dw.

Now use Integration by Parts with u = ln w and v′ = 1. Then u′ = 1/w and v = w, which gives us∫
cos x ln(sin x) dx =

∫
ln w dw = w ln w − w + C = sin x ln(sin x) − sin x + C.

44.
∫

sin
√

x dx

solution First use substitution, with w = √
x and dw = dx/(2

√
x). This gives us∫

sin
√

x dx =
∫

(2
√

x) sin
√

x dx

(2
√

x)
= 2

∫
w sin w dw.

Now use Integration by Parts, with u = w and v′ = sin w. Then we have∫
sin

√
x dx = 2

∫
w sin w dw = 2

(
−w cos w −

∫
− cos w dw

)

= 2(−w cos w + sin w) + C = 2 sin
√

x − 2
√

x cos
√

x + C.

45.
∫ √

xe
√

x dx

solution Let w = √
x. Then dw = 1

2
√

x
dx and

∫ √
xe

√
x dx = 2

∫
w2ew dw.

Now, use Integration by Parts with u = w2 and v′ = ew . This gives∫ √
xe

√
x dx = 2

∫
w2ew dw = 2w2ew − 4

∫
wew dw.

We need to use Integration by Parts again, this time with u = w and v′ = ew . We find∫
wew dw = wew −

∫
ew dw = wew − ew + C;

finally, ∫ √
xe

√
x dx = 2w2ew − 4wew + 4ew + C = 2xe

√
x − 4

√
xe

√
x + 4e

√
x + C.

46.
∫

tan
√

x dx√
x

solution Let u = √
x and du = 1

2x−1/2. Then

∫
tan

√
x dx√
x

= 2
∫

tan u du = −2 ln | cos u| + C = −2 ln | cos
√

x| + C

47.
∫

ln(ln x) ln x dx

x

solution Let w = ln x. Then dw = dx/x, and∫
ln(ln x) ln x dx

x
=
∫

w ln w dw.

Now use Integration by Parts, with u = ln w and v′ = w. Then,

u = ln w v = 1

2
w2

u′ = w−1 v′ = w
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and ∫
ln(ln x) ln x dx

x
= 1

2
w2 ln w − 1

2

∫
w dw = 1

2
w2 ln w − 1

2

(
w2

2

)
+ C

= 1

2
(ln x)2 ln(ln x) − 1

4
(ln x)2 + C = 1

4
(ln x)2[2 ln(ln x) − 1] + C.

48.
∫

sin(ln x) dx

solution Let u = sin(ln x) and v′ = 1. Then we have

u = sin(ln x) v = x

u′ = cos(ln x)

x
v′ = 1

Using Integration by Parts, we get∫
sin(ln x) dx = x sin(ln x) −

∫
(x)

cos(ln x)

x
dx = x sin(ln x) −

∫
cos(ln x) dx.

We must use Integration by Parts again to evaluate
∫

cos(ln x) dx. Let u = cos(ln x) and v′ = 1. Then∫
sin(ln x) dx = x sin(ln x) −

[
x cos(ln x) −

∫
(− sin(ln x)) dx

]

= x sin(ln x) − x cos(ln x) −
∫

sin(ln x) dx.

Solving this equation for
∫

sin(ln x) dx, we get∫
sin(ln x) dx = x

2
[sin(ln x) − cos(ln x)] + C.

In Exercises 49–54, compute the definite integral.

49.
∫ 3

0
xe4x dx

solution Let u = x, v′ = e4x . Then u′ = 1 and v = 1

4
e4x . Using Integration by Parts,

∫ 3

0
xe4x dx =

(
1

4
xe4x

) ∣∣∣∣3
0

− 1

4

∫ 3

0
e4x dx = 3

4
e12 − 1

16
e12 + 1

16
= 11

16
e12 + 1

16

50.
∫ π/4

0
x sin 2x dx

solution Let u = x and v′ = sin 2x. Then u′ = 1 and v = − 1
2 cos 2x. Using Integration by Parts,

∫ π/4

0
x sin(2x) dx = −1

2
x cos 2x

∣∣∣∣π/4

0
−
∫ π/4

0

(
−1

2
cos 2x

)
dx =

(
−1

2
x cos 2x +

(
1

2

)
sin 2x

2

) ∣∣∣∣π/4

0

=
(

−1

2

(π

4

)
cos
(π

2

)
+ 1

4
sin
(π

2

))
− (0 + 0) = 1

4
.

51.
∫ 2

1
x ln x dx

solution Let u = ln x and v′ = x. Then u′ = 1
x and v = 1

2x2. Using Integration by Parts gives

∫ 2

1
x ln x dx =

(
1

2
x2 ln x

) ∣∣∣∣2
1

− 1

2

∫ 2

1
x dx = 2 ln 2 − 1

4
x2
∣∣∣∣2
1

= 2 ln 2 − 3

4

52.
∫ e

1

ln x dx

x2

solution Let u = ln x and v′ = x−2. Then u′ = x−1 and v = −x−1. Using Integration by Parts gives∫ e

1

ln x dx

x2
= − ln x

x

∣∣∣∣e
1

+
∫ e

1
x−2 dx = −e−1 − x−1

∣∣∣∣e
1

= 1 − 2

e
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53.
∫ π

0
ex sin x dx

solution Let u = sin x and v′ = ex ; then u′ = cos x and v = ex . Integration by Parts gives

∫ π

0
ex sin x dx = ex sin x

∣∣∣∣π
0

−
∫ π

0
ex cos x dx = −

∫ π

0
ex cos x dx

Apply integration by parts again to this integral, with u = cos x and v′ = ex ; then u′ = − sin x and v = ex , so we get

∫ π

0
ex sin x dx = −

((
ex cos x

) ∣∣∣∣π
0

+
∫ π

0
ex sin x dx

)
= eπ + 1 −

∫ π

0
ex sin x dx

Solving for
∫ π

0
ex sin x dx gives

∫ π

0
ex sin x dx = eπ + 1

2

54.
∫ 1

0
tan−1 x dx

solution Let u = tan−1 x and v′ = 1. Then we have

u = tan−1 x v = x

u′ = 1

x2 + 1
v′ = 1

Integration by Parts gives us

∫
tan−1 x dx = x tan−1 x −

∫ (
1

x2 + 1

)
x dx.

For the integral on the right we’ll use the substitution w = x2 + 1, dw = 2x dx. Then we have

∫
tan−1 x dx = x tan−1 x − 1

2

∫
dw

w
= x tan−1 x − 1

2
ln |w| + C = x tan−1 x − 1

2
ln |x2 + 1| + C.

Now we can compute the definite integral:

∫ 1

0
tan−1 x dx =

(
x tan−1 x − 1

2
ln |x2 + 1|

)∣∣∣∣1
0

=
(

(1) tan−1(1) − 1

2
ln 2

)
− (0) = π

4
− 1

2
ln 2.

55. Use Eq. (5) to evaluate
∫

x4ex dx.

solution

∫
x4ex dx = x4ex − 4

∫
x3ex dx = x4ex − 4

[
x3ex − 3

∫
x2ex dx

]

= x4ex − 4x3ex + 12
∫

x2ex dx = x4ex − 4x3ex + 12

[
x2ex − 2

∫
xex dx

]

= x4ex − 4x3ex + 12x2ex − 24
∫

xex dx = x4ex − 4x3ex + 12x2ex − 24

[
xex −

∫
ex dx

]

= x4ex − 4x3ex + 12x2ex − 24
[
xex − ex

]+ C.

Thus,

∫
x4ex dx = ex(x4 − 4x3 + 12x2 − 24x + 24) + C.
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56. Use substitution and then Eq. (5) to evaluate
∫

x4e7x dx.

solution Let u = 7x. Then du = 7dx, and∫
x4e7x dx = 1

75

∫
(7x)4e7x(7dx) = 1

75

∫
u4eu du.

Now use the result from Exercise 55:∫
x4e7x dx = 1

75 eu[u4 − 4u3 + 12u2 − 24u + 24] + C

= 1

75 e7x [(7x)4 − 4(7x)3 + 12(7x)2 − 24(7x) + 24] + C

= 1

75 e7x [2401x4 − 1372x3 + 588x2 − 168x + 24] + C.

57. Find a reduction formula for
∫

xne−x dx similar to Eq. (5).

solution Let u = xn and v′ = e−x . Then

u = xn v = −e−x

u′ = nxn−1 v′ = e−x

Using Integration by Parts, we get∫
xne−x dx = −xne−x −

∫
nxn−1(−e−x) dx = −xne−x + n

∫
xn−1e−x dx.

58. Evaluate
∫

xn ln x dx for n �= −1. Which method should be used to evaluate
∫

x−1 ln x dx?

solution Let u = ln x and v′ = xn. Then we have

u = ln x v = xn+1

n + 1

u′ = 1

x
v′ = xn

and ∫
xn ln x dx = xn+1

n + 1
ln x −

∫
1

x
· xn+1

n + 1
dx = xn+1

n + 1
ln x − 1

n + 1

∫
xn dx

= xn+1

n + 1
ln x − 1

n + 1
· xn+1

n + 1
= xn+1

n + 1

(
ln x − 1

n + 1

)
+ C.

For n = −1,
∫

x−1 ln x dx, use the substitution u = ln x, du = dx/x. Then

∫
x−1 ln x dx =

∫
u du = u2

2
+ C = 1

2
(ln x)2 + C.

In Exercises 59–66, indicate a good method for evaluating the integral (but do not evaluate). Your choices are algebraic
manipulation, substitution (specify u and du), and Integration by Parts (specify u and v′). If it appears that the techniques
you have learned thus far are not sufficient, state this.

59.
∫ √

x ln x dx

solution Use Integration by Parts, with u = ln x and v′ = √
x.

60.
∫

x2 − √
x

2x
dx

solution Use algebraic manipulation:

x2 − √
x

2x
= x

2
− 1

2
√

x
.
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61.
∫

x3 dx√
4 − x2

solution Use substitution, followed by algebraic manipulation: Let u = 4 − x2. Then du = −2x dx, x2 = 4 − u,
and ∫

x3√
4 − x2

dx = −1

2

∫
(x2)(−2x dx)√

u
= −1

2

∫
(4 − u)(du)√

u
= −1

2

∫ (
4√
u

− u√
u

)
du.

62.
∫

dx√
4 − x2

solution The techniques learned so far are insufficient. This problem requires the technique of trigonometric substi-
tution.

63.
∫

x + 2

x2 + 4x + 3
dx

solution Use substitution. Let u = x2 + 4x + 3; then du = 2x + 4 dx = 2(x + 2) dx, and∫
x + 2

x2 + 4x + 3
dx = 1

2

∫
1

u
du

64.
∫

dx

(x + 2)(x2 + 4x + 3)

solution The techniques learned so far are insufficient. This problem requires the technique of trigonometric substi-
tution.

65.
∫

x sin(3x + 4) dx

solution Use Integration by Parts, with u = x and v′ = sin(3x + 4).

66.
∫

x cos(9x2) dx

solution Use substitution, with u = 9x2 and du = 18x dx.

67. Evaluate
∫

(sin−1 x)2 dx. Hint: Use Integration by Parts first and then substitution.

solution First use integration by parts with v′ = 1 to get

∫
(sin−1 x)2 dx = x(sin−1 x)2 − 2

∫
x sin−1 x dx√

1 − x2
.

Now use substitution on the integral on the right, with u = sin−1 x. Then du = dx/
√

1 − x2 and x = sin u, and we get
(using Integration by Parts again)∫

x sin−1 x dx√
1 − x2

=
∫

u sin u du = −u cos u + sin u + C = −
√

1 − x2 sin−1 x + x + C.

where cos u =
√

1 − sin2 u =
√

1 − x2. So the final answer is∫
(sin−1 x)2 dx = x(sin−1 x)2 + 2

√
1 − x2 sin−1 x − 2x + C.

68. Evaluate
∫

(ln x)2 dx

x2
. Hint: Use substitution first and then Integration by Parts.

solution Let w = ln x. Then dw = dx/x, ew = x, and

∫
(ln x)2 dx

x2
=
∫

w2dw

ew
.

Now use Integration by Parts, with u = w2 and v′ = e−w:∫
w2dw

ew
= −w2e−w −

∫
2w(−e−w) dw = −w2e−w + 2(−we−w − e−w) + C

= −e−w(w2 + 2w + 2) + C = −e− ln x((ln x)2 + 2 ln x + 2) + C.

The final answer is ∫
(ln x)2 dx

x2
= −[(ln x)2 + 2 ln x + 2]

x
+ C.
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69. Evaluate
∫

x7 cos(x4) dx.

solution First, let w = x4. Then dw = 4x3 dx and∫
x7 cos(x4) dx = 1

4

∫
w cos x dw.

Now, use Integration by Parts with u = w and v′ = cos w. Then∫
x7 cos(x4) dx = 1

4

(
w sin w −

∫
sin w dw

)
= 1

4
w sin w + 1

4
cos w + C = 1

4
x4 sin(x4) + 1

4
cos(x4) + C.

70. Find f (x), assuming that ∫
f (x)ex dx = f (x)ex −

∫
x−1ex dx

solution We see that Integration by Parts was applied to
∫

f (x) ex dx with u = f (x) and v′ = ex , and that therefore

f ′(x) = u′ = x−1. Thus f (x) = ln x + C for any constant C.

71. Find the volume of the solid obtained by revolving the region under y = ex for 0 ≤ x ≤ 2 about the y-axis.

solution By the Method of Cylindrical Shells, the volume V of the solid is

V =
∫ b

a
(2πr)h dx = 2π

∫ 2

0
xex dx.

Using Integration by Parts with u = x and v′ = ex , we find

V = 2π (xex − ex)

∣∣∣2
0

= 2π
[
(2e2 − e2) − (0 − 1)

] = 2π(e2 + 1).

72. Find the area enclosed by y = ln x and y = (ln x)2.

solution The two graphs intersect at x = 1 and at x = e, and ln x is above (ln x)2, so the area is

∫ e

1
ln x − (ln x)2 dx =

∫ e

1
ln x dx −

∫ e

1
(ln x)2 dx

Using integration by parts for the second integral, let u = (ln x)2, v′ = 1; then u′ = 2 ln x
x and v = x, so that

∫ e

1
(ln x)2 dx =

(
x(ln x)2

) ∣∣∣∣e
1

− 2
∫ e

1
ln x = e − 2

∫ e

1
ln x

Substituting this back into the original equation gives∫ e

1
ln x − (ln x)2 dx = 3

∫ e

1
ln x dx − e

We use integration by parts to evaluate the remaining integral, with u = ln x and v′ = 1; then u′ = 1
x and v = x, so that

∫ e

1
ln x dx = x ln x

∣∣∣∣e
1

−
∫ e

1
1 dx = e − (e − 1) = 1

and thus, substituting back in, the value of the original integral is∫ e

1
ln x − (ln x)2 dx = 3

∫ e

1
ln x dx − e = 3 − e

73. Recall that the present value (PV) of an investment that pays out income continuously at a rate R(t) for T years is∫ T

0
R(t)e−rt dt , where r is the interest rate. Find the PV if R(t) = 5000 + 100t $/year, r = 0.05 and T = 10 years.

solution The present value is given by

PV =
∫ T

0
R(t)e−rt dt =

∫ 10

0
(5000 + 100t)e−rt dt = 5000

∫ 10

0
e−rt dt + 100

∫ 10

0
te−rt dt.
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Using Integration by Parts for the integral on the right, with u = t and v′ = e−rt , we find

PV = 5000

(
−1

r
e−rt

)∣∣∣∣10

0
+ 100

[(
− t

r
e−rt

)∣∣∣∣10

0
−
∫ 10

0

−1

r
e−rt dt

]

= −5000

r
e−rt

∣∣∣∣10

0
− 100

r

(
te−rt + 1

r
e−rt

)∣∣∣∣10

0

= −5000

r
(e−10r − 1) − 100

r

[(
10e−10r + 1

r
e−10r

)
−
(

0 + 1

r

)]

= e−10r

[
−5000

r
− 1000

r
− 100

r2

]
+ 5000

r
+ 100

r2

= 5000r + 100 − e−10r (6000r + 100)

r2
.

74. Derive the reduction formula ∫
(ln x)k dx = x(ln x)k − k

∫
(ln x)k−1 dx 6

solution Use Integration by Parts with u = (ln x)k and v′ = 1. Then u′ = k(ln x)k−1/x, v = x, and we get

∫
(ln x)k dx = x(ln x)k − k

∫
(ln x)k−1x dx

x
= x(ln x)k − k

∫
(ln x)k−1 dx.

75. Use Eq. (6) to calculate
∫

(ln x)k dx for k = 2, 3.

solution

∫
(ln x)2 dx = x(ln x)2 − 2

∫
ln x dx = x(ln x)2 − 2(x ln x − x) + C = x(ln x)2 − 2x ln x + 2x + C;

∫
(ln x)3 dx = x(ln x)3 − 3

∫
(ln x)2 dx = x(ln x)3 − 3

[
x(ln x)2 − 2x ln x + 2x

]
+ C

= x(ln x)3 − 3x(ln x)2 + 6x ln x − 6x + C.

76. Derive the reduction formulas ∫
xn cos x dx = xn sin x − n

∫
xn−1 sin x dx

∫
xn sin x dx = −xn cos x + n

∫
xn−1 cos x dx

solution For
∫

xn cos x dx, let u = xn and v′ = cos x. Then we have

u = xn v = sin x

u′ = nxn−1 v′ = cos x

Using Integration by Parts, we get ∫
xn cos x dx = xn sin x − n

∫
xn−1 sin x dx.

For
∫

xn sin x dx, let u = xn and v′ = sin x. Then we have

u = xn v = − cos x

u′ = nxn−1 v′ = sin x

Using Integration by Parts, we get ∫
xn sin x dx = −xn cos x + n

∫
xn−1 cos x dx.
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77. Prove that
∫

xbx dx = bx

(
x

ln b
− 1

ln2 b

)
+ C.

solution Let u = x and v′ = bx . Then u′ = 1 and v = bx/ ln b. Using Integration by Parts, we get

∫
x bx dx = xbx

ln b
− 1

ln b

∫
bx dx = xbx

ln b
− 1

ln b
· bx

ln b
+ C = bx

(
x

ln b
− 1

(ln b)2

)
+ C.

78. Define Pn(x) by ∫
xnex dx = Pn(x) ex + C

Use Eq. (5) to prove that Pn(x) = xn − nPn−1(x). Use this recursion relation to find Pn(x) for n = 1, 2, 3, 4. Note that
P0(x) = 1.

solution Use induction on n. Clearly for n = 0, we have

∫
x0ex dx =

∫
ex dx = ex + C = (1)ex + C

so we may take P0(x) = 1 = x0 − 0. Now assume that∫
xnex dx = Pn(x)ex + C

where Pn(x) = xn − nPn−1(x). Then using Eq. (5) with n + 1 in place of n gives∫
xn+1ex dx = xn+1ex − (n + 1)

∫
xnex dx = xn+1ex − (n + 1)(Pn(x)ex + C1)

= (xn+1 − (n + 1)Pn(x))ex + C

Thus we may define Pn+1(x) = xn+1 − (n + 1)Pn(x) and we get∫
xn+1ex dx = Pn+1(x)ex + C

as required.

Further Insights and Challenges
79. The Integration by Parts formula can be written∫

u(x)v(x) dx = u(x)V (x) −
∫

u′(x)V (x) dx 7

where V (x) satisfies V ′(x) = v(x).

(a) Show directly that the right-hand side of Eq. (7) does not change if V (x) is replaced by V (x) + C, where C is a
constant.

(b) Use u = tan−1 x and v = x in Eq. (7) to calculate
∫

x tan−1 x dx, but carry out the calculation twice: first with

V (x) = 1
2x2 and then with V (x) = 1

2x2 + 1
2 . Which choice of V (x) results in a simpler calculation?

solution

(a) Replacing V (x) with V (x) + C in the expression u(x)V (x) − ∫ V (x)u′(x) dx, we get

u(x)(V (x) + C) −
∫

(V (x) + C)u′(x) dx = u(x)V (x) + u(x)C −
∫

V (x)u′(x) dx − C

∫
u′(x) dx

= u(x)V (x) −
∫

V (x)u′(x) dx + C

[
u(x) −

∫
u′(x) dx

]

= u(x)V (x) −
∫

V (x)u′(x) dx + C [u(x) − u(x)]

= u(x)V (x) −
∫

V (x)u′(x) dx.
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(b) If we evaluate
∫

x tan−1 x dx with u = tan−1 x and v′ = x, and if we don’t add a constant to v, Integration by Parts

gives us

∫
x tan−1 x dx = x2

2
tan−1 x − 1

2

∫
x2dx

x2 + 1
.

The integral on the right requires algebraic manipulation in order to evaluate. But if we take V (x) = 1
2x2 + 1

2 instead of

V (x) = 1
2x2, then

∫
x tan−1 x dx =

(
1

2
x2 + 1

2

)
tan−1 x − 1

2

∫
x2 + 1

x2 + 1
dx = 1

2
(x2 + 1) tan−1 x − 1

2
x + C

= 1

2
(x2 tan−1 x − x + tan−1 x) + C.

80. Prove in two ways that ∫ a

0
f (x) dx = af (a) −

∫ a

0
xf ′(x) dx 8

First use Integration by Parts. Then assume f (x) is increasing. Use the substitution u = f (x) to prove that
∫ a

0
xf ′(x) dx

is equal to the area of the shaded region in Figure 1 and derive Eq. (8) a second time.

0 a
x

y y = f (x)
f (a)

f (0)

FIGURE 1

solution Let u = f (x) and v′ = 1. Then Integration by Parts gives

∫ a

0
f (x) dx = xf (x)

∣∣∣∣a
0

−
∫ a

0
xf ′(x) dx = af (a) −

∫ a

0
xf ′(x) dx.

Alternately, let u = f (x). Then du = f ′(x) dx, and if f (x) is either increasing or decreasing, it has an inverse function,
and x = f −1(u). Thus,

∫ x=a

x=0
xf ′(x) dx =

∫ f (a)

f (0)
f −1(u) du

which is precisely the area of the shaded region in Figure 1 (integrating along the vertical axis). Since the area of the
entire rectangle is af (a), the difference between the areas of the two regions is

∫ a
0 f (x) dx.

81. Assume that f (0) = f (1) = 0 and that f ′′ exists. Prove

∫ 1

0
f ′′(x)f (x) dx = −

∫ 1

0
f ′(x)2 dx 9

Use this to prove that if f (0) = f (1) = 0 and f ′′(x) = λf (x) for some constant λ, then λ < 0. Can you think of a
function satisfying these conditions for some λ?

solution Let u = f (x) and v′ = f ′′(x). Using Integration by Parts, we get

∫ 1

0
f ′′(x)f (x) dx = f (x)f ′(x)

∣∣∣1
0

−
∫ 1

0
f ′(x)2 dx = f (1)f ′(1) − f (0)f ′(0) −

∫ 1

0
f ′(x)2 dx = −

∫ 1

0
f ′(x)2 dx.

Now assume that f ′′(x) = λf (x) for some constant λ. Then

∫ 1

0
f ′′(x)f (x) dx = λ

∫ 1

0
[f (x)]2 dx = −

∫ 1

0
f ′(x)2 dx < 0.

Since
∫ 1

0
[f (x)]2 dx > 0, we must have λ < 0. An example of a function satisfying these properties for some λ is

f (x) = sin πx.
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82. Set I (a, b) =
∫ 1

0
xa(1 − x)b dx, where a, b are whole numbers.

(a) Use substitution to show that I (a, b) = I (b, a).

(b) Show that I (a, 0) = I (0, a) = 1

a + 1
.

(c) Prove that for a ≥ 1 and b ≥ 0,

I (a, b) = a

b + 1
I (a − 1, b + 1)

(d) Use (b) and (c) to calculate I (1, 1) and I (3, 2).

(e) Show that I (a, b) = a! b!
(a + b + 1)! .

solution

(a) Let u = 1 − x. Then du = −dx and

I (a, b) =
∫ u=0

u=1
(1 − u)aub(−du) =

∫ 1

0
ub(1 − u)a du = I (b, a).

(b) I (a, 0) = I (0, a) by part (a). Further,

I (a, 0) =
∫ 1

0
xa(1 − x)0 dx =

∫ 1

0
xa dx = 1

a + 1
.

(c) Using Integration by Parts with u = (1 − x)b and v′ = xa gives

I (a, b) = (1 − x)b
xa+1

a + 1

∣∣∣∣∣
1

0

+ b

a + 1

∫ 1

0
xa+1(1 − x)b−1 dx = b

a + 1
I (a + 1, b − 1).

The other equality arises from Integration by Parts with u = xa and v′ = (1 − x)b.

(d)

I (1, 1) = 1

1 + 1
I (1 − 1, 1 + 1) = 1

2
I (0, 2) = 1

2
· 1

3
= 1

6

I (3, 2) = 1

2
I (4, 2) = 1

2
· 1

5
I (5, 0) = 1

10
· 1

6
= 1

60
.

(e) We proceed as follows:

I (a, b) = a

b + 1
I (a − 1, b + 1) = a

b + 1
· a − 1

b + 2
I (a − 2, b + 2)

...

= a

b + 1
· a − 1

b + 2
· · · 1

b + a
I (0, b + a)

= a(a − 1) · · · (1)

(b + 1)(b + 2) · · · (b + a)
· 1

b + a + 1

= b! a!
b! (b + 1)(b + 2) · · · (b + a)(b + a + 1)

= a! b!
(a + b + 1)! .

83. Let In =
∫

xn cos(x2) dx and Jn =
∫

xn sin(x2) dx.

(a) Find a reduction formula that expresses In in terms of Jn−2. Hint: Write xn cos(x2) as xn−1(x cos(x2)).

(b) Use the result of (a) to show that In can be evaluated explicitly if n is odd.

(c) Evaluate I3.

solution

(a) Integration by Parts with u = xn−1 and v′ = x cos(x2) dx yields

In = 1

2
xn−1 sin(x2) − n − 1

2

∫
xn−2 sin(x2) dx = 1

2
xn−1 sin(x2) − n − 1

2
Jn−2.
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(b) If n is odd, the reduction process will eventually lead to either∫
x cos(x2) dx or

∫
x sin(x2) dx,

both of which can be evaluated using the substitution u = x2.
(c) Starting with the reduction formula from part (a), we find

I3 = 1

2
x2 sin(x2) − 2

2

∫
x sin(x2) dx = 1

2
x2 sin(x2) + 1

2
cos(x2) + C.

7.2 Trigonometric Integrals

Preliminary Questions
1. Describe the technique used to evaluate

∫
sin5 x dx.

solution Because the sine function is raised to an odd power, rewrite sin5 x = sin x sin4 x = sin x(1 − cos2 x)2 and
then substitute u = cos x.

2. Describe a way of evaluating
∫

sin6 x dx.

solution Repeatedly use the reduction formula for powers of sin x.

3. Are reduction formulas needed to evaluate
∫

sin7 x cos2 x dx? Why or why not?

solution No, a reduction formula is not needed because the sine function is raised to an odd power.

4. Describe a way of evaluating
∫

sin6 x cos2 x dx.

solution Because both trigonometric functions are raised to even powers, write cos2 x = 1 − sin2 x and then apply
the reduction formula for powers of the sine function.

5. Which integral requires more work to evaluate?∫
sin798 x cos x dx or

∫
sin4 x cos4 x dx

Explain your answer.

solution The first integral can be evaluated using the substitution u = sin x, whereas the second integral requires the
use of reduction formulas. The second integral therefore requires more work to evaluate.

Exercises
In Exercises 1–6, use the method for odd powers to evaluate the integral.

1.
∫

cos3 x dx

solution Use the identity cos2 x = 1 − sin2 x to rewrite the integrand:∫
cos3 x dx =

∫ (
1 − sin2 x

)
cos x dx.

Now use the substitution u = sin x, du = cos x dx:∫
cos3 x dx =

∫ (
1 − u2

)
du = u − 1

3
u3 + C = sin x − 1

3
sin3 x + C.

2.
∫

sin5 x dx

solution Use the identity sin2 x = 1 − cos2 x to rewrite the integrand:∫
sin5 x dx =

∫ (
sin2 x

)2
sin x dx =

∫ (
1 − cos2 x

)2
sin x dx.

Now use the substitution u = cos x, du = − sin x dx:∫
sin5 x dx = −

∫ (
1 − u2

)2
du = −

∫ (
1 − 2u2 + u4

)
du = −u + 2

3
u3 − 1

5
u5 + C

= − cos x + 2

3
cos3 x − 1

5
cos5 x + C.
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3.
∫

sin3 θ cos2 θ dθ

solution Write sin3 θ = sin2 θ sin θ = (1 − cos2 θ) sin θ . Then∫
sin3 θ cos2 θ dθ =

∫ (
1 − cos2 θ

)
cos2 θ sin θ dθ.

Now use the substitution u = cos θ , du = − sin θ dθ :∫
sin3 θ cos2 θ dθ = −

∫ (
1 − u2

)
u2 du = −

∫ (
u2 − u4

)
du

= −1

3
u3 + 1

5
u5 + C = −1

3
cos3 θ + 1

5
cos5 θ + C.

4.
∫

sin5 x cos x dx

solution Write sin5 x = sin4 x sin x = (1 − cos2 x)2 sin x. Then

∫
cos x sin5 x dx =

∫
cos x

(
1 − cos2 x

)2
sin x dx.

Now use the substitution u = cos x, du = − sin x dx:∫
cos x sin5 x dx = −

∫
u
(

1 − u2
)2

du = −
∫

u
(

1 − 2u2 + u4
)

du =
∫ (

−u + 2u3 − u5
)

du

= −1

2
u2 + 1

2
u4 − 1

6
u6 + C = −1

2
cos2 x + 1

2
cos4 x − 1

6
cos6 x + C.

5.
∫

sin3 t cos3 t dt

solution Write sin3 t = (1 − cos2 t) sin t dt . Then∫
sin3 t cos3 t dt =

∫
(1 − cos2 t) cos3 t sin t dt =

∫ (
cos3 t − cos5 t

)
sin t dt.

Now use the substitution u = cos t , du = − sin t dt :∫
sin3 t cos3 t dt = −

∫ (
u3 − u5

)
du = −1

4
u4 + 1

6
u6 + C = −1

4
cos4 t + 1

6
cos6 t + C.

6.
∫

sin2 x cos5 x dx

solution Write cos5 x = cos4 x cos x = (1 − sin2 x)2 cos x. Then

∫
sin2 x cos5 x dx =

∫
sin2 x

(
1 − sin2 x

)2
cos x dx.

Now use the substitution u = sin x, du = cos x dx:∫
sin2 x cos5 x dx =

∫
u2
(

1 − u2
)2

du =
∫ (

u2 − 2u4 + u6
)

du

= 1

3
u3 − 2

5
u5 + 1

7
u7 + C = 1

3
sin3 x − 2

5
sin5 x + 1

7
sin7 x + C.

7. Find the area of the shaded region in Figure 1.

x

y

y = cos3 x
1

−1

p 3p
2

p
2

FIGURE 1 Graph of y = cos3 x.
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solution First evaluate the indefinite integral by writing cos3 x = (1 − sin2 x) cos x, and using the substitution
u = sin x, du = cos x dx:∫

cos3 x dx =
∫ (

1 − sin2 x
)

cos x dx =
∫ (

1 − u2
)

du = u − 1

3
u3 + C = sin x − 1

3
sin3 x + C.

The area is given by

A =
∫ π/2

0
cos3 x dx −

∫ 3π/2

π/2
cos3 x dx =

(
sin x − 1

3
sin3 x

)∣∣∣∣π/2

0
−
(

sin x − 1

3
sin3 x

)∣∣∣∣3π/2

π/2

=
[(

sin
π

2
− 1

3
sin3 π

2

)
− 0

]
−
[(

sin
3π

2
− 1

3
sin3 3π

2

)
−
(

sin
π

2
− 1

3
sin3 π

2

)]

= 1 − 1

3
(1)3 − (−1) + 1

3
(−1)3 + 1 − 1

3
(1)3 = 2.

8. Use the identity sin2 x = 1 − cos2 x to write
∫

sin2 x cos2 x dx as a sum of two integrals, and then evaluate using
the reduction formula.

solution Using the identity sin2 x = 1 − cos2 x, we get

∫
sin2 x cos2 x d =

∫ (
1 − cos2 x

)
cos2 x dx =

∫
cos2 x dx −

∫
cos4 x dx.

Using the reduction formula for cosm x, we get

∫
cos4 x dx = cos3 x sin x

4
+ 3

4

∫
cos2 x dx.

Thus, ∫
sin2 x cos2 x dx =

∫
cos2 x − 1

4
cos3 x sin x − 3

4

∫
cos2 x dx = −1

4
cos3 x sin x + 1

4

∫
cos2 x dx.

Using the reduction formula again, we have∫
sin2 x cos2 x dx = −1

4
cos3 x sin x + 1

4

[
cos x sin x

2
+ 1

2

∫
dx

]
= −1

4
cos3 x sin x + 1

8
cos x sin x + 1

8
x + C.

In Exercises 9–12, evaluate the integral using methods employed in Examples 3 and 4.

9.
∫

cos4 y dy

solution Using the reduction formula for cosm y, we get

∫
cos4 y dy = 1

4
cos3 y sin y + 3

4

∫
cos2 y dy = 1

4
cos3 y sin y + 3

4

(
1

2
cos y sin y + 1

2

∫
dy

)

= 1

4
cos3 y sin y + 3

8
cos y sin y + 3

8
y + C.

10.
∫

cos2 θ sin2 θ dθ

solution First use the identity cos2 θ = 1 − sin2 θ to write:

∫
cos2 θ sin2 θ dθ =

∫ (
1 − sin2 θ

)
sin2 θ dθ =

∫
sin2 θ dθ −

∫
sin4 θ dθ.

Using the reduction formula for sinm θ , we get∫
cos2 θ sin2 θ dθ =

∫
sin2 θ dθ −

[
−1

4
sin3 θ cos θ + 3

4

∫
sin2 θ dθ

]
= 1

4
sin3 θ cos θ + 1

4

∫
sin2 θ dθ

= 1

4
sin3 θ cos θ + 1

4

(
−1

2
sin θ cos θ + 1

2

∫
dθ

)
= 1

4
sin3 θ cos θ − 1

8
sin θ cos θ + 1

8
θ + C.
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11.
∫

sin4 x cos2 x dx

solution Use the identity cos2 x = 1 − sin2 x to write:∫
sin4 x cos2 x dx =

∫
sin4 x

(
1 − sin2 x

)
dx =

∫
sin4 x dx −

∫
sin6 x dx.

Using the reduction formula for sinm x:∫
sin4 x cos2 x dx =

∫
sin4 x dx −

[
−1

6
sin5 x cos x + 5

6

∫
sin4 x dx

]

= 1

6
sin5 x cos x + 1

6

∫
sin4 x dx = 1

6
sin5 x cos x + 1

6

(
−1

4
sin3 x cos x + 3

4

∫
sin2 x dx

)

= 1

6
sin5 x cos x − 1

24
sin3 x cos x + 1

8

∫
sin2 x dx

= 1

6
sin5 x cos x − 1

24
sin3 x cos x + 1

8

(
−1

2
sin x cos x + 1

2

∫
dx

)

= 1

6
sin5 x cos x − 1

24
sin3 x cos x − 1

16
sin x cos x + 1

16
x + C.

12.
∫

sin2 x cos6 x dx

solution Use the identity sin2 x = 1 − cos2 x to write∫
sin2 x cos6 x dx =

∫
(1 − cos2 x) cos6 x dx =

∫
cos6 x dx −

∫
cos8 x dx

Now use the reduction formula for cosn x:∫
cos6 x dx = cos5 x sin x

6
+ 5

6

∫
cos4 x dx

= cos5 x sin x

6
+ 5

6

(
cos3 x sin x

4
+ 3

4

∫
cos2 x dx

)

= 1

6
cos5 x sin x + 5

24
cos3 x sin x + 15

24

(
x

2
+ sin 2x

4

)
+ C

= 1

6
cos5 x sin x + 5

24
cos3 x sin x + 15

48
x + 15

96
sin 2x + C

and ∫
cos8 x dx = 1

8
cos7 x sin x + 7

8

∫
cos6 x dx

= 1

8
cos7 x sin x + 7

8

(
1

6
cos5 x sin x + 5

24
cos3 x sin x + 15

48
x + 15

96
sin 2x

)
+ C

= 1

8
cos7 x sin x + 7

48
cos5 x sin x + 35

192
cos3 x sin x + 105

384
x + 105

768
sin 2x + C

so that ∫
sin2 x cos6 x dx = −1

8
cos7 x sin x + 1

48
cos5 x sin x + 5

192
cos3 x sin x + 5

128
x + 5

256
sin 2x + C

In Exercises 13 and 14, evaluate using Eq. (13).

13.
∫

sin3 x cos2 x dx

solution First rewrite sin3 x = sin x · sin2 x = sin x(1 − cos2 x), so that∫
sin3 x cos2 x dx =

∫
sin x(1 − cos2 x) cos2 x dx =

∫
sin x(cos2 x − cos4 x) dx

Now make the substitution u = cos x, du = − sin x dx:∫
sin x(cos2 x − cos4 x) dx = −

∫
u2 − u4 du = 1

5
u5 − 1

3
u3 + C = 1

5
cos5 x − 1

3
cos3 x + C
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14.
∫

sin2 x cos4 x dx

solution Using the formula for
∫

sinm x cosn x dx, we get

I =
∫

sin2 x cos4 x dx = 1

6
sin3 x cos3 x + 3

6

∫
sin2 x cos2 x dx = 1

6
sin3 x cos3 x + 1

2

∫
sin2 x cos2 x dx.

Applying the formula again on the remaining integral, we get∫
sin2 x cos2 x dx = 1

4
sin3 x cos x + 1

4

∫
sin2 x cos0 x dx = 1

4
sin3 x cos x + 1

4

∫
sin2 x dx.

The final result is

I = 1

6
sin3 x cos3 x + 1

2

(
1

4
sin3 x cos x + 1

4

∫
sin2 x dx

)

= 1

6
sin3 x cos3 x + 1

8
sin3 x cos x + 1

8

(
1

2
x − 1

2
sin x cos x

)
+ C

= 1

6
sin3 x cos3 x + 1

8
sin3 x cos x + 1

16
x − 1

16
sin x cos x + C.

In Exercises 15–18, evaluate the integral using the method described on page 409 and the reduction formulas on page
410 as necessary.

15.
∫

tan3 x sec x dx

solution Use the identity tan2 x = sec2 x − 1 to rewrite tan3 x sec x = (sec2 x − 1) sec x tan x. Then use the
substitution u = sec x, du = sec x tan x dx:∫

tan3 x sec x dx =
∫

(sec2 x − 1) sec x tan x dx =
∫

u2 − 1 du = 1

3
u3 − u + C = 1

3
sec3 x − sec x + C

16.
∫

tan2 x sec x dx

solution First use the identity tan2 x = sec2 x − 1:

∫
tan2 x sec x dx =

∫
(sec2 x − 1) sec x dx =

∫
sec3 x − sec x dx =

∫
sec3 x dx − ln | sec x + tan x|

To evaluate the remaining integral, we use the reduction formula:∫
sec3 x dx = 1

2
sec x tan x + 1

2

∫
sec x dx = 1

2
sec x tan x + 1

2
ln | sec x + tan x|

so that finally, putting these together,∫
tan2 x sec x dx =

∫
sec3 x dx − ln | sec x + tan x| = 1

2
(sec x tan x − ln | sec x + tan x|) + C

17.
∫

tan2 x sec4 x dx

solution First use the identity tan2 x = sec2 x − 1:

∫
tan2 x sec4 x dx =

∫
(sec2 x − 1) sec4 x dx =

∫
sec6 x − sec4 x dx =

∫
sec6 x dx −

∫
sec4 x, dx

We evaluate the second integral using the reduction formula:∫
sec4 x dx = 1

3
tan x sec2 x + 2

3

∫
sec2 x dx

= 1

3
tan x sec2 x + 2

3
tan x
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Then ∫
sec6 x dx = 1

5
tan x sec4 x + 4

5

∫
sec4 x dx

= 1

5
tan x sec4 x + 4

5

(
1

3
tan x sec2 x + 2

3
tan x

)

= 1

5
tan x sec4 x + 4

15
tan x sec2 x + 8

15
tan x

so that ∫
tan2 x sec4 x dx =

∫
sec6 x dx −

∫
sec4 x dx

= 1

5
tan x sec4 x − 1

15
tan x sec2 x − 2

15
tan x + C

18.
∫

tan8 x sec2 x dx

solution Use the substitution u = tan x, du = sec2 x dx; then∫
tan8 x sec2 x dx =

∫
u8 du = 1

9
u9 = 1

9
tan9 x + C

In Exercises 19–22, evaluate using methods similar to those that apply to integral tanm x secn.

19.
∫

cot3 x dx

solution Using the reduction formula for cotm x, we get∫
cot3 x dx = −1

2
cot2 x −

∫
cot x dx = −1

2
cot2 x + ln | csc x| + C.

20.
∫

sec3 x dx

solution Using the reduction formula for secm x, we get∫
sec3 x dx = 1

2
tan x sec x + 1

2

∫
sec x dx = 1

2
tan x sec x + 1

2
ln | sec x + tan x| + C.

21.
∫

cot5 x csc2 x dx

solution Make the substitution u = cot x, du = − csc2 x dx; then∫
cot5 x csc2 x dx = −

∫
u5 du = −1

6
u6 = −1

6
cot6 x + C

22.
∫

cot4 x csc x dx

solution Use the identity cot2 x = csc2 x − 1 to write∫
cot4 x csc x dx =

∫
(csc2 x − 1)2 csc x dx =

∫
csc5 x − 2 csc3 x + csc x dx

Now apply the reduction formula:∫
csc3 x dx = −1

2
cot x csc x + 1

2

∫
csc x dx = −1

2
cot x csc x − 1

2
ln | csc x + cot x| + C

so that ∫
csc5 x dx = −1

4
cot x csc3 x + 3

4

∫
csc3 x dx

= −1

4
cot x csc3 x − 3

4

(
1

2
cot x csc x + 1

2
ln | csc x + cot x|

)
+ C

= −1

4
cot x csc3 x − 3

8
cot x csc x − 3

8
ln | csc x + cot x| + C
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Putting all this together, we get∫
cot4 x csc x dx =

∫
csc5 x dx − 2

∫
csc3 x dx +

∫
csc x dx

= −1

4
cot x csc3 x − 3

8
cot x csc x − 3

8
ln | csc x + cot x| + cot x csc x

+ ln | csc x + cot x| − ln | csc x + cot x| + C

= −1

4
cot x csc3 x + 5

8
cot x csc x − 3

8
ln | csc x + cot x| + C

In Exercises 23–46, evaluate the integral.

23.
∫

cos5 x sin x dx

solution Use the substitution u = cos x, du = − sin x dx. Then∫
cos5 x sin x dx = −

∫
u5 du = −1

6
u6 + C = −1

6
cos6 x + C.

24.
∫

cos3(2 − x) sin(2 − x) dx

solution Use the substitution u = cos(2 − x), du = sin(2 − x) dx. Then∫
cos3(2 − x) sin(2 − x) dx =

∫
u3 du = 1

4
u4 + C = 1

4
cos4(2 − x) + C

25.
∫

cos4(3x + 2) dx

solution First use the substitution u = 3x + 2, du = 3 dx and then apply the reduction formula for cosn x:

∫
cos4(3x + 2) dx = 1

3
cos4 u du = 1

3

(
1

4
cos3 u sin u + 3

4

∫
cos2 u du

)

= 1

12
cos3 u sin u + 1

4

(
u

2
+ sin 2u

4

)
+ C

= 1

12
cos3(3x + 2) sin(3x + 2) + 1

8
(3x + 2) + 1

16
sin(6x + 4) + C

26.
∫

cos7 3x dx

solution Use the substitution u = 3x, du = 3 dx, and the reduction formula for cosm x:∫
cos7 3x dx = 1

3

∫
cos7 u du = 1

21
cos6 u sin u + 6

21

∫
cos5 u du

= 1

21
cos6 u sin u + 2

7

(
1

5
cos4 u sin u + 4

5

∫
cos3 u du

)

= 1

21
cos6 u sin u + 2

35
cos4 u sin u + 8

35

(
1

3
cos2 u sin u + 2

3

∫
cos u du

)

= 1

21
cos6 u sin u + 2

35
cos4 u sin u + 8

105
cos2 u sin u + 16

105
sin u + C

= 1

21
cos6 3x sin 3x + 2

35
cos4 3x sin 3x + 8

105
cos2 3x sin 3x + 16

105
sin 3x + C.

27.
∫

cos3(πθ) sin4(πθ) dθ

solution Use the substitution u = πθ , du = π dθ , and the identity cos2 u = 1 − sin2 u to write∫
cos3(πθ) sin4(πθ) dθ = 1

π

∫
cos3 u sin4 u du = 1

π

∫ (
1 − sin2 u

)
sin4 u cos u du.
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Now use the substitution w = sin u, dw = cos u du:∫
cos3(πθ) sin4(πθ) dθ = 1

π

∫ (
1 − w2

)
w4 dw = 1

π

∫ (
w4 − w6

)
dw = 1

5π
w5 − 1

7π
w7 + C

= 1

5π
sin5(πθ) − 1

7π
sin7(πθ) + C.

28.
∫

cos498 y sin3 y dy

solution Use the identity sin2 y = 1 − cos2 y to write

∫
cos498 y sin3 y dy =

∫
cos498 y

(
1 − cos2 y

)
sin y dy.

Now use the substitution u = cos y, du = − sin y dy:∫
cos498 y sin3 y dy = −

∫
u498

(
1 − u2

)
du = −

∫ (
u498 − u500

)
du

= − 1

499
u499 + 1

501
u501 + C = − 1

499
cos499 y + 1

501
cos501 y + C.

29.
∫

sin4(3x) dx

solution Use the substitution u = 3x, du = 3 dx and the reduction formula for sinm x:

∫
sin4(3x) dx = 1

3

∫
sin4 u du = − 1

12
sin3 u cos u + 1

4

∫
sin2 u du

= − 1

12
sin3 u cos u + 1

4

(
−1

2
sin u cos u + 1

2

∫
du

)

= − 1

12
sin3 u cos u − 1

8
sin u cos u + 1

8
u + C

= − 1

12
sin3(3x) cos(3x) − 1

8
sin(3x) cos(3x) + 3

8
x + C.

30.
∫

sin2 x cos6 x dx

solution Use the identity sin2 x = 1 − cos2 x and the reduction formula for cosm x:

∫
sin2 x cos6 x dx =

∫
cos6 x

(
1 − cos2 x

)
dx =

∫
cos6 x dx −

∫
cos8 x dx

=
∫

cos6 x dx −
(

1

8
cos7 x sin x + 7

8

∫
cos6 x dx

)

= −1

8
cos7 x sin x + 1

8

∫
cos6 x dx

= −1

8
cos7 x sin x + 1

8

(
1

6
cos5 x sin x + 5

6

∫
cos4 x dx

)

= −1

8
cos7 x sin x + 1

48
cos5 x sin x + 5

48

∫
cos4 x dx

= −1

8
cos7 x sin x + 1

48
cos5 x sin x + 5

48

(
1

4
cos3 x sin x + 3

4

∫
cos2 x dx

)

= −1

8
cos7 x sin x + 1

48
cos5 x sin x + 5

192
cos3 x sin x + 15

192

∫
cos2 x dx

= −1

8
cos7 x sin x + 1

48
cos5 x sin x + 5

192
cos3 x sin x + 15

192

(
1

2
cos x sin x + 1

2
x

)

= −1

8
cos7 x sin x + 1

48
cos5 x sin x + 5

192
cos3 x sin x + 5

128
cos x sin x + 5

128
x + C.
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31.
∫

csc2(3 − 2x) dx

solution First make the substitution u = 3 − 2x, du = −2 dx, so that∫
csc2(3 − 2x) dx = 1

2

∫
(− csc2 u) du = 1

2
cot u + C = 1

2
cot(3 − 2x) + C

32.
∫

csc3 x dx

solution Use the reduction formula for cscm x:∫
csc3 x dx = −1

2
cot x csc x + 1

2

∫
csc x dx = −1

2
cot x csc x + 1

2
ln | csc x − cot x| + C.

33.
∫

tan x sec2 x dx

solution Use the substitution u = tan x, du = sec2 x dx. Then∫
tan x sec2 x dx =

∫
u du = 1

2
u2 + C = 1

2
tan2 x + C.

34.
∫

tan3 θ sec3 θ dθ

solution Use the identity tan2 θ = sec2 θ − 1 to write∫
tan3 θ sec3 θ dθ =

∫ (
sec2 θ − 1

)
sec2 θ(sec θ tan θ dθ).

Now use the substitution u = sec θ , du = sec θ tan θ dθ :∫
tan3 θ sec3 θ dθ =

∫ (
u2 − 1

)
u2 du =

∫ (
u4 − u2

)
du = 1

5
u5 − 1

3
u3 + C = 1

5
sec5 θ − 1

3
sec3 θ + C.

35.
∫

tan5 x sec4 x dx

solution Use the identity tan2 x = sec2 x − 1 to write∫
tan5 x sec4 x dx =

∫ (
sec2 x − 1

)2
sec3 x(sec x tan x dx).

Now use the substitution u = sec x, du = sec x tan x dx:∫
tan5 x sec4 x dx =

∫ (
u2 − 1

)2
u3 du =

∫ (
u7 − 2u5 + u3

)
du

= 1

8
u8 − 1

3
u6 + 1

4
u4 + C = 1

8
sec8 x − 1

3
sec6 x + 1

4
sec4 x + C.

36.
∫

tan4 x sec x dx

solution Use the identity tan2 x = sec2 x − 1 to write∫
tan4 x sec x dx =

∫ (
sec2 x − 1

)2
sec x dx =

∫
sec5 x dx − 2

∫
sec3 x dx +

∫
sec x dx.

Now use the reduction formula for secm x:∫
tan4 x sec x dx =

(
1

4
tan x sec3 x + 3

4

∫
sec3 x dx

)
− 2

∫
sec3 x dx +

∫
sec x dx

= 1

4
tan x sec3 x − 5

4

∫
sec3 x dx +

∫
sec x dx

= 1

4
tan x sec3 x − 5

4

(
1

2
tan x sec x + 1

2

∫
sec x dx

)
+
∫

sec x dx

= 1

4
tan x sec3 x − 5

8
tan x sec x + 3

8

∫
sec x dx

= 1

4
tan x sec3 x − 5

8
tan x sec x + 3

8
ln | sec x + tan x| + C.



March 30, 2011

838 C H A P T E R 7 TECHNIQUES OF INTEGRATION

37.
∫

tan6 x sec4 x dx

solution Use the identity sec2 x = tan2 x + 1 to write∫
tan6 x sec4 x dx =

∫
tan6 x

(
tan2 x + 1

)
sec2 x dx.

Now use the substitution u = tan x, du = sec2 x dx:∫
tan6 x sec4 x dx =

∫
u6
(
u2 + 1

)
du =

∫ (
u8 + u6

)
du = 1

9
u9 + 1

7
u7 + C = 1

9
tan9 x + 1

7
tan7 x + C.

38.
∫

tan2 x sec3 x dx

solution Use the identity tan2 x = sec2 x − 1 to write∫
tan2 x sec3 x dx =

∫ (
sec2 x − 1

)
sec3 x dx =

∫
sec5 x dx −

∫
sec3 x dx.

Now use the reduction formula for secm x:∫
tan2 x sec3 x dx = 1

4
tan x sec3 x + 3

4

∫
sec3 x dx −

∫
sec3 x dx

= 1

4
tan x sec3 x − 1

4

∫
sec3 x dx

= 1

4
tan x sec3 x − 1

4

(
1

2
tan x sec x + 1

2

∫
sec x dx

)

= 1

4
tan x sec3 x − 1

8
tan x sec x − 1

8
ln | sec x + tan x| + C.

39.
∫

cot5 x csc5 x dx

solution First use the identity cot2 x = csc2 x − 1 to rewrite the integral:∫
cot5 x csc5 x dx =

∫
(csc2 x − 1)2 csc4 x(cot x csc x) dx =

∫
(csc8 x − 2 csc6 x + csc4 x)(cot x csc x) dx

Now use the substitution u = csc x and du = − cot x csc x dx to get∫
cot5 x csc5 x dx = −

∫
u8 − 2u6 + u4 du = −1

9
u9 + 2

7
u7 − 1

5
u5 + C

= −1

9
csc9 x + 2

7
csc7 x − 1

5
csc5 x + C

40.
∫

cot2 x csc4 x dx

solution First rewrite using cot2 x = csc2 x − 1 and then use the reduction formula:∫
cot2 x csc4 x dx =

∫
(csc2 x − 1) csc4 x dx =

∫
csc6 x dx −

∫
csc4 x dx

= −1

5
cot x csc4 x + 4

5

∫
csc4 x dx −

∫
csc4 x dx

= −1

5
cot x csc4 x − 1

5

∫
csc4 x dx

= −1

5
cot x csc4 x − 1

5

(
−1

3
cot x csc2 x + 2

3

∫
csc2 x dx

)

= −1

5
cot x csc4 x + 1

15
cot x csc2 x + 2

15
cot x + C

41.
∫

sin 2x cos 2x dx

solution Use the substitution u = sin 2x, du = 2 cos 2x dx:∫
sin 2x cos 2x dx = 1

2

∫
sin 2x(2 cos 2x dx) = 1

2

∫
u du = 1

4
u2 + C = 1

4
sin2 2x + C.
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42.
∫

cos 4x cos 6x dx

solution Use the formula for
∫

cos mx cos nx dx:

∫
cos 4x cos 6x dx = sin(4 − 6)x

2(4 − 6)
+ sin(4 + 6)x

2(4 + 6)
+ C = sin(−2x)

−4
+ sin(10x)

20
+ C

= 1

4
sin 2x + 1

20
sin 10x + C.

Here we’ve used the fact that sin x is an odd function: sin(−x) = − sin x.

43.
∫

t cos3(t2) dt

solution Use the substitution u = t2, du = 2t dt , followed by the reduction formula for cosm x:∫
t cos3(t2) dt = 1

2

∫
cos3 u du = 1

6
cos2 u sin u + 1

3

∫
cos u du

= 1

6
cos2 u sin u + 1

3
sin u + C = 1

6
cos2(t2) sin(t2) + 1

3
sin(t2) + C.

44.
∫

tan3(ln t)

t
dt

solution Use the substitution u = ln t , du = 1
t dt , followed by the reduction formula for tann x:

∫
tan3(ln t)

t
dt =

∫
tan3 u du = 1

2
tan2 u −

∫
tan u du

= 1

2
tan2 u − ln | sec u| + C = 1

2
tan2(ln t) − ln | sec(ln t)| + C.

45.
∫

cos2(sin t) cos t dt

solution Use the substitution u = sin t , du = cos t dt , followed by the reduction formula for cosm x:∫
cos2(sin t) cos t dt =

∫
cos2 u du = 1

2
cos u sin u + 1

2

∫
du

= 1

2
cos u sin u + 1

2
u + C = 1

2
cos(sin t) sin(sin t) + 1

2
sin t + C.

46.
∫

ex tan2(ex) dx

solution Use the substitution u = ex , du = ex dx followed by the reduction formula for tanm x:∫
ex tan2(ex) dx =

∫
tan2 u du = tan u −

∫
1 du = tan u − u + C = tan(ex) − ex + C

In Exercises 47–60, evaluate the definite integral.

47.
∫ 2π

0
sin2 x dx

solution Use the formula for
∫

sin2 x dx:

∫ 2π

0
sin2 x dx =

(
x

2
− sin 2x

4

)∣∣∣∣2π

0
=
(

2π

2
− sin 4π

4

)
−
(

0

2
− sin 0

4

)
= π.

48.
∫ π/2

0
cos3 x dx

solution Use the reduction formula for cosm x:

∫ π/2

0
cos3 x dx = 1

3
cos2 x sin x

∣∣∣∣π/2

0
+ 2

3

∫ π/2

0
cos x dx =

[
1

3
(0)(1) − 1

3
(1)(0)

]
+ 2

3
sin x

∣∣∣∣π/2

0

= 0 + 2

3
(1 − 0) = 2

3
.
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49.
∫ π/2

0
sin5 x dx

solution Use the identity sin2 x = 1 − cos2 x followed by the substitution u = cos x, du = − sin x dx to get

∫ π/2

0
sin5 x dx =

∫ π/2

0
(1 − cos2 x)2 sin x dx =

∫ π/2

0
(1 − 2 cos2 x + cos4 x) sin x dx

= −
∫ 0

1
(1 − 2u2 + u4) du = −

(
u − 2

3
u3 + 1

5
u5
) ∣∣∣∣0

1
= 1 − 2

3
+ 1

5
= 8

15

50.
∫ π/2

0
sin2 x cos3 x dx

solution Use the identity sin2 x = 1 − cos2 x followed by the substitution u = sin x, du = cos x dx to get

∫ π/2

0
sin2 x cos3 x dx =

∫ π/2

0
sin2 x(1 − sin2 x) cos x dx =

∫ π/2

0
(sin2 x − sin4 x) cos x dx

=
∫ 1

0
u2 − u4 du =

(
1

3
u3 − 1

5
u5
) ∣∣∣∣1

0
= 2

15

51.
∫ π/4

0

dx

cos x

solution Use the definition of sec x to simplify the integral:

∫ π/4

0

dx

cos x
=
∫ π/4

0
sec x dx = ln | sec x + tan x|

∣∣∣π/4

0
= ln

∣∣∣√2 + 1
∣∣∣− ln |1 + 0| = ln

(√
2 + 1

)
.

52.
∫ π/2

π/4

dx

sin x

solution Use the definition of csc x to simplify the integral:

∫ π/2

π/4

dx

sin x
=
∫ π/2

π/4
csc x dx = ln | csc x − cot x|

∣∣∣π/2

π/4
= ln |1 − 0| − ln

∣∣∣√2 − 1
∣∣∣ = − ln

∣∣∣√2 − 1
∣∣∣

= ln

(
1√

2 − 1

)
= ln

(
(
√

2 + 1)

(
√

2 − 1)(
√

2 + 1)

)
= ln(

√
2 + 1).

53.
∫ π/3

0
tan x dx

solution Use the formula for
∫

tan x dx:

∫ π/3

0
tan x dx = ln | sec x|

∣∣∣π/3

0
= ln 2 − ln 1 = ln 2.

54.
∫ π/4

0
tan5 x dx

solution First use the reduction formula for tanm x to evaluate the indefinite integral:∫
tan5 x dx = 1

4
tan4 x −

∫
tan3 x dx = 1

4
tan4 x −

(
1

2
tan2 x −

∫
tan x dx

)

= 1

4
tan4 x − 1

2
tan2 x + ln | sec x| + C.

Now compute the definite integral:∫ π/4

0
tan5 x dx =

(
1

4
tan4 x − 1

2
tan2 x + ln | sec x|

)∣∣∣∣π/4

0

=
(

1

4

(
14
)

− 1

2

(
12
)

+ ln
√

2

)
− (0 − 0 + ln 1)

= 1

4
− 1

2
+ ln

√
2 − 0 = 1

2
ln 2 − 1

4
.
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55.
∫ π/4

−π/4
sec4 x dx

solution First use the reduction formula for secm x to evaluate the indefinite integral:∫
sec4 x dx = 1

3
tan x sec2 x + 2

3

∫
sec2 x dx = 1

3
tan x sec2 x + 2

3
tan x + C.

Now compute the definite integral:∫ π/4

−π/4
sec4 x dx =

(
1

3
tan x sec2 x + 2

3
tan x

)∣∣∣∣π/4

−π/4

=
[

1

3
(1)
(√

2
)2 + 2

3
(1)

]
−
[

1

3
(−1)

(√
2
)2 + 2

3
(−1)

]
= 4

3
−
(

−4

3

)
= 8

3
.

56.
∫ 3π/4

π/4
cot4 x csc2 x dx

solution Use the substitution u = cot x, du = − csc2 x dx. x = π/4 corresponds to u = 1, and x = 3π/4 corresponds
to u = −1. We get ∫ 3π/4

π/4
cot4 x csc2 x dx = −

∫ −1

1
u4 du = −1

5
u5
∣∣∣∣−1

1
= 2

5

57.
∫ π

0
sin 3x cos 4x dx

solution Use the formula for
∫

sin mx cos nx dx:∫ π

0
sin 3x cos 4x dx =

(
− cos(3 − 4)x

2(3 − 4)
− cos(3 + 4)x

2(3 + 4)

)∣∣∣∣π
0

=
(

− cos(−x)

−2
− cos 7x

14

)∣∣∣∣π
0

=
(

1

2
cos x − 1

14
cos 7x

)∣∣∣∣π
0

=
[

1

2
(−1) − 1

14
(−1)

]
−
[

1

2
(1) − 1

14
(1)

]
= −6

7
.

58.
∫ π

0
sin x sin 3x dx

solution Use the formula for
∫

sin mx sin nx dx:∫ π

0
sin x sin 3x dx =

(
sin(1 − 3)x

2(1 − 3)
− sin(1 + 3)x

2(1 + 3)

)∣∣∣∣π
0

=
(

sin(−2x)

−4
− sin 4x

8

)∣∣∣∣π
0

=
(

1

4
sin 2x − 1

8
sin 4x

)∣∣∣∣π
0

= 0 − 0 = 0.

59.
∫ π/6

0
sin 2x cos 4x dx

solution Using the formula for
∫

sin mx cos nx dx, we have

∫ π/6

0
sin 2x cos 4x dx =

(
− 1

−4
cos(−2x) − 1

2 · 6
cos(6x)

) ∣∣∣∣π/6

0
=
(

1

4
cos 2x − 1

12
cos 6x

) ∣∣∣∣π/6

0

=
(

1

4
· 1

2
− 1

12
· (−1)

)
−
(

1

4
− 1

12

)
= 1

24

Here we’ve used the fact that cos x is an even function: cos(−x) = cos x.

60.
∫ π/4

0
sin 7x cos 2x dx

solution Using the formula for
∫

sin mx cos nx dx, we have

∫ π/4

0
sin 7x cos 2x dx =

(
− 1

10
cos 5x − 1

18
cos 9x

) ∣∣∣∣π/4

0

=
(

− 1

10
·
(

−
√

2

2

)
− 1

18
·
√

2

2

)
−
(

− 1

10
− 1

18

)
= 1

45
(7 + √

2)
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61. Use the identities for sin 2x and cos 2x on page 407 to verify that the following formulas are equivalent.∫
sin4 x dx = 1

32
(12x − 8 sin 2x + sin 4x) + C

∫
sin4 x dx = −1

4
sin3 x cos x − 3

8
sin x cos x + 3

8
x + C

solution First, observe

sin 4x = 2 sin 2x cos 2x = 2 sin 2x(1 − 2 sin2 x)

= 2 sin 2x − 4 sin 2x sin2 x = 2 sin 2x − 8 sin3 x cos x.

Then

1

32
(12x − 8 sin 2x + sin 4x) + C = 3

8
x − 3

16
sin 2x − 1

4
sin3 x cos x + C

= 3

8
x − 3

8
sin x cos x − 1

4
sin3 x cos x + C.

62. Evaluate
∫

sin2 x cos3 x dx using the method described in the text and verify that your result is equivalent to the
following result produced by a computer algebra system.∫

sin2 x cos3 x dx = 1

30
(7 + 3 cos 2x) sin3 x + C

solution Use the identity cos2 x = 1 − sin2 x to write∫
sin2 x cos3 x dx =

∫
sin2 x(1 − sin2 x) cos x dx.

Now use the substitution u = sin x, du = cos x dx:∫
sin2 x cos3 x dx =

∫
u2(1 − u2) du = 1

3
u3 − 1

5
u5 + C = 1

3
sin3 x − 1

5
sin5 x + C.

To show that this result matches that produced by the computer algebra system, we will make use of the identity sin2 x =
1
2 − 1

2 cos 2x. We find

1

3
sin3 x − 1

5
sin5 x + C = sin3 x

(
1

3
− 1

5
sin2 x

)
+ C = sin3 x

(
7

30
+ 1

10
cos 2x

)
+ C

= 1

30
sin3 x(7 + 3 cos 2x) + C.

63. Find the volume of the solid obtained by revolving y = sin x for 0 ≤ x ≤ π about the x-axis.

solution Using the disk method, the volume is given by

V =
∫ π

0
π(sin x)2 dx = π

∫ π

0
sin2 x dx = π

(
x

2
− sin 2x

4

)∣∣∣∣π
0

= π
[(π

2
− 0
)

− (0)
]

= π2

2
.

64. Use Integration by Parts to prove Eqs. (1) and (2).

solution To prove the reduction formula for sinn x, use Integration by Parts with u = sinn−1 x and v′ = sin x. Then

u′ = (n − 1) sinn−2 x cos x, v = − cos x, and∫
sinn x dx = − sinn−1 x cos x + (n − 1)

∫
sinn−2 x cos2 x dx

= − sinn−1 x cos x + (n − 1)

∫
sinn−2 x

(
1 − sin2 x

)
dx

= − sinn−1 x cos x + (n − 1)

∫
sinn−2 x dx − (n − 1)

∫
sinn x dx.

Solving this equation for
∫

sinn x dx, we get

n

∫
sinn x dx = − sinn−1 x cos x + (n − 1)

∫
sinn−2 x dx

∫
sinn x dx = − 1

n
sinn−1 x cos x + n − 1

n

∫
sinn−2 x dx
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To prove the reduction formula for cosn x, use Integration by Parts with u = cosn−1 x and v′ = cos x. Then u′ =
−(n − 1) cosn−2 x sin x, v = sin x, and

∫
cosn x dx = cosn−1 x sin x + (n − 1)

∫
cosn−2 x sin2 x dx

= cosn−1 x sin x + (n − 1)

∫
cosn−2 x

(
1 − cos2 x

)
dx

= cosn−1 x sin x + (n − 1)

∫
cosn−2 x dx − (n − 1)

∫
cosn x dx.

Solving this equation for
∫

cosn x dx, we get

n

∫
cosn x dx = cosn−1 x sin x + (n − 1)

∫
cosn−2 x dx

∫
cosn x dx = 1

n
cosn−1 x sin x + n − 1

n

∫
cosn−2 x dx

In Exercises 65–68, use the following alternative method for evaluating the integral J = ∫ sinm x cosn x dx when m and
n are both even. Use the identities

sin2 x = 1

2
(1 − cos 2x), cos2 x = 1

2
(1 + cos 2x)

to write J = 1
4

∫
(1 − cos 2x)m/2(1 + cos 2x)n/2 dx, and expand the right-hand side as a sum of integrals involving

smaller powers of sine and cosine in the variable 2x.

65.
∫

sin2 x cos2 x dx

solution Using the identities sin2 x = 1
2 (1 − cos 2x) and cos2 x = 1

2 (1 + cos 2x), we have

J =
∫

sin2 x cos2 x dx = 1

4

∫
(1 − cos 2x)(1 + cos 2x) dx

= 1

4

∫ (
1 − cos2 2x

)
dx = 1

4

∫
dx − 1

4

∫
cos2 2x dx.

Now use the substitution u = 2x, du = 2 dx, and the formula for
∫

cos2 u du:

J = 1

4
x − 1

8

∫
cos2 u du = 1

4
x − 1

8

(
u

2
+ 1

2
sin u cos u

)
+ C

= 1

4
x − 1

16
(2x) − 1

16
sin 2x cos 2x + C = 1

8
x − 1

16
sin 2x cos 2x + C.

66.
∫

cos4 x dx

solution Using the identity cos2 x = 1
2 (1 + cos 2x), we have

J =
∫

cos4 x dx = 1

4

∫
(1 + cos 2x)2 dx = 1

4

∫ (
1 + 2 cos 2x + cos2 2x

)
dx

= 1

4

∫
dx + 1

4

∫
cos 2x(2 dx) + 1

8

∫
cos2 2x(2 dx)

Using the substitution u = 2x, du = 2 dx, we get

J = 1

4
x + 1

4
sin 2x + 1

8

∫
cos2 u du = 1

4
x + 1

4
sin 2x + 1

8

(
u

2
+ 1

2
sin u cos u

)
+ C

= 1

4
x + 1

4
sin 2x + 1

16
(2x) + 1

16
sin 2x cos 2x + C = 3

8
x + 1

4
sin 2x + 1

16
sin 2x cos 2x + C.
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67.
∫

sin4 x cos2 x dx

solution Using the identities sin2 x = 1
2 (1 − cos 2x) and cos2 x = 1

2 (1 + cos 2x), we have

J =
∫

sin4 x cos2 x dx = 1

8

∫
(1 − cos 2x)2(1 + cos 2x) dx

= 1

8

∫ (
1 − 2 cos 2x + cos2 2x

)
(1 + cos 2x) dx

= 1

8

∫ (
1 − cos 2x − cos2 2x + cos3 2x

)
dx.

Now use the substitution u = 2x, du = 2 dx, together with the reduction formula for cosm x:

J = 1

8
x − 1

16

∫
cos u du − 1

16

∫
cos2 u du + 1

16

∫
cos3 u du

= 1

8
x − 1

16
sin u − 1

16

(
u

2
+ 1

2
sin u cos u

)
+ 1

16

(
1

3
cos2 u sin u + 2

3

∫
cos u du

)

= 1

8
x − 1

16
sin 2x − 1

32
(2x) − 1

32
sin 2x cos 2x + 1

48
cos2 2x sin 2x + 1

24
sin 2x + C

= 1

16
x − 1

48
sin 2x − 1

32
sin 2x cos 2x + 1

48
cos2 2x sin 2x + C.

68.
∫

sin6 x dx

solution Using the identity sin2 x = 1
2 (1 − cos 2x), we have

J =
∫

sin6 x dx =
∫ (

1

2
(1 − cos 2x)

)3
dx = 1

8

∫
(1 − cos 2x)3 dx

= 1

8

∫
1 − 3 cos 2x + 3 cos2 2x − cos3 2x dx

Now use the substitution u = 2x, du = 2 dx together with the reduction formula for cosm x:

J = 1

8
x − 3

16

∫
cos u du + 3

16

∫
cos2 u du − 1

16

∫
cos3 u du

= 1

8
x − 3

16
sin u + 3

16

(
u

2
+ 1

2
sin u cos u

)
− 1

16

(
1

3
cos2 u sin u + 2

3

∫
cos u du

)

= 1

8
x − 3

16
sin u + 3

32
u + 3

32
sin u cos u − 1

48
cos2 u sin u − 1

24
sin u + C

= 1

8
x − 11

48
sin u + 3

32
u + 3

32
sin u cos u − 1

48
cos2 u sin u + C

= 1

8
x − 11

48
sin 2x + 3

32
· 2x + 3

32
sin 2x cos 2x − 1

48
cos2 2x sin 2x + C

= 5

16
x − 11

48
sin 2x + 3

32
sin 2x cos 2x − 1

48
cos2 2x sin 2x + C

69. Prove the reduction formula ∫
tank x dx = tank−1 x

k − 1
−
∫

tank−2 x dx

Hint: tank x = (sec2 x − 1) tank−2 x.

solution Use the identity tan2 x = sec2 x − 1 to write∫
tank x dx =

∫
tank−2 x

(
sec2 x − 1

)
dx =

∫
tank−2 x sec2 x dx −

∫
tank−2 x dx.

Now use the substitution u = tan x, du = sec2 x dx:∫
tank x dx =

∫
uk−2 du −

∫
tank−2 x dx = 1

k − 1
uk−1 −

∫
tank−2 x dx = tank−1 x

k − 1
−
∫

tank−2 x dx.
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70. Use the substitution u = csc x − cot x to evaluate
∫

csc x dx (see Example 5).

solution Using the substitution u = csc x − cot x,

du = (− csc x cot x + csc2 x
)
dx = csc x(csc x − cot x) dx,

we have ∫
csc x dx =

∫
csc x(csc x − cot x) dx

csc x − cot x
=
∫

du

u
= ln |u| + C = ln | csc x − cot x| + C.

71. Let Im =
∫ π/2

0
sinm x dx.

(a) Show that I0 = π
2 and I1 = 1.

(b) Prove that, for m ≥ 2,

Im = m − 1

m
Im−2

(c) Use (a) and (b) to compute Im for m = 2, 3, 4, 5.

solution
(a) We have

I0 =
∫ π/2

0
sin0 x dx =

∫ π/2

0
1 dx = π

2

I1 =
∫ π/2

0
sin x dx = − cos x

∣∣∣∣π/2

0
= 1

(b) Using the reduction formula for sinm x, we get for m ≥ 2

Im =
∫ π/2

0
sinm x dx = − 1

m
sinm−1 x cos x

∣∣∣∣π/2

0
+ m − 1

m

∫ π/2

0
sinm−2 x dx

= − 1

m
sinm−1

(π

2

)
cos
(π

2

)
+ 1

m
sinm−1(0) cos(0) + m − 1

m
Im−2

= 1

m
(−1 · 0 + 0 · 1) + m − 1

m
Im−2

= m − 1

m
Im−2

(c)

I2 = 1

2
I0 = 1

2
· π

2
= π

4

I3 = 2

3
I1 = 2

3

I4 = 3

4
I2 = 3

4
· π

4
= 3

16
π

I5 = 4

5
I3 = 8

15

72. Evaluate
∫ π

0
sin2 mx dx for m an arbitrary integer.

solution Use the substitution u = mx, du = m dx. Then∫ π

0
sin2 mx dx = 1

m

∫ x=π

x=0
sin2 u du = 1

m

(
u

2
− sin 2u

4

)∣∣∣∣x=π

x=0
= 1

m

(
mx

2
− sin 2mx

4

)∣∣∣∣π
0

=
(

x

2
− sin 2mx

4m

)∣∣∣∣π
0

=
(

π

2
− sin 2πm

4

)
− (0).

If m is an arbitrary integer, then sin 2mπ = 0. Thus∫ π

0
sin2 mx dx = π

2
.
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73. Evaluate
∫

sin x ln(sin x) dx. Hint: Use Integration by Parts as a first step.

solution Start by using integration by parts with u = ln(sin x) and v′ = sin x, so that u′ = cot x and v = − cos x.
Then

I =
∫

sin x ln(sin x) dx = − cos x ln(sin x) +
∫

cot x cos x dx = − cos x ln(sin x) +
∫

cos2 x

sin x
dx

= − cos x ln(sin x) +
∫

1 − sin2 x

sin x
dx = − cos x ln(sin x) −

∫
sin x dx +

∫
csc x dx

= − cos x ln(sin x) + cos x +
∫

csc x dx

Using the table,
∫

csc x dx = ln | csc x − cot x| + C, so finally

I = − cos x ln(sin x) + cos x + ln | csc x − cot x| + C

74. Total Energy A 100-W light bulb has resistance R = 144 � (ohms) when attached to household current, where
the voltage varies as V = V0 sin(2πf t) (V0 = 110 V, f = 60 Hz). The energy (in joules) expended by the bulb over a
period of T seconds is

U =
∫ T

0
P(t) dt

where P = V 2/R (J/s) is the power. Compute U if the bulb remains on for 5 hours.

solution After converting to seconds (5 hours = 18,000 seconds), the total energy expended is given by

U =
∫ 18,000

0
P(t) dt =

∫ 18,000

0

V 2

R
dt = V 2

0
R

∫ 18,000

0
sin2(2πf t) dt = 1102

144

∫ 18,000

0
sin2(120πt) dt.

Now use the substitution u = 120πt , du = 120π dt :

U = 1102

144

(
1

120π

)∫ t=18,000

t=0
sin2 u du = 1102

144 · 120π

[
u

2
− 1

2
sin u cos u

]t=18,000

t=0

= 1102

144 · 120π

[
60πt − 1

2
sin(120πt) cos(120πt)

]18,000

0
= 1102

144 · 120π

[(
60π(18,000) − 0

)− 0
]

= (1102)(60π)(18,000)

(144)(120π)
= 756,260 joules.

75. Let m, n be integers with m �= ±n. Use Eqs. (23)–(25) to prove the so-called orthogonality relations that play a
basic role in the theory of Fourier Series (Figure 2):

∫ π

0
sin mx sin nx dx = 0

∫ π

0
cos mx cos nx dx = 0

∫ 2π

0
sin mx cos nx dx = 0

y = sin 2x sin 4x

y

x
p

y = sin 3x cos 4x

y

p
x

2p

FIGURE 2 The integrals are zero by the orthogonality relations.
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solution If m, n are integers, then m − n and m + n are integers, and therefore sin(m − n)π = sin(m + n)π = 0,
since sin kπ = 0 if k is an integer. Thus we have∫ π

0
sin mx sin nx dx =

(
sin(m − n)x

2(m − n)
− sin(m + n)x

2(m + n)

)∣∣∣∣π
0

=
(

sin(m − n)π

2(m − n)
− sin(m + n)π

2(m + n)

)
− 0 = 0;

∫ π

0
cos mx cos nx dx =

(
sin(m − n)x

2(m − n)
+ sin(m + n)x

2(m + n)

)∣∣∣∣π
0

=
(

sin(m − n)π

2(m − n)
+ sin(m + n)π

2(m + n)

)
− 0 = 0.

If k is an integer, then cos 2kπ = 1. Using this fact, we have

∫ 2π

0
sin mx cos nx dx =

(
− cos(m − n)x

2(m − n)
− cos(m + n)x

2(m + n)

)∣∣∣∣2π

0

=
(

− cos(m − n)2π

2(m − n)
− cos(m + n)2π

2(m + n)

)
−
(

− 1

2(m − n)
− 1

2(m + n)

)

=
(

− 1

2(m − n)
− 1

2(m + n)

)
−
(

− 1

2(m − n)
− 1

2(m + n)

)
= 0.

Further Insights and Challenges
76. Use the trigonometric identity

sin mx cos nx = 1

2

(
sin(m − n)x + sin(m + n)x

)
to prove Eq. (24) in the table of integrals on page 410.

solution Using the identity sin mx cos nx = 1
2 (sin(m − n)x + sin(m + n)x), we get∫

sin mx cos nx dx = 1

2

∫
sin(m − n)x dx + 1

2

∫
sin(m + n)x dx = − cos(m − n)x

2(m − n)
− cos(m + n)x

2(m + n)
+ C.

77. Use Integration by Parts to prove that (for m �= 1)

∫
secm x dx = tan x secm−2 x

m − 1
+ m − 2

m − 1

∫
secm−2 x dx

solution Using Integration by Parts with u = secm−2 x and v′ = sec2 x, we have v = tan x and

u′ = (m − 2) secm−3 x(sec x tan x) = (m − 2) tan x secm−2 x.

Then, ∫
secm x dx = tan x secm−2 x − (m − 2)

∫
tan2 x secm−2 x dx

= tan x secm−2 x − (m − 2)

∫ (
sec2 x − 1

)
secm−2 x dx

= tan x secm−2 x − (m − 2)

∫
secm x dx + (m − 2)

∫
secm−2 x dx.

Solving this equation for
∫

secm x dx, we get

(m − 1)

∫
secm x dx = tan x secm−2 x + (m − 2)

∫
secm−2 x dx

∫
secm x dx = tan x secm−2 x

m − 1
+ m − 2

m − 1

∫
secm−2 x dx.

78. Set Im =
∫ π/2

0
sinm x dx. Use Exercise 71 to prove that

I2m = 2m − 1

2m

2m − 3

2m − 2
· · · 1

2
· π

2

I2m+1 = 2m

2m + 1

2m − 2

2m − 1
· · · 2

3
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Conclude that

π

2
= 2 · 2

1 · 3
· 4 · 4

3 · 5
· · · 2m · 2m

(2m − 1)(2m + 1)

I2m

I2m+1

solution We’ll use induction to show these results. Recall from Exercise 71 that

Im = m − 1

m
Im−2

when m ≥ 2. Now, for I2m, the result is true for m = 1 and m = 2 (again see Exercise 71). Now assume the result is true
for m = k − 1:

I2(k−1) = I2k−2 = 2k − 3

2k − 2
· 2k − 5

2k − 4
· · · 1

2
· π

2

Using the relation Im = ((m − 1)/m)Im−2, we have

I2k = 2k − 1

2k
I2k−2 = 2k − 1

2k
·
(

2k − 3

2k − 2
· 2k − 5

2k − 4
· · · 1

2
· π

2

)
.

For I2m+1, the result is true for m = 1. Now assume the result is true for m = k − 1:

I2(k−1)+1 = I2k−1 = 2k − 2

2k − 1
· 2k − 4

2k − 3
· · · 2

3

Again using the relation Im = ((m − 1)/m)Im−2, we have

I2k+1 =
(

2k + 1 − 1

2k + 1

)
I2k−1 = 2k

2k + 1

(
2k − 2

2k − 1
· 2k − 4

2k − 3
· · · 2

3

)
.

This establishes the explicit formulas for I2m and I2m+1. Now, divide these two results to obtain

I2m

I2m+1
= (2m − 1)(2m + 1)

2m · 2m
· (2m − 3)(2m − 1)

(2m − 2)(2m − 2)
· · · 1 · 3

2 · 2
· π

2
.

Solving for π/2, we get the desired result:

π

2
= 2 · 2

1 · 3
· 4 · 4

3 · 5
· · · 2m · 2m

(2m − 1)(2m + 1)
· I2m

I2m+1
.

79. This is a continuation of Exercise 78.

(a) Prove that I2m+1 ≤ I2m ≤ I2m−1. Hint: sin2m+1 x ≤ sin2m x ≤ sin2m−1 x for 0 ≤ x ≤ π
2 .

(b) Show that
I2m−1

I2m+1
= 1 + 1

2m
.

(c) Show that 1 ≤ I2m

I2m+1
≤ 1 + 1

2m
.

(d) Prove that lim
m→∞

I2m

I2m+1
= 1.

(e) Finally, deduce the infinite product for π
2 discovered by English mathematician John Wallis (1616–1703):

π

2
= lim

m→∞
2

1
· 2

3
· 4

3
· 4

5
· · · 2m · 2m

(2m − 1)(2m + 1)

solution
(a) For 0 ≤ x ≤ π

2 , 0 ≤ sin x ≤ 1. Multiplying this last inequality by sin x, we obtain

0 ≤ sin2 x ≤ sin x.

Continuing to multiply this inequality by sin x, we obtain, more generally,

sin2m+1 x ≤ sin2m x ≤ sin2m−1 x.

Integrating these functions over [0, π
2 ], we get

∫ π/2

0
sin2m+1 x dx ≤

∫ π/2

0
sin2m x dx ≤

∫ π/2

0
sin2m−1 x dx,

which is the same as

I2m+1 ≤ I2m ≤ I2m−1.
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(b) Using the relation Im = ((m − 1)/m)Im−2, we have

I2m−1

I2m+1
= I2m−1(

2m
2m+1

)
I2m−1

= 2m + 1

2m
= 2m

2m
+ 1

2m
= 1 + 1

2m
.

(c) First start with the inequality of part (a):

I2m+1 ≤ I2m ≤ I2m−1.

Divide through by I2m+1:

1 ≤ I2m

I2m+1
≤ I2m−1

I2m+1
.

Use the result from part (b):

1 ≤ I2m

I2m+1
≤ 1 + 1

2m
.

(d) Taking the limit of this inequality, and applying the Squeeze Theorem, we have

lim
m→∞ 1 ≤ lim

m→∞
I2m

I2m+1
≤ lim

m→∞

(
1 + 1

2m

)
.

Because

lim
m→∞ 1 = 1 and lim

m→∞

(
1 + 1

2m

)
= 1,

we obtain

1 ≤ lim
m→∞

I2m

I2m+1
≤ 1.

Therefore

lim
m→∞

I2m

I2m+1
= 1.

(e) Take the limit of both sides of the equation obtained in Exercise 78(d):

lim
m→∞

π

2
= lim

m→∞
2 · 2

1 · 3
· 4 · 4

3 · 5
· · · 2m · 2m

(2m − 1)(2m + 1)

I2m

I2m+1

π

2
=
(

lim
m→∞

2 · 2

1 · 3
· 4 · 4

3 · 5
· · · 2m · 2m

(2m − 1)(2m + 1)

)(
lim

m→∞
I2m

I2m+1

)
.

Finally, using the result from (d), we have

π

2
= lim

m→∞
2 · 2

1 · 3
· 4 · 4

3 · 5
· · · 2m · 2m

(2m − 1)(2m + 1)
.

7.3 Trigonometric Substitution

Preliminary Questions
1. State the trigonometric substitution appropriate to the given integral:

(a)
∫ √

9 − x2 dx (b)
∫

x2(x2 − 16)3/2 dx

(c)
∫

x2(x2 + 16)3/2 dx (d)
∫

(x2 − 5)−2 dx

solution

(a) x = 3 sin θ (b) x = 4 sec θ (c) x = 4 tan θ (d) x = √
5 sec θ

2. Is trigonometric substitution needed to evaluate
∫

x
√

9 − x2 dx?

solution No. There is a factor of x in the integrand outside the radical and the derivative of 9 − x2 is −2x, so we may

use the substitution u = 9 − x2, du = −2x dx to evaluate this integral.
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3. Express sin 2θ in terms of x = sin θ .

solution First note that if sin θ = x, then cos θ =
√

1 − sin2 θ =
√

1 − x2. Thus,

sin 2θ = 2 sin θ cos θ = 2x
√

1 − x2.

4. Draw a triangle that would be used together with the substitution x = 3 sec θ .

solution

	x2 − 9

3

x

Exercises
In Exercises 1–4, evaluate the integral by following the steps given.

1. I =
∫

dx√
9 − x2

(a) Show that the substitution x = 3 sin θ transforms I into
∫

dθ , and evaluate I in terms of θ .

(b) Evaluate I in terms of x.

solution

(a) Let x = 3 sin θ . Then dx = 3 cos θ dθ , and

√
9 − x2 =

√
9 − 9 sin2 θ = 3

√
1 − sin2 θ = 3

√
cos2 θ = 3 cos θ.

Thus,

I =
∫

dx√
9 − x2

=
∫

3 cos θ dθ

3 cos θ
=
∫

dθ = θ + C.

(b) If x = 3 sin θ , then θ = sin−1( x
3 ). Thus,

I = θ + C = sin−1
(x

3

)
+ C.

2. I =
∫

dx

x2
√

x2 − 2

(a) Show that the substitution x = √
2 sec θ transforms the integral I into

1

2

∫
cos θdθ , and evaluate I in terms of θ .

(b) Use a right triangle to show that with the above substitution, sin θ =
√

x2 − 2/x.

(c) Evaluate I in terms of x.

solution

(a) Let x = √
2 sec θ . Then dx = √

2 sec θ tan θ dθ , and

√
x2 − 2 =

√
2 sec2 θ − 2 =

√
2(sec2 θ − 1) =

√
2 tan2 θ = √

2 tan θ.

Thus,

I =
∫

dx

x2
√

x2 − 2
=
∫ √

2 sec θ tan θ dθ

(2 sec2 θ)(
√

2 tan θ)
= 1

2

∫
dθ

sec θ
= 1

2

∫
cos θ dθ = 1

2
sin θ + C.

(b) Since x = √
2 sec θ , sec θ = x√

2
, and we construct the following right triangle:

q

x
x2 − 2

2
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From this triangle we see that sin θ =
√

x2 − 2/x.

(c) Combining the results from parts (a) and (b),

I = 1

2
sin θ + C =

√
x2 − 2

2x
+ C.

3. I =
∫

dx√
4x2 + 9

(a) Show that the substitution x = 3
2 tan θ transforms I into

1

2

∫
sec θ dθ .

(b) Evaluate I in terms of θ (refer to the table of integrals on page 410 in Section 7.2 if necessary).

(c) Express I in terms of x.

solution

(a) If x = 3
2 tan θ , then dx = 3

2 sec2 θ dθ , and

√
4x2 + 9 =

√
4 ·
(

3

2
tan θ

)2
+ 9 =

√
9 tan2 θ + 9 = 3

√
sec2 θ = 3 sec θ

Thus,

I =
∫

dx√
4x2 + 9

=
∫ 3

2 sec2 θ dθ

3 sec θ
= 1

2

∫
sec θ dθ

(b)

I = 1

2

∫
sec θ dθ = 1

2
ln | sec θ + tan θ | + C

(c) Since x = 3
2 tan θ , we construct a right triangle with tan θ = 2x

3 :

	4x2 + 9
2x

3

From this triangle, we see that sec θ = 1
3

√
4x2 + 9, and therefore

I = 1

2
ln | sec θ + tan θ | + C = 1

2
ln

∣∣∣∣13
√

4x2 + 9 + 2x

3

∣∣∣∣+ C

= 1

2
ln

∣∣∣∣∣
√

4x2 + 9 + 2x

3

∣∣∣∣∣+ C = 1

2
ln |
√

4x2 + 9 + 2x| − 1

2
ln 3 + C = 1

2
ln |
√

4x2 + 9 + 2x| + C

4. I =
∫

dx

(x2 + 4)2

(a) Show that the substitution x = 2 tan θ transforms the integral I into
1

8

∫
cos2 θ dθ .

(b) Use the formula
∫

cos2 θ dθ = 1

2
θ + 1

2
sin θ cos θ to evaluate I in terms of θ .

(c) Show that sin θ = x√
x2 + 4

and cos θ = 2√
x2 + 4

.

(d) Express I in terms of x.

solution

(a) If x = 2 tan θ , then dx = 2 sec2 θ dθ , and

I =
∫

dx

(x2 + 4)2
=
∫

2 sec2 θ dθ

(4 tan2 θ + 4)2
= 2

16

∫
sec2 θ dθ

(tan2 θ + 1)2

= 1

8

∫
sec2 θ dθ

(sec2 θ)2
= 1

8

∫
dθ

sec2 θ
= 1

8

∫
cos2 θ dθ.
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(b) Using the formula
∫

cos2 dθ = 1
2 θ + 1

2 sin θ cos θ , we get

I = 1

8

∫
cos2 θ dθ = 1

16
θ + 1

16
sin θ cos θ + C.

(c) Since x = 2 tan θ , we construct a right triangle with tan θ = x
2 :

q

x2 + 4
x

2

From this triangle we see that

sin θ = x√
x2 + 4

and cos θ = 2√
x2 + 4

.

(d) Since x = 2 tan θ , then θ = tan−1( x
2 ), and

I = 1

16
tan−1

(x

2

)
+ 1

16

(
x√

x2 + 4

)(
2√

x2 + 4

)
+ C = 1

16
tan−1

(x

2

)
+ x

8(x2 + 4)
+ C.

In Exercises 5–10, use the indicated substitution to evaluate the integral.

5.
∫ √

16 − 5x2 dx, x = 4√
5

sin θ

solution Let x = 4√
5

sin θ . Then dx = 4√
5

cos θ dθ , and

I =
∫ √

16 − 5x2 dx =
∫ √

16 − 5

(
4√
5

sin θ

)2
· 4√

5
cos θ dθ = 4√

5

∫ √
16 − 16 sin2 θ · cos θ dθ

= 4√
5

· 4
∫

cos θ · cos θ dθ = 16√
5

∫
cos2 θ dθ

= 16√
5

(
1

2
θ + 1

2
sin θ cos θ

)
+ C = 8√

5
(θ + sin θ cos θ) + C

Since x = 4√
5

sin θ , we construct a right triangle with sin θ = x
√

5
4 :

	16 − 5x2

x	5
4

From this triangle we see that cos θ = 1
4

√
16 − 5x2, so we have

I = 8√
5
(θ + sin θ cos θ) + C

= 8√
5

(
sin−1

(
x
√

5

4

)
+ x

√
5

4
· 1

4

√
16 − 5x2

)
+ C

= 8√
5

sin−1

(
x
√

5

4

)
+ 1

2
x
√

16 − 5x2 + C

6.
∫ 1/2

0

x2√
1 − x2

dx, x = sin θ

solution Let x = sin θ . Then dx = cos θ dθ , and

√
1 − x2 =

√
1 − sin2 θ =

√
cos2 θ = cos θ.
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Converting the limits of integration to θ , we find

x = 1

2
⇒ θ = sin−1

(
1

2

)
= π

6

x = 0 ⇒ θ = sin−1(0) = 0

Therefore

I =
∫ 1/2

0

x2√
1 − x2

dx =
∫ π/6

0

sin2 θ

cos θ
(cos θ dθ) =

∫ π/6

0
sin2 θ dθ =

(
1

2
θ − 1

2
sin θ cos θ

)∣∣∣∣π/6

0

=
[

π

12
− 1

2

(
1

2

)(√
3

2

)]
− [0 − 0] = π

12
−

√
3

8
= 2π − 3

√
3

24
.

7.
∫

dx

x
√

x2 − 9
, x = 3 sec θ

solution Let x = 3 sec θ . Then dx = 3 sec θ tan θ dθ , and

√
x2 − 9 =

√
9 sec2 θ − 9 = 3

√
sec2 θ − 1 = 3

√
tan2 θ = 3 tan θ.

Thus, ∫
dx

x
√

x2 − 9
=
∫

(3 sec θ tan θ dθ)

(3 sec θ)(3 tan θ)
= 1

3

∫
dθ = 1

3
θ + C.

Since x = 3 sec θ , θ = sec−1( x
3 ), and

∫
dx

x
√

x2 − 9
= 1

3
sec−1

(x

3

)
+ C.

8.
∫ 1

1/2

dx

x2
√

x2 + 4
, x = 2 tan θ

solution Let x = 2 tan θ . Then dx = 2 sec2 θ dθ , and

√
x2 + 4 =

√
4 tan2 θ + 4 = 2

√
tan2 θ + 1 = 2

√
sec2 θ = 2 sec θ.

This gives us

∫
dx

x2
√

x2 + 4
=
∫

2 sec2 θ dθ

4 tan2 θ(2 sec θ)
= 1

4

∫
sec θ dθ

tan2 θ
= 1

4

∫
cos θ

sin2 θ
dθ.

Now use substitution, with u = sin θ and du = cos θ dθ . Then

1

4

∫
cos θ

sin2 θ
dθ = 1

4

∫
u−2 du = 1

4

(
−u−1

)
+ C = − 1

4 sin θ
+ C.

Since x = 2 tan θ , we construct a right triangle with tan θ = x
2 :

q

x2 + 4
x

2

From this triangle we see that sin θ = x√
x2+4

. Thus

∫ 1

1/2

dx

x2
√

x2 + 4
= −

√
x2 + 4

4x

∣∣∣∣∣
1

1/2

= −1

4

⎡
⎢⎣√

5 −
√

1
4 + 4

1
2

⎤
⎥⎦ = 1

4

[√
17 − √

5
]
.
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9.
∫

dx

(x2 − 4)3/2
, x = 2 sec θ

solution Let x = 2 sec θ . Then dx = 2 sec θ tan θ dθ , and

x2 − 4 = 4 sec2 θ − 4 = 4(sec2 θ − 1) = 4 tan2 θ.

This gives

I =
∫

dx

(x2 − 4)3/2
=
∫

2 sec θ tan θ dθ

(4 tan2 θ)3/2
=
∫

2 sec θ tan θ dθ

8 tan3 θ
= 1

4

∫
sec θ dθ

tan2 θ
= 1

4

∫
cos θ

sin2 θ
dθ.

Now use substitution with u = sin θ and du = cos θ dθ . Then

I = 1

4

∫
u−2 du = −1

4
u−1 + C = −1

4 sin θ
+ C.

Since x = 2 sec θ , we construct a right triangle with sec θ = x
2 :

q
2

x
x2 − 4

From this triangle we see that sin θ =
√

x2 − 4/x, so therefore

I = −1

4(
√

x2 − 4/x)
+ C = −x

4
√

x2 − 4
+ C.

10.
∫ 1

0

dx

(4 + 9x2)2
, x = 2

3 tan θ

solution Let x = 2
3 tan θ . Then dx = 2

3 sec2 θ dθ , and

4 + 9x2 = 4 + 9

(
2

3
tan θ

)2
= 4 + 4 tan2 θ = 4(1 + tan2 θ) = 4 sec2 θ

This gives

∫
dx

(4 + 9x2)2
=
∫ 2

3 sec2 θ dθ

16 sec4 θ
= 1

24

∫
dθ

sec2 θ

= 1

24

∫
cos2 θ dθ = 1

24

(
1

2
θ + 1

2
sin θ cos θ

)
+ C

= 1

48
(θ + sin θ cos θ) + C

The limits of integration are from x = 0 to x = 1. x = 0 corresponds to θ = 0, while x = 1 corresponds to the angle θ

with tan θ = 3
2 . So we construct a right triangle with tan θ = 3

2 :

	13
3

2

From this triangle we see that sin θ = 3√
13

and cos θ = 2√
13

, so that

∫ 1

0

dx

(4 + 9x2)2
= 1

48
(θ + sin θ cos θ)

∣∣∣∣tan−1(3/2)

0

= 1

48

(
tan−1

(
3

2

)
+ 3√

13
· 2√

13
− 0 − 0

)
= 1

48
tan−1

(
3

2

)
+ 1

104
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11. Evaluate
∫

x dx√
x2 − 4

in two ways: using the direct substitution u = x2 − 4 and by trigonometric substitution.

solution Let u = x2 − 4. Then du = 2x dx, and

I1 =
∫

x dx√
x2 − 4

= 1

2

∫
du√

u
= 1

2

(
2u1/2

)
+ C = √

u + C =
√

x2 − 4 + C.

To use trigonometric substitution, let x = 2 sec θ . Then dx = 2 sec θ tan θ dθ , x2 − 4 = 4 sec2 θ − 4 = 4 tan2 θ , and

I1 =
∫

x dx√
x2 − 4

=
∫

2 sec θ(2 sec θ tan θ dθ)

2 tan θ
= 2

∫
sec2 θ dθ = 2 tan θ + C.

Since x = 2 sec θ , we construct a right triangle with sec θ = x
2 :

q
2

x
x2 − 4

From this triangle we see that

I1 = 2

(√
x2 − 4

2

)
+ C =

√
x2 − 4 + C.

12. Is the substitution u = x2 − 4 effective for evaluating the integral
∫

x2 dx√
x2 − 4

? If not, evaluate using trigonometric

substitution.

solution If u = x2 − 4, then du = 2x dx, x2 = u + 4, dx = du/2x = du/2
√

u + 4, and

I =
∫

x2 dx√
x2 − 4

=
∫

(u + 4)√
u

(
du

2
√

u + 4

)
= 1

2

∫
u + 4√
u2 + 4u

du

This substitution is clearly not effective for evaluating this integral.
Instead, use the trigonometric substitution x = 2 sec θ . Then dx = 2 sec θ tan θ ,√

x2 − 4 =
√

4 sec2 θ − 4 = 2 tan θ,

and we have

I =
∫

x2 dx√
x2 − 4

=
∫

4 sec2 θ(2 sec θ tan θ dθ)

2 tan θ
= 4

∫
sec3 θ dθ.

Now use the reduction formula for
∫

secm x dx from Section 8.7.2:

4
∫

sec3 θ dθ = 4

[
tan θ sec θ

2
+ 1

2

∫
sec θ dθ

]
= 2 tan θ sec θ + 2

[
ln | sec θ + tan θ |]+ C.

Since x = 2 sec θ , we construct a right triangle with sec θ = x
2 :

q
2

x
x2 − 4

From this triangle we see that tan θ = 1
2

√
x2 − 4. Therefore

I = 2

(
1

2

√
x2 − 4

)(x

2

)
+ 2 ln

∣∣∣∣x2 + 1

2

√
x2 − 4

∣∣∣∣+ C = 1

2
x
√

x2 − 4 + 2 ln

∣∣∣∣12
(
x +

√
x2 − 4

)∣∣∣∣+ C.

Finally, since

ln

∣∣∣∣12 (x +
√

x2 − 4)

∣∣∣∣ = ln

(
1

2

)
+ ln |x +

√
x2 − 4|,
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and ln( 1
2 ) is a constant, we can “absorb” this constant into the constant of integration, so that

I = 1

2
x
√

x2 − 4 + 2 ln |x +
√

x2 − 4| + C.

13. Evaluate using the substitution u = 1 − x2 or trigonometric substitution.

(a)
∫

x√
1 − x2

dx (b)
∫

x2
√

1 − x2 dx

(c)
∫

x3
√

1 − x2 dx (d)
∫

x4√
1 − x2

dx

solution

(a) Let u = 1 − x2. Then du = −2x dx, and we have∫
x√

1 − x2
dx = −1

2

∫ −2x dx√
1 − x2

= −1

2

∫
du

u1/2
.

(b) Let x = sin θ . Then dx = cos θ dθ , 1 − x2 = cos2 θ , and so∫
x2
√

1 − x2 dx =
∫

sin2 θ(cos θ) cos θ dθ =
∫

sin2 θ cos2 θ dθ.

(c) Use the substitution u = 1 − x2. Then du = −2x dx, x2 = 1 − u, and so∫
x3
√

1 − x2 dx = −1

2

∫
x2
√

1 − x2(−2x dx) = −1

2

∫
(1 − u)u1/2 du.

(d) Let x = sin θ . Then dx = cos θ dθ , 1 − x2 = cos2 θ , and so∫
x4√

1 − x2
dx =

∫
sin4 θ

cos θ
cos θ dθ =

∫
sin4 θ dθ.

14. Evaluate:

(a)
∫

dt

(t2 + 1)3/2
(b)

∫
t dt

(t2 + 1)3/2

solution

(a) Use the substitution t = tan θ , so that dt = sec2 θ dθ . Then∫
dt

(t2 + 1)3/2
=
∫

sec2 θ

(tan2 θ + 1)3/2
dθ =

∫
sec2 θ

(sec2 θ)3/2
dθ =

∫
cos θ dθ = sin θ + C

Since t = tan θ , we construct a right triangle with tan θ = t :

	t2 + 1
t

1

From this we see that sin θ = t√
t2+1

, so that the integral is

∫
dt

(t2 + 1)3/2
= sin θ + C = t√

t2 + 1
+ C

(b) Use the substitution u = t2 + 1, du = 2t dt ; then∫
t dt

(t2 + 1)3/2
= 1

2

∫
u−3/2 du = −u−1/2 + C = − 1√

t2 + 1
+ C

In Exercises 15–32, evaluate using trigonometric substitution. Refer to the table of trigonometric integrals as necessary.

15.
∫

x2 dx√
9 − x2

solution Let x = 3 sin θ . Then dx = 3 cos θ dθ ,

9 − x2 = 9 − 9 sin2 θ = 9(1 − sin2 θ) = 9 cos2 θ,
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and

I =
∫

x2 dx√
9 − x2

=
∫

9 sin2 θ(3 cos θ dθ)

3 cos θ
= 9

∫
sin2 θ dθ = 9

[
1

2
θ − 1

2
sin θ cos θ

]
+ C.

Since x = 3 sin θ , we construct a right triangle with sin θ = x
3 :

q

x
3

9 − x2

From this we see that cos θ =
√

9 − x2/3, and so

I = 9

2
sin−1

(x

3

)
− 9

2

(x

3

)(√9 − x2

3

)
+ C = 9

2
sin−1

(x

3

)
− 1

2
x
√

9 − x2 + C.

16.
∫

dt

(16 − t2)3/2

solution Let t = 4 sin θ . Then dt = 4 cos θ dθ , and

(16 − t2)3/2 = (16 − 16 sin2 θ)3/2 = (16 cos2 θ)3/2 = (4 cos θ)3 = 64 cos3 θ

so that

I =
∫

dt

(16 − t2)3/2
=
∫

4 cos θ

64 cos3 θ
dθ = 1

16

∫
sec2 θ dθ + C = 1

16
tan θ + C

Since t = 4 sin θ , we construct a right triangle with sin θ = t
4 :

	16 − t2

4
t

From this, we see that tan θ = t√
16−t2

, so that

I = 1

16
tan θ + C = t

16
√

16 − t2
+ C

17.
∫

dx

x
√

x2 + 16

solution Use the substitution x = 4 tan θ , so that dx = 4 sec2 θ dθ . Then

x
√

x2 + 16 = 4 tan θ

√
(4 tan θ)2 + 16 = 4 tan θ

√
16(tan2 θ + 1) = 16 tan θ sec θ

so that

I =
∫

dx

x
√

x2 + 16
=
∫

4 sec2 θ

16 tan θ sec θ
dθ = 1

4

∫
sec θ

tan θ
dθ = 1

4

∫
csc θ dθ = −1

4
ln | csc x + cot x| + C

Since x = 4 tan θ , we construct a right triangle with tan θ = x
4 :

	16 + x2

4

x

From this, we see that csc x =
√

x2+16
x and cot x = 4

x , so that

I = −1

4
ln | csc x + cot x| + C = −1

4
ln

∣∣∣∣∣
√

x2 + 16

x
+ 4

x

∣∣∣∣∣+ C = −1

4
ln

∣∣∣∣∣4 +
√

x2 + 16

x

∣∣∣∣∣+ C
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18.
∫ √

12 + 4t2 dt

solution First simplify the integral:

I =
∫ √

12 + 4t2 dt = 2
∫ √

3 + t2 dt

Now let t = √
3 tan θ . Then dt = √

3 sec2 θ dθ ,

3 + t2 = 3 + 3 tan2 θ = 3(1 + tan2 θ) = 3 sec2 θ,

and

I = 2
∫ √

3 sec2 θ
(√

3 sec2 θ dθ
)

= 6
∫

sec3 θ dθ = 6

[
tan θ sec θ

2
+ 1

2

∫
sec θ dθ

]

= 3 tan θ sec θ + 3 ln | sec θ + tan θ | + C.

Since t = √
3 tan θ , we construct a right triangle with tan θ = t√

3
:

	t2 + 3

	3

t

From this we see that sec θ =
√

t2 + 3/
√

3. Therefore,

I = 3

(
t√
3

)(√
t2 + 3√

3

)
+ 3 ln

∣∣∣∣∣
√

t2 + 3√
3

+ t√
3

∣∣∣∣∣+ C1 = t
√

t2 + 3 + 3 ln
∣∣∣√t2 + 3 + t

∣∣∣+ 3 ln

(
1√
3

)
+ C1

= t
√

t2 + 3 + 3 ln
∣∣∣√t2 + 3 + t

∣∣∣+ C,

where C = 3 ln( 1√
3
) + C1.

19.
∫

dx√
x2 − 9

solution Let x = 3 sec θ . Then dx = 3 sec θ tan θ dθ ,

x2 − 9 = 9 sec2 θ − 9 = 9(sec2 θ − 1) = 9 tan2 θ,

and

I =
∫

dx√
x2 − 9

=
∫

3 sec θ tan θ dθ

3 tan θ
=
∫

sec θ dθ = ln | sec θ + tan θ | + C.

Since x = 3 sec θ , we construct a right triangle with sec θ = x
3 :

q
3

x
x2 − 9

From this we see that tan θ =
√

x2 − 9/3, and so

I = ln

∣∣∣∣∣x3 +
√

x2 − 9

3

∣∣∣∣∣+ C1 = ln
∣∣∣x +

√
x2 − 9

∣∣∣+ ln

(
1

3

)
+ C1 = ln

∣∣∣x +
√

x2 − 9
∣∣∣+ C,

where C = ln
( 1

3

)+ C1.
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20.
∫

dt

t2
√

t2 − 25

solution Let t = 5 sec θ . Then dt = 5 sec θ tan θ dθ ,

t2 − 25 = 25 sec2 θ − 25 = 25(sec2 θ − 1) = 25 tan2 θ,

and

I =
∫

dt

t2
√

t2 − 25
=
∫

5 sec θ tan θ dθ

(25 sec2 θ)(5 tan θ)
= 1

25

∫
dθ

sec θ
= 1

25

∫
cos θ dθ = 1

25
sin θ + C.

Since t = 5 sec θ , we construct a right triangle with sec θ = t
5 :

	t2 − 25
t

5

From this we see that sin θ =
√

t2 − 25/t , and so

I = 1

25

(√
t2 − 25

t

)
+ C =

√
t2 − 25

25t
+ C.

21.
∫

dy

y2
√

5 − y2

solution Let y = √
5 sin θ . Then dy = √

5 cos θ dθ ,

5 − y2 = 5 − 5 sin2 θ = 5(1 − sin2 θ) = 5 cos2 θ,

and

I =
∫

dy

y2
√

5 − y2
=
∫ √

5 cos θ dθ

(5 sin2 θ)(
√

5 cos θ)
= 1

5

∫
dθ

sin2 θ
= 1

5

∫
csc2 θ dθ = 1

5
(− cot θ) + C.

Since y = √
5 sin θ , we construct a right triangle with sin θ = y√

5
:

q

y

5 − y2

5

From this we see that cot θ =
√

5 − y2/y, which gives us

I = 1

5

(
−
√

5 − y2

y

)
+ C = −

√
5 − y2

5y
+ C.

22.
∫

x3
√

9 − x2 dx

solution Let x = 3 sin θ . Then dx = 3 cos θ dθ ,

9 − x2 = 9 − 9 sin2 θ = 9(1 − sin2 θ) = 9 cos2 θ,

and

I =
∫

x3
√

9 − x2 dx =
∫

(27 sin3 θ)(3 cos θ)(3 cos θ dθ)

= 243
∫

sin3 θ cos2 θ dθ = 243
∫

(1 − cos2 θ) cos2 θ sin θ dθ

= 243

[∫
cos2 θ sin θ dθ −

∫
cos4 θ sin θ dθ

]
.
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Now use substitution, with u = cos θ and du = − sin θ dθ for both integrals:

I = 243

[
−1

3
cos3 θ + 1

5
cos5 θ

]
+ C.

Since x = 3 sin θ , we construct a right triangle with sin θ = x
3 :

q

x
3

9 − x2

From this we see that cos θ =
√

9 − x2/3. Thus

I = 243

⎡
⎣−1

3

(√
9 − x2

3

)3

+ 1

5

(√
9 − x2

3

)5
⎤
⎦+ C = −3(9 − x2)3/2 + 1

5
(9 − x2)5/2 + C.

Alternately, let u = 9 − x2. Then

I =
∫

x3
√

9 − x2 dx = −1

2

∫
(9 − u)

√
u du = −1

2

(
6u3/2 − 2

5
u5/2

)
+ C

= 1

5
u5/2 − 3u3/2 + C = 1

5
(9 − x2)5/2 − 3(9 − x2)3/2 + C.

23.
∫

dx√
25x2 + 2

solution Let x =
√

2
5 tan θ . Then dx =

√
2

5 sec2 θ dθ , 25x2 + 2 = 2 tan2 θ + 2 = 2 sec2 θ , and

I =
∫

dx√
25x2 + 2

=
∫ √

2
5 sec2 θ dθ√

2 sec θ
= 1

5

∫
sec θ dθ = 1

5
ln | sec θ + tan θ | + C.

Since x =
√

2
5 tan θ , we construct a right triangle with tan θ = 5x√

2
:

	25x2 + 2
5x

	2

From this we see that sec θ = 1√
2

√
25x2 + 2, so that

I = 1

5
ln | sec θ + tan θ | + C = 1

5
ln

∣∣∣∣∣
√

25x2 + 2√
2

+ 5x√
2

∣∣∣∣∣+ C

= 1

5
ln

∣∣∣∣∣5x +
√

25x2 + 2√
2

∣∣∣∣∣+ C = 1

5
ln
∣∣∣5x +

√
25x2 + 2

∣∣∣− 1

5
ln

√
2 + C

= 1

5
ln
∣∣∣5x +

√
25x2 + 2

∣∣∣+ C

24.
∫

dt

(9t2 + 4)2

solution First factor out the t2-coefficient:

I =
∫

dt

(9t2 + 4)2
=
∫

dt[
9
(
t2 + 4

9

)]2 = 1

81

∫
dt(

t2 + 4
9

)2 .

Now let t = 2
3 tan θ . Then dt = 2

3 sec2 θ dθ ,

t2 + 4

9
= 4

9
tan2 θ + 4

9
= 4

9
(tan2 θ + 1) = 4

9
sec2 θ,
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and

I = 1

81

∫ 2
3 sec2 dθ

16
81 sec4 θ dθ

= 1

24

∫
cos2 θ dθ = 1

24

[
1

2
θ + 1

2
sin θ cos θ

]
+ C.

Since t = 2
3 tan θ , we construct a right triangle with tan θ = 3t

2 :

	9t2 + 4

2

3t

From this we see that sin θ = 3t/
√

9t2 + 4 and cos θ = 2/
√

9t2 + 4. Thus

I = 1

48
tan−1

(
3t

2

)
+ 1

48

(
3t√

9t2 + 4

)(
2√

9t2 + 4

)
+ C = 1

48
tan−1

(
3t

2

)
+ t

8(9t2 + 4)
+ C.

25.
∫

dz

z3
√

z2 − 4

solution Let z = 2 sec θ . Then dz = 2 sec θ tan θ dθ ,

z2 − 4 = 4 sec2 θ − 4 = 4(sec2 θ − 1) = 4 tan2 θ,

and

I =
∫

dz

z3
√

z2 − 4
=
∫

2 sec θ tan θ dθ

(8 sec3 θ)(2 tan θ)
= 1

8

∫
dθ

sec2 θ
= 1

8

∫
cos2 θ dθ

= 1

8

[
1

2
θ + 1

2
sin θ cos θ

]
+ C = 1

16
θ + 1

16
sin θ cos θ + C.

Since z = 2 sec θ , we construct a right triangle with sec θ = z
2 :

q
2

z
z2 − 4

From this we see that sin θ =
√

z2 − 4/z and cos θ = 2/z. Then

I = 1

16
sec−1

( z

2

)
+ 1

16

(√
z2 − 4

z

)(
2

z

)
+ C = 1

16
sec−1

( z

2

)
+
√

z2 − 4

8z2
+ C.

26.
∫

dy√
y2 − 9

solution Let y = 3 sec θ , so that dy = 3 sec θ tan θ dθ and

y2 − 9 = (3 sec θ)2 − 9 = 9(sec2 θ − 1) = 9 tan2 θ

so that

I =
∫

dy√
y2 − 9

=
∫

3 sec θ tan θ

3 tan θ
dθ =

∫
sec θ dθ = ln | sec θ + tan θ | + C

Since y = 3 sec θ , we construct a right triangle with sec θ = y
3 :

	y2 − 9
y

3
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From this, we see that tan θ = 1
3

√
y2 − 9, so that

I = ln | sec θ + tan θ | + C = ln

∣∣∣∣∣y3 +
√

y2 − 9

3

∣∣∣∣∣+ C

= ln

∣∣∣∣∣y +
√

y2 − 9

3

∣∣∣∣∣+ C = ln

∣∣∣∣y +
√

y2 − 9

∣∣∣∣− ln 3 + C = ln

∣∣∣∣y +
√

y2 − 9

∣∣∣∣+ C

27.
∫

x2 dx

(6x2 − 49)1/2

solution Let x = 7√
6

sec θ ; then dx = 7√
6

sec θ tan θ dθ , and

6x2 − 49 = 6

(
7√
6

sec θ

)2
− 49 = 49(sec2 θ − 1) = 49 tan2 θ

so that

I =
∫

x2 dx

(6x2 − 49)1/2
=
∫ 49

6 sec2 θ( 7√
6

sec θ tan θ)

7 tan θ
dθ

= 49

6
√

6

∫
sec3 θ dθ = 49

6
√

6

(
1

2
tan θ sec θ + 1

2

∫
sec θ dθ

)

= 49

12
√

6
(tan θ sec θ + ln | sec θ + tan θ |) + C

Since x = 7√
6

sec θ , we construct a right triangle with sec θ = x
√

6
7 :

	6x2 − 49
x	6

7

From this we see that tan θ = 1
7

√
6x2 − 49, so that

I = 49

12
√

6

(
x
√

6
√

6x2 − 49

49
+ ln

∣∣∣∣∣x
√

6 +
√

6x2 − 49

7

∣∣∣∣∣
)

+ C

= 49

12
√

6

(
x
√

6
√

6x2 − 49

49
+ ln

∣∣∣x√
6 +

√
6x2 − 49

∣∣∣− ln 7

)
+ C

= 1

12
√

6

(
x
√

6
√

6x2 − 49 + 49 ln
∣∣∣x√

6 +
√

6x2 − 49
∣∣∣)+ C

28.
∫

dx

(x2 − 4)2

solution Let x = 2 sec θ . Then dx = 2 sec θ tan θ dθ ,

x2 − 4 = 4 sec2 θ − 4 = 4(sec2 θ − 1) = 4 tan2 θ,

and

I =
∫

dx

(x2 − 4)2
=
∫

2 sec θ tan θ dθ

16 tan4 θ
= 1

8

∫
sec θ dθ

tan3 θ

= 1

8

∫
cos2 θ

sin3 θ
dθ = 1

8

∫
1 − sin2 θ

sin3 θ
dθ = 1

8

∫
csc3 θ dθ − 1

8

∫
csc θ dθ.

Now use the reduction formula for
∫

csc3 θ dθ :

I = 1

8

[
− cot θ csc θ

2
+ 1

2

∫
csc θ dθ

]
− 1

8

∫
csc θ dθ = − 1

16
cot θ csc θ − 1

16

∫
csc θ dθ

= − 1

16
cot θ csc θ − 1

16
ln | csc θ − cot θ | + C.
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Since x = 2 sec θ , we construct a right triangle with sec θ = x
2 :

q
2

x
x2 − 4

From this we see that cot θ = 2/
√

x2 − 4 and csc θ = x/
√

x2 − 4. Thus

I = − 1

16

(
2√

x2 − 4

)(
x√

x2 − 4

)
− 1

16
ln

∣∣∣∣∣ x√
x2 − 4

− 2√
x2 − 4

∣∣∣∣∣+ C

= −x

8(x2 − 4)
− 1

16
ln

∣∣∣∣∣ x − 2√
x2 − 4

∣∣∣∣∣+ C.

29.
∫

dt

(t2 + 9)2

solution Let t = 3 tan θ . Then dt = 3 sec2 θ dθ ,

t2 + 9 = 9 tan2 θ + 9 = 9(tan2 θ + 1) = 9 sec2 θ,

and

I =
∫

dt

(t2 + 9)2
=
∫

3 sec2 θ dθ

81 sec4 θ
= 1

27

∫
cos2 θ dθ = 1

27

[
1

2
θ + 1

2
sin θ cos θ

]
+ C.

Since t = 3 tan θ , we construct a right triangle with tan θ = t
3 :

	t2 + 9
t

3

From this we see that sin θ = t/
√

t2 + 9 and cos θ = 3/
√

t2 + 9. Thus

I = 1

54
tan−1

(
t

3

)
+ 1

54

(
t√

t2 + 9

)(
3√

t2 + 9

)
+ C = 1

54
tan−1

(
t

3

)
+ t

18(t2 + 9)
+ C.

30.
∫

dx

(x2 + 1)3

solution Let x = tan θ . Then dx = sec2 θ dθ , x2 + 1 = tan2 θ + 1 = sec2 θ , and

I =
∫

dx

(x2 + 1)3
=
∫

sec2 θ dθ

sec6 θ
=
∫

cos4 θ dθ.

Using the reduction formula for
∫

cos4 θ dθ , we get

I = cos3 θ sin θ

4
+ 3

4

∫
cos2 θ dθ = 1

4
cos3 θ sin θ + 3

4

(
1

2
θ + 1

2
sin θ cos θ

)
+ C.

Since x = tan θ , we construct the following right triangle:

q

x2 + 1
x

1

From this we see that sin θ = x/
√

x2 + 1 and cos θ = 1/
√

x2 + 1. Thus

I = 1

4

(
1√

x2 + 1

)3 (
x√

x2 + 1

)
+ 3

8
tan−1 x + 3

8

(
x√

x2 + 1

)(
1√

x2 + 1

)
+ C

= x

4(x2 + 1)2
+ 3x

8(x2 + 1)
+ 3

8
tan−1 x + C.
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31.
∫

x2 dx

(x2 − 1)3/2

solution Let x = sec θ . Then dx = sec θ tan θ dθ , and x2 − 1 = sec2 θ − 1 = tan2 θ . Thus

I =
∫

x2

(x2 − 1)3/2
dx =

∫
sec2 θ

(tan2 θ)3/2
sec θ tan θ dθ

=
∫

sec2 θ sec θ tan θ

tan3 θ
dθ =

∫
sec3 θ

tan2 θ
dθ

=
∫

sec2 θ

tan2 θ
sec θ dθ =

∫
csc2 θ sec θ dθ =

∫
(1 + cot2 θ) sec θ dθ

=
∫

sec θ + cot θ csc θ dθ = ln | sec θ + tan θ | − csc θ + C

Since x = sec θ , we construct the following right triangle:

	x2 − 1
x

1

From this we see that tan θ =
√

x2 − 1 and that csc θ = x√
x2−1

, so that

I = ln
∣∣∣x +

√
x2 − 1

∣∣∣− x√
x2 − 1

+ C

32.
∫

x2 dx

(x2 + 1)3/2

solution Let x = tan θ . Then dx = sec2 θ dθ , x2 + 1 = tan2 θ + 1 = sec2 θ , and

I =
∫

x2 dx

(x2 + 1)3/2
=
∫

tan2 θ(sec2 θ dθ)

(sec2 θ)3/2
=
∫

tan2 θ

sec θ
dθ =

∫
sin2 θ

cos θ
dθ =

∫
1 − cos2 θ

cos θ
dθ

=
∫

1

cos θ
dθ −

∫
cos2 θ

cos θ
dθ =

∫
sec θ dθ −

∫
cos θ dθ = ln | sec θ + tan θ | − sin θ + C.

Since x = tan θ , we construct the following right triangle:

q

x2 + 1
x

1

From this we see that sec θ =
√

x2 + 1 and sin θ = x/
√

x2 + 1. Thus

I = ln
∣∣∣√x2 + 1 + x

∣∣∣− x√
x2 + 1

+ C.

33. Prove for a > 0: ∫
dx

x2 + a
= 1√

a
tan−1 x√

a
+ C

solution Let x = √
a u. Then, x2 = au2, dx = √

a du, and

∫
dx

x2 + a
= 1√

a

∫
du

u2 + 1
= 1√

a
tan−1 u + C = 1√

a
tan−1

(
x√
a

)
+ C.

34. Prove for a > 0: ∫
dx

(x2 + a)2
= 1

2a

(
x

x2 + a
+ 1√

a
tan−1 x√

a

)
+ C
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solution Let x = √
a u. Then, x2 = au2, dx = √

a du, and∫
dx

(x2 + a)2
= 1

a3/2

∫
du

(u2 + 1)2
.

Now, let u = tan θ . Then du = sec2 θ dθ , and∫
dx

(x2 + a)2
= 1

a3/2

∫
sec2 θ

(sec2 θ)2
dθ = 1

a3/2

∫
cos2 θ dθ = 1

a3/2

(
1

2
sin θ cos θ + 1

2
θ

)
+ C

= 1

2a3/2

(
u

1 + u2
+ tan−1 u

)
+ C = 1

2a3/2

(
x/

√
a

1 + (x/
√

a)2
+ tan−1

(
x√
a

))
+ C

= 1

2a

(
x

x2 + a
+ 1√

a
tan−1

(
x√
a

))
+ C.

35. Let I =
∫

dx√
x2 − 4x + 8

.

(a) Complete the square to show that x2 − 4x + 8 = (x − 2)2 + 4.

(b) Use the substitution u = x − 2 to show that I =
∫

du√
u2 + 22

. Evaluate the u-integral.

(c) Show that I = ln
∣∣∣√(x − 2)2 + 4 + x − 2

∣∣∣+ C.

solution

(a) Completing the square, we get

x2 − 4x + 8 = x2 − 4x + 4 + 4 = (x − 2)2 + 4.

(b) Let u = x − 2. Then du = dx, and

I =
∫

dx√
x2 − 4x + 8

=
∫

dx√
(x − 2)2 + 4

=
∫

du√
u2 + 4

.

Now let u = 2 tan θ . Then du = 2 sec2 θ dθ ,

u2 + 4 = 4 tan2 θ + 4 = 4(tan2 θ + 1) = 4 sec2 θ,

and

I =
∫

2 sec2 θ dθ

2 sec θ
=
∫

sec θ dθ = ln | sec θ + tan θ | + C.

Since u = 2 tan θ , we construct a right triangle with tan θ = u
2 :

q

u2 + 4
u

2

From this we see that sec θ =
√

u2 + 4/2. Thus

I = ln

∣∣∣∣∣
√

u2 + 4

2
+ u

2

∣∣∣∣∣+ C1 = ln
∣∣∣√u2 + 4 + u

∣∣∣+ (ln
1

2
+ C1

)
= ln

∣∣∣√u2 + 4 + u

∣∣∣+ C.

(c) Substitute back for x in the result of part (b):

I = ln

∣∣∣∣
√

(x − 2)2 + 4 + x − 2

∣∣∣∣+ C.

36. Evaluate
∫

dx√
12x − x2

. First complete the square to write 12x − x2 = 36 − (x − 6)2.

solution First complete the square:

12x − x2 = −
(
x2 − 12x + 36 − 36

)
= −

(
x2 − 12x + 36

)
+ 36 = 36 − (x − 6)2.
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Now let u = x − 6, and du = dx. This gives us

I =
∫

dx√
12x − x2

=
∫

dx√
36 − (x − 6)2

=
∫

du√
36 − u2

.

Next, let u = 6 sin θ . Then du = 6 cos θ dθ ,

36 − u2 = 36 − 36 sin2 θ = 36(1 − sin2 θ) = 36 cos2 θ,

and

I =
∫

6 cos θ dθ

6 cos θ
=
∫

dθ = θ + C.

Substituting back, we find

I = sin−1
(u

6

)
+ C = sin−1

(
x − 6

6

)
+ C.

In Exercises 37–42, evaluate the integral by completing the square and using trigonometric substitution.

37.
∫

dx√
x2 + 4x + 13

solution First complete the square:

x2 + 4x + 13 = x2 + 4x + 4 + 9 = (x + 2)2 + 9.

Let u = x + 2. Then du = dx, and

I =
∫

dx√
x2 + 4x + 13

=
∫

dx√
(x + 2)2 + 9

=
∫

du√
u2 + 9

.

Now let u = 3 tan θ . Then du = 3 sec2 θ dθ ,

u2 + 9 = 9 tan2 θ + 9 = 9(tan2 θ + 1) = 9 sec2 θ,

and

I =
∫

3 sec2 θ dθ

3 sec θ
=
∫

sec θ dθ = ln | sec θ + tan θ | + C.

Since u = 3 tan θ , we construct the following right triangle:

q

u2 + 9
u

3

From this we see that sec θ =
√

u2 + 9/3. Thus

I = ln

∣∣∣∣∣
√

u2 + 9

3
+ u

3

∣∣∣∣∣+ C1 = ln
∣∣∣√u2 + 9 + u

∣∣∣+ (ln
1

3
+ C1

)

= ln

∣∣∣∣
√

(x + 2)2 + 9 + x + 2

∣∣∣∣+ C = ln
∣∣∣√x2 + 4x + 13 + x + 2

∣∣∣+ C.

38.
∫

dx√
2 + x − x2

solution First complete the square:

2 + x − x2 = −(x2 − x
)+ 2 = −

(
x2 − x + 1

4

)
+ 2 + 1

4
= 9

4
−
(

x − 1

2

)2
.

Let u = x − 1
2 and du = dx. This gives us

I =
∫

dx√
2 + x − x2

=
∫

dx√
9
4 − (x − 1

2 )2
=
∫

du√
9
4 − u2

.
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Now let u = 3
2 sin θ . Then du = 3

2 cos θ dθ ,

9

4
− u2 = 9

4
− 9

4
sin2 θ = 9

4
(1 − sin2 θ) = 9

4
cos2 θ,

and

I =
∫ 3

2 cos θ dθ

3
2 cos θ

=
∫

dθ = θ + C = sin−1
(

2u

3

)
+ C = sin−1

(
2(x − 1

2 )

3

)
+ C = sin−1

(
2x − 1

3

)
+ C.

39.
∫

dx√
x + 6x2

solution First complete the square:

6x2 + x =
(

6x2 + x + 1

24

)
− 1

24
=
(√

6x + 1

2
√

6

)2
− 1

24

Let u = √
6x + 1

2
√

6
so that du = √

6 dx. Then

I =
∫

1√
x + 6x2

dx =
∫

1√(√
6x + 1

2
√

6

)2 − 1
24

dx = 1√
6

∫
1√

u2 − 1
24

du

Now let u = 1
2
√

6
sec θ . Then du = 1

2
√

6
sec θ tan θ , and

u2 − 1

24
= 1

24
(sec2 θ − 1) = 1

24
tan2 θ

so that

I = 1√
6

∫
1

1
2
√

6
tan θ

1

2
√

6
sec θ tan θ dθ = 1√

6

∫
sec θ dθ = 1√

6
ln | sec θ + tan θ | + C

Since u = 1
2
√

6
sec θ , we construct the following right triangle:

	24u2 − 1
2u	6

1

from which we see that tan θ =
√

24u2 − 1 and sec θ = 2u
√

6. Thus

I = 1√
6

ln
∣∣∣2u

√
6 +

√
24u2 − 1

∣∣∣+ C = 1√
6

ln

∣∣∣∣∣2
√

6

(√
6x + 1

2
√

6

)
+
√

24

(
6x2 + x + 1

24

)
− 1

∣∣∣∣∣+ C

= 1√
6

ln
∣∣∣12x + 1 +

√
144x2 + 24x

∣∣∣+ C

40.
∫ √

x2 − 4x + 7 dx

solution First complete the square:

x2 − 4x + 7 = x2 − 4x + 4 + 3 = (x − 2)2 + 3.

Let u = x − 2. Then du = dx, and

I =
∫ √

x2 − 4x + 7 dx =
∫ √

(x − 2)2 + 3 dx =
∫ √

u2 + 3 du.

Now let u = √
3 tan θ . Then du = √

3 sec2 θ dθ ,

u2 + 3 = 3 tan2 θ + 3 = 3(tan2 θ + 1) = 3 sec2 θ,

and

I =
∫ √

3 sec2 θ
√

3 sec2 θ dθ = 3
∫

sec3 θ dθ = 3

[
tan θ sec θ

2
+ 1

2

∫
sec θ dθ

]

= 3

2
tan θ sec θ + 3

2
ln | sec θ + tan θ | + C.
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Since u = √
3 tan θ , we construct a right triangle with tan θ = u√

3
:

q

u2 + 3
u

3

From this we see that sec θ =
√

u2 + 3/3. Thus

I = 3

2

(
u√
3

)(√
u2 + 3√

3

)
+ 3

2
ln

∣∣∣∣∣
√

u2 + 3√
3

+ u√
3

∣∣∣∣∣+ C1

= 1

2
u
√

u2 + 3 + 3

2
ln
∣∣∣√u2 + 3 + u

∣∣∣+ (3

2
ln

1√
3

+ C1

)

= 1

2
(x − 2)

√
(x − 2)2 + 3 + 3

2
ln

∣∣∣∣
√

(x − 2)2 + 3 + x − 2

∣∣∣∣+ C

= 1

2
(x − 2)

√
x2 − 4x + 7 + 3

2
ln
∣∣∣√x2 − 4x + 7 + x − 2

∣∣∣+ C.

41.
∫ √

x2 − 4x + 3 dx

solution First complete the square:

x2 − 4x + 3 = x2 − 4x + 4 − 1 = (x − 2)2 − 1.

Let u = x − 2. Then du = dx, and

I =
∫ √

x2 − 4x + 3 dx =
∫ √

(x − 2)2 − 1 dx =
∫ √

u2 − 1 du.

Now let u = sec θ . Then du = sec θ tan θ dθ , u2 − 1 = sec2 θ − 1 = tan2 θ , and

I =
∫ √

tan2 θ(sec θ tan θ dθ) =
∫

tan2 θ sec θ dθ =
∫ (

sec2 θ − 1
)

sec θ dθ

=
∫

sec3 θ dθ −
∫

sec θ dθ =
(

tan θ sec θ

2
+ 1

2

∫
sec θ dθ

)
−
∫

sec θ dθ

= 1

2
tan θ sec θ − 1

2

∫
sec θ dθ = 1

2
tan θ sec θ − 1

2
ln | sec θ + tan θ | + C.

Since u = sec θ , we construct the following right triangle:

q
1

u
u2 − 1

From this we see that tan θ =
√

u2 − 1. Thus

I = 1

2
u
√

u2 − 1 − 1

2
ln
∣∣∣u +

√
u2 − 1

∣∣∣+ C = 1

2
(x − 2)

√
(x − 2)2 − 1 − 1

2
ln

∣∣∣∣x − 2 +
√

(x − 2)2 − 1

∣∣∣∣+ C

= 1

2
(x − 2)

√
x2 − 4x + 3 − 1

2
ln
∣∣∣x − 2 +

√
x2 − 4x + 3

∣∣∣+ C.

42.
∫

dx

(x2 + 6x + 6)2

solution First complete the square:

x2 + 6x + 6 = x2 + 6x + 9 − 3 = (x + 3)2 − 3.

Let u = x + 3. Then du = dx, and

I =
∫

dx

(x2 + 6x + 6)2
=
∫

dx

((x + 3)2 − 3)2
=
∫

du

(u2 − 3)2
.
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Now let u = √
3 sec θ . Then du = √

3 sec θ tan θ ,

u2 − 3 = 3 sec2 θ − 3 = 3(sec2 θ − 1) = 3 tan2 θ,

and

I =
∫ √

3 sec θ tan θ dθ

9 tan4 θ
=

√
3

9

∫
sec θ dθ

tan3 θ
=

√
3

9

∫
cos2 θ

sin3 θ
dθ =

√
3

9

∫
(1 − sin2 θ) dθ

sin3 θ

=
√

3

9

[∫
csc3 θ dθ −

∫
csc θ dθ

]
=

√
3

9

[(
− cot θ csc θ

2
+ 1

2

∫
csc θ dθ

)
−
∫

csc θ dθ

]

=
√

3

9

[
−1

2
cot θ csc θ − 1

2

∫
csc θ dθ

]
= −

√
3

18
cot θ csc θ −

√
3

18
ln | csc θ − cot θ | + C.

Since u = √
3 sec θ , we construct a right triangle with sec θ = u√

3
:

q

u
u2 − 3

3

From this we see that cot θ = √
3/
√

u2 − 3 and csc θ = u/
√

u2 − 3. Thus

I = −
√

3

18

( √
3√

u2 − 3

)(
u√

u2 − 3

)
−

√
3

18
ln

∣∣∣∣∣ u√
u2 − 3

−
√

3√
u2 − 3

∣∣∣∣∣+ C

= −u

6(u2 − 3)
−

√
3

18
ln

∣∣∣∣∣ u − √
3√

u2 − 3

∣∣∣∣∣+ C = −(x + 3)

6((x + 3)2 − 3)
−

√
3

18
ln

∣∣∣∣∣ x + 3 − √
3√

(x + 3)2 − 3

∣∣∣∣∣+ C

= −(x + 3)

6(x2 + 6x + 6)
−

√
3

18
ln

∣∣∣∣∣ x + 3 − √
3√

x2 + 6x + 6

∣∣∣∣∣+ C.

In Exercises 43–52, indicate a good method for evaluating the integral (but do not evaluate). Your choices are: substitution
(specify u and du), Integration by Parts (specify u and v′), a trigonometric method, or trigonometric substitution (specify).
If it appears that these techniques are not sufficient, state this.

43.
∫

x dx√
12 − 6x − x2

solution Complete the square so the the denominator is
√

15 − (x + 3)2 and then use trigonometric substitution with
x + 3 = sin θ .

44.
∫ √

4x2 − 1 dx

solution Use trigonometric substitution, with x = 1
2 sec θ .

45.
∫

sin3 x cos3 x dx

solution Use one of the following trigonometric methods: rewrite sin3 x = (1 − cos2 x) sin x and let u = cos x, or

rewrite cos3 x = (1 − sin2 x) cos x and let u = sin x.

46.
∫

x sec2 x dx

solution Use Integration by Parts, with u = x and v′ = sec2 x.

47.
∫

dx√
9 − x2

solution Either use the substitution x = 3u and then recognize the formula for the inverse sine:∫
du√

1 − u2
= sin−1 u + C,

or use trigonometric substitution, with x = 3 sin θ .
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48.
∫ √

1 − x3 dx

solution Not solvable by any method yet considered. (In fact, this has no antiderivative using elementary functions).

49.
∫

sin3/2 x dx

solution Not solvable by any method yet considered.

50.
∫

x2√
x + 1 dx

solution Use integration by parts twice, first with u = x2 and then with u = x.

51.
∫

dx

(x + 1)(x + 2)3

solution The techniques we have covered thus far are not sufficient to treat this integral. This integral requires a
technique known as partial fractions.

52.
∫

dx

(x + 12)4

solution Use the substitution u = x + 12, and then recognize the formula

∫
u−4 du = − 1

3u3
+ C.

In Exercises 53–56, evaluate using Integration by Parts as a first step.

53.
∫

sec−1 x dx

solution Let u = sec−1 x and v′ = 1. Then v = x, u′ = 1/x
√

x2 − 1, and

I =
∫

sec−1 x dx = x sec−1 x −
∫

x

x
√

x2 − 1
dx = x sec−1 x −

∫
dx√

x2 − 1
.

To evaluate the integral on the right, let x = sec θ . Then dx = sec θ tan θ dθ , x2 − 1 = sec2 θ − 1 = tan2 θ , and∫
dx√

x2 − 1
=
∫

sec θ tan θ dθ

tan θ
=
∫

sec θ dθ = ln | sec θ + tan θ | + C = ln
∣∣∣x +

√
x2 − 1

∣∣∣+ C.

Thus, the final answer is

I = x sec−1 x − ln
∣∣∣x +

√
x2 − 1

∣∣∣+ C.

54.
∫

sin−1 x

x2
dx

solution Let u = sin−1 x and v′ = x−2. Then u′ = 1/
√

1 − x2, v = −x−1, and

I =
∫

sin−1 x

x2
dx = − sin−1 x

x
+
∫

dx

x
√

1 − x2
.

To evaluate the integral on the right, let x = sin θ . Then dx = cos θ dθ , 1 − x2 = 1 − sin2 θ = cos2 θ , and∫
dx

x
√

1 − x2
=
∫

cos θ dθ

(sin θ)(cos θ)
=
∫

csc θ dθ = ln | csc θ − cot θ | + C.

Since x = sin θ , we construct the following right triangle:

q

1

1 − x2

x
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From this we see that csc θ = 1/x and cot θ =
√

1 − x2/x. Thus

∫
dx

x
√

1 − x2
= ln

∣∣∣∣∣ 1x −
√

1 − x2

x

∣∣∣∣∣+ C = ln

∣∣∣∣∣1 −
√

1 − x2

x

∣∣∣∣∣+ C.

The final answer is

I = − sin−1 x

x
+ ln

∣∣∣∣∣1 −
√

1 − x2

x

∣∣∣∣∣+ C.

55.
∫

ln(x2 + 1) dx

solution Start by using integration by parts, with u = ln(x2 + 1) and v′ = 1; then u′ = 2x
x2+1

and v = x, so that

I =
∫

ln(x2 + 1) dx = x ln(x2 + 1) − 2
∫

x2

x2 + 1
dx = x ln(x2 + 1) − 2

∫ (
1 − 1

x2 + 1

)
dx

= x ln(x2 + 1) − 2x + 2
∫

1

x2 + 1
dx

To deal with the remaining integral, use the substitution x = tan θ , so that dx = sec2 θ dθ and

∫
1

x2 + 1
dx =

∫
sec2 θ

tan2 θ + 1
dθ =

∫
sec2 θ

sec2 θ
dθ =

∫
1 dθ = θ = tan−1 x + C

so that finally

I = x ln(x2 + 1) − 2x + 2 tan−1 x + C

56.
∫

x2 ln(x2 + 1) dx

solution Start by using integration by parts with u = ln(x2 + 1), v′ = x2; then u′ = 2x
x2+1

and v = 1
3x3, so that

I =
∫

x2 ln(x2 + 1) dx = 1

3
x3 ln(x2 + 1) − 2

3

∫
x4

x2 + 1
dx

To deal with the remaining integral, use the substitution x = tan θ ; then dx = sec2 θ dθ and

∫
x4

x2 + 1
dx =

∫
tan4 θ

tan2 θ + 1
sec2 θ dθ =

∫
tan4 θ

sec2 θ
sec2 θ dθ =

∫
tan4 θ dθ

Using the reduction formula for tann gives∫
tan4 θ dθ = 1

3
tan3 θ −

∫
tan2 θ dθ = 1

3
tan3 θ − tan θ + θ + C

so that, substituting back for x = tan θ , we get

I = 1

3
x3 ln(x2 + 1) − 2

3

(
1

3
x3 − x + tan−1 x

)
+ C = 1

3
x3 ln(x2 + 1) − 2

9
x3 + 2

3
x − 2

3
tan−1 x + C

57. Find the average height of a point on the semicircle y =
√

1 − x2 for −1 ≤ x ≤ 1.

solution The average height is given by the formula

yave = 1

1 − (−1)

∫ 1

−1

√
1 − x2 dx = 1

2

∫ 1

−1

√
1 − x2 dx

Let x = sin θ . Then dx = cos θ dθ , 1 − x2 = cos2 θ , and∫ √
1 − x2 dx =

∫
(cos θ)(cos θ dθ) =

∫
cos2 θ dθ = 1

2
θ + 1

2
sin θ cos θ + C.
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Since x = sin θ , we construct the following right triangle:

q

1

1 − x2

x

From this we see that cos θ =
√

1 − x2. Therefore,

yave = 1

2

(
1

2
sin−1 x + 1

2
x
√

1 − x2
)∣∣∣∣1−1

= 1

2

[(
1

2
π + 0

)
−
(

−1

2
π + 0

)]
= π

4
.

58. Find the volume of the solid obtained by revolving the graph of y = x
√

1 − x2 over [0, 1] about the y-axis.

solution Using the method of cylindrical shells, the volume is given by

V = 2π

∫ 1

0
x
(
x
√

1 − x2
)

dx = 2π

∫ 1

0
x2
√

1 − x2 dx.

To evaluate this integral, let x = sin θ . Then dx = cos θ dθ ,

1 − x2 = 1 − sin2 θ = cos2 θ,

and

I =
∫

x2
√

1 − x2 dx =
∫

sin2 θ cos2 θ dθ =
∫ (

1 − cos2 θ
)

cos2 θ dθ =
∫

cos2 θ dθ −
∫

cos4 θ dθ.

Now use the reduction formula for
∫

cos4 θ dθ :

I =
∫

cos2 θ dθ −
[

cos3 θ sin θ

4
+ 3

4

∫
cos2 θ dθ

]
= −1

4
cos3 θ sin θ + 1

4

∫
cos2 θ dθ

= −1

4
cos3 θ sin θ + 1

4

[
1

2
θ + 1

2
sin θ cos θ

]
+ C = −1

4
cos3 θ sin θ + 1

8
θ + 1

8
sin θ cos θ + C.

Since sin θ = x, we know that cos θ =
√

1 − x2. Then we have

I = −1

4

(
1 − x2)3/2

x + 1

8
sin−1 x + 1

8
x
√

1 − x2 + C.

Now we can complete the volume:

V = 2π

(
−1

4
x
(
1 − x2)3/2 + 1

8
sin−1 x + 1

8
x
√

1 − x2
)∣∣∣∣1

0
= 2π

[(
0 + π

16
+ 0
)

− (0)
]

= π2

8
.

59. Find the volume of the solid obtained by revolving the region between the graph of y2 − x2 = 1 and the line y = 2
about the line y = 2.

solution First solve the equation y2 − x2 = 1 for y:

y = ±
√

x2 + 1.

The region in question is bounded in part by the top half of this hyperbola, which is the equation

y =
√

x2 + 1.

The limits of integration are obtained by finding the points of intersection of this equation with y = 2:

2 =
√

x2 + 1 ⇒ x = ±√
3.

The radius of each disk is given by 2 −
√

x2 + 1; the volume is therefore given by

V =
∫ √

3

−√
3
πr2 dx = 2π

∫ √
3

0

(
2 −

√
x2 + 1

)2
dx = 2π

∫ √
3

0

[
4 − 4

√
x2 + 1 + (x2 + 1)

]
dx

= 8π

∫ √
3

0
dx − 8π

∫ √
3

0

√
x2 + 1 dx + 2π

∫ √
3

0
(x2 + 1) dx.
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To evaluate the integral
∫ √

x2 + 1 dx, let x = tan θ . Then dx = sec2 θ dθ , x2 + 1 = sec2 θ , and

∫ √
x2 + 1 dx =

∫
sec3 θ dθ = 1

2
tan θ sec θ + 1

2

∫
sec θ dθ

= 1

2
tan θ sec θ + 1

2
ln | sec θ + tan θ | + C = 1

2
x
√

x2 + 1 + 1

2
ln
∣∣∣√x2 + 1 + x

∣∣∣+ C.

Now we can compute the volume:

V =
[

8πx − 8π

(
1

2
x
√

x2 + 1 + 1

2
ln
∣∣∣√x2 + 1 + x

∣∣∣)+ 2

3
πx3 + 2πx

]∣∣∣∣
√

3

0

=
(

10πx + 2

3
πx3 − 4πx

√
x2 + 1 − 4π ln

∣∣∣√x2 + 1 + x

∣∣∣)∣∣∣∣
√

3

0

=
(

10π
√

3 + 2π
√

3 − 8π
√

3 − 4π ln
∣∣∣2 + √

3
∣∣∣)− (0) = 4π

[√
3 − ln

∣∣∣2 + √
3
∣∣∣] .

60. Find the volume of revolution for the region in Exercise 59, but revolve around y = 3.

solution Using the washer method, the volume is given by

V =
∫ √

3

−√
3
π
(
R2 − r2

)
dx = 2π

∫ √
3

0

[(
3 −

√
x2 + 1

)2 − 12
]

dx

= 2π

∫ √
3

0

(
9 − 6

√
x2 + 1 +

(
x2 + 1

)
− 1
)

dx = 2π

∫ √
3

0

(
9 − 6

√
x2 + 1 + x2

)
dx

= 2π

[
9x − 6

(
1

2
x
√

x2 + 1 + 1

2
ln
∣∣∣√x2 + 1 + x

∣∣∣)+ 1

3
x3
]∣∣∣∣

√
3

0

= 2π
[(

9
√

3 − 3
√

3(2) − 3 ln
∣∣∣2 + √

3
∣∣∣+ √

3
)

− (0)
]

= 8π
√

3 − 6π ln
∣∣∣2 + √

3
∣∣∣ .

61. Compute
∫

dx

x2 − 1
in two ways and verify that the answers agree: first via trigonometric substitution and then using

the identity

1

x2 − 1
= 1

2

(
1

x − 1
− 1

x + 1

)

solution Using trigonometric substitution, let x = sec θ . Then dx = sec θ tan θdθ , x2 − 1 = sec2 θ − 1 = tan2 θ ,
and

I =
∫

dx

x2 − 1
=
∫

sec θ tan θ dθ

tan2 θ
=
∫

sec θ

tan θ
dθ =

∫
dθ

sin θ
=
∫

csc θ dθ = ln | csc θ − cot θ | + C.

Since x = sec θ , we construct the following right triangle:

q
1

x
x2 − 1

From this we see that csc θ = x/
√

x2 − 1 and cot θ = 1/
√

x2 − 1. This gives us

I = ln

∣∣∣∣∣ x√
x2 − 1

− 1√
x2 − 1

∣∣∣∣∣+ C = ln

∣∣∣∣∣ x − 1√
x2 − 1

∣∣∣∣∣+ C.

Using the given identity, we get

I =
∫

dx

x2 − 1
= 1

2

∫ (
1

x − 1
− 1

x + 1

)
dx = 1

2

∫
dx

x − 1
− 1

2

∫
dx

x + 1
= 1

2
ln |x − 1| − 1

2
ln |x + 1| + C.

To confirm that these answers agree, note that

1

2
ln |x − 1| − 1

2
ln |x + 1| = 1

2
ln

∣∣∣∣x − 1

x + 1

∣∣∣∣ = ln

√∣∣∣∣x − 1

x + 1

∣∣∣∣ = ln

∣∣∣∣∣
√

x − 1√
x + 1

·
√

x − 1√
x − 1

∣∣∣∣∣ = ln

∣∣∣∣∣ x − 1√
x2 − 1

∣∣∣∣∣ .
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62. You want to divide an 18-inch pizza equally among three friends using vertical slices at ±x as in Figure 6.
Find an equation satisfied by x and find the approximate value of x using a computer algebra system.

x

y

9−9 −−−−−−−−−−−−−xxxxxxxxxxxxxx−− xxxxxxxxxxxxx

FIGURE 6 Dividing a pizza into three equal parts.

solution First find the value of x which divides evenly a pizza with a 1-inch radius. By proportionality, we can then
take this answer and multiply by 9 to get the answer for the 18-inch pizza. The total area of a 1-inch radius pizza is
π · 12 = π (in square inches). The three equal pieces will have an area of π/3. The center piece is further divided into 4
equal pieces, each of area π/12. From Example 1, we know that∫ x

0

√
1 − x2 dx = 1

2
sin−1 x + 1

2
x
√

1 − x2.

Setting this expression equal to π/12 and solving for x using a computer algebra system, we find x = 0.265. For the
18-inch pizza, the value of x should be

x = 9(0.265) = 2.385 inches.

63. A charged wire creates an electric field at a point P located at a distance D from the wire (Figure 7). The component
E⊥ of the field perpendicular to the wire (in N/C) is

E⊥ =
∫ x2

x1

kλD

(x2 + D2)3/2
dx

where λ is the charge density (coulombs per meter), k = 8.99 × 109 N·m2/C2 (Coulomb constant), and x1, x2 are as in
the figure. Suppose that λ = 6 × 10−4 C/m, and D = 3 m. Find E⊥ if (a) x1 = 0 and x2 = 30 m, and (b) x1 = −15 m
and x2 = 15 m.

x1 x2

P

D

y

x

FIGURE 7

solution Let x = D tan θ . Then dx = D sec2 θ dθ ,

x2 + D2 = D2 tan2 θ + D2 = D2(tan2 θ + 1) = D2 sec2 θ,

and

E⊥ =
∫ x2

x1

kλD

(x2 + D2)3/2
dx = kλD

∫ x2

x1

D sec2 θ dθ

(D2 sec2 θ)3/2

= kλD2

D3

∫ x2

x1

sec2 θ dθ

sec3 θ
= kλ

D

∫ x2

x1

cos θ dθ = kλ

D
sin θ

∣∣∣∣x2

x1

Since x = D tan θ , we construct a right triangle with tan θ = x/D:

q

x2 + D2
x

D
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From this we see that sin θ = x/
√

x2 + D2. Then

E⊥ = kλ

D

(
x√

x2 + D2

)∣∣∣∣∣
x2

x1

(a) Plugging in the values for the constants k, λ, D, and evaluating the antiderivative for x1 = 0 and x2 = 30, we get

E⊥ = (8.99 × 109)(6 × 10−4)

3

[
30√

302 + 32
− 0

]
≈ 1.789 × 106 V

m

(b) If x1 = −15 m and x2 = 15 m, we get

E⊥ = (8.99 × 109)(6 × 10−4)

3

[
15√

152 + 32
− −15√

(−15)2 + 32

]
≈ 3.526 × 106 V

m

Further Insights and Challenges
64. Let Jn =

∫
dx

(x2 + 1)n
. Use Integration by Parts to prove

Jn+1 =
(

1 − 1

2n

)
Jn +

(
1

2n

)
x

(x2 + 1)n

Then use this recursion relation to calculate J2 and J3.

solution Let x = tan θ . Then dx = sec2 θ dθ , x2 + 1 = tan2 θ + 1 = sec2 θ , and

Jn+1 =
∫

dx

(x2 + 1)n+1
=
∫

sec2 θ dθ

sec2n+2 θ
=
∫

sec−2n θ dθ =
∫

cos2n θ dθ.

Using the reduction formula for
∫

cosm θ dθ , we get

Jn+1 = cos2n−1 θ sin θ

2n
+ 2n − 1

2n

∫
cos2n−2 θ dθ.

Since x = tan θ , we construct the following right triangle:

q

x2 + 1
x

1

From this we see that cos θ = 1/
√

x2 + 1, and sin θ = x/
√

x2 + 1. This gives us

Jn+1 = 1

2n

(
1√

x2 + 1

)2n−1 (
x√

x2 + 1

)
+ 2n − 1

2n

∫ (
1√

x2 + 1

)2n−2 (
1√

x2 + 1

)2

dx.

Here we’ve used the fact that

dθ = dx

sec2 θ
= cos2 θ dx =

(
1√

x2 + 1

)2

dx.

Simplifying, we get

Jn+1 =
(

1

2n

)
x

(
√

x2 + 1)2n
+ 2n − 1

2n

∫
dx

(
√

x2 + 1)2n
= 1

2n

x

(x2 + 1)n
+ 2n − 1

2n

∫
dx

(x2 + 1)n

= 1

2n

x

(x2 + 1)n
+
(

1 − 1

2n

)
Jn.

To use this formula, we first compute J1:

J1 =
∫

dx

x2 + 1
= tan−1 x + C.
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Now use the formula to compute J2 and J3:

J2 = 1

2

x

x2 + 1
+
(

1 − 1

2

)
J1 = x

2(x2 + 1)
+ 1

2
tan−1 x + C;

J3 = 1

4

x

(x2 + 1)2
+
(

1 − 1

4

)
J2 = 1

4

[
x

(x2 + 1)2
+ 3x

8(x2 + 1)
+ 3

8
tan−1 x

]
+ C.

65. Prove the formula ∫ √
1 − x2 dx = 1

2
sin−1 x + 1

2
x
√

1 − x2 + C

using geometry by interpreting the integral as the area of part of the unit circle.

solution The integral
∫ a

0

√
1 − x2 dx is the area bounded by the unit circle, the x-axis, the y-axis, and the line x = a.

This area can be divided into two regions as follows:

1

I

II

a0
x

y

1

q

Region I is a triangle with base a and height
√

1 − a2. Region II is a sector of the unit circle with central angle θ =
π
2 − cos−1 a = sin−1 a. Thus,∫ a

0

√
1 − x2 dx = 1

2
a
√

1 − a2 + 1

2
sin−1 a =

(
1

2
x
√

1 − x2 + 1

2
sin−1 x

)∣∣∣∣a
0

.

7.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions

Preliminary Questions
1. Which hyperbolic substitution can be used to evaluate the following integrals?

(a)
∫

dx√
x2 + 1

(b)
∫

dx√
x2 + 9

(c)
∫

dx√
9x2 + 1

solution The appropriate hyperbolic substitutions are

(a) x = sinh t

(b) x = 3 sinh t

(c) 3x = sinh t

2. Which two of the hyperbolic integration formulas differ from their trigonometric counterparts by a minus sign?

solution The integration formulas for sinh x and tanh x differ from their trigonometric counterparts by a minus sign.

3. Which antiderivative of y = (1 − x2)−1 should we use to evaluate the integral
∫ 5

3
(1 − x2)−1 dx?

solution Because the integration interval lies outside −1 < x < 1, the appropriate antiderivative of y = (1 − x2)−1

is 1
2 ln

∣∣∣ 1+x
1−x

∣∣∣.
Exercises
In Exercises 1–16, calculate the integral.

1.
∫

cosh(3x) dx

solution
∫

cosh(3x) dx = 1

3
sinh 3x + C.

2.
∫

sinh(x + 1) dx

solution
∫

sinh(x + 1) dx = cosh(x + 1) + C.
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3.
∫

x sinh(x2 + 1) dx

solution
∫

x sinh(x2 + 1) dx = 1

2
cosh(x2 + 1) + C.

4.
∫

sinh2 x cosh x dx

solution Let u = sinh x. Then du = cosh x dx and∫
sinh2 x cosh x dx =

∫
u2 du = 1

3
u3 + C = 1

3
(sinh x)3 + C.

5.
∫

sech2(1 − 2x) dx

solution
∫

sech2(1 − 2x) dx = −1

2
tanh(1 − 2x) + C.

6.
∫

tanh(3x) sech(3x) dx

solution
∫

tanh(3x) sech(3x) dx = −1

3
sech 3x + C.

7.
∫

tanh x sech2 x dx

solution Let u = tanh x. Then du = sech2 x dx nd

∫
tanh x sech2 x dx =

∫
u du = 1

2
u2 + C = tanh2 x

2
+ C.

8.
∫

cosh x

3 sinh x + 4
dx

solution Let u = 3 sinh x + 4. Then du = 3 cosh x dx and

∫
cosh x

3 sinh x + 4
dx =

∫
du

3u
= 1

3
ln |u| + C = 1

3
ln |3 sinh x + 4| + C.

9.
∫

tanh x dx

solution
∫

tanh x dx = ln cosh x + C.

10.
∫

x csch(x2) coth(x2) dx

solution Let u = x2. Then du = 2x dx and∫
x csch(x2) coth(x2) dx = 1

2

∫
csch u coth u du = −1

2
csch u + C = −1

2
csch(x2) + C.

11.
∫

cosh x

sinh x
dx

solution
∫

cosh x

sinh x
dx = ln | sinh x| + C.

12.
∫

cosh x

sinh2 x
dx

solution
∫

cosh x

sinh2 x
dx =

∫
csch x coth x dx = − csch x + C.

13.
∫

sinh2(4x − 9) dx

solution
∫

sinh2(4x − 9) dx = 1

2

∫
(cosh(8x − 18) − 1) dx = 1

16
sinh(8x − 18) − 1

2
x + C.
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14.
∫

sinh3 x cosh6 x dx

solution Let u = cosh x. Then du = sinh x dx and∫
sinh3 x cosh6 x dx =

∫
(cosh2 x − 1) cosh6 x sinh x dx =

∫
(u2 − 1)u6 du =

∫
(u8 − u6) du

= 1

9
u9 − 1

7
u7 + C = 1

9
cosh9 x − 1

7
cosh7 x + C.

15.
∫

sinh2 x cosh2 x dx

solution ∫
sinh2 x cosh2 x dx = 1

4

∫
sinh2 2x dx = 1

8

∫
(cosh 4x − 1) dx = 1

32
sinh 4x − 1

8
x + C.

16.
∫

tanh3 x dx

solution ∫
tanh3 x dx =

∫
(1 − sech2 x) tanh x dx = ln cosh x −

∫
tanh x sech2 x dx.

To evaluate the remaining integral, let u = tanh x. Then du = sech2 x dx and∫
tanh x sech2 x dx =

∫
u du = 1

2
u2 + C = 1

2
tanh2 x + C.

Therefore, ∫
tanh3 x dx = ln cosh x − 1

2
tanh2 x + C.

In Exercises 17–30, calculate the integral in terms of the inverse hyperbolic functions.

17.
∫

dx√
x2 − 1

solution
∫

dx√
x2 − 1

= cosh−1 x + C.

18.
∫

dx√
9x2 − 4

solution
∫

dx√
9x2 − 4

= 1

3
cosh−1

(
3x

2

)
+ C.

19.
∫

dx√
16 + 25x2

solution
∫

dx√
16 + 25x2

= 1

5
sinh−1

(
5x

4

)
+ C.

20.
∫

dx√
1 + 3x2

solution
∫

dx√
1 + 3x2

= 1√
3

sinh−1(
√

3x) + C.

21.
∫ √

x2 − 1 dx

solution Let x = cosh t . Then dx = sinh t dt and∫ √
x2 − 1 dx =

∫
sinh2 t dt = 1

2

∫
(cosh 2t − 1) dt = 1

4
sinh 2t − 1

2
t + C

= 1

2
sinh t cosh t − 1

2
t + C = 1

2
x
√

x2 − 1 − 1

2
cosh−1 x + C.
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22.
∫

x2 dx√
x2 + 1

solution Let x = sinh t . Then dx = cosh t dt and

∫
x2√

x2 + 1
dx =

∫
sinh2 t dt = 1

2

∫
(cosh 2t − 1) dt = 1

4
sinh 2t − 1

2
t + C = 1

2
sinh t cosh t − 1

2
t + C

= 1

2
x
√

x2 + 1 − 1

2
sinh−1 x + C.

23.
∫ 1/2

−1/2

dx

1 − x2

solution

∫ 1/2

−1/2

dx

1 − x2
= tanh−1 x

∣∣∣∣1/2

−1/2
= tanh−1

(
1

2

)
− tanh−1

(
−1

2

)
= 2 tanh−1

(
1

2

)
.

24.
∫ 5

4

dx

1 − x2

solution

∫ 5

4

dx

1 − x2
= 1

2
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣
∣∣∣∣5
4

= 1

2

(
ln

3

2
− ln

5

3

)
= 1

2
ln

9

10
.

25.
∫ 1

0

dx√
1 + x2

solution
∫ 1

0

dx√
1 + x2

= sinh−1
∣∣∣∣1
0

= sinh−1(1) − sinh−1(0) = sinh−1 1.

26.
∫ 10

2

dx

4x2 − 1

solution
∫ 10

2

dx

4x2 − 1
= −1

2
coth−1(2x)

∣∣∣∣10

2
= 1

2
(coth−1 4 − coth−1 20).

27.
∫ −1

−3

dx

x
√

x2 + 16

solution
∫ −1

−3

dx

x
√

x2 + 16
= 1

4
csch−1

(x

4

) ∣∣∣∣−1

−3
= 1

4

(
csch−1

(
−1

4

)
− csch−1

(
−3

4

))
.

28.
∫ 0.8

0.2

dx

x
√

1 − x2

solution
∫ 0.8

0.2

dx

x
√

1 − x2
= − sech−1 x

∣∣∣∣0.8

0.2
= sech−1(0.2) − sech−1(0.8)

29.
∫ √

x2 − 1 dx

x2

solution Let x = cosh t . Then dx = sinh t dt and

∫ √
x2 − 1 dx

x2
=
∫

sinh2 t

cosh2 t
dt =

∫
tanh2 t dt =

∫
(1 − sech2 t) dt

= t − tanh t + C = cosh−1 x −
√

x2 − 1

x
+ C.

30.
∫ 9

1

dx

x
√

x4 + 1

solution Let u = x2. Then du = 2x dx or dx
x = 1

2
du
x2 = 1

2
du
u . Hence,

∫ 9

1

dx

x
√

x4 + 1
= 1

2

∫ 81

1

du

u
√

u2 + 1
= − csch−1 u

∣∣∣∣81

1
= csch−1 1 − csch−1 81.
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31. Verify the formulas

sinh−1 x = ln |x +
√

x2 + 1|
cosh−1 x = ln |x +

√
x2 − 1| (for x ≥ 1)

solution Let x = sinh t . Then

cosh t =
√

1 + sinh2 t =
√

1 + x2.

Moreover, because

sinh t + cosh t = et − e−t

2
+ et + e−t

2
= et ,

it follows that

sinh−1 x = t = ln(sinh t + cosh t) = ln(x +
√

x2 + 1).

Now, Let x = cosh t . Then

sinh t =
√

cosh2 t − 1 =
√

x2 − 1.

and

cosh−1 x = t = ln(sinh t + cosh t) = ln(x +
√

x2 − 1).

Because cosh t ≥ 1 for all t , this last expression is only valid for x = cosh t ≥ 1.

32. Verify that tanh−1 x = 1

2
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ for |x| < 1.

solution Let A = tanh−1 x. Then

x = tanh A = sinh A

cosh A
= eA − e−A

eA + e−A
.

Solving for A yields

A = 1

2
ln

x + 1

1 − x
;

hence,

tanh−1 x = 1

2
ln

x + 1

1 − x
= 1

2
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ .
for |x| < 1 (so that both 1 + x and 1 − x are positive).

33. Evaluate
∫ √

x2 + 16 dx using trigonometric substitution. Then use Exercise 31 to verify that your answer agrees

with the answer in Example 3.

solution Let x = 4 tan θ . Then dx = 4 sec2 θ dθ and∫ √
x2 + 16 dx = 16

∫
sec3 θ dθ = 8 tan θ sec θ + 8

∫
sec θ dθ = 8 tan θ sec θ + 8 ln |sec θ + tan θ | + C

= 8 · x

4
·
√

x2 + 16

4
+ 8 ln

∣∣∣∣∣
√

x2 + 16

4
+ x

4

∣∣∣∣∣+ C

= 1

2
x
√

x2 + 16 + 8 ln

∣∣∣∣∣x4 +
√(x

4

)2 + 1

∣∣∣∣∣+ C.

Using Exercise 31,

ln

∣∣∣∣∣x4 +
√(x

4

)2 + 1

∣∣∣∣∣ = sinh−1
(x

4

)
,

so we can write the antiderivative as

1

2
x
√

x2 + 16 + 8 sinh−1
(x

4

)
+ C,

which agrees with the answer in Example 3.
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34. Evaluate
∫ √

x2 − 9 dx in two ways: using trigonometric substitution and using hyperbolic substitution. Then use

Exercise 31 to verify that the two answers agree.

solution First, let x = 3 sec θ . Then dx = 3 sec θ tan θ dθ and∫ √
x2 − 9 dx = 9

∫
tan2 θ sec θ dθ = 9

∫
sec3 θ dθ − 9

∫
sec θ dθ

= 9

2
sec θ tan θ + 9

2

∫
sec θ dθ − 9

∫
sec θ dθ

= 9

2
sec θ tan θ − 9

2
ln |sec θ + tan θ | + C

= 9

2
· x

3
·
√

x2 − 9

3
− 9

2
ln

∣∣∣∣∣x3 +
√

x2 − 9

3

∣∣∣∣∣+ C

= 1

2
x
√

x2 − 9 − 9

2
ln

∣∣∣∣∣x3 +
√(x

3

)2 − 1

∣∣∣∣∣+ C.

Alternately, let x = 3 cosh t . Then dx = 3 sinh t dt and∫ √
x2 − 9 dx = 9

∫
sinh2 t dt = 9

2

∫
(cosh 2t − 1) dt = 9

2
sinh t cosh t − 9

2
t + C

= 1

2
x
√

x2 − 9 − 9

2
cosh−1

(x

3

)
+ C.

Using Exercise 31,

cosh−1
(x

3

)
= ln

∣∣∣∣∣x3 +
√(x

3

)2 − 1

∣∣∣∣∣ ,
so our two answers agree.

35. Prove the reduction formula for n ≥ 2:∫
coshn x dx = 1

n
coshn−1 x sinh x + n − 1

n

∫
coshn−2 x dx 5

solution Using Integration by Parts with u = coshn−1 x and v′ = cosh x, we have∫
coshn x dx = coshn−1 x sinh x − (n − 1)

∫
coshn−2 x sinh2 x dx

= coshn−1 x sinh x − (n − 1)

∫
coshn x dx + (n − 1)

∫
coshn−2 x dx.

Adding (n − 1)
∫

coshn x dx to both sides then yields

n

∫
coshn x dx = coshn−1 x sinh x + (n − 1)

∫
coshn−2 x dx.

Finally, ∫
coshn x dx = 1

n
coshn−1 x sinh x + n − 1

n

∫
coshn−2 x dx.

36. Use Eq. (5) to evaluate
∫

cosh4 x dx.

solution Using Eq. (5) twice,∫
cosh4 x dx = 1

4
cosh3 x sinh x + 3

4

∫
cosh2 x dx

= 1

4
cosh3 x sinh x + 3

4

(
1

2
cosh x sinh x + 1

2

∫
dx

)

= 1

4
cosh3 x sinh x + 3

8
cosh x sinh x + 3

8
x + C.
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In Exercises 37–40, evaluate the integral.

37.
∫

tanh−1 x dx

x2 − 1

solution Let u = tanh−1 x. Then du = 1

1 − x2
dx = − 1

x2 − 1
dx and

∫
tanh−1 x

x2 − 1
dx = −

∫
u du = −1

2
u2 + C = −1

2

(
tanh−1 x

)2 + C.

38.
∫

sinh−1 x dx

solution Using Integration by Parts with u = sinh−1 x and v′ = 1,∫
sinh−1 x dx = x sinh−1 x −

∫
x√

x2 + 1
dx = x sinh−1 x −

√
x2 + 1 + C.

39.
∫

tanh−1 x dx

solution Using Integration by Parts with u = tanh−1 x and v′ = 1,∫
tanh−1 x dx = x tanh−1 x −

∫
x

1 − x2
dx = x tanh−1 x + 1

2
ln |1 − x2| + C.

40.
∫

x tanh−1 x dx

solution Using Integration by Parts with u = tanh−1 x and v′ = x,

∫
x tanh−1 x dx = 1

2
x2 tanh−1 x − 1

2

∫
x2

1 − x2
dx = 1

2
x2 tanh−1 x − 1

2

∫ (
1

1 − x2
− 1

)
dx

= 1

2
x2 tanh−1 x − 1

2
tanh−1 x + 1

2
x + C.

Further Insights and Challenges
41. Show that if u = tanh(x/2), then

cosh x = 1 + u2

1 − u2
, sinh x = 2u

1 − u2
, dx = 2du

1 − u2

Hint: For the first relation, use the identities

sinh2
(x

2

)
= 1

2
(cosh x − 1), cosh2

(x

2

)
= 1

2
(cosh x + 1)

solution Let u = tanh(x/2). Then

u = sinh(x/2)

cosh(x/2)
=
√

cosh x − 1

cosh x + 1
.

Solving for cosh x yields

cosh x = 1 + u2

1 − u2
.

Next,

sinh x =
√

cosh2 x − 1 =
√

(1 + u2)2 − (1 − u2)2

(1 − u2)2
= 2u

1 − u2
.

Finally, if u = tanh(x/2), then x = 2 tanh−1 u and

dx = 2 du

1 − u2
.
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Exercises 42 and 43: evaluate using the substitution of Exercise 41.

42.
∫

sech x dx

solution Let u = tanh(x/2). Then, by Exercise 41,

sech x = 1

cosh x
= 1 − u2

1 + u2
and dx = 2 du

1 − u2
,

so ∫
sech x dx = 2

∫
du

1 + u2
= 2 tan−1 u + C = 2 tan−1

(
tanh

x

2

)
+ C.

43.
∫

dx

1 + cosh x

solution Let u = tanh(x/2). Then, by Exercise 41,

1 + cosh x = 1 + 1 + u2

1 − u2
= 2

1 − u2
and dx = 2 du

1 − u2
,

so ∫
dx

1 + cosh x
=
∫

du = u + C = tanh
x

2
+ C.

44. Suppose that y = f (x) satisfies y′′ = y. Prove:

(a) f (x)2 − (f ′(x))2 is constant.
(b) If f (0) = f ′(0) = 0, then f (x) is the zero function.
(c) f (x) = f (0) cosh x + f ′(0) sinh x.

solution
(a)

d

dx

[
f (x)2 − (f ′(x))2

]
= 2f (x)f ′(x) − 2f ′(x)f ′′(x) = 2f (x)f ′(x) − 2f ′(x)f (x) = 0

so that f (x)2 − (f ′(x))2 must be constant, since it has zero derivative everywhere.
(b) If f (0) = f ′(0) = 0, then part (a) implies that f (x)2 − (f ′(x))2 is the zero function, since it is constant and
vanishes at 0. Thus f (x) = ±f ′(x). But Theorem 1 in Section 5.8 states that the only function y = f (x) with y′ = ky

is y = Cekx ; thus either f (x) = Cex or f (x) = Ce−x . But in either case, f (0) = C = 0, so we must have C = 0 and
f (x) is the zero function.
(c) Let g(x) = f (x) − f (0) cosh x − f ′(0) sinh x. Then

g′(x) = f ′(x) − f (0)(cosh x)′ − f ′(0)(sinh x)′ = f ′(x) − f (0) sinh x − f ′(0) cosh x

g′′(x) = f ′′(x) − f (0)(sinh x)′ − f ′(0)(cosh x)′ = f ′′(x) − f (0) cosh x − f ′(0) sinh x

= f (x) − f (0) cosh x − f ′(0) sinh x = g(x)

since f ′′(x) = f (x). But also

g(0) = f (0) − f (0) cosh 0 − f ′(0) sinh 0 = f (0) − f (0) = 0

g′(0) = f ′(0) − f (0) sinh 0 − f ′(0) cosh 0 = f ′(0) − f ′(0) = 0

Thus g(x) satisfies the conditions the problem, and in particular of part (b) [replace f by g], so that g(x) must be the zero
function. But this means that f (x) − f (0) cosh x − f ′(0) sinh x = 0 so that

f (x) = f (0) cosh x + f ′(0) sinh x

Exercises 45–48 refer to the function gd(y) = tan−1(sinh y), called the gudermannian. In a map of the earth constructed
by Mercator projection, points located y radial units from the equator correspond to points on the globe of latitude gd(y).

45. Prove that
d

dy
gd(y) = sech y.

solution Let gd(y) = tan−1(sinh y). Then

d

dy
gd(y) = 1

1 + sinh2 y
cosh y = 1

cosh y
= sech y,

where we have used the identity 1 + sinh2 y = cosh2 y.
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46. Let f (y) = 2 tan−1(ey) − π/2. Prove that gd(y) = f (y). Hint: Show that gd ′(y) = f ′(y) and f (0) = g(0).

solution Let f (y) = 2tan−1 (ey
)− π

2 . Then

f ′(y) = 2ey

1 + e2y
= 2

e−y + ey
= 1

ey+e−y

2

= 1

cosh y
= sech y.

In the previous exercise we found that d
dy

gd(y) = sech y; therefore, gd ′(y) = f ′(y). Now, since the two functions have
equal derivatives, they differ by a constant; that is,

gd(y) = f (y) + C.

To find C we substitute y = 0:

tan−1(sinh 0) = 2tan−1(e0) − π

2
+ C

tan−10 = 2tan−1(1) − π

2
+ C

0 = 2 · π

4
− π

2
+ C

C = 0.

Therefore,

gd(y) = f (y).

47. Let t (y) = sinh−1(tan y). Show that t (y) is the inverse of gd(y) for 0 ≤ y < π/2.

solution Let x = gd(y) = tan−1(sinh y). Solving for y yields y = sinh−1(tan x). Therefore,

gd−1(y) = sinh−1(tan y).

48. Verify that t (y) in Exercise 47 satisfies t ′(y) = sec y, and find a value of a such that

t (y) =
∫ y

a

dt

cos t

solution Let t (y) = sinh−1(tan y). Then

t ′(y) = 1

cos2y
√

tan2y + 1
= 1

cos2y
√

1
cos2y

= 1

cos2y · 1
| cos y|

= 1

| cos y| = | sec y|.

For 0 ≤ y < π
2 , sec y > 0; therefore t ′(y) = sec y. Integrating this last relation yields

t (y) − t (a) =
∫ y

a

1

cos t
dt.

For this to be of the desired form, we must have t (a) = sinh−1(tan a) = 0. The only value for a that satisfies this equation
is a = 0.

49. The relations cosh(it) = cos t and sinh(it) = i sin t were discussed in the Excursion. Use these relations to show
that the identity cos2 t + sin2 t = 1 results from setting x = it in the identity cosh2 x − sinh2 x = 1.

solution Let x = it . Then

cosh2 x = (cosh(it))2 = cos2 t

and

sinh2 x = (sinh(it))2 = i2 sin2 t = − sin2 t.

Thus,

1 = cosh2(it) − sinh2(it) = cos2 t − (− sin2 t) = cos2 t + sin2 t,

as desired.
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7.5 The Method of Partial Fractions

Preliminary Questions
1. Suppose that

∫
f (x) dx = ln x + √

x + 1 + C. Can f (x) be a rational function? Explain.

solution No, f (x) cannot be a rational function because the integral of a rational function cannot contain a term with
a non-integer exponent such as

√
x + 1.

2. Which of the following are proper rational functions?

(a)
x

x − 3
(b)

4

9 − x

(c)
x2 + 12

(x + 2)(x + 1)(x − 3)
(d)

4x3 − 7x

(x − 3)(2x + 5)(9 − x)

solution

(a) No, this is not a proper rational function because the degree of the numerator is not less than the degree of the
denominator.

(b) Yes, this is a proper rational function.

(c) Yes, this is a proper rational function.

(d) No, this is not a proper rational function because the degree of the numerator is not less than the degree of the
denominator.

3. Which of the following quadratic polynomials are irreducible? To check, complete the square if necessary.

(a) x2 + 5 (b) x2 − 5

(c) x2 + 4x + 6 (d) x2 + 4x + 2

solution

(a) Square is already completed; irreducible.

(b) Square is already completed; factors as (x − √
5)(x + √

5).

(c) x2 + 4x + 6 = (x + 2)2 + 2; irreducible.

(d) x2 + 4x + 2 = (x + 2)2 − 2; factors as (x + 2 − √
2)(x + 2 + √

2).

4. Let P(x)/Q(x) be a proper rational function where Q(x) factors as a product of distinct linear factors (x − ai). Then

∫
P(x) dx

Q(x)

(choose the correct answer):

(a) is a sum of logarithmic terms Ai ln(x − ai) for some constants Ai .

(b) may contain a term involving the arctangent.

solution The correct answer is (a): the integral is a sum of logarithmic terms Ai ln(x − ai) for some constants Ai .

Exercises
1. Match the rational functions (a)–(d) with the corresponding partial fraction decompositions (i)–(iv).

(a)
x2 + 4x + 12

(x + 2)(x2 + 4)
(b)

2x2 + 8x + 24

(x + 2)2(x2 + 4)

(c)
x2 − 4x + 8

(x − 1)2(x − 2)2
(d)

x4 − 4x + 8

(x + 2)(x2 + 4)

(i) x − 2 + 4

x + 2
− 4x − 4

x2 + 4

(ii)
−8

x − 2
+ 4

(x − 2)2
+ 8

x − 1
+ 5

(x − 1)2

(iii)
1

x + 2
+ 2

(x + 2)2
+ −x + 2

x2 + 4
(iv)

1

x + 2
+ 4

x2 + 4



March 30, 2011

886 C H A P T E R 7 TECHNIQUES OF INTEGRATION

solution

(a)
x2 + 4x + 12

(x + 2)(x2 + 4)
= 1

x + 2
+ 4

x2 + 4
.

(b)
2x2 + 8x + 24

(x + 2)2(x2 + 4)
= 1

x + 2
+ 2

(x + 2)2
+ −x + 2

x2 + 4
.

(c)
x2 − 4x + 8

(x − 1)2(x − 2)2
= −8

x − 2
+ 4

(x − 2)2
+ 8

x − 1
+ 5

(x − 1)2
.

(d)
x4 − 4x + 8

(x + 2)(x2 + 4)
= x − 2 + 4

x + 2
− 4x − 4

x2 + 4
.

2. Determine the constants A, B:

2x − 3

(x − 3)(x − 4)
= A

x − 3
+ B

x − 4

solution Clearing denominators gives

2x − 3 = A(x − 4) + B(x − 3).

Setting x = 4 then yields

8 − 3 = A(0) + B(1) or B = 5,

while setting x = 3 yields

6 − 3 = A(−1) + 0 or A = −3.

3. Clear denominators in the following partial fraction decomposition and determine the constant B (substitute a value
of x or use the method of undetermined coefficients).

3x2 + 11x + 12

(x + 1)(x + 3)2
= 1

x + 1
− B

x + 3
− 3

(x + 3)2

solution Clearing denominators gives

3x2 + 11x + 12 = (x + 3)2 − B(x + 1)(x + 3) − 3(x + 1).

Setting x = 0 then yields

12 = 9 − B(1)(3) − 3(1) or B = −2.

To use the method of undetermined coefficients, expand the right-hand side and gather like terms:

3x2 + 11x + 12 = (1 − B)x2 + (3 − 4B)x + (6 − 3B).

Equating x2-coefficients on both sides, we find

3 = 1 − B or B = −2.

4. Find the constants in the partial fraction decomposition

2x + 4

(x − 2)(x2 + 4)
= A

x − 2
+ Bx + C

x2 + 4

solution Clearing denominators gives

2x + 4 = A(x2 + 4) + (Bx + C)(x − 2).

Setting x = 2 then yields

4 + 4 = A(4 + 4) + 0 or A = 1.

To find B and C, expand the right side, gather like terms, and use the method of undetermined coefficients:

2x + 4 = (B + 1)x2 + (−2B + C)x + (4 − 2C).

Equating x2-coefficients, we find

0 = B + 1 or B = −1,
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while equating constants yields

4 = 4 − 2C or C = 0.

Thus, A = 1, B = −1, C = 0.

In Exercises 5–8, evaluate using long division first to write f (x) as the sum of a polynomial and a proper rational function.

5.
∫

x dx

3x − 4

solution Long division gives us

x

3x − 4
= 1

3
+ 4/3

3x − 4

Therefore the integral is ∫
x

3x − 4
dx =

∫
1

3
− 4

9x − 12
dx = 1

3
x − 4

9
ln |9x − 12| + C

6.
∫

(x2 + 2) dx

x + 3

solution Long division gives us

x2 + 2

x + 3
= x − 3 + 11

x + 3
.

Therefore the integral is∫
x2 + 2

x + 3
dx =

∫
(x − 3) dx + 11

∫
dx

x + 3
= x2

2
− 3x + 11 ln |x + 3| + C.

7.
∫

(x3 + 2x2 + 1) dx

x + 2

solution Long division gives us

x3 + 2x2 + 1

x + 2
= x2 + 1

x + 2

Therefore the integral is ∫
x3 + 2x2 + 1

x + 2
dx =

∫
x2 + 1

x + 2
dx = 1

3
x3 + ln |x + 2| + C

8.
∫

(x3 + 1) dx

x2 + 1

solution Long division gives

x3 + 1

x2 + 1
= x − x − 1

x2 + 1

Therefore the integral is∫
x3 + 1

x2 + 1
dx =

∫
x − x − 1

x2 + 1
dx = 1

2
x2 −

∫
x

x2 + 1
dx + 1

x2 + 1
dx

= 1

2
x2 − 1

2

∫
2x dx

x2 + 1
+ 1

x2 + 1
dx = 1

2
x2 − 1

2
ln(x2 + 1) + tan−1 x + C

In Exercises 9–44, evaluate the integral.

9.
∫

dx

(x − 2)(x − 4)

solution The partial fraction decomposition has the form:

1

(x − 2)(x − 4)
= A

x − 2
+ B

x − 4
.
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Clearing denominators gives us

1 = A(x − 4) + B(x − 2).

Setting x = 2 then yields

1 = A(2 − 4) + 0 or A = −1

2
,

while setting x = 4 yields

1 = 0 + B(4 − 2) or B = 1

2
.

The result is:

1

(x − 2)(x − 4)
= − 1

2
x − 2

+
1
2

x − 4
.

Thus, ∫
dx

(x − 2)(x − 4)
= −1

2

∫
dx

x − 2
+ 1

2

∫
dx

x − 4
= −1

2
ln |x − 2| + 1

2
ln |x − 4| + C.

10.
∫

(x + 3) dx

x + 4

solution Start with long division:

x + 3

x + 4
= 1 − 1

x + 4

so that ∫
x + 3

x + 4
dx =

∫
1 − 1

x + 4
dx = x − ln |x + 4| + C

11.
∫

dx

x(2x + 1)

solution The partial fraction decomposition has the form:

1

x(2x + 1)
= A

x
+ B

2x + 1
.

Clearing denominators gives us

1 = A(2x + 1) + Bx.

Setting x = 0 then yields

1 = A(1) + 0 or A = 1,

while setting x = − 1
2 yields

1 = 0 + B

(
−1

2

)
or B = −2.

The result is:

1

x(2x + 1)
= 1

x
+ −2

2x + 1
.

Thus, ∫
dx

x(2x + 1)
=
∫

dx

x
−
∫

2 dx

2x + 1
= ln |x| − ln |2x + 1| + C.

For the integral on the right, we have used the substitution u = 2x + 1, du = 2 dx.
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12.
∫

(2x − 1) dx

x2 − 5x + 6

solution The partial fraction decomposition has the form:

2x − 1

x2 − 5x + 6
= 2x − 1

(x − 2)(x − 3)
= A

x − 2
+ B

x − 3
.

Clearing denominators gives us

2x − 1 = A(x − 3) + B(x − 2).

Setting x = 2 then yields

3 = A(−1) + 0 or A = −3,

while setting x = 3 yields

5 = 0 + B(1) or B = 5.

The result is:

2x − 1

x2 − 5x + 6
= −3

x − 2
+ 5

x − 3
.

Thus, ∫
(2x − 1) dx

x2 − 5x + 6
= −3

∫
dx

x − 2
+ 5

∫
dx

x − 3
= −3 ln |x − 2| + 5 ln |x − 3| + C.

13.
∫

x2 dx

x2 + 9

solution

∫
x2

x2 + 9
dx =

∫
1 − 9

x2 + 9
dx = x − 3 tan−1

(x

3

)
+ C

14.
∫

dx

(x − 2)(x − 3)(x + 2)

solution The partial fraction decomposition has the form:

1

(x − 2)(x − 3)(x + 2)
= A

x − 2
+ B

x − 3
+ C

x + 2
.

Clearing denominators gives us

1 = A(x − 3)(x + 2) + B(x − 2)(x + 2) + C(x − 2)(x − 3).

Setting x = 2 then yields

1 = A(−1)(4) + 0 + 0 or A = −1

4
,

while setting x = 3 yields

1 = 0 + B(1)(5) + 0 or B = 1

5
,

and setting x = −2 yields

1 = 0 + 0 + C(−4)(−5) or C = 1

20
.

The result is:

1

(x − 2)(x − 3)(x + 2)
= − 1

4
x − 2

+
1
5

x − 3
+

1
20

x + 2
.

Thus, ∫
dx

(x − 2)(x − 3)(x + 2)
= −1

4

∫
dx

x − 2
+ 1

5

∫
dx

x − 3
+ 1

20

∫
dx

x + 2

= −1

4
ln |x − 2| + 1

5
ln |x − 3| + 1

20
ln |x + 2| + C.
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15.
∫

(x2 + 3x − 44) dx

(x + 3)(x + 5)(3x − 2)

solution The partial fraction decomposition has the form:

x2 + 3x − 44

(x + 3)(x + 5)(3x − 2)
= A

x + 3
+ B

x + 5
+ C

3x − 2
.

Clearing denominators gives us

x2 + 3x − 44 = A(x + 5)(3x − 2) + B(x + 3)(3x − 2) + C(x + 3)(x + 5).

Setting x = −3 then yields

9 − 9 − 44 = A(2)(−11) + 0 + 0 or A = 2,

while setting x = −5 yields

25 − 15 − 44 = 0 + B(−2)(−17) + 0 or B = −1,

and setting x = 2
3 yields

4

9
+ 2 − 44 = 0 + 0 + C

(
11

3

)(
17

3

)
or C = −2.

The result is:

x2 + 3x − 44

(x + 3)(x + 5)(3x − 2)
= 2

x + 3
+ −1

x + 5
+ −2

3x − 2
.

Thus, ∫
(x2 + 3x − 44) dx

(x + 3)(x + 5)(3x − 2)
= 2

∫
dx

x + 3
−
∫

dx

x + 5
− 2

∫
dx

3x − 2

= 2 ln |x + 3| − ln |x + 5| − 2

3
ln |3x − 2| + C.

To evaluate the last integral, we have made the substitution u = 3x − 2, du = 3 dx.

16.
∫

3 dx

(x + 1)(x2 + x)

solution The partial fraction decomposition has the form:

3

(x + 1)(x2 + x)
= 3

(x + 1)(x)(x + 1)
= 3

x(x + 1)2
= A

x
+ B

x + 1
+ C

(x + 1)2
.

Clearing denominators gives us

3 = A(x + 1)2 + Bx(x + 1) + Cx.

Setting x = 0 then yields

3 = A(1) + 0 + 0 or A = 3,

while setting x = −1 yields

3 = 0 + 0 + C(−1) or C = −3.

Now plug in A = 3 and C = −3:

3 = 3(x + 1)2 + Bx(x + 1) − 3x.

The constant B can be determined by plugging in for x any value other than 0 or −1. Plugging in x = 1 gives us

3 = 3(4) + B(1)(2) − 3 or B = −3.

The result is

3

(x + 1)(x2 + x)
= 3

x
+ −3

x + 1
+ −3

(x + 1)2
.

Thus, ∫
3 dx

(x + 1)(x2 + x)
= 3

∫
dx

x
− 3

∫
dx

x + 1
− 3

∫
dx

(x + 1)2
= 3 ln |x| − 3 ln |x + 1| + 3

x + 1
+ C.
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17.
∫

(x2 + 11x) dx

(x − 1)(x + 1)2

solution The partial fraction decomposition has the form:

x2 + 11x

(x − 1)(x + 1)2
= A

x − 1
+ B

x + 1
+ C

(x + 1)2
.

Clearing denominators gives us

x2 + 11x = A(x + 1)2 + B(x − 1)(x + 1) + C(x − 1).

Setting x = 1 then yields

12 = A(4) + 0 + 0 or A = 3,

while setting x = −1 yields

−10 = 0 + 0 + C(−2) or C = 5.

Plugging in these values results in

x2 + 11x = 3(x + 1)2 + B(x − 1)(x + 1) + 5(x − 1).

The constant B can be determined by plugging in for x any value other than 1 or −1. If we plug in x = 0, we get

0 = 3 + B(−1)(1) + 5(−1) or B = −2.

The result is

x2 + 11x

(x − 1)(x + 1)2
= 3

x − 1
+ −2

x + 1
+ 5

(x + 1)2
.

Thus,∫
(x2 + 11x) dx

(x − 1)(x + 1)2
= 3

∫
dx

x − 1
− 2

∫
dx

x + 1
+ 5

∫
dx

(x + 1)2
= 3 ln |x − 1| − 2 ln |x + 1| − 5

x + 1
+ C.

18.
∫

(4x2 − 21x) dx

(x − 3)2(2x + 3)

solution The partial fraction decomposition has the form:

4x2 − 21x

(x − 3)2(2x + 3)
= A

x − 3
+ B

(x − 3)2
+ C

2x + 3
.

Clearing denominators gives us

4x2 − 21x = A(x − 3)(2x + 3) + B(2x + 3) + C(x − 3)2.

Setting x = 3 then yields

−27 = 0 + B(9) + 0 or B = −3,

while setting x = − 3
2 yields

9 + 63

2
= 0 + 0 + C

(
81

4

)
or C = 2.

Plugging in these values results in

4x2 − 21x = A(x − 3)(2x + 3) − 3(2x + 3) + 2(x − 3)2.

Setting x = 0 gives us

0 = A(−3)(3) − 9 + 18 or A = 1.

The result is

4x2 − 21x

(x − 3)2(2x + 3)
= 1

x − 3
+ −3

(x − 3)2
+ 2

2x + 3
.

Thus, ∫
(4x2 − 21x) dx

(x − 3)2(2x + 3)
=
∫

dx

x − 3
− 3

∫
dx

(x − 3)2
+
∫

2 dx

2x + 3
= ln |x − 3| + 3

x − 3
+ ln |2x + 3| + C.
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19.
∫

dx

(x − 1)2(x − 2)2

solution The partial fraction decomposition has the form:

1

(x − 1)2(x − 2)2
= A

x − 1
+ B

(x − 1)2
+ C

x − 2
+ D

(x − 2)2
.

Clearing denominators gives us

1 = A(x − 1)(x − 2)2 + B(x − 2)2 + C(x − 2)(x − 1)2 + D(x − 1)2.

Setting x = 1 then yields

1 = B(1) or B = 1,

while setting x = 2 yields

1 = D(1) or D = 1.

Plugging in these values gives us

1 = A(x − 1)(x − 2)2 + (x − 2)2 + C(x − 2)(x − 1)2 + (x − 1)2.

Setting x = 0 now yields

1 = A(−1)(4) + 4 + C(−2)(1) + 1 or − 4 = −4A − 2C,

while setting x = 3 yields

1 = A(2)(1) + 1 + C(1)(4) + 4 or − 4 = 2A + 4C.

Solving this system of two equations in two unknowns gives A = 2 and C = −2. The result is

1

(x − 1)2(x − 2)2
= 2

x − 1
+ 1

(x − 1)2
+ −2

x − 2
+ 1

(x − 2)2
.

Thus, ∫
dx

(x − 1)2(x − 2)2
= 2

∫
dx

x − 1
+
∫

dx

(x − 1)2
− 2

∫
dx

x − 2
+
∫

dx

(x − 2)2

= 2 ln |x − 1| − 1

x − 1
− 2 ln |x − 2| − 1

x − 2
+ C.

20.
∫

(x2 − 8x) dx

(x + 1)(x + 4)3

solution The partial fraction decomposition is

x2 − 8x

(x + 1)(x + 4)3
= A

x + 1
+ B

x + 4
+ C

(x + 4)2
+ D

(x + 4)3

Clearing fractions gives

x2 − 8x = A(x + 4)3 + B(x + 4)2(x + 1) + C(x + 4)(x + 1) + D(x + 1)

Setting x = −4 gives 48 = −3D so that D = −16. Setting x = −1 gives 9 = 27A so that A = 1
3 . Thus

x2 − 8x = 1

3
(x + 4)3 + B(x + 4)2(x + 1) + C(x + 4)(x + 1) − 16(x + 1)

The coefficient of x3 on the right hand side must be zero; it is 1
3 + B, so that B = − 1

3 . Finally, the constant term on the
right must be zero as well; substituting the known values of A, B, and D gives for the constant term

1

3
· 64 − 1

3
· 16 + 4C − 16 = 4C

so that C = 0, and the partial fraction decomposition is

x2 − 8x

(x + 1)(x + 4)3
= 1

3(x + 1)
− 1

3(x + 4)
− 16

(x + 4)3
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Thus ∫
x2 − 8x

(x + 1)(x + 4)3
dx = 1

3

∫
1

x + 1
dx − 1

3

∫
1

x + 4
dx − 16

∫
1

(x + 4)3
dx

= 1

3
ln |x + 1| − 1

3
ln |x + 4| + 8(x + 4)−2 + C = 1

3
ln

∣∣∣∣x + 1

x + 4

∣∣∣∣+ 8(x + 4)−2 + C

21.
∫

8 dx

x(x + 2)3

solution The partial fraction decomposition is

8

x(x + 2)3
= A

x
+ B

x + 2
+ C

(x + 2)2
+ D

(x + 2)3

Clearing fractions gives

8 = A(x + 2)3 + Bx(x + 2)2 + Cx(x + 2) + Dx

Setting x = 0 gives 8 = 8A so A = 1; setting x = −2 gives 8 = −2D so that D = −4; the result is

8 = (x + 2)3 + Bx(x + 2)2 + Cx(x + 2) − 4x

The coefficient of x3 on the right-hand side must be zero, since it is zero on the left. We compute it to be 1 + B, so that
B = −1. Finally, we look at the coefficient of x2 on the right-hand side; it must be zero as well. We compute it to be

3 · 2 − 4 + C = C + 2

so that C = −2 and the partial fraction decomposition is

8

x(x + 2)3
= 1

x
− 1

x + 2
− 2

(x + 2)2
− 4

(x + 2)3

and∫
8

x(x + 2)3
dx =

∫
1

x
dx − 1

x + 2
dx − 2

∫
(x + 2)−2 dx − 4

∫
(x + 2)−3 dx

= ln |x| − ln |x + 2| + 2(x + 2)−1 + 2(x + 2)−2 + C = ln

∣∣∣∣ x

x + 2

∣∣∣∣+ 2

x + 2
+ 2

(x + 2)2
+ C

22.
∫

x2 dx

x2 + 3

solution

∫
x2

x2 + 3
dx =

∫
1 − 3

x2 + 3
dx =

∫
1 dx − 3

∫
1

x2 + 3
dx = x − √

3 tan−1
(

x√
3

)
+ C

23.
∫

dx

2x2 − 3

solution The partial fraction decomposition has the form

1

2x2 − 3
= 1

(
√

2x − √
3)(

√
2x + √

3)
= A√

2x − √
3

+ B√
2x + √

3
.

Clearing denominators, we get

1 = A
(√

2x + √
3
)

+ B
(√

2x − √
3
)

.

Setting x = √
3/

√
2 then yields

1 = A
(√

3 + √
3
)

+ 0 or A = 1

2
√

3
,

while setting x = −√
3/

√
2 yields

1 = 0 + B
(
−√

3 − √
3
)

or B = −1

2
√

3
.
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The result is

1

2x2 − 3
= 1/2

√
3√

2x − √
3

− 1/2
√

3√
2x + √

3
.

Thus, ∫
dx

2x2 − 3
= 1

2
√

3

∫
dx√

2x − √
3

− 1

2
√

3

∫
dx√

2x + √
3
.

For the first integral, let u = √
2x − √

3, du = √
2 dx, and for the second, let w = √

2x + √
3, dw = √

2 dx. Then we
have ∫

dx

2x2 − 3
= 1

2
√

3(
√

2)

∫
du

u
− 1

2
√

3(
√

2)

∫
dw

w
= 1

2
√

6
ln
∣∣∣√2x − √

3
∣∣∣− 1

2
√

6
ln
∣∣∣√2x + √

3
∣∣∣+ C.

24.
∫

dx

(x − 4)2(x − 1)

solution The partial fraction decomposition has the form:

1

(x − 4)2(x − 1)
= A

x − 4
+ B

(x − 4)2
+ C

(x − 1)
.

Clearing denominators, we get

1 = A(x − 4)(x − 1) + B(x − 1) + C(x − 4)2.

Setting x = 1 then yields

1 = 0 + 0 + C(9) or C = 1

9
,

while setting x = 4 yields

1 = 0 + B(3) + 0 or B = 1

3
.

Plugging in B = 1
3 and C = 1

9 , and setting x = 5, we find

1 = A(1)(4) + 1

3
(4) + 1

9
(1) or A = −1

9
.

The result is

1

(x − 4)2(x − 1)
= − 1

9
x − 4

+
1
3

(x − 4)2
+

1
9

x − 1
.

Thus, ∫
dx

(x − 4)2(x − 1)
= −1

9

∫
dx

x − 4
+ 1

3

∫
dx

(x − 4)2
+ 1

9

∫
dx

x − 1

= −1

9
ln |x − 4| − 1

3(x − 4)
+ 1

9
ln |x − 1| + C.

25.
∫

4x2 − 20

(2x + 5)3
dx

solution The partial fraction decomposition is

4x2 − 20

(2x + 5)3
= A

2x + 5
+ B

(2x + 5)2
+ C

(2x + 5)3

Clearing fractions gives

4x2 − 20 = A(2x + 5)2 + B(2x + 5) + C

Setting x = −5/2 gives 5 = C so that C = 5. The coefficient of x2 on the left-hand side is 4, and on the right-hand side
is 4A, so that A = 1 and we have

4x2 − 20 = (2x + 5)2 + B(2x + 5) + 5
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Considering the constant terms now gives −20 = 25 + 5B + 5 so that B = −10. Thus

∫
4x2 − 20

(2x + 5)3
=
∫

1

2x + 5
dx − 10

∫
1

(2x + 5)2
dx + 5

∫
1

(2x + 5)3
dx

= 1

2
ln |2x + 5| + 5

2x + 5
− 5

4(2x + 5)2
+ C

26.
∫

3x + 6

x2(x − 1)(x − 3)
dx

solution The partial fraction decomposition has the form:

3x + 6

x2(x − 1)(x − 3)
= A

x
+ B

x2
+ C

x − 1
+ D

x − 3
.

Clearing denominators gives us

3x + 6 = Ax(x − 1)(x − 3) + B(x − 1)(x − 3) + Cx2(x − 3) + Dx2(x − 1).

Setting x = 0, then yields

6 = 0 + B(−1)(−3) + 0 + 0 or B = 2,

while setting x = 1 yields

9 = 0 + 0 + C(1)(−2) + 0 or C = −9

2
,

and setting x = 3 yields

15 = 0 + 0 + 0 + D(9)(2) or D = 5

6
.

In order to find A, let’s look at the x3-coefficient on the right-hand side (which must equal 0, since there’s no x3 term on
the left):

0 = A + C + D = A − 9

2
+ 5

6
, so A = 11

3
.

The result is

3x + 6

x2(x − 1)(x − 3)
=

11
3
x

+ 2

x2
+ − 9

2
x − 1

+
5
6

x − 3
.

Thus, ∫
(3x + 6) dx

x2(x − 1)(x − 3)
= 11

3

∫
dx

x
+ 2

∫
dx

x2
− 9

2

∫
dx

x − 1
+ 5

6

∫
dx

x − 3

= 11

3
ln |x| − 2

x
− 9

2
ln |x − 1| + 5

6
ln |x − 3| + C.

27.
∫

dx

x(x − 1)3

solution The partial fraction decomposition has the form:

1

x(x − 1)3
= A

x
+ B

x − 1
+ C

(x − 1)2
+ D

(x − 1)3
.

Clearing denominators, we get

1 = A(x − 1)3 + Bx(x − 1)2 + Cx(x − 1) + Dx.

Setting x = 0 then yields

1 = A(−1) + 0 + 0 + 0 or A = −1,

while setting x = 1 yields

1 = 0 + 0 + 0 + D(1) or D = 1.
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Plugging in A = −1 and D = 1 gives us

1 = −(x − 1)3 + Bx(x − 1)2 + Cx(x − 1) + x.

Now, setting x = 2 yields

1 = −1 + 2B + 2C + 2 or 2B + 2C = 0,

and setting x = 3 yields

1 = −8 + 12B + 6C + 3 or 2B + C = 1.

Solving these two equations in two unknowns, we find B = 1 and C = −1. The result is

1

x(x − 1)3
= −1

x
+ 1

x − 1
+ −1

(x − 1)2
+ 1

(x − 1)3
.

Thus, ∫
dx

x(x − 1)3
= −

∫
dx

x
+
∫

dx

x − 1
−
∫

dx

(x − 1)2
+
∫

dx

(x − 1)3

= − ln |x| + ln |x − 1| + 1

x − 1
− 1

2(x − 1)2
+ C.

28.
∫

(3x2 − 2) dx

x − 4

solution First we use long division to write

3x2 − 2

x − 4
= 3x + 12 + 46

x − 4
.

Then the integral becomes

∫
(3x2 − 2) dx

x − 4
=
∫

(3x + 12) dx + 46
∫

dx

x − 4
= 3

2
x2 + 12x + 46 ln |x − 4| + C.

29.
∫

(x2 − x + 1) dx

x2 + x

solution First use long division to write

x2 − x + 1

x2 + x
= 1 + −2x + 1

x2 + x
= 1 + −2x + 1

x(x + 1)
.

The partial fraction decomposition of the term on the right has the form:

−2x + 1

x(x + 1)
= A

x
+ B

x + 1
.

Clearing denominators gives us

−2x + 1 = A(x + 1) + Bx.

Setting x = 0 then yields

1 = A(1) + 0 or A = 1,

while setting x = −1 yields

3 = 0 + B(−1) or B = −3.

The result is

−2x + 1

x(x + 1)
= 1

x
+ −3

x + 1
.

Thus, ∫
(x2 − x + 1) dx

x2 + x
=
∫

dx +
∫

dx

x
− 3

∫
dx

x + 1
= x + ln |x| − 3 ln |x + 1| + C.
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30.
∫

dx

x(x2 + 1)

solution The partial fraction decomposition has the form:

1

x(x2 + 1)
= A

x
+ Bx + C

x2 + 1
.

Clearing denominators, we get

1 = A(x2 + 1) + (Bx + C)x.

Setting x = 0 then yields

1 = A(1) + 0 or A = 1.

This gives us

1 = x2 + 1 + Bx2 + Cx = (B + 1)x2 + Cx + 1.

Equating x2-coefficients, we find

B + 1 = 0 or B = −1;
while equating x-coefficients yields C = 0. The result is

1

x(x2 + 1)
= 1

x
+ −x

x2 + 1
.

Thus, ∫
dx

x(x2 + 1)
=
∫

dx

x
−
∫

x dx

x2 + 1
.

For the integral on the right, use the substitution u = x2 + 1, du = 2x dx. Then we have∫
dx

x(x2 + 1)
=
∫

dx

x
− 1

2

∫
du

u
= ln |x| − 1

2
ln |x2 + 1| + C.

31.
∫

(3x2 − 4x + 5) dx

(x − 1)(x2 + 1)

solution The partial fraction decomposition has the form:

3x2 − 4x + 5

(x − 1)(x2 + 1)
= A

x − 1
+ Bx + C

x2 + 1
.

Clearing denominators, we get

3x2 − 4x + 5 = A(x2 + 1) + (Bx + C)(x − 1).

Setting x = 1 then yields

3 − 4 + 5 = A(2) + 0 or A = 2.

This gives us

3x2 − 4x + 5 = 2(x2 + 1) + (Bx + C)(x − 1) = (B + 2)x2 + (C − B)x + (2 − C).

Equating x2-coefficients, we find

3 = B + 2 or B = 1;
while equating constant coefficients yields

5 = 2 − C or C = −3.

The result is

3x2 − 4x + 5

(x − 1)(x2 + 1)
= 2

x − 1
+ x − 3

x2 + 1
.
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Thus, ∫
(3x2 − 4x + 5) dx

(x − 1)(x2 + 1)
= 2

∫
dx

x − 1
+
∫

(x − 3) dx

x2 + 1
= 2

∫
dx

x − 1
+
∫

x dx

x2 + 1
− 3

∫
dx

x2 + 1
.

For the second integral, use the substitution u = x2 + 1, du = 2x dx. The final answer is

∫
(3x2 − 4x + 5) dx

(x − 1)(x2 + 1)
= 2 ln |x − 1| + 1

2
ln |x2 + 1| − 3 tan−1 x + C.

32.
∫

x2

(x + 1)(x2 + 1)
dx

solution The partial fraction decomposition has the form

x2

(x + 1)(x2 + 1)
= A

x + 1
+ Bx + C

x2 + 1
.

Clearing denominators, we get

x2 = A(x2 + 1) + (Bx + C)(x + 1).

Setting x = −1 then yields

1 = A(2) + 0 or A = 1

2
.

This gives us

x2 = 1

2
x2 + 1

2
+ Bx2 + Bx + Cx + C =

(
B + 1

2

)
x2 + (B + C)x +

(
C + 1

2

)
.

Equating x2-coefficients, we find

1 = B + 1

2
or B = 1

2
,

while equating constant coefficients yields

0 = C + 1

2
or C = −1

2
.

The result is

x2

(x + 1)(x2 + 1)
=

1
2

x + 1
+

1
2x − 1

2

x2 + 1
.

Thus, ∫
x2 dx

(x + 1)(x2 + 1)
= 1

2

∫
dx

x + 1
+ 1

2

∫
(x − 1) dx

x2 + 1
= 1

2

∫
dx

x + 1
+ 1

2

∫
x dx

x2 + 1
− 1

2

∫
dx

x2 + 1

= 1

2
ln |x + 1| + 1

4
ln |x2 + 1| − 1

2
tan−1 x + C.

Here we used u = x2 + 1, du = 2x dx for the second integral.

33.
∫

dx

x(x2 + 25)

solution The partial fraction decomposition has the form:

1

x(x2 + 25)
= A

x
+ Bx + C

x2 + 25
.

Clearing denominators, we get

1 = A(x2 + 25) + (Bx + C)x.

Setting x = 0 then yields

1 = A(25) + 0 or A = 1

25
.
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This gives us

1 = 1

25
x2 + 1 + Bx2 + Cx =

(
B + 1

25

)
x2 + Cx + 1.

Equating x2-coefficients, we find

0 = B + 1

25
or B = − 1

25
,

while equating x-coefficients yields C = 0. The result is

1

x(x2 + 25)
=

1
25
x

+ − 1
25x

x2 + 25
.

Thus, ∫
dx

x(x2 + 25)
= 1

25

∫
dx

x
− 1

25

∫
x dx

x2 + 25
.

For the integral on the right, use u = x2 + 25, du = 2x dx. Then we have∫
dx

x(x2 + 25)
= 1

25
ln |x| − 1

50
ln |x2 + 25| + C.

34.
∫

dx

x2(x2 + 25)

solution The partial fraction decomposition has the form:

1

x2(x2 + 25)
= A

x
+ B

x2
+ Cx + D

x2 + 25
.

Clearing denominators, we get

1 = Ax(x2 + 25) + B(x2 + 25) + (Cx + D)x2.

Setting x = 0 then yields

1 = 0 + B(25) + 0 or B = 1

25
.

This gives us

1 = Ax3 + 25Ax + 1

25
x2 + 1 + Cx3 + Dx2 = (A + C)x3 +

(
D + 1

25

)
x2 + 25Ax + 1.

Equating x-coefficients yields

0 = 25A or A = 0,

while equating x3-coefficients yields

0 = A + C = 0 + C or C = 0,

and equating x2-coefficients yields

0 = D + 1

25
or D = −1

25
.

The result is

1

x2(x2 + 25)
=

1
25

x2
+

−1
25

x2 + 25
.

Thus, ∫
dx

x2(x2 + 25)
= 1

25

∫
dx

x2
− 1

25

∫
dx

x2 + 25
= − 1

25x
− 1

125
tan−1

(x

5

)
+ C.

35.
∫

(6x2 + 2) dx

x2 + 2x − 3
solution Long division gives

6x2 + 2

x2 + 2x − 3
= 6 − 12x − 20

x2 + 2x − 3
= 6 − 12x − 20

(x + 3)(x − 1)
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The partial fraction decomposition of the second term is

12x − 20

(x + 3)(x − 1)
= A

x + 3
+ B

x − 1

Clear fractions to get

12x − 20 = A(x − 1) + B(x + 3)

Set x = 1 to get −8 = 4B so that B = −2. Set x = −3 to get −56 = −4A so that A = 14, and we have∫
6x2 + 2

x2 + 2x − 3
=
∫

6 − 14

x + 3
+ 2

x − 1
dx =

∫
6 dx − 14

∫
1

x + 3
dx + 2

∫
1

x − 1
dx

= 6x − 14 ln |x + 3| + 2 ln |x − 1| + C

36.
∫

6x2 + 7x − 6

(x2 − 4)(x + 2)
dx

solution The partial fraction decomposition has the form:

6x2 + 7x − 6

(x2 − 4)(x + 2)
= 6x2 + 7x − 6

(x − 2)(x + 2)(x + 2)
= A

x − 2
+ B

x + 2
+ C

(x + 2)2
.

Clearing denominators, we get

6x2 + 7x − 6 = A(x + 2)2 + B(x − 2)(x + 2) + C(x − 2).

Setting x = 2 then yields

24 + 14 − 6 = A(16) + 0 + 0 or A = 2,

while setting x = −2 yields

24 − 14 − 6 = 0 + 0 + C(−4) or C = −1.

This gives us

6x2 + 7x − 6 = 2(x + 2)2 + B(x − 2)(x + 2) − (x − 2).

Now, setting x = 1 yields

6 + 7 − 6 = 2(9) + B(−1)(3) − (−1) or B = 4.

The result is

6x2 + 7x − 6

(x2 − 4)(x + 2)
= 2

x − 2
+ 4

x + 2
+ −1

(x + 2)2
.

Thus,∫
(6x2 + 7x − 6) dx

(x2 − 4)(x + 2)
= 2

∫
dx

x − 2
+ 4

∫
dx

x + 2
−
∫

dx

(x + 2)2
= 2 ln |x − 2| + 4 ln |x + 2| + 1

x + 2
+ C.

37.
∫

10 dx

(x − 1)2(x2 + 9)

solution The partial fraction decomposition has the form:

10

(x − 1)2(x2 + 9)
= A

x − 1
+ B

(x − 1)2
+ Cx + D

x2 + 9
.

Clearing denominators, we get

10 = A(x − 1)(x2 + 9) + B(x2 + 9) + (Cx + D)(x − 1)2.

Setting x = 1 then yields

10 = 0 + B(10) + 0 or B = 1.

Expanding the right-hand side, we have

10 = (A + C)x3 + (1 − A − 2C + D)x2 + (9A + C − 2D)x + (9 − 9A + D).
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Equating coefficients of like powers of x then yields

A + C = 0

1 − A − 2C + D = 0

9A + C − 2D = 0

9 − 9A + D = 10

From the first equation, we have C = −A, and from the fourth equation we have D = 1 + 9A. Substituting these into
the second equation, we get

1 − A − 2(−A) + (1 + 9A) = 0 or A = −1

5
.

Finally, C = 1
5 and D = − 4

5 . The result is

10

(x − 1)2(x2 + 9)
= − 1

5
x − 1

+ 1

(x − 1)2
+

1
5x − 4

5

x2 + 9
.

Thus, ∫
10 dx

(x − 1)2(x2 + 9)
= −1

5

∫
dx

x − 1
+
∫

dx

(x − 1)2
+ 1

5

∫
x dx

x2 + 9
− 4

5

∫
dx

x2 + 9

= −1

5
ln |x − 1| − 1

x − 1
+ 1

10
ln |x2 + 9| − 4

15
tan−1

(x

3

)
+ C.

38.
∫

10 dx

(x + 1)(x2 + 9)2

solution The partial fraction decomposition has the form:

10

(x + 1)(x2 + 9)2
= A

x + 1
+ Bx + C

x2 + 9
+ Dx + E

(x2 + 9)2
.

Clearing denominators gives us

10 = A(x2 + 9)2 + (Bx + C)(x + 1)(x2 + 9) + (Dx + E)(x + 1).

Setting x = −1 then yields

10 = A(100) + 0 + 0 or A = 1

10
.

Expanding the right-hand side, we find

10 =
(

B + 1

10

)
x4 + (B + C)x3 +

(
9B + C + D + 18

10

)
x2(9B + 9C + D + E)x +

(
9C + E + 81

10

)
.

Equating x4-coefficients yields

B + 1

10
= 0 or B = − 1

10
,

while equating x3-coefficients yields

− 1

10
+ C = 0 or C = 1

10
,

and equating x2-coefficients yields

− 9

10
+ 1

10
+ D + 18

10
= 0 or D = −1.

Finally, equating constant coefficients, we find

10 = 9

10
+ E + 81

10
or E = 1.

The result is

10

(x + 1)(x2 + 9)2
=

1
10

x + 1
+ − 1

10x + 1
10

x2 + 9
+ −x + 1

(x2 + 9)2
.
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Thus, ∫
10 dx

(x + 1)(x2 + 9)2
= 1

10

∫
dx

x + 1
− 1

10

∫
x dx

x2 + 9
+ 1

10

∫
dx

x2 + 9
−
∫

x dx

(x2 + 9)2
+
∫

dx

(x2 + 9)2
.

For the second and fourth integrals, use the substitution u = x2 + 9, du = 2x dx. Then we have∫
10 dx

(x + 1)(x2 + 9)2
= 1

10
ln |x + 1| − 1

20
ln |x2 + 9| + 1

30
tan−1

(x

3

)
+ 1

2(x2 + 9)
+
∫

dx

(x2 + 9)2
.

For the last integral, use the trigonometric substitution

x = 3 tan θ, dx = 3 sec2 θ dθ, x2 + 9 = 9 tan2 θ + 9 = 9 sec2 θ.

Then,

∫
dx

(x2 + 9)2
=
∫

3 sec2 θ dθ

(9 sec2 θ)2
= 1

27

∫
dθ

sec2 θ
= 1

27

∫
cos2 θ dθ = 1

27

[
1

2
θ + 1

2
sin θ cos θ

]
+ C.

Now we construct a right triangle with tan θ = x
3 :

q

x2 + 9
x

3

From this we see that sin θ = x/
√

x2 + 9 and cos θ = 3/
√

x2 + 9. Thus

∫
dx

(x2 + 9)2
= 1

54
tan−1

(x

3

)
+ 1

54

(
x√

x2 + 9

)(
3√

x2 + 9

)
+ C = 1

54
tan−1

(x

3

)
+ x

18(x2 + 9)
+ C.

Collecting all the terms, we obtain∫
10 dx

(x + 1)(x2 + 9)2
= 1

10
ln |x + 1| − 1

20
ln |x2 + 9| + 1

30
tan−1

(x

3

)
+ 1

2(x2 + 9)

+ 1

54
tan−1

(x

3

)
+ x

18(x2 + 9)
+ C

= 1

10
ln |x + 1| − 1

20
ln |x2 + 9| + 7

135
tan−1

(x

3

)
+ x + 9

18(x2 + 9)
+ C.

39.
∫

dx

x(x2 + 8)2

solution The partial fraction decomposition has the form:

1

x(x2 + 8)2
= A

x
+ Bx + C

x2 + 8
+ Dx + E

(x2 + 8)2
.

Clearing denominators, we get

1 = A(x2 + 8)2 + (Bx + C)x(x2 + 8) + (Dx + E)x.

Expanding the right-hand side gives us

1 = (A + B)x4 + Cx3 + (16A + 8B + D)x2 + (8C + E)x + 64A.

Equating coefficients of like powers of x yields

A + B = 0

C = 0

16A + 8B + D = 0

8C + E = 0

64A = 1
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The solution to this system of equations is

A = 1

64
, B = − 1

64
, C = 0, D = −1

8
, E = 0.

Therefore

1

x(x2 + 8)2
=

1
64
x

+ − 1
64x

x2 + 8
+ − 1

8x

(x2 + 8)2
,

and ∫
dx

x(x2 + 8)2
= 1

64

∫
dx

x
− 1

64

∫
x dx

x2 + 8
− 1

8

∫
x dx

(x2 + 8)2
.

For the second and third integrals, use the substitution u = x2 + 8, du = 2x dx. Then we have∫
dx

x(x2 + 8)2
= 1

64
ln |x| − 1

128
ln |x2 + 8| + 1

16(x2 + 8)
+ C.

40.
∫

100x dx

(x − 3)(x2 + 1)2

solution The partial fraction decomposition has the form:

100x

(x − 3)(x2 + 1)2
= A

x − 3
+ Bx + C

x2 + 1
+ Dx + E

(x2 + 1)2
.

Clearing denominators, we get

100x = A(x2 + 1)2 + (Bx + C)(x − 3)(x2 + 1) + (Dx + E)(x − 3).

Setting x = 3 then yields

300 = A(100) + 0 + 0 or A = 3.

Expanding the right-hand side, we find

100x = (B + 3)x4 + (C − 3B)x3 + (B − 3C + D + 6)x2 + (C − 3B − 3D + E)x + (3 − 3C − 3E).

Equating coefficients of like powers of x then yields

B + 3 = 0

C − 3B = 0

B − 3C + D + 6 = 0

C − 3B − 3D + E = 100

3 − 3C − 3E = 0

The solution to this system of equations is

B = −3, C = −9, D = −30, E = 10.

Therefore

100x

(x − 3)(x2 + 1)2
= 3

x − 3
+ −3x − 9

x2 + 1
+ −30x + 10

(x2 + 1)2
,

and ∫
100x dx

(x − 3)(x2 + 1)2
= 3

∫
dx

x − 3
+
∫

(−3x − 9) dx

x2 + 1
+
∫

(−30x + 10) dx

(x2 + 1)2

= 3
∫

dx

x − 3
− 3

∫
x dx

x2 + 1
− 9

∫
dx

x2 + 1
− 30

∫
x dx

(x2 + 1)2
+ 10

∫
dx

(x2 + 1)2
.

For the second and fourth integrals, use the substitution u = x2 + 1, du = 2x dx. Then we have∫
100x dx

(x − 3)(x2 + 1)2
= 3 ln |x − 3| − 3

2
ln |x2 + 1| − 9 tan−1 x + 15

x2 + 1
+ 10

∫
dx

(x2 + 1)2
.
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For the last integral, use the trigonometric substitution x = tan θ , dx = sec2 θ dθ . Then x2 + 1 = tan2 θ + 1 = sec2 θ ,
and ∫

dx

(x2 + 1)2
=
∫

sec2 θ dθ

sec4 θ
=
∫

cos2 θ = 1

2
θ + 1

2
sin θ cos θ + C.

We construct the following right triangle with tan θ = x:

1 + x2

x

1

From this we see that sin θ = x/
√

1 + x2 and cos θ = 1/
√

1 + x2. Thus∫
dx

(x2 + 1)2
= 1

2
tan−1 x + 1

2

(
x√

1 + x2

)(
1√

1 + x2

)
+ C = 1

2
tan−1 x + x

2(x2 + 1)
+ C.

Collecting all the terms, we obtain∫
100x dx

(x − 3)(x2 + 1)2
= 3 ln |x − 3| − 3

2
ln |x2 + 1| − 9 tan−1 x + 15

x2 + 1
+ 10

(
1

2
tan−1 x + x

2(x2 + 1)

)
+ C

= 3 ln |x − 3| − 3

2
ln |x2 + 1| − 4 tan−1 x + 5x + 15

x2 + 1
+ C.

41.
∫

dx

(x + 2)(x2 + 4x + 10)

solution The partial fraction decomposition has the form:

1

(x + 2)(x2 + 4x + 10)
= A

x + 2
+ Bx + C

x2 + 4x + 10
.

Clearing denominators, we get

1 = A(x2 + 4x + 10) + (Bx + C)(x + 2).

Setting x = −2 then yields

1 = A(6) + 0 or A = 1

6
.

Expanding the right-hand side gives us

1 =
(

1

6
+ B

)
x2 +

(
2

3
+ 2B + C

)
x +

(
5

3
+ 2C

)
.

Equating x2-coefficients yields

0 = 1

6
+ B or B = −1

6
,

while equating constant coefficients yields

1 = 5

3
+ 2C or C = −1

3
.

The result is

1

(x + 2)(x2 + 4x + 10)
=

1
6

x + 2
+ − 1

6x − 1
3

x2 + 4x + 10
.

Thus, ∫
dx

(x + 2)(x2 + 4x + 10)
= 1

6

∫
dx

x + 2
− 1

6

∫
(x + 2) dx

x2 + 4x + 10
.

For the second integral, let u = x2 + 4x + 10. Then du = (2x + 4) dx, and∫
dx

(x + 2)(x2 + 4x + 10)
= 1

6
ln |x + 2| − 1

12

∫
(2x + 4) dx

x2 + 4x + 10

= 1

6
ln |x + 2| − 1

12
ln |x2 + 4x + 10| + C.
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42.
∫

9 dx

(x + 1)(x2 − 2x + 6)

solution The partial fraction decomposition has the form:

9

(x + 1)(x2 − 2x + 6)
= A

x + 1
+ Bx + C

x2 − 2x + 6
.

Clearing denominators gives us

9 = A(x2 − 2x + 6) + (Bx + C)(x + 1).

Setting x = −1 then yields

9 = A(9) + 0 or A = 1.

Expanding the right-hand side gives us

9 = (1 + B)x2 + (−2 + B + C)x + (6 + C).

Equating x2-coefficients yields

0 = 1 + B or B = −1,

while equating constant coefficients yields

9 = 6 + C or C = 3.

The result is

9

(x + 1)(x2 − 2x + 6)
= 1

x + 1
+ −x + 3

x2 − 2x + 6
.

Thus, ∫
9 dx

(x + 1)(x2 − 2x + 6)
=
∫

dx

x + 1
+
∫

(−x + 3) dx

x2 − 2x + 6
.

To evaluate the integral on the right, we first write∫
(−x + 3) dx

x2 − 2x + 6
= −

∫
(x − 1 − 2) dx

x2 − 2x + 6
= −

∫
(x − 1) dx

x2 − 2x + 6
+ 2

∫
dx

x2 − 2x + 6
.

For the first integral, use the substitution u = x2 − 2x + 6, du = (2x − 2) dx. Then

−
∫

(x − 1) dx

x2 − 2x + 6
= −1

2

∫
(2x − 2) dx

x2 − 2x + 6
= −1

2
ln |x2 − 2x + 6| + C.

For the second integral, we first complete the square:

2
∫

dx

x2 − 2x + 6
= 2

∫
dx

(x2 − 2x + 1) + 5
= 2

∫
dx

(x − 1)2 + 5
.

Now let u = x − 1, du = dx. Then

2
∫

dx

(x − 1)2 + 5
= 2

∫
du

u2 + 5
= 2

(
1√
5

)
tan−1

(
u√
5

)
+ C = 2√

5
tan−1

(
x − 1√

5

)
+ C.

Collecting all the terms, we have∫
9 dx

(x + 1)(x2 − 2x + 6)
= ln |x + 1| − 1

2
ln |x2 − 2x + 6| + 2√

5
tan−1

(
x − 1√

5

)
+ C.

43.
∫

25 dx

x(x2 + 2x + 5)2

solution The partial fraction decomposition has the form

25

x(x2 + 2x + 5)2
= A

x
+ Bx + C

x2 + 2x + 5
+ Dx + E

(x2 + 2x + 5)2
.

Clearing denominators yields:

25 = A(x2 + 2x + 5)2 + x(Bx + C)(x2 + 2x + 5) + x(Dx + E)

= (Ax4 + 4Ax3 + 14Ax2 + 20Ax + 25A) + (Bx4 + Cx3 + 2Bx3 + 2Cx2 + 5Bx2 + 5Cx) + Dx2 + Ex.
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Equating constant terms yields

25A = 25 or A = 1,

while equating x4-coefficients yields

A + B = 0 or B = −A = −1.

Equating x3-coefficients yields

4A + C + 2B = 0 or C = −2,

and equating x2-coefficients yields

14A + 2C + 5B + D = 0 or D = −5.

Finally, equating x-coefficients yields

20A + 5C + E = 0 or E = −10.

Thus, ∫
25 dx

x(x2 + 2x + 5)2
=
∫ (

1

x
− x + 2

x2 + 2x + 5
− 5

x + 2

(x2 + 2x + 5)2

)
dx

= ln |x| −
∫

x + 2

x2 + 2x + 5
dx − 5

∫
x + 2

(x2 + 2x + 5)2
dx.

The two integrals on the right both require the substitution u = x + 1, so that x2 + 2x + 5 = (x + 1)2 + 4 = u2 + 4
and du = dx. This means:∫

25 dx

x(x2 + 2x + 5)2
= ln |x| −

∫
u + 1

u2 + 4
du − 5

∫
u + 1

(u2 + 4)2
du

= ln |x| −
∫

u

u2 + 4
du −

∫
1

u2 + 4
du − 5

∫
u

(u2 + 4)2
du − 5

∫
1

(u2 + 4)2
du.

For the first and third integrals, we make the substitution w = u2 + 4, dw = 2u du. Then we have∫
25 dx

x(x2 + 2x + 5)2
= ln |x| − 1

2
ln |u2 + 4| − 1

2
tan−1

(u

2

)
+ 5

2(u2 + 4)
− 5

∫
du

(u2 + 4)2

= ln |x| − 1

2
ln |x2 + 2x + 5| − 1

2
tan−1

(
x + 1

2

)
+ 5

2(x2 + 2x + 5)
− 5

∫
du

(u2 + 4)2
.

For the remaining integral, we use the trigonometric substitution 2 tan w = u, so that u2 + 4 = 4 tan2 w + 4 = 4 sec2 w

and du = 2 sec2 w dw. This means∫
1

(u2 + 4)2
du = 1

8

∫
1

sec4 w
sec2 w dw = 1

8

∫
cos2 w dw

= 1

8

(
1

4
sin 2w + w

2

)
+ C =

(
1

16
sin w cos w + w

16

)
+ C

= 1

16

u√
u2 + 4

2√
u2 + 4

+ 1

16
tan−1

(u

2

)
+ C = 1

8

u

u2 + 4
+ 1

16
tan−1

(u

2

)
+ C

= 1

8

x + 1

x2 + 2x + 5
+ 1

16
tan−1

(
x + 1

2

)
.

Hence, the integral is∫
25 dx

x(x2 + 2x + 5)2
= ln |x| − 1

2
ln |x2 + 2x + 5| − 1

2
tan−1

(
x + 1

2

)

+ 5

2(x2 + 2x + 5)
− 5

8

x + 1

x2 + 2x + 5
− 5

16
tan−1

(
x + 1

2

)

= ln |x| + 15 − 5x

8(x2 + 2x + 5)
− 13

16
tan−1

(
x + 1

2

)
− 1

2
ln |x2 + 2x + 5| + C.
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44.
∫

(x2 + 3) dx

(x2 + 2x + 3)2

solution The partial fraction decomposition has the form:

x2 + 3

(x2 + 2x + 3)2
= Ax + B

x2 + 2x + 3
+ Cx + D

(x2 + 2x + 3)2
.

Clearing denominators gives us

x2 + 3 = (Ax + B)(x2 + 2x + 3) + Cx + D.

Expanding the right-hand side, we get

x2 + 3 = Ax3 + (2A + B)x2 + (3A + 2B + C)x + (3B + D).

Equating coefficients of like powers of x then yields

A = 0

2A + B = 1

3A + 2B + C = 0

3B + D = 3

The solution to this system of equations is

A = 0, B = 1, C = −2, D = 0.

Therefore

x2 + 3

(x2 + 2x + 3)2
= 1

x2 + 2x + 3
+ −2x

(x2 + 2x + 3)2
,

and ∫
(x2 + 3) dx

(x2 + 2x + 3)2
=
∫

dx

x2 + 2x + 3
−
∫

2x dx

(x2 + 2x + 3)2
.

The first integral can be evaluated by completing the square:∫
dx

x2 + 2x + 3
=
∫

dx

x2 + 2x + 1 + 2
=
∫

dx

(x + 1)2 + 2
.

Now use the substitution u = x + 1, du = dx. Then∫
dx

x2 + 2x + 3
=
∫

du

u2 + 2
= 1√

2
tan−1

(
x + 1√

2

)
+ C.

For the second integral, let u = x2 + 2x + 3. We want du = (2x + 2) dx to appear in the numerator, so we write∫
2x dx

(x2 + 2x + 3)2
=
∫

(2x + 2 − 2) dx

(x2 + 2x + 3)2
=
∫

(2x + 2) dx

(x2 + 2x + 3)2
− 2

∫
dx

(x2 + 2x + 3)2

=
∫

du

u2
− 2

∫
dx

(x2 + 2x + 3)2
= − 1

u
− 2

∫
dx

(x2 + 2x + 3)2

= −1

x2 + 2x + 3
− 2

∫
dx

(x2 + 3x + 3)2
.

Finally, for this last integral, complete the square, then substitute u = x + 1, du = dx:∫
dx

(x2 + 2x + 3)2
=
∫

dx

((x + 1)2 + 2)2
=
∫

du

(u2 + 2)2
.

Now use the trigonometric substitution u = √
2 tan θ . Then du = √

2 sec2 θ dθ , and u2 + 2 = 2 tan2 θ + 2 = 2 sec2 θ .
Thus∫

du

(u2 + 2)2
=
∫ √

2 sec2 θ dθ

4 sec4 θ
=

√
2

4

∫
cos2 θ dθ =

√
2

4

[
1

2
θ + 1

2
sin θ cos θ

]
=

√
2

8
θ +

√
2

8
sin θ cos θ + C.
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We construct a right triangle with tan θ = u/
√

2:

q

u
u2 + 2

2

From this we see that sin θ = u/
√

u2 + 2 and cos θ = √
2/
√

u2 + 2. Therefore∫
du

(u2 + 2)2
=

√
2

8
tan−1

(
u√
2

)
+

√
2

8

(
u√

u2 + 2

)( √
2√

u2 + 2

)
+ C

=
√

2

8
tan−1

(
u√
2

)
+ u

4(u2 + 2)
+ C =

√
2

8
tan−1

(
x + 1√

2

)
+ x + 1

4(x2 + 2x + 3)
+ C.

Collecting all the terms, we have∫
(x2 + 3) dx

(x2 + 2x + 3)2
= 1√

2
tan−1

(
x + 1√

2

)
−
[

−1

x2 + 2x + 3
− 2

(√
2

8
tan−1

(
x + 1√

2

)
+ x + 1

4(x2 + 2x + 3)

)]
+ C

=
(

1√
2

+
√

2

4

)
tan−1

(
x + 1√

2

)
+ 2 + (x + 1)

2(x2 + 2x + 3)
+ C

= 3
√

2

4
tan−1

(
x + 1√

2

)
+ x + 3

2(x2 + 2x + 3)
+ C.

In Exercises 45–48, evaluate by using first substitution and then partial fractions if necessary.

45.
∫

x dx

x4 + 1
solution Use the substitution u = x2 so that du = 2x dx, and∫

x

x4 + 1
dx = 1

2

∫
1

u2 + 1
du = 1

2
tan−1 u = 1

2
tan−1(x2)

46.
∫

x dx

(x + 2)4

solution Use the substitution u = x + 2 and du = dx; then∫
x

(x + 2)4
dx =

∫
u − 2

u4
du =

∫
1

u3
du − 2

∫
1

u4
du

= − 1

2u2
+ 2

3u3
+ C = 2

3(x + 2)3
− 1

2(x + 2)2
+ C

47.
∫

ex dx

e2x − ex

solution Use the substitution u = ex . Then du = ex dx = u dx so that dx = 1
u du. Then

∫
ex dx

e2x − ex
=
∫

u · 1
u du

u2 − u
=
∫

1

u(u − 1)
du

Using partial fractions, we have

1

u(u − 1)
= A

u
+ B

u − 1
= (A + B)u − A

u(u − 1)

Upon equating coefficients in the numerators, we have A + B = 0, A = −1 so that B = 1. Then∫
ex dx

e2x − ex
= −

∫
1

u
du +

∫
1

u − 1
du = ln |u − 1| − ln |u| + C = ln |ex − 1| − ln ex + C

48.
∫

sec2 θ dθ

tan2 θ − 1
solution Let u = tan θ ; then du = sec2 θ dθ and∫

sec2 θ dθ

tan2 θ − 1
=
∫

1

u2 − 1
du = −

∫
1

1 − u2
du = − tanh−1(u) + C = − tanh−1(tan θ) + C
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49. Evaluate
∫ √

x dx

x − 1
. Hint: Use the substitution u = √

x (sometimes called a rationalizing substitution).

solution Let u = √
x. Then du = (1/2

√
x) dx = (1/2u) dx. Thus

∫ √
x dx

x − 1
=
∫

u(2u du)

u2 − 1
= 2

∫
u2 du

u2 − 1
= 2

∫
(u2 − 1 + 1) du

u2 − 1

= 2
∫ (

u2 − 1

u2 − 1
+ 1

u2 − 1

)
du = 2

∫
du +

∫
2 du

u2 − 1
= 2u +

∫
2 du

u2 − 1
.

The partial fraction decomposition of the remaining integral has the form:

2

u2 − 1
= 2

(u − 1)(u + 1)
= A

u − 1
+ B

u + 1
.

Clearing denominators gives us

2 = A(u + 1) + B(u − 1).

Setting u = 1 yields 2 = A(2) + 0 or A = 1, while setting u = −1 yields 2 = 0 + B(−2) or B = −1. The result is

2

u2 − 1
= 1

u − 1
+ −1

u + 1
.

Thus, ∫
2 du

u2 − 1
=
∫

du

u − 1
−
∫

du

u + 1
= ln |u − 1| − ln |u + 1| + C.

The final answer is∫ √
x dx

x − 1
= 2u + ln |u − 1| − ln |u + 1| + C = 2

√
x + ln |√x − 1| − ln |√x + 1| + C.

50. Evaluate
∫

dx

x1/2 − x1/3
.

solution First use the substitution u = x1/6. Then

du = 1

6
x−5/6 dx ⇒ 6x5/6 du = dx ⇒ 6u5 du = dx

and we have (using long division)

∫
dx

x1/2 − x1/3
=
∫

6u5

u3 − u2
du = 6

∫
u3

u − 1
du = 6

∫
u2 + u + 1 + 1

u − 1
du

= 6

(
1

3
u3 + 1

2
u2 + u + ln |u − 1|

)
+ C = 2u3 + 3u2 + 6u + 6 ln |u − 1| + C

= 2x1/2 + 3x1/3 + 6x1/6 + 6 ln
∣∣∣x1/6 − 1

∣∣∣+ C

51. Evaluate
∫

dx

x2 − 1
in two ways: using partial fractions and using trigonometric substitution. Verify that the two

answers agree.

solution The partial fraction decomposition has the form:

1

x2 − 1
= 1

(x − 1)(x + 1)
= A

x − 1
+ B

x + 1
.

Clearing denominators gives us

1 = A(x + 1) + B(x − 1).

Setting x = 1, we get 1 = A(2) or A = 1
2 ; while setting x = −1, we get 1 = B(−2) or B = − 1

2 . The result is

1

x2 − 1
=

1
2

x − 1
+ − 1

2
x + 1

.
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Thus, ∫
dx

x2 − 1
= 1

2

∫
dx

x − 1
− 1

2

∫
dx

x + 1
= 1

2
ln |x − 1| − 1

2
ln |x + 1| + C.

Using trigonometric substitution, let x = sec θ . Then dx = tan θ sec θ dθ , and x2 − 1 = sec2 θ − 1 = tan2 θ . Thus

∫
dx

x2 − 1
=
∫

tan θ sec θ dθ

tan2 θ
=
∫

sec θ dθ

tan θ
=
∫

cos θ dθ

sin θ cos θ

=
∫

csc θ dθ = ln | csc θ − cot θ | + C.

Now we construct a right triangle with sec θ = x:

q
1

x
x2 − 1

From this we see that csc θ = x/
√

x2 − 1 and cot θ = 1/
√

x2 − 1. Thus

∫
dx

x2 − 1
= ln

∣∣∣∣∣ x√
x2 − 1

− 1√
x2 − 1

∣∣∣∣∣+ C = ln

∣∣∣∣∣ x − 1√
x2 − 1

∣∣∣∣∣+ C.

To check that these two answers agree, we write

1

2
ln |x − 1| − 1

2
ln |x + 1| = 1

2

∣∣∣∣x − 1

x + 1

∣∣∣∣ = ln

∣∣∣∣∣
√

x − 1

x + 1

∣∣∣∣∣ = ln

∣∣∣∣∣
√

x − 1√
x + 1

·
√

x − 1√
x − 1

∣∣∣∣∣ = ln

∣∣∣∣∣ x − 1√
x2 − 1

∣∣∣∣∣ .
52. Graph the equation (x − 40)y2 = 10x(x − 30) and find the volume of the solid obtained by revolving the
region between the graph and the x-axis for 0 ≤ x ≤ 30 around the x-axis.

solution The graph of (x − 40)y2 = 10x(x − 30) is shown below

x
40302010

−20

20

y

Using the disk method, the volume is given by

V =
∫ 30

0
πr2 dx = π

∫ 30

0

(√
10x(x − 30)

x − 40

)2

dx = π

∫ 30

0

10x(x − 30) dx

x − 40
.

To find the anti-derivative, expand the numerator and then use long division:

10x(x − 30)

x − 40
= 10x2 − 300x

x − 40
= 10x + 100 + 4000

x − 40
.

Thus,

π

∫ 30

0

10x(x − 30) dx

x − 40
= π

[
10
∫ 30

0
x dx + 100

∫ 30

0
dx + 4000

∫ 30

0

dx

x − 40

]

= π
(

5x2 + 100x + 4000 ln |x − 40|
)∣∣∣30

0

= π
[(

4500 + 3000 + 4000 ln(10)
)− (0 + 4000 ln(40)

)]
= (7500 − 4000 ln 4)π.
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In Exercises 53–66, evaluate the integral using the appropriate method or combination of methods covered thus far in
the text.

53.
∫

dx

x2
√

4 − x2

solution Use the trigonometric substitution x = 2 sin θ . Then dx = 2 cos θ dθ ,

4 − x2 = 4 − 4 sin2 θ = 4(1 − sin2 θ) = 4 cos2 θ,

and ∫
dx

x2
√

4 − x2
=
∫

2 cos θ dθ

(4 sin2 θ)(2 cos θ)
= 1

4

∫
csc2 θ dθ = −1

4
cot θ + C.

Now construct a right triangle with sin θ = x/2:

q

x
2

4 − x2

From this we see that cot θ =
√

4 − x2/x. Thus

∫
dx

x2
√

4 − x2
= −1

4

(√
4 − x2

x

)
+ C = −

√
4 − x2

4x
+ C.

54.
∫

dx

x(x − 1)2

solution Using partial fractions, we first write

1

x(x − 1)2
= A

x
+ B

x − 1
+ C

(x − 1)2
.

Clearing denominators gives us

1 = A(x − 1)2 + Bx(x − 1) + Cx.

Setting x = 0 yields

1 = A(1) + 0 + 0 or A = 1,

while setting x = 1 yields

1 = 0 + 0 + C or C = 1,

and setting x = 2 yields

1 = 1 + 2B + 2 or B = −1.

The result is

1

x(x − 1)2
= 1

x
+ −1

x − 1
+ 1

(x − 1)2
.

Thus, ∫
dx

x(x − 1)2
=
∫

dx

x
−
∫

dx

x − 1
+
∫

dx

(x − 1)2
= ln |x| − ln |x − 1| − 1

x − 1
+ C.

55.
∫

cos2 4x dx

solution Use the substitution u = 4x, du = 4 dx. Then we have∫
cos2(4x) dx = 1

4

∫
cos2(4x)4 dx = 1

4

∫
cos2 u du = 1

4

[
1

2
u + 1

2
sin u cos u

]
+ C

= 1

8
u + 1

8
sin u cos u + C = 1

2
x + 1

8
sin 4x cos 4x + C.
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56.
∫

x sec2 x dx

solution Use integration by parts, with u = x and v′ = sec2 x. Then u′ = 1, v = tan x, and∫
x sec2 x dx = x tan x −

∫
tan x dx = x tan x − (− ln | cos x|)+ C = x tan x + ln | cos x| + C.

57.
∫

dx

(x2 + 9)2

solution Use the trigonometric substitution x = 3 tan θ . Then dx = 3 sec2 θ dθ ,

x2 + 9 = 9 tan2 θ + 9 = 9(tan2 θ + 1) = 9 sec2 θ,

and ∫
dx

(x2 + 9)2
=
∫

3 sec2 θ dθ

(9 sec2 θ)2
= 3

81

∫
sec2 θ dθ

sec4 θ
= 1

27

∫
cos2 θ dθ = 1

27

(
1

2
θ + 1

2
sin θ cos θ

)
+ C.

Now construct a right triangle with tan θ = x/3:

q

x2 + 9
x

3

From this we see that sin θ = x/
√

x2 + 9 and cos θ = 3/
√

x2 + 9. Thus∫
dx√

x2 + 9
2

= 1

54
tan−1

(x

3

)
+ 1

54

(
x√

x2 + 9

)(
3√

x2 + 9

)
+ C = 1

54
tan−1

(x

3

)
+ x

18(x2 + 9)
+ C.

58.
∫

θ sec−1 θ dθ

solution Use Integration by Parts, with u = sec−1 θ and v′ = θ . Then u′ = 1/θ
√

θ2 − 1, v = θ2/2, and

∫
θ sec−1 θ dθ = θ2

2
sec−1 θ −

∫
θ2 dθ

2θ
√

θ2 − 1
= θ2

2
sec−1 θ − 1

2

∫
θ dθ√
θ2 − 1

.

To evaluate the remaining integral, use the substitution w = θ2 − 1, dw = 2θ dθ . Then∫
θ dθ√
θ2 − 1

= 1

2

∫
2θ dθ√
θ2 − 1

= 1

2

∫
dw√

w
= 1

2

(
2
√

w
)+ C =

√
θ2 − 1 + C.

The final answer is ∫
θ sec−1 θ dθ = θ2

2
sec−1 θ − 1

2

√
θ2 − 1 + C.

59.
∫

tan5 x sec x dx

solution Use the trigonometric identity tan2 x = sec2 x − 1 to write∫
tan5 x sec x dx =

∫ (
sec2 x − 1

)2
tan x sec x dx.

Now use the substitution u = sec x, du = sec x tan x dx:∫
tan5 x sec x dx =

∫
(u2 − 1)2 du =

∫ (
u4 − 2u2 + 1

)
du

= 1

5
u5 − 2

3
u3 + u + C = 1

5
sec5 x − 2

3
sec3 x + sec x + C.

60.
∫

(3x2 − 1) dx

x(x2 − 1)

solution The denominator expands to x3 − x, so if we let u = x3 − x, then du = (3x2 − 1) dx, which is the
numerator. Thus ∫

(3x2 − 1) dx

x(x2 − 1)
=
∫

du

u
= ln |u| + C = ln(x(x2 − 1)) + C
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61.
∫

ln(x4 − 1) dx

solution Apply integration by parts with u = ln(x4 − 1), v′ = 1; then u′ = 4x3

x4−1
and v = x, so after simplification,

∫
ln(x4 − 1) dx = x ln(x4 − 1) − 4

∫
x4

x4 − 1
dx = x ln(x4 − 1) − 4

∫
1 + 1

x4 − 1
dx

= x ln(x4 − 1) − 4
∫

1 dx − 4
∫

1

x4 − 1
dx

= x ln(x4 − 1) − 4x − 4
∫

1

2

(
1

x2 − 1
− 1

x2 + 1

)
dx

= x ln(x4 − 1) − 4x − 2
∫

1

x2 − 1
dx + 2

∫
1

x2 + 1
dx

= x ln(x4 − 1) − 4x + 2 tanh−1 x + 2 tan−1 x + C

62.
∫

x dx

(x2 − 1)3/2

solution Use the substitution u = x2 − 1, du = 2x dx. Then we have∫
x dx

(x2 − 1)3/2
= 1

2

∫
2x dx

(x2 − 1)3/2
= 1

2

∫
du

u3/2
= 1

2
(−2)u−1/2 + C = −1√

u
+ C = −1√

x2 − 1
+ C.

63.
∫

x2 dx

(x2 − 1)3/2

solution Use the trigonometric substitution x = sec θ . Then dx = sec θ tan θ dθ ,

x2 − 1 = sec2 θ − 1 = tan2 θ,

and ∫
x2 dx

(x2 − 1)3/2
=
∫

(sec2 θ) sec θ tan θ dθ

(tan2 θ)3/2
=
∫

sec3 θ dθ

tan2 θ
=
∫

(tan2 θ + 1) sec θ dθ

tan2 θ

=
∫

tan2 θ sec θ dθ

tan2 θ
+
∫

sec θ dθ

tan2 θ
=
∫

sec θ dθ +
∫

csc θ cot θ dθ

= ln | sec θ + tan θ | − csc θ + C.

Now construct a right triangle with sec θ = x:

q
1

x
x2 − 1

From this we see that tan θ =
√

x2 − 1 and csc θ = x/
√

x2 − 1. So the final answer is∫
x2 dx

(x2 − 1)3/2
= ln

∣∣∣x +
√

x2 − 1
∣∣∣− x√

x2 − 1
+ C.

64.
∫

(x + 1) dx

(x2 + 4x + 8)2

solution At first it might appear that one would use partial fractions to simplify this problem, but in fact it’s already

in simplified form. Instead, use the substitution u = x2 + 4x + 8, du = (2x + 4) dx. Then we have∫
(x + 1) dx

(x2 + 4x + 8)2
= 1

2

∫
(2x + 2) dx

(x2 + 4x + 8)2
= 1

2

∫
(2x + 2 + 2 − 2) dx

(x2 + 4x + 8)2

= 1

2

∫
(2x + 4) dx

(x2 + 4x + 8)2
−
∫

dx

(x2 + 4x + 8)2

= 1

2

∫
du

u2
−
∫

dx

(x2 + 4x + 8)2
= −1

2u
−
∫

dx

(x2 + 4x + 8)2
.
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To evaluate the remaining integral, complete the square, then let w = x + 2, dw = dx:∫
dx

(x2 + 4x + 8)2
=
∫

dx

(x2 + 4x + 4 + 4)2
=
∫

dx

((x + 2)2 + 4)2
=
∫

dw

(w2 + 4)2
.

Next, let w = 2 tan θ , dw = 2 sec2 θ dθ . Then

w2 + 4 = 4 tan2 θ + 4 = 4(tan2 θ + 1) = 4 sec2 θ,

and we have∫
dw

(w2 + 4)2
=
∫

2 sec2 θ dθ

16 sec4 θ
= 1

8
cos2 θ dθ = 1

8

(
1

2
θ + 1

2
sin θ cos θ

)
+ C = 1

16
θ + 1

16
sin θ cos θ + C.

Now construct a right triangle with tan θ = w/2:

q

w2 + 4
w

2

From this we see that sin θ = w/
√

w2 + 4 and cos θ = 2/
√

w2 + 4. Thus

∫
dw

(w2 + 4)2
= 1

16
tan−1

(w

2

)
+ 1

16

(
w√

w2 + 4

)(
2√

w2 + 4

)
+ C = 1

16
tan−1

(w

2

)
+ w

8(w2 + 4)
+ C.

In terms of x, we have∫
dx

(x2 + 4x + 8)2
=
∫

dw

(w2 + 4)2
= 1

16
tan−1

(
x + 2

2

)
+ x + 2

8((x + 2)2 + 4)
+ C.

Collecting all the terms, we have∫
(x + 1) dx

(x2 + 4x + 8)2
= −1

2(x2 + 4x + 8)
− 1

16
tan−1

(
x + 2

2

)
− x + 2

8(x2 + 4x + 8)
+ C

= − 1

16
tan−1

(
x + 2

2

)
− x + 6

8(x2 + 4x + 8)
+ C.

65.
∫ √

x dx

x3 + 1

solution Use the substitution u = x3/2, du = 3
2x1/2 dx. Then x3 = (x3/2)2 = u2, so we have

∫ √
x dx

x3 + 1
= 2

3

∫
du

u2 + 1
= 2

3
tan−1 u + C = 2

3
tan−1(x3/2) + C.

66.
∫

x1/2 dx

x1/3 + 1

solution Use the substitution u = x1/6, du = 1
6x−5/6 dx. Then dx = 6x5/6 du = 6u5 du, and we get

∫
x1/2 dx

x1/3 + 1
=
∫

u3(6u5 du)

u2 + 1
= 6

∫
u8 du

u2 + 1
.

By long division

u8

u2 + 1
= u6 − u4 + u2 − 1 + 1

u2 + 1
,

thus ∫
u8

u2 + 1
du =

∫ (
u6 − u4 + u2 − 1 + 1

u2 + 1

)
du = 1

7
u7 − 1

5
u5 + 1

3
u3 − u + tan−1 u + C.

The final answer is ∫
x1/2

x1/3 + 1
= 6

7
x7/6 − 6

5
x5/6 + 2x1/2 − 6x1/6 + 6 tan−1(x1/6) + C.
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67. Show that the substitution θ = 2 tan−1 t (Figure 2) yields the formulas

cos θ = 1 − t2

1 + t2
, sin θ = 2t

1 + t2
, dθ = 2 dt

1 + t2
10

This substitution transforms the integral of any rational function of cos θ and sin θ into an integral of a rational function

of t (which can then be evaluated using partial fractions). Use it to evaluate
∫

dθ

cos θ + 3
4 sin θ

.

1

q /2

t1 + t2

FIGURE 2

solution If θ = 2 tan−1 t , then dθ = 2 dt/(1 + t2). We also have that cos( θ
2 ) = 1/

√
1 + t2 and sin( θ

2 ) = t/
√

1 + t2.

To find cos θ , we use the double angle identity cos θ = 1 − 2 sin2( θ
2 ). This gives us

cos θ = 1 − 2

(
t√

1 + t2

)2

= 1 − 2t2

1 + t2
= 1 + t2 − 2t2

1 + t2
= 1 − t2

1 + t2
.

To find sin θ , we use the double angle identity sin θ = 2 sin( θ
2 ) cos( θ

2 ). This gives us

sin θ = 2

(
t√

1 + t2

)(
1√

1 + t2

)
= 2t

1 + t2
.

With these formulas, we have

∫
dθ

cos θ + (3/4) sin θ
=
∫ 2 dt

1+t2(
1−t2

1+t2

)
+ 3

4

(
2t

1+t2

) =
∫

8 dt

4(1 − t2) + 3(2t)
=
∫

8 dt

4 + 6t − 4t2
=
∫

4 dt

2 + 3t − 2t2
.

The partial fraction decomposition has the form

4

2 + 3t − 2t2
= A

2 − t
+ B

1 + 2t
.

Clearing denominators gives us

4 = A(1 + 2t) + B(2 − t).

Setting t = 2 then yields

4 = A(5) + 0 or A = 4

5
,

while setting t = − 1
2 yields

4 = 0 + B

(
5

2

)
or B = 8

5
.

The result is

4

2 + 3t − 2t2
=

4
5

2 − t
+

8
5

1 + 2t
.

Thus, ∫
4

2 + 3t − 2t2
dt = 4

5

∫
dt

2 − t
+ 8

5

∫
dt

1 + 2t
= −4

5
ln |2 − t | + 4

5
ln |1 + 2t | + C.

The original substitution was θ = 2 tan−1 t , which means that t = tan( θ
2 ). The final answer is then

∫
dθ

cos θ + 3
4 sin θ

= −4

5
ln

∣∣∣∣2 − tan

(
θ

2

)∣∣∣∣+ 4

5
ln

∣∣∣∣1 + 2 tan

(
θ

2

)∣∣∣∣+ C.
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68. Use the substitution of Exercise 67 to evaluate
∫

dθ

cos θ + sin θ
.

solution Using the substitution θ = 2 tan−1 t , we get

∫
dθ

cos θ + sin θ
=
∫

2 dt/(1 + t2)

(1 − t2)/(1 + t2) + 2t/(1 + t2)
=
∫

2 dt

1 − t2 + 2t
= −2

∫
dt

t2 − 2t − 1
.

The partial fraction decomposition has the form

−2

t2 − 2t − 1
= A

t − 1 − √
2

+ B

t − 1 + √
2
.

Clearing denominators gives us

−2 = A(t − 1 + √
2) + B(t − 1 − √

2).

Setting t = 1 + √
2 then yields A = − 1√

2
, while setting t = 1 − √

2 yields B = 1√
2

. Thus,

∫
dθ

cos θ + sin θ
= 1√

2

∫
dt

t − 1 + √
2

− 1√
2

∫
dt

t − 1 − √
2

= 1√
2

ln |t − 1 + √
2| − 1√

2
ln |t − 1 − √

2| + C

= 1√
2

ln

∣∣∣∣∣∣
tan
(

θ
2

)
− 1 + √

2

tan
(

θ
2

)
− 1 − √

2

∣∣∣∣∣∣+ C.

Further Insights and Challenges
69. Prove the general formula ∫

dx

(x − a)(x − b)
= 1

a − b
ln

x − a

x − b
+ C

where a, b are constants such that a �= b.

solution The partial fraction decomposition has the form:

1

(x − a)(x − b)
= A

x − a
+ B

x − b
.

Clearing denominators, we get

1 = A(x − b) + B(x − a).

Setting x = a then yields

1 = A(a − b) + 0 or A = 1

a − b
,

while setting x = b yields

1 = 0 + B(b − a) or B = 1

b − a
.

The result is

1

(x − a)(x − b)
=

1
a−b

x − a
+

1
b−a

x − b
.

Thus, ∫
dx

(x − a)(x − b)
= 1

a − b

∫
dx

x − a
+ 1

b − a

∫
dx

x − b
= 1

a − b
ln |x − a| + 1

b − a
ln |x − b| + C

= 1

a − b
ln |x − a| − 1

a − b
ln |x − b| + C = 1

a − b
ln

∣∣∣∣x − a

x − b

∣∣∣∣+ C.

70. The method of partial fractions shows that∫
dx

x2 − 1
= 1

2
ln
∣∣x − 1

∣∣− 1

2
ln
∣∣x + 1

∣∣+ C

The computer algebra system Mathematica evaluates this integral as − tanh−1 x, where tanh−1 x is the inverse hyperbolic
tangent function. Can you reconcile the two answers?
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solution Let

y = tanh x = ex − e−x

ex + e−x
.

Solving for x in terms of y, we find

(ex + e−x)y = ex − e−x

e−x(1 + y) = ex(1 − y)

e2x = 1 + y

1 − y

x = 1

2
ln

∣∣∣∣1 + y

1 − y

∣∣∣∣
Thus,

tanh−1 x = 1

2
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ ,
so

− tanh−1 x = 1

2
ln

∣∣∣∣1 − x

1 + x

∣∣∣∣ = 1

2
ln |1 − x| − 1

2
ln |1 + x|,

as desired.

71. Suppose that Q(x) = (x − a)(x − b), where a �= b, and let P(x)/Q(x) be a proper rational function so that

P(x)

Q(x)
= A

(x − a)
+ B

(x − b)

(a) Show that A = P(a)

Q′(a)
and B = P(b)

Q′(b)
.

(b) Use this result to find the partial fraction decomposition for P(x) = 3x − 2 and Q(x) = x2 − 4x − 12.

solution
(a) Clearing denominators gives us

P(x) = A(x − b) + B(x − a).

Setting x = a then yields

P(a) = A(a − b) + 0 or A = P(a)

a − b
,

while setting x = b yields

P(b) = 0 + B(b − a) or B = P(b)

b − a
.

Now use the product rule to differentiate Q(x):

Q′(x) = (x − a)(1) + (1)(x − b) = x − a + x − b = 2x − a − b;
therefore,

Q′(a) = 2a − a − b = a − b

Q′(b) = 2b − a − b = b − a

Substituting these into the above results, we find

A = P(a)

Q′(a)
and B = P(b)

Q′(b)
.

(b) The partial fraction decomposition has the form:

P(x)

Q(x)
= 3x − 2

x2 − 4x − 12
= 3x − 2

(x − 6)(x + 2)
= A

x − 6
+ B

x + 2
;

A = P(6)

Q′(6)
= 3(6) − 2

2(6) − 4
= 16

8
= 2;
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B = P(−2)

Q′(−2)
= 3(−2) − 2

2(−2) − 4
= −8

−8
= 1.

The result is

3x − 2

x2 − 4x − 12
= 2

x − 6
+ 1

x + 2
.

72. Suppose that Q(x) = (x − a1)(x − a2) · · · (x − an), where the roots aj are all distinct. Let P(x)/Q(x) be a proper
rational function so that

P(x)

Q(x)
= A1

(x − a1)
+ A2

(x − a2)
+ · · · + An

(x − an)

(a) Show that Aj = P(aj )

Q′(aj )
for j = 1, . . . , n.

(b) Use this result to find the partial fraction decomposition for P(x) = 2x2 − 1, Q(x) = x3 − 4x2 + x + 6 =
(x + 1)(x − 2)(x − 3).

solution

(a) To differentiate Q(x), first take the logarithm of both sides, and then differentiate:

ln
(
Q(x)

) = ln
[
(x − a1)(x − a2) · · · (x − an)

] = ln(x − a1) + ln(x − a2) + · · · + ln(x − an)

d

dx
ln
(
Q(x)

) = Q′(x)

Q(x)
= 1

x − a1
+ 1

x − a2
+ · · · + 1

x − an

Multiplying both sides by Q(x) gives us

Q′(x) = Q(x)

[
1

x − a1
+ · · · + 1

x − an

]

= (x − a2)(x − a3) · · · (x − an) + (x − a1)(x − a3) · · · (x − an) + · · · + (x − a1)(x − a2) · · · (x − an−1).

In other words, the ith product in the formula for Q′(x) has the (x − ai) factor removed. This means that

Q′(aj ) = (aj − a1) · · · (aj − aj−1)(aj − aj+1) · · · (aj − an).

Now clear denominators in the expression for P(x)/Q(x):

P(x) = A1Q(x)

x − a1
+ A2Q(x)

x − a2
+ · · · + AnQ(x)

x − an

= A1(x − a2) · · · (x − an) + (x − a1)A2(x − a3) · · · (x − an) + · · · + (x − a1)(x − a2) · · · (x − an−1)An.

Setting x = aj , we get

P(aj ) = (aj − a1)(aj − a2) · · · (aj − aj−1)Aj (aj − aj+1) · · · (aj − an),

so that

Aj = P(aj )

(aj − a1) · · · (aj − aj−1)(aj − aj+1) · · · (aj − an)
= P(aj )

Q′(aj )
.

(b) Let P(x) = 2x2 − 1 and Q(x) = (x + 1)(x − 2)(x − 3), so that Q′(x) = 3x2 − 8x + 1. Then a1 = −1, a2 = 2,
and a3 = 3, so that

A1 = P(−1)/Q′(−1) = 1

12
;

A2 = P(2)/Q′(2) = −7

3
;

A3 = P(3)/Q′(3) = 17

4
.

Thus

P(x)

Q(x)
= 1

12(x + 1)
− 7

1 = 3(x − 2)
+ 17

4(x − 3)
.
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7.6 Improper Integrals

Preliminary Questions
1. State whether the integral converges or diverges:

(a)
∫ ∞

1
x−3 dx (b)

∫ 1

0
x−3 dx

(c)
∫ ∞

1
x−2/3 dx (d)

∫ 1

0
x−2/3 dx

solution
(a) The integral is improper because one of the limits of integration is infinite. Because the power of x in the integrand
is less than −1, this integral converges.
(b) The integral is improper because the integrand is undefined at x = 0. Because the power of x in the integrand is less
than −1, this integral diverges.
(c) The integral is improper because one of the limits of integration is infinite. Because the power of x in the integrand
is greater than −1, this integral diverges.
(d) The integral is improper because the integrand is undefined at x = 0. Because the power of x in the integrand is
greater than −1, this integral converges.

2. Is
∫ π/2

0
cot x dx an improper integral? Explain.

solution Because the integrand cot x is undefined at x = 0, this is an improper integral.

3. Find a value of b > 0 that makes
∫ b

0

1

x2 − 4
dx an improper integral.

solution Any value of b satisfying |b| ≥ 2 will make this an improper integral.

4. Which comparison would show that
∫ ∞

0

dx

x + ex
converges?

solution Note that, for x > 0,

1

x + ex
<

1

ex
= e−x .

Moreover ∫ ∞
0

e−x dx

converges. Therefore, ∫ ∞
0

1

x + ex
dx

converges by the comparison test.

5. Explain why it is not possible to draw any conclusions about the convergence of
∫ ∞

1

e−x

x
dx by comparing with

the integral
∫ ∞

1

dx

x
.

solution For 1 ≤ x < ∞,

e−x

x
<

1

x
,

but ∫ ∞
1

dx

x

diverges. Knowing that an integral is smaller than a divergent integral does not allow us to draw any conclusions using
the comparison test.

Exercises
1. Which of the following integrals is improper? Explain your answer, but do not evaluate the integral.

(a)
∫ 2

0

dx

x1/3
(b)

∫ ∞
1

dx

x0.2
(c)

∫ ∞
−1

e−x dx

(d)
∫ 1

0
e−x dx (e)

∫ π/2

0
sec x dx (f)

∫ ∞
0

sin x dx
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(g)
∫ 1

0
sin x dx (h)

∫ 1

0

dx√
3 − x2

(i)
∫ ∞

1
ln x dx

(j)
∫ 3

0
ln x dx

solution

(a) Improper. The function x−1/3 is infinite at 0.
(b) Improper. Infinite interval of integration.
(c) Improper. Infinite interval of integration.
(d) Proper. The function e−x is continuous on the finite interval [0, 1].
(e) Improper. The function sec x is infinite at π

2 .
(f) Improper. Infinite interval of integration.
(g) Proper. The function sin x is continuous on the finite interval [0, 1].
(h) Proper. The function 1/

√
3 − x2 is continuous on the finite interval [0, 1].

(i) Improper. Infinite interval of integration.
(j) Improper. The function ln x is infinite at 0.

2. Let f (x) = x−4/3.

(a) Evaluate
∫ R

1
f (x) dx.

(b) Evaluate
∫ ∞

1
f (x) dx by computing the limit

lim
R→∞

∫ R

1
f (x) dx

solution

(a)
∫ R

1
x−4/3 dx = −3x−1/3

∣∣∣∣R
1

= −3R−1/3 − (− 3(1)
) = 3

(
1 − 1

R1/3

)
.

(b)
∫ ∞

1
x−4/3 dx = lim

R→∞

∫ R

1
x−4/3 dx = lim

R→∞ 3

(
1 − 1

R1/3

)
= 3(1 − 0) = 3.

3. Prove that
∫ ∞

1
x−2/3 dx diverges by showing that

lim
R→∞

∫ R

1
x−2/3 dx = ∞

solution First compute the proper integral:

∫ R

1
x−2/3 dx = 3x1/3

∣∣∣∣R
1

= 3R1/3 − 3 = 3
(
R1/3 − 1

)
.

Then show divergence: ∫ ∞
1

x−2/3 dx = lim
R→∞

∫ R

1
x−2/3 dx = lim

R→∞ 3
(
R1/3 − 1

)
= ∞.

4. Determine whether
∫ 3

0

dx

(3 − x)3/2
converges by computing

lim
R→3−

∫ R

0

dx

(3 − x)3/2

solution First evaluate the integral on the interval [0, R] for 0 < R < 3:

∫ R

0

dx

(3 − x)3/2
= 2(3 − x)−1/2

∣∣∣∣R
0

= 2√
3 − R

− 2√
3
.

Now compute the limit as R → 3−:∫ 3

0

dx

(3 − x)3/2
= lim

R→3−

∫ R

0

dx

(3 − x)3/2
= lim

R→3−

(
2√

3 − R
− 2√

3

)
= ∞;

thus, the integral diverges.
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In Exercises 5–40, determine whether the improper integral converges and, if so, evaluate it.

5.
∫ ∞

1

dx

x19/20

solution First evaluate the integral over the finite interval [1, R] for R > 1:

∫ R

1

dx

x19/20
= 20x1/20

∣∣∣∣R
1

= 20R1/20 − 20.

Now compute the limit as R → ∞:

∫ ∞
1

dx

x19/20
= lim

R→∞

∫ R

1

dx

x19/20
= lim

R→∞
(

20R1/20 − 20
)

= ∞.

The integral does not converge.

6.
∫ ∞

1

dx

x20/19

solution First evaluate the integral over the finite interval [1, R] for R > 1:

∫ R

1

dx

x20/19
= −19x−1/19

∣∣∣∣R
1

= −19

R1/19
− (−19) = 19 − 19

R1/19
.

Now compute the limit as R → ∞:

∫ ∞
1

dx

x20/19
= lim

R→∞

∫ R

1

dx

x20/19
= lim

R→∞

(
19 − 19

R1/19

)
= 19 − 0 = 19.

7.
∫ 4

−∞
e0.0001t dt

solution First evaluate the integral over the finite interval [R, 4] for R < 4:

∫ 4

R
e(0.0001)t dt = e(0.0001)t

0.0001

∣∣∣∣∣
4

R

= 10,000
(
e0.0004 − e(0.0001)R

)
.

Now compute the limit as R → −∞:

∫ 4

−∞
e(0.0001)t dt = lim

R→−∞

∫ 4

R
e(0.0001)t dt = lim

R→−∞ 10,000
(
e0.0004 − e(0.0001)R

)

= 10,000
(
e0.0004 − 0

)
= 10,000e0.0004.

8.
∫ ∞

20

dt

t

solution First evaluate the integral over the finite interval [20, R] for 20 < R:

∫ R

20

dt

t
= ln |t |∣∣R20 = ln R − ln 20.

Now compute the limit as R → ∞:

∫ ∞
20

dt

t
= lim

R→∞

∫ R

20

dt

t
= lim

R→∞(ln R − ln 20) = ∞;

thus, the integral does not converge.

9.
∫ 5

0

dx

x20/19

solution The function x−20/19 is infinite at the endpoint 0, so we’ll first evaluate the integral on the finite interval
[R, 5] for 0 < R < 5:

∫ 5

R

dx

x20/19
= −19x−1/19

∣∣∣∣5
R

= −19
(

5−1/19 − R−1/19
)

= 19

(
1

R1/19
− 1

51/19

)
.
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Now compute the limit as R → 0+:∫ 5

0

dx

x20/19
= lim

R→0+

∫ 5

R

dx

x20/19
= lim

R→0+ 19

(
1

R1/19
− 1

51/19

)
= ∞;

thus, the integral does not converge.

10.
∫ 5

0

dx

x19/20

solution The function x−19/20 is infinite at the endpoint 0, so we’ll first evaluate the integral on the finite interval
[R, 5] for 0 < R < 5: ∫ 5

R

dx

x19/20
= 20x1/20

∣∣∣∣5
R

= 20
(

51/20 − R1/20
)

.

Now compute the limit as R → 0+:∫ 5

0

dx

x19/20
= lim

R→0+

∫ 5

R

dx

x19/20
= lim

R→0+ 20
(

51/20 − R1/20
)

= 20
(

51/20 − 0
)

= 20 · 51/20.

11.
∫ 4

0

dx√
4 − x

solution The function 1/
√

4 − x is infinite at x = 4, but is left-continuous at x = 4, so we’ll first evaluate the integral
on the interval [0, R] for 0 < R < 4:∫ R

0

dx√
4 − x

= −2
√

4 − x

∣∣∣R
0

= −2
√

4 − R − (−2)
√

4 = 4 − 2
√

4 − R.

Now compute the limit as R → 4−:∫ 4

0

dx√
4 − x

= lim
R→4−

∫ R

0

dx√
4 − x

= lim
R→4−

(
4 − 2

√
4 − R

)
= 4 − 0 = 4.

12.
∫ 6

5

dx

(x − 5)3/2

solution The function (x − 5)−3/2 is infinite at x = 5, but is right-continuous at x = 5, so we’ll first evaluate the
integral on the interval [R, 6] for 5 < R < 6:∫ 6

R

dx

(x − 5)3/2
= 2(x − 5)−1/2

∣∣∣∣6
R

= −2√
1

− −2√
R − 5

= 2√
R − 5

− 2.

Now compute the limit as R → 5+:∫ 6

5

dx

(x − 5)−3/2
= lim

R→5+

∫ 6

R

dx

(x − 5)3/2
= lim

R→5+

(
2√

R − 5
− 2

)
= ∞;

thus, the integral does not converge.

13.
∫ ∞

2
x−3 dx

solution First evaluate the integral on the finite interval [2, R] for 2 < R:

∫ R

2
x−3 dx = x−2

−2

∣∣∣∣∣
R

2

= −1

2R2
− −1

2(22)
= 1

8
− 1

2R2
.

Now compute the limit as R → ∞:∫ ∞
2

x−3 dx = lim
R→∞

∫ R

2
x−3 dx = lim

R→∞

(
1

8
− 1

2R2

)
= 1

8
.

14.
∫ ∞

0

dx

(x + 1)3

solution First evaluate the integral on the finite interval [0, R] for R > 0:

∫ R

0

dx

(x + 1)3
= (x + 1)−2

−2

∣∣∣∣∣
R

0

= −1

2(R + 1)2
− −1

2(1)2
= 1

2
− 1

2(R + 1)2
.
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Now compute the limit as R → ∞:

∫ ∞
0

dx

(x + 1)3
= lim

R→∞

∫ R

0

dx

(x + 1)3
= lim

R→∞

(
1

2
− 1

2(R + 1)2

)
= 1

2
.

15.
∫ ∞
−3

dx

(x + 4)3/2

solution First evaluate the integral on the finite interval [−3, R] for R > −3:

∫ R

−3

dx

(x + 4)3/2
= −2(x + 4)−1/2

∣∣∣∣R−3
= −2√

R + 4
− −2√

1
= 2 − 2√

R + 4
.

Now compute the limit as R → ∞:

∫ ∞
−3

dx

(x + 4)3/2
= lim

R→∞

∫ R

−3

dx

(x + 4)3/2
= lim

R→∞

(
2 − 2√

R + 4

)
= 2 − 0 = 2.

16.
∫ ∞

2
e−2x dx

solution First evaluate the integral on the finite interval [2, R] for R > 2:

∫ R

2
e−2x dx = e−2x

−2

∣∣∣∣∣
R

2

= −1

2

(
e−2R − e−4

)
= 1

2

(
e−4 − e−2R

)
.

Now compute the limit as R → ∞:

∫ ∞
2

e−2x dx = lim
R→∞

∫ R

2
e−2x dx = lim

R→∞
(
e−4 − e−2R

)
= 1

2

(
e−4 − 0

)
= 1

2e4
.

17.
∫ 1

0

dx

x0.2

solution The function x−0.2 is infinite at x = 0 and right-continuous at x = 0, so we’ll first evaluate the integral on
the interval [R, 1] for 0 < R < 1:

∫ 1

R

dx

x0.2
= x0.8

0.8

∣∣∣∣∣
1

R

= 1.25
(

1 − R0.8
)

.

Now compute the limit as R → 0+:

∫ 1

0

dx

x0.2
= lim

R→0+

∫ 1

R

dx

x0.2
= lim

R→0+ 1.25
(

1 − R0.8
)

= 1.25(1 − 0) = 1.25.

18.
∫ ∞

2
x−1/3 dx

solution First evaluate the integral on the finite interval [2, R] for R > 2:

∫ R

2
x−1/3 dx = 3

2
x2/3

∣∣∣∣R
2

= 3

2

(
R2/3 − 22/3

)
.

Now compute the limit as R → ∞:

∫ ∞
2

x−1/3 dx = lim
R→∞

∫ R

2
x−1/3 dx = lim

R→∞
3

2

(
R2/3 − 22/3

)
= ∞;

thus, the integral does not converge.

19.
∫ ∞

4
e−3x dx

solution First evaluate the integral on the finite interval [4, R] for R > 4:

∫ R

4
e−3x dx = e−3x

−3

∣∣∣∣∣
R

4

= −1

3

(
e−3R − e−12

)
= 1

3

(
e−12 − e−3R

)
.
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Now compute the limit as R → ∞:∫ ∞
4

e−3x dx = lim
R→∞

∫ R

4
e−3x dx = lim

R→∞
1

3

(
e−12 − e−3R

)
= 1

3

(
e−12 − 0

)
= 1

3e12
.

20.
∫ ∞

4
e3x dx

solution First evaluate the integral on the finite interval [4, R] for R > 4:

∫ R

4
e3x dx = e3x

3

∣∣∣∣∣
R

4

= 1

3

(
e3R − e12

)
.

Now compute the limit as R → ∞:∫ ∞
4

e3x dx = lim
R→∞

∫ R

4
e3x dx = lim

R→∞
1

3

(
e3R − e12

)
= ∞;

thus, the integral does not converge.

21.
∫ 0

−∞
e3x dx

solution First evaluate the integral on the finite interval [R, 0] for R < 0:

∫ 0

R
e3x dx = e3x

3

∣∣∣∣∣
0

R

= 1

3
− e3R

3
.

Now compute the limit as R → −∞:∫ 0

−∞
e3x dx = lim

R→−∞

∫ 0

R
e3x dx = lim

R→−∞

(
1

3
− e3R

3

)
= 1

3
− 0 = 1

3
.

22.
∫ 2

1

dx

(x − 1)2

solution The function (x − 1)−2 is infinite at x = 1 and is right-continuous at x = 1, so we first evaluate the integral
on the interval [R, 2] for 1 < R < 2:

∫ 2

R

dx

(x − 1)2
= (x − 1)−1

−1

∣∣∣∣∣
2

R

= −1

1
− −1

R − 1
= 1

R − 1
− 1.

Now compute the limit as R → 1+:∫ 2

1

dx

(x − 1)2
= lim

R→1+

∫ 2

R

dx

(x − 1)2
= lim

R→1+

(
1

R − 1
− 1

)
= ∞;

thus, the integral does not converge.

23.
∫ 3

1

dx√
3 − x

solution The function f (x) = 1/
√

3 − x is infinite at x = 3 and is left continuous at x = 3, so we first evaluate the
integral on the interval [1, R] for 1 < R < 3:∫ R

1

dx√
3 − x

= −2
√

3 − x

∣∣∣∣R
1

= −2
√

3 − R + 2
√

2.

Now compute the limit as R → 3−:∫ 3

1

dx√
3 − x

= lim
R→3−

∫ R

1

dx√
3 − x

= 0 + 2
√

2 = 2
√

2.

24.
∫ 4

−2

dx

(x + 2)1/3

solution The function (x + 2)−1/3 is infinite at x = −2 and right-continuous at x = −2, so we’ll first evaluate the
integral on the interval [R, 4] for −2 < R < 4:∫ 4

R

dx

(x + 2)1/3
= 3

2
(x + 2)2/3

∣∣∣∣4
R

= 3

2

(
62/3 − (R + 2)2/3

)
.
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Now compute the limit as R → −2+:

∫ 4

−2

dx

(x + 2)1/3
= lim

R→−2+

∫ 4

R

dx

(x + 2)1/3
= lim

R→2+
3

2

(
62/3 − (R + 2)2/3

)
= 3

2

(
62/3 − 0

)
= 3 · 62/3

2
.

25.
∫ ∞

0

dx

1 + x

solution First evaluate the integral on the finite interval [0, R] for R > 0:

∫ R

0

dx

1 + x
= ln |1 + x|∣∣R0 = ln |1 + R| − ln 1 = ln |1 + R|.

Now compute the limit as R → ∞:

∫ ∞
0

dx

1 + x
= lim

R→∞

∫ R

0

dx

1 + x
= lim

R→∞ ln |1 + R| = ∞;

thus, the integral does not converge.

26.
∫ 0

−∞
xe−x2

dx

solution First evaluate the indefinite integral using substitution, with u = −x2, du = −2x dx. This gives us

∫
xe−x2

dx = −1

2

∫
e−x2

(−2x dx) = −1

2

∫
eu du = −1

2
eu + C = −1

2
e−x2 + C.

Next, evaluate the integral on the finite interval [R, 0] for R < 0:

∫ 0

R
xe−x2

dx = −1

2
e−x2

∣∣∣∣0
R

= −1

2

(
1 − e−R2

)
.

Finally, compute the limit as R → −∞:

∫ 0

−∞
xe−x2

dx = lim
R→−∞

∫ 0

R
xe−x2

dx = lim
R→−∞

1

2

(
e−R2 − 1

)
= 1

2
(0 − 1) = −1

2
.

27.
∫ ∞

0

x dx

(1 + x2)2

solution First evaluate the indefinite integral, using the substitution u = x2, du = 2x dx; then

∫
x dx

(1 + x2)2
= 1

2

∫
1

(1 + u)2
du = − 1

2(u + 1)
+ C = − 1

2(x2 + 1)
+ C

Thus, for R > 0,

∫ R

0

x dx

(x2 + 1)2
=
(

− 1

2(x2 + 1)

) ∣∣∣∣R
0

= − 1

2(R2 + 1)
+ 1

2

and thus in the limit

∫ ∞
0

x dx

(x2 + 1)2
= lim

R→∞

∫ R

0

x dx

(x2 + 1)2
= 1

2
− lim

R→∞
1

2(R2 + 1)
= 1

2

28.
∫ 6

3

x dx√
x − 3

solution First, evaluate the indefinite integral using the substitution u = x − 3, du = dx:

∫
x√

x − 3
dx =

∫
u + 3√

u
du = 2

3
u3/2 + 6u1/2 + C = 2

3
(x − 3)3/2 + 6(x − 3)1/2 + C.
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Next, evaluate the definite integral over the interval [R, 6] for R > 3:∫ 6

R

x√
x − 3

dx =
(

2

3
(x − 3)3/2 + 6(x − 3)1/2

)∣∣∣∣6
R

= 2

3
33/2 + 6

√
3 − 2

3
(R − 3)3/2 − 6(R − 3)1/2

= 8
√

3 − 2

3
(R − 3)3/2 − 6(R − 3)1/2.

Finally, we compute the limit as R → 3+:∫ 6

3

x√
x − 3

dx = lim
R→3+

∫ 6

R

x√
x − 3

dx = lim
R→3+

(
8
√

3 − 2

3
(R − 3)3/2 − 6(R − 3)1/2

)
= 8

√
3.

29.
∫ ∞

0
e−x cos x dx

solution First evaluate the indefinite integral using Integration by Parts, with u = e−x , v′ = cos x. Then u′ = −e−x ,
v = sin x, and ∫

e−x cos x dx = e−x sin x −
∫

sin x(−e−x) dx = e−x sin x +
∫

e−x sin x dx.

Now use Integration by Parts again, with u = e−x , v′ = sin x. Then u′ = −e−x , v = − cos x, and∫
e−x cos x dx = e−x sin x +

[
−e−x cos x −

∫
e−x cos x dx

]
.

Solving this equation for
∫

e−x cos x dx, we find∫
e−x cos x dx = 1

2
e−x(sin x − cos x) + C.

Thus, ∫ R

0
e−x cos x dx = 1

2
e−x(sin x − cos x)

∣∣∣∣R
0

= sin R − cos R

2eR
− sin 0 − cos 0

2
= sin R − cos R

2eR
+ 1

2
,

and ∫ ∞
0

e−x cos x dx = lim
R→∞

(
sin R − cos R

2eR
+ 1

2

)
= 0 + 1

2
= 1

2
.

30.
∫ ∞

1
xe−2x dx

solution First evaluate the indefinite integral using Integration by Parts, with u = x and v′ = e−2x . Then u′ = 1,

v = − 1
2 e−2x , and∫

xe−2x dx = −1

2
xe−2x −

∫ (
−1

2

)
e−2x dx = −1

2
e−2x + 1

2

∫
e−2x dx

= −1

2
xe−2x − 1

4
e−2x + C = −1

4
e−2x(2x + 1) + C = −(2x + 1)

4e2x
+ C.

Therefore,∫ ∞
1

xe−2x dx = lim
R→−∞

∫ R

1
xe−2x dx = lim

R→∞

(
−(2x + 1)

4e2x

∣∣∣∣R
1

)
= lim

R→∞

[−(2R + 1)

4e2R
+ 3

4e2

]
.

Use L’Hôpital’s Rule to evaluate the limit:∫ ∞
1

xe−2x dx = 3

4e2
− lim

R→∞
2

8e2R
= 3

4e2
− 0 = 3

4e2
.

31.
∫ 3

0

dx√
9 − x2

solution The function (9 − x2)−1/2 is infinite at x = 3, and is left-continuous at x = 3, so we’ll first evaluate the
integral on the interval [0, R] for 0 < R < 3:∫ R

0

dx√
9 − x2

= sin−1 x

3

∣∣∣R
0

= sin−1 R

3
− sin−1 0 = sin−1 R

3
.
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Thus, ∫ 3

0

dx√
9 − x2

= lim
R→3− sin−1 R

3
= sin−1 1 = π

2
.

32.
∫ 1

0

e
√

x dx√
x

solution Let u = √
x, du = 1

2x−1/2 dx. Then

∫
e
√

x dx√
x

= 2
∫

e
√

x

(
dx

2
√

x

)
= 2

∫
eu du = 2eu + C = 2e

√
x + C.

The function e
√

x/
√

x is infinite and right-continuous at x = 0, so we first evaluate the integral on [R, 1] for 0 < R < 1:

∫ 1

R

e
√

x dx√
x

= 2e
√

x
∣∣∣1
R

= 2e − 2e

√
R.

Now we compute the limit as R → 0+:

∫ 1

0

e
√

x dx√
x

= lim
R→0+

(
2e − 2e

√
x
)

= 2e − 2(1) = 2(e − 1).

33.
∫ ∞

1

e
√

x dx√
x

solution Let u = √
x, du = 1

2x−1/2 dx. Then

∫
e
√

x dx√
x

= 2
∫

e
√

x

(
dx

2
√

x

)
= 2

∫
eu du = 2eu + C = 2e

√
x + C,

and ∫ ∞
1

e
√

x dx√
x

= lim
R→∞

∫ R

1

e
√

x dx√
x

= lim
R→∞ 2e

√
x
∣∣∣R
1

= lim
R→∞

(
2e

√
R − 2e

)
= ∞.

The integral does not converge.

34.
∫ π/2

0
sec θ dθ

solution First, evaluate the integral on the interval [0, R] for 0 < R < π
2 :

∫ R

0
sec θ dθ = ln | sec θ + tan θ |

∣∣∣∣R
0

= ln | sec R + tan R|.

Now we compute the limit as R → π
2

−:

∫ π/2

0
sec θ dθ = lim

R→π/2−

∫ R

0
sec θ dθ = lim

R→π/2− ln | sec R + tan R| = ∞.

The integral does not converge.

35.
∫ ∞

0
sin x dx

solution First evaluate the integral on the finite interval [0, R] for R > 0:

∫ R

0
sin x dx = − cos x

∣∣∣∣R
0

= − cos R + cos 0 = 1 − cos R.

Thus, ∫ R

0
sin x dx = lim

R→∞(1 − cos R) = 1 − lim
R→∞ cos R.

This limit does not exist, since the value of cos R oscillates between 1 and −1 as R approaches infinity. Hence the integral
does not converge.
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36.
∫ π/2

0
tan x dx

solution The function tan x is infinite and left-continuous at x = π
2 , so we’ll first evaluate the integral on [0, R] for

0 < R < π
2 :

∫ R

0
tan x dx = ln | sec x|

∣∣∣∣R
0

= ln | sec R|.

Thus, ∫ π/2

0
tan x dx = lim

R→ π
2

−

∫ R

0
tan x dx = lim

R→ π
2

−
(

ln | sec R|) = ∞.

The integral does not converge.

37.
∫ 1

0
ln x dx

solution The function ln x is infinite and right-continuous at x = 0, so we’ll first evaluate the integral on [R, 1] for
0 < R < 1. Use Integration by Parts with u = ln x and v′ = 1. Then u′ = 1/x, v = x, and we have∫ 1

R
ln x dx = x ln x

∣∣∣∣1
R

−
∫ 1

R
dx = (x ln x − x)

∣∣∣∣1
R

= (ln 1 − 1) − (R ln R − R) = R − 1 − R ln R.

Thus, ∫ 1

0
ln x dx = lim

R→0+(R − 1 − R ln R) = −1 − lim
R→0+ R ln R.

To compute the limit, rewrite the function as a quotient and apply L’Hôpital’s Rule:

∫ 1

0
ln x dx = −1 − lim

R→0+
ln R

1
R

= −1 − lim
R→0+

1
R
−1
R2

= −1 − lim
R→0+(−R) = −1 − 0 = −1.

38.
∫ 2

1

dx

x ln x

solution Evaluate the indefinite integral using substitution, with u = ln x, du = (1/x) dx. Then∫
dx

x ln x
=
∫

du

u
= ln |u| + C = ln | ln x| + C.

Thus, ∫ 2

R

dx

x ln x
= ln | ln x|∣∣2

R
= ln(ln 2) − ln(ln R),

and ∫ 2

1

dx

x ln x
= lim

R→1+
[

ln(ln 2) − ln(ln R)
] = ln(ln 2) − lim

R→1+ ln(ln R) = ∞.

The integral does not converge.

39.
∫ 1

0

ln x

x2
dx

solution Use Integration by Parts, with u = ln x and v′ = x−2. Then u′ = 1/x, v = −x−1, and∫
ln x

x2
dx = − 1

x
ln x +

∫
dx

x2
= − 1

x
ln x − 1

x
+ C.

The function is infinite and right-continuous at x = 0, so we’ll first evaluate the integral on [R, 1] for 0 < R < 1:∫ 1

a

ln x

x2
dx =

(
− 1

x
ln x − 1

x

)∣∣∣∣1
R

=
(

−1

1
ln 1 − 1

1

)
−
(

− 1

R
ln R − 1

R

)
= 1

R
ln R + 1

R
− 1.

Thus, ∫ 1

0

ln x

x2
dx = lim

R→0+
1

R
ln R + 1

R
− 1 = −1 + lim

R→0+
ln R + 1

R
= −∞.

The integral does not converge.
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40.
∫ ∞

1

ln x

x2
dx

solution Use Integration by Parts, with u = ln x and v′ = x−2. Then u′ = x−1, v = −x−1, and

∫
ln x

x2
dx = − 1

x
ln x +

∫
x−2 dx = − 1

x
ln x − 1

x
+ C.

Thus,

∫ R

1

ln x

x2
dx =

(
− 1

x
ln x − 1

x

)∣∣∣∣R
1

=
(

− 1

R
ln R − 1

R

)
−
(

−1

1
ln 1 − 1

1

)
= 1 − 1

R
ln R − 1

R
.

Use L’Hôpital’s Rule to compute the limit:

∫ ∞
1

ln x

x2
dx = lim

R→∞

(
1 − 1

R
ln R − 1

R

)
= 1 − lim

R→∞

(
ln R

R

)
− 0 = 1 − lim

R→∞
1
R

1
= 1 − 0

1
= 1.

41. Let I =
∫ ∞

4

dx

(x − 2)(x − 3)
.

(a) Show that for R > 4,

∫ R

4

dx

(x − 2)(x − 3)
= ln

∣∣∣∣R − 3

R − 2

∣∣∣∣− ln
1

2

(b) Then show that I = ln 2.

solution

(a) The partial fraction decomposition takes the form

1

(x − 2)(x − 3)
= A

x − 2
+ B

x − 3
.

Clearing denominators gives us

1 = A(x − 3) + B(x − 2).

Setting x = 2 then yields A = −1, while setting x = 3 yields B = 1. Thus,∫
dx

(x − 2)(x − 3)
=
∫

dx

x − 3
−
∫

dx

x − 2
= ln |x − 3| − ln |x − 2| + C = ln

∣∣∣∣x − 3

x − 2

∣∣∣∣+ C,

and, for R > 4,

∫ R

4

dx

(x − 2)(x − 3)
= ln

∣∣∣∣x − 3

x − 2

∣∣∣∣
∣∣∣∣R
4

= ln

∣∣∣∣R − 3

R − 2

∣∣∣∣− ln
1

2
.

(b) Using the result from part (a),

I = lim
R→∞

(
ln

∣∣∣∣R − 3

R − 2

∣∣∣∣− ln
1

2

)
= ln 1 − ln

1

2
= ln 2.

42. Evaluate the integral I =
∫ ∞

1

dx

x(2x + 5)
.

solution The partial fraction decomposition takes the form

1

x(2x + 5)
= A

x
+ B

2x + 5
.

Clearing denominators gives us

1 = A(2x + 5) + Bx.

Setting x = 0 then yields A = 1
5 , while setting x = − 5

2 yields B = − 2
5 . Thus,

∫
dx

x(2x + 5)
= 1

5

∫
dx

x
− 2

5

∫
dx

2x + 5
= 1

5
ln |x| − 1

5
ln |2x + 5| + C = 1

5
ln

∣∣∣∣ x

2x + 5

∣∣∣∣+ C,
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and, for R > 1,

∫ R

1

dx

x(2x + 5)
= 1

5
ln

∣∣∣∣ x

2x + 5

∣∣∣∣
∣∣∣∣R
1

= 1

5
ln

∣∣∣∣ R

2R + 5

∣∣∣∣− 1

5
ln

1

7
.

Thus,

I = lim
R→∞

(
1

5
ln

∣∣∣∣ R

2R + 5

∣∣∣∣− 1

5
ln

1

7

)
= 1

5
ln

1

2
− 1

5
ln

1

7
= 1

5
ln

7

2
.

43. Evaluate I =
∫ 1

0

dx

x(2x + 5)
or state that it diverges.

solution The partial fraction decomposition takes the form

1

x(2x + 5)
= A

x
+ B

2x + 5
.

Clearing denominators gives us

1 = A(2x + 5) + Bx.

Setting x = 0 then yields A = 1
5 , while setting x = − 5

2 yields B = − 2
5 . Thus,

∫
dx

x(2x + 5)
= 1

5

∫
dx

x
− 2

5

∫
dx

2x + 5
= 1

5
ln |x| − 1

5
ln |2x + 5| + C = 1

5
ln

∣∣∣∣ x

2x + 5

∣∣∣∣+ C,

and, for 0 < R < 1,

∫ 1

R

dx

x(2x + 5)
= 1

5
ln

∣∣∣∣ x

2x + 5

∣∣∣∣
∣∣∣∣1
R

= 1

5
ln

1

7
− 1

5
ln

∣∣∣∣ R

2R + 5

∣∣∣∣ .
Thus,

I = lim
R→0+

(
1

5
ln

1

7
− 1

5
ln

∣∣∣∣ R

2R + 5

∣∣∣∣
)

= ∞.

The integral does not converge.

44. Evaluate I =
∫ ∞

2

dx

(x + 3)(x + 1)2
or state that it diverges.

solution The partial fraction decomposition takes the form

1

(x + 3)(x + 1)2
= A

x + 3
+ B

x + 1
+ C

(x + 1)2
.

Clearing denominators gives us

1 = A(x + 1)2 + B(x + 1)(x + 3) + C(x + 3).

Setting x = −3 then yields A = 1
4 , while setting x = −1 yields C = 1

2 . Setting x = 0 gives 1 = 1
4 + 3B + 3

2 or

B = − 1
4 . Thus,

∫
dx

(x + 3)(x + 1)2
= 1

4

∫
dx

x + 3
− 1

4

∫
dx

x + 1
+ 1

2

∫
dx

(x + 1)2

= 1

4
ln |x + 3| − 1

4
ln |x + 1| − 1

2(x + 1)
+ C = 1

4
ln

∣∣∣∣x + 3

x + 1

∣∣∣∣− 1

2(x + 1)
+ C,

and, for R > 2,

∫ R

2

dx

(x + 3)(x + 1)2
=
(

1

4
ln

∣∣∣∣x + 3

x + 1

∣∣∣∣− 1

2(x + 1)

)∣∣∣∣R
2

= 1

4
ln

∣∣∣∣R + 3

R + 1

∣∣∣∣− 1

2(R + 1)
− 1

4
ln

5

3
+ 1

6
.

Thus

I = lim
R→∞

(
1

4
ln

∣∣∣∣R + 3

R + 1

∣∣∣∣− 1

2(R + 1)
− 1

4
ln

5

3
+ 1

6

)
= 1

6
− 1

4
ln

5

3
.
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In Exercises 45–48, determine whether the doubly infinite improper integral converges and, if so, evaluate it. Use defini-
tion (2).

45.
∫ ∞
−∞

x dx

1 + x2

solution Using the substitution u = x2 + 1, du = 2x dx, we obtain∫
x dx

1 + x2
= 1

2
ln(x2 + 1) + C.

Thus, ∫ ∞
0

x dx

1 + x2
= lim

R→∞

∫ R

0

x dx

1 + x2
= lim

R→∞
1

2
ln(R2 + 1) = ∞;

∫ 0

−∞
x dx

1 + x2
= lim

R→−∞

∫ 0

R

x dx

1 + x2
= lim

R→−∞
1

2
ln(R2 + 1) = ∞;

It follows that ∫ ∞
−∞

x dx

1 + x2

diverges.

46.
∫ ∞
−∞

e−|x| dx

solution First, we find

∫ ∞
0

e−|x| dx =
∫ ∞

0
e−x dx = lim

R→∞

∫ R

0
e−x dx = lim

R→∞
(

1 − e−R
)

= 1;
∫ 0

−∞
e−|x| dx =

∫ 0

∞
ex dx = lim

R→−∞

∫ 0

R
ex dx = lim

R→−∞
(

1 − eR
)

= 1;

and ∫ ∞
∞

e−|x| dx = 1 + 1 = 2.

47.
∫ ∞
−∞

xe−x2
dx

solution First note that ∫
xe−x2

dx = −1

2
e−x2 + C.

Thus, ∫ ∞
0

xe−x2
dx = lim

R→∞

∫ R

0
xe−x2

dx = lim
R→∞

(
1

2
− 1

2
e−R2

)
= 1

2
;

∫ 0

−∞
xe−x2

dx = lim
R→−∞

∫ 0

R
xe−x2

dx = lim
R→−∞

(
−1

2
+ 1

2
e−R2

)
= −1

2
;

and ∫ ∞
−∞

xe−x2
dx = 1

2
− 1

2
= 0.

48.
∫ ∞
−∞

dx

(x2 + 1)3/2

solution First, we evaluate the indefinite integral using the trigonometric substitution x = tan θ , dx = sec2 θ dθ .
Then ∫

dx

(1 + x2)3/2
=
∫

sec2 θ

sec3 θ
dθ =

∫
cos θ dθ = sin θ + C = x√

1 + x2
+ C.
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Thus, ∫ ∞
0

dx

(1 + x2)3/2
= lim

R→∞

∫ R

0

dx

(1 + x2)3/2
= lim

R→∞
R√

1 + R2
= 1;

∫ 0

−∞
dx

(1 + x2)3/2
= lim

R→−∞

∫ 0

R

dx

(1 + x2)3/2
= lim

R→−∞ − R√
1 + R2

= 1;

and ∫ ∞
∞

dx

(1 + x2)(3/2)
= 1 + 1 = 2.

49. Define J =
∫ 1

−1

dx

x1/3
as the sum of the two improper integrals

∫ 0

−1

dx

x1/3
+
∫ 1

0

dx

x1/3
. Show that J converges and

that J = 0.

solution Note that since x−1/3 is an odd function, one might expect this integral over a symmetric interval to be zero.
To prove this, we start by evaluating the indefinite integral:∫

dx

x1/3
= 3

2
x2/3 + C

Then ∫ 0

−1

dx

x1/3
= lim

R→0−

∫ R

−1

dx

x1/3
= lim

R→0−
3

2
x2/3

∣∣∣∣R−1
= lim

R→0−
3

2
R2/3 − 3

2
= −3

2∫ 1

0

dx

x1/3
= lim

R→0+

∫ 1

R

dx

x1/3
= lim

R→0+
3

2
x2/3

∣∣∣∣1
R

= 3

2
− lim

R→0+
3

2
R2/3 = 3

2

so that

J =
∫ 1

−1

dx

x1/3
=
∫ 0

−1

dx

x1/3
+
∫ 1

0

dx

x1/3
= −3

2
+ 3

2
= 0

50. Determine whether J =
∫ 1

−1

dx

x2
(defined as in Exercise 49) converges.

solution We have ∫
dx

x2
= − 1

x
+ C

so that ∫ 0

−1

dx

x2
= lim

R→0−

∫ R

−1

dx

x2
= lim

R→0−

(
− 1

x

∣∣∣∣R−1

)
= lim

R→0−

(
− 1

R
+ 1

)
= 1 − lim

R→0−
1

R
= ∞

∫ 1

0

dx

x2
= lim

R→0+

∫ 1

R

dx

x2
= lim

R→0+

(
− 1

x

∣∣∣∣1
R

)
= lim

R→0+

(
−1 + 1

R

)
= −1 + lim

R→0+
1

R
= ∞

so that the integral diverges.

51. For which values of a does
∫ ∞

0
eax dx converge?

solution First evaluate the integral on the finite interval [0, R] for R > 0:

∫ R

0
eax dx = 1

a
eax

∣∣∣∣R
0

= 1

a

(
eaR − 1

)
.

Thus, ∫ ∞
0

eax dx = lim
R→∞

1

a

(
eaR − 1

)
.

If a > 0, then eaR → ∞ as R → ∞. If a < 0, then eaR → 0 as R → ∞, and∫ ∞
0

eax dx = lim
R→∞

1

a

(
eaR − 1

)
= − 1

a
.

The integral converges for a < 0.
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52. Show that
∫ 1

0

dx

xp
converges if p < 1 and diverges if p ≥ 1.

solution The function x−p is infinite and right-continuous at x = 0, so we’ll first evaluate the integral on [R, 1] for
0 < R < 1:

∫ 1

R

dx

xp
= x−p+1

−p + 1

∣∣∣∣∣
1

R

= 1

−p + 1

(
1 − R−p+1

)
.

If p < 1, then −p + 1 = 1 − p > 0, and∫ 1

0

dx

xp
= lim

R→0+
1

1 − p

(
1 − R1−p

)
= 1

1 − p
(1 − 0) = 1

1 − p
.

If p > 1, then −p + 1 < 0, and∫ 1

0

dx

xp
= lim

R→0+
1

1 − p

(
1 − R1−p

)
= lim

R→0+
1

1 − p

(
1 − 1

ap−1

)
= ∞.

If p = 1, then

∫ 1

R

dx

xp
=
∫ 1

R

dx

x
= ln x

∣∣∣∣1
R

= ln 1 − ln R = − ln R; and

∫ 1

0

dx

x
= lim

R→0+ (− ln R) = ∞.

Thus, the integral converges for p < 1 and diverges for p ≥ 1.

53. Sketch the region under the graph of f (x) = 1

1 + x2
for −∞ < x < ∞, and show that its area is π .

solution The graph is shown below.

1

0.4

0.2

0.8

0.6

y

x
−2−4 2 4

Since (1 + x2)−1 is an even function, we can first compute the area under the graph for x > 0:

∫ R

0

dx

1 + x2
= tan−1 x

∣∣∣R
0

= tan−1 R − tan−1 0 = tan−1 R.

Thus, ∫ ∞
0

dx

1 + x2
= lim

R→∞ tan−1 R = π

2
.

By symmetry, we have

∫ ∞
−∞

dx

1 + x2
=
∫ 0

−∞
dx

1 + x2
+
∫ ∞

0

dx

1 + x2
= π

2
+ π

2
= π.

54. Show that
1√

x4 + 1
≤ 1

x2
for all x, and use this to prove that

∫ ∞
1

dx√
x4 + 1

converges.

solution Since
√

x4 + 1 ≥
√

x4 = x2, it follows that

1√
x4 + 1

≤ 1

x2
.

The integral ∫ ∞
1

dx

x2
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converges by Theorem 2, since 2 > 1. Therefore, by the comparison test,∫ ∞
1

dx√
x4 + 1

converges.

55. Show that
∫ ∞

1

dx

x3 + 4
converges by comparing with

∫ ∞
1

x−3 dx.

solution The integral
∫ ∞

1
x−3 dx converges because 3 > 1. Since x3 + 4 ≥ x3, it follows that

1

x3 + 4
≤ 1

x3
.

Therefore, by the comparison test, ∫ ∞
1

dx

x3 + 4
converges.

56. Show that
∫ ∞

2

dx

x3 − 4
converges by comparing with∫ ∞

2
2x−3 dx.

solution The integral
∫ ∞

1
x−3 dx converges because 3 > 1. If

∫ ∞
1

x−3 dx = M < ∞, then

∫ ∞
1

2x−3 dx = 2
∫ ∞

1
x−3 dx = 2M

also converges. If x ≥ 2, then x3 ≥ 8 so 2x3 − 8 ≥ x3 and x3 − 4 ≥ 1
2x3. Then we have, for x ≥ 2,

1

x3 − 4
≤ 2

x3
.

Therefore, by the comparison test: ∫ ∞
2

2

x3 − 4
converges.

57. Show that 0 ≤ e−x2 ≤ e−x for x ≥ 1 (Figure 10). Use the Comparison Test to show that
∫∞

0 e−x2
dx

converges. Hint: It suffices (why?) to make the comparison for x ≥ 1 because∫ ∞
0

e−x2
dx =

∫ 1

0
e−x2

dx +
∫ ∞

1
e−x2

dx

y

y = e− |x |

y = e−x2

x
1

1

2 4−2−3−4 −1 3

FIGURE 10 Comparison of y = e−|x| and y = e−x2
.

solution For x ≥ 1, x2 ≥ x, so −x2 ≤ −x and e−x2 ≤ e−x . Now∫ ∞
1

e−x dx converges, so
∫ ∞

1
e−x2

dx converges

by the comparison test. Finally, because e−x2
is continuous on [0, 1],∫ ∞

0
e−x2

dx converges.

We conclude that our integral converges by writing it as a sum:∫ ∞
0

e−x2
dx =

∫ 1

0
e−x2

dx +
∫ ∞

1
e−x2

dx
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58. Prove that
∫ ∞
−∞

e−x2
dx converges by comparing with

∫ ∞
−∞

e−|x| dx (Figure 10).

solution From Figure 10, we see that for |x| ≥ 1, e−x2 ≤ e−|x|. Now∫ −1

−∞
e−|x| dx and

∫ ∞
1

e−|x| dx

both converge, so ∫ −1

−∞
e−x2

dx and
∫ ∞

1
e−x2

dx

must also converge by the comparison test. Because e−x2
is continuous on [−1, 1], it follows that∫ ∞

−∞
e−x2

dx =
∫ −1

−∞
e−x2

dx +
∫ 1

−1
e−x2

dx +
∫ ∞

1
e−x2

dx

converges.

59. Show that
∫ ∞

1

1 − sin x

x2
dx converges.

solution Let f (x) = 1 − sin x

x2
. Since f (x) ≤ 2

x2
and

∫ ∞
1

2x−2 dx = 2, it follows that

∫ ∞
1

1 − sin x

x2
dx converges

by the comparison test.

60. Let a > 0. Recall that lim
x→∞

xa

ln x
= ∞ (by Exercise 64 in Section 4.5).

(a) Show that xa > 2 ln x for all x sufficiently large.
(b) Show that e−xa

< x−2 for all x sufficiently large.

(c) Show that
∫ ∞

1
e−xa

dx converges.

solution
(a) Since lim

x→∞ xa/ ln x = ∞, there must be some number M > 0 such that, for all x > M ,

xa

ln x
> 2.

But this means that, for all x > M ,

xa > 2 ln x.

(b) For all x > M , we have xa > 2 ln x. Then

−xa < −2 ln x = ln x−2

so that

e−xa
< eln x−2 = x−2.

(c) By the above calculations, we can use the comparison test on the interval [M, ∞):∫ ∞
M

dx

x2
converges ⇒

∫ ∞
M

e−xa
dx also converges.

Since e−xa
is continuous on [1, M], we have that∫ ∞

M
e−xa

dx converges ⇒
∫ ∞

1
e−xa

dx also converges.

In Exercises 61–74, use the Comparison Test to determine whether or not the integral converges.

61.
∫ ∞

1

1√
x5 + 2

dx

solution Since
√

x5 + 2 ≥ √
x5 = x5/2, it follows that

1√
x5 + 2

≤ 1

x5/2
.
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The integral
∫ ∞

1
dx/x5/2 converges because 5

2 > 1. Therefore, by the comparison test:

∫ ∞
1

dx√
x5 + 2

also converges.

62.
∫ ∞

1

dx

(x3 + 2x + 4)1/2

solution For all x ≥ 1,
√

x3 + 2x + 4 ≥
√

x3 = x3/2. Thus

1√
x3 + 2x + 4

≤ 1

x3/2
.

The integral
∫ ∞

1
dx/x3/2 converges because 3

2 > 1. Therefore, by the comparison test,

∫ ∞
1

dx√
x3 + 2x + 4

also converges.

63.
∫ ∞

3

dx√
x − 1

solution Since
√

x ≥ √
x − 1, we have (for x > 1)

1√
x

≤ 1√
x − 1

.

The integral
∫ ∞

1
dx/

√
x =

∫ ∞
1

dx/x1/2 diverges because 1
2 < 1. Since the function x−1/2 is continuous (and therefore

finite) on [1, 3], we also know that
∫ ∞

3
dx/x1/2 diverges. Therefore, by the comparison test,

∫ ∞
3

dx√
x − 1

also diverges.

64.
∫ 5

0

dx

x1/3 + x3

solution For 0 ≤ x ≤ 5, x1/3 + x3 ≥ x1/3, so that

1

x1/3 + x3
≤ 1

x1/3
.

The integral
∫ 5

0
x−1/3 dx converges; therefore, by the comparison test

∫ 5

0

dx

x1/3 + x3
also converges.

65.
∫ ∞

1
e−(x+x−1) dx

solution For all x ≥ 1, 1
x > 0 so x + 1

x ≥ x. Then

−(x + x−1) ≤ −x and e−(x+x−1) ≤ e−x .

The integral
∫ ∞

1
e−x dx converges by direct computation:

∫ ∞
1

e−x dx = lim
R→∞

∫ R

1
e−x dx = lim

R→∞ −e−x

∣∣∣∣R
1

= lim
R→∞ −e−R + e−1 = 0 + e−1 = e−1.

Therefore, by the comparison test, ∫ ∞
1

e−(x+x−1) also converges.
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66.
∫ 1

0

| sin x|√
x

dx

solution For all x, | sin x| ≤ 1. Therefore, for x �= 0,

| sin x|√
x

≤ 1√
x

.

The integral ∫ 1

0

dx√
x

=
∫ 1

0

dx

x1/2

converges, since 1
2 < 1. Therefore, by the comparison test,

∫ 1

0

| sin x|√
x

dx also converges.

67.
∫ 1

0

ex

x2
dx

solution For 0 < x < 1, ex > 1, and therefore

1

x2
<

ex

x2
.

The integral
∫ 1

0
dx/x2 diverges since 2 > 1. Therefore, by the comparison test,

∫ 1

0

ex

x2
also diverges.

68.
∫ ∞

1

1

x4 + ex
dx

solution For x > 1, x4 + ex ≥ x4, and

1

x4 + ex
≤ 1

x4
.

The integral
∫ 1

0
dx/x4 converges, since 4 > 1. Therefore, by the comparison test,

∫ ∞
1

dx

x4 + ex
also converges.

69.
∫ 1

0

1

x4 + √
x

dx

solution For 0 < x < 1, x4 + √
x ≥ √

x, and

1

x4 + √
x

≤ 1√
x

.

The integral
∫ 1

0
(1/

√
x) dx converges, since p = 1

2 < 1. Therefore, by the comparison test,

∫ 1

0

dx

x4 + √
x

also converges.

70.
∫ ∞

1

ln x

sinh x
dx

solution For x > 1, e−x < 1
2 ex , so

sinh x = ex − e−x

2
≥ 1

4
ex.

Similarly, ln x < x for all x > 1, so

ln x

sinh x
≤ 4x

ex
for all x ≥ 1.
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Because ∫ ∞
1

4xe−x dx = −4xe−x

∣∣∣∣∞
1

+
∫ ∞

1
4e−x dx = 8

e
,

it follows by the comparison test that ∫ ∞
1

ln x

sinh x
dx converges.

71.
∫ ∞

1

dx√
x1/3 + x3

solution For x ≥ 0,
√

x1/3 + x3 ≥
√

x3 = x3/2, so that

1√
x1/3 + x3

≤ 1

x3/2

The integral
∫ ∞

1
x−3/2 dx converges since p = 3/2 > 1. Therefore, by the comparison test,

∫
1√

x1/3 + x3
dx also converges.

72.
∫ 1

0

dx

(8x2 + x4)1/3

solution Clearly 8x2 + x4 ≥ 8x2, so that

1

(8x2 + x4)1/3
≤ 1

(8x2)1/3

Thus ∫ 1

0

1

(8x2 + x4)
dx ≤

∫ 1

0

1

(8x2)1/3
dx = 1

2

∫ 1

0

1

x2/3
dx

But
∫ 1

0
x−2/3 dx converges since p = 2/3 < 1. Therefore, by the comparison test,

∫ 1

0

1

(8x2 + x4)1/3
dx also converges.

73.
∫ ∞

1

dx

(x + x2)1/3

solution For x > 1, x < x2 so that x + x2 < 2x2; then∫ ∞
1

1

(x + x2)1/3
dx ≥

∫ ∞
1

1

(2x2)1/3
dx = 1

21/3

∫ ∞
1

1

x2/3
dx

But
∫ ∞

1

1

x2/3
dx diverges since p = 2/3 < 1. Therefore, by the comparison test,

∫ ∞
1

1

(x + x2)1/3
dx diverges as well.

74.
∫ 1

0

dx

xex + x2

solution xex + x2 = x(ex + x); for 0 ≤ x ≤ 1, ex ≤ e1 = e and x ≤ 1, so that x(ex + x) ≤ x(e + 1). It follows
that ∫ 1

0

1

xex + x2
dx ≥

∫ 1

0

1

x(e + 1)
dx = 1

e + 1

∫ 1

0

1

x
dx

But
∫ 1

0

1

x
dx diverges since p = 1. Therefore, by the comparison test,

∫ 1

0

1

xex + x2
dx diverges as well.
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Hint for Exercise 73: Show that for x ≥ 1,

1

(x + x2)1/3
≥ 1

21/3x2/3

Hint for Exercise 74: Show that for 0 ≤ x ≤ 1,

1

xex + x2
≥ 1

(e + 1)x

75. Define J =
∫ ∞

0

dx

x1/2(x + 1)
as the sum of the two improper integrals

∫ 1

0

dx

x1/2(x + 1)
+
∫ ∞

1

dx

x1/2(x + 1)

Use the Comparison Test to show that J converges.

solution For the first integral, note that for 0 ≤ x ≤ 1, we have 1 ≤ 1 + x, so that x1/2(x + 1) ≥ x1/2. It follows
that ∫ 1

0

1

x1/2(x + 1)
dx ≤

∫ 1

0

1

x1/2
dx

which converges since p = 1/2 < 1. Thus the first integral converges by the comparison test. For the second integral,
for 1 ≤ x, we have x1/2(x + 1) = x3/2 + x1/2 ≥ x3/2, so that∫ ∞

1

1

x1/2(x + 1)
dx =

∫ ∞
1

1

x3/2 + x1/2
dx ≤

∫ ∞
1

1

x3/2
dx

which converges since p = 3/2 > 1. Thus the second integral converges as well by the comparison test, and therefore J ,
which is the sum of the two, converges.

76. Determine whether J =
∫ ∞

0

dx

x3/2(x + 1)
(defined as in Exercise 75) converges.

solution We have x3/2(x + 1) = x5/2 + x3/2. For 0 ≤ x ≤ 1, x5/2 ≤ x3/2, so that x5/2 + x3/2 ≤ 2x3/2. Then

∫ 1

0

1

x3/2(x + 1)
dx =

∫ 1

0

1

x5/2 + x3/2
dx ≥

∫ 1

0

1

2x3/2
dx = 1

2

∫ 1

0

1

x3/2
dx

But this integral diverges since p = 3/2 > 1. By the comparison test,
∫ 1

0

1

x3/2(x + 1)
dx diverges as well, so that J

diverges.

77. An investment pays a dividend of $250/year continuously forever. If the interest rate is 7%, what is the present value
of the entire income stream generated by the investment?

solution The present value of the income stream after T years is

∫ T

0
250e−0.07t dt = 250e−0.07t

−0.07

∣∣∣∣∣
T

0

= −250

0.07

(
e−0.07T − 1

)
= 250

0.07

(
1 − e−0.07T

)
.

Therefore the present value of the entire income stream is∫ ∞
0

250e−0.07t = lim
T →∞

∫ T

0
250e−0.07t = lim

T →∞
250

0.07

(
1 − e−0.07T

)
= 250

0.07
(1 − 0) = 250

0.07
= $3571.43.

78. An investment is expected to earn profits at a rate of 10,000e0.01t dollars per year forever. Find the present value of
the income stream if the interest rate is 4%.

solution The present value of the income stream after T years is

∫ T

0

(
10,000e0.01t

)
e−0.04t dt = 10,000

∫ T

0
e−0.03t dt = 10,000

−0.03
e−0.03t

∣∣∣∣T
0

= −333,333.33
(
e−0.03t − 1

)
.

Therefore the present value of the entire income stream is∫ ∞
0

10,000e−0.03t = lim
T →∞ 333,333.33

(
1 − e−0.03t

)
= $333,333.33.
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79. Compute the present value of an investment that generates income at a rate of 5000te0.01t dollars per year forever,
assuming an interest rate of 6%.

solution The present value of the income stream after T years is

∫ T

0

(
5000te0.01t

)
e−0.06t dt = 5000

∫ T

0
te−0.05t dt

Compute the indefinite integral using Integration by Parts, with u = t and v′ = e−0.05t . Then u′ = 1, v =
(−1/0.05)e−0.05t , and∫

te−0.05t dt = −t

0.05
e−0.05t + 1

0.05

∫
e−0.05t dt = −20te−0.05t + 20

−0.05
e−0.05t + C

= e−0.05t (−20t − 400) + C.

Thus,

5000
∫ T

0
te−0.05t dt = 5000e−0.05t (−20t − 400)

∣∣T
0 = 5000e−0.05T (−20T − 400) − 5000(−400)

= 2,000,000 − 5000e−0.05T (20T + 400).

Use L’Hôpital’s Rule to compute the limit:

lim
T →∞

(
2,000,000 − 5000(20T + 400)

e0.05T

)
= 2,000,000 − lim

T →∞
5000(20)

0.05e0.05T
= 2,000,000 − 0 = $2,000,000.

80. Find the volume of the solid obtained by rotating the region below the graph of y = e−x about the x-axis for
0 ≤ x < ∞.

solution Using the disk method, the volume is given by

V =
∫ ∞

0
π
(
e−x

)2
dx = π

∫ ∞
0

e−2x dx.

First compute the volume over a finite interval:

π

∫ R

0
e−2x dx = −π

2
e−2x

∣∣∣∣R
0

= −π

2

(
e−2R − 1

)
= π

2

(
1 − e−2R

)
.

Thus,

V = lim
R→∞ π

∫ R

0
e−2x dx = lim

R→∞
π

2

(
1 − e−2R

)
= π

2
(1 − 0) = π

2
.

81. The solid S obtained by rotating the region below the graph of y = x−1 about the x-axis for 1 ≤ x < ∞ is called
Gabriel’s Horn (Figure 11).

(a) Use the Disk Method (Section 6.3) to compute the volume of S. Note that the volume is finite even though S is an
infinite region.
(b) It can be shown that the surface area of S is

A = 2π

∫ ∞
1

x−1
√

1 + x−4 dx

Show that A is infinite. If S were a container, you could fill its interior with a finite amount of paint, but you could not
paint its surface with a finite amount of paint.

y = x−1

y

x

FIGURE 11
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solution

(a) The volume is given by

V =
∫ ∞

1
π

(
1

x

)2
dx.

First compute the volume over a finite interval:

∫ R

1
π

(
1

x

)2
dx = π

∫ R

1
x−2 dx = π

x−1

−1

∣∣∣∣∣
R

1

= π

(−1

R
− −1

1

)
= π

(
1 − 1

R

)
.

Thus,

V = lim
R→∞

∫ ∞
1

πx−2 dx = lim
R→∞ π

(
1 − 1

R

)
= π.

(b) For x > 1, we have

1

x

√
1 + 1

x4
= 1

x

√
x4 + 1

x4
=
√

x4 + 1

x3
≥

√
x4

x3
= x2

x3
= 1

x
.

The integral
∫ ∞

1

1

x
dx diverges, since p = 1 ≥ 1. Therefore, by the comparison test,

∫ ∞
1

1

x

√
1 + 1

x4
dx also diverges.

Finally,

A = 2π

∫ ∞
1

1

x

√
1 + 1

x4
dx

diverges.

82. Compute the volume of the solid obtained by rotating the region below the graph of y = e−|x|/2 about the x-axis for
−∞ < x < ∞.

solution The graph of y is symmetric around the y-axis, so it suffices to compute the volume for 0 ≤ x ≤ ∞, where

we have y = e−x/2. Using the disk method,

V = 2
∫ ∞

0
π
(
e−x/2

)2
dx = 2π

∫ ∞
0

e−x dx = 2π lim
R→∞

∫ R

0
e−x dx

= − lim
R→∞ 2πe−x

∣∣∣∣R
0

= −2π lim
R→∞(e−R − 1) = 2π

Therefore V = 2π .

83. When a capacitor of capacitance C is charged by a source of voltage V , the power expended at time t is

P(t) = V 2

R
(e−t/RC − e−2t/RC)

where R is the resistance in the circuit. The total energy stored in the capacitor is

W =
∫ ∞

0
P(t) dt

Show that W = 1
2CV 2.

solution The total energy contained after the capacitor is fully charged is

W = V 2

R

∫ ∞
0

(
e−t/RC − e−2t/RC

)
dt.
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The energy after a finite amount of time (t = T ) is

V 2

R

∫ T

0

(
e−t/RC − e−2t/RC

)
dt = V 2

R

(
−RCe−t/RC + RC

2
e−2t/RC

)∣∣∣∣∣
T

0

= V 2C

[(
−e−T/RC + 1

2
e−2T/RC

)
−
(

−1 + 1

2

)]

= CV 2
(

1

2
− e−T/RC + 1

2
e−2T/RC

)
.

Thus,

W = lim
T →∞ CV 2

(
1

2
− e−T/RC + 1

2
e−2T/RC

)
= CV 2

(
1

2
− 0 + 0

)
= 1

2
CV 2.

84. For which integers p does
∫ 1/2

0

dx

x(ln x)p
converge?

solution If p = 1, the integral diverges. By substituting u = ln x and du = dx/x, we get

∫
dx

x(ln x)
=
∫

du

u
= ln |u| + C = ln | ln x| + C,

so ∫ 1/2

0

dx

x(ln x)
= lim

R→0+ (ln | ln x|)
∣∣∣∣1/2

R

= lim
R→0+ (ln | ln(1/2)| − ln | ln R|) ,

which is infinite.
Now, suppose p �= 1. Using the substitution u = ln x, so that du = 1

x dx, the integral becomes

∫ 1/2

R

dx

x(ln x)p
=
∫ x=1/2

x=R

du

up
=
∫ x=1/2

x=R
u−p du = 1

p − 1
u−p+1

∣∣∣∣x=1/2

x=R

= 1

p − 1
(ln x)−p+1

∣∣∣∣1/2

R

= 1

p − 1
(ln(1/2))−p+1 − 1

p − 1
(ln(R))−p+1.

By definition,

∫ 1/2

0

dx

x(ln x)p
= lim

R→0+

∫ 1/2

R

dx

x(ln x)p
= lim

R→0+

[
1

p − 1
(ln(1/2))−p+1 − 1

p − 1
(ln R)−p+1

]
.

If p > 1, lim
R→0+(ln R)−p+1 = lim

R→0
1

(ln R)p−1 = 0. If p < 1, lim
R→0+(ln R)1−p = ∞. Therefore, the integral diverges if

p < 1 or p = 1, and converges if p > 1.

85. Conservation of Energy can be used to show that when a mass m oscillates at the end of a spring with spring constant
k, the period of oscillation is

T = 4
√

m

∫ √
2E/k

0

dx√
2E − kx2

where E is the total energy of the mass. Show that this is an improper integral with value T = 2π
√

m/k.

solution The integrand is infinite at the upper limit of integration, x = √
2E/k, so the integral is improper. Now, let

T (R) = 4
√

m

∫ R

0

dx√
2E − kx2

= 4
√

m
1√
2E

∫ R

0

dx√
1 − ( k

2E
)x2

= 4

√
m

2E

√
2E

k
sin−1

(√
k

2E
R

)
= 4
√

m/k sin−1

(√
k

2E
R

)
.

Therefore

T = lim
R→√

2E/k
T (R) = 4

√
m

k
sin−1(1) = 2π

√
m

k
.
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In Exercises 86–89, the Laplace transform of a function f (x) is the function Lf (s) of the variable s defined by the
improper integral (if it converges):

Lf (s) =
∫ ∞

0
f (x)e−sx dx

Laplace transforms are widely used in physics and engineering.

86. Show that if f (x) = C, where C is a constant, then Lf (s) = C/s for s > 0.

solution If f (x) = C, a constant, then the Laplace transform of f (x) is

Lf (s) =
∫ ∞

0
Ce−sx dx = lim

R→∞
−C

s
e−sx

∣∣∣∣R
0

= lim
R→∞

−C

s

(
e−sR − 1

)
= −C

s
(0 − 1) = C

s
.

87. Show that if f (x) = sin αx, then Lf (s) = α

s2 + α2
.

solution If f (x) = sin αx, then the Laplace transform of f (x) is

Lf (s) =
∫ ∞

0
e−sx sin αx dx

First evaluate the indefinite integral using Integration by Parts, with u = sin αx and v′ = e−sx . Then u′ = α cos αx,
v = − 1

s e−sx , and

∫
e−sx sin αx dx = −1

s
e−sx sin αx + α

s

∫
e−sx cos αx dx.

Use Integration by Parts again, with u = cos αx, v′ = e−sx . Then u′ = −α sin αx, v = − 1
s e−sx , and

∫
e−sx cos αx dx = −1

s
e−sx cos αx − α

s

∫
e−sx sin αx dx.

Substituting this into the first equation and solving for
∫

e−sx sin αx dx, we get

∫
e−sx sin αx dx = −1

s
e−sx sin αx − α

s2
e−sx cos αx − α2

s2

∫
e−sx sin αx dx

∫
e−sx sin αx dx =

−e−sx
(

1
s sin αx + α

s2 cos αx
)

(
1 + α2

s2

) = −e−sx(s sin αx + α cos αx)

s2 + α2

Thus,

∫ R

0
e−sx sin αx dx = 1

s2 + α2

[
s sin αR + α cos αR

−esR
− 0 + α

−1

]
= 1

s2 + α2

[
α − s sin αR + α cos αR

esR

]
.

Finally we take the limit, noting the fact that, for all values of R, |s sin αR + α cos αR| ≤ s + |α|

Lf (s) = lim
R→∞

1

s2 + α2

[
α − s sin αR + α cos αR

esR

]
= 1

s2 + α2
(α − 0) = α

s2 + α2
.

88. Compute Lf (s), where f (x) = eαx and s > α.

solution If f (x) = eαx , where s > α, then the Laplace transform of f (x) is

Lf (s) =
∫ ∞

0
eαxe−sx dx =

∫ ∞
0

e−(s−α)x dx = lim
R→∞

−1

s − α
e−(s−α)x

∣∣∣∣R
0

= lim
R→∞

−1

s − α

(
e−(s−α)R − 1

)
.

Because s > α, −(s − α) < 0, which gives us

lim
R→∞

1

s − α

(
1 − e−(s−α)R

)
= 1

s − α
(1 − 0) = 1

s − α
.

The final answer is

Lf (s) = 1

s − α
.
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89. Compute Lf (s), where f (x) = cos αx and s > 0.

solution If f (x) = cos αx, then the Laplace transform of f (x) is

Lf (x) =
∫ ∞

0
e−sx cos αx dx

First evaluate the indefinite integral using Integration by Parts, with u = cos αx and v′ − e−sx . Then u′ = −α sin αx,
v = − 1

s e−sx , and

∫
e−sx cos αx dx = −1

s
e−sx cos αx − α

s

∫
e−sx sin αx dx.

Use Integration by Parts again, with u = sin αx dx and v′ = −e−sx . Then u′ = α cos αx, v = − 1
s e−sx , and

∫
e−sx sin αx dx = −1

s
e−sx sin αx + α

s

∫
e−sx cos αx dx.

Substituting this into the first equation and solving for
∫

e−sx cos αx dx, we get

∫
e−sx cos αx dx = −1

s
e−sx cos αx − α

s

[
−1

s
e−sx sin αx + α

s

∫
e−sx cos α dx

]

= −1

s
e−sx cos αx + α

s2
e−sx sin αx − α2

s2

∫
e−sx cos αx dx

∫
e−sx cos αx dx =

e−sx
(

α
s2 sin αx − 1

s cos αx
)

1 + α2

s2

= e−sx(α sin αx − s cos αx)

s2 + α2

Thus,

∫ R

0
e−sx cos αx dx = 1

s2 + α2

[
α sin αR − s cos αR

esR
− 0 − s

1

]
.

Finally we take the limit, noting the fact that, for all values of R, |α sin αR − s cos αR| ≤ |α| + s

Lf (s) = lim
R→∞

1

s2 + α2

[
s + α sin αR − s cos αR

esR

]
= 1

s2 + α2
(s + 0) = s

s2 + α2
.

90. When a radioactive substance decays, the fraction of atoms present at time t is f (t) = e−kt , where k > 0
is the decay constant. It can be shown that the average life of an atom (until it decays) is A = − ∫∞

0 tf ′(t) dt . Use
Integration by Parts to show that A = ∫∞

0 f (t) dt and compute A. What is the average decay time of radon-222, whose
half-life is 3.825 days?

solution Let u = t , v′ = f ′(t). Then u′ = 1, v = f (t), and

A = −
∫ ∞

0
tf ′(t) dt = −tf (t)

∣∣∣∣∞
0

+
∫ ∞

0
f (t) dt.

Since f (t) = e−kt , we have

−tf (t)
∣∣∞
0 = lim

R→∞ −te−kt

∣∣∣∣R
0

= lim
R→∞ −Re−Rt + 0 = lim

R→∞
−R

eRt
= lim

R→∞
−1

ReRt
= 0.

Here we used L’Hôpital’s Rule to compute the limit. Thus

A =
∫ ∞

0
f (t) dt =

∫ ∞
0

e−kt dt.

Now,

∫ R

0
e−kt dt = −1

k
e−kt

∣∣∣∣R
0

= −1

k

(
e−kR − 1

)
= 1

k

(
1 − e−kR

)
,

so

A = lim
R→∞

1

k

(
1 − e−kR

)
= 1

k
(1 − 0) = 1

k
.
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Because k has units of (time)−1, A does in fact have the appropriate units of time. To find the average decay time of
Radon-222, we need to determine the decay constant k, given the half-life of 3.825 days. Recall that

k = ln 2

tn

where tn is the half-life. Thus,

A = 1

k
= tn

ln 2
= 3.825

ln 2
≈ 5.518 days.

91. Let Jn =
∫ ∞

0
xn e−αx dx, where n ≥ 1 is an integer and α > 0. Prove that

Jn = n

α
Jn−1

and J0 = 1/α. Use this to compute J4. Show that Jn = n!/αn+1.

solution Using Integration by Parts, with u = xn and v′ = e−αx , we get u′ = nxn−1, v = − 1
α e−αx , and∫

xne−αx dx = − 1

α
xne−αx + n

α

∫
xn−1e−αx dx.

Thus,

Jn =
∫ ∞

0
xne−αx dx = lim

R→∞

(
− 1

α
xne−αx

)∣∣∣∣R
0

+ n

α

∫ ∞
0

xn−1e−αx dx = lim
R→∞

−Rn

αeαR
+ 0 + n

α
Jn−1.

Use L’Hôpital’s Rule repeatedly to compute the limit:

lim
R→∞

−Rn

αeαR
= lim

R→∞
−nRn−1

α2eαR
= lim

R→∞
−n(n − 1)Rn−2

α3eαR
= · · · = lim

R→∞
−n(n − 1)(n − 2) · · · (3)(2)(1)

αn+1eαR
= 0.

Finally,

Jn = 0 + n

α
Jn−1 = n

α
Jn−1.

J0 can be computed directly:

J0 =
∫ ∞

0
e−αx dx = lim

R→∞

∫ R

0
e−αx dx = lim

R→∞ − 1

α
e−αx

∣∣∣∣R
0

= lim
R→∞ − 1

α

(
e−αR − 1

)
= − 1

α
(0 − 1) = 1

α
.

With this starting point, we can work up to J4:

J1 = 1

α
J0 = 1

α

(
1

α

)
= 1

α2
;

J2 = 2

α
J1 = 2

α

(
1

α2

)
= 2

α3
= 2!

α2+1
;

J3 = 3

α
J2 = 3

α

(
2

α3

)
= 6

α4
= 3!

α3+1
;

J4 = 4

α
J3 = 4

α

(
6

α4

)
= 24

α5 = 4!
α4+1

.

We can use induction to prove the formula for Jn. If

Jn−1 = (n − 1)!
αn

,

then we have

Jn = n

α
Jn−1 = n

α
· (n − 1)!

αn
= n!

αn+1
.

92. Let a > 0 and n > 1. Define f (x) = xn

eax − 1
for x �= 0 and f (0) = 0.

(a) Use L’Hôpital’s Rule to show that f (x) is continuous at x = 0.

(b) Show that
∫∞

0 f (x) dx converges. Hint: Show that f (x) ≤ 2xne−ax if x is large enough. Then use the Comparison
Test and Exercise 91.
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solution

(a) Using L’Hôpital’s Rule, we find

lim
x→0

xn

eαx − 1
= lim

x→0

nxn−1

αeαx
= 0

α
= 0;

thus,

lim
x→0

f (x) = f (0),

and f (x) is continuous at x = 0.

(b) Since a > 0, lim
x→∞ eax = ∞. Therefore there will be some value of x, say x = M , such that, for all x ≥ M , we’ll

have eax ≥ 2. With this, we have

1

eax
≤ 1

2
so

1

eax
+ 1

2
≤ 1 and 1 − 1

eαx
≥ 1

2
.

Multiply this last inequality through by eαx to obtain

eαx − 1 ≥ eαx

2
so

1

eαx − 1
≤ 2

eαx
and

xn

eαx − 1
≤ 2xn

eαx
.

From Exercise 91, we know that∫ ∞
0

xne−αx dx converges, so
∫ ∞
M

2xne−αx dx also converges.

Therefore, by the comparison test, ∫ ∞
M

xn

eαx − 1
dx also converges.

Now, from part (a), we know that f (x) is continuous on [0, M], so

∫ M

0

xn

eαx − 1
dx

exists and is finite. Thus we have shown∫ ∞
0

xn

eαx − 1
dx =

∫ M

0

xn

eαx − 1
dx +

∫ ∞
M

xn

eαx − 1
dx converges.

93. According to Planck’s Radiation Law, the amount of electromagnetic energy with frequency between ν

and ν + �ν that is radiated by a so-called black body at temperature T is proportional to F(ν) �ν, where

F(ν) =
(

8πh

c3

)
ν3

ehν/kT − 1

where c, h, k are physical constants. Use Exercise 92 to show that the total radiated energy

E =
∫ ∞

0
F(ν) dν

is finite. To derive his law, Planck introduced the quantum hypothesis in 1900, which marked the birth of quantum
mechanics.

solution The total radiated energy E is given by

E =
∫ ∞

0
F(ν) dν = 8πh

c3

∫ ∞
0

ν3

ehν/kT − 1
dν.

Let α = h/kT . Then

E = 8πh

c3

∫ ∞
0

ν3

eαν − 1
dν.

Because α > 0 and 8πh/c3 is a constant, we know E is finite by Exercise 92.
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Further Insights and Challenges

94. Let I =
∫ 1

0
xp ln x dx.

(a) Show that I diverges for p = −1.

(b) Show that if p �= −1, then

∫
xp ln x dx = xp+1

p + 1

(
ln x − 1

p + 1

)
+ C

(c) Use L’Hôpital’s Rule to show that I converges if p > −1 and diverges if p < −1.

solution

(a) If p = −1, then

I =
∫ 1

0
x−1 ln x dx =

∫ 1

0

ln x

x
dx.

Let u = ln x, du = (1/x) dx. Then

∫
ln x

x
dx =

∫
u du = u2

2
+ C = 1

2
(ln x)2 + C.

Thus,

∫ 1

R

ln x

x
dx = 1

2
(ln 1)2 − 1

2
(ln R)2 = −1

2
(ln R)2,

and

I = lim
R→0+ −1

2
(ln R)2 = ∞.

The integral diverges for p = −1.

(b) If p �= 1, then use Integration by Parts, with u = ln x and v′ = xp . Then u′ = 1/x, v = xp+1/p + 1, and

∫
xp ln x dx = xp+1

p + 1
ln x − 1

p + 1

∫ (
xp+1

)( 1

x

)
dx = xp+1

p + 1
ln x − 1

p + 1

∫
xp dx

= xp+1

p + 1
ln x − 1

p + 1

(
xp+1

p + 1

)
+ C = xp+1

p + 1

(
ln x − 1

p + 1

)
+ C.

(c) Let p < −1. Then

I = lim
R→0+

∫ 1

R
xp ln x = lim

R→0+

[
1

p + 1

(
ln 1 − 1

p + 1

)
− Rp+1

p + 1

(
ln R − 1

p + 1

)]

= lim
R→0+

(
−1

(p + 1)2
− Rp+1

p + 1
ln R + Rp+1

(p + 1)2

)
.

Since p < −1, p + 1 < 0, and we have

I = lim
R→0+

( −1

(p + 1)2
− ln R

(p + 1)R−p−1
+ 1

(p + 1)2R−p−1

)
= ∞.

The integral diverges for p < −1. On the other hand, if p > −1, then p + 1 > 0, and

I = −1

(p + 1)2
+ 1

p + 1
lim

R→0+ Rp+1 ln R + 1

(p + 1)2
lim

R→0+ Rp+1 = −1

(p + 1)2
+ 0 = −1

(p + 1)2
.

95. Let

F(x) =
∫ x

2

dt

ln t
and G(x) = x

ln x

Verify that L’Hôpital’s Rule applies to the limit L = lim
x→∞

F(x)

G(x)
and evaluate L.
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solution Because ln t < t for t > 2, we have 1
ln t

> 1
t for t > 2, and so

F(x) =
∫ x

2

dt

ln t
>

∫ x

2

dt

t
= ln x − ln 2

Thus, F(x) → ∞ as x → ∞. Moreover, by L’Hôpital’s Rule

lim
x→∞ G(x) = lim

x→∞
1

1/x
= lim

x→∞ x = ∞.

Thus, lim
x→∞

F(x)

G(x)
is of the form ∞/∞, and L’Hôpital’s Rule applies. Finally,

L = lim
x→∞

F(x)

G(x)
= lim

x→∞
1

ln x
ln x−1
(ln x)2

= lim
x→∞

ln x

ln x − 1
= lim

x→∞
1

1 − (1/ ln x)
= 1.

In Exercises 96–98, an improper integral I = ∫∞
a f (x) dx is called absolutely convergent if

∫∞
a |f (x)| dx converges.

It can be shown that if I is absolutely convergent, then it is convergent.

96. Show that
∫ ∞

1

sin x

x2
dx is absolutely convergent.

solution For all x, | sin x| ≤ 1. This implies

∣∣∣∣ sin x

x2

∣∣∣∣ = | sin x|
x2

≤ 1

x2
.

The integral
∫ ∞

1
x−2 dx converges because p = 2 > 1. Therefore, by the comparison test,

∫ ∞
1

∣∣∣∣ sin x

x2

∣∣∣∣ dx also converges.

Because the integral ∫ ∞
1

sin x

x2
dx

is absolutely convergent, it is also convergent.

97. Show that
∫ ∞

1
e−x2

cos x dx is absolutely convergent.

solution By the result of Exercise 57, we know that
∫ ∞

0
e−x2

dx is convergent. Then
∫ ∞

1
e−x2

dx is also convergent.

Because | cos x| ≤ 1 for all x, we have∣∣∣e−x2
cos x

∣∣∣ = | cos x|
∣∣∣e−x2

∣∣∣ ≤ ∣∣∣e−x2
∣∣∣ = e−x2

.

Therefore, by the comparison test, we have∫ ∞
1

∣∣∣e−x2
cos x

∣∣∣ dx also converges.

Since
∫ ∞

1
e−x2

cos x dx converges absolutely, it itself converges.

98. Let f (x) = sin x/x and I = ∫∞
0 f (x) dx. We define f (0) = 1. Then f (x) is continuous and I is not improper at

x = 0.

(a) Show that

∫ R

1

sin x

x
dx = − cos x

x

∣∣∣∣R
1

−
∫ R

1

cos x

x2
dx

(b) Show that
∫∞

1 (cos x/x2) dx converges. Conclude that the limit as R → ∞ of the integral in (a) exists and is finite.

(c) Show that I converges.
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It is known that I = π
2 . However, I is not absolutely convergent. The convergence depends on cancellation, as shown in

Figure 12.

x
1 2 3 7

1

−1

y = sin x
x

y = − 1
x

y = 1
x

y

FIGURE 12 Convergence of
∫∞

1 (sin x/x) dx is due to the cancellation arising from the periodic change of sign.

solution

(a) Use Integration by Parts, with u = 1
x and v′ = sin x. Then u′ = −1/x2, v = − cos x, and we have

∫ R

1

sin x

x
dx = − cos x

x

∣∣∣∣R
1

−
∫ R

1

cos x

x2
dx.

(b) For all x, | cos x| ≤ 1, and therefore ∣∣∣∣ cos x

x2

∣∣∣∣ = | cos x|
x2

≤ 1

x2
.

The integral
∫ ∞

1
x−2 dx converges, because p = 2 > 1. Therefore, by the comparison test,

∫ ∞
1

∣∣∣∣ cos x

x2

∣∣∣∣ dx also converges.

Because
∫ ∞

1
(cos x/x2) dx converges absolutely, it also converges. By this result,

lim
R→∞

∫ R

1

sin x

x
dx = lim

R→∞

[
− cos R

R
+ cos 1

1
−
∫ R

1

cos x

x2
dx

]
= 0 + cos 1

1
−
∫ ∞

0

cos x

x2
dx = cos 1 − M,

where M =
∫ ∞

1
(cos x/x2) dx, the existence of which was shown in the argument above. Therefore the integral∫ ∞

1
(sin x/x) dx converges to a finite value.

(c) The integral can be split up as follows:

∫ ∞
0

sin x

x
dx =

∫ 1

0

sin x

x
dx +

∫ ∞
1

sin x

x
dx.

The second integral converges by part (b). For the first integral, if we define f (0) = 1, then the integrand is continuous
on [0, 1], and therefore

∫ 1

0

sin x

x
dx = N

where N is some finite value. Thus, we have shown that I converges.

99. The gamma function, which plays an important role in advanced applications, is defined for n ≥ 1 by

	(n) =
∫ ∞

0
tn−1e−t dt

(a) Show that the integral defining 	(n) converges for n ≥ 1 (it actually converges for all n > 0). Hint: Show that
tn−1e−t < t−2 for t sufficiently large.

(b) Show that 	(n + 1) = n	(n) using Integration by Parts.

(c) Show that 	(n + 1) = n! if n ≥ 1 is an integer. Hint: Use (a) repeatedly. Thus, 	(n) provides a way of defining
n-factorial when n is not an integer.
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solution
(a) By repeated use of L’Hôpital’s Rule, we can compute the following limit:

lim
t→∞

et

tn+1
= lim

t→∞
et

(n + 1)tn
= · · · = lim

t→∞
et

(n + 1)! = ∞.

This implies that, for t sufficiently large, we have

et ≥ tn+1;
therefore

et

tn−1
≥ tn+1

tn−1
= t2 or tn−1e−t ≤ t−2.

The integral
∫ ∞

1
t−2 dt converges because p = 2 > 1. Therefore, by the comparison test,

∫ ∞
M

tn−1e−t dt also converges,

where M is the value above which the above comparisons hold. Finally, because the function tn−1e−t is continuous for
all t , we know that

	(n) =
∫ ∞

0
tn−1e−t dt converges for all n ≥ 1.

(b) Using Integration by Parts, with u = tn and v′ − e−t , we have u′ = ntn−1, v = −e−t , and

	(n + 1) =
∫ ∞

0
tne−t dt = −tne−t

∣∣∞
0 + n

∫ ∞
0

tn−1e−t dt

= lim
R→∞

(−Rn

eR
− 0

)
+ n	(n) = 0 + n	(n) = n	(n).

Here, we’ve computed the limit as in part (a) with repeated use of L’Hôpital’s Rule.

(c) By the result of part (b), we have

	(n + 1) = n	(n) = n(n − 1)	(n − 1) = n(n − 1)(n − 2)	(n − 2) = · · · = n! 	(1).

If n = 1, then

	(1) =
∫ ∞

0
e−t dt = lim

R→∞ −e−t

∣∣∣∣R
0

= lim
R→∞

(
1 − e−R

)
= 1.

Thus

	(n + 1) = n! (1) = n!

100. Use the results of Exercise 99 to show that the Laplace transform (see Exercises 86–89 above) of xn is
n!

sn+1
.

solution If f (x) = xn, then the Laplace transform of f (x) is

Lf (s) =
∫ ∞

0
xne−sx dx

Let t = sx. Then dt = s dx, and xn = tn/sn. This gives us

Lf (s) =
∫ ∞

0

tn

sn
e−t dt

s
= 1

sn+1

∫ ∞
0

tne−t dt = 1

sn+1
	(n + 1) = n!

sn+1
.

7.7 Probability and Integration

Preliminary Questions
1. The function p(x) = cos x satisfies

∫ π

−π/2
p(x) dx = 1. Is p(x) a probability density function on [−π/2, π ]?

solution Since p(x) = cos x < 0 for some points in (−π/2, π), p(x) is not a probability density function.
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2. Estimate P(2 ≤ X ≤ 2.1) assuming that the probability density function of X satisfies p(2) = 0.2.

solution P(2 ≤ X ≤ 2.1) ≈ p(2) · (2.1 − 2) = 0.02.

3. Which exponential probability density has mean μ = 1
4 ?

solution
1

1/4
e−x/(1/4) = 4e−4x .

Exercises
In Exercises 1–6, find a constant C such that p(x) is a probability density function on the given interval, and compute the
probability indicated.

1. p(x) = C

(x + 1)3
on [0, ∞); P(0 ≤ X ≤ 1)

solution Compute the indefinite integral using the substitution u = x + 1, du = dx:∫
p(x) dx =

∫
C

(x + 1)3
dx = −1

2
C(x + 1)−2 + K

For p(x) to be a probability density function, we must have

1 =
∫ ∞

0
p(x) dx = −1

2
C lim

R→∞(x + 1)−2
∣∣∣∣R
0

= 1

2
C − 1

2
C lim

R→∞(R + 1)−2 = 1

2
C

so that C = 2, and p(x) = 2
(x+1)3 . Then using the indefinite integral above,

P(0 ≤ X ≤ 1) =
∫ 1

0

2

(x + 1)3
= −1

2
· 2 · (x + 1)−2

∣∣∣∣1
0

= −1

4
+ 1 = 3

4

2. p(x) = Cx(4 − x) on [0, 4]; P(3 ≤ X ≤ 4)

solution Compute the indefinite integral:∫
p(x) dx = C

∫
x(4 − x) dx = C

∫
4x − x2 dx = C

(
2x2 − 1

3
x3
)

+ K

For p(x) to be a probability density function, we must have

1 =
∫ 4

0
p(x) dx = C

(
2x2 − 1

3
x3
) ∣∣∣∣4

0
= C

(
32 − 64

3

)
= 32

3
C

so that C = 3
32 and p(x) = 3

32x(4 − x). Then using the indefinite integral above,

P(3 ≤ X ≤ 4) =
∫ 4

3
p(x) dx = 3

32

(
2x2 − 1

3
x3
) ∣∣∣∣4

3
= 3

32

(
32 − 64

3
− 18 + 9

)
= 5

32

3. p(x) = C√
1 − x2

on (−1, 1); P
(− 1

2 ≤ X ≤ 1
2

)
solution Compute the indefinite integral:∫

p(x) dx = C

∫
1√

1 − x2
dx = C sin−1 x + K

valid for −1 < x < 1. For p(x) to be a probability density function, we must have

1 =
∫ 1

−1
p(x) dx =

∫ 0

−1
p(x) dx +

∫ 1

0
p(x) dx = C

(
lim

R→−1+ sin−1 x

∣∣∣∣0
R

+ lim
R→1− sin−1 x

∣∣∣∣R
0

)

= C

(
sin−1(0) − lim

R→−1+ sin−1(R) + lim
R→1− sin−1 R − sin−1(0)

)

= C
(
− sin−1(−1) + sin−1(1)

)
= πC

so that C = 1
π and p(x) = 1

π
√

1−x2
. Then using the indefinite integral above,

P

(
−1

2
≤ X ≤ 1

2

)
=
∫ 1/2

−1/2
p(x) dx = 1

π
sin−1 x

∣∣∣∣1/2

−1/2
= 1

π

(
π

6
− −π

6

)
= 1

3
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4. p(x) = Ce−x

1 + e−2x
on (−∞, ∞); P(X ≤ −4)

solution Compute the indefinite integral using the substitution u = e−x ; then du = −e−x dx = −u dx so that

dx = − 1
u du:

∫
p(x) dx =

∫
Ce−x

1 + e−2x
dx = C

∫ u ·
(
− 1

u

)
1 + u2

du = −C

∫
1

1 + u2
du

= −C tan−1 u + K = −C tan−1(e−x) + K = C tan−1(ex) + K

For p(x) to be a probability density function, we must have

1 =
∫ ∞
−∞

p(x) dx = C lim
R→∞ tan−1(ex)

∣∣∣∣R−R

= C lim
R→∞

(
tan−1(eR) − tan−1(e−R)

)
= C

(π

2
− 0
)

= π

2
C

so that C = 2
π and p(x) = 2e−x

π(1+e−2x)
. Then using the indefinite integral above,

P(X ≤ −4) =
∫ −4

−∞
p(x) dx = lim

R→−∞
2

π
tan−1(ex)

∣∣∣∣−4

R

= 2

π
tan−1(e−4) − 2

π
lim

R→−∞ tan−1(eR)

= 2

π
tan−1(e−4) ≈ 0.0117

5. p(x) = C
√

1 − x2 on (−1, 1); P
(− 1

2 ≤ X ≤ 1
)

solution Compute the indefinite integral using the substitution x = sin u, so that dx = cos u du:

∫
p(x) dx = C

∫ √
1 − x2 dx = C

∫ √
1 − sin2 u cos u du = C

∫
cos2 u du

= C

(
1

2
u + 1

2
cos u sin u

)
+ K

Since x = sin u, we construct the following right triangle:

	1 − x2

x1

and we see that cos u =
√

1 − x2, so that

∫
p(x) dx = 1

2
C
(

sin−1 x + x
√

1 − x2
)

+ K

For p(x) to be a probability density function, we must have

1 =
∫ 1

−1
p(x) dx = 1

2
C
(

sin−1 x + x
√

1 − x2
) ∣∣∣∣1−1

= 1

2
C(sin−1 1 − sin−1(−1)) = π

2
C

so that C = 2
π and p(x) = 2

π

√
1 − x2. Then using the indefinite integral above,

P

(
−1

2
≤ X ≤ 1

)
=
∫ 1

−1/2

2

π

√
1 − x2 dx = 1

π

(
sin−1 x + x

√
1 − x2

) ∣∣∣∣1−1/2

= 1

π

(
sin−1 1 + 0 − sin−1

(
−1

2

)
− −1

2

√
1 − 1

4

)

= 1

π

(
π

2
− −π

6
+

√
3

4

)
= 2

3
+

√
3

4π
≈ 0.804
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6. p(x) = Ce−xe−e−x
on (−∞, ∞); P(−4 ≤ X ≤ 4) This function, called the Gumbel density, is used to

model extreme events such as floods and earthquakes.

solution Find the indefinite integral via the substitution u = −e−x so that du = e−x dx; then∫
p(x) dx = C

∫
e−xe−e−x

dx = C

∫
eu du = Ceu = Ce−e−x + K

For p(x) to be a probability density function, we must have

1 =
∫ ∞
−∞

p(x) dx = C lim
R→∞ e−e−x

∣∣∣∣R−R

= C lim
R→∞

(
e−e−R − e−eR

)
= C

since e−R → 0 so that the first term approaches e0 = 1, and eR → ∞ so that the second term approaches e−∞ = 0.
Thus C = 1 and p(x) = e−xe−e−x

. Then using the indefinite integral above,

P(−4 ≤ X ≤ 4) = e−e−4 − e−e4 ≈ 0.982

7. Verify that p(x) = 3x−4 is a probability density function on [1, ∞) and calculate its mean value.

solution We have

∫ ∞
1

3x−4 dx = lim
R→∞

(
−x−3

) ∣∣∣∣R
1

= lim
R→∞

(
− 1

R3

)
+ 1 = 1

so that p(x) is a probability density function on [1, ∞). Its mean value is

∫ ∞
1

x · 3x−4 dx =
∫ ∞

1
3x−3 dx = −3

2
x−2

∣∣∣∣R
1

= lim
R→∞

(
− 3

2R2

)
+ 3

2
= 3

2

8. Show that the density function p(x) = 2

π(x2 + 1)
on [0, ∞) has infinite mean.

solution To verify that p(x) is a probability density function, note that

∫ ∞
0

2

π

1

x2 + 1
dx = 2

π
lim

R→∞ tan−1 x

∣∣∣∣R
0

= 2

π

(π

2
− 0
)

= 1

Its average value is (using the substitution u = x2 + 1, du = 2x dx):

2

π

∫ ∞
0

x

x2 + 1
dx = 1

π

∫ ∞
0

1

u
du

The indefinite integral is ln u, so the definite integral approaches ∞ − (−∞) = ∞, so this integral diverges and the mean
is infinite.

9. Verify that p(t) = 1
50 e−t/50 satisfies the condition∫∞

0 p(t) dt = 1.

solution Use the substitution u = t
50 , so that du = 1

50 dt . Then

∫ ∞
0

p(t) dt =
∫ ∞

0

1

50
e−t/50 dt =

∫ ∞
0

e−u du = lim
R→∞(−e−u)

∣∣∣∣R
0

= lim
R→∞ 1 − e−R = 1

10. Verify that for all r > 0, the exponential density function p(t) = 1
r e−t/r satisfies the condition

∫∞
0 p(t) dt = 1.

solution This is similar to the preceding problem. Use the substitution u = t
r , so that du = 1

r dt . Then

∫ ∞
0

p(t) dt =
∫ ∞

0

1

r
e−t/r dt =

∫ ∞
0

e−u du = lim
R→∞(e−u)

∣∣∣∣R
0

= lim
R→∞ 1 − e−R = 1

11. The life X (in hours) of a battery in constant use is a random variable with exponential density. What is the probability
that the battery will last more than 12 hours if the average life is 8 hours?

solution If the average life is 8 hours, then the mean of the exponential distribution is 8, so that the distribution is

p(x) = 1

8
e−x/8
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The probability that the battery will last more than 12 hours is given by (using the substitution u = x/8, so that du = 1/8 dx

and x = 12 corresponds to u = 3/2)

P(X ≥ 12) =
∫ ∞

12
p(x) dx =

∫ ∞
12

1

8
e−x/8 dx =

∫ ∞
3/2

e−u du = lim
R→∞(−e−u)

∣∣∣∣R
3/2

= e−3/2 − lim
R→∞ e−R = e−3/2 ≈ 0.223

12. The time between incoming phone calls at a call center is a random variable with exponential density. There is a
50% probability of waiting 20 seconds or more between calls. What is the average time between calls?

solution The distribution is exponential, so p(x) = 1
r e−x/r . Since there is a 50% probability of waiting 20 seconds

or more between calls, this means that ∫ ∞
20

1

r
e−x/r dx = 1

2

But ∫ ∞
20

1

r
e−x/r dx = e−x/r

∣∣∣∣∞
20

= e−20/r

Thus 1
2 = e−20/r , so that − 20

r = ln 1
2 = − ln 2; it follows that r = 20

ln 2 , which is the mean value.

13. The distance r between the electron and the nucleus in a hydrogen atom (in its lowest energy state) is a random
variable with probability density p(r) = 4a−3

0 r2e−2r/a0 for r ≥ 0, where a0 is the Bohr radius (Figure 7). Calculate the

probability P that the electron is within one Bohr radius of the nucleus. The value of a0 is approximately 5.29 × 10−11

m, but this value is not needed to compute P .

a0 2a0 3a0 4a0

p(r)

r

0.4

FIGURE 7 Probability density function p(r) = 4a−3
0 r2e−2r/a0 .

solution The probability P is the area of the shaded region in Figure 7. To calculate p, use the substitution u = 2r/a0:

P =
∫ a0

0
p(r) dr = 4

a3
0

∫ a0

0
r2e−2r/a0 dr =

(
4

a3
0

)(
a3

0
8

)∫ 2

0
u2e−u du

The constant in front simplifies to 1
2 and the formula in the margin gives us

P = 1

2

∫ 2

0
u2e−u du = 1

2

(
−(u2 + 2u + 2)e−u

) ∣∣∣2
0

= 1

2

(
2 − 10e−2

)
≈ 0.32

Thus, the electron within a distance a0 of the nucleus with probability 0.32.

14. Show that the distance r between the electron and the nucleus in Exercise 13 has mean μ = 3a0/2.

solution The mean of the distribution is

μ =
∫ ∞

0
rp(r) dr =

∫ ∞
0

r · 4a−3
0 r2e−2r/a0 dr = 4

a3
0

∫ ∞
0

r3e−2r/a0 dr

To calculate this integral, use as before the substitution x = 2r/a0 to get

μ = 4

a3
0

· a3
0
8

· a0

2

∫ ∞
0

x3e−x dx = a0

4

∫ ∞
0

x3e−x dx

To calculate this integral, we use integration by parts, with u = x3, v′ = e−x , so that u′ = 3x2 and v = −e−x ; then

μ = a0

4

(
−x3e−x

∣∣∣∣∞
0

+ 3
∫ ∞

0
x2e−x dx

)
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The first term is evaluated as follows, using L’Hôpital’s Rule multiple times:

−x3e−x

∣∣∣∣∞
0

= lim
R→∞

(
−x3e−x

) ∣∣∣∣R
0

= lim
R→∞

(
−R3

eR

)

= lim
R→∞

(
−3R2

eR

)
= lim

R→∞

(
−6R

eR

)
= lim

R→∞

(
− 6

eR

)
= 0

The second term, by the marginal note in the previous problem, is

∫ ∞
0

x2e−x dx = lim
R→∞

(
(−u2 + 2u + 2)e−u

) ∣∣∣∣R
0

= lim
R→∞

(
2 − −R2 + 2R + 2

eR

)
= 2

using L’Hôpital’s Rule as in the previous formulas. Thus, finally,

μ = a0

4
(0 + 3 · 2) = 3

2
a0

In Exercises 15–21, F(z) denotes the cumulative normal distribution function. Refer to a calculator, computer algebra
system, or online resource to obtain values of F(z).

15. Express the area of region A in Figure 8 in terms of F(z) and compute its value.

55 100 120 165
x

y

A

B

FIGURE 8 Normal density function with μ = 120 and σ = 30.

solution The area of region A is P(55 ≤ X ≤ 100). By Theorem 1, we have

P(55 ≤ X ≤ 100) = F

(
100 − 120

30

)
− F

(
55 − 120

30

)
= F

(
−2

3

)
− F

(
−13

6

)
≈ 0.237

16. Show that the area of region B in Figure 8 is equal to 1 − F(1.5) and compute its value. Verify numerically that this
area is also equal to F(−1.5) and explain why graphically.

solution The area of region B is P(X ≥ 165), and P(X ≥ 165) + P(X ≤ 165) = 1. But by Theorem 1,

P(X ≤ 165) = F

(
165 − 120

30

)
= F(1.5)

so that

P(X ≥ 165) = 1 − P(X ≤ 165) = 1 − F(1.5) ≈ 0.0668

Using a computer algebra system, we also get F(−1.5) ≈ 0.0668. Graphically, since the density function p(x) is
symmetric around x = 120, we see that the area to the right of x = 165 is equal to the area to the left of x =
120 − (165 − 120) = 75; this area is

F

(
75 − 120

30

)
= F

(−45

30

)
= F(−1.5)

17. Assume X has a standard normal distribution (μ = 0, σ = 1). Find:

(a) P(X ≤ 1.2) (b) P(X ≥ −0.4)

solution

(a) P(X ≤ 1.2) = F(1.2) ≈ 0.8849

(b) P(X ≥ −0.4) = 1 − P(X ≤ −0.4) = 1 − F(−0.4) ≈ 1 − 0.3446 ≈ 0.6554
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18. Evaluate numerically:
1

3
√

2π

∫ ∞
14.5

e−(z−10)2/18 dz.

solution This is the area to the right of 14.5 under the cumulative distribution function for a normal distribution with
μ = 10 and σ = 3. In terms of the standard normal cumulative distribution function F(z), this is

P(X ≥ 14.5) = 1 − P(X ≤ 14.5) = 1 − F

(
14.5 − 10

3

)
= 1 − F(1.5) ≈ 0.0668

19. Use a graph to show that F(−z) = 1 − F(z) for all z. Then show that if p(x) is a normal density function
with mean μ and standard deviation σ , then for all r ≥ 0,

P(μ − rσ ≤ X ≤ μ + rσ ) = 2F(r) − 1

solution Consider the graph of the standard normal density function in Figure 5. This graph is symmetric around the
y-axis, so that the area under the curve from z to ∞, which is 1 − F(z), is equal to the area under the curve from −∞
to −z, which is F(−z). Thus 1 − F(z) = F(−z). Now, if p(x) is a normal density function with mean μ and standard
deviation σ , then for r ≥ 0 (so that the range μ − rσ ≤ X ≤ μ + rσ is nonempty),

P(μ − rσ ≤ X ≤ μ + rσ ) = F

(
μ + rσ − μ

σ

)
− F

(
μ − rσ − μ

σ

)

= F(r) − F(−r) = F(r) − (1 − F(r)) = 2F(r) − 1

20. The average September rainfall in Erie, Pennsylvania, is a random variable X with mean μ = 102 mm. Assume that
the amount of rainfall is normally distributed with standard deviation σ = 48.

(a) Express P(128 ≤ X ≤ 150) in terms of F(z) and compute its value numerically.
(b) Let P be the probability that September rainfall will be at least 120 mm. Express P as an integral of an appropriate
density function and compute its value numerically.

solution
(a)

P(128 ≤ X ≤ 150) = F

(
150 − 102

48

)
− F

(
128 − 102

48

)
= F(1) − F

(
13

24

)
≈ 0.135

(b) The cumulative density function associated with X is

f (z) = 1

48
√

2π

∫ z

−∞
e−(x−102)2/(2·482) dx

To compute the value numerically, we use the standard normal cumulative distribution F(z). Recall that P(X ≥ 120) =
1 − P(X ≤ 120), and that

P(X ≤ 120) = F

(
120 − 102

48

)
= F

(
3

8

)
= 1√

2π

∫ 3/8

−∞
e−x2/2 dx ≈ 0.646

so that P(X ≥ 120) ≈ 1 − 0.646 ≈ 0.354.

21. A bottling company produces bottles of fruit juice that are filled, on average, with 32 ounces of juice. Due to random
fluctuations in the machinery, the actual volume of juice is normally distributed with a standard deviation of 0.4 ounce.
Let P be the probability of a bottle having less than 31 ounces. Express P as an integral of an appropriate density function
and compute its value numerically.

solution The associated cumulative distribution function is

f (z) = 1

0.4
√

2π

∫ z

−∞
e−(x−32)2/(2·0.42) dx

To compute the value numerically, we use the standard normal cumulative distribution function F(z):

P(X ≤ 31) = F

(
31 − 32

0.4

)
= F

(
−5

2

)
= 1√

2π

∫ −5/2

−∞
e−x2/2 dx ≈ 0.0062

22. According to Maxwell’s Distribution Law, in a gas of molecular mass m, the speed v of a molecule in a gas at
temperature T (kelvins) is a random variable with density

p(v) = 4π
( m

2πkT

)3/2
v2e−mv2/(2kT ) (v ≥ 0)

where k is Boltzmann’s constant. Show that the average molecular speed is equal to (8kT /πm)1/2. The average speed of
oxygen molecules at room temperature is around 450 m/s.
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solution The average speed v̄ is given by

v̄ =
∫ ∞

0
vp(v) dv = 4π

( m

2πkT

)3/2
∫ ∞

0
v3e−mv2/2kT dv.

Let α = −m/2kT . We’ll first compute the indefinite integral∫
v3eαv2

dv.

Using Integration by Parts, let u = v2, v′ = veαv2
. Then u′ = 2v and v = 1

2α
eαv2

. This gives us

∫
v3eαv2

dv = 1

2α
v2eαv2 − 1

α

∫
veαv2

dv.

To compute the remaining integral, let w = αv2, dw = 2αv dv. The result is∫
v3eαv2

dv = 1

2α
v2eαv2 − 1

2α2
eαv2 + C.

Thus,

∫ R

0
vp(v) dv = 4π

( m

2πkT

)3/2
[

eαv2

2α

(
v2 − 1

α

)]R

0

= 4π
( m

2πkT

)3/2 1

2α

[
eαR2

(
R2 − 1

α

)
+ 1

α

]
,

and

v̄ = lim
R→∞ 4π

( m

2πkT

)3/2 1

2α

[
eαR2

(
R2 − 1

α

)
+ 1

α

]
= 4π

( m

2πkT

)3/2 1

2α

[
lim

R→∞ eαR2
(

R2 − 1

α

)
+ 1

α

]
.

Use L’Hôpital’s Rule to compute the limit, recalling that α = −m/2kT < 0:

lim
R→∞ eαR2

(
R2 − 1

α

)
= lim

R→∞
R2 − 1

α

e−αR2 = lim
R→∞

2R

−2αRe−αR2 = lim
R→∞

−1

αe−αR2 = 0.

Thus

v̄ = 4π
( m

2πkT

)3/2 1

2α

(
0 + 1

α

)
= 2π

α2

( m

2πkT

)3/2 = 2π

(
−2kT

m

)2 ( m

2πkT

)√ m

2πkT

= 4kT

m

√
m

2πkT
=
√

8kT

πm
.

In Exercises 23–26, calculate μ and σ , where σ is the standard deviation, defined by

σ 2 =
∫ ∞
−∞

(x − μ)2 p(x) dx

The smaller the value of σ , the more tightly clustered are the values of the random variable X about the mean μ.

23. p(x) = 5

2x7/2
on [1, ∞)

solution The mean is

∫ ∞
1

xp(x) dx =
∫ ∞

1

5

2
x−5/2 dx = −5

3
x−3/2

∣∣∣∣∞
1

= 5

3

and

σ 2 =
∫ ∞

1
(x − μ)2p(x) dx =

∫ ∞
1

(x2 − 2μx + μ2)
5

2
x−7/2 dx

= 5

2

∫ ∞
1

x−3/2 − 2μx−5/2 + μ2x−7/2 dx = 5

2

(
−2x−1/2 + 4

3
μx−3/2 − 2

5
μ2x−5/2

) ∣∣∣∣∞
1

= 5

2

(
2 − 4

3
μ + 2

5
μ2
)

= 5

2

(
2 − 4

3
· 5

3
+ 2

5
· 25

9

)
= 20

9
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24. p(x) = 1

π
√

1 − x2
on (−1, 1)

solution Use the substituion u = 1 − x2 so that du = −2x dx. The mean is

μ =
∫ 1

−1

x

π
√

1 − x2
dx = − 1

2π

∫ 1

x=−1

−2x dx√
1 − x2

= − 1

2π

∫ 1

x=−1

1√
u

du

= − 1

π

√
u

∣∣∣∣x=1

x=−1
= − 1

π

√
1 − x2

∣∣∣∣1−1
= 0

To compute the standard deviation, use the substitution x = sin u, dx = cos u du; then x = −1 corresponds to u = −π/2
and x = 1 to u = π/2:

σ 2 =
∫ 1

−1
(x − μ)2p(x) = 1

π

∫ 1

−1

x2√
1 − x2

dx = 1

π

∫ π/2

−π/2

sin2 u√
1 − sin2 u

cos u du

= 1

π

∫ π/2

−π/2

sin2 u

cos u
cos u du = 1

π

∫ π/2

−π/2
sin2 u du = 1

2π
(u − cos u sin u)

∣∣∣∣π/2

−π/2

= 1

2π

(
π

2
− −π

2

)
= 1

2

25. p(x) = 1

3
e−x/3 on [0, ∞)

solution This is an exponential density function with mean μ = 3. The standard deviation is

σ 2 = 1

3

∫ ∞
0

(x − 3)2e−x/3 dx = 1

3

∫ ∞
0

(
x2e−x/3 − 6xe−x/3 + 9e−x/3

)
dx

= 1

3

∫ ∞
0

x2e−x/3 dx − 2
∫ ∞

0
xe−x/3 dx + 3

∫ ∞
0

e−x/3 dx

We tackle the third integral first: ∫ ∞
0

e−x/3 dx = −3e−x/3
∣∣∣∣∞
0

= 3

For the second integral, use integration by parts with u = x, v′ = e−x/3 so that u′ = 1 and v = −3e−x/3. Then

∫ ∞
0

xe−x/3 dx = −3xe−x/3
∣∣∣∣∞
0

+ 3
∫ ∞

0
e−x/3 dx = 0 + 3 · 3 = 9

Finally, the first integral is solved using integration by parts with u = x2, v′ = e−x/3 so that u′ = 2x and v = −3e−x/3;
then ∫ ∞

0
x2e−x/3 dx = −3x2e−x/3

∣∣∣∣∞
0

+ 6
∫ ∞

0
xe−x/3 dx = 0 + 6 · 9 = 54

and, finally,

σ 2 = 1

3

∫ ∞
0

x2e−x/3 dx − 2
∫ ∞

0
xe−x/3 dx + 3

∫ ∞
0

e−x/3 dx

= 1

3
· 54 − 2 · 9 + 3 · 3 = 9

26. p(x) = 1

r
e−x/r on [0, ∞), where r > 0

solution This is similar to the previous problem. We have an exponential density function with mean μ = r . The
standard deviation is

σ 2 = 1

r

∫ ∞
0

(x − r)2e−x/r dx = 1

r

∫ ∞
0

(
x2e−x/r − 2rxe−x/r + r2e−x/r

)
dx

= 1

r

∫ ∞
0

x2e−x/r dx − 2
∫ ∞

0
xe−x/r dx + r

∫ ∞
0

e−x/r dx
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We tackle the third integral first: ∫ ∞
0

e−x/r dx = −re−x/r

∣∣∣∣∞
0

= r

For the second integral, use integration by parts with u = x, v′ = e−x/r so that u′ = 1 and v = −re−x/r . Then∫ ∞
0

xe−x/r dx = −rxe−x/r

∣∣∣∣∞
0

+ r

∫ ∞
0

e−x/r dx = 0 + r · r = r2

Finally, the first integral is solved using integration by parts with u = x2, v′ = e−x/r so that u′ = 2x and v = −re−x/r ;
then ∫ ∞

0
x2e−x/r dx = −rx2e−x/r

∣∣∣∣∞
0

+ 2r

∫ ∞
0

xe−x/r dx = 0 + 2r · r2 = 2r3

and, finally,

σ 2 = 1

r

∫ ∞
0

x2e−x/r dx − 2
∫ ∞

0
xe−x/3 dx + r

∫ ∞
0

e−x/3 dx

= 1

r
· 2r3 − 2 · r2 + r · r = r2

Further Insights and Challenges
27. The time to decay of an atom in a radioactive substance is a random variable X. The law of radioactive

decay states that if N atoms are present at time t = 0, then Nf (t) atoms will be present at time t , where f (t) = e−kt

(k > 0 is the decay constant). Explain the following statements:

(a) The fraction of atoms that decay in a small time interval [t, t + �t] is approximately −f ′(t)�t .

(b) The probability density function of X is −f ′(t).
(c) The average time to decay is 1/k.

solution
(a) The number of atoms that decay in the interval [t, t + �t] is just f (t) − f (t + �t); the statement simply says that
f (t) − f (t + �t) ≈ −f ′(t)�t , which is the same as saying that

f ′(t) ≈ f (t) − f (t + �t)

�t
= f (t + �t) − f (t)

�t

which is true by the definition of the derivative. Intuitively, since f ′(t) is the instantaneous rate of decay, we would expect
that over a short interval, the number of atoms decaying is proportional to both f ′(t) and the size of the interval.

(b) The probability density function is defined by the property in (a): the probability that X lies in a small interval
[t, t + �t] is approximately p(t)�t , so that p(t) = −f ′(t).
(c) The average time to decay is the mean of the distribution, which is

μ =
∫ ∞

0
t · (−f ′(t)) dt = −

∫ ∞
0

tf ′(t) dt

We compute this integral using integration by parts, with u = t , v′ = f ′(t). Then u′ = 1, v = f (t), and

μ = −
∫ ∞

0
tf ′(t) dt = −tf (t)

∣∣∣∣∞
0

+
∫ ∞

0
f (t) dt.

Since f (t) = e−kt , we have

−tf (t)
∣∣∞
0 = lim

R→∞ −te−kt

∣∣∣∣R
0

= lim
R→∞ −Re−Rt + 0 = lim

R→∞
−R

eRt
= lim

R→∞
−1

ReRt
= 0.

Here we used L’Hôpital’s Rule to compute the limit. Thus

μ =
∫ ∞

0
f (t) dt =

∫ ∞
0

e−kt dt.

Now,

∫ R

0
e−kt dt = −1

k
e−kt

∣∣∣∣R
0

= −1

k

(
e−kR − 1

)
= 1

k

(
1 − e−kR

)
,
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so

μ = lim
R→∞

1

k

(
1 − e−kR

)
= 1

k
(1 − 0) = 1

k
.

Because k has units of (time)−1, μ does in fact have the appropriate units of time.

28. The half-life of radon-222, is 3.825 days. Use Exercise 27 to compute:

(a) The average time to decay of a radon-222 atom.
(b) The probability that a given atom will decay in the next 24 hours.

solution
(a) The average decay time is just the mean, μ; to determine it, we must determine the decay constant k, given the half-life
of 3.825 days. Recall that

k = ln 2

tn

where tn is the half-life. Thus,

μ = 1

k
= tn

ln 2
= 3.825

ln 2
≈ 5.518 days.

(b) The probability that a particular atom will decay in the next 24 hours is the area under the probability density function
between t = 0 and t = 1 (note that t is measured in days). Since f (t) = e−kt , the probability density function is −ke−kt ;
from part (a), k ≈ 0.1812, so the required probability is∫ 1

0
(−f ′(t)) dt = f (0) − f (1) = 1 − e−0.1812 ≈ 0.1657

7.8 Numerical Integration

Preliminary Questions
1. What are T1 and T2 for a function on [0, 2] such that f (0) = 3, f (1) = 4, and f (2) = 3?

solution Using the given function values

T1 = 1

2
(2)(3 + 3) = 6 and T2 = 1

2
(1)(3 + 8 + 3) = 7.

2. For which graph in Figure 16 will TN overestimate the integral? What about MN ?

x

y
y = f (x)

x

y
y = g(x)

FIGURE 16

solution TN overestimates the value of the integral when the integrand is concave up; thus, TN will overestimate the
integral of y = g(x). On the other hand, MN overestimates the value of the integral when the integrand is concave down;
thus, MN will overestimate the integral of y = f (x).

3. How large is the error when the Trapezoidal Rule is applied to a linear function? Explain graphically.

solution The Trapezoidal Rule integrates linear functions exactly, so the error will be zero.

4. What is the maximum possible error if T4 is used to approximate∫ 3

0
f (x) dx

where |f ′′(x)| ≤ 2 for all x.

solution The maximum possible error in T4 is

max |f ′′(x)| (b − a)3

12n2
≤ 2(3 − 0)3

12(4)2
= 9

32
.

5. What are the two graphical interpretations of the Midpoint Rule?

solution The two graphical interpretations of the Midpoint Rule are the sum of the areas of the midpoint rectangles
and the sum of the areas of the tangential trapezoids.
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Exercises
In Exercises 1–12, calculate TN and MN for the value of N indicated.

1.
∫ 2

0
x2 dx, N = 4

solution Let f (x) = x2. We divide [0, 2] into 4 subintervals of width

�x = 2 − 0

4
= 1

2

with endpoints 0, 0.5, 1, 1.5, 2, and midpoints 0.25, 0.75, 1.25, 1.75. With this data, we get

T4 = 1

2
· 1

2

(
02 + 2(0.5)2 + 2(1)2 + 2(1.5)2 + 22

)
= 2.75; and

M4 = 1

2

(
0.252 + 0.752 + 1.252 + 1.752

)
= 2.625.

2.
∫ 4

0

√
x dx, N = 4

solution Let f (x) = √
x. We divide [0, 4] into 4 subintervals of width

�x = 4 − 0

4
= 1

with endpoints 0, 1, 2, 3, 4, and midpoints 0.5, 1.5, 2.5, 3.5. With this data, we get

T4 = 1

2
· 1 ·

(√
0 + 2

√
1 + 2

√
2 + 2

√
3 + √

4
)

≈ 5.14626; and

M4 = 1 ·
(√

0.5 + √
1.5 + √

2.5 + √
3.5
)

≈ 5.38382.

3.
∫ 4

1
x3 dx, N = 6

solution Let f (x) = x3. We divide [1, 4] into 6 subintervals of width

�x = 4 − 1

6
= 1

2

with endpoints 1, 1.5, 2, 2.5, 3, 3.5, 4, and midpoints 1.25, 1.75, 2.25, 2.75, 3.25, 3.75. With this data, we get

T6 = 1

2

(
1

2

)(
13 + 2(1.5)3 + 2(2)3 + 2(2.5)3 + 2(3)3 + 2(3.5)3 + 43

)
= 64.6875; and

M6 = 1

2

(
1.253 + 1.753 + 2.253 + 2.753 + 3.253 + 3.753

)
= 63.28125.

4.
∫ 2

1

√
x4 + 1 dx, N = 5

solution We divide [1, 2] into 5 subintervals of width

�x = 2 − 1

5
= 1

5
= 0.2

with endpoints 1, 1.2, 1.4, 1.6, 1.8, 2, and midpoints 1.1, 1.3, 1.5, 1.7, 1.9. With this data, we have

T5 = 1

2
· 1

5

(√
14 + 1 + 2

√
1.24 + 1 + 2

√
1.44 + 1 + 2

√
1.64 + 1 + 2

√
1.84 + 1 +

√
22 + 1

)
≈ 2.57228

M5 = 1

5

(√
1.14 + 1 +

√
1.34 + 1 +

√
1.54 + 1 +

√
1.74 + 1 +

√
1.94 + 1

)
≈ 2.55994

5.
∫ 4

1

dx

x
, N = 6

solution Let f (x) = 1/x. We divide [1, 4] into 6 subintervals of width

�x = 4 − 1

6
= 1

2
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with endpoints 1, 1.5, 2, 2.5, 3, 3.5, 4, and midpoints 1.25, 1.75, 2.25, 2.75, 3.25, 3.75. With this data, we get

T6 = 1

2

(
1

2

)(
1

1
+ 2

1.5
+ 2

2
+ 2

2.5
+ 2

3
+ 2

3.5
+ 1

4

)
≈ 1.40536; and

M6 = 1

2

(
1

1.25
+ 1

1.75
+ 1

2.25
+ 1

2.75
+ 1

3.25
+ 1

3.75

)
≈ 1.37693.

6.
∫ −1

−2

dx

x
, N = 5

solution Let f (x) = 1/x. We divide [−2, −1] into 5 subintervals of width

�x = −1 − (−2)

5
= 1

5
= 0.2

with endpoints −2, −1.8, −1.6, −1.4, −1.2, −1, and midpoints −1.9, −1.7, −1.5, −1.3, −1.1. With this data, we get

T5 = 1

2

(
1

5

)(
1

−2
+ 2

−1.8
+ 2

−1.6
+ 2

−1.4
+ 2

−1.2
+ 1

−1

)
≈ −0.695635; and

M5 = 1

5

(
1

−1.9
+ 1

−1.7
+ 1

−1.5
+ 1

−1.3
+ 1

−1.1

)
≈ −0.691908.

7.
∫ π/2

0

√
sin x dx, N = 6

solution Let f (x) = √
sin x. We divide [0, π/2] into 6 subintervals of width

�x =
π
2 − 0

6
= π

12

with endpoints

0,
π

12
,

2π

12
, . . . ,

6π

12
= π

2
,

and midpoints

π

24
,

3π

24
, . . . ,

11π

24
.

With this data, we get

T6 = 1

2

( π

12

) (√
sin(0) + 2

√
sin(π/12) + · · · +√sin(6π/12)

)
≈ 1.17029; and

M6 = π

12

(√
sin(π/24) +√sin(3π/24) + · · · +√sin(11π/24)

)
≈ 1.20630.

8.
∫ π/4

0
sec x dx, N = 6

solution Let f (x) = sec x. We divide [0, π/4] into 6 subintervals of width

�x =
π
4 − 0

6
= π

24

with endpoints

0,
π

24
,

2π

24
, . . . ,

6π

24
= π

4
,

and midpoints

π

48
,

3π

48
, . . . ,

11π

48
.

With this data, we get

T6 = 1

2

( π

24

) (
sec(0) + 2 sec(π/24) + 2 sec(2π/24) + · · · + sec(6π/24)

) ≈ 0.883387; and

M6 = π

24

(
sec(π/48) + sec(3π/48) + sec(5π/48) + · · · + sec(11π/48)

) ≈ 0.880369.
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9.
∫ 2

1
ln x dx, N = 5

solution Let f (x) = ln x. We divide [1, 2] into 5 subintervals of width

�x = 2 − 1

5
= 1

5
= 0.2

with endpoints 1, 1.2, 1.4, 1.6, 1.8, 2, and midpoints 1.1, 1.3, 1.5, 1.7, 1.9. With this data, we get

T5 = 1

2

(
1

5

) (
ln 1 + 2 ln 1.2 + 2 ln 1.4 + 2 ln 1.6 + 2 ln 1.8 + ln 2

) ≈ 0.384632; and

M5 = 1

5

(
ln 1.1 + ln 1.3 + ln 1.5 + ln 1.7 + ln 1.9

) ≈ 0.387124.

10.
∫ 3

2

dx

ln x
, N = 5

solution Let f (x) = 1/ ln x. We divide [2, 3] into 5 subintervals of width

�x = 3 − 2

5
= 1

5
= 0.2

with endpoints 2, 2.2, 2.4, 2.6, 2.8, 3, and midpoints 2.1, 2.3, 2.5, 2.7, 2.9. With this data, we get

T5 = 1

2

(
1

5

)(
1

ln 2
+ 2

ln 2.2
+ 2

ln 2.4
+ 2

ln 2.6
+ 2

ln 2.8
+ 1

ln 3

)
≈ 1.12096; and

M5 = 1

5

(
1

ln 2.1
+ 1

ln 2.3
+ 1

ln 2.5
+ 1

ln 2.7
+ 1

ln 2.9

)
≈ 1.11716.

11.
∫ 1

0
e−x2

dx, N = 5

solution Let f (x) = e−x2
. We divide [0, 1] into 5 subintervals of width

�x = 1 − 0

5
= 1

5
= 0.2

with endpoints

0,
1

5
,

2

5
,

3

5
,

4

5
, 1

and midpoints

1

10
,

3

10
,

5

10
,

7

10
,

9

10
.

With this data, we get

T5 = 1

2

(
1

5

)(
e−02 + 2e−(1/5)2 + 2e−(2/5)2 + 2e−(3/5)2 + 2e−(4/5)2 + e−12

)
≈ 0.74437; and

M5 = 1

5

(
e−(1/10)2 + e−(3/10)2 + e−(5/10)2 + e−(7/10)2 + e−(9/10)2

)
≈ 0.74805.

12.
∫ 1

−2
ex2

dx, N = 6

solution Let f (x) = ex2
. We divide [−2, 1] into 6 subintervals of width

�x = 1 − (−2)

6
= 3

6
= 1

2
= 0.5

with endpoints −2, −1.5, −1, −0.5, 0, 0.5, 1, and midpoints −1.75, −1.25, −0.75, −0.25, 0.25, 0.75. With this data,
we get

T6 = 1

2

(
1

2

) (
e(−2)2 + 2e(−1.5)2 + 2e(−1)2 + 2e(−0.5)2 + 2e02 + 2e(0.5)2 + e12) ≈ 22.2161; and

M6 = 1

2

(
e(−1.75)2 + e(−1.25)2 + e(−0.75)2 + e(−0.25)2 + e(0.25)2 + e(0.75)2) ≈ 15.8954.
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In Exercises 13–22, calculate SN given by Simpson’s Rule for the value of N indicated.

13.
∫ 4

0

√
x dx, N = 4

solution Let f (x) = √
x. We divide [0, 4] into 4 subintervals of width

�x = 4 − 0

4
= 1

with endpoints 0, 1, 2, 3, 4. With this data, we get

S4 = 1

3
(1)
(√

0 + 4
√

1 + 2
√

2 + 4
√

3 + √
4
) ≈ 5.25221.

14.
∫ 5

3
(9 − x2) dx, N = 4

solution Let f (x) = 9 − x2. We divide [3, 5] into 4 subintervals of length

�x = 5 − 3

4
= 2

4
= 1

2
= 0.5

with endpoints 3, 3.5, 4, 4.5, 5. With this data, we get

S4 = 1

3

(
1

2

)[
(9 − 32) + 4(9 − 3.52) + 2(9 − 42) + 4(9 − 4.52) + (9 − 52)

]
≈ −14.6667.

15.
∫ 3

0

dx

x4 + 1
, N = 6

solution Let f (x) = 1/(x4 + 1). We divide [0, 3] into 6 subintervals of length

�x = 3 − 0

6
= 1

2
= 0.5

with endpoints 0, 0.5, 1, 1.5, 2, 2.5, 3. With this data, we get

S6 = 1

3

(
1

2

)[
1

04 + 1
+ 4

0.54 + 1
+ 2

14 + 1
+ 4

1.54 + 1
+ 2

24 + 1
+ 4

2.54 + 1
+ 1

34 + 1

]
≈ 1.10903.

16.
∫ 1

0
cos(x2) dx, N = 6

solution Let f (x) = cos(x2). We divide [0, 1] into 6 subintervals of length

�x = 1 − 0

6
= 1

6

with endpoints 0, 1
6 , 2

6 , . . . , 6
6 = 1. With this data, we get

S6 = 1

3

(
1

6

)[
cos
(

02
)

+ 4 cos

((
1

6

)2
)

+ 2 cos

((
2

6

)2
)

+ · · · + 4 cos

((
5

6

)2
)

+ cos
(

12
)]

≈ 0.904523.

17.
∫ 1

0
e−x2

dx, N = 4

solution Let f (x) = e−x2
. We divide [0, 1] into 4 subintervals of length

�x = 1 − 0

4
= 1

4

with endpoints 0, 1
4 , 2

4 , 3
4 , 4

4 = 1. With this data, we get

S4 = 1

3

(
1

4

)[
e−02 + 4e−(1/4)2 + 2e−(2/4)2 + 4e−(3/4)2 + e−(1)2

]
≈ 0.746855.

18.
∫ 2

1
e−x dx, N = 6

solution Let f (x) = e−x . We divide [1, 2] into 6 subintervals of width

�x = 2 − 1

6
= 1

6
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with endpoints 1, 7
6 , 8

6 , 9
6 , . . . , 12

6 = 2. With this data, we get

S6 = 1

3

(
1

6

)[
e−1 + 4e−7/6 + 2e−8/6 + 4e−9/6 + 2e−10/6 + 4e−11/6 + e−12/6

]
≈ 0.232545.

19.
∫ 4

1
ln x dx, N = 8

solution Let f (x) = ln x. We divide [1, 4] into 8 subintervals of length

�x = 4 − 1

8
= 3

8
= 0.375

with endpoints 1, 1.375, 1.75, 2.125, 2.5, 2.875, 3.25, 3.625, 4. With this data, we get

S8 = 1

3

(
3

8

) [
ln 1 + 4 ln (1.375) + 2 ln (1.75) + · · · + 4 ln (3.625) + ln 4

] ≈ 2.54499.

20.
∫ 4

2

√
x4 + 1 dx, N = 8

solution Let f (x) =
√

x4 + 1. We divide [2, 4] into 8 subintervals of width

�x = 4 − 2

8
= 2

8
= 1

4
= 0.25

with endpoints 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4. With this data, we get

S8 = 1

3

(
1

4

)[√
24 + 1 + 4

√
(2.25)4 + 1 + 2

√
(2.5)4 + 1 + · · · + 4

√
(3.75)4 + 1 +

√
44 + 1

]
≈ 18.7909.

21.
∫ π/4

0
tan θ dθ , N = 10

solution Let f (θ) = tan θ . We divide [0, π
4 ] into 10 subintervals of width

�θ =
π
4 − 0

10
= π

40

with endpoints 0, π
40 , 2π

40 , 3π
40 , . . . , 10π

40 = π
4 . With this data, we get

S10 = 1

3

( π

40

) [
tan (0) + 4 tan

( π

40

)
+ 2 tan

(
2π

40

)
+ · · · + 4 tan

(
9π

40

)
+ tan

(
10π

40

)]
≈ 0.346576.

22.
∫ 2

0
(x2 + 1)−1/3 dx, N = 10

solution Let f (x) = (x2 + 1)−1/3. We divide [0, 2] into 10 subintervals of width

�x = 2 − 0

10
= 1

5
= 0.2

with endpoints 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2. With this data, we get

S10 = 1

3
· 1

5

[
(02 + 1)−1/3 + 4(0.22 + 1)−1/3 + 2(0.42 + 1)−1/3

+ · · · + 4(1.82 + 1)−1/3 + (22 + 1)−1/3
]

≈ 1.598005

In Exercises 23–26, calculate the approximation to the volume of the solid obtained by rotating the graph around the
given axis.

23. y = cos x;
[
0, π

2

]
; x-axis; M8

solution Using the disk method, the volume is given by

V =
∫ π/2

0
πr2 dx = π

∫ π/2

0
(cos x)2 dx
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which can be estimated as

π

∫ π/2

0
(cos x)2 dx ≈ π [M8].

Let f (x) = cos2 x. We divide [0, π/2] into 8 subintervals of length

�x =
π
2 − 0

8
= π

16

with midpoints

π

32
,

3π

32
,

5π

32
, . . . ,

15π

32
.

With this data, we get

V ≈ π [M8] = π
[
�x(y1 + y2 + · · · + y8)

] = π2

16

[
cos2

( π

32

)
+ cos2

(
3π

32

)
+ · · · + cos2

(
15π

32

)]
≈ 2.46740.

24. y = cos x;
[
0, π

2

]
; y-axis; S8

solution Using the cylindrical shell method, the volume is given by

V =
∫ π/2

0
2πrh dx = 2π

∫ π/2

0
x cos x dx

where the radius of the cylinder is r = x and the height is h = cos x. This can be approximated as

V = 2π

∫ π/2

0
x cos x dx ≈ 2π

[
S8

]
,

where f (x) = x cos x. We divide [0, π/2] into 8 subintervals of length

�x =
π
2 − 0

8
= π

16

with endpoints

0,
π

16
,

2π

16
, . . . ,

8π

16
.

With this data, we get

V ≈ 2π [S8] = 2π

[
1

3
· π

16
(y0 + 4y1 + 2y2 + · · · + 4y7 + y8)

]

= π2

24

[
0(cos 0) + 4

π

16

(
cos

π

16

)
+ · · · + 8π

16

(
cos

8π

16

)]
≈ 3.58666.

25. y = e−x2
; [0, 1]; x-axis; T8

solution Using the disk method, the volume is given by

V =
∫ 1

0
πr2 dx = π

∫ 1

0

(
e−x2)2

dx = π

∫ 1

0
e−2x2

dx.

We can use the approximation

V = π

∫ 1

0
e−2x2

dx ≈ π [T8],

where f (x) = e−2x2
. Divide [0, 1] into 8 subintervals of length

�x = 1 − 0

8
= 1

8
,

with endpoints

0,
1

8
,

2

8
, . . . , 1.

With this data, we get

V ≈ π [T8] = π

[
1

2
· 1

8

(
e−2(02) + 2e−2(1/8)2 + · · · + 2e−2(7/8)2 + e−2(1)2

)]
≈ 1.87691.
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26. y = e−x2
; [0, 1]; y-axis; S8

solution Using the cylindrical shell method, the volume is given by

V =
∫ 1

0
2πrh dx = 2π

∫ 1

0
xe−x2

dx

where r = x and h = e−x2
. We can use the approximation

V = 2π

∫ 1

0
xe−x2

dx ≈ 2π [S8],

where f (x) = xe−x2
. Divide [0, 1] into 8 subintervals of length

�x = 1 − 0

8
= 1

8
,

with endpoints

0,
1

8
,

2

8
, . . . , 1.

With this data, we get

V ≈ 2π [S8] = 2π

(
1

3

)(
1

8

)[
(0)e−(02) + 4

(
1

8

)
e−(1/8)2 + · · · + 4

(
7

8

)
e−(7/8)2 + e−12

]
≈ 1.98595.

27. An airplane’s velocity is recorded at 5-min intervals during a 1-hour period with the following results, in miles per
hour:

550, 575, 600, 580, 610, 640, 625,

595, 590, 620, 640, 640, 630

Use Simpson’s Rule to estimate the distance traveled during the hour.

solution The distance traveled is equal to the integral
∫ 1

0 v(t) dt , where t is in hours. Since 5 minutes is 1/12 of an
hour, we have �t = 1/12. Simpson’s Rule gives us

S12 = 1

3
· 1

12

[
550 + 4 · 575 + 2 · 600 + 4 · 580 + 2 · 610 + · · · + 4 · 640 + 630

]
≈ 608.611.

The distance traveled during the hour is approximately 608.6 miles.

28. Use Simpson’s Rule to determine the average temperature in a museum over a 3-hour period, if the temperatures (in
degrees Celsius), recorded at 15-min intervals, are

21, 21.3, 21.5, 21.8, 21.6, 21.2, 20.8,

20.6, 20.9, 21.2, 21.1, 21.3, 21.2

solution If T (t) represents the temperature at time t , then the average temperature Tave from t = 0 to t = 3 hours is
given by

Tave = 1

3 − 0

∫ 3

0
T (t) dt.

To use Simpson’s Rule to approximate this, let �t = 1/4 (15 minute intervals). Then we have

Tave = 1

3
[S12] = 1

3
· 1

3
· 1

4

[
21 + 4 · 21.3 + 2 · 21.5 + · · · + 4 · 21.3 + 21.2

]
≈ 21.2111.

The average temperature is approximately 21.2◦ C.

29. Tsunami Arrival Times Scientists estimate the arrival times of tsunamis (seismic ocean waves) based on

the point of origin P and ocean depths. The speed s of a tsunami in miles per hour is approximately s = √
15d, where d

is the ocean depth in feet.

(a) Let f (x) be the ocean depth x miles from P (in the direction of the coast). Argue using Riemann sums that the time
T required for the tsunami to travel M miles toward the coast is

T =
∫ M

0

dx√
15f (x)
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(b) Use Simpson’s Rule to estimate T if M = 1000 and the ocean depths (in feet), measured at 100-mile intervals starting
from P , are

13,000, 11,500, 10,500, 9000, 8500,

7000, 6000, 4400, 3800, 3200, 2000

solution

(a) At a given distance from shore, say, xi , the speed of the tsunami in mph is s = √15f (xi). If we assume the speed s

is constant over a small interval �x, then the time to cover that interval at that speed is

ti = distance

speed
= �x√

15f (xi)
.

Now divide the interval [0, M] into N subintervals of length �x. The total time T is given by

T =
N∑

i=1

ti =
N∑

i=1

�x√
15f (xi)

.

Taking the limit as N → ∞, we get

T =
∫ M

0

dx√
15f (x)

.

(b) We have �x = 100. Simpson’s Rule gives us

S10 = 1

3
· 100

[
1√

15(13,000)
+ 4√

15(11,500)
+ · · · + 1√

15(2000)

]
≈ 3.347.

It will take the tsunami about 3 hours and 21 minutes to reach shore.

30. Use S8 to estimate
∫ π/2

0

sin x

x
dx, taking the value of

sin x

x
at x = 0 to be 1.

solution Divide [0, π/2] into 8 subintervals of length

�x =
π
2 − 0

8
= π

16

with endpoints

0,
π

16
,

2π

16
, . . . ,

8π

16
.

Taking the value of (sin x)/x at x = 0 to be 1, we get

S8 = 1

3

( π

16

) [
1 + 4

sin(π/16)

π/16
+ 2

sin(2π/16)

2π/16
+ · · · + sin(π/2)

π/2

]
≈ 1.37076.

31. Calculate T6 for the integral I =
∫ 2

0
x3 dx.

(a) Is T6 too large or too small? Explain graphically.

(b) Show that K2 = |f ′′(2)| may be used in the error bound and find a bound for the error.

(c) Evaluate I and check that the actual error is less than the bound computed in (b).

solution Let f (x) = x3. Divide [0, 2] into 6 subintervals of length �x = 2−0
6 = 1

3 with endpoints 0, 1
3 , 2

3 , . . . , 2.

With this data, we get

T6 = 1

2
· 1

3

[
03 + 2

(
1

3

)3
+ 2

(
2

3

)3
+ 2

(
3

3

)3
+ 2

(
4

3

)3
+ 2

(
5

3

)3
+ (1)23

]
≈ 4.11111.

(a) Since x3 is concave up on [0, 2], T6 is too large.

(b) We have f ′(x) = 3x2 and f ′′(x) = 6x. Since |f ′′(x)| = |6x| is increasing on [0, 2], its maximum value occurs at
x = 2 and we may take K2 = |f ′′(2)| = 12. Then

Error(T6) ≤ K2(b − a)3

12N2
= 12(2 − 0)3

12(6)2
= 2

9
≈ 0.22222.
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(c) The exact value is ∫ 2

0
x3 dx = 1

4
x4
∣∣∣∣2
0

= 1

4
(16 − 0) = 4.

We can use this to compute the actual error:

Error(T6) = |T6 − 4| ≈ |4.11111 − 4| ≈ 0.11111.

Since 0.11111 < 0.22222, the actual error is indeed less than the maximum possible error.

32. Calculate M4 for the integral I =
∫ 1

0
x sin(x2) dx.

(a) Use a plot of f ′′(x) to show that K2 = 3.2 may be used in the error bound and find a bound for the error.

(b) Evaluate I numerically and check that the actual error is less than the bound computed in (a).

solution Let f (x) = x sin(x2). Divide [0, 1] into 4 subintervals of length �x = 1−0
4 = 1

4 = 0.25, with endpoint 0,
1
4 , 1

2 , 3
4 , and 1 and midpoints 1

8 , 3
8 , 5

8 , and 7
8 . With this data, we get

M4 = 1

4

[
1

8
sin((1/8)2) + 3

8
sin((3/8)2) + 5

8
sin((5/8)2) + 7

8
sin((7/8)2)

]
≈ 0.224714

(a) Consider the following plot of f ′′(x) = 6x cos(x2) − 4x3 sin(x2):

1

2

3
3.2

4

y

x0
0.2 0.4 0.6 0.8 1.0

From this figure, it is clear that f ′′(x) is bounded above (in absolute value) by 3.2, so we can choose K2 = 3.2 in the
error bound formula. With this choice, the bound for the error in the M4 approximation is

Error(M4) ≤ K2 · (b − a)3

24N2
= 3.2 · (1 − 0)3

24 · 42
= 3.2

384
≈ 0.008333 ≈ 8.333 × 10−3

(b) Using a computer algebra system, I ≈ 0.2298488, so the actual error is

≈ 0.2298488 − 0.224714 = 0.005135 < 0.008333

In Exercises 33–36, state whether TN or MN underestimates or overestimates the integral and find a bound for the error
(but do not calculate TN or MN ).

33.
∫ 4

1

1

x
dx, T10

solution Let f (x) = 1
x . Then f ′(x) = −1

x2 and f ′′(x) = 2
x3 > 0 on [1, 4], so f (x) is concave up, and T10

overestimates the integral. Since |f ′′(x)| = | 2
x3 | has its maximum value on [1, 4] at x = 1, we can take K2 = 2

13 = 2,
and

Error(T10) ≤ K2(4 − 1)3

12N2
= 2(3)3

12(10)2
= 0.045.

34.
∫ 2

0
e−x/4 dx, T20

solution Let f (x) = e−x/4. Then f ′(x) = −(1/4)e−x/4 and

f ′′(x) = 1

16
e−x/4 > 0

on [0, 2], so f (x) is concave up, and T20 overestimates the integral. Since |f ′′(x)| = |(1/16)e−x/4| has its maximum
value on [0, 2] at x = 0, we can take K2 = |(1/16)e0| = 1/16, and

Error(T20) ≤ K2(2 − 0)3

12N2
=

1
16 (2)3

12(20)2
= 1.04167 × 10−4.
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35.
∫ 4

1
ln x dx, M10

solution Let f (x) = ln x. Then f ′(x) = 1/x and

f ′′(x) = − 1

x2
< 0

on [1, 4], so f (x) is concave down, and M10 overestimates the integral. Since |f ′′(x)| = | − 1/x2| has its maximum
value on [1, 4] at x = 1, we can take K2 = | − 1/12| = 1, and

Error(M10) ≤ K2(4 − 1)3

24N2
= (1)(3)3

24(10)2
= 0.01125.

36.
∫ π/4

0
cos x, M20

solution Let f (x) = cos x. Then f ′(x) = − sin x and f ′′(x) = − cos x < 0 on [0, π/4], so f (x) is concave down,
and M20 overestimates the integral. Since |f ′′(x)| = | − cos x| has its maximum value on [0, π/4] at x = 0, we can take
K2 = | − cos(0)| = 1, and

Error(M20) ≤ K2(π/4 − 0)3

24N2
= (1)(π/4)3

24(20)2
= 5.04659 × 10−5.

In Exercises 37–40, use the error bound to find a value of N for which Error(TN ) ≤ 10−6. If you have a computer
algebra system, calculate the corresponding approximation and confirm that the error satisfies the required bound.

37.
∫ 1

0
x4 dx

solution Let f (x) = x4. Then f ′(x) = 4x3 and |f ′′(x)| = |12x2|, which has its maximum value on [0, 1] at x = 1,

so we can take K2 = |12(1)2| = 12. Then we have

Error(TN ) ≤ K2(1 − 0)3

12N2
= 12

12N2
= 1

N2
.

To ensure that the error is at most 10−6, we must choose N such that

1

N2
≤ 1

106
.

This gives N2 ≥ 106 or N ≥ 103. Thus let N = 1000. The exact value of the integral is

∫ 1

0
x4 dx = x5

5

∣∣∣∣1
0

= 1

5
= 0.2.

Using a CAS, we find that

T1000 ≈ 0.2000003333.

The actual error is approximately |0.2000003333 − 0.2| ≈ 3.333 × 10−7, and is indeed less than 10−6.

38.
∫ 3

0
(5x4 − x5) dx

solution Let f (x) = 5x4 − x5. Then f ′(x) = 20x3 − 5x4 and f ′′(x) = 60x2 − 20x3. A plot reveals that f ′′(x) ≥ 0

on [0, 3]; it achieves its maximum value where its derivative is zero, which is where 120x − 60x2 = 0, so x = 2.
|f ′′(2)| = |60 · 22 − 20 · 23| = 80, so we may take K2 = 80 in the error bound approximation. Then we have

Error(TN ) ≤ K2(3 − 0)3

12N2
= 180

N2

To ensure that the error is at most 10−6, we must choose N such that

180

N2
≤ 10−6, or N2 ≥ 180 × 106 = 1.8 × 108

Thus N ≥ √
1.8 × 104 ≈ 1.34164 × 104, so let N = 13,417. Using a computer algebra system, we get

T13417 ≈ 121.5000006000
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The true value of the integral is

I =
∫ 3

0

(
5x4 − x5

)
dx =

(
x5 − 1

6
x6
) ∣∣∣∣3

0
= 121.5

so that T13417 − I ≈ 0.0000006 = 6 × 10−7 < 10−6.

39.
∫ 5

2

1

x
dx

solution Let f (x) = 1/x. Then f ′(x) = −1/x2 and |f ′′(x)| = |2/x3|, which has its maximum value on [2, 5] at

x = 2, so we can take K2 = |2/23| = 1/4. Then we have

Error(TN ) ≤ K2(5 − 2)3

12N2
= (1/4)33

12N2
= 9

16N2
.

To ensure that the error is at most 10−6, we must choose N such that

9

16N2
≤ 1

106
.

This gives us

N2 ≥ 9 · 106

16
⇒ N ≥

√
9 · 106

16
= 750.

Thus let N = 750. The exact value of the integral is∫ 5

2

1

x
dx = ln 5 − ln 2 ≈ 0.9162907314.

Using a CAS, we find that

T750 ≈ 0.9162910119.

The error is approximately

|0.9162907314 − 0.9162910119| ≈ 2.805 × 10−7

and is indeed less than 10−6.

40.
∫ 3

0
e−x dx

solution Let f (x) = e−x . Then f ′(x) = −e−x and |f ′′(x)| = |e−x | = e−x , which has its maximum value on [0, 3]
at x = 0, so we can take K2 = e0 = 1. Then we have

Error(TN ) ≤ K2(3 − 0)3

12N2
= (1)33

12N2
= 9

4N2
.

To ensure that the error is at most 10−6, we must choose N such that

9

4N2
≤ 1

106
.

This gives us

N2 ≥ 9 · 106

4
⇒ N ≥

√
9 · 106

4
= 1500.

Thus let N = 1500. The exact value of the integral is∫ 3

0
e−x dx = (−e−3)− (−e−0) = 1 − e−3 ≈ 0.9502129316.

Using a CAS, we find that

T1500 ≈ 0.9502132468.

The error is approximately

|0.9502129316 − 0.9502132468| ≈ 3.152 × 10−7

and is indeed less than 10−6.
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41. Compute the error bound for the approximations T10 and M10 to
∫ 3

0 (x3 + 1)−1/2 dx, using Figure 17 to determine
a value of K2. Then find a value of N such that the error in MN is at most 10−6.

1 2 3

−1

1

x

y

FIGURE 17 Graph of f ′′(x), where f (x) = (x3 + 1)−1/2.

solution Clearly, in the range 0 ≤ x ≤ 3, we have |f ′′(x)| ≤ 1, so we may choose K2 = 1. Then

Error(T10) ≤ K2(3 − 0)3

12N2
= 27

12 · 102
= 27

1200
= 0.0225

Error(M10) ≤ K2(3 − 0)3

24N2
= 27

24 · 102
= 27

2400
= 0.01125

In order for the error in MN to be at most 10−6, we must have

Error(MN) ≤ K2(3 − 0)3

24N2
= 9

8N2
≤ 10−6

so that 8N2 ≥ 9 × 106 and N2 ≥ 1,125,000. Thus we must choose N ≥ √
1,125,000 ≈ 1060.7, so that N = 1061.

42. (a) Compute S6 for the integral I =
∫ 1

0
e−2x dx.

(b) Show that K4 = 16 may be used in the error bound and compute the error bound.

(c) Evaluate I and check that the actual error is less than the bound for the error computed in (b).

solution

(a) Let f (x) = e−2x . We divide [0, 1] into six subintervals of length �x = (1 − 0)/6 = 1/6, with endpoints
0, 1/6, . . . , 5/6, 1. With this data, we get

S6 = 1

3
· 1

6

[
e−2(0) + 4e−2(1/6) + 2e−2(2/6) + · · · + e−2(1)

]
≈ 0.432361.

(b) Taking derivatives, we get

f ′(x) = −2e−2x, f ′′(x) = 4e−2x, f (3)(x) = −8e−2x, f (4)(x) = 16e−2x .

Since |f (4)(x)| = |16e−2x | assumes its maximum value on [0, 1] at x = 0, we can set K4 = |16e0| = 16. Then we have

Error(S6) ≤ K4(1 − 0)5

180N4
= 16

180 · 64
≈ 6.86 × 10−5.

(c) The exact value of the integral is

∫ 1

0
e−2x dx = e−2x

−2

∣∣∣∣1
0

= 1 − e−2

2
≈ 0.432332.

The actual error is

Error(S6) ≈ |0.432361 − 0.432332| ≈ 2.9 × 10−5.

The error is indeed less than the maximum possible error.

43. Calculate S8 for
∫ 5

1 ln x dx and calculate the error bound. Then find a value of N such that SN has an error of at most
10−6.

solution Let f (x) = ln x. We divide [1, 5] into eight subintervals of length �x = (5 − 1)/8 = 0.5, with endpoints
1, 1.5, 2, . . . , 5. With this data, we get

S8 = 1

3
· 1

2

[
ln 1 + 4 ln 1.5 + 2 ln 2 + · · · + 4 ln 4.5 + ln 5

]
≈ 4.046655.
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To find the maximum possible error, we first take derivatives:

f ′(x) = 1

x
, f ′′(x) = − 1

x2
, f (3)(x) = 2

x3
, f (4)(x) = − 6

x4
.

Since |f (4)(x)| = | − 6x−4| = 6x−4, assumes its maximum value on [1, 5] at x = 1, we can set K4 = 6(1)−4 = 6.
Then we have

Error(S8) ≤ K4(5 − 1)5

180N4
= 6 · 45

180 · 84
≈ 0.0083333.

To ensure that SN has error at most 10−6, we must find N such that

6 · 45

180N4
≤ 1

106
.

This gives us

N4 ≥ 6 · 45 · 106

180
⇒ N ≥

(
6 · 45 · 106

180

)1/4

≈ 76.435.

Thus let N = 78 (remember that N must be even when using Simpson’s Rule).

44. Find a bound for the error in the approximation S10 to
∫ 3

0 e−x2
dx (use Figure 18 to determine a value of K4). Then

find a value of N such that SN has an error of at most 10−6.

1 2 3

−8

12

x

y

FIGURE 18 Graph of f (4)(x), where f (x) = e−x2
.

solution From the graph, we see that |f (4)(x)| ≤ 12, so we set K4 = 12. This gives us

Error(S10) ≤ K4(3 − 0)5

180N4
= 12 · 35

180 · 104
= 0.00162.

To ensure that SN has error at most 10−6, we must find N such that

12 · 35

180 · N4
≤ 1

106
.

This gives us

N4 ≥ 12 · 35 · 106

180
⇒ N ≥

(
12 · 35 · 106

180

)1/4

≈ 63.44.

Thus let N = 64.

45. Use a computer algebra system to compute and graph f (4)(x) for f (x) =
√

1 + x4 and find a bound for the

error in the approximation S40 to
∫ 5

0
f (x) dx.

solution From the graph of f (4)(x) shown below, we see that |f (4)(x)| ≤ 15 on [0, 5]. Therefore we set K4 = 15.

Now we have

Error(S40) ≤ 15(5 − 0)5

180(40)4
= 5

49152
≈ 1.017 × 10−4.

54321

−15

−10

−5

15

10

5

x

y
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46. Use a computer algebra system to compute and graph f (4)(x) for f (x) = tan x − sec x and find a bound

for the error in the approximation S40 to
∫ π/4

0
f (x) dx.

solution From the graph of f (4)(x) shown below, we see that |f (x)(x)| ≤ 5 on [0, π/4]. Therefore we set K4 = 5.

Now we have

Error(S40) ≤ 5(π/4 − 0)5

180(40)4
≈ 3.243 × 10−9.

0.80.60.40.2

−4

−3

−2

−5

−1

x
y

In Exercises 47–50, use the error bound to find a value of N for which Error(SN ) ≤ 10−9.

47.
∫ 6

1
x4/3 dx

solution Let f (x) = x4/3. We start by taking derivatives:

f ′(x) = 4

3
x1/3

f ′′(x) = 4

9
x−2/3

f ′′′(x) = − 8

27
x−5/3

f (4)(x) = 40

81
x−8/3

For x ≥ 1, f (4)(x) is a decreasing function of x, so it takes its maximum value on [1, 6] at x = 1. That maximum value
is 40

81 , which is quite close to (but smaller than) 1
2 . For simplicity, we take K4 = 1

2 . Then

Error(SN ) ≤ K4(b − a)5

180N4
= (6 − 1)5

2 · 180 · N4
= 55

360N4
= 625

72N4
≤ 10−9

Thus 72N4 ≥ 625 × 109, so that

N ≥
(

625 × 109

72

)1/4

≈ 305.24

so we can take N = 306.

48.
∫ 4

0
xex dx

solution Let f (x) = xex. To find K4, we first take derivatives:

f ′(x) = xex + ex

f ′′(x) = xex + 2ex

f (3)(x) = xex + 3ex

f (4)(x) = xex + 4ex .

On the interval [0, 4],
|f (4)(x)| = |xex + 4ex | ≤ |4e4 + 4e4| = 8e4.

Therefore we set K4 = 8e4, and we have

Error(SN ) ≤ K4(4 − 0)5

180N4
= 8e4 · 45

180N4
.
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To ensure that SN has error at most 10−9, we must find N such that

8e4 · 45

180N4
≤ 1

109
.

This gives us

N4 ≥ 8e4 · 45 · 109

180
⇒ N ≥

(
8e4 · 45 · 109

180

)1/4

≈ 1255.52.

Thus let N = 1256.

49.
∫ 1

0
ex2

dx

solution Let f (x) = ex2
. To find K4, we first take derivatives:

f ′(x) = 2xex2

f ′′(x) = 4x2ex2 + 2ex2

f (3)(x) = 8x3ex2 + 12xex2

f (4)(x) = 16x4ex2 + 48x2ex2 + 12ex2
.

On the interval [0, 1], |f (4)(x)| assumes its maximum value at x = 1. Therefore we set

K4 = |f (4)(1)| = 16e + 48e + 12e = 76e.

Now we have

Error(SN ) ≤ K4(1 − 0)5

180N4
= 76e

180N4
.

To ensure that SN has error at most 10−9, we must find N such that

76e

180N4
≤ 1

109
.

This gives us

N4 ≥ 76e · 109

180
⇒ N ≥

(
76e · 109

180

)1/4

≈ 184.06.

Thus we let N = 186 (remember that N must be even when using Simpson’s Rule).

50.
∫ 4

1
sin(ln x) dx

solution Let f (x) = sin(ln x). To find K4, we first take derivatives:

f ′(x) = cos(ln x)

x

f ′′(x) = − sin(ln x) − cos(ln x)

x2

f (3)(x) = cos(ln x) + 3 sin(ln x)

x3

f (4)(x) = −10 sin(ln x)

x4

1 32

−1

−0.6

x
y

−0.4

−0.8

−0.2
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From the graph of y = f (4)(x) shown above, we can see that on the interval [1, 4], |f (4)(x)| ≤ 1. Therefore we set
K4 = 1. Now we have

Error(SN ) ≤ (1)(4 − 1)5

180N4
= 35

180N4
.

To ensure that SN has error at most 10−9, we must find N such that

35

180N4
≤ 1

109
.

This gives us

N4 ≥ 35 · 109

180
⇒ N ≥

(
35 · 109

180

)1/4

≈ 191.7.

Thus we let N = 192.

51. Show that
∫ 1

0

dx

1 + x2
= π

4
[use Eq. (3) in Section 5.7].

(a) Use a computer algebra system to graph f (4)(x) for f (x) = (1 + x2)−1 and find its maximum on [0, 1].
(b) Find a value of N such that SN approximates the integral with an error of at most 10−6. Calculate the corresponding
approximation and confirm that you have computed π

4 to at least four places.

solution Recall from Section 3.9 that

d

dx
tan−1(x) = 1

1 + x2
.

So then ∫ 1

0

dx

1 + x2
= tan−1 x

∣∣∣∣1
0

= tan−1(1) − tan−1(0) = π

4
.

(a) From the graph of f (4)(x) shown below, we can see that the maximum value of |f (4)(x)| on the interval [0, 1] is 24.

10.80.60.40.2
−10

30

10

20

x

y

(b) From part (a), we set K4 = 24. Then we have

Error(SN ) ≤ 24(1 − 0)5

180N4
= 2

15N4
.

To ensure that SN has error at most 10−6, we must find N such that

2

15N4
≤ 1

106
.

This gives us

N4 ≥ 2 · 106

15
⇒ N ≥

(
2 · 106

15

)1/4

≈ 19.1.

Thus let N = 20. To compute S20, let �x = (1 − 0)/20 = 0.05. The endpoints of [0, 1] are 0, 0.05, . . . , 1. With this
data, we get

S20 = 1

3

(
1

20

)[
1

1 + 02
+ 4

1 + (0.05)2
+ 2

1 + (0.1)2
+ · · · + 1

1 + 12

]
≈ 0.785398163242.

The actual error is

|0.785398163242 − π/4| = |0.785398163242 − 0.785398163397| = 1.55 × 10−10.
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52. Let J =
∫ ∞

0
e−x2

dx and JN =
∫ N

0
e−x2

dx. Although e−x2
has no elementary antiderivative, it is known that

J = √
π/2. Let TN be the N th trapezoidal approximation to JN . Calculate T4 and show that T4 approximates J to three

decimal places.

solution T4 is the 4th trapezoidal approximation to J4 = ∫ 4
0 e−x2

dx. We divide the interval [0, 4] into four subin-
tervals, with endpoints 0, 1, 2, 3, and 4. Then

T4 = 1

2
· 1
[
e−02 + 2e−12 + 2e−22 + 2e−32 + e−42

]
≈ 0.8863185

We have

T4 − J ≈ 0.8863185 −
√

π

2
≈ 0.8863185 − 0.8862269 ≈ 0.0000916

53. Let f (x) = sin(x2) and I =
∫ 1

0
f (x) dx.

(a) Check thatf ′′(x) = 2 cos(x2) − 4x2 sin(x2). Then show that |f ′′(x)| ≤ 6 forx ∈ [0, 1]. Hint: Note that |2 cos(x2)| ≤
2 and |4x2 sin(x2)| ≤ 4 for x ∈ [0, 1].
(b) Show that Error(MN) is at most

1

4N2
.

(c) Find an N such that |I − MN | ≤ 10−3.

solution

(a) Taking derivatives, we get

f ′(x) = 2x cos(x2)

f ′′(x) = 2x(− sin(x2) · 2x) + 2 cos(x2) = 2 cos(x2) − 4x2 sin(x2).

On the interval [0, 1],

|f ′′(x)| = |2 cos(x2) − 4x2 sin(x2)| ≤ |2 cos(x2)| + |4x2 sin(x2)| ≤ 2 + 4 = 6.

(b) Using K2 = 6, we get

Error(MN) ≤ K2(1 − 0)3

24N2
= 6

24N2
= 1

4N2
.

(c) To ensure that MN has error at most 10−3, we must find N such that

1

4N2
≤ 1

103
.

This gives us

N2 ≥ 103

4
= 250 ⇒ N ≥ √

250 ≈ 15.81.

Thus let N = 16.

54. The error bound for MN is proportional to 1/N2, so the error bound decreases by 1
4 if N is increased

to 2N . Compute the actual error in MN for
∫ π

0 sin x dx for N = 4, 8, 16, 32, and 64. Does the actual error seem to

decrease by 1
4 as N is doubled?

solution The exact value of the integral is

∫ π

0
sin x dx = − cos x

∣∣∣∣π
0

= −(−1) − (1) = 2.
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To compute M4, we have �x = (π − 0)/4 = π/4, and midpoints π/8, 3π/8, 5π/8, 7π/8. With this data, we get

M4 = π

4

[
sin
(π

8

)
+ sin

(
3π

8

)
+ sin

(
5π

8

)
+ sin

(
7π

8

)]
≈ 2.052344.

The values for M8, M16, M32, and M64 are computed similarly:

M8 = π

8

[
sin
( π

16

)
+ sin

(
3π

16

)
+ · · · + sin

(
15π

16

)]
≈ 2.012909;

M16 = π

16

[
sin
( π

32

)
+ sin

(
3π

32

)
+ · · · + sin

(
31π

32

)]
≈ 2.0032164;

M32 = π

32

[
sin
( π

64

)
+ sin

(
3π

64

)
+ · · · + sin

(
63π

64

)]
≈ 2.00080342;

M64 = π

64

[
sin
( π

128

)
+ sin

(
3π

128

)
+ · · · + sin

(
127π

128

)]
≈ 2.00020081.

Now we can compute the actual errors for each N :

Error(M4) = |2 − 2.052344| = 0.052344

Error(M8) = |2 − 2.012909| = 0.012909

Error(M16) = |2 − 2.0032164| = 0.0032164

Error(M32) = |2 − 2.00080342| = 0.00080342

Error(M64) = |2 − 2.00020081| = 0.00020081

The actual error does in fact decrease by about 1/4 each time N is doubled.

55. Observe that the error bound for TN (which has 12 in the denominator) is twice as large as the error
bound for MN (which has 24 in the denominator). Compute the actual error in TN for

∫ π
0 sin x dx for N = 4, 8, 16, 32,

and 64 and compare with the calculations of Exercise 54. Does the actual error in TN seem to be roughly twice as large
as the error in MN in this case?

solution The exact value of the integral is∫ π

0
sin x dx = − cos x

∣∣∣∣π
0

= −(−1) − (1) = 2.

To compute T4, we have �x = (π − 0)/4 = π/4, and endpoints 0, π/4, 2π/4, 3π/4, π. With this data, we get

T4 = 1

2
· π

4

[
sin(0) + 2 sin

(π

4

)
+ 2 sin

(
2π

4

)
+ 2 sin

(
3π

4

)
+ sin(π)

]
≈ 1.896119.

The values for T8, T16, T32, and T64 are computed similarly:

T8 = 1

2
· π

8

[
sin(0) + 2 sin

(π

8

)
+ 2 sin

(
2π

8

)
+ · · · + 2 sin

(
7π

8

)
+ sin(π)

]
≈ 1.974232;

T16 = 1

2
· π

16

[
sin(0) + 2 sin

( π

16

)
+ 2 sin

(
2π

16

)
+ · · · + 2 sin

(
15π

16

)
+ sin(π)

]
≈ 1.993570;

T32 = 1

2
· π

32

[
sin(0) + 2 sin

( π

32

)
+ 2 sin

(
2π

32

)
+ · · · + 2 sin

(
31π

32

)
+ sin(π)

]
≈ 1.998393;

T64 = 1

2
· π

64

[
sin(0) + 2 sin

( π

64

)
+ 2 sin

(
2π

64

)
+ · · · + 2 sin

(
63π

64

)
+ sin(π)

]
≈ 1.999598.

Now we can compute the actual errors for each N :

Error(T4) = |2 − 1.896119| = 0.103881

Error(T8) = |2 − 1.974232| = 0.025768

Error(T16) = |2 − 1.993570| = 0.006430

Error(T32) = |2 − 1.998393| = 0.001607

Error(T64) = |2 − 1.999598| = 0.000402

Comparing these results with the calculations of Exercise 54, we see that the actual error in TN is in fact about twice as
large as the error in MN .
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56. Explain why the error bound for SN decreases by 1
16 if N is increased to 2N . Compute the actual

error in SN for
∫ π

0 sin x dx for N = 4, 8, 16, 32, and 64. Does the actual error seem to decrease by 1
16 as N is doubled?

solution If we plug in 2N for N in the formula for the error bound for SN , we get

K4(b − a)5

180(2N)4
= K4(b − a)5

180 · 24 · N4
= 1

16

(
K4(b − a)5

180N4

)
.

Thus we see that, since N is raised to the fourth power in the denominator, the Error Bound for SN decreases by 1/16 if
N is increased to 2N . The exact value of the integral is

∫ π

0
sin x dx = − cos x

∣∣∣∣π
0

= −(−1) − (1) = 2.

To compute S4, we have �x = (π − 0)/4 = π/4, and endpoints 0, π/4, 2π/4, 3π/4, π. With this data, we get

S4 = 1

3
· π

4

[
sin(0) + 4 sin

(π

4

)
+ 2 sin

(
2π

4

)
+ 4 sin

(
3π

4

)
+ sin(π)

]
≈ 2.004560.

The values for S8, S16, S32, and S64 are computed similarly:

S8 = 1

3
· π

8

[
sin(0) + 4 sin

(π

8

)
+ 2 sin

(
2π

8

)
+ · · · + 4 sin

(
7π

8

)
+ sin(π)

]
≈ 2.0002692;

S16 = 1

3
· π

16

[
sin(0) + 4 sin

( π

16

)
+ 2 sin

(
2π

16

)
+ · · · + 4 sin

(
15π

16

)
+ sin(π)

]
≈ 2.00001659;

S32 = 1

3
· π

32

[
sin(0) + 4 sin

( π

32

)
+ 2 sin

(
2π

32

)
+ · · · + 4 sin

(
31π

32

)
+ sin(π)

]
≈ 2.000001033;

S64 = 1

3
· π

64

[
sin(0) + 4 sin

( π

64

)
+ 2 sin

(
2π

64

)
+ · · · + 4 sin

(
63π

64

)
+ sin(π)

]
≈ 2.00000006453.

Now we can compute the actual errors for each N :

Error(S4) = |2 − 2.004560| = 0.004560

Error(S8) = |2 − 2.0002692| = 2.692 × 10−4

Error(S16) = |2 − 2.00001659| = 1.659 × 10−5

Error(S32) = |2 − 2.000001033| = 1.033 × 10−6

Error(S64) = |2 − 2.00000006453| = 6.453 × 10−8

The actual error does in fact decrease by about 1/16 each time N is doubled. For example, 0.004560/16 = 2.85 × 10−4,
which is roughly the same as 2.692 × 10−4.

57. Verify that S2 yields the exact value of
∫ 1

0
(x − x3) dx.

solution Let f (x) = x − x3. Clearly f (4)(x) = 0, so we may take K4 = 0 in the error bound estimate for S2. Then

Error(S2) ≤ K4(1 − 0)5

180 · 24
= 0 · 1

2880
= 0

so that S2 yields the exact value of the integral.

58. Verify that S2 yields the exact value of
∫ b

a
(x − x3) dx for all a < b.

solution Let f (x) = x − x3. Clearly f (4)(x) = 0, so we may take K4 = 0 in the error bound estimate for S2. Then

Error(S2) ≤ K4(b − a)5

180 · 24
= 0 · (b − a)5

2880
= 0

so that S2 yields the exact value of the integral.
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Further Insights and Challenges

59. Show that if f (x) = rx + s is a linear function (r, s constants), then TN =
∫ b

a
f (x) dx for all N and all endpoints

a, b.

solution First, note that

∫ b

a
(rx + s) dx = r(b2 − a2)

2
+ s(b − a).

Now,

TN(rx + s) = b − a

2N

⎡
⎣f (a) + 2

N−1∑
i=1

f (xi) + f (b)

⎤
⎦ = r(b − a)

2N

⎡
⎣a + 2

N−1∑
i=1

a + 2
b − a

N

N−1∑
i=1

i + b

⎤
⎦+ s

b − a

2N
(2N)

= r(b − a)

2N

[
(2N − 1)a + 2

b − a

N

(N − 1)N

2
+ b

]
+ s(b − a) = r(b2 − a2)

2
+ s(b − a).

60. Show that if f (x) = px2 + qx + r is a quadratic polynomial, then S2 =
∫ b

a
f (x) dx. In other words, show that

∫ b

a
f (x) dx = b − a

6

(
y0 + 4y1 + y2

)

where y0 = f (a), y1 = f

(
a + b

2

)
, and y2 = f (b). Hint: Show this first for f (x) = 1, x, x2 and use linearity.

solution For S2, �x = (b − a)/2, and the endpoints are a, (a + b)/2, b. Following the hint, let f (x) = 1. In this
case,

S2(1) = 1

3

(
b − a

2

)[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
= b − a

6
(1 + 4(1) + 1) = b − a

6
(6)

= b − a =
∫ b

a
1 dx.

If f (x) = x, then

S2(x) = 1

3

(
b − a

2

)[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
= b − a

6

(
a + 4

(
a + b

2

)
+ b

)
= b − a

6

(
6a + 6b

2

)

= b2 − a2

2
=
∫ b

a
x dx;

and if f (x) = x2, then

S2(x2) = 1

3

(
b − a

2

)[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
= b − a

6

(
a2 + 4

(
a + b

2

)2
+ b2

)

= b − a

6

(
a2 + (a2 + 2ab + b2) + b2

)
= b − a

6
(2)(a2 + ab + b2) = b3 − a3

3
=
∫ b

a
x2 dx.

Now we use linearity:∫ b

a
(px2 + qx + r) dx = p

∫ b

a
x2 dx + q

∫ b

a
x dx + r

∫ b

a
dx

= pS2(x2) + qS2(x) + rS2(1) = S2(pa2 + qa + r).

61. For N even, divide [a, b] into N subintervals of width �x = b − a

N
. Set xj = a + j �x, yj = f (xj ), and

S
2j
2 = b − a

3N

(
y2j + 4y2j+1 + y2j+2

)
(a) Show that SN is the sum of the approximations on the intervals [x2j , x2j+2]—that is, SN = S0

2 + S2
2 + · · · + SN−2

2 .

(b) By Exercise 60, S2j
2 =

∫ x2j+2

x2j

f (x) dx if f (x) is a quadratic polynomial. Use (a) to show that SN is exact for all N

if f (x) is a quadratic polynomial.
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solution

(a) This result follows because the even-numbered interior endpoints overlap:

(N−2)/2∑
i=0

S
2j
2 = b − a

6
[(y0 + 4y1 + y2) + (y2 + 4y3 + y4) + · · · ]

= b − a

6

[
y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · · + 4yN−1 + yN

] = SN .

(b) If f (x) is a quadratic polynomial, then by part (a) we have

SN = S0
2 + S2

2 + · · · + SN−2
2 =

∫ x2

x0

f (x) dx +
∫ x4

x2

f (x) dx + · · · +
∫ xN

xN−2

f (x) dx =
∫ b

a
f (x) dx.

62. Show that S2 also gives the exact value for
∫ b

a
x3 dx and conclude, as in Exercise 61, that SN is exact for all cubic

polynomials. Show by counterexample that S2 is not exact for integrals of x4.

solution Let f (x) = x3. Then �x = (b − a)/2 and the endpoints are a, (a + b)/2, b. With this data, we get

S2(x3) = 1

3

(
b − a

2

)[
a3 + 4

(
a + b

2

)3
+ b3

]
= b − a

6

[
a3 + 1

2
(a3 + 3a2b + 3ab2 + b3) + b3

]

= b − a

6

(
3

2

)
[a3 + a2b + ab2 + b3] = 1

4
(b − a)(a3 + a2b + ab2 + b3) = b4 − a4

4
=
∫ b

a
x3 dx.

By linearity, and using the result from Exercise 60, we have that

∫ b

a
(sx3 + px2 + qx + r) dx = s

∫ b

a
x3 dx +

∫ b

a
(px2 + qx + r) dx

= s
(
S2(x3)

)
+ S2(px2 + qx + r)

= S2(sx3 + px2 + qx + r).

For N even, we can now follow the procedure of Exercise 61; that is, divide [a, b] into N subintervals and on each
subinterval compute S2. Then, for any cubic polynomial f (x), we have

∫ b

a
f (x) dx =

∫ x2

a
f (x) dx +

∫ x4

x2

f (x) dx + · · · +
∫ b

xN−2

f (x) dx = S0
2 + S2

2 + · · · + SN−2
2 = SN .

However, S2 is not exact for polynomials of degree 4. For example,

∫ 1

0
x4 dx = 1

5

but

S2 = 1

3

(
1

2

)[
05 + 4(0.5)5 + 15

]
= 1

6

(
33

32

)
= 11

64
�= 1

5
.

63. Use the error bound for SN to obtain another proof that Simpson’s Rule is exact for all cubic polynomials.

solution Let f (x) = ax3 + bx2 + cx + d, with a �= 0, be any cubic polynomial. Then, f (4)(x) = 0, so we can take
K4 = 0. This yields

Error(SN ) ≤ 0

180N4
= 0.

In other words, SN is exact for all cubic polynomials for all N .

64. Sometimes, Simpson’s Rule Performs Poorly Calculate M10 and S10 for the integral
∫ 1

0

√
1 − x2 dx,

whose value we know to be π
4 (one-quarter of the area of the unit circle).

(a) We usually expect SN to be more accurate than MN . Which of M10 and S10 is more accurate in this case?

(b) How do you explain the result of part (a)? Hint: The error bounds are not valid because |f ′′(x)| and |f (4)(x)| tend
to ∞ as x → 1, but |f (4)(x)| goes to infinity faster.
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solution Let f (x) =
√

1 − x2. Divide [0, 1] into 10 subintervals of length �x = (1 − 0)/10 = 0.1 Then we have

M10 = 1

10

[√
1 − (0.05)2 +

√
1 − (0.15)2 + · · · +

√
1 − (0.95)2

]
≈ 0.788103;

S10 = 1

3

(
1

10

)[√
1 − 02 + 4

√
1 − (0.1)2 + 2

√
1 − (0.2)2 + · · · +

√
1 − 12

]
≈ 0.781752.

(a) Since π/4 = 0.785389, we have

Error(M10) = 0.0027;
Error(S10) = 0.00365.

Thus, M10 is more accurate.
(b) These results can be explained by looking at the derivatives:

f ′(x) = −x√
1 − x2

f ′′(x) = −1

(1 − x2)3/2

f (3)(x) = −3x

(1 − x2)5/2

f (4)(x) = −3(x2 + 1)

(1 − x2)7/2

Both |f ′′(x)| and |f (4)(x)| tend to ∞ as x → 1, but |f (4)(x)| tends to ∞ faster due to the 7/2 exponent in the denominator.

CHAPTER REVIEW EXERCISES

1. Match the integrals (a)–(e) with their antiderivatives (i)–(v) on the basis of the general form (do not evaluate the
integrals).

(a)
∫

x dx

x2 − 4
(b)

∫
(2x + 9) dx

x2 + 4

(c)
∫

sin3 x cos2 x dx (d)
∫

dx

x
√

16x2 − 1

(e)
∫

16 dx

x(x − 4)2

(i) sec−1 4x + C

(ii) log |x| − log |x − 4| − 4

x − 4
+ C

(iii)
1

30
(3 cos5 x − 3 cos3 x sin2 x − 7 cos3 x) + C

(iv)
9

2
tan−1 x

2
+ ln(x2 + 4) + C (v)

√
x2 − 4 + C

solution

(a)
∫

x dx√
x2 − 4

Since x is a constant multiple of the derivative of x2 − 4, the substitution method implies that the integral is a constant

multiple of
∫

du√
u

where u = x2 − 4, that is a constant multiple of
√

u =
√

x2 − 4. It corresponds to the function in (v).

(b)
∫

(2x + 9) dx

x2 + 4

The part
∫

2x
x2+4

dx corresponds to ln(x2 + 4) in (iv) and the part
∫

9
x2+4

dx corresponds to 9
2 tan−1 x

2 . Hence the

integral corresponds to the function in (iv).

(c)
∫

sin3xcos2x dx

The reduction formula for
∫

sinm x cosn x dx shows that this integral is equal to a sum of constant multiples of products

in the form cosi x sinj x as in (iii).
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(d)
∫

dx

x
√

16x2 − 1

Since
∫

dx

|x|
√

x2−1
= sec−1 x + C, we expect the integral

∫
dx

x
√

16x2−1
to be equal to the function in (i).

(e)
∫

16 dx

x(x − 4)2

The partial fraction decomposition of the integrand has the form:

A

x
+ B

x − 4
+ C

(x − 4)2

The term A
x contributes the function A ln |x| to the integral, the term B

x−4 contributes B ln |x − 4| and the term C

(x−4)2

contributes − C
x−4 . Therefore, we expect the integral to be equal to the function in (ii).

2. Evaluate
∫

x dx

x + 2
in two ways: using substitution and using the Method of Partial Fractions.

solution Using substitution, write u = x + 2; then du = dx and

∫
x

x + 2
dx =

∫
u − 2

u
du =

∫
1 du − 2

∫
1

u
du = u − 2 ln |u| + C1

= x + 2 − 2 ln |x + 2| + C1 = x − 2 ln |x + 2| + C

Using partial fractions, first do long division to get

x

x + 2
= 1 − 2

x + 2

Then ∫
x

x + 2
dx =

∫ (
1 − 2

x + 2

)
dx =

∫
1 dx − 2

∫
1

x + 2
dx = x − 2 ln |x + 2| + C

In Exercises 3–12, evaluate using the suggested method.

3.
∫

cos3 θ sin8 θ dθ [write cos3 θ as cos θ(1 − sin2 θ)]

solution We use the identity cos2θ = 1 − sin2θ to rewrite the integral:∫
cos3θsin8θ dθ =

∫
cos2θsin8θ cos θ dθ =

∫ (
1 − sin2θ

)
sin8θ cos θ dθ.

Now, we use the substitution u = sin θ , du = cos θ dθ :

∫
cos3θsin8θ dθ =

∫ (
1 − u2

)
u8 du =

∫ (
u8 − u10

)
du = u9

9
− u11

11
+ C = sin9θ

9
− sin11θ

11
+ C.

4.
∫

xe−12x dx (Integration by Parts)

solution We use Integration by Parts with u = x and v′ = e−12x . Then u′ = 1, v = − 1
12 e−12x , and we obtain:

∫
xe−12x dx = −xe−12x

12
+
∫

1

12
e−12x dx = −xe−12x

12
− 1

144
e−12x + C = − e−12x

144
(12x + 1) + C.

5.
∫

sec3 θ tan4 θ dθ (trigonometric identity, reduction formula)

solution We use the identity 1 + tan2θ = sec2θ to write tan4θ =
(

sec2θ − 1
)2

and to rewrite the integral as

∫
sec3θ tan4θ dθ

∫
sec3θ

(
1 − sec2θ

)2
dθ =

∫
sec3θ

(
1 − 2sec2θ + sec4θ

)
dθ

=
∫

sec7θ dθ − 2
∫

sec5θ dθ +
∫

sec3θ dθ.
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Now we use the reduction formula∫
secmθ dθ = tan θsecm−2θ

m − 1
+ m − 2

m − 1

∫
secm−2θ dθ.

We have ∫
sec5θ dθ = tan θsec3θ

4
+ 3

4

∫
sec3θ dθ + C,

and ∫
sec7θ dθ = tan θsec5θ

6
+ 5

6

∫
sec5θ dθ = tan θsec5θ

6
+ 5

6

(
tan θsec3θ

4
+ 3

4

∫
sec3θ dθ

)
+ C

= tan θsec5θ

6
+ 5

24
tan θsec3θ + 5

8

∫
sec3θ dθ + C.

Therefore,

∫
sec3θ tan4θ dθ =

(
tan θsec5θ

6
+ 5

24
tan θsec3θ + 5

8

∫
sec3θ dθ

)

− 2

(
tan θsec3θ

4
+ 3

4

∫
sec3θ dθ

)
+
∫

sec3θ dθ

= tan θsec5θ

6
− 7 tan θsec3θ

24
+ 1

8

∫
sec3θ dθ.

We again use the reduction formula to compute∫
sec3θ dθ = tan θ sec θ

2
+ 1

2

∫
sec θ dθ = tan θ sec θ

2
+ 1

2
ln | sec θ + tan θ | + C.

Finally, ∫
sec3θ tan4θ dθ = tan θsec5θ

6
− 7 tan θsec3θ

24
+ tan θ sec θ

16
+ 1

16
ln | sec θ + tan θ | + C.

6.
∫

4x + 4

(x − 5)(x + 3)
dx (partial fractions)

solution The following partial fraction decomposition takes the form

4x + 4

(x − 5)(x + 3)
= A

x − 5
+ B

x + 3
.

Clearing denominators gives us

4x + 4 = A(x + 3) + B(x − 5).

Setting x = 5 then yields A = 3, while setting x = −3 yields B = 1. Hence,∫
4x + 4

(x − 5)(x + 3)
dx =

∫
3

x − 5
dx +

∫
1

x + 3
dx = 3 ln |x − 5| + ln |x + 3| + C.

7.
∫

dx

x(x2 − 1)3/2
dx (trigonometric substitution)

solution Substitute x = sec θ , dx = sec θ tan θ dθ . Then,

(
x2 − 1

)3/2 =
(

sec2θ − 1
)3/2 =

(
tan2θ

)3/2 = tan3θ,

and ∫
dx

x
(
x2 − 1

)3/2
=
∫

sec θ tan θ dθ

sec θ tan3θ
=
∫

dθ

tan2θ
=
∫

cot2θ dθ.

Using a reduction formula we find that: ∫
cot2θ dθ = − cot θ − θ + C
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so ∫
dx

x
(
x2 − 1

)3/2
= − cot θ − θ + C.

We now must return to the original variable x. We use the relation x = sec θ and the figure to obtain:∫
dx

x
(
x2 − 1

)3/2
= − 1√

x2 − 1
− sec−1x + C.

q
1

x
x2 − 1

8.
∫

(1 + x2)−3/2dx (trigonometric substitution)

solution Use the substitution x = tan θ , dx = sec2 θ dθ . Then∫
(1 + x2)−3/2 dx =

∫
(1 + tan2 θ)−3/2 sec2 θ dθ =

∫
(sec2 θ)−3/2 sec2 θ dθ =

∫
1

sec θ
dθ

=
∫

cos θ dθ = sin θ + C

Since x = tan θ , draw the following right triangle:

	x2 + 1

1

x

From the figure, we see that sin θ = x√
x2+1

, so that

∫
(1 + x2)−3/2 dx = x(1 + x2)−1/2 + C

9.
∫

dx

x3/2 + x1/2
(substitution)

solution Let t = x1/2. Then dt = 1
2x−1/2 dx or dx = 2x1/2 dt = 2t dt . Therefore,∫

dx

x3/2 + x1/2
=
∫

2t dt

t3 + t
=
∫

2 dt

t2 + 1
= 2tan−1t + C = 2tan−1√

x + C.

10.
∫

dx

x + x−1
(rewrite integrand)

solution We rewrite the integrand as follows:∫
dx

x + x−1
=
∫

x dx

x2 + 1
.

Now, we substitute u = x2 + 1. Then du = 2x dx and

∫
dx

x + x−1
=
∫ 1

2 du

u
= 1

2

∫
du

u
= 1

2
ln |u| + C = 1

2
ln
(

1 + x2
)

+ C.

11.
∫

x−2 tan−1 x dx (Integration by Parts)

solution We use Integration by Parts with u = tan−1x and v′ = x−2. Then u′ = 1
1+x2 , v = −x−1 and

∫
x−2tan−1x dx = − tan−1x

x
+
∫

dx

x
(
1 + x2

) .
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For the remaining integral, the partial fraction decomposition takes the form

1

x(1 + x2)
= A

x
+ Bx + C

1 + x2
.

Clearing denominators gives us

1 = A(1 + x2) + (Bx + C)x.

Setting x = 0 then yields A = 1. Next, equating the x2-coefficients gives

0 = A + B so B = −1,

while equating x-coefficients gives C = 0. Hence,

1

x
(
1 + x2

) = 1

x
− x

1 + x2
,

and ∫
dx

x(1 + x2)
=
∫

1

x
dx −

∫
x dx

1 + x2
= ln |x| − 1

2
ln
(

1 + x2
)

+ C.

Therefore, ∫
x−2tan−1x dx = − tan−1x

x
+ ln |x| − 1

2
ln
(

1 + x2
)

+ C.

12.
∫

dx

x2 + 4x − 5
(complete the square, substitution, partial fractions)

solution The partial fraction decomposition takes the form

1

x2 + 4x − 5
= A

x − 1
+ B

x + 5
.

Clearing denominators gives us

1 = A(x + 5) + B(x − 1).

Setting x = 1 then yields A = 1
6 , while setting x = −5 yields B = − 1

6 . Therefore,∫
dx

x2 + 4x − 5
= 1

6

∫
dx

x − 1
− 1

6

∫
dx

x + 5
= 1

6
ln |x − 1| − 1

6
ln |x + 5| + C = 1

6
ln

∣∣∣∣x − 1

x + 5

∣∣∣∣+ C.

In Exercises 13–64, evaluate using the appropriate method or combination of methods.

13.
∫ 1

0
x2e4x dx

solution We evaluate the indefinite integral using Integration by Parts with u = x2 and v′ = e4x . Then u′ = 2x,

v = 1
4 e4x and

∫
x2e4x dx = x2

4
e4x − 1

2

∫
xe4x dx.

We compute the resulting integral using Integration by Parts again, this time with u = x and v′ = e4x . Then u′ = 1,
v = 1

4 e4x and ∫
xe4x dx = x · 1

4
e4x −

∫
1

4
e4x dx = x

4
e4x − 1

16
e4x + C.

Therefore, ∫
x2e4x dx = x2

4
e4x − 1

2

(
x

4
e4x − 1

16
e4x

)
+ C = e4x

32

(
8x2 − 4x + 1

)
+ C.

Finally,

∫ 1

0
x2e4x dx =

(
e4x

32

(
8x2 − 4x + 1

)) ∣∣∣∣1
0

= e4

32
(8 − 4 + 1) − 1

32
(1) = 5e4 − 1

32
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14.
∫

x2√
9 − x2

dx

solution Substitute x = 3 sin θ , dx = 3 cos θ dθ . Then

√
9 − x2 =

√
9 − 9 sin2 θ =

√
9
(

1 − sin2 θ
)

=
√

9 cos2 θ = 3 cos θ,

and ∫
x2√

9 − x2
dx =

∫
9 sin2 θ · 3 cos θ dθ

3 cos θ
= 9

∫
sin2θ dθ

= 9

(
θ

2
− sin 2θ

4

)
+ C = 9θ

2
− 9 sin θ cos θ

2
+ C.

We now must return to the original variable x. Since x = 3 sin θ , we have t = sin−1 x
3 . Using the figure we obtain

∫
x2√

9 − x2
dx = 9

2
sin−1

(x

3

)
− 9

2
· x

3
·
√

9 − x2

3
+ C = 9

2
sin−1

(x

3

)
− x

√
9 − x2

2
+ C.

x
3

9 − x2

15.
∫

cos9 6θ sin3 6θ dθ

solution We use the identity sin26θ = 1 − cos26θ to rewrite the integral:∫
cos96θsin36θ dθ =

∫
cos96θsin26θ sin 6θ dθ =

∫
cos96θ

(
1 − cos26θ

)
sin 6θ dθ.

Now, we use the substitution u = cos 6θ , du = −6 sin 6θ dθ :∫
cos96θsin36θ dθ =

∫
u9
(

1 − u2
)(

−du

6

)
= −1

6

∫ (
u9 − u11

)
du

= −1

6

(
u10

10
− u12

12

)
+ C = cos126θ

72
− cos106θ

60
+ C.

16.
∫

sec2 θ tan4 θ dθ

solution We substitute u = tan θ , du = sec2θ dθ to obtain

∫
sec2θ tan4θ dθ =

∫
u4 du = u5

5
+ C = tan5θ

5
+ C.

17.
∫

(6x + 4) dx

x2 − 1

solution The partial fraction decomposition takes the form

6x + 4

(x − 1)(x + 1)
= A

x − 1
+ B

x + 1
.

Clearing the denominators gives us

6x + 4 = A(x + 1) + B(x − 1).

Setting x = 1 then yields A = 5, while setting x = −1 yields B = 1. Hence,∫
(6x + 4)dx

x2 − 1
=
∫

5

x − 1
dx +

∫
1

x + 1
dx = 5 ln |x − 1| + ln |x + 1| + C.
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18.
∫ 9

4

dt

(t2 − 1)2

solution First evaluate the indefinite integral. Substitute t = sin θ , dt = cos θ dθ . Then

(
t2 − 1

)2 =
(

1 − t2
)2 =

(
1 − sin2θ

)2 =
(

cos2θ
)2 = cos4θ,

and ∫
dt(

t2 − 1
)2 =

∫
cos θ dθ

cos4θ
=
∫

dθ

cos3θ
=
∫

sec3θ dθ.

We use a reduction formula to compute the resulting integral:∫
dt(

t2 − 1
)2 =

∫
sec3θ dθ = tan θ sec θ

2
+ 1

2

∫
sec θ dθ = tan θ sec θ

2
+ 1

2
ln | sec θ + tan θ | + C.

t
1

1 − t2

q

We now must return to the original variable t . Using the relation t = sin θ and the accompanying figure,

∫
dt(

t2 − 1
)2 = 1

2
· t√

1 − t2
· 1√

1 − t2
+ 1

2
ln

∣∣∣∣∣ 1√
1 − t2

+ t√
1 − t2

∣∣∣∣∣+ C

= 1

2

(
t

1 − t2
+ ln

∣∣∣∣∣ 1 + t√
1 − t2

∣∣∣∣∣
)

+ C = 1

2

(
t

1 − t2
+ ln

∣∣∣∣∣
√

1 + t

1 − t

∣∣∣∣∣
)

+ C

= 1

2

t

1 − t2
+ 1

4
ln

∣∣∣∣1 + t

1 − t

∣∣∣∣+ C

Finally, ∫ 9

4

dt

(t2 − 1)2
=
(

1

2

t

1 − t2
+ 1

4
ln

∣∣∣∣1 + t

1 − t

∣∣∣∣
) ∣∣∣∣9

4

= 1

2
· 9

−80
+ 1

4
ln

10

8
− 1

2
· 4

−15
− 1

4
ln

5

3
= − 9

160
+ 2

15
+ 1

4

(
ln

5

4
− ln

5

3

)

= 37

480
+ 1

4
ln

3

4
= 37

480
+ 1

4
ln 3 − 1

2
ln 2

19.
∫

dθ

cos4 θ

solution We use the identity 1 + tan2θ = sec2 θ to rewrite the integral:∫
dθ

cos4θ
=
∫

sec4 θ dθ =
∫ (

1 + tan2θ
)

sec2 θ dθ.

Now, we substitute u = tan θ . Then, du = sec2 θ dθ and∫
dθ

cos4θ
=
∫ (

1 + u2
)

du = u + u3

3
+ C = tan3θ

3
+ tan θ + C.

20.
∫

sin 2θ sin2 θ dθ

solution We use the trigonometric identity sin 2θ = 2 sin θ cos θ to rewrite the integral:∫
sin 2θsin2θ dθ =

∫
2 sin θ cos θsin2θ dθ =

∫
2sin3θ cos θ dθ.

Now, we substitute u = sin θ . Then du = cos θ dθ and∫
sin 2θsin2θ dθ = 2

∫
u3 du = u4

2
+ C = sin4θ

2
+ C.
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21.
∫ 1

0
ln(4 − 2x) dx

solution Note that ln(4 − 2x) = ln(2(2 − x)) = ln 2 + ln(2 − x). Use integration by parts to integrate ln(2 − x),

with u = ln(2 − x), v′ = 1, so that u′ = − 1
2−x

and v = x. Then

I =
∫ 1

0
ln(4 − 2x) dx =

∫ 1

0
ln 2 dx +

∫ 1

0
ln(2 − x) dx = ln 2 + (x ln(2 − x))

∣∣∣∣1
0

+
∫ 1

0

x

2 − x
dx

Now use long division on the remaining integral, and the substitution u = 2 − x:

I = ln 2 + (x ln(2 − x))

∣∣∣∣1
0

+
∫ 1

0

(
−1 + 2

2 − x

)
dx

= ln 2 + 1 ln 1 −
∫ 1

0
1 dx + 2

∫ 1

0

1

2 − x
dx = ln 2 − 1 − 2

∫ 1

2

1

u
du

= ln 2 − 1 − 2 ln u

∣∣∣∣1
2

= ln 2 − 1 + 2 ln 2 = 3 ln 2 − 1

22.
∫

(ln(x + 1))2 dx

solution First, substitute w = x + 1, dw = dx. Then∫
(ln(x + 1))2 dx =

∫
(ln w)2 dw.

Now, we use Integration by Parts with u = (ln w)2 and v′ = 1. We find u′ = 2 ln w
w , v = w, and∫

(ln w)2 dw = w(ln w)2 − 2
∫

ln w dw.

We use Integration by Parts again, this time with u = ln w and v′ = 1. We find u′ = 1
w , v = w, and∫

ln w dx = w ln w −
∫

dw = w ln w − w + C.

Thus, ∫
(ln w)2 dw = w(ln w)2 − 2w ln w + 2w + C,

and ∫
(ln(x + 1))2 dx = (x + 1) [ln(x + 1)]2 − 2(x + 1) ln(x + 1) + 2(x + 1) + C.

23.
∫

sin5 θ dθ

solution We use the trigonometric identity sin2θ = 1 − cos2θ to rewrite the integral:∫
sin5θ dθ =

∫
sin4θ sin θ dθ =

∫ (
1 − cos2θ

)2
sin θ dθ.

Now, we substitute u = cos θ . Then du = − sin θ dθ and∫
sin5θ dθ =

∫ (
1 − u2

)2
(−du) = −

∫ (
1 − 2u2 + u4

)
du

= −
(

u − 2

3
u3 + u5

5

)
+ C = − cos5θ

5
+ 2cos3θ

3
− cos θ + C.

24.
∫

cos4(9x − 2) dx

solution We substitute u = 9x − 2, du = 9 dx and then use a reduction formula to evaluate the resulting integral.
We obtain: ∫

cos4(9x − 2) dx = 1

9

∫
cos4u du = 1

9

(
cos3u sin u

4
+ 3

4

∫
cos2u du

)
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= cos3u sin u

36
+ 1

12

∫
cos2u du = cos3u sin u

36
+ 1

12

(
u

2
+ sin 2u

4

)
+ C

= cos3(9x − 2) sin(9x − 2)

36
+ 9x − 2

24
+ sin(18x − 4)

48
+ C.

25.
∫ π/4

0
sin 3x cos 5x dx

solution First compute the indefinite integral, using the trigonometric identity:

sin α cos β = 1

2
(sin(α + β) + sin(α − β)) .

For α = 3x and β = 5x we get:

sin 3x cos 5x = 1

2
(sin 8x + sin(−2x)) = 1

2
(sin 8x − sin 2x).

Hence, ∫
sin 3x cos 5x dx = 1

2

∫
sin 8x dx − 1

2

∫
sin 2x dx = − 1

16
cos 8x + 1

4
cos 2x + C.

Then∫ π/4

0
sin 3x cos 5x dx =

(
1

4
cos 2x − 1

16
cos 8x

) ∣∣∣∣π/4

0
= 1

4
cos

π

2
− 1

16
cos 2π − 1

4
cos 0 + 1

16
cos 0 = −1

4

26.
∫

sin 2x sec2 x dx

solution We use the trigonometric identity sin 2x = 2 cos x sin x to rewrite the integrand:

sin 2x sec2 x = 2 sin x cos x sec2 x = 2 sin x cos x

cos2x
= 2 sin x

cos x
= 2 tan x.

Hence, ∫
sin 2x sec2 x dx =

∫
2 tan x dx = 2 ln | sec x| + C.

27.
∫ √

tan x sec2 x dx

solution We substitute u = tan x. Then du = sec2x dx and we obtain:∫ √
tan x sec2 x dx =

∫ √
u du = 2

3
u3/2 + C = 2

3
(tan x)3/2 + C.

28.
∫

(sec x + tan x)2 dx

solution We rewrite the integrand as

(sec x + tan x)2 = sec2x + 2 sec x tan x + tan2x = 2 sec x tan x + 2 sec2 x − 1.

Therefore,∫
(sec x + tan x)2 dx = 2

∫
sec x tan x dx + 2

∫
sec2 x dx −

∫
dx = 2 sec x + 2 tan x − x + C.

29.
∫

sin5 θ cos3 θ dθ

solution We use the identity cos2 θ = 1 − sin2 θ to rewrite the integral:∫
sin5θ cos3 θ dθ =

∫
sin5θ cos2 θ cos θ dθ =

∫
sin5θ

(
1 − sin2θ

)
cos θ dθ.

Now, we use the substitution u = sin θ , du = cos θ dθ :∫
sin5θ cos3 θ dθ =

∫
u5
(

1 − u2
)

du =
∫ (

u5 − u7
)

du = u6

6
− u8

8
+ C = sin6θ

6
− sin8θ

8
+ C.
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30.
∫

cot3 x csc x dx

solution Use the identity cot2 x = csc2 x − 1 to write∫
cot3 x csc x dx =

∫ (
csc2 x − 1

)
csc x cot x dx.

Now use the substitution u = csc x, du = − csc x cot x dx:∫
cot3 x csc x dx = −

∫ (
u2 − 1

)
du =

∫ (
1 − u2

)
du = u − 1

3
u3 + C = csc x − 1

3
csc3 x + C.

31.
∫

cot2 x csc2 x dx

solution Use the substitution u = cot x, du = − csc2 x dx:∫
cot2 x csc2 x dx = −

∫
cot2 x

(
− csc2 x dx

)
= −

∫
u2 du = −1

3
u3 + C = −1

3
cot3 x + C.

32.
∫ π

π/2
cot2

θ

2
dθ

solution To compute the indefinite integral, substitute u = θ
2 . Then du = 1

2 dθ and∫
cot2

θ

2
dθ = 2

∫
cot2u du.

Now, we use a reduction formula to compute∫
cot2

θ

2
dθ = 2

∫
cot2u du = 2(− cot u − u) + C = −2 cot

θ

2
− θ + C.

Then ∫ π

π/2
cot2

θ

2
dθ =

(
−2 cot

θ

2
− θ

) ∣∣∣∣π
π/2

= −2 cot
π

2
− π + 2 cot

π

4
+ π

2
= 0 − π + 2 + π

2
= 2 − π

2

33.
∫ π/2

π/4
cot2 x csc3 x dx

solution To compute the indefinite integral, use the identity cot2 x = csc2 x − 1 to write∫
cot2 x csc3 x dx =

∫ (
csc2 x − 1

)
csc3 x dx =

∫
csc5 x dx −

∫
csc3 x dx.

Now use the reduction formula for cscm x:∫
cot2 x csc3 x dx =

(
−1

4
cot x csc3 x + 3

4

∫
csc3 x dx

)
−
∫

csc3 x dx

= −1

4
cot x csc3 x − 1

4

∫
csc3 x dx

= −1

4
cot x csc3 x − 1

4

(
−1

2
cot x csc x + 1

2

∫
csc x dx

)

= −1

4
cot x csc3 x + 1

8
cot x csc x − 1

8
ln | csc x − cot x| + C.

Then ∫ π/2

π/4
cos2 x csc3 x dx =

(
−1

4
cot x csc3 x + 1

8
cot x csc x − 1

8
ln | csc x − cot x|

) ∣∣∣∣π/2

π/4

= −1

4
cot

π

2
csc3 π

2
+ 1

8
cot

π

2
csc

π

2
− 1

8
ln
∣∣∣csc

π

2
− cot

π

2

∣∣∣
+ 1

4
cot

π

4
csc3 π

4
− 1

8
cot

π

4
csc

π

4
+ 1

8
ln
∣∣∣csc

π

4
− cot

π

4

∣∣∣
= 0 + 0 − 1

8
ln |1 − 0| + 1

4
· 1 · (

√
2)3 − 1

8
· 1 · √

2 + 1

8
ln
∣∣∣√2 − 1

∣∣∣
=

√
2

2
−

√
2

8
+ 1

8
ln(

√
2 − 1) = 3

8

√
2 + 1

8
ln(

√
2 − 1)
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34.
∫ 6

4

dt

(t − 3)(t + 4)

solution The partial fraction decomposition takes the form

1

(t − 3)(t + 4)
= A

t − 3
+ B

t + 4
.

Clearing denominators gives us

1 = A(t + 4) + B(t − 3) = (A + B)t + 4A − 3B.

Setting t = 3 then yields A = 1
7 , while setting t = −4 yields B = − 1

7 . Hence,

∫ 6

4

dt

(t − 3)(t + 4)
= 1

7

∫ 6

4

dt

t − 3
− 1

7

∫ 6

4

dt

t + 4
=
(

1

7
ln |t − 3| − 1

7
ln |t + 4|

) ∣∣∣∣6
4

=
(

1

7
ln

∣∣∣∣ t − 3

t + 4

∣∣∣∣
) ∣∣∣∣6

4
= 1

7

(
ln

3

10
− ln

1

8

)
= 1

7
ln

12

5

35.
∫

dt

(t − 3)2(t + 4)

solution The partial fraction decomposition has the form

1

(t − 3)2(t + 4)
= A

t + 4
+ B

t − 3
+ C

(t − 3)2
.

Clearing denominators gives us

1 = A(t − 3)2 + B(t − 3)(t + 4) + C(t + 4).

Setting t = 3 then yields C = 1
7 , while setting t = −4 yields A = 1

49 . Lastly, setting t = 0 yields

1 = 9A − 12B + 4C or B = − 1

49
.

Hence, ∫
dt

(t − 3)2(t + 4)
= 1

49

∫
dt

t + 4
− 1

49

∫
dt

t − 3
+ 1

7

∫
dt

(t − 3)2

= 1

49
ln |t + 4| − 1

49
ln |t − 3| + 1

7
· −1

t − 3
+ C = 1

49
ln

∣∣∣∣ t + 4

t − 3

∣∣∣∣− 1

7
· 1

t − 3
+ C.

36.
∫ √

x2 + 9 dx

solution Substitute x = 3 tan θ , dx = 3 sec2 θ dθ . Then

√
x2 + 9 =

√
9 tan2 θ + 9 =

√
9
(
tan2 θ + 1

) = 3
√

sec2 θ = 3 sec θ,

and ∫ √
x2 + 9 dx =

∫
3 sec θ · 3 sec2 θ dθ = 9

∫
sec3 θ dθ.

We use a reduction formula to compute the resulting integral:∫ √
x2 + 9 dx = 9

∫
sec3θ dθ = 9

(
tan θ sec θ

2
+ 1

2

∫
sec θ dθ

)
= 9 tan θ sec θ

2
+ 9

2
ln | sec θ + tan θ | + C.

We now return to the original variable x. Since x = 3 tan θ , we have θ = tan−1 x
3 . We also use the figure to obtain:

∫ √
x2 + 9 dx = 9

2
· x

3
·
√

x2 + 9

3
+ 9

2
ln

∣∣∣∣∣
√

x2 + 9

3
+ x

3

∣∣∣∣∣+ C = x
√

x2 + 9

2
+ 9

2
ln

∣∣∣∣∣x +
√

x2 + 9

3

∣∣∣∣∣+ C.

q

x2 + 9
x

3
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37.
∫

dx

x
√

x2 − 4

solution Substitute x = 2 sec θ , dx = 2 sec θ tan θ dθ . Then

√
x2 − 4 =

√
4 sec2 θ − 4 =

√
4
(
sec2 θ − 1

) =
√

4 tan2 θ = 2 tan θ,

and ∫
dx

x
√

x2 − 4
=
∫

2 sec θ tan θ dθ

2 sec θ · 2 tan θ
= 1

2

∫
dθ = 1

2
θ + C.

Now, return to the original variable x. Since x = 2 sec θ , we have sec θ = x
2 or θ = sec−1 x

2 . Thus,∫
dx

x
√

x2 − 4
= 1

2
sec−1 x

2
+ C.

38.
∫ 27

8

dx

x + x2/3

solution We rewrite the integrand:

∫ 27

8

dx

x + x2/3
=
∫ 27

8

dx

x2/3
(
x1/3 + 1

) =
∫ 27

8
t
x−2/3 dx

1 + x1/3
.

Now, use the substitution u = 1 + x1/3, du = 1
3x−2/3 dx. x = 8 corresponds to u = 3, and x = 27 corresponds to

u = 4. Then ∫ 27

8

dx

x + x2/3
=
∫ 27

8

x−2/3 dx

1 + x1/3
= 3

∫ 4

3

du

u
= 3 (ln |u|)

∣∣∣∣4
3

= 3(ln 4 − ln 3)

39.
∫

dx

x3/2 + ax1/2

solution Let u = x1/2 or x = u2. Then dx = 2u du and∫
dx

x3/2 + ax1/2
=
∫

2u du

u3 + au
= 2

∫
du

u2 + a
.

If a > 0, then ∫
dx

x3/2 + ax1/2
= 2

∫
du

u2 + a
= 2√

a
tan−1

(
u√
a

)
+ C = 2√

a
tan−1

√
x

a
+ C.

If a = 0, then ∫
dx

x3/2
= − 2√

x
+ C.

Finally, if a < 0, then ∫
du

u2 + a
=
∫

du

u2 − (√−a
)2 ,

and the partial fraction decomposition takes the form

1

u2 − (√−a
)2 = A

u − √−a
+ B

u + √−a
.

Clearing denominators gives us

1 = A(u + √−a) + B(u − √−a).

Setting u = √−a then yields A = 1
2
√−a

, while setting u = −√−a yields B = − 1
2
√−a

. Hence,

∫
dx

x3/2 + ax1/2
= 2

∫
du

u2 + a
= 1√−a

∫
du

u − √−a
− 1√−a

∫
du

u + √−a

= 1√−a
ln |u − √−a| − 1√−a

ln
∣∣u + √−a

∣∣+ C

= 1√−a
ln

∣∣∣∣u − √−a

u + √−a

∣∣∣∣+ C = 1√−a
ln

∣∣∣∣
√

x − √−a√
x + √−a

∣∣∣∣+ C.
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In summary,

∫
dx

x3/2 + ax1/2
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2√
a

tan−1
√

x
a + C a > 0

1√−a
ln
∣∣∣√x−√−a√

x+√−a

∣∣∣+ C a < 0

− 2√
x

+ C a = 0

40.
∫

dx

(x − b)2 + 4

solution Substitute u = x − b, du = dx. Then∫
dx

(x − b)2 + 4
=
∫

du

u2 + 4
= 1

2
tan−1 u

2
+ C = 1

2
tan−1

(
x − b

2

)
+ C.

41.
∫

(x2 − x) dx

(x + 2)3

solution The partial fraction decomposition has the form

x2 − x

(x + 2)3
= A

x + 2
+ B

(x + 2)2
+ C

(x + 2)3
.

Clearing denominators gives us

x2 − x = A(x + 2)2 + B(x + 2) + C.

Setting x = −2 then yields C = 6. Equating x2-coefficients gives us A = 1, and equating x-coefficients yields
4A + B = −1, or B = −5. Thus,∫

x2 − x

(x + 2)3
dx =

∫
dx

x + 2
+
∫ −5 dx

(x + 2)2
+
∫

6 dx

(x + 2)3
= ln |x + 2| + 5

x + 2
− 3

(x + 2)2
+ C.

42.
∫

(7x2 + x) dx

(x − 2)(2x + 1)(x + 1)

solution The partial fraction decomposition has the form

7x2 + x

(x − 2)(2x + 1)(x + 1)
= A

x − 2
+ B

2x + 1
+ C

x + 1
.

Clearing denominators gives us

7x2 + x = A(2x + 1)(x + 1) + B(x − 2)(x + 1) + C(x − 2)(2x + 1).

Setting x = 2 then yields A = 2, while setting x = − 1
2 yields B = −1, and setting x = −1 yields C = 2. Hence,

∫
7x2 + x

(x − 2)(2x + 1)(x + 1)
dx = 2

∫
dx

x − 2
−
∫

dx

2x + 1
+ 2

∫
dx

x + 1

= 2 ln |x − 2| − 1

2
ln |2x + 1| + 2 ln |x + 1| + C.

43.
∫

16 dx

(x − 2)2(x2 + 4)

solution The partial fraction decomposition has the form

16

(x − 2)2 (x2 + 4
) = A

x − 2
+ B

(x − 2)2
+ Cx + D

x2 + 4
.

Clearing denominators gives us

16 = A(x − 2)
(
x2 + 4

)
+ B

(
x2 + 4

)
+ (Cx + D)(x − 2)2.

Setting x = 2 then yields B = 2. With B = 2,

16 = A
(
x3 − 2x2 + 4x − 8

)
+ 2

(
x2 + 4

)
+ Cx3 + (D − 4C)x2 + (4C − 4D)x + 4D

16 = (A + C)x3 + (−2A + 2 + D − 4C) x2 + (4A + 4C − 4D)x + (−8A + 8 + 4D)
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Equating coefficients of like powers of x now gives us the system of equations

A + C = 0

−2A − 4C + D + 2 = 0

4A + 4C − 4D = 0

−8A + 4D + 8 = 1

whose solution is

A = −1, C = 1, D = 0.

Thus, ∫
dx

(x − 2)2 (x2 + 4
) = −

∫
dx

x − 2
+ 2

∫
dx

(x − 2)2
+
∫

x

x2 + 4
dx

= − ln |x − 2| − 2
1

x − 2
+ 1

2
ln
(
x2 + 4

)
+ C.

44.
∫

dx

(x2 + 25)2

solution Use the trigonometric substitution x = 5 tan θ , dx = 5 sec2 θ dθ ,

x2 + 25 = (5 tan θ)2 + 25 = 25
(

tan2 θ + 1
)

= 25 sec2 θ.

Then,

∫
dx(

x2 + 25
)2 =

∫
5 sec2 θ dθ(
25 sec2 θ

)2 =
∫

dθ

125 sec2 θ
= 1

125

∫
cos2θ dθ

= 1

125

(
cos θ sin θ

2
+ 1

2
θ

)
+ C = 1

250
(cos θ sin θ + θ) + C.

To return to the original variable x we use the relation x = 5 tan θ and the accompanying figure.

x2 + 25
x

5

q

Thus,

∫
dx(

x2 + 25
)2 = 1

250

(
5√

x2 + 25
· x√

x2 + 25
+ tan−1

(x

5

))
+ C = 1

50

x

x2 + 25
+ 1

250
tan−1

(x

5

)
+ C.

45.
∫

dx

x2 + 8x + 25

solution Complete the square to rewrite the denominator as

x2 + 8x + 25 = (x + 4)2 + 9.

Now, let u = x + 4, du = dx. Then,∫
dx

x2 + 8x + 25
=
∫

du

u2 + 9
= 1

3
tan−1 u

3
+ C = 1

3
tan−1

(
x + 4

3

)
+ C.

46.
∫

dx

x2 + 8x + 4

solution Use the method of partial fractions. To facilitate the computations we first complete the square in the
denominator:

1

x2 + 8x + 4
= 1

(x + 4)2 − 12
.
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Now we substitute t = x + 4. Then dt = dx and∫
dx

x2 + 8x + 4
=
∫

dt

t2 − 12
=
∫

dt(
t − 2

√
3
) (

t + 2
√

3
) .

We use the following partial fraction decomposition of the integrand:

1(
t − 2

√
3
) (

t + 2
√

3
) = A

t − 2
√

3
+ B

t + 2
√

3
.

Clearing denominators gives us

1 = A
(
t + 2

√
3
)

+ B
(
t − 2

√
3
)

.

Setting t = 2
√

3 then yields A = 1
4
√

3
, while setting t = −2

√
3 yields B = − 1

4
√

3
. Hence,

∫
dx

x2 + 8x + 4
= 1

4
√

3

∫
dt

t − 2
√

3
− 1

4
√

3

∫
dt

t + 2
√

3
= 1

4
√

3
ln |t − 2

√
3| − 1

4
√

3
ln |t + 2

√
3| + C

= 1

4
√

3
ln

∣∣∣∣∣ t − 2
√

3

t + 2
√

3

∣∣∣∣∣+ C = 1

4
√

3
ln

∣∣∣∣∣ x + 42
√

3

x + 4 + 2
√

3

∣∣∣∣∣+ C.

47.
∫

(x2 − x) dx

(x + 2)3

solution The partial fraction decomposition has the form

x2 − x

(x + 2)3
= A

x + 2
+ B

(x + 2)2
+ C

(x + 2)3
.

Clearing denominators gives us

x2 − x = A(x + 2)2 + B(x + 2) + C.

Setting x = −2 then yields C = 6. Equating x2-coefficients gives us A = 1, and equating x-coefficients yields
4A + B = −1, or B = −5. Thus,∫

x2 − x

(x + 2)3
dx =

∫
dx

x + 2
+
∫ −5 dx

(x + 2)2
+
∫

6 dx

(x + 2)3
= ln |x + 2| + 5

x + 2
− 3

(x + 2)2
+ C.

48.
∫ 1

0
t2
√

1 − t2 dt

solution First compute the indefinite integral by using the substitution t = sin θ , dt = cos θ dθ . We have

√
1 − t2 =

√
1 − sin2θ =

√
cos2θ = cos θ,

and ∫
t2
√

1 − t2 dt =
∫

sin2θ cos θ cos θ dθ =
∫

sin2θcos2θ dθ

=
∫

(1 − cos2 θ) cos2 θ dθ =
∫

cos2 θ dθ −
∫

cos4 θ dθ

=
∫

cos2 θ dθ −
(

1

4
cos3 θ sin θ + 3

4

∫
cos2 θ dθ

)

= −1

4
cos3 θ sin θ + 1

4

∫
cos2 θ dθ

= −1

4
cos3 θ sin θ + 1

4

(
1

2
cos θ sin θ + 1

2
θ

)
+ C

= −1

4
cos3 θ sin θ + 1

8
cos θ sin θ + 1

8
θ + C.

Now, return to the original variable t . Since t = sin θ , cos θ =
√

1 − t2 and

∫
t2
√

1 − t2 dt = − t (1 − t2)3/2

4
+ t
√

1 − t2

8
+ sin−1 t

8
+ C = t3

√
1 − t2

4
+ sin−1t

8
− t
√

1 − t2

8
+ C.
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Then ∫ 1

0
t2
√

1 − t2 dt =
(

t3
√

1 − t2

4
+ sin−1 t

8
− t
√

1 − t2

8

) ∣∣∣∣1
0

= 0 + 1

8
sin−1 1 − 0 − 0 + 1

8
sin−1 0 + 0 = sin−1 1

8
= π

16

49.
∫

dx

x4
√

x2 + 4

solution Substitute x = 2 tan θ , dx = 2sec2θ dθ . Then√
x2 + 4 =

√
4tan2θ + 4 =

√
4
(
tan2θ + 1

) = 2
√

sec2θ = 2 sec θ,

and ∫
dx

x4
√

x2 + 4
=
∫

2sec2θ dθ

16tan4θ · 2 sec θ
=
∫

sec θ dθ

16tan4θ
.

We have

sec θ

tan4θ
= cos3θ

sin4θ
.

Hence,

∫
dx

x4
√

x2 + 4
= 1

16

∫
cos3θ dθ

sin4θ
= 1

16

∫
cos2θ cos θ dθ

sin4θ
= 1

16

∫ (
1 − sin2θ

)
cos θ dθ

sin4θ
.

Now substitute u = sin θ and du = cos θ dθ to obtain∫
dx

x4
√

x2 + 4
= 1

16

∫
1 − u2

u4
du = 1

16

∫ (
u−4 − u−2

)
du = − 1

48u3
+ 1

16

1

u
+ C

= − 1

48
· 1

sin3θ
+ 1

16

1

sin θ
+ C = − 1

48
csc3θ + 1

16
csc θ + C.

Finally, return to the original to the original variable x using the relation x = 2 tan θ and the figure below.

∫
dx

x4
√

x2 + 4
= − 1

48

(√
x2 + 4

x

)3

+ 1

16

√
x2 + 4

x
+ C = −

(
x2 + 4

)3/2

48x3
+
√

x2 + 4

16x
+ C.

q

x2 + 4
x

2

50.
∫

dx

(x2 + 5)3/2

solution Substitute x = √
5 tan θ . Then dx = √

5 sec2 θ dθ ,

x2 + 5 = 5 tan2 θ + 5 = 5(tan2 θ + 1) = 5 sec2 θ,

and ∫
dx(

x2 + 5
)3/2

= 1

5

∫
sec2 θ

sec3 θ
dθ = 1

5

∫
cos θ dθ = 1

5
sin θ + C.

We now return to the original variable x using the relation x = √
5 tan θ and the figure below. Thus,∫

dx(
x2 + 5

)3/2
= 1

5
· x√

x2 + 5
+ C.

x2 + 5
x

t

5
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51.
∫

(x + 1)e4−3x dx

solution We compute the integral using Integration by Parts with u = x + 1 and v′ = e4−3x . Then u′ = 1,

v = − 1
3 e4−3x and∫

(x + 1)e4−3x dx = −1

3
(x + 1)e4−3x + 1

3

∫
e4−3x dx = −1

3
(x + 1)e4−3x + 1

3
·
(

−1

3

)
e4−3x + C

= −1

9
e4−3x(3x + 4) + C.

52.
∫

x−2 tan−1 x dx

solution We use Integration by Parts with u = tan−1x and v′ = x−2. Then u′ = 1
1+x2 , v = −x−1 and

∫
x−2tan−1x dx = − tan−1x

x
+
∫

dx

x
(
1 + x2

) .
For the remaining integral, the partial fraction decomposition takes the form

1

x(1 + x2)
= A

x
+ Bx + C

1 + x2
.

Clearing denominators gives us

1 = A(1 + x2) + (Bx + C)x.

Setting x = 0 then yields A = 1. Next, equating the x2-coefficients gives

0 = A + B so B = −1,

while equating x-coefficients gives C = 0. Hence,

1

x
(
1 + x2

) = 1

x
− x

1 + x2
,

and ∫
dx

x
(
1 + x2

) =
∫

1

x
dx −

∫
x dx

1 + x2
= ln |x| − 1

2
ln
(

1 + x2
)

+ C.

Therefore, ∫
x−2tan−1x dx = − tan−1x

x
+ ln |x| − 1

2
ln
(

1 + x2
)

+ C.

53.
∫

x3 cos(x2) dx

solution Substitute t = x2, dt = 2x dx. Then∫
x3 cos

(
x2
)

dx = 1

2

∫
t cos t dt.

We compute the resulting integral using Integration by Parts with u = t and v′ = cos t . Then u′ = 1, v = sin t and∫
t cos t dt = t sin t −

∫
sin t dt = t sin t + cos t + C.

Thus, ∫
x3 cos

(
x2
)

dx = 1

2
x2 sin x2 + 1

2
cos x2 + C.

54.
∫

x2(ln x)2 dx

solution We use Integration by Parts with u = (ln x)2 and v′ = x2. Then u′ = 2 ln x
x , v = x3

3 and

∫
x2(ln x)2dx = x3

3
(ln x)2 − 2

3

∫
x2 ln x dx.
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To calculate the resulting integral, we again use Integration by Parts, this time with u = ln x and v′ = x2. Then, u′ = 1
x ,

v = x3

3 , and

∫
x2 ln x dx = x3

3
ln x − 1

3

∫
x2 dx = x3

3
ln x − x3

9
+ C.

Finally,

∫
x2(ln x)2dx = x3

3
(ln x)2 − 2

3

(
x3

3
ln x − x3

9

)
+ C = x3

3

(
(ln x)2 − 2

3
ln x + 2

9

)
+ C.

55.
∫

x tanh−1 x dx

solution We use Integration by Parts with u = tanh−1x and v′ = x. Then u′ = 1
1−x2 , v = x2

2 and

∫
x tanh−1 x dx = x2

2
tanh−1 x − 1

2

∫
x2

1 − x2
dx.

Now

x2

1 − x2
= x2 − 1 + 1

1 − x2
= −1 + 1

1 − x2
,

and the partial fraction decomposition for the remaining fraction takes the form

1

1 − x2
= A

1 − x
+ B

1 + x
.

Clearing denominators gives us

1 = A(1 + x) + B(1 − x).

Setting x = 1 then yields A = 1
2 , while setting x = −1 yields B = 1

2 . Thus,

∫
x2

1 − x2
= −

∫
dx + 1

2

∫
1

1 − x
dx + 1

2

∫
1

1 + x
dx

= −x − 1

2
ln |1 − x| + 1

2
ln |1 + x| + C = −x + 1

2
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣+ C.

Therefore,∫
x tanh−1 x dx = x2

2
tanh−1 x − 1

2

(
−x + 1

2
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣
)

+ C = x2

2
tanh−1 x + x

2
− 1

4
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣+ C.

56.
∫

tan−1 t dt

1 + t2

solution Substitute u = tan−1t . Then, du = dt
1+t2 and

∫
tan−1t dt

1 + t2
=
∫

u du = 1

2
u2 + C = 1

2

(
tan−1t

)2 + C.

57.
∫

ln(x2 + 9) dx

solution We compute the integral using Integration by Parts with u = ln
(
x2 + 9

)
and v′ = 1. Then u′ = 2x

x2+9
,

v = x, and ∫
ln
(
x2 + 9

)
dx = x ln

(
x2 + 9

)
−
∫

2x2

x2 + 9
dx.

To compute this integral we write:

x2

x2 + 9
=
(
x2 + 9

)
− 9

x2 + 9
= 1 − 9

x2 + 9
;
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hence,

∫
x2

x2 + 9
dx =

∫
1 dx − 9

∫
dx

x2 + 9
= x − 3tan−1 x

3
+ C.

Therefore, ∫
ln
(
x2 + 9

)
dx = x ln

(
x2 + 9

)
− 2x + 6tan−1

(x

3

)
+ C.

58.
∫

(sin x)(cosh x) dx

solution We compute the integral using Integration by Parts with u = sin x and v′ = cosh x. Then u′ = cos x,
v = sinh x and ∫

sin x cosh x dx = sin x sinh x −
∫

cos x sinh x dx.

We compute the resulting integral using Integration by Parts, this time with u = cos x and v′ = sinh x. Then u′ = − sin x,
v = cosh x and ∫

cos x sinh x dx = cos x cosh x +
∫

sin x cosh x dx.

Therefore, ∫
sin x cosh x dx = sin x sinh x − cos x cosh x −

∫
sin x cosh x dx.

Solving for
∫

(sin x)(cosh x) dx, we find

2
∫

sin x cosh x dx = sin x sinh x − cos x cosh x + C

∫
sin x cosh x dx = 1

2
sin x sinh x − 1

2
cos x cosh x + C

59.
∫ 1

0
cosh 2t dt

solution
∫ 1

0
cosh 2t dt = 1

2
sinh 2t

∣∣∣∣1
0

= 1

2
sinh 2.

60.
∫

sinh3 x cosh x dx

solution Let u = sinh x. Then du = cosh x dx and∫
sinh3 x cosh x dx =

∫
u3 du = 1

4
u4 + C = 1

4
sinh4 x + C.

61.
∫

coth2(1 − 4t) dt

solution
∫

coth2(1 − 4t) dt =
∫ (

1 + csch2(1 − 4t)
)

dt = t + 1

4
coth(1 − 4t) + C.

62.
∫ 0.3

−0.3

dx

1 − x2

solution
∫ 0.3

−0.3

dx

1 − x2
= tanh−1 x

∣∣∣∣0.3

−0.3
= 2 tanh−1(0.3).

63.
∫ 3

√
3/2

0

dx√
9 − x2

solution
∫ 3

√
3/2

0

dx√
9 − x2

= sin−1 x

3

∣∣∣∣3
√

3/2

0
= sin−1

√
3

2
= π

3
.
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64.
∫ √

x2 + 1 dx

x2

solution Let x = sinh t . Then dx = cosh t dt and

∫ √
x2 + 1 dx

x2
=
∫

cosh2 t

sinh2 t
dt =

∫
coth2 t dt =

∫
(1 + csch2 t) dt = t − coth t + C

= sinh−1 x −
√

x2 + 1

x
+ C.

65. Use the substitution u = tanh t to evaluate
∫

dt

cosh2 t + sinh2 t
.

solution Let u = tanh t . Then du = sech2 t dt and

∫
dt

cosh2 t + sinh2 t
=
∫

sech2 t

1 + tanh2 t
dt =

∫
du

1 + u2
= tan−1 u + C = tan−1(tanh x) + C.

66. Find the volume obtained by rotating the region enclosed by y = ln x and y = (ln x)2 about the y-axis.

solution The curves meet at (1, 0) and at (e, 1). We compute the volume of the solid using the method of cylindrical
shells:

V =
∫ e

1
2πx · (ln x − (ln x)2) dx = 2π

∫ e

1
x ln x dx − 2π

∫ 1

0
x(ln x)2 dx

For the second integral, use integration by parts, with u = (ln x)2 and v′ = x, so that u′ = 2 ln x
x and v = 1

2x2. Then

V = 2π

∫ e

1
x ln x dx − 2π

(
1

2
x2(ln x)2

∣∣∣∣e
1

−
∫ e

1
x ln x dx

)
= −πe2 + 4π

∫ e

1
x ln x dx

Again apply integration by parts, with u = ln x and v′ = x, so that u′ = 1
x and v = 1

2x2. Then

V = −πe2 + 4π

∫ e

1
x ln x dx = −πe2 + 4π

(
1

2
x2 ln x

∣∣∣∣e
1

− 1

2

∫ e

1
x dx

)
= −πe2 + 4π

(
1

2
e2 − 1

4
e2 + 1

4

)
= π

67. Let In =
∫

xn dx

x2 + 1
.

(a) Prove that In = xn−1

n − 1
− In−2.

(b) Use (a) to calculate In for 0 ≤ n ≤ 5.
(c) Show that, in general,

I2n+1 = x2n

2n
− x2n−2

2n − 2
+ · · · + (−1)n−1 x2

2
+ (−1)n

1

2
ln(x2 + 1) + C

I2n = x2n−1

2n − 1
− x2n−3

2n − 3
+ · · · + (−1)n−1x + (−1)n tan−1 x + C

solution

(a) In =
∫

xn

x2 + 1
dx =

∫
xn−2(x2 + 1 − 1)

x2 + 1
dx =

∫
xn−2 dx −

∫
xn−2

x2 + 1
dx = xn−1

n − 1
− In−2.

(b) First compute I0 and I1 directly:

I0 =
∫

x0 dx

x2 + 1
=
∫

dx

x2 + 1
= tan−1x + C and I1 =

∫
x dx

x2 + 1
= 1

2
ln
(
x2 + 1

)
+ C.

We now use the equality obtained in part (a) to compute I2, I3, I4 and I5:

I2 = x2−1

2 − 1
− I2−2 = x − I0 = x − tan−1x + C;

I3 = x3−1

3 − 1
− I3−2 = x2

2
− I1 = x2

2
− 1

2
ln
(
x2 + 1

)
+ C;

I4 = x4−1

4 − 1
− I4−2 = x3

3
− I2 = x3

3
−
(
x − tan−1x

)
+ C = x3

3
− x + tan−1x + C;

I5 = x5−1

5 − 1
− I5−2 = x4

4
− I3 = x4

4
−
(

x2

2
− 1

2
ln
(
x2 + 1

))
+ C = x4

4
− x2

2
+ 1

2
ln
(
x2 + 1

)
+ C.
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(c) We prove the two identities using mathematical induction. We first prove that for n ≥ 1:

I2n+1 = x2n

2n
− x2n−2

2n − 2
+ · · · + (−1)n · 1

2
ln
(
x2 + 1

)
+ C.

We verify the equality for n = 1. Setting n = 1, we find

I3 = x2

2
+ (−1)1 · 1

2
ln
(
x2 + 1

)
+ C = x2

2
− 1

2
ln
(
x2 + 1

)
+ C,

which agrees with the value obtained in part (b). We now assume that for n = k:

I2k+1 = x2k

2k
− x2k−2

2k − 2
+ · · · + (−1)k · 1

2
ln
(
x2 + 1

)
+ C.

We use this assumption to prove the equality for n = k + 1. By part (a) and the induction hypothesis

I2k+3 = x2k+2

2k + 2
− I2k+1 = x2k+2

2k + 2
− x2k

2k
+ x2k−2

2k − 2
− · · · − (−1)k · 1

2
ln
(
x2 + 1

)
+ C

= x2k+2

2k + 2
− x2k

2k
+ · · · + (−1)k+1 · 1

2
ln
(
x2 + 1

)
+ C

as required. We now prove the second identity for n ≥ 1:

I2n = x2n−1

2n − 1
− x2n−3

2n − 3
+ · · · + (−1)ntan−1x + C.

We verify this equality for n = 1:

I2 = x − tan−1x + C,

which agrees with the value obtained in part (b). We now assume that for n = k

I2k = x2k−1

2k − 1
− x2k−3

2k − 3
+ · · · + (−1)k tan−1x + C.

We use this assumption to prove the equality for n = k + 1. By part (a) and the induction hypothesis

I2k+2 = x2k+1

2k + 1
− I2k = x2k+1

2k + 1
− x2k−1

2k − 1
+ x2k−3

2k − 3
− · · · − (−1)k · tan−1x + C

= x2k+1

2k + 1
− x2k−1

2k − 1
+ · · · + (−1)k+1 · tan−1x + C

as required.

68. Let Jn =
∫

xne−x2/2 dx.

(a) Show that J1 = −e−x2/2.

(b) Prove that Jn = −xn−1e−x2/2 + (n − 1)Jn−2.

(c) Use (a) and (b) to compute J3 and J5.

solution

(a) Let u = − x2

2 . Then du = −x dx and

J1 =
∫

xe−x2/2 dx = −
∫

eu du = −eu + C = −e−x2/2 + C.

(b) Using Integration by Parts with u = xn−1 and v′ = xe−x2/2, we find

Jn = −xn−1e−x2/2 + (n − 1)

∫
xn−2e−x2/2 dx = −xn−1e−x2/2 + (n − 1)Jn−2.

(c) Using the results from parts (a) and (b),

J3 = −x3−1e−x2/2 + (3 − 1)J3−2 = −x2e−x2/2 + 2J1

= −x2e−x2/2 − 2e−x2/2 + C = −e−x2/2(x2 + 2) + C
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and then

J5 = −x5−1e−x2/2 + (5 − 1)J5−2 = −x4e−x2/2 + 4J3

= −x4e−x2/2 − 4e−x2/2(x2 + 2) + C = −e−x2/2(x4 + 4x2 + 8) + C.

69. Compute p(X ≤ 1), where X is a continuous random variable with probability density p(x) = 1

π(x2 + 1)
.

solution

P(X ≤ 1) =
∫ 1

−∞
p(x) dx = 1

π

∫ 1

−∞
1

x2 + 1
dx = 1

π
tan−1 x

∣∣∣∣1−∞
= 1

π
·
(

π

4
− −π

2

)
= 3

4

70. Show that p(x) = 1
4 e−x/2 + 1

6 e−x/3 is a probability density on [0, ∞) and find its mean.

solution To show that p(x) is a probability density, we must show that its integral over [0, ∞) is 1:

∫ ∞
0

p(x) dx =
∫ ∞

0

(
1

4
e−x/2 + 1

6
e−x/3

)
dx =

(
−1

2
e−x/2 − 1

2
e−x/3

) ∣∣∣∣∞
0

= 0 + 0 + 1

2
+ 1

2
= 1

The mean of p(x) is

μ =
∫ ∞

0
xp(x) dx =

∫ ∞
0

(
1

4
xe−x/2 + 1

6
xe−x/3

)
dx

Now, for a positive constant a, using integration by parts with u = x, v′ = e−x/a , we have u′ = 1, v = −ae−x/a , and∫ ∞
0

xe−x/a dx = −axe−x/a

∣∣∣∣∞
0

+ a

∫ ∞
0

e−x/a dx = −a2
(
e−x/a

) ∣∣∣∣∞
0

= a2

so that

μ = 1

4

∫ ∞
0

xe−x/2 dx + 1

6

∫ ∞
0

xe−x/3 dx = 1

4
· 4 + 1

6
· 9 = 5

2

71. Find a constant C such that p(x) = Cx3e−x2
is a probability density and compute p(0 ≤ X ≤ 1).

solution We first find the indefinite integral of p(x) using integration by parts, with u = x2, v′ = xe−x2
, so that

u′ = 2x and v = − 1
2 e−x2

:

∫
Cx3e−x2

dx = C

(
−1

2
x2e−x2 +

∫
xe−x2

dx

)
= C

(
−1

2
x2e−x2 − 1

2
e−x2

)
= −C

2
e−x2

(x2 + 1)

To determine the constant C, the value of the integral on the interval [0, ∞) must be 1:

1 =
∫ ∞

0
Cx3e−x2

dx = −C

2
e−x/2(x2 + 1)

∣∣∣∣∞
0

= −C

2

(
lim

R→∞
x2 + 1

ex/2
− 1

)
= C

2

so that C = 2. Then

P(0 ≤ X ≤ 1) =
∫ 1

0
2x3e−x2

dx = −e−x2
(x2 + 1)

∣∣∣∣1
0

= 1 − 2e−1 ≈ 0.13212

72. The interval between patient arrivals in an emergency room is a random variable with exponential density function
p(t) = 0.125e−0.125t (t in minutes). What is the average time between patient arrivals? What is the probability of two
patients arriving within 3 minutes of each other?

solution The mean of the distribution is (using integration by parts with u = t , v′ = 0.125e−0.125t ):

∫ ∞
0

tp(t) dt =
∫ ∞

0
0.125te−0.125t dt = te−0.125t

∣∣∣∣∞
0

+
∫ ∞

0
e−0.125t dt = −8e−0.125t

∣∣∣∣∞
0

= 8

Since the distribution gives the waiting time between arrivals, it follows that the probability of two patients arriving within
3 minutes of each other is∫ 3

0
p(t) dt =

∫ 3

0
0.125e−0.125t dt = −e−0.125t

∣∣∣∣3
0

= 1 − e−0.375 ≈ 1 − 0.68729 ≈ 0.31271
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73. Calculate the following probabilities, assuming that X is normally distributed with mean μ = 40 and σ = 5.

(a) p(X ≥ 45) (b) p(0 ≤ X ≤ 40)

solution Let F be the standard normal cumulative distribution function. Then by Theorem 1 in Section 7.7,
(a)

p(X ≥ 45) = 1 − p(X ≤ 45) = 1 − F

(
45 − 40

5

)
= 1 − F(1) ≈ 1 − 0.8413 ≈ 0.1587

(b)

p(0 ≤ X ≤ 40) = p(X ≤ 40) − p(X ≤ 0) = F

(
40 − 40

5

)
− F

(
0 − 40

5

)

= F(0) − F(−8) = 1

2
− F(−8) ≈ 1

2
− 0 = 1

2

Note that p(X ≤ 40) is exactly 1
2 since 40 is the mean. Also, since −8 is so far to the left in the standard normal

distribution, the probability of its occurrence is quite small (approximately 8 × 10−11).

74. According to kinetic theory, the molecules of ordinary matter are in constant random motion. The energy E of a
molecule is a random variable with density function p(E) = 1

kT
e−E/(kT ), where T is the temperature (in kelvins) and

k is Boltzmann’s constant. Compute the mean kinetic energy E in terms of k and T .

solution By definition,

∫ ∞
0

Ee−E/kT dE = lim
R→∞

∫ R

0
Ee−E/kT dE.

We compute the definite integral using Integration by Parts with u = E, v′ = e−E/kT . Then u′ = 1, v = −kT e−E/kT

and ∫ R

0
Ee−E/kT dE = −kT e−E/kT E

∣∣∣R
E=0

+
∫ R

0
kT e−E/kT dE = −kT e−R/kT R − (kT )2e−E/kT

∣∣∣R
E=0

= −kT Re−R/kT −
(
k2T 2e−R/kT − k2T 2e0

)
= k2T 2 − kT Re−R/kT − k2T 2e−R/kT .

We now let R → ∞, obtaining:∫ ∞
0

Ee−E/RT dE = lim
R→∞

∫ R

0
Ee−E/RT dE = lim

R→∞
(
k2T 2 − kT Re−R/kT − k2T 2e−R/kT

)

= k2T 2 − kT lim
R→∞ Re−R/kT − 0 = k2T 2 − kT lim

R→∞ Re−R/kT .

We compute the remaining limit using L’Hôpital’s Rule:

lim
R→∞ Re−R/kT = lim

R→∞
R

eR/kT
= lim

R→∞
dR
dR

d
dR

(
eR/kT

) = lim
R→∞

1
1

kT
eR/kT

= 0.

Thus, ∫ ∞
0

Ee−E/RT dE = k2T 2,

and

E = 1

kT

∫ ∞
0

Ee−E/kT dE = 1

kT
· k2T 2 = kT .

In Exercises 75–84, determine whether the improper integral converges and, if so, evaluate it.

75.
∫ ∞

0

dx

(x + 2)2

solution

∫ ∞
0

dx

(x + 2)2
= lim

R→∞

∫ R

0

dx

(x + 2)2
= lim

R→∞ − 1

x + 2

∣∣∣∣R
0

= lim
R→∞

(
− 1

R + 2
+ 1

0 + 2

)
= lim

R→∞

(
− 1

R + 2
+ 1

2

)
= 0 + 1

2
= 1

2
.
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76.
∫ ∞

4

dx

x2/3

solution The integral
∫ ∞
a

dx

xp
(a > 0) converges if p > 1 and diverges if p ≤ 1. Here, p = 2

3 < 1, hence the

integral diverges.

77.
∫ 4

0

dx

x2/3

solution

∫ 4

0

dx

x2/3
= lim

R→0+

∫ 4

R

dx

x2/3
= lim

R→0+ 3x1/3
∣∣∣∣4
R

= lim
R→0+

(
3 · 41/3 − 3 · R1/3

)
= 3

3√
4.

78.
∫ ∞

9

dx

x12/5

solution

∫ ∞
9

dx

x12/5
= lim

R→∞

∫ R

9

dx

x12/5
= lim

R→∞ −5

7
x−7/5

∣∣∣∣R
9

= lim
R→∞

(
−5

7
R−7/5 + 5

7
· 9−7/5

)

= 0 + 5

7
· 9−7/5 = 5

7 · 9 · 92/5
= 5

63 · 92/5
.

79.
∫ 0

−∞
dx

x2 + 1

solution

∫ 0

−∞
dx

x2 + 1
= lim

R→−∞

∫ 0

R

dx

x2 + 1
= lim

R→−∞ tan−1x

∣∣∣∣0
R

= lim
R→−∞

(
tan−10 − tan−1R

)

= lim
R→−∞

(
−tan−1R

)
= −

(
−π

2

)
= π

2
.

80.
∫ 9

−∞
e4x dx

solution

∫ 9

−∞
e4x dx = lim

R→−∞

∫ 9

R
e4x dx = lim

R→−∞
1

4
e4x

∣∣∣∣9
R

= lim
R→−∞

1

4
e36 − 1

4
e4R = e36

4
.

81.
∫ π/2

0
cot θ dθ

solution

∫ π/2

0
cot θ dθ = lim

R→0+

∫ π/2

R
cot θ dθ = lim

R→0+ ln | sin θ |
∣∣∣∣π/2

R

= lim
R→0+

(
ln
(

sin
π

2

)
− ln(sin R)

)

= lim
R→0+ (ln 1 − ln(sin R)) = lim

R→0+ ln

(
1

sin R

)
= ∞.

We conclude that the improper integral diverges.

82.
∫ ∞

1

dx

(x + 2)(2x + 3)

solution First, evaluate the indefinite integral. The following partial fraction decomposition has the form

1

(x + 2)(2x + 3)
= − 1

x + 2
+ 2

2x + 3
.

Clearing denominators gives us

1 = A(2x + 3) + B(x + 2).
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Setting x = −2 then yields A = −1, while setting x = − 3
2 yields B = 2. Hence,

∫
dx

(x + 2)(2x + 3)
= −

∫
dx

x + 2
+ 2

∫
dx

2x + 3
= − ln |x + 2| + ln |2x + 3| + C = ln

∣∣∣∣2x + 3

x + 2

∣∣∣∣+ C.

Now, for R > 1,

∫ R

1

dx

(x + 2)(2x + 3)
= ln

∣∣∣∣2x + 3

x + 2

∣∣∣∣
∣∣∣∣R
1

= ln
2R + 3

R + 2
− ln

5

3
,

and ∫ ∞
1

dx

(x + 2)(2x + 3)
= lim

R→∞

(
ln

2R + 3

R + 2

)
− ln

5

3
= ln 2 + ln

3

5
= ln

6

5
.

83.
∫ ∞

0
(5 + x)−1/3 dx

solution

∫ ∞
0

(5 + x)−1/3 dx = lim
R→∞

∫ R

0
(5 + x)−1/3 dx = lim

R→∞
3

2
(5 + x)2/3

∣∣∣∣R
0

= lim
R→∞

(
3

2
(5 + R)2/3 − 3

2
52/3

)
= ∞.

We conclude that the improper integral diverges.

84.
∫ 5

2
(5 − x)−1/3 dx

solution

∫ 5

2
(5 − x)−1/3 dx = lim

R→5−

∫ R

2
(5 − x)−1/3 dx = lim

R→5− −3

2
(5 − x)2/3

∣∣∣∣R
2

= lim
R→5− −3

2

(
(5 − R)2/3 − 32/3

)
= −3

2

(
0 − 32/3

)
= 35/3

2
.

In Exercises 85–90, use the Comparison Test to determine whether the improper integral converges or diverges.

85.
∫ ∞

8

dx

x2 − 4

solution For x ≥ 8, 1
2x2 ≥ 4, so that

−1

2
x2 ≤ −4

1

2
x2 ≤ x2 − 4

and

1

x2 − 4
≤ 2

x2
.

Now,
∫ ∞

1

dx
x2 converges, so

∫ ∞
8

2
x2 dx also converges. Therefore, by the comparison test,

∫ ∞
8

dx

x2 − 4
converges.

86.
∫ ∞

8
(sin2 x)e−x dx

solution The following inequality holds for all x,

0 ≤
(

sin2x
)

e−x ≤ e−x .
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We use direct computation to show that the improper integral of e−x over the interval [8, ∞) converges:∫ ∞
8

e−x dx = lim
R→∞

∫ R

8
e−x dx = lim

R→∞ −e−x

∣∣∣∣R
8

= lim
R→∞

(
−e−R + e−8

)
= 0 + e−8 = e−8.

Therefore, by the Comparison Test, the improper integral
∫ ∞

8
(sin2x)e−x dx also converges.

87.
∫ ∞

3

dx

x4 + cos2 x

solution For x ≥ 1, we have

1

x4 + cos2x
≤ 1

x4
.

Since
∫ ∞

1

dx

x4
converges, the Comparison Test guarantees that

∫ ∞
1

dx

x4 + cos2x
also converges. The integral∫ 3

1

dx

x4 + cos2x
has a finite value (notice that x4 + cos2x �= 0) hence we conclude that the integral

∫ ∞
3

dx

x4 + cos2x

also converges.

88.
∫ ∞

1

dx

x1/3 + x2/3

solution If x ≥ 1, then x1/3 ≥ 1; therefore,

x1/3 + x2/3 = x1/3
(

1 + x1/3
)

≤ x1/3
(
x1/3 + x1/3

)
= x1/3 · 2x1/3 = 2x2/3.

Hence,

1

x1/3 + x2/3
≥ 1

2x2/3
.

The integral
∫ ∞

1

dx

x2/3
diverges; hence

∫ ∞
1

dx

2x2/3
also diverges. Therefore, by the Comparison Test, the improper

integral
∫ ∞

1

dx

x1/3 + x2/3
also diverges.

89.
∫ 1

0

dx

x1/3 + x2/3

solution For 0 ≤ x ≤ 1,

x1/3 + x2/3 ≥ x1/3 so
1

x1/3 + x2/3
≤ 1

x1/3
.

Now,
∫ 1

0
x−1/3 dx converges. Therefore, by the Comparison Test, the improper integral

∫ 1

0

dx

x1/3 + x2/3
also converges.

90.
∫ ∞

0
e−x3

dx

solution For x > 1, ex ≥ x; hence ex3 ≥ x3, therefore 0 ≤ e−x3 ≤ x−3. Since
∫ ∞

1

dx

x3
converges, the integral∫ ∞

1
e−x3

dx also converges by the Comparison Test. We write

∫ ∞
0

e−x3
dx =

∫ 1

0
e−x3

dx +
∫ ∞

1
e−x3

dx.

The first integral on the right hand side has a finite value and the second integral converges. We conclude that the integral∫ ∞
0

e−x3
dx converges.

91. Calculate the volume of the infinite solid obtained by rotating the region under y = (x2 + 1)−2 for 0 ≤ x < ∞
about the y-axis.

solution Using the Shell Method, the volume of the infinite solid obtained by rotating the region under the graph of

y =
(
x2 + 1

)−2
over the interval [0, ∞) about the y-axis is

V = 2π

∫ ∞
0

x(
x2 + 1

)2 dx.
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Now,

∫ ∞
0

x(
x2 + 1

)2 dx = lim
R→∞

∫ R

0

x dx(
x2 + 1

)2
We substitute t = x2 + 1, dt = 2x dx. The new limits of integration are t = 1 and t = R2 + 1. Thus,

∫ R

0

x dx(
x2 + 1

)2 =
∫ R2+1

1

1
2 dt

t2
= − 1

2t

∣∣∣∣R
2+1

1
= 1

2

(
1 − 1

R2 + 1

)
.

Taking the limit as R → ∞ yields:∫ ∞
0

x dx(
x2 + 1

)2 = lim
R→∞

1

2

(
1 − 1

R2 + 1

)
= 1

2
(1 − 0) = 1

2
.

Therefore,

V = 2π · 1

2
= π.

92. Let R be the region under the graph of y = (x + 1)−1 for 0 ≤ x < ∞. Which of the following quantities is finite?

(a) The area of R

(b) The volume of the solid obtained by rotating R about the x-axis

(c) The volume of the solid obtained by rotating R about the y-axis

solution

(a) The area of R is

∫ ∞
0

dx

x + 1
= lim

R→∞

∫ R

0

dx

x + 1
= lim

R→∞ ln |x + 1|
∣∣∣∣R
0

= lim
R→∞

(
ln(R + 1) − ln 1

) = ∞.

Hence, the area of R is not finite.

(b) Using the Disk Method, the volume of the solid obtained by rotating R about the x-axis is

π

∫ ∞
0

dx

(x + 1)2
= π lim

R→∞

∫ R

0

dx

(x + 1)2
= π lim

R→∞ − 1

x + 1

∣∣∣∣R
0

= π lim
R→∞

(
− 1

R + 1
+ 1

)
= π.

Hence, the volume of the solid obtained by rotating R about the x-axis is finite.

(c) Using the Shell Method, the volume of the solid obtained by rotating R about the y-axis is

2π

∫ ∞
0

x

x + 1
dx = 2π lim

R→∞

∫ R

0

x dx

x + 1
.

Now,

∫ R

0

x dx

x + 1
=
∫ R

0

(x + 1) − 1

x + 1
dx =

∫ R

0

(
1 − 1

x + 1

)
dx = (x − ln(x + 1))

∣∣∣∣R
0

= R − (ln(R + 1) − ln 1) = R − ln(R + 1).

Thus,

2π lim
R→∞

∫ R

0

x dx

x + 1
= 2π lim

R→∞ (R − ln(R + 1)) = 2π lim
R→∞ R

(
1 − ln(R + 1)

R

)
= ∞.

Hence, the volume of the solid obtained by rotating R about the y-axis is not finite.

93. Show that
∫∞

0 xne−x2
dx converges for all n > 0. Hint: First observe that xne−x2

< xne−x for x > 1. Then show
that xne−x < x−2 for x sufficiently large.

solution For x > 1, x2 > x; hence ex2
> ex , and 0 < e−x2

< e−x . Therefore, for x > 1 the following inequality
holds:

xn+2e−x2
< xn+2e−x .
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Now, using L’Hôpital’s Rule n + 2 times, we find

lim
x→∞ xn+2e−x = lim

x→∞
xn+2

ex
= lim

x→∞
(n + 2)xn+1

ex
= lim

x→∞
(n + 2)(n + 1)xn

ex

= · · · = lim
x→∞

(n + 2)!
ex

= 0.

Therefore,

lim
x→∞ xn+2e−x2 = 0

by the Squeeze Theorem, and there exists a number R > 1 such that, for all x > R:

xn+2e−x2
< 1 or xne−x2

< x−2.

Finally, write ∫ ∞
0

xne−x2
dx =

∫ R

0
xne−x2

dx +
∫ ∞
R

xne−x2
dx.

The first integral on the right-hand side has finite value since the integrand is a continuous function. The second integral

converges since on the interval of integration, xne−x2
< x−2 and we know that

∫ ∞
R

x−2 dx =
∫ ∞
R

dx

x2
converges. We

conclude that the integral
∫ ∞

0
xne−x2

dx converges.

94. Compute the Laplace transform Lf (s) of the function f (x) = x for s > 0. See Exercises 86–89 in Section 7.6 for
the definition of Lf (s).

solution The Laplace transform of f (x) = x is the following integral:

L(x)(s) =
∫ ∞

0
xe−sx dx = lim

R→∞

∫ R

0
xe−sx dx.

We compute the definite integral using Integration by Parts with u = x and v′ = e−sx . Then u′ = 1, v = − 1
s e−sx and

∫ R

0
xe−sx dx = −1

s
xe−sx

∣∣∣∣R
0

+
∫ R

0

1

s
e−sx dx =

(
−1

s
Re−sR − 1

s2
e−sx

)∣∣∣∣R
0

= −1

s
Re−sR − 1

s2

(
e−sR − e0

)
= 1

s2
− 1

s2
e−sR − 1

s
Re−sR.

Therefore,

L(x)(s) = lim
R→∞

(
1

s2
− 1

s2
e−sR − 1

s
Re−sR

)
= 1

s2
− 1

s2
lim

R→∞ e−sR − 1

s
lim

R→∞ Re−sR.

Since s > 0, we have lim
R→∞ e−sR = 0. Also by L’Hôpital’s Rule:

lim
R→∞ Re−sR = lim

R→∞
R

esR
= lim

R→∞
1

sesR
= 0.

Finally,

L(x)(s) = 1

s2
− 0 − 0 = 1

s2
.

95. Compute the Laplace transform Lf (s) of the function f (x) = x2eαx for s > α.

solution The Laplace transform is the following integral:

L
(
x2eαx

)
(s) =

∫ ∞
0

x2eαxe−sx dx =
∫ ∞

0
x2e(α−s)x dx = lim

R→∞

∫ R

0
x2e(α−s)x dx.

We compute the definite integral using Integration by Parts with u = x2, v′ = e(α−s)x . Then u′ = 2x, v = 1
α−s e(α−s)x

and ∫ R

0
x2e(α−s)x dx = 1

α − s
x2e(α−s)x

∣∣∣∣R
x=0

−
∫ R

0
2x · 1

α − s
e(α−s)x dx

= 1

α − s
R2e(α−s)R − 2

α − s

∫ R

0
xe(α−s)x dx.
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We compute the resulting integral using Integration by Parts again, this time with u = x and v′ = e(α−s)x . Then u′ = 1,
v = 1

α−s e(α−s)x and

∫ R

0
xe(α−s)x dx = x · 1

α − s
e(α−s)x

∣∣∣∣R
x=0

− 1

α − s

∫ R

0
e(α−s)x dx =

(
x

α − s
e(α−s)x − 1

(α − s)2
e(α−s)x

)∣∣∣∣R
x=0

= R

α − s
e(α−s)R − 1

(α − s)2

(
e(α−s)R − e0

)
= 1

(α − s)2
− 1

(α − s)2
e(α−s)R + R

α − s
e(α−s)R.

Thus, ∫ R

0
x2e(α−s)x dx = 1

α − s
R2e(α−s)R − 2

α − s

(
1

(α − s)2
− 1

(α − s)2
e(α−s)R + R

α − s
e(α−s)R

)

= 1

α − s
R2e(α−s)R − 2

(α − s)3
+ 2

(α − s)3
e(α−s)R − 2R

(α − s)2
e(α−s)R,

and

L
(
x2eαx

)
(s) = 2

(s − α)3
− 1

s − α
lim

R→∞ R2e−(s−α)R − 2

(s − α)3
lim

R→∞ e−(s−α)R − 2

(s − α)2
lim

R→∞ Re−(s−α)R.

Now, since s > α, lim
R→∞ e−(s−α)R = 0. We use L’Hôpital’s Rule to compute the other two limits:

lim
R→∞ Re−(s−α)R = lim

R→∞
R

e(s−α)R
= lim

R→∞
1

(s − α)e(s−α)R
= 0;

lim
R→∞ R2e−(s−α)R = lim

R→∞
R2

e(s−α)R
= lim

R→∞
2R

(s − α)e(s−α)R
= lim

R→∞
2

(s − α)2e(s−α)R
= 0.

Finally,

L
(
x2eαx

)
(s) = 2

(s − α)3
− 0 − 0 − 0 = 2

(s − α)3
.

96. Estimate
∫ 5

2
f (x) dx by computing T2, M3, T6, and S6 for a function f (x) taking on the values in the following

table:

x 2 2.5 3 3.5 4 4.5 5

f (x) 1
2 2 1 0 − 3

2 −4 −2

solution To calculate T2, divide [2, 5] into two subintervals of length �x = 3
2 with endpoints x0 = 2, x1 = 3.5,

x2 = 5. Then

T2 = 1

2
· 3

2
(f (2) + 2f (3.5) + f (5)) = 0.75

(
1

2
+ 2 · 0 + (−2)

)
= −9

8
.

To calculate M3, divide [2, 5] into three subintervals of length �x = 1 with midpoints c1 = 2.5, c2 = 3.5, c3 = 4.5.
Then

M3 = 1 · (f (2.5) + f (3.5) + f (4.5)) = 2 + 0 − 4 = −2.

To calculate T6, divide [2, 5] into 6 subintervals of length 5−2
6 = 1

2 with endpoints x0 = 2, x1 = 2.5, x2 = 3, x3 = 3.5,
x4 = 4 , x5 = 4.5, x6 = 5. Then

T6 = 1

2
· 1

2
(f (2) + 2f (2.5) + 2f (3) + 2f (3.5) + 2f (4) + 2f (4.5) + f (5))

= 1

4

(
1

2
+ 2 · 2 + 2 · 1 + 2 · 0 + 2 ·

(
−3

2

)
+ 2(−4) + (−2)

)
= −13

8
.

Finally, to calculate S6, divide [2, 5] into 6 subintervals of length �x = 5−2
6 = 1

2 with endpoints x0 = 2, x1 = 2.5,
x2 = 3, x3 = 3.5, x4 = 4 , x5 = 4.5, x6 = 5. Then

S6 = 1

3
· 1

2
(f (2) + 4f (2.5) + 2f (3) + 4f (3.5) + 2f (4) + 4f (4.5) + f (5))

= 1

6

(
1

2
+ 4 · 2 + 2 · 1 + 4 · 0 + 2 ·

(
−3

2

)
+ 4(−4) + (−2)

)
= −7

4
.
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97. State whether the approximation MN or TN is larger or smaller than the integral.

(a)
∫ π

0
sin x dx (b)

∫ 2π

π
sin x dx

(c)
∫ 8

1

dx

x2
(d)

∫ 5

2
ln x dx

solution

(a) Because f (x) = sin x is concave down on the interval [0, π ],

TN ≤
∫ π

0
sin x dx ≤ MN ;

that is, TN is smaller and MN is larger than the integral.

(b) On the interval [π, 2π ], the function f (x) = sin x is concave up, therefore

MN ≤
∫ 2π

π
sin x dx ≤ TN ;

that is, MN is smaller and TN is larger than the integral.

(c) The function f (x) = 1
x2 is concave up on the interval [1, 8]; therefore,

MN ≤
∫ 8

1

dx

x2
≤ TN ;

that is, MN is smaller and TN is larger than the integral.

(d) The integrand y = ln x is concave down on the interval [2, 5]; hence,

TN ≤
∫ 5

2
ln x dx ≤ MN ;

that is, TN is smaller and MN is larger than the integral.

98. The rainfall rate (in inches per hour) was measured hourly during a 10-hour thunderstorm with the following results:

0, 0.41, 0.49, 0.32, 0.3, 0.23,

0.09, 0.08, 0.05, 0.11, 0.12

Use Simpson’s Rule to estimate the total rainfall during the 10-hour period.

solution We have 10 subintervals of length �x = 1. Thus, the total rainfall during the 10-hour period is approximately

S10 = 1

3
· 1[0 + 4 · 0.41 + 2 · 0.49 + 4 · 0.32 + 2 · 0.3 + 4 · 0.23 + 2 · 0.09 + 4 · 0.08 + 2 · 0.05

+ 4 · 0.11 + 0.12]

= 2.19 inches.

In Exercises 99–104, compute the given approximation to the integral.

99.
∫ 1

0
e−x2

dx, M5

solution Divide the interval [0, 1] into 5 subintervals of length �x = 1−0
5 = 1

5 , with midpoints c1 = 1
10 , c2 = 3

10 ,

c3 = 1
2 , c4 = 7

10 , and c5 = 9
10 . Then

M5 = �x

[
f

(
1

10

)
+ f

(
3

10

)
+ f

(
1

2

)
+ f

(
7

10

)
+ f

(
9

10

)]

= 1

5

[
e−(1/10)2 + e−(3/10)2 + e−(1/2)2 + e−(7/10)2 + e−(9/10)2] = 0.748053.
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100.
∫ 4

2

√
6t3 + 1 dt , T3

solution Divide the interval [2, 4] into 3 subintervals of length �x = 4−2
3 = 2

3 , with endpoints 2, 8
3 , 10

3 , 4. Then,

T3 = 1

2
�x

(
f (2) + 2f

(
8

3

)
+ 2f

(
10

3

)
+ f (4)

)

= 1

2
· 2

3

⎛
⎝√6 · 23 + 1 + 2

√
6 ·
(

8

3

)3
+ 1 + 2

√
6 ·
(

10

3

)3
+ 1 +

√
6 · 43 + 1

⎞
⎠ = 25.976514.

101.
∫ π/2

π/4

√
sin θ dθ , M4

solution Divide the interval
[
π
4 , π

2

]
into 4 subintervals of length �x =

π
2 − π

4
4 = π

16 with midpoints 9π
32 , 11π

32 , 13π
32 ,

and 15π
32 . Then

M4 = �x

(
f

(
9π

32

)
+ f

(
11π

32

)
+ f

(
13π

32

)
+ f

(
15π

32

))

= π

16

(√
sin

9π

32
+
√

sin
11π

32
+
√

sin
13π

32
+
√

sin
15π

32

)
= 0.744978.

102.
∫ 4

1

dx

x3 + 1
, T6

solution Divide the interval [1, 4] into 6 subintervals of length �x = 4−1
6 = 1

2 with endpoints 1, 3
2 , 2, 5

2 , 3, 7
2 , 4.

Then

T6 = 1

2
�x

(
f (1) + 2f

(
3

2

)
+ 2f (2) + 2f

(
5

2

)
+ 2f (3) + 2f

(
7

2

)
+ f (4)

)

= 1

2
· 1

2

⎛
⎜⎝ 1

13 + 1
+ 2

1(
3
2

)3 + 1
+ 2

1

23 + 1
+ 2

1(
5
2

)3 + 1
+ 2

1

33 + 1
+ 2

1

( 7
2 )

2 + 1
+ 1

43 + 1

⎞
⎟⎠ = 0.358016.

103.
∫ 1

0
e−x2

dx, S4

solution Divide the interval [0, 1] into 4 subintervals of length �x = 1
4 with endpoints 0, 1

4 , 1
2 , 3

4 , 1. Then

S6 = 1

3
�x

(
f (0) + 4f

(
1

4

)
+ 2f

(
1

2

)
+ 4f

(
3

4

)
+ f (1)

)

= 1

3
· 1

4

(
e−02 + 4e−(1/4)2 + 2e−(1/2)2 + 4e−(3/4)2 + e−12

)
= 0.746855.

104.
∫ 9

5
cos(x2) dx, S8

solution Divide the interval [5, 9] into 8 subintervals of length �x = 9−5
8 = 1

2 with endpoints 5, 11
2 , 6, 13

2 , 7, 15
2 ,

8, 17
2 , 9. Then

S8 = 1

3
�x

(
f (5) + 4f

(
11

2

)
+ 2f (6) + 4f

(
13

2

)
+ 2f (7) + 4f

(
15

2

)
+ 2f (8) + 4f

(
17

2

)
+ f (9)

)

= 1

3
· 1

2

(
cos(52) + 4 cos(5.52) + 2 cos(62) + 4 cos(6.52)

+ 2 cos(72) + 4 cos(7.52) + 2 cos(82) + 4 cos(8.52) + cos(92)
)

= 0.608711.
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105. The following table gives the area A(h) of a horizontal cross section of a pond at depth h. Use the Trapezoidal Rule
to estimate the volume V of the pond (Figure 1).

h (ft) A(h) (acres) h (ft) A(h) (acres)

0 2.8 10 0.8
2 2.4 12 0.6
4 1.8 14 0.2
6 1.5 16 0.1
8 1.2 18 0

Area of horizontal
cross section is A(h)

h

FIGURE 1

solution The volume of the pond is the following integral:

V =
∫ 18

0
A(h)dh

We approximate the integral using the trapezoidal approximation T9. The interval of depth [0, 18] is divided to 9 subin-
tervals of length �x = 2 with endpoints 0, 2, 4, 6, 8, 10, 12, 14, 16, 18. Thus,

V ≈ T9 = 1

2
· 2(2.8 + 2 · 2.4 + 2 · 1.8 + 2 · 1.5 + 2 · 1.2 + 2 · 0.8 + 2 · 0.6 + 2 · 0.2 + 2 · 0.1 + 0)

= 20 acre · ft = 871,200 ft3,

where we have used the fact that 1 acre = 43,560 ft2.

106. Suppose that the second derivative of the function A(h) in Exercise 105 satisfies |A′′(h)| ≤ 1.5. Use the error bound
to find the maximum possible error in your estimate of the volume V of the pond.

solution The Error Bound for the Trapezoidal Rule states that

Error (TN ) ≤ K2(b − a)3

12N2
,

where K2 is a number such that
∣∣f ′′(x)

∣∣ ≤ K2 for all x ∈ [a, b]. We estimated the volume of the pond by T9; hence N = 9.

The interval of depth is [0, 18] hence b − a = 18 − 0 = 18. Since
∣∣A′′(h)

∣∣ ≤ 1.5 acres/ft2 we may take K2 = 1.5, to
find that the error cannot exceed

K2(b − a)3

12N2
= 1.5 · 183

12 · 92
= 9 acre · ft = 392,040 ft3,

where we have used the fact that 1 acre = 43,560 ft2.

107. Find a bound for the error

∣∣∣∣∣M16 −
∫ 3

1
x3 dx

∣∣∣∣∣.
solution The Error Bound for the Midpoint Rule states that∣∣∣∣∣MN −

∫ b

a
f (x) dx

∣∣∣∣∣ ≤ K2(b − a)3

24N2
,

where K2 is a number such that
∣∣f ′′(x)

∣∣ ≤ K2 for all x ∈ [1, 3]. Here b − a = 3 − 1 = 2 and N = 16. Therefore,∣∣∣∣∣M16 −
∫ 3

1
x3 dx

∣∣∣∣∣ ≤ K2 · 23

24 · 162
= K2

768
.
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To find K2, we differentiate f (x) = x3 twice:

f ′(x) = 3x2 and f ′′(x) = 6x.

On the interval [1, 3] we have
∣∣f ′′(x)

∣∣ = 6x ≤ 6 · 3 = 18; hence, we may take K2 = 18. Thus,∣∣∣∣∣M16 −
∫ 3

1
x3 dx

∣∣∣∣∣ ≤ 18

768
= 3

128
= 0.0234375.

108. Let f (x) = sin(x3). Find a bound for the error∣∣∣∣∣T24 −
∫ π/2

0
f (x) dx

∣∣∣∣∣
Hint: Find a bound K2 for |f ′′(x)| by plotting f ′′(x) with a graphing utility.

solution Using the error bound for T24 we obtain:

∣∣∣∣∣T24 −
∫ π/2

0
f (x) dx

∣∣∣∣∣ ≤ K2
(
π
2 − 0

)3
12 · 242

= K2π3

55, 296
,

where K2 is a number such that
∣∣f ′′(x)

∣∣ < k2 for all x ∈ [
0, π

2

]
. We compute the first and second derivative of

f (x) = sin(x3):

f ′(x) = 3x2 cos(x3)

f ′′(x) = 6x cos(x3) + 3x2 · 3x2
(
− sin(x3)

)
= 6x cos(x3) − 9x4 sin(x3)

The graph of f ′′(x) = 6x cos(x3) − 9x4 sin(x3) on the interval
[
0, π

2

]
shows that

∣∣f ′′(x)
∣∣ ≤ 30 on this interval. We may

choose K2 = 30 and find ∣∣∣∣∣T24 −
∫ π/2

0
f (x) dx

∣∣∣∣∣ ≤ 30π3

55,296
= 5π3

9216
= 0.0168220.

5432

−30

−20

−10

30

20

10

x

y

109. Find a value of N such that ∣∣∣∣∣MN −
∫ π/4

0
tan x dx

∣∣∣∣∣ ≤ 10−4

solution To use the Error Bound we must find the second derivative of f (x) = tan x. We differentiate f twice to
obtain:

f ′(x) = sec2x

f ′′(x) = 2 sec x tan x = 2 sin x

cos2x

For 0 ≤ x ≤ π
4 , we have sin x ≤ sin π

4 = 1√
2

and cos x ≥ 1√
2

or cos2x ≥ 1
2 . Therefore, for 0 ≤ x ≤ π

4 we have:

f ′′(x) = 2 sin x

cos2x
≤

2 · 1√
2

1
2

= 2
√

2.

Using the Error Bound with b = π
4 , a = 0 and K2 = 2

√
2 we have:

∣∣∣∣∣MN −
∫ π/4

0
tan x dx

∣∣∣∣∣ ≤ 2
√

2 · (π4 − 0
)3

24N2
= π3

√
2

768N2
.
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We must choose a value of N such that:

π3
√

2

768N2
≤ 10−4

N2 ≥ 104 · √
2π3

768

N ≥ 23.9

The smallest integer that is needed to obtain the required precision is N = 24.

110. Find a value of N such that SN approximates
∫ 5

2
x−1/4 dx with an error of at most 10−2 (but do not calculate SN ).

solution To use the error bound we must find the fourth derivative f (4)(x). We differentiate f (x) = x−1/4 four times
to obtain:

f ′(x) = −1

4
x−5/4, f ′′(x) = 5

16
x−9/4, f ′′′(x) = −45

64
x−13/4, f (4)(x) = 585

256
x−17/4.

For 2 ≤ x ≤ 5 we have: ∣∣∣f (4)(x)

∣∣∣ = 585

256x17/4
≤ 585

256 · 217/4
= 0.120099.

Using the error bound with b = 5, a = 2 and K4 = 0.120099 we have:

Error (SN ) ≤ 0.120099(5 − 2)5

180N4
= 0.162134

N4
.

We must choose a value of N such that:

0.162134

N4
≤ 10−2

N4 ≥ 16.2134

N ≥ 2.00664

The smallest even value of N that is needed to obtain the required precision is N = 4.
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8 FURTHER APPLICATIONS
OF THE INTEGRAL AND
TAYLOR POLYNOMIALS

8.1 Arc Length and Surface Area

Preliminary Questions
1. Which integral represents the length of the curve y = cos x between 0 and π?∫ π

0

√
1 + cos2 x dx,

∫ π

0

√
1 + sin2 x dx

solution Let y = cos x. Then y′ = − sin x, and 1 + (y′)2 = 1 + sin2 x. Thus, the length of the curve y = cos x

between 0 and π is ∫ π

0

√
1 + sin2 x dx.

2. Use the formula for arc length to show that for any constant C, the graphs y = f (x) and y = f (x) + C have the
same length over every interval [a, b]. Explain geometrically.

solution The graph of y = f (x) + C is a vertical translation of the graph of y = f (x); hence, the two graphs should
have the same arc length. We can explicitly establish this as follows:

length of y = f (x) + C =
∫ b

a

√
1 +

[
d

dx
(f (x) + C)

]2
dx =

∫ b

a

√
1 + [f ′(x)]2 dx = length of y = f (x).

3. Use the formula for arc length to show that the length of a graph over [1, 4] cannot be less than 3.

solution Note that f ′(x)2 ≥ 0, so that
√

1 + [f ′(x)]2 ≥ √
1 = 1. Then the arc length of the graph of f (x) on

[1, 4] is ∫ 4

1

√
1 + [f ′(x)]2 dx ≥

∫ 4

1
1 dx = 3

Exercises
1. Express the arc length of the curve y = x4 between x = 2 and x = 6 as an integral (but do not evaluate).

solution Let y = x4. Then y′ = 4x3 and

s =
∫ 6

2

√
1 + (4x3)2 dx =

∫ 6

2

√
1 + 16x6 dx.

2. Express the arc length of the curve y = tan x for 0 ≤ x ≤ π
4 as an integral (but do not evaluate).

solution Let y = tan x. Then y′ = sec2 x, and

s =
∫ π/4

0

√
1 + (sec2 x)2 dx =

∫ π/4

0

√
1 + sec4 x dx.

3. Find the arc length of y = 1
12x3 + x−1 for 1 ≤ x ≤ 2. Hint: Show that 1 + (y′)2 =

(
1
4x2 + x−2

)2
.

solution Let y = 1

12
x3 + x−1. Then y′ = x2

4
x−2, and

(y′)2 + 1 =
(

x2

4
− x−2

)2

+ 1 = x4

16
− 1

2
+ x−4 + 1 = x4

16
+ 1

2
+ x−4 =

(
x2

4
+ x−2

)2

.

1016
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Thus,

s =
∫ 2

1

√
1 + (y′)2 dx =

∫ 2

1

√√√√(
x2

4
+ 1

x2

)2

dx =
∫ 2

1

∣∣∣∣∣x
2

4
+ 1

x2

∣∣∣∣∣ dx

=
∫ 2

1

(
x2

4
+ 1

x2

)
dx since

x2

4
+ 1

x2
> 0

=
(

x3

12
− 1

x

) ∣∣∣∣2
1

= 13

12
.

4. Find the arc length of y =
(x

2

)4 + 1

2x2
over [1, 4]. Hint: Show that 1 + (y′)2 is a perfect square.

solution Let y =
(x

2

)4 + 1

2x2
. Then

y′ = 4
(x

2

)3
(

1

2

)
− 1

x3
= x3

4
− 1

x3

and

(y′)2 + 1 =
(

x3

4
− 1

x3

)2

+ 1 = x6

16
− 1

2
+ 1

x6
+ 1 = x6

16
+ 1

2
+ 1

x6
=
(

x3

4
+ 1

x3

)2

.

Hence,

s =
∫ 4

1

√
1 + y′2 dx =

∫ 4

1

√√√√(
x3

4
+ 1

x3

)2

dx =
∫ 4

1

∣∣∣∣∣x
3

4
+ 1

x3

∣∣∣∣∣ dx

=
∫ 4

1

(
x3

4
+ 1

x3

)
dx since

x3

4
+ 1

x3
> 0 on [1, 4]

=
(

x4

16
+ x−2

−2

) ∣∣∣∣4
1

= 525

32
.

In Exercises 5–10, calculate the arc length over the given interval.

5. y = 3x + 1, [0, 3]

solution Let y = 3x + 1. Then y′ = 3, and s =
∫ 3

0

√
1 + 9 dx = 3

√
10.

6. y = 9 − 3x, [1, 3]

solution Let y = 9 − 3x. Then y′ = −3, and s =
∫ 3

1

√
1 + 9 dx = 3

√
10 − √

10 = 2
√

10.

7. y = x3/2, [1, 2]
solution Let y = x3/2. Then y′ = 3

2x1/2, and

s =
∫ 2

1

√
1 + 9

4
x dx = 8

27

(
1 + 9

4
x

)3/2 ∣∣∣∣2
1

= 8

27

((
11

2

)3/2
−
(

13

4

)3/2
)

= 1

27

(
22

√
22 − 13

√
13
)

.

8. y = 1
3x3/2 − x1/2, [2, 8]

solution Let y = 1
3x3/2 − x1/2. Then

y′ = 1

2
x1/2 − 1

2
x−1/2,

and

1 + (y′)2 = 1 +
(

1

2
x1/2 − 1

2
x−1/2

)2
= 1

4
x + 1

2
+ 1

4
x−1 =

(
1

2
x1/2 + 1

2
x−1/2

)2
.
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Hence,

s =
∫ 8

2

√
1 + (y′)2 dx =

∫ 8

2

√(
1

2
x1/2 + 1

2
x−1/2

)2
dx =

∫ 8

2

∣∣∣∣12x1/2 + 1

2
x−1/2

∣∣∣∣ dx

=
∫ 8

2

(
1

2
x1/2 + 1

2
x−1/2

)
dx since

1

2
x1/2 + 1

2
x−1/2 > 0

=
(

1

3
x3/2 + x1/2

) ∣∣∣∣8
2

= 17
√

2

3
.

9. y = 1
4x2 − 1

2 ln x, [1, 2e]
solution Let y = 1

4x2 − 1
2 ln x. Then

y′ = x

2
− 1

2x
,

and

1 + (y′)2 = 1 +
(

x

2
− 1

2x

)2
= x2

4
+ 1

2
+ 1

4x2
=
(

x

2
+ 1

2x

)2
.

Hence,

s =
∫ 2e

1

√
1 + (y′)2 dx =

∫ 2e

1

√(
x

2
+ 1

2x

)2
dx =

∫ 2e

1

∣∣∣∣x2 + 1

2x

∣∣∣∣ dx

=
∫ 2e

1

(
x

2
+ 1

2x

)
dx since

x

2
+ 1

2x
> 0 on [1, 2e]

=
(

x2

4
+ 1

2
ln x

) ∣∣∣∣2e

1
= e2 + ln 2

2
+ 1

4
.

10. y = ln(cos x),
[
0, π

4

]
solution Let y = ln(cos x). Then y′ = − tan x and 1 + (y′)2 = 1 + tan2 x = sec2 x. Hence,

s =
∫ π/4

0

√
1 + (y′)2 dx =

∫ π/4

0

√
sec2 x dx =

∫ π/4

0
| sec x| dx

=
∫ π/4

0
sec x dx since sec x > 0 on

[
0,

π

4

]

= ln |sec x + tan x|
∣∣∣∣π/4

0
= ln(

√
2 + 1).

In Exercises 11–14, approximate the arc length of the curve over the interval using the Trapezoidal Rule TN , the Midpoint
Rule MN , or Simpson’s Rule SN as indicated.

11. y = 1
4x4, [1, 2], T5

solution Let y = 1
4x4. Then

1 + (y′)2 = 1 + (x3)2 = 1 + x6.

Therefore, the arc length over [1, 2] is

∫ 2

1

√
1 + x6 dx.

Now, let f (x) =
√

1 + x6. With n = 5,

�x = 2 − 1

5
= 1

5
and {xi}5

i=0 =
{

1,
6

5
,

7

5
,

8

5
,

9

5
, 2

}
.
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Using the Trapezoidal Rule,

∫ 2

1

√
1 + x6 dx ≈ �x

2

⎡
⎣f (x0) + 2

4∑
i=1

f (xi) + f (x5)

⎤
⎦ = 3.957736.

The arc length is approximately 3.957736 units.

12. y = sin x,
[
0, π

2

]
, M8

solution Let y = sin x. Then

1 + y′2 = 1 + cos2 x.

Therefore, the arc length over [0, π/2] is ∫ π/2

0

√
1 + cos2 x dx.

Now, let f (x) =
√

1 + cos2 x. With n = 8, we have:

�x = π/2

8
= π

16
and

{
x∗
i

}8
i=1 =

{
π

32
,

3π

32
,

5π

32
,

7π

32
,

9π

32
,

11π

32
,

13π

32
,

15π

32

}
.

Using the Midpoint Rule,

∫ π/2

0

√
1 + cos2 x dx ≈ �x

8∑
i=1

f (x∗
i ) = 1.910099.

The arc length is approximately 1.910099 units.

13. y = x−1, [1, 2], S8

solution Let y = x−1. Then y′ = −x−2 and

1 + (y′)2 = 1 + 1

x4
.

Therefore, the arc length over [1, 2] is

∫ 2

1

√
1 + 1

x4
dx.

Now, let f (x) =
√

1 + 1
x4 . With n = 8,

�x = 2 − 1

8
= 1

8
and {xi}8

i=0 =
{

1,
9

8
,

5

4
,

11

8
,

3

2
,

13

8
,

7

4
,

15

8
, 2

}
.

Using Simpson’s Rule,

∫ 2

1

√
1 + 1

x4
dx ≈ �x

3

⎡
⎣f (x0) + 4

4∑
i=1

f (x2i−1) + 2
3∑

i=1

f (x2i ) + f (x8)

⎤
⎦ = 1.132123.

The arc length is approximately 1.132123 units.

14. y = e−x2
, [0, 2], S8

solution Let y = e−x2
. Then

1 + (y′)2 = 1 + 4x2e−2x2
.

Therefore, the arc length over [0, 2] is ∫ 2

0

√
1 + 4x2e−2x2

dx.

Now, let f (x) =
√

1 + 4x2e−2x2 . With n = 8,

�x = 2 − 0

8
= 1

4
and {xi}8

i=0 =
{

0,
1

4
,

1

2
,

3

4
, 1,

5

4
,

3

2
,

7

4
, 2

}
.



March 30, 2011

1020 C H A P T E R 8 FURTHER APPLICATIONS OF THE INTEGRAL AND TAYLOR POLYNOMIALS

Using Simpson’s Rule,

∫ 2

0

√
1 + 4x2e−2x2

dx ≈ �x

3

⎡
⎣f (x0) + 4

4∑
i=1

f (x2i−1) + 2
3∑

i=1

f (x2i ) + f (x8)

⎤
⎦ = 2.280718.

The arc length is approximately 2.280718 units.

15. Calculate the length of the astroid x2/3 + y2/3 = 1 (Figure 11).

y

1

1

−1

−1
x

FIGURE 11 Graph of x2/3 + y2/3 = 1.

solution We will calculate the arc length of the portion of the asteroid in the first quadrant and then multiply by 4. By
implicit differentiation

2

3
x−1/3 + 2

3
y−1/3y′ = 0,

so

y′ = −x−1/3

y−1/3
= −y1/3

x1/3
.

Thus

1 + (y′)2 = 1 + y2/3

x2/3
= x2/3 + y2/3

x2/3
= 1

x2/3
,

and

s =
∫ 1

0

1

x1/3
dx = 3

2
.

The total arc length is therefore 4 · 3
2 = 6.

16. Show that the arc length of the asteroid x2/3 + y2/3 = a2/3 (for a > 0) is proportional to a.

solution We will calculate the arc length of the portion of the asteroid in the first quadrant and then multiply by 4. By
implicit differentiation

2

3
x−1/3 + 2

3
y−1/3y′ = 0,

so

y′ = −x−1/3

y−1/3
= −y1/3

x1/3
.

Thus

1 + (y′)2 = 1 + y2/3

x2/3
= x2/3 + y2/3

x2/3
= a2/3

x2/3
,

and

s =
∫ a

0

a1/3

x1/3
dx = a1/3

(
3

2
a2/3

)
= 3

2
a.

The total arc length is therefore 4 · 3
2a = 6a, which is proportional to a.

17. Let a, r > 0. Show that the arc length of the curve xr + yr = ar for 0 ≤ x ≤ a is proportional to a.

solution Using implicit differentiation, we find y′ = −(x/y)r−1 and

1 + (y′)2 = 1 + (x/y)2r−2 = x2r−1 + y2r−2

y2r−2
= x2r−2 + (ar − xr )2−2/r

(ar − xr )2−2/r
.
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The arc length is then

s =
∫ a

0

√
x2r−2 + (ar − xr )2−2/r

(ar − xr )2−2/r
dx.

Using the substitution x = au, we obtain

s = a

∫ 1

0

√
u2r−2 + (1 − ur )2−2/r

(1 − ur )2−2/r
du,

where the integral is independent of a.

18. Find the arc length of the curve shown in Figure 12.

x

0.5

y

321

FIGURE 12 Graph of 9y2 = x(x − 3)2.

solution Using implicit differentiation,

18yy′ = x(2)(x − 3) + (x − 3)2 = 3(x − 3)(x − 1)

Hence,

(y′)2 = (x − 3)2(x − 1)2

36y2
= (x − 3)2(x − 1)2

4(9y2)
= (x − 3)2(x − 1)2

4x(x − 3)2
= (x − 1)2

4x

and

1 + (y′)2 = (x − 1)2 + 4x

4x
= (x + 1)2

4x
.

Finally,

s =
∫ 3

0

√
(x + 1)2

4x
dx =

∫ 3

0

|x + 1|
2
√

x
dx

=
∫ 3

0

x + 1

2
√

x
dx since x + 1 > 0 on [0, 3]

=
∫ 3

0

(
1

2
x1/2 + 1

2
x−1/2

)
dx =

(
1

3
x3/2 + x1/2

) ∣∣∣∣3
0

= 2
√

3.

19. Find the value of a such that the arc length of the catenary y = cosh x for −a ≤ x ≤ a equals 10.

solution Let y = cosh x. Then y′ = sinh x and

1 + (y′)2 = 1 + sinh2 x = cosh2 x.

Thus,

s =
∫ a

−a
cosh x dx = sinh(a) − sinh(−a) = 2 sinh a.

Setting this expression equal to 10 and solving for a yields a = sinh−1(5) = ln(5 + √
26).

20. Calculate the arc length of the graph of f (x) = mx + r over [a, b] in two ways: using the Pythagorean theorem
(Figure 13) and using the arc length integral.

x
a b

r

y

b − a

m(b − a)

FIGURE 13
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solution Let h denote the length of the hypotenuse. Then, by Pythagoras’ Theorem,

h2 = (b − a)2 + m2(b − a)2 = (b − a)2(1 + m2),

or

h = (b − a)
√

1 + m2

since b > a. Moreover, (f ′(x))2 = m2, so

s =
∫ b

a

√
1 + m2 dx = (b − a)

√
1 + m2 = h.

21. Show that the circumference of the unit circle is equal to

2
∫ 1

−1

dx√
1 − x2

(an improper integral)

Evaluate, thus verifying that the circumference is 2π .

solution Note the circumference of the unit circle is twice the arc length of the upper half of the curve defined by

x2 + y2 = 1. Thus, let y =
√

1 − x2. Then

y′ = − x√
1 − x2

and 1 + (y′)2 = 1 + x2

1 − x2
= 1

1 − x2
.

Finally, the circumference of the unit circle is

2
∫ 1

−1

dx√
1 − x2

= 2 sin−1 x

∣∣∣∣1−1
= π − (−π) = 2π.

22. Generalize the result of Exercise 21 to show that the circumference of the circle of radius r is 2πr .

solution Let y =
√

r2 − x2 denote the upper half of a circle of radius r centered at the origin. Then

1 + (y′)2 = 1 + x2

r2 − x2
= r2

r2 − x2
= 1

1 − x2

r2

,

and the circumference of the circle is given by

C = 2
∫ r

−r

dx√
1 − x2/r2

.

Using the substitution u = x/r , du = dx/r , we find

C = 2r

∫ 1

−1

du√
1 − u2

= 2r sin−1 u

∣∣∣∣1−1

= 2r
(π

2
−
(
−π

2

))
= 2πr

23. Calculate the arc length of y = x2 over [0, a]. Hint: Use trigonometric substitution. Evaluate for a = 1.

solution Let y = x2. Then y′ = 2x and

s =
∫ a

0

√
1 + 4x2 dx.

Using the substitution 2x = tan θ , 2 dx = sec2 θ dθ , we find

s = 1

2

∫ x=a

x=0
sec3 θ dθ.

Next, using a reduction formula for the integral of sec3 θ , we see that

s =
(

1

4
sec θ tan θ + 1

4
ln | sec θ + tan θ |

)∣∣∣∣x=a

x=0
=
(

1

2
x
√

1 + 4x2 + 1

4
ln |

√
1 + 4x2 + 2x|

) ∣∣∣∣a
0

= a

2

√
1 + 4a2 + 1

4
ln |

√
1 + 4a2 + 2a|
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Thus, when a = 1,

s = 1

2

√
5 + 1

4
ln(

√
5 + 2) ≈ 1.478943.

24. Express the arc length of g(x) = √
x over [0, 1] as a definite integral. Then use the substitution u = √

x to

show that this arc length is equal to the arc length of x2 over [0, 1] (but do not evaluate the integrals). Explain this result
graphically.

solution Let g(x) = √
x. Then

1 + g′(x)2 = 1 + 4x

4x
and s =

∫ 1

0

√
1 + 4x

4x
dx =

∫ 1

0

√
1 + 4x

2
√

x
dx.

With the substitution u = √
x, du = 1

2
√

x
dx, this becomes

s =
∫ 1

0

√
1 + 4u2 du.

Now, let f (x) = x2. Then 1 + f ′(x)2 = 1 + 4x2, and

s =
∫ 1

0

√
1 + 4x2 dx.

Thus, the two arc lengths are equal. This is explained graphically by the fact that for x ≥ 0, x2 and
√

x are inverses of
each other. This means that the two graphs are symmetric with respect to the line y = x. Moreover, the graphs of x2 and√

x intersect at x = 0 and at x = 1. Thus, it is clear that the arc length of the two graphs on [0, 1] are equal.

25. Find the arc length of y = ex over [0, a]. Hint: Try the substitution u =
√

1 + e2x followed by partial fractions.

solution Let y = ex . Then 1 + (y′)2 = 1 + e2x , and the arc length over [0, a] is

∫ a

0

√
1 + e2x dx.

Now, let u =
√

1 + e2x . Then

du = 1

2
· 2e2x√

1 + e2x
dx = u2 − 1

u
dx

and the arc length is

∫ a

0

√
1 + e2x dx =

∫ x=a

x=0
u · u

u2 − 1
du =

∫ x=a

x=0

u2

u2 − 1
du =

∫ x=a

x=0

(
1 + 1

u2 − 1

)
du

=
∫ x=a

x=0

(
1 + 1

2

1

u − 1
− 1

2

1

u + 1

)
du =

(
u + 1

2
ln(u − 1) − 1

2
ln(u + 1)

) ∣∣∣∣x=a

x=0

=
[√

1 + e2x + 1

2
ln

(√
1 + e2x − 1√
1 + e2x + 1

)] ∣∣∣∣a
0

=
√

1 + e2a + 1

2
ln

√
1 + e2a − 1√
1 + e2a + 1

− √
2 + 1

2
ln

1 + √
2√

2 − 1

=
√

1 + e2a + 1

2
ln

√
1 + e2a − 1√
1 + e2a + 1

− √
2 + ln(1 + √

2).

26. Show that the arc length of y = ln(f (x)) for a ≤ x ≤ b is

∫ b

a

√
f (x)2 + f ′(x)2

f (x)
dx 4

solution Let y = ln(f (x)). Then

y′ = f ′(x)

f (x)
and 1 + (y′)2 = f (x)2 + f ′(x)2

f (x)2
.
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Therefore,

s =
∫ b

a

√
f (x)2 + f ′(x)2

f (x)
dx

since f (x) > 0 in order for y = ln(f (x)) to be defined on [a, b].
27. Use Eq. (4) to compute the arc length of y = ln(sin x) for π

4 ≤ x ≤ π
2 .

solution With f (x) = sin x, Eq. (4) yields

s =
∫ π/2

π/4

√
sin2 x + cos2 x

sin x
dx =

∫ π/2

π/4
csc x dx = ln (csc x − cot x)

∣∣∣∣π/2

π/4

= ln 1 − ln(
√

2 − 1) = ln
1√

2 − 1
= ln(

√
2 + 1).

28. Use Eq. (4) to compute the arc length of y = ln

(
ex + 1

ex − 1

)
over [1, 3].

solution With f (x) = ex + 1

ex − 1
,

f ′(x) = (ex − 1)ex − (ex + 1)ex

(ex − 1)2
= − 2ex

(ex − 1)2

and

f (x)2 + f ′(x)2 =
(

ex + 1

ex − 1

)2
+ 4e2x

(ex − 1)4
= (e2x − 1)2 + 4e2x

(ex − 1)4
= (e2x + 1)2

(ex − 1)4
.

Thus, by Eq. (4),

s =
∫ 3

1

e2x + 1

(ex − 1)2
· ex − 1

ex + 1
dx =

∫ 3

1

e2x + 1

e2x − 1
dx.

Observe that

e2x + 1

e2x − 1
= ex + e−x

ex − e−x
= (ex + e−x)/2

(ex − e−x)/2
= cosh x

sinh x
.

Therefore,

s =
∫ 3

1

cosh x

sinh x
dx = ln(sinh x)

∣∣∣∣3
1

= ln(sinh 3) − ln(sinh 1).

29. Show that if 0 ≤ f ′(x) ≤ 1 for all x, then the arc length of y = f (x) over [a, b] is at most
√

2(b − a). Show that
for f (x) = x, the arc length equals

√
2(b − a).

solution If 0 ≤ f ′(x) ≤ 1 for all x, then

s =
∫ b

a

√
1 + f ′(x)2 dx ≤

∫ b

a

√
1 + 1 dx = √

2(b − a).

If f (x) = x, then f ′(x) = 1 and

s =
∫ b

a

√
1 + 1 dx = √

2(b − a).

30. Use the Comparison Theorem (Section 5.2) to prove that the arc length of y = x4/3 over [1, 2] is not less than 5
3 .

solution Note that f ′(x) = 4
3x1/3; for x ∈ [1, 2], we have x1/3 ≥ 1 so that f ′(x) ≥ 4

3 . Then

√
1 + f ′(x)2 ≥

√
1 +

(
4

3

)2
=
√

25

9
= 5

3

and then the arc length is ∫ 2

1

√
1 + f ′(x)2 dx ≥

∫ 2

1

5

3
dx = 5

3
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31. Approximate the arc length of one-quarter of the unit circle (which we know is π
2 ) by computing the length of the

polygonal approximation with N = 4 segments (Figure 14).

y

10.750.50.25
x

FIGURE 14 One-quarter of the unit circle

solution With y =
√

1 − x2, the five points along the curve are

P0(0, 1), P1(1/4,
√

15/4), P2(1/2,
√

3/2), P3(3/4,
√

7/4), P4(1, 0)

Then

P0P1 =
√√√√ 1

16
+
(

4 − √
15

4

)2

≈ 0.252009

P1P2 =
√√√√ 1

16
+
(

2
√

3 − √
15

4

)2

≈ 0.270091

P2P3 =
√√√√ 1

16
+
(

2
√

3 − √
7

4

)2

≈ 0.323042

P3P4 =
√

1

16
+ 7

16
≈ 0.707108

and the total approximate distance is 1.552250 whereas π/2 ≈ 1.570796.

32. A merchant intends to produce specialty carpets in the shape of the region in Figure 15, bounded by the

axes and graph of y = 1 − xn (units in yards). Assume that material costs $50/yd2 and that it costs 50L dollars to cut
the carpet, where L is the length of the curved side of the carpet. The carpet can be sold for 150A dollars, where A is
the carpet’s area. Using numerical integration with a computer algebra system, find the whole number n for which the
merchant’s profits are maximal.

1

0.5

y

y = 1 − xn

10.5
x

A

FIGURE 15

solution The area of the carpet is

A =
∫ 1

0
(1 − xn)dx =

(
x − xn+1

n + 1

) ∣∣∣∣1
0

= 1 − 1

n + 1
= n

n + 1
,

while the length of the curved side of the carpet is

L =
∫ 1

0

√
1 + (nxn−1)2 dx =

∫ 1

0

√
1 + n2x2n−2 dx.

Using these formulas, we find that the merchant’s profit is given by

150A − (50A + 50L) = 100A − 50L = 100n

n + 1
− 50

∫ 1

0

√
1 + n2x2n−2 dx.

Using a CAS, we find that the merchant’s profit is maximized (approximately $3.31 per carpet) when n = 13. The table
below lists the profit for 1 ≤ n ≤ 15.
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n Profit n Profit

1 −20.71067810 9 3.06855532
2 −7.28047621 10 3.18862208
3 −2.39328273 11 3.25953632
4 −0.01147138 12 3.29668137
5 1.30534545 13 3.31024566
6 2.08684099 14 3.30715476
7 2.57017349 15 3.29222024
8 2.87535925

In Exercises 33–40, compute the surface area of revolution about the x-axis over the interval.

33. y = x, [0, 4]
solution 1 + (y′)2 = 2 so that

SA = 2π

∫ 4

0
x
√

2 dx = 2π
√

2
1

2
x2
∣∣∣∣4
0

= 16π
√

2

34. y = 4x + 3, [0, 1]
solution Let y = 4x + 3. Then 1 + (y′)2 = 17 and

SA = 2π

∫ 1

0
(4x + 3)

√
17 dx = 2π

√
17
(

2x2 + 3x
) ∣∣∣∣1

0
= 10π

√
17.

35. y = x3, [0, 2]
solution 1 + (y′)2 = 1 + 9x4, so that

SA = 2π

∫ 2

0
x3
√

1 + 9x4 dx = 2π

36

∫ 2

0
36x3

√
1 + 9x4 dx = π

18
(1 + 9x4)3/2

∣∣∣∣2
0

= π

18

(
1453/2 − 1

)

36. y = x2, [0, 4]
solution Let y = x2. Then y′ = 2x and

SA = 2π

∫ 4

0
x2
√

1 + 4x2 dx.

Using the substitution 2x = tan θ , 2 dx = sec2 θ dθ , we find that∫
x2
√

1 + 4x2 dx = 1

8

∫
sec3 θ tan2 θ dθ = 1

8

∫ (
sec5 θ − sec3 θ

)
dθ

= 1

8

(
1

4
sec3 θ tan θ + 3

8
sec θ tan θ + 3

8
ln |sec θ + tan θ | − 1

2
sec θ tan θ − 1

2
ln |sec θ + tan θ |

)
+ C

= x

16
(1 + 4x2)3/2 − x

32

√
1 + 4x2 − 1

64
ln |

√
1 + 4x2 + 2x| + C.

Finally,

SA = 2π

(
x

16
(1 + 4x2)3/2 − x

32

√
1 + 4x2 − 1

64
ln |

√
1 + 4x2 + 2x|

) ∣∣∣∣4
0

= 2π

(
1

4
653/2 −

√
65

8
− 1

64
ln(8 + √

65)

)
= 129

√
65

4
π − π

32
ln(8 + √

65).

37. y = (4 − x2/3)3/2, [0, 8]
solution Let y = (4 − x2/3)3/2. Then

y′ = −x−1/3(4 − x2/3)1/2,

and

1 + (y′)2 = 1 + 4 − x2/3

x2/3
= 4

x2/3
.
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Therefore,

SA = 2π

∫ 8

0
(4 − x2/3)3/2

(
2

x1/3

)
dx.

Using the substitution u = 4 − x2/3, du = − 2
3x−1/3 dx, we find

SA = 2π

∫ 0

4
u3/2(−3) du = 6π

∫ 4

0
u3/2 du = 12

5
πu5/2

∣∣∣∣4
0

= 384π

5
.

38. y = e−x , [0, 1]
solution Let y = e−x . Then y′ = −e−x and

SA = 2π

∫ 1

0
e−x

√
1 + e−2x dx.

Using the substitution e−x = tan θ , −e−x dx = sec2 θ dθ , we find that∫
e−x

√
1 + e−2x dx = −

∫
sec3 θ dθ = −1

2
sec θ tan θ − 1

2
ln | sec θ + tan θ | + C

= −1

2
e−x

√
1 + e−2x − 1

2
ln |

√
1 + e−2x + e−x | + C.

Finally,

SA =
(
−πe−x

√
1 + e−2x − π ln |

√
1 + e−2x + e−x |

) ∣∣∣∣1
0

= −πe−1
√

1 + e−2 − π ln(
√

1 + e−2 + e−1) + π
√

2 + π ln(
√

2 + 1)

= π
√

2 − πe−1
√

1 + e−2 + π ln

( √
2 + 1√

1 + e−2 + e−1

)
.

39. y = 1
4x2 − 1

2 ln x, [1, e]
solution We have y′ = x

2 − 1
2x

, and

1 + (y′)2 = 1 +
(

x

2
− 1

2x

)2
= 1 + x2

4
− 1

2
+ 1

4x2
= x2

4
+ 1

2
+ 1

4x2
=
(

x

2
+ 1

2x

)2
.

Thus,

SA = 2π

∫ e

1

(
x2

4
− ln x

2

)(
x

2
+ 1

2x

)
dx = 2π

∫ e

1

x3

8
+ x

8
− x ln x

4
− ln x

4x
dx

= 2π

(
x4

32
+ x2

16
− x2 ln x

8
+ x2

16
− (ln x)2

8

) ∣∣∣∣e
1

= 2π

(
e4

32
+ e2

16
− e2

8
+ e2

16
− 1

8
−
(

1

32
+ 1

16
+ 0 + 1

16
− 0

))

= 2π

(
e4

32
− 1

8
− 1

32
− 1

16
− 1

16

)

= π

16
(e4 − 9)

40. y = sin x, [0, π]
solution Let y = sin x. Then y′ = cos x, and

SA = 2π

∫ π

0
sin x

√
1 + cos2 x dx.

Using the substitution cos x = tan θ , − sin x dx = sec2 θ dθ , we find that∫
sin x

√
1 + cos2 x dx = −

∫
sec3 θ dθ = −1

2
sec θ tan θ − 1

2
ln | sec θ + tan θ | + C
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= −1

2
cos x

√
1 + cos2 x − 1

2
ln |

√
1 + cos2 x + cos x| + C.

Finally,

SA = 2π

(
−1

2
cos x

√
1 + cos2 x − 1

2
ln |

√
1 + cos2 x + cos x|

) ∣∣∣∣π
0

= 2π

(
1

2

√
2 − 1

2
ln(

√
2 − 1) + 1

2

√
2 + 1

2
ln(

√
2 + 1)

)
= 2π

(√
2 + ln(

√
2 + 1)

)
.

In Exercises 41–44, use a computer algebra system to find the approximate surface area of the solid generated
by rotating the curve about the x-axis.

41. y = x−1, [1, 3]
solution

SA = 2π

∫ 3

1

1

x

√
1 +

(
− 1

x2

)2
dx = 2π

∫ 3

1

1

x

√
1 + 1

x4
dx ≈ 7.603062807

using Maple.

42. y = x4, [0, 1]
solution

SA = 2π

∫ 1

0
x4
√

1 + (4x3)2 dx = 2π

∫ 1

0
x4
√

1 + 16x6 dx ≈ 3.436526697

using Maple.

43. y = e−x2/2, [0, 2]
solution

SA = 2π

∫ 2

0
e−x2/2

√
1 + (−xe−x2/2)2 dx = 2π

∫ 2

0
e−x2/2

√
1 + x2e−x2

dx ≈ 8.222695606

using Maple.

44. y = tan x,
[
0, π

4

]
solution Let y = tan x. Then y′ = sec2 x, 1 + (y′)2 = 1 + sec4 x, and

SA = 2π

∫ π/4

0
tan x

√
1 + sec4 x dx.

Using a computer algebra system to approximate the value of the definite integral, we find

SA ≈ 3.83908.

45. Find the area of the surface obtained by rotating y = cosh x over [− ln 2, ln 2] around the x-axis.

solution Let y = cosh x. Then y′ = sinh x, and

√
1 + (y′)2 =

√
1 + sinh2 x =

√
cosh2 x = cosh x.

Therefore,

SA = 2π

∫ ln 2

− ln 2
cosh2 x dx = π

∫ ln 2

− ln 2
(1 + cosh 2x) dx = π

(
x + 1

2
sinh 2x

) ∣∣∣∣ln 2

− ln 2

= π

(
ln 2 + 1

2
sinh(2 ln 2) + ln 2 − 1

2
sinh(−2 ln 2)

)
= 2π ln 2 + π sinh(2 ln 2).

We can simplify this answer by recognizing that

sinh(2 ln 2) = e2 ln 2 − e−2 ln 2

2
= 4 − 1

4
2

= 15

8
.

Thus,

SA = 2π ln 2 + 15π

8
.
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46. Show that the surface area of a spherical cap of height h and radius R (Figure 16) has surface area 2πRh.

h

R

FIGURE 16

solution To determine the surface area of the cap, we will rotate a portion of a circle of radius R, centered at the

origin, about the y-axis. Since the equation of the right half of the circle is x =
√

R2 − y2,

1 + (x′)2 = 1 + y2

R2 − y2
= R2

R2 − y2
,

and

SA = 2π

∫ R

R−h

√
R2 − y2

(
R√

R2 − y2

)
dy = 2πR (R − (R − h)) = 2πRh.

47. Find the surface area of the torus obtained by rotating the circle x2 + (y − b)2 = a2 about the x-axis (Figure 17).

y

x

(0, b + a)

(0, b)

FIGURE 17 Torus obtained by rotating a circle about the x-axis.

solution y = b +
√

a2 − x2 gives the top half of the circle and y = b −
√

a2 − x2 gives the bottom half. Note that
in each case,

1 + (y′)2 = 1 + x2

a2 − x2
= a2

a2 − x2
.

Rotating the two halves of the circle around the x-axis then yields

SA = 2π

∫ a

−a
(b +

√
a2 − x2)

a√
a2 − x2

dx + 2π

∫ a

−a
(b −

√
a2 − x2)

a√
a2 − x2

dx

= 2π

∫ a

−a
2b

a√
a2 − x2

dx = 4πba

∫ a

−a

1√
a2 − x2

dx

= 4πba · sin−1
(x

a

) ∣∣∣∣a−a

= 4πba
(π

2
−
(
−π

2

))
= 4π2ba.

48. Show that the surface area of a right circular cone of radius r and height h is πr
√

r2 + h2. Hint: Rotate a line y = mx

about the x-axis for 0 ≤ x ≤ h, where m is determined suitably by the radius r .

solution

y

y = mx

x
h

r
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From the figure, we see that m = r

h
, so y = rx

h
. Thus

SA = 2π

∫ h

0

rx

h

√
1 + r2

h2
dx = 2πr

h

√
1 + r2

h2

∫ h

0
x dx = πr

√
h2 + r2.

Further Insights and Challenges
49. Find the surface area of the ellipsoid obtained by rotating the ellipse

(x

a

)2 +
(y

b

)2 = 1 about the x-axis.

solution Taking advantage of symmetry, we can find the surface area of the ellipsoid by doubling the surface area
obtained by rotating the portion of the ellipse in the first quadrant about the x-axis. The equation for the portion of the
ellipse in the first quadrant is

y = b

a

√
a2 − x2.

Thus,

1 + (y′)2 = 1 + b2x2

a2(a2 − x2)
= a4 + (b2 − a2)x2

a2(a2 − x2)
,

and

SA = 4π

∫ a

0

b

a

√
a2 − x2

√
a4 + (b2 − a2)x2

a
√

a2 − x2
dx = 4πb

∫ a

0

√
1 +

(
b2 − a2

a4

)
x2 dx.

We now consider two cases. If b2 > a2, then we make the substitution

√
b2 − a2

a2
x = tan θ, dx = a2√

b2 − a2
sec2 θ dθ,

and find that

SA = 4πb
a2√

b2 − a2

∫ x=a

x=0
sec3 θ dθ = 2πb

a2√
b2 − a2

(sec θ tan θ + ln | sec θ + tan θ |)
∣∣∣∣x=a

x=0

=
⎛
⎝2πbx

√
1 +

(
b2 − a2

a4

)
x2 + 2πb

a2√
b2 − a2

ln

∣∣∣∣∣∣
√

1 +
(

b2 − a2

a4

)
x2 +

√
b2 − a2

a2
x

∣∣∣∣∣∣
⎞
⎠ ∣∣∣∣a

0

= 2πb2 + 2πb
a2√

b2 − a2
ln

(
b

a
+
√

b2 − a2

a

)
.

On the other hand, if a2 > b2, then we make the substitution

√
a2 − b2

a2
x = sin θ, dx = a2√

a2 − b2
cos θ dθ,

and find that

SA = 4πb
a2√

a2 − b2

∫ x=a

x=0
cos2 θ dθ = 2πb

a2√
a2 − b2

(θ + sin θ cos θ)

∣∣∣∣x=a

x=0

=
⎡
⎣2πbx

√
1 −

(
a2 − b2

a4

)
x2 + 2πb

a2√
a2 − b2

sin−1

(√
a2 − b2

a2
x

)⎤⎦ ∣∣∣∣a
0

= 2πb2 + 2πb
a2√

a2 − b2
sin−1

(√
a2 − b2

a

)
.

Observe that in both cases, as a approaches b, the value of the surface area of the ellipsoid approaches 4πb2, the surface
area of a sphere of radius b.
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50. Show that if the arc length of f (x) over [0, a] is proportional to a, then f (x) must be a linear function.

solution

s =
∫ a

0

√
1 + f ′(x)2 dx

For s to be proportional to a,
√

1 + f ′(x)2 must be a constant, which implies f ′(x) is a constant. This, in turn, requires
f (x) be linear.

51. Let L be the arc length of the upper half of the ellipse with equation

y = b

a

√
a2 − x2

(Figure 18) and let η =
√

1 − (b2/a2). Use substitution to show that

L = a

∫ π/2

−π/2

√
1 − η2 sin2 θ dθ

Use a computer algebra system to approximate L for a = 2, b = 1.

x

y

2−2

1

FIGURE 18 Graph of the ellipse y = 1
2

√
4 − x2.

solution Let y = b

a

√
a2 − x2. Then

1 + (y′)2 = b2x2 + a2(a2 − x2)

a2(a2 − x2)

and

s =
∫ a

−a

√
b2x2 + a2(a2 − x2)

a2(a2 − x2)
dx.

With the substitution x = a sin t , dx = a cos t dt , a2 − x2 = a2 cos2 t and

s = a

∫ π/2

−π/2
cos t

√
a2b2 sin2 t + a2a2 cos2 t

a2(a2 cos2 t)
dt = a

∫ π/2

π/2

√
b2 sin2 t

a2
+ cos2 t dt

Because

η =
√

1 − b2

a2
, η2 = 1 − b2

a2

we then have

1 − η2 sin2 t = 1 −
(

1 − b2

a2

)
sin2 t = 1 − sin2 t + b2

a2
sin2 t = cos2 t + b2

a2
sin2 t

which is the same as the expression under the square root above. Substituting, we get

s = a

∫ π/2

−π/2

√
1 − η2 sin2 t dt

When a = 2 and b = 1, η2 = 3
4 . Using a computer algebra system to approximate the value of the definite integral, we

find s ≈ 4.84422.
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52. Prove that the portion of a sphere of radius R seen by an observer located at a distance d above the North Pole has area
A = 2πdR2/(d + R). Hint: According to Exercise 46, the cap has surface area is 2πRh. Show that h = dR/(d + R)

by applying the Pythagorean Theorem to the three right triangles in Figure 19.

R

d

h

Observer

FIGURE 19 Spherical cap observed from a distance d above the North Pole.

solution Label distances as shown in the figure below.

R

k

x

d

h

R − h

By repeated application of the Pythagorean Theorem, we find

(d + R)2 = R2 + k2 = R2 + (d + h)2 + x2 = R2 + (d + h)2 + R2 − (R − h)2.

Solving for h yields

d2 + 2dR + R2 = R2 + d2 + 2dh + h2 + R2 − R2 + 2Rh − h2

2dR = 2dh + 2Rh

dR = (d + R)h

h = dR

d + R

and thus

SA = 2πR

(
dR

d + R

)
.

53. Suppose that the observer in Exercise 52 moves off to infinity—that is, d → ∞. What do you expect the
limiting value of the observed area to be? Check your guess by calculating the limit using the formula for the area in the
previous exercise.

solution We would assume the observed surface area would approach 2πR2 which is the surface area of a hemisphere
of radius R. To verify this, observe:

lim
d→∞ SA = lim

d→∞
2πR2d

R + d
= lim

d→∞
2πR2

1
= 2πR2.

54. Let M be the total mass of a metal rod in the shape of the curve y = f (x) over [a, b] whose mass density
ρ(x) varies as a function of x. Use Riemann sums to justify the formula

M =
∫ b

a
ρ(x)

√
1 + f ′(x)2 dx

solution Divide the interval [a, b] into n subintervals, which we shall denote by [xj−1, xj ] for j = 1, 2, 3, . . . , n.
On each subinterval, we will assume that the mass density of the rod is constant; hence, the mass of the corresponding
segment of the rod will be approximately equal to the product of the mass density of the segment and the length of the
segment. Specifically, let cj be any point in the j th subinterval and approximate the mass of the segment by

ρ(cj )

√
1 + f ′(cj )2 �x,

where
√

1 + f ′(cj )2 �x is the approximate length of the segment. Thus,

M ≈
n∑

j=1

ρ(cj )

√
1 + f ′(cj )2 �x.
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As n → ∞, this Riemann sum approaches a definite integral, and we have

M =
∫ b

a
ρ(x)

√
1 + f ′(x)2 dx.

55. Let f (x) be an increasing function on [a, b] and let g(x) be its inverse. Argue on the basis of arc length that
the following equality holds:

∫ b

a

√
1 + f ′(x)2 dx =

∫ f (b)

f (a)

√
1 + g′(y)2 dy 5

Then use the substitution u = f (x) to prove Eq. (5).

solution Since the graphs of f (x) and g(x) are symmetric with respect to the line y = x, the arc length of the curves
will be equal on the respective domains. Since the domain of g is the range of f , on f (a) to f (b), g(x) will have the
same arc length as f (x) on a to b. If g(x) = f −1(x) and u = f (x), then x = g(u) and du = f ′(x) dx. But

g′(u) = 1

f ′(g(u))
= 1

f ′(x)
⇒ f ′(x) = 1

g′(u)

Now substituting u = f (x),

s =
∫ b

a

√
1 + f ′(x)2 dx =

∫ f (b)

f (a)

√
1 +

(
1

g′(u)

)2
g′(u) du =

∫ f (b)

f (a)

√
g′(u)2 + 1 du

8.2 Fluid Pressure and Force

Preliminary Questions
1. How is pressure defined?

solution Pressure is defined as force per unit area.

2. Fluid pressure is proportional to depth. What is the factor of proportionality?

solution The factor of proportionality is the weight density of the fluid, w = ρg, where ρ is the mass density of the
fluid.

3. When fluid force acts on the side of a submerged object, in which direction does it act?

solution Fluid force acts in the direction perpendicular to the side of the submerged object.

4. Why is fluid pressure on a surface calculated using thin horizontal strips rather than thin vertical strips?

solution Pressure depends only on depth and does not change horizontally at a given depth.

5. If a thin plate is submerged horizontally, then the fluid force on one side of the plate is equal to pressure times area.
Is this true if the plate is submerged vertically?

solution When a plate is submerged vertically, the pressure is not constant along the plate, so the fluid force is not
equal to the pressure times the area.

Exercises
1. A box of height 6 m and square base of side 3 m is submerged in a pool of water. The top of the box is 2 m below the

surface of the water.

(a) Calculate the fluid force on the top and bottom of the box.

(b) Write a Riemann sum that approximates the fluid force on a side of the box by dividing the side into N horizontal
strips of thickness �y = 6/N .

(c) To which integral does the Riemann sum converge?

(d) Compute the fluid force on a side of the box.
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solution

(a) At a depth of 2 m, the pressure on the top of the box is ρgh = 103 · 9.8 · 2 = 19,600 Pa. The top has area 9 m2, and
the pressure is constant, so the force on the top of the box is 19,600 · 9 = 176,400N . At a depth of 8 m, the pressure on the
bottom of the box is ρgh = 103 · 9.8 · 8 = 78,400 Pa, so the force on the bottom of the box is 78,400 · 9 = 705,600N .

(b) Let yj denote the depth of the j th strip, for j = 1, 2, 3, . . . , N ; the pressure at this depth is 103 · 9.8 · yj = 9800yj Pa.

The strip has thickness �y m and length 3 m, so has area 3�y m2. Thus the force on the strip is 29,400yj�y N. Sum
over all the strips to conclude that the force on one side of the box is approximately

F ≈
N∑

j=1

29,400yj�y.

(c) As N → ∞, the Riemann sum in part (b) converges to the definite integral 29,400
∫ 8

2 y dy.

(d) Using the result from part (c), the fluid force on one side of the box is

29,400
∫ 8

2
y dy = 14,700y2

∣∣∣∣8
2

= 882,000 N

2. A plate in the shape of an isosceles triangle with base 1 m and height 2 m is submerged vertically in a tank of water
so that its vertex touches the surface of the water (Figure 7).

(a) Show that the width of the triangle at depth y is f (y) = 1
2y.

(b) Consider a thin strip of thickness �y at depth y. Explain why the fluid force on a side of this strip is approximately
equal to ρg 1

2y2�y.

(c) Write an approximation for the total fluid force F on a side of the plate as a Riemann sum and indicate the integral
to which it converges.

(d) Calculate F .

1

2

f (y)

y

Δy

FIGURE 7

solution

(a) By similar triangles,
y

2
= f (y)

1
so f (y) = y

2
.

(b) The pressure at a depth of y feet is ρgy Pa, and the area of the strip is approximately f (y) �y = 1
2y�y m2. Therefore,

the fluid force on this strip is approximately

ρgy

(
1

2
y�y

)
= 1

2
ρgy2�y.

(c) F ≈
N∑

j=1

ρg
y2
j

2
�y. As N → ∞, the Riemann sum converges to the definite integral

ρg

2

∫ 2

0
y2 dy.

(d) Using the result of part (c),

F = ρg

2

∫ 2

0
y2 dy = ρg

2

(
y3

3

)∣∣∣∣∣
2

0

= 9800

2
· 8

3
= 39200

3
N.

3. Repeat Exercise 2, but assume that the top of the triangle is located 3 m below the surface of the water.

solution

(a) Examine the figure below. By similar triangles,
y − 3

2
= f (y)

1
so f (y) = y − 3

2
.
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f (y)

y

3

(b) The pressure at a depth of y feet is ρgy lb/ Pa, and the area of the strip is approximately f (y) �y = 1
2 (y − 3)�y m2.

Therefore, the fluid force on this strip is approximately

ρgy

(
1

2
(y − 3)�y

)
= 1

2
ρgy(y − 3)�y N.

(c) F ≈
N∑

j=1

ρg
y2
j

− 3yj

2
�y. As N → ∞, the Riemann sum converges to the definite integral

ρg

2

∫ 5

3
(y2 − 3y) dy.

(d) Using the result of part (c),

F = ρg

2

∫ 5

3
(y2 − 3y) dy = ρg

2

(
y3

3
− 3y2

2

)∣∣∣∣∣
5

3

= 9800

2

[(
125

3
− 75

2

)
−
(

9 − 27

2

)]
= 127,400

3
N.

4. The plate R in Figure 8, bounded by the parabola y = x2 and y = 1, is submerged vertically in water (distance in
meters).

(a) Show that the width of R at height y is f (y) = 2
√

y and the fluid force on a side of a horizontal strip of thickness
�y at height y is approximately (ρg)2y1/2(1 − y)�y.

(b) Write a Riemann sum that approximates the fluid force F on a side of R and use it to explain why

F = ρg

∫ 1

0
2y1/2(1 − y) dy

(c) Calculate F .

Water surface

f (y)1 − y

x

R

1

(     , y)

−1

y

1

y

y

y = x2

FIGURE 8

solution

(a) At height y, the thin plate R extends from the point (−√
y, y) on the left to the point (

√
y, y) on the right; thus, the

width of the plate is f (y) = √
y − (−√

y) = 2
√

y. Moreover, the area of a horizontal strip of thickness �y at height y is
f (y) �y = 2

√
y �y. Because the water surface is at height y = 1, the horizontal strip at height y is at a depth of 1 − y.

Consequently, the fluid force on the strip is approximately

ρg(1 − y) × 2
√

y�y = 2ρgy1/2(1 − y)�y.

(b) If the plate is divided into N strips with yj being the representative height of the j th strip (for j = 1, 2, 3, . . . , N),
then the total fluid force exerted on the plate is

F ≈ 2ρg

N∑
j=1

(1 − yj )
√

yj�y.
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As N → ∞, the Riemann sum converges to the definite integral

2ρg

∫ 1

0
(1 − y)

√
y dy.

(c) Using the result from part (b),

F = 2ρg

∫ 1

0
(1 − y)

√
y dy = 2ρg

(
2

3
y3/2 − 2

5
y5/2

) ∣∣∣∣1
0

= 8

15
ρg.

Now, ρg = 9800 N/m3 so that F = 15680
3 N.

5. Let F be the fluid force on a side of a semicircular plate of radius r meters, submerged vertically in water so that its
diameter is level with the water’s surface (Figure 9).

(a) Show that the width of the plate at depth y is 2
√

r2 − y2.
(b) Calculate F as a function of r using Eq. (2).

y

r

r

2 r2 − y2

x

FIGURE 9

solution
(a) Place the origin at the center of the semicircle and point the positive y-axis downward. The equation for the edge of
the semicircular plate is then x2 + y2 = r2. At a depth of y, the plate extends from the point (−

√
r2 − y2, y) on the left

to the point (
√

r2 − y2, y) on the right. The width of the plate at depth y is then√
r2 − y2 −

(
−
√

r2 − y2
)

= 2
√

r2 − y2.

(b) With w = 9800 N/m3,

F = 2w

∫ r

0
y

√
r2 − y2 dy = −19,600

3
(r2 − y2)3/2

∣∣∣∣r
0

= 19,600r3

3
N.

6. Calculate the force on one side of a circular plate with radius 2 m, submerged vertically in a tank of water so that the
top of the circle is tangent to the water surface.

solution Place the origin at the point where the top of the circle is tangent to the water surface and orient the positive

y-axis pointing downward. The equation of the circle is then x2 + (y − 2)2 = 4, and the width at any depth y is
2
√

4 − (y − 2)2. Thus,

F = 2ρg

∫ 4

0
y

√
4 − (y − 2)2 dy,

Using the substitution y − 2 = 2 sin θ , dy = 2 cos θ dθ , the limits of integration become −π
2 ≤ θ ≤ π

2 , so we find

F = 2ρg

∫ 4

0
y

√
4 − (y − 2)2 dy

= 2ρg

∫ π/2

−π/2
(2 + 2 sin θ)(2 cos θ)(2 cos θ dθ) = 16ρg

∫ π/2

−π/2
cos2 θ + sin θ cos2 θ dθ

= 16ρg

(
1

2
θ + 1

2
sin θ cos θ − 1

3
cos3 θ

)∣∣∣∣π/2

−π/2

= 16ρg
(π

4
+ 0 − 0 − (−π

4
+ 0 − 0)

)
= 8ρgπ = 78,400π N.

7. A semicircular plate of radius r meters, oriented as in Figure 9, is submerged in water so that its diameter is located
at a depth of m meters. Calculate the fluid force on one side of the plate in terms of m and r .

solution Place the origin at the center of the semicircular plate with the positive y-axis pointing downward. The water

surface is then at y = −m. Moreover, at location y, the width of the plate is 2
√

r2 − y2 and the depth is y + m. Thus,

F = 2ρg

∫ r

0
(y + m)

√
r2 − y2 dy.
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Now, ∫ r

0
y

√
r2 − y2 dy = −1

3
(r2 − y2)3/2

∣∣∣∣r
0

= 1

3
r3.

Geometrically, ∫ r

0

√
r2 − y2 dy

represents the area of one quarter of a circle of radius r , and thus has the value πr2

4 . Bringing these results together, we
find that

F = 2ρg

(
1

3
r3 + π

4
r2
)

= 19,600

3
r3 + 4900mr2 N.

8. A plate extending from depth y = 2 m to y = 5 m is submerged in a fluid of density ρ = 850 kg/m3. The

horizontal width of the plate at depth y is f (y) = 2(1 + y2)−1. Calculate the fluid force on one side of the plate.

solution The fluid force on one side of the plate is given by

F = ρg

∫ 5

2
yf (y) dy = ρg

∫ 5

2
2y(1 + y2)−1 dy = ρg ln(1 + y2)

∣∣∣∣5
2

= ρg(ln 26 − ln 5)

= 8330 ln
26

5
≈ 13733.32 N.

9. Figure 10 shows the wall of a dam on a water reservoir. Use the Trapezoidal Rule and the width and depth measurements
in the figure to estimate the fluid force on the wall.

Depth (ft)

20 

0

600

900

1,100

1,400

1,650

1,800 (ft)

40

60

80

100

FIGURE 10

solution Let f (y) denote the width of the dam wall at depth y feet. Then the force on the dam wall is

F = w

∫ 100

0
yf (y) dy.

Using the Trapezoidal Rule and the width and depth measurements in the figure,

F ≈ w
20

2
[0 · f (0) + 2 · 20 · f (20) + 2 · 40 · f (40) + 2 · 60 · f (60) + 2 · 80 · f (80) + 100 · f (100)]

= 10w(0 + 66,000 + 112,000 + 132,000 + 144,000 + 60,000) = 321,250,000 lb.

10. Calculate the fluid force on a side of the plate in Figure 11(A), submerged in water.

3 m
4 m

7 m
2 m

(A) (B)

2 m

2 m

4 m

FIGURE 11

solution The width of the plate varies linearly from 4 meters at a depth of 3 meters to 7 meters at a depth of 5 meters.
Thus, at depth y, the width of the plate is

4 + 3

2
(y − 3) = 3

2
y − 1

2
.

Finally, the force on a side of the plate is

F = w

∫ 5

3
y

(
3

2
y − 1

2

)
dy = w

(
1

2
y3 − 1

4
y2
)∣∣∣∣5

3
= 45w = 441,000 N.
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11. Calculate the fluid force on a side of the plate in Figure 11(B), submerged in a fluid of mass density ρ = 800 kg/m3.

solution Because the fluid has a mass density of ρ = 800 kg/m3,

w = (800)(9.8) = 7840 N/m3.

For depths up to 2 meters, the width of the plate at depth y is y; for depths from 2 meters to 6 meters, the width of the
plate is a constant 2 meters. Thus,

F = w

∫ 2

0
y(y) dy + w

∫ 6

2
2y dy = w

y3

3

∣∣∣∣∣
2

0

+ wy2
∣∣∣6
2

= 8w

3
+ 32w = 104w

3
= 815,360

3
N.

12. Find the fluid force on the side of the plate in Figure 12, submerged in a fluid of density ρ = 1200 kg/m3. The top
of the place is level with the fluid surface. The edges of the plate are the curves y = x1/3 and y = −x1/3.

x
8

2 Fluid level

−8

y

y = x1/3y = −x1/3

FIGURE 12

solution At height y, the plate extends from the point (−y3, y) on the left to the point (y3, y) on the right; thus, the

width of the plate is f (y) = y3 − (−y3) = 2y3. Because the water surface is at height y = 2, the horizontal strip at
height y is at a depth of 2 − y. Consequently,

F = ρg

∫ 2

0
(2 − y)(2y3) dy = 2ρg

(
1

2
y4 − 1

5
y5
)∣∣∣∣2

0
= 16ρg

5
= 16 · 1200 · 9.8

5
= 37,632 N.

13. Let R be the plate in the shape of the region under y = sin x for 0 ≤ x ≤ π
2 in Figure 13(A). Find the fluid force on

a side of R if it is rotated counterclockwise by 90◦ and submerged in a fluid of density 1100 kg/m3 with its top edge level
with the surface of the fluid as in (B).

1

(A) (B)

Fluid level
y

y = sin x

x

R

Fluid level

R

p
2

FIGURE 13

solution Place the origin at the bottom corner of the plate with the positive y-axis pointing upward. The fluid surface
is then at height y = π

2 , and the horizontal strip of the plate at height y is at a depth of π
2 − y and has a width of sin y.

Now, using integration by parts we find

F = ρg

∫ π/2

0

(π

2
− y

)
sin y dy = ρg

[
−
(π

2
− y

)
cos y − sin y

]∣∣∣π/2

0
= ρg

(π

2
− 1

)

= 1100 · 9.8
(π

2
− 1

)
≈ 6153.184 N.

14. In the notation of Exercise 13, calculate the fluid force on a side of the plate R if it is oriented as in Figure 13(A).
You may need to use Integration by Parts and trigonometric substitution.

solution Place the origin at the lower left corner of the plate. Because the fluid surface is at height y = 1, the horizontal
strip at height y is at a depth of 1 − y. Moreover, this strip has a width of

π

2
− sin−1 y = cos−1 y.

Thus,

F = ρg

∫ 1

0
(1 − y) cos−1 y dy.
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Starting with integration by parts, we find

∫ 1

0
(1 − y) cos−1 y dy =

(
y − 1

2
y2
)

cos−1 y

∣∣∣∣1
0

+
∫ 1

0

y − 1
2y2√

1 − y2
dy

= 1

2
cos−1 1 +

∫ 1

0

y − 1
2y2√

1 − y2
dy =

∫ 1

0

y√
1 − y2

dy − 1

2

∫ 1

0

y2√
1 − y2

dy.

Now,

∫ 1

0

y√
1 − y2

dy = −
√

1 − y2
∣∣∣∣1
0

= 1.

For the remaining integral, we use the trigonometric substitution y = sin θ , dy = cos θ dθ and find

1

2

∫ 1

0

y2√
1 − y2

dy = 1

2

∫ y=1

y=0
sin2 θ dθ = 1

4
(θ − sin θ cos θ)

∣∣∣∣y=1

y=0

= 1

4

(
sin−1 y − y

√
1 − y2

) ∣∣∣∣1
0

= π

8
.

Finally,

F = ρg
(

1 − π

8

)
= 1100 · 9.8

(
1 − π

8

)
≈ 6546.70 N.

15. Calculate the fluid force on one side of a plate in the shape of region A shown Figure 14. The water surface is at
y = 1, and the fluid has density ρ = 900 kg/m3.

y = ln x
1

y

1 e
x

A

B

FIGURE 14

solution Because the fluid surface is at height y = 1, the horizontal strip at height y is at a depth of 1 − y. Moreover,
this strip has a width of e − ey . Thus,

F = ρg

∫ 1

0
(1 − y)(e − ey) dy = eρg

∫ 1

0
(1 − y) dy − ρg

∫ 1

0
(1 − y)ey dy.

Now,

∫ 1

0
(1 − y) dy =

(
y − 1

2
y2
)∣∣∣∣1

0
= 1

2
,

and using integration by parts

∫ 1

0
(1 − y)ey dy = (

(1 − y)ey + ey
) ∣∣∣∣1

0
= e − 2.

Combining these results, we find that

F = ρg

(
1

2
e − (e − 2)

)
= ρg

(
2 − 1

2
e

)
= 900 · 9.8

(
2 − 1

2
e

)
≈ 5652.37 N.

16. Calculate the fluid force on one side of the “infinite” plate B in Figure 14, assuming the fluid has density ρ = 900
kg/m3.

solution Because the fluid surface is at height y = 1, the horizontal strip at height y is at a depth of 1 − y. Moreover,
this strip has a width of ey . Thus,

F = ρg

∫ 0

−∞
(1 − y)ey dy.
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Using integration by parts, we find ∫ 0

−∞
(1 − y)ey dy = [

(1 − y)ey + ey
]∣∣0−∞ = 2.

Thus, F = 2ρg = 2 · 900 · 9.8 = 17,640 N.

17. Figure 15(A) shows a ramp inclined at 30◦ leading into a swimming pool. Calculate the fluid force on the ramp.

solution A horizontal strip at depth y has length 6 and width

�y

sin 30◦ = 2�y.

Thus,

F = 2ρg

∫ 4

0
6y dy = 96ρg.

If distances are in feet, then ρg = w = 62.5 lb/ft3 and F = 6000 lb; if distances are in meters, then ρg = 9800 N/m3

and F = 940,800 N.

18. Calculate the fluid force on one side of the plate (an isosceles triangle) shown in Figure 15(B).

4

6

Water surface

(A)

30˚

3

10

y
f (y)

Vertical
change Δy

(B)

Water surface

60˚

FIGURE 15

solution A horizontal strip at depth y has length f (y) = 3
10y and width

�y

sin 60◦ = 2√
3
�y.

Thus,

F =
√

3

5
w

∫ 10

0
y2 dy = 200

√
3

3
w.

If distances are in feet, then w = 62.5 lb/ft3 and F ≈ 7216.88 lb; if distances are in meters, then w = 9800 N/m3 and
F ≈ 1,131,606.5 N.

19. The massive Three Gorges Dam on China’s Yangtze River has height 185 m (Figure 16). Calculate the force on the
dam, assuming that the dam is a trapezoid of base 2000 m and upper edge 3000 m, inclined at an angle of 55◦ to the
horizontal (Figure 17).

FIGURE 16 Three Gorges Dam on
the Yangtze River

2000 m

3000 m

185 m55°

FIGURE 17

solution Let y = 0 be at the bottom of the dam, so that the top of the dam is at y = 185. Then the width of the dam

at height y is 2000 + 1000y
185 . The dam is inclined at an angle of 55◦ to the horizontal, so the height of a horizontal strip is

�y

sin 55◦ ≈ 1.221�y
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so that the area of such a strip is

1.221

(
2000 + 1000y

185

)
�y

Then

F = ρg

∫ 185

0
1.221y

(
2000 + 1000y

185

)
dy = ρg

∫ 185

0
2442y + 6.6y2 dy = ρg(1221y2 + 2.2y3)

∣∣∣∣185

0

= 55,718,300ρg = 55,718,300 · 9800 = 5.460393400 × 1011 N.

20. A square plate of side 3 m is submerged in water at an incline of 30◦ with the horizontal. Calculate the fluid force on
one side of the plate if the top edge of the plate lies at a depth of 6 m.

solution Because the plate is 3 meters on a side, is submerged at a horizontal angle of 30◦, and has its top edge located

at a depth of 6 meters, the bottom edge of the plate is located at a depth of 6 + 3 sin 30◦ = 15
2 meters. Let y denote the

depth at any point of the plate. The width of each horizontal strip of the plate is then

�y

sin 30◦ = 2�y,

and

F = ρg

∫ 15/2

6
(2)3y dy = (ρg)

243

4
= 595,350 N.

21. The trough in Figure 18 is filled with corn syrup, whose weight density is 90 lb/ft3. Calculate the force on the front
side of the trough.

a

dh

b

FIGURE 18

solution Place the origin along the top edge of the trough with the positive y-axis pointing downward. The width of
the front side of the trough varies linearly from b when y = 0 to a when y = h; thus, the width of the front side of the
trough at depth y feet is given by

b + a − b

h
y.

Now,

F = w

∫ h

0
y

(
b + a − b

h
y

)
dy = w

(
1

2
by2 + a − b

3h
y3
) ∣∣∣∣h

0
= w

(
b

6
+ a

3

)
h2 = (15b + 30a)h2 lb.

22. Calculate the fluid pressure on one of the slanted sides of the trough in Figure 18 when it is filled with corn syrup as
in Exercise 21.

solution

a

h

θ

b

b − a
2

The diagram above displays a side view of the trough. From this diagram, we see that

sin θ = h√(
b−a

2

)2 + h2

.

Thus,

F = w

sin θ

∫ h

0
d · y dy =

90

√(
b−a

2

)2 + h2

h

dh2

2
= 45dh

√(
b − a

2

)2
+ h2.
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Further Insights and Challenges
23. The end of the trough in Figure 19 is an equilateral triangle of side 3. Assume that the trough is filled with water to
height H . Calculate the fluid force on each side of the trough as a function of H and the length l of the trough.

H

l

3

FIGURE 19

solution Place the origin at the lower vertex of the trough and orient the positive y-axis pointing upward. First,

consider the faces at the front and back ends of the trough. A horizontal strip at height y has a length of
2y√

3
and is at a

depth of H − y. Thus,

F = w

∫ H

0
(H − y)

2y√
3

dy = w

(
H√

3
y2 − 2

3
√

3
y3
)∣∣∣∣H

0
=

√
3

9
wH 3.

For the slanted sides, we note that each side makes an angle of 60◦ with the horizontal. If we let � denote the length of
the trough, then

F = 2w�√
3

∫ H

0
(H − y) dy =

√
3

3
�wH 2.

24. A rectangular plate of side � is submerged vertically in a fluid of density w, with its top edge at depth h. Show that if
the depth is increased by an amount �h, then the force on a side of the plate increases by wA�h, where A is the area of
the plate.

solution Let F1 be the force on a side of the plate when its top edge is at depth h and F2 be the force on a side of the
plate when its top edge is at depth h + �h. Further, let b denote the width of the rectangular plate. Then

F1 = w

∫ h+�

h
yb dy = bw

(
y2

2

) ∣∣∣h+�

h
= bw

(
�2 + 2�h

2

)

F2 = w

∫ h+�+�h

h+�h
yb dy = bw

(
y2

2

) ∣∣∣h+�+�h

h+�h
= bw

�2 + 2�h + 2��h

2

and F2 − F1 = bw��h = wA�h.

25. Prove that the force on the side of a rectangular plate of area A submerged vertically in a fluid is equal to p0A, where
p0 is the fluid pressure at the center point of the rectangle.

solution Let � denote the length of the vertical side of the rectangle, x denote the length of the horizontal side of the
rectangle, and suppose the top edge of the rectangle is at depth y = m. The pressure at the center of the rectangle is then

p0 = w

(
m + �

2

)
,

and the force on the side of the rectangular plate is

F =
∫ �+m

m
wxy dy = wx

2

[
(� + m)2 − m2

]
= wx�

2
(� + 2m) = Aw

(
�

2
+ m

)
= Ap0.

26. If the density of a fluid varies with depth, then the pressure at depth y is a function p(y) (which need not equal
wy as in the case of constant density). Use Riemann sums to argue that the total force F on the flat side of a submerged
object submerged vertically is F = ∫ b

a f (y)p(y) dy, where f (y) is the width of the side at depth y.

solution Suppose the object extends from a depth of y = a to a depth of y = b. Divide the object into N horizontal
strips, each of width �y. Let p(y) denote the pressure within the fluid at depth y and f (y) denote the width of the flat
side of the submerged object at depth y. The approximate force on the j th strip (j = 1, 2, 3, . . . , N) is

p(yj )f (yj )�y,
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where yj is a depth associated with the j th strip. Summing over all of the strips,

F ≈
N∑

j=1

p(yj )f (yj )�y.

As N → ∞, this Riemann sum converges to a definite integral, and

F =
∫ b

a
p(y)f (y) dy.

8.3 Center of Mass

Preliminary Questions
1. What are the x- and y-moments of a lamina whose center of mass is located at the origin?

solution Because the center of mass is located at the origin, it follows that Mx = My = 0.

2. A thin plate has mass 3. What is the x-moment of the plate if its center of mass has coordinates (2, 7)?

solution The x-moment of the plate is the product of the mass of the plate and the y-coordinate of the center of mass.
Thus, Mx = 3(7) = 21.

3. The center of mass of a lamina of total mass 5 has coordinates (2, 1). What are the lamina’s x- and y-moments?

solution The x-moment of the plate is the product of the mass of the plate and the y-coordinate of the center of
mass, whereas the y-moment is the product of the mass of the plate and the x-coordinate of the center of mass. Thus,
Mx = 5(1) = 5, and My = 5(2) = 10.

4. Explain how the Symmetry Principle is used to conclude that the centroid of a rectangle is the center of the rectangle.

solution Because a rectangle is symmetric with respect to both the vertical line and the horizontal line through the
center of the rectangle, the Symmetry Principle guarantees that the centroid of the rectangle must lie along both of these
lines. The only point in common to both lines of symmetry is the center of the rectangle, so the centroid of the rectangle
must be the center of the rectangle.

Exercises
1. Four particles are located at points (1, 1), (1, 2), (4, 0), (3, 1).

(a) Find the moments Mx and My and the center of mass of the system, assuming that the particles have equal mass m.

(b) Find the center of mass of the system, assuming the particles have masses 3, 2, 5, and 7, respectively.

solution

(a) Because each particle has mass m,

Mx = m(1) + m(2) + m(0) + m(1) = 4m;
My = m(1) + m(1) + m(4) + m(3) = 9m;

and the total mass of the system is 4m. Thus, the coordinates of the center of mass are

(
My

M
,
Mx

M

)
=
(

9m

4m
,

4m

4m

)
=
(

9

4
, 1

)
.

(b) With the indicated masses of the particles,

Mx = 3(1) + 2(2) + 5(0) + 7(1) = 14;
My = 3(1) + 2(1) + 5(4) + 7(3) = 46;

and the total mass of the system is 17. Thus, the coordinates of the center of mass are

(
My

M
,
Mx

M

)
=
(

46

17
,

14

17

)
.
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2. Find the center of mass for the system of particles of masses 4, 2, 5, 1 located at (1, 2), (−3, 2), (2, −1), (4, 0).

solution With the indicated masses and locations of the particles

Mx = 4(2) + 2(2) + 5(−1) + 1(0) = 7;
My = 4(1) + 2(−3) + 5(2) + 1(4) = 12;

and the total mass of the system is 12. Thus, the coordinates of the center of mass are(
My

M
,
Mx

M

)
=
(

1,
7

12

)
.

3. Point masses of equal size are placed at the vertices of the triangle with coordinates (a, 0), (b, 0), and (0, c). Show
that the center of mass of the system of masses has coordinates

( 1
3 (a + b), 1

3 c
)
.

solution Let each particle have mass m. The total mass of the system is then 3m. and the moments are

Mx = 0(m) + 0(m) + c(m) = cm; and

My = a(m) + b(m) + 0(m) = (a + b)m.

Thus, the coordinates of the center of mass are(
My

M
,
Mx

M

)
=
(

(a + b)m

3m
,
cm

3m

)
=
(

a + b

3
,
c

3

)
.

4. Point masses of mass m1, m2, and m3 are placed at the points (−1, 0), (3, 0), and (0, 4).

(a) Suppose that m1 = 6. Find m2 such that the center of mass lies on the y-axis.
(b) Suppose that m1 = 6 and m2 = 4. Find the value of m3 such that yCM = 2.

solution With the given masses and locations, we find

Mx = m1(0) + m2(0) + m3(4) = 4m3;
My = m1(−1) + m2(3) + m3(0) = 3m2 − m1;

and the total mass of the system is m1 + m2 + m3. Thus, the coordinates of the center of mass are(
3m2 − m1

m1 + m2 + m3
,

4m3

m1 + m2 + m3

)
.

(a) For the center of mass to lie on the y-axis, we must have 3m2 − m1 = 0, or m2 = 1
3m1. Given m1 = 6, it follows

that m2 = 2.
(b) To have yCM = 2 requires

4m3

m1 + m2 + m3
= 2 or m3 = m1 + m2.

Given m1 = 6 and m2 = 4, it follows that m3 = 10.

5. Sketch the lamina S of constant density ρ = 3 g/cm2 occupying the region beneath the graph of y = x2 for 0 ≤ x ≤ 3.

(a) Use Eqs. (1) and (2) to compute Mx and My .
(b) Find the area and the center of mass of S.

solution A sketch of the lamina is shown below

y

x

8

4

6

2

0 2 31 1.5 2.50.5

(a) Using Eq. (2),

Mx = 3
∫ 9

0
y(3 − √

y) dy =
(

9y2

2
− 6

5
y5/2

) ∣∣∣∣9
0

= 729

10
.

Using Eq. (1),

My = 3
∫ 3

0
x(x2) dx = 3x4

4

∣∣∣∣3
0

= 243

4
.
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(b) The area of the lamina is

A =
∫ 3

0
x2 dx = x3

3

∣∣∣∣3
0

= 9 cm2.

With a constant density of ρ = 3 g/cm2, the mass of the lamina is M = 27 grams, and the coordinates of the center of
mass are (

My

M
,
Mx

M

)
=
(

243/4

27
,

729/10

27

)
=
(

9

4
,

27

10

)
.

6. Use Eqs. (1) and (3) to find the moments and center of mass of the lamina S of constant density ρ = 2 g/cm2

occupying the region between y = x2 and y = 9x over [0, 3]. Sketch S, indicating the location of the center of mass.

solution With ρ = 2 g/cm2,

Mx = 1

2
(2)

∫ 3

0

(
(9x)2 − (x2)2

)
dx = 3402

5
,

and

My = 2
∫ 3

0
x(9x − x2) dx = 243

2
.

The mass of the lamina is

M = 2
∫ 3

0
(9x − x2) dx = 63 g,

so the coordinates of the center of mass are (
My

M
,
Mx

M

)
=
(

243

126
,

3402

315

)
.

A sketch of the lamina, with the location of the center of mass indicated, is shown below.

x

y

0.5 1 1.5 2 2.5 30

5

10

15

20

25

7. Find the moments and center of mass of the lamina of uniform density ρ occupying the region underneath y = x3

for 0 ≤ x ≤ 2.

solution With uniform density ρ,

Mx = 1

2
ρ

∫ 2

0
(x3)2 dx = 64ρ

7
and My = ρ

∫ 2

0
x(x3) dx = 32ρ

5
.

The mass of the lamina is

M = ρ

∫ 2

0
x3 dx = 4ρ,

so the coordinates of the center of mass are (
My

M
,
Mx

M

)
=
(

8

5
,

16

7

)
.

8. Calculate Mx (assuming ρ = 1) for the region underneath the graph of y = 1 − x2 for 0 ≤ x ≤ 1 in two ways, first
using Eq. (2) and then using Eq. (3).

solution By Eq. (2),

Mx =
∫ 1

0
y
√

1 − y dy.
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Using the substitution u = 1 − y, du = −dy, we find

Mx =
∫ 1

0
(1 − u)

√
u du =

(
2

3
u3/2 − 2

5
u5/2

)∣∣∣∣1
0

= 4

15
.

By Eq. (3),

Mx = 1

2

∫ 1

0
(1 − x2)2 dx = 1

2

(
x − 2

3
x3 + 1

5
x5
)∣∣∣∣1

0
= 4

15
.

9. Let T be the triangular lamina in Figure 17.

(a) Show that the horizontal cut at height y has length 4 − 2
3y and use Eq. (2) to compute Mx (with ρ = 1).

(b) Use the Symmetry Principle to show that My = 0 and find the center of mass.

y

−2 2

6

x

FIGURE 17 Isosceles triangle.

solution
(a) The equation of the line from (2, 0) to (0, 6) is y = −3x + 6, so

x = 2 − 1

3
y.

The length of the horizontal cut at height y is then

2

(
2 − 1

3
y

)
= 4 − 2

3
y,

and

Mx =
∫ 6

0
y

(
4 − 2

3
y

)
dy = 24.

(b) Because the triangular lamina is symmetric with respect to the y-axis, xcm = 0, which implies that My = 0. The
total mass of the lamina is

M = 2
∫ 2

0
(−3x + 6) dx = 12,

so ycm = 24/12. Finally, the coordinates of the center of mass are (0, 2).

In Exercises 10–17, find the centroid of the region lying underneath the graph of the function over the given interval.

10. f (x) = 6 − 2x, [0, 3]
solution The moments of the region are

Mx = 1

2

∫ 3

0
(6 − 2x)2 dx = 18 and My =

∫ 3

0
x(6 − 2x) dx = 9.

The area of the region is

A =
∫ 3

0
(6 − 2x) dx = 9,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
= (1, 2).

11. f (x) = √
x, [1, 4]

solution The moments of the region are

Mx = 1

2

∫ 4

1
x dx = 15

4
and My =

∫ 4

1
x
√

x dx = 62

5
.
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The area of the region is

A =
∫ 4

1

√
x dx = 14

3
,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
=
(

93

35
,

45

56

)
.

12. f (x) = x3, [0, 1]
solution The moments of the region are

Mx = 1

2

∫ 1

0
x6 dx = 1

14
and My =

∫ 1

0
x4 dx = 1

5
.

The area of the region is

A =
∫ 1

0
x3 dx = 1

4
,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
=
(

4

5
,

2

7

)
.

13. f (x) = 9 − x2, [0, 3]
solution The moments of the region are

Mx = 1

2

∫ 3

0
(9 − x2)2 dx = 324

5
and My =

∫ 3

0
x(9 − x2) dx = 81

4
.

The area of the region is

A =
∫ 3

0
(9 − x2) dx = 18,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
=
(

9

8
,

18

5

)
.

14. f (x) = (1 + x2)−1/2, [0, 3]
solution The moments of the region are

Mx = 1

2

∫ 3

0

1

1 + x2
dx = tan−1 x

2

∣∣∣∣3
0

= 1

2
tan−1 3 and My =

∫ 3

0

x√
1 + x2

dx = √
10 − 1.

The area of the region is

A =
∫ 3

0

1√
1 + x2

dx = ln |x +
√

1 + x2|
∣∣∣∣3
0

= ln(3 + √
10),

so the coordinates of the centroid are(
My

A
,
Mx

A

)
=
( √

10 − 1

ln(3 + √
10)

,
tan−1 3

2 ln(3 + √
10)

)
.

15. f (x) = e−x , [0, 4]
solution The moments of the region are

Mx = 1

2

∫ 4

0
e−2x dx = 1

4

(
1 − e−8

)
and My =

∫ 4

0
xe−x dx = −e−x(x + 1)

∣∣∣∣4
0

= 1 − 5e−4.
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The area of the region is

A =
∫ 4

0
e−x dx = 1 − e−4,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
=
(

1 − 5e−4

1 − e−4
,

1 − e−8

4(1 − e−4)

)
.

16. f (x) = ln x, [1, 2]
solution The moments of the region are

Mx = 1

2

∫ 2

1
(ln x)2 dx = 1

2
(x(ln x)2 − 2x ln x + 2x)

∣∣∣∣2
1

= (ln 2)2 − 2 ln 2 + 1; and

My =
∫ 2

1
x ln x dx =

(
1

2
x2 ln x − 1

4
x2
)∣∣∣∣2

1
= 2 ln 2 − 3

4
.

The area of the region is

A =
∫ 2

1
ln x dx = (x ln x − x)

∣∣∣∣2
1

= 2 ln 2 − 1,

so the coordinates of the centroid are

(
My

A
,
Mx

A

)
=
(

2 ln 2 − 3
4

2 ln 2 − 1
,
(ln 2)2 − 2 ln 2 + 1

2 ln 2 − 1

)
.

17. f (x) = sin x, [0, π ]
solution The moments of the region are

Mx = 1

2

∫ π

0
sin2 x dx = 1

4
(x − sin x cos x)

∣∣∣∣π
0

= π

4
; and

My =
∫ π

0
x sin x dx = (−x cos x + sin x)

∣∣∣∣π
0

= π.

The area of the region is

A =
∫ π

0
sin x dx = 2,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
=
(π

2
,
π

8

)
.

18. Calculate the moments and center of mass of the lamina occupying the region between the curves y = x and y = x2

for 0 ≤ x ≤ 1.

solution The moments of the lamina are

Mx = 1

2

∫ 1

0
(x2 − x4) dx = 1

15
and My =

∫ 1

0
x(x − x2) dx = 1

12
.

The area of the lamina is

A =
∫ 1

0
(x − x2) dx = 1

6
,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
=
(

1

2
,

2

5

)
.
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19. Sketch the region between y = x + 4 and y = 2 − x for 0 ≤ x ≤ 2. Using symmetry, explain why the centroid of
the region lies on the line y = 3. Verify this by computing the moments and the centroid.

solution A sketch of the region is shown below.

0.5

1

2

3

4

5

y

x
1.0 1.5 2.0

The region is clearly symmetric about the line y = 3, so we expect the centroid of the region to lie along this line. We find

Mx = 1

2

∫ 2

0

(
(x + 4)2 − (2 − x)2

)
dx = 24;

My =
∫ 2

0
x ((x + 4) − (2 − x)) dx = 28

3
; and

A =
∫ 2

0
((x + 4) − (2 − x)) dx = 8.

Thus, the coordinates of the centroid are
( 7

6 , 3
)
.

In Exercises 20–25, find the centroid of the region lying between the graphs of the functions over the given interval.

20. y = x, y = √
x, [0, 1]

solution The moments of the region are

Mx = 1

2

∫ 1

0
(x − x2) dx = 1

12
and My =

∫ 1

0
x(

√
x − x) dx = 1

15
.

The area of the region is

A =
∫ 1

0
(
√

x − x) dx = 1

6
,

so the coordinates of the centroid are (
6

15
,

1

2

)
.

21. y = x2, y = √
x, [0, 1]

solution The moments of the region are

Mx = 1

2

∫ 1

0
(x − x4) dx = 3

20
and My =

∫ 1

0
x(

√
x − x2) dx = 3

20
.

The area of the region is

A =
∫ 1

0
(
√

x − x2) dx = 1

3
,

so the coordinates of the centroid are (
9

20
,

9

20

)
.

Note: This makes sense, since the functions are inverses of each other. This makes the region symmetric with respect to
the line y = x. Thus, by the symmetry principle, the center of mass must lie on that line.
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22. y = x−1, y = 2 − x, [1, 2]
solution The moments of the region are

Mx = 1

2

∫ 2

1

[(
1

x

)2
− (2 − x)2

]
dx = 1

12
and My =

∫ 2

1
x

(
1

x
− (2 − x)

)
dx = 1

3
.

The area of the region is

A =
∫ 2

1

(
1

x
− (2 − x)

)
dx = ln 2 − 1

2
,

so the coordinates of the centroid are (
2

6 ln 2 − 3
,

1

12 ln 2 − 6

)
.

23. y = ex , y = 1, [0, 1]
solution The moments of the region are

Mx = 1

2

∫ 1

0
(e2x − 1) dx = e2 − 3

4
and My =

∫ 1

0
x(ex − 1) dx =

(
xex − ex − 1

2
x2
)∣∣∣∣1

0
= 1

2
.

The area of the region is

A =
∫ 1

0
(ex − 1) dx = e − 2,

so the coordinates of the centroid are (
1

2(e − 2)
,

e2 − 3

4(e − 2)

)
.

24. y = ln x, y = x − 1, [1, 3]
solution The moments of the region are

Mx = 1

2

∫ 3

1

[
(x − 1)2 − (ln x)2

]
dx =

(
1

3
x3 − x2 − x − x(ln x)2 + 2x ln x

) ∣∣∣∣3
1

= 3 ln 3 − 3

2
(ln 3)2 − 2

3
; and

My =
∫ 3

1
x((x − 1) − ln x) dx =

(
1

3
x3 − 1

2
x2 ln x − 1

4
x2
) ∣∣∣∣3

1
= 20

3
− 9

2
ln 3.

The area of the region is

A =
∫ 3

1
(x − 1 − ln x) dx =

(
1

2
x2 − x ln x

)∣∣∣∣3
1

= 4 − 3 ln 3,

so the coordinates of the centroid are (
40 − 27 ln 3

24 − 18 ln 3
,

18 ln 3 − 9(ln 3)2 − 4

24 − 18 ln 3

)
.

25. y = sin x, y = cos x, [0, π/4]
solution The moments of the region are

Mx = 1

2

∫ π/4

0
(cos2 x − sin2 x) dx = 1

2

∫ π/4

0
cos 2x dx = 1

4
; and

My =
∫ π/4

0
x(cos x − sin x) dx = [(x − 1) sin x + (x + 1) cos x]

∣∣∣∣π/4

0
= π

√
2

4
− 1.

The area of the region is

A =
∫ π/4

0
(cos x − sin x) dx = √

2 − 1,

so the coordinates of the centroid are (
π

√
2 − 4

4(
√

2 − 1)
,

1

4(
√

2 − 1)

)
.
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26. Sketch the region enclosed by y = x + 1, and y = (x − 1)2, and find its centroid.

solution A sketch of the region is shown below.

−1

1

2

3

4

5

1 2 3

y

x

The moments of the region are

Mx = 1

2

∫ 3

0
(x + 1)2 − (x − 1)4 dx = 1

2

(
1

3
(x + 1)3 − 1

5
(x − 1)5

) ∣∣∣∣3
0

= 1

2

(
64

3
− 32

5
− 1

3
− 1

5

)
= 36

5

My =
∫ 3

0
x((x + 1) − (x − 1)2) dx =

∫ 3

0
3x2 − x3 dx =

(
x3 − 1

4
x4
) ∣∣∣∣3

0
= 27

4

The area of the region is

A =
∫ 3

0
(x + 1) − (x − 1)2 dx =

∫ 3

0
−x2 + 3x dx =

(
−1

3
x3 + 3

2
x2
) ∣∣∣∣3

0
= 9

2

so that the coordinates of the centroid are (
27

4
· 2

9
,

36

5
· 2

9

)
=
(

3

2
,

8

5

)
s

27. Sketch the region enclosed by y = 0, y = (x + 1)3, and y = (1 − x)3, and find its centroid.

solution A sketch of the region is shown below.

1

1

−1

y

x

The moments of the region are

Mx = 1

2

(∫ 0

−1
(x + 1)6 dx +

∫ 1

0
(1 − x)6 dx

)
= 1

7
; and

My = 0 by the Symmetry Principle.

The area of the region is

A =
∫ 0

−1
(x + 1)3 dx +

∫ 1

0
(1 − x)3 dx = 1

2
,

so the coordinates of the centroid are
(
0, 2

7

)
.

In Exercises 28–32, find the centroid of the region.

28. Top half of the ellipse
(x

2

)2 +
(y

4

)2 = 1

solution The equation of the top half of the ellipse is y =
√

16 − 4x2. Thus,

Mx = 1

2

∫ 2

−2

(√
16 − 4x2

)2
dx = 64

3
.

By the Symmetry Principle, My = 0. The area of the region is one-half the area of an ellipse with major axis 4 and minor

axis 2; i.e., 1
2π(4)(2) = 4π . Finally, the coordinates of the centroid are(

0,
16

3π

)
.
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29. Top half of the ellipse
(x

a

)2 +
(y

b

)2 = 1 for arbitrary a, b > 0

solution The equation of the top half of the ellipse is

y =
√

b2 − b2x2

a2

Thus,

Mx = 1

2

∫ a

−a

⎛
⎝
√

b2 − b2x2

a2

⎞
⎠

2

dx = 2ab2

3
.

By the Symmetry Principle, My = 0. The area of the region is one-half the area of an ellipse with axes of length a and

b; i.e., 1
2πab. Finally, the coordinates of the centroid are(

0,
4b

3π

)
.

30. Semicircle of radius r with center at the origin

solution The equation of the top half of the circle is y =
√

r2 − x2. Thus,

Mx = 1

2

∫ r

−r

(√
r2 − x2

)2
dx = 2r3

3
.

By the Symmetry Principle, My = 0. The area of the region is one-half the area of a circle of radius r; i.e., 1
2πr2. Finally,

the coordinates of the centroid are (
0,

4r

3π

)
.

31. Quarter of the unit circle lying in the first quadrant

solution By the Symmetry Principle, the center of mass must lie on the line y = x in the first quadrant. Therefore,

we need only calculate one of the moments of the region. With y =
√

1 − x2, we find

My =
∫ 1

0
x
√

1 − x2 dx = 1

3
.

The area of the region is one-quarter of the area of a unit circle; i.e., 1
4π . Thus, the coordinates of the centroid are(

4

3π
,

4

3π

)
.

32. Triangular plate with vertices (−c, 0), (0, c), (a, b), where a, b, c > 0, and b < c

solution By symmetry, the center of mass must lie on the line connecting (−c, 0) and the midpoint (a/2, (b + c)/2)

of the opposite side:

�1 : y = b + c

a + 2c
(x + c)

Also by symmetry, the center of mass must lie on the line connecting (0, c) and the midpoint ((a − c)/2, b/2) of the
opposite side:

�2 : y = b − 2c

a − c
x + c

These lines intersect at one point (xcm, ycm). Equating the formulas for the two lines and solving for x yields

x = a − c

3
.

Substituting this value for x into the equation for �2 gives

y = b − 2c

a − c

a − c

3
+ c = b + c

3
.

Hence, the coordinates of the centroid are (
a − c

3
,
b + c

3

)
.
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33. Find the centroid for the shaded region of the semicircle of radius r in Figure 18. What is the centroid when r = 1
and h = 1

2 ? Hint: Use geometry rather than integration to show that the area of the region is r2 sin−1(
√

1 − h2/r2) −
h
√

r2 − h2).

y

x
hr

FIGURE 18

solution From the symmetry of the region, it is obvious that the centroid lies along the y-axis. To determine the
y-coordinate of the centroid, we must calculate the moment about the x-axis and the area of the region. Now, the length
of the horizontal cut of the semicircle at height y is√

r2 − y2 −
(

−
√

r2 − y2
)

= 2
√

r2 − y2.

Therefore, taking ρ = 1, we find

Mx = 2
∫ r

h
y

√
r2 − y2 dy = 2

3
(r2 − h2)3/2.

Observe that the region is comprised of a sector of the circle with the triangle between the two radii removed. The angle
of the sector is 2θ , where θ = sin−1

√
1 − h2/r2, so the area of the sector is 1

2 r2(2θ) = r2 sin−1
√

1 − h2/r2. The

triangle has base 2
√

r2 − h2 and height h, so the area is h
√

r2 − h2. Therefore,

YCM = Mx

A
=

2
3 (r2 − h2)3/2

r2 sin−1
√

1 − h2/r2 − h
√

r2 − h2
.

When r = 1 and h = 1/2, we find

YCM =
2
3 (3/4)3/2

sin−1
√

3
2 −

√
3

4

= 3
√

3

4π − 3
√

3
.

34. Sketch the region between y = xn and y = xm for 0 ≤ x ≤ 1, where m > n ≥ 0 and find the COM of the region.
Find a pair (n, m) such that the COM lies outside the region.

solution A sketch of the region for x3 and x4 is below.

0.2

0.2

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0

y

x

Since m > n ≥ 0, the graph of xn lies above that of xm for x between 0 and 1. Thus the moments are

Mx = 1

2

∫ 1

0
x2n − x2m dx = 1

2

(
1

2n + 1
x2n+1 − 1

2m + 1
x2m+1

) ∣∣∣∣1
0

= 1

2

(
1

2n + 1
− 1

2m + 1

)
= m − n

(2n + 1)(2m + 1)

My =
∫ 1

0
x(xn − xm) dx =

∫ 1

0
xn+1 − xm+1 dx =

(
1

n + 2
xn+2 − 1

m + 2
xm+2

) ∣∣∣∣1
0

= 1

n + 2
− 1

m + 2
= m − n

(n + 2)(m + 2)
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The area of the region is

A =
∫ 1

0
xn − xm dx = 1

n + 1
− 1

m + 1
= m − n

(n + 1)(m + 1)

Thus the center of mass has coordinates(
(n + 1)(m + 1)

(n + 2)(m + 2)
,

(n + 1)(m + 1)

(2n + 1)(2m + 1)

)

In the case graphed above, for n = 3, m = 4, the center of mass is(
20

30
,

20

63

)
=
(

2

3
,

20

63

)

and (
2

3

)3
= 8

27
<

20

63

Thus the point
(

2
3 , 8

27

)
lies on y = x3 and then the curve y = x3 lies below the center of mass of the region.

In Exercises 35–37, use the additivity of moments to find the COM of the region.

35. Isosceles triangle of height 2 on top of a rectangle of base 4 and height 3 (Figure 19)

y

−2 2

2

3

x

FIGURE 19

solution The region is symmetric with respect to the y-axis, so My = 0 by the Symmetry Principle. The moment
about the x-axis for the rectangle is

Mrect
x = 1

2

∫ 2

−2
32 dx = 18,

whereas the moment about the x-axis for the triangle is

M
triangle
x =

∫ 5

3
y(10 − 2y) dy = 44

3
.

The total moment about the x-axis is then

Mx = Mrect
x + M

triangle
x = 18 + 44

3
= 98

3
.

Because the area of the region is 12 + 4 = 16, the coordinates of the center of mass are(
0,

49

24

)
.

36. An ice cream cone consisting of a semicircle on top of an equilateral triangle of side 6 (Figure 20)

y

−3 3

6

x

FIGURE 20
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solution The region is symmetric with respect to the y-axis, so My = 0 by the Symmetry Principle. The moment
about the x-axis for the triangle is

M
triangle
x = 2√

3

∫ 3
√

3

0
y2 dy = 54.

For the semicircle, first note that the center is (0, 3
√

3), so the equation is x2 + (y − 3
√

3)2 = 9, and

Msemi
x = 2

∫ 3+3
√

3

3
√

3
y

√
9 − (y − 3

√
3)2 dy.

Using the substitution w = y − 3
√

3, dw = dy, we find

Msemi
x = 2

∫ 3

0
(w + 3

√
3)
√

9 − w2 dw

= 2
∫ 3

0
w
√

9 − w2 dw + 6
√

3
∫ 3

0

√
9 − w2 dw = 18 + 27π

√
3

2
,

where we have used the fact that
∫ 3

0

√
9 − w2 dw represents the area of one-quarter of a circle of radius 3. The total

moment about the x-axis is then

Mx = M
triangle
x + Msemi

x = 72 + 27π
√

3

2
.

Because the area of the region is 9
√

3 + 9π
2 , the coordinates of the center of mass are(

0,
16 + 3π

√
3

π + 2
√

3

)
.

37. Three-quarters of the unit circle (remove the part in the fourth quadrant)

solution By the Symmetry Principle, the center of mass must lie on the line y = −x. Let region 1 be the semicircle
above the x-axis and region 2 be the quarter circle in the third quadrant. Because region 1 is symmetric with respect to
the y-axis, M1

y = 0 by the Symmetry Principle. Furthermore

M2
y =

∫ 0

−1
x
√

1 − x2 dx = −1

3
.

Thus, My = M1
y + M2

y = 0 + (− 1
3 ) = − 1

3 . The area of the region is 3π/4, so the coordinates of the centroid are

(
− 4

9π
,

4

9π

)
.

38. Let S be the lamina of mass density ρ = 1 obtained by removing a circle of radius r from the circle of radius 2r

shown in Figure 21. Let MS
x and MS

y denote the moments of S. Similarly, let M
big
y and Msmall

y be the y-moments of the
larger and smaller circles.

y

x
r

2r

FIGURE 21

(a) Use the Symmetry Principle to show that MS
x = 0.

(b) Show that MS
y = M

big
y − Msmall

y using the additivity of moments.

(c) Find M
big
y and Msmall

y using the fact that the COM of a circle is its center. Then compute MS
y using (b).

(d) Determine the COM of S.

solution

(a) Because S is symmetric with respect to the x-axis, MS
x = 0.
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(b) Because the small circle together with the region S comprise the big circle, by the additivity of moments,

MS
y + Msmall

y = M
big
y .

Thus MS
y = M

big
y − Msmall

y .

(c) The center of the big circle is the origin, so x
big
cm = 0; consequently, M

big
y = 0. On the other hand, the center of the

small circle is (−r, 0), so xsmall
cm = −r; consequently

Msmall
y = xsmall

cm · Asmall = −r · πr2 = −πr3.

By the result of part (b), it follows that MS
y = 0 − (−πr3) = πr3.

(d) The area of the region S is 4πr2 − πr2 = 3πr2. The coordinates of the center of mass of the region S are then(
πr3

3πr2
, 0

)
=
( r

3
, 0
)

.

39. Find the COM of the laminas in Figure 22 obtained by removing squares of side 2 from a square of side 8.

8

22

8

FIGURE 22

solution Start with the square on the left. Place the square so that the bottom left corner is at (0, 0). By the Symmetry
Principle, the center of mass must lie on the lines y = x and y = 8 − x. The only point in common to these two lines is
(4, 4), so the center of mass is (4, 4).

Now consider the square on the right. Place the square as above. By the symmetry principle, xcm = 4. Now, let s1
denote the square in the upper left, s2 denote the square in the upper right, and B denote the entire square. Then

Ms1
x = 1

2

∫ 2

0
(82 − 62) dx = 28;

Ms2
x = 1

2

∫ 8

6
(82 − 62) dx = 28; and

MB
x = 1

2

∫ 8

0
82 dx = 256.

By the additivity of moments, Mx = 256 − 28 − 28 = 200. Finally, the area of the region is A = 64 − 4 − 4 = 56, so
the coordinates of the center of mass are (

4,
200

56

)
=
(

4,
25

7

)
.

Further Insights and Challenges
40. A median of a triangle is a segment joining a vertex to the midpoint of the opposite side. Show that the centroid of
a triangle lies on each of its medians, at a distance two-thirds down from the vertex. Then use this fact to prove that the
three medians intersect at a single point. Hint: Simplify the calculation by assuming that one vertex lies at the origin and
another on the x-axis.

solution Orient the triangle by placing one vertex at (0, 0) and the long side of the triangle along the x-axis. Label
the vertices (0, 0), (a, 0), (b, c). Thus, the equations of the short sides are y = cx

b
and y = cx

b−a
− ac

b−a
. Now,

Mx = 1

2

∫ b

0
(cx/b)2 dx + 1

2

∫ a

b

(
cx − ac

b − a

)2
dx = ac2

6
;

My =
∫ b

0
x(cx/b) dx +

∫ a

b
x

(
cx − ac

b − a

)
dx = ac(a + b)

6
; and

M = ac

2
.
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so the center of mass is

(
a + b

3
,
c

3

)
. To show that the centroid lies on each median, let y1 be the median from (b, c), y2

the median from (0, 0) and y3 the median from (a, 0). We find

y1(x) = 2c

2b − a
(x − a/2), so y1

(
a + b

3

)
= c

3
;

y2(x) = c

a + b
x, so y2

(
a + b

3

)
= c

3
;

y3(x) = c

b − 2a
(x − a), so y3

(
a + b

3

)
= c

3
.

This shows that the center of mass lies on each median. We now show that the center of mass is 2
3 of the way from each

vertex. For y1, note that x = b gives the vertex and x = a
2 gives the midpoint of the opposite side, so two-thirds of this

distance is

x = b + 2

3

(a

2
− b

)
= a + b

3
,

the x-coordinate of the center of mass. Likewise, for y2, two-thirds of the distance from x = 0 to x = a+b
2 is a+b

3 , and
for y3, the two-thirds point is

x = a + 2

3

(
b

2
− a

)
= a + b

3
.

A similar method shows that the y-coordinate is also two-thirds of the way along the median. Thus, since the centroid lies
on all three medians, we can conclude that all three medians meet at a single point, namely the centroid.

41. Let P be the COM of a system of two weights with masses m1 and m2 separated by a distance d. Prove Archimedes’
Law of the (weightless) Lever: P is the point on a line between the two weights such that m1L1 = m2L2, where Lj is
the distance from mass j to P .

solution Place the lever along the x-axis with mass m1 at the origin. Then My = m2d and the x-coordinate of the
center of mass, P , is

m2d

m1 + m2
.

Thus,

L1 = m2d

m1 + m2
, L2 = d − m2d

m1 + m2
= m1d

m1 + m2
,

and

L1m1 = m1
m2d

m1 + m2
= m2

m1d

m1 + m2
= L2m2.

42. Find the COM of a system of two weights of masses m1 and m2 connected by a lever of length d whose mass density
ρ is uniform. Hint: The moment of the system is the sum of the moments of the weights and the lever.

solution Let A be the cross-sectional area of the rod. Place the rod with m1 at the origin and rod lying on the positive

x-axis. The y-moment of the rod is My = 1
2ρAd2, the y-moment of the mass m2 is My = m2d, and the total mass of

the system is M = m1 + m2 + ρAd. Therefore, the x-coordinate of the center of mass is

m2d + 1
2ρAd2

m1 + m2 + ρAd
.

43. Symmetry Principle Let R be the region under the graph of f (x) over the interval [−a, a], where f (x) ≥
0. Assume that R is symmetric with respect to the y-axis.

(a) Explain why f (x) is even—that is, why f (x) = f (−x).
(b) Show that xf (x) is an odd function.
(c) Use (b) to prove that My = 0.
(d) Prove that the COM of R lies on the y-axis (a similar argument applies to symmetry with respect to the x-axis).

solution
(a) By the definition of symmetry with respect to the y-axis, f (x) = f (−x), so f is even.
(b) Let g(x) = xf (x) where f is even. Then

g(−x) = −xf (−x) = −xf (x) = −g(x),

and thus g is odd.
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(c) My = ρ

∫ a

−a
xf (x) dx = 0 since xf (x) is an odd function.

(d) By part (c), xcm = My

M
= 0

M
= 0 so the center of mass lies along the y-axis.

44. Prove directly that Eqs. (2) and (3) are equivalent in the following situation. Let f (x) be a positive decreasing function
on [0, b] such that f (b) = 0. Set d = f (0) and g(y) = f −1(y). Show that

1

2

∫ b

0
f (x)2 dx =

∫ d

0
yg(y) dy

Hint: First apply the substitution y = f (x) to the integral on the left and observe that dx = g′(y) dy. Then apply
Integration by Parts.

solution f (x) ≥ 0 and f ′(x) < 0 shows that f has an inverse g on [a, b]. Because f (b) = 0, f (0) = d, and

f −1(x) = g(x), it follows that g(d) = 0 and g(0) = b. If we let x = g(y), then dx = g′(y) dy. Thus, with y = f (x),

1

2

∫ b

0
f (x)2 dx = 1

2

∫ b

0
y2 dx = 1

2

∫ 0

d
y2g′(y) dy.

Using Integration by Parts with u = y2 and v′ = g′(y) dy, we find

1

2

∫ 0

d
y2g′(y) dy = 1

2

[
y2g(y)

∣∣∣∣0
d

− 2
∫ 0

d
yg(y) dy

]
= 1

2

[
0 − d2g(d)

]
−
∫ 0

d
yg(y) dy =

∫ d

0
yg(y) dy.

45. Let R be a lamina of uniform density submerged in a fluid of density w (Figure 23). Prove the following law: The fluid
force on one side of R is equal to the area of R times the fluid pressure on the centroid. Hint: Let g(y) be the horizontal
width of R at depth y. Express both the fluid pressure [Eq. (2) in Section 8.2] and y-coordinate of the centroid in terms
of g(y).

y

yCM

y (depth)

Fluid level

Centroid

g(y)

FIGURE 23

solution Let ρ denote the uniform density of the submerged lamina. Then

Mx = ρ

∫ b

a
yg(y) dy,

and the mass of the lamina is

M = ρ

∫ b

a
g(y) dy = ρA,

where A is the area of the lamina. Thus, the y-coordinate of the centroid is

ycm = ρ
∫ b
a yg(y) dy

ρA
=
∫ b
a yg(y) dy

A
.

Now, the fluid force on the lamina is

F = w

∫ b

a
yg(y) dy = w

∫ b
a yg(y) dy

A
A = wycmA.

In other words, the fluid force on the lamina is equal to the fluid pressure at the centroid of the lamina times the area of
the lamina.

8.4 Taylor Polynomials

Preliminary Questions
1. What is T3(x) centered at a = 3 for a function f (x) such that f (3) = 9, f ′(3) = 8, f ′′(3) = 4, and f ′′′(3) = 12?

solution In general, with a = 3,

T3(x) = f (3) + f ′(3)(x − 3) + f ′′(3)

2
(x − 3)2 + f ′′′(3)

6
(x − 3)3.
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Using the information provided, we find

T3(x) = 9 + 8(x − 3) + 2(x − 3)2 + 2(x − 3)3.

2. The dashed graphs in Figure 9 are Taylor polynomials for a functionf (x). Which of the two is a Maclaurin polynomial?

x x
2 31

2

31

-1 -1

y = f (x)y = f (x)

y y

(A) (B)

FIGURE 9

solution A Maclaurin polynomial always gives the value of f (0) exactly. This is true for the Taylor polynomial
sketched in (B); thus, this is the Maclaurin polynomial.

3. For which value of x does the Maclaurin polynomial Tn(x) satisfy Tn(x) = f (x), no matter what f (x) is?

solution A Maclaurin polynomial always gives the value of f (0) exactly.

4. Let Tn(x) be the Maclaurin polynomial of a function f (x) satisfying |f (4)(x)| ≤ 1 for all x. Which of the following
statements follow from the error bound?

(a) |T4(2) − f (2)| ≤ 2
3

(b) |T3(2) − f (2)| ≤ 2
3

(c) |T3(2) − f (2)| ≤ 1
3

solution For a function f (x) satisfying |f (4)(x)| ≤ 1 for all x,

|T3(2) − f (2)| ≤ 1

24
|f (4)(x)|24 ≤ 16

24
<

2

3
.

Thus, (b) is the correct answer.

Exercises
In Exercises 1–14, calculate the Taylor polynomials T2(x) and T3(x) centered at x = a for the given function and value
of a.

1. f (x) = sin x, a = 0

solution First, we calculate and evaluate the needed derivatives:

f (x) = sin x f (a) = 0

f ′(x) = cos x f ′(a) = 1

f ′′(x) = − sin x f ′′(a) = 0

f ′′′(x) = − cos x f ′′′(a) = −1

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 = 0 + 1(x − 0) + 0

2
(x − 0)2 = x; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 0 + 1(x − 0) + 0

2
(x − 0)2 + −1

6
(x − 0)3 = x − 1

6
x3.
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2. f (x) = sin x, a = π

2

solution First, we calculate and evaluate the needed derivatives:

f (x) = sin x f (a) = 1

f ′(x) = cos x f ′(a) = 0

f ′′(x) = − sin x f ′′(a) = −1

f ′′′(x) = − cos x f ′′′(a) = 0

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2

= 1 + 0
(
x − π

2

)
+ −1

2

(
x − π

2

)2 = 1 − 1

2

(
x − π

2

)2 ; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 1 + 0
(
x − π

2

)
+ −1

2

(
x − π

2

)2 + 0

6

(
x − π

2

)3 = 1 − 1

2

(
x − π

2

)2
.

3. f (x) = 1

1 + x
, a = 2

solution First, we calculate and evaluate the needed derivatives:

f (x) = 1

1 + x
f (a) = 1

3

f ′(x) = −1

(1 + x)2
f ′(a) = −1

9

f ′′(x) = 2

(1 + x)3
f ′′(a) = 2

27

f ′′′(x) = −6

(1 + x)4
f ′′′(a) = − 2

27

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 = 1

3
− 1

9
(x − 2) + 2/27

2! (x − 2)2

= 1

3
− 1

9
(x − 2) + 1

27
(x − 2)2

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)

3! (x − a)3

= 1

3
− 1

9
(x − 2) + 2/27

2! (x − 2)2 − 2/27

3! (x − 2)3 = 1

3
− 1

9
(x − 2) + 1

27
(x − 2)2 − 1

81
(x − 2)3

4. f (x) = 1

1 + x2
, a = −1

solution First, we calculate and evaluate the needed derivatives:

f (x) = 1

1 + x2
f (a) = 1/2

f ′(x) = −2x

(x2 + 1)2
f ′(a) = 1/2

f ′′(x) = 2(3x2 − 1)

(x2 + 1)3
f ′′(a) = 1/2

f ′′′(x) = −24x(x2 − 1)

(x2 + 1)4
f ′′′(a) = 0
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Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2

= 1

2
+ 1

2
(x + 1) + 1/2

2
(x + 1)2 = 1

2
+ 1

2
(x + 1) + 1

4
(x + 1)2; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 1

2
+ 1

2
(x + 1) + 1/2

2
(x + 1)2 + 0

6
(x + 1)3 = 1

2
+ 1

2
(x + 1) + 1

4
(x + 1)2.

5. f (x) = x4 − 2x, a = 3

solution First calculate and evaluate the needed derivatives:

f (x) = x4 − 2x f (a) = 75

f ′(x) = 4x3 − 2 f ′(a) = 106

f ′′(x) = 12x2 f ′′(a) = 108

f ′′′(x) = 24x f ′′′(a) = 72

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 = 75 + 106(x − 3) + 108

2
(x − 3)2

= 75 + 106(x − 3) + 54(x − 3)2

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

3! (x − a)3

= 75 + 106(x − 3) + 108

2
(x − 3)2 + 72

3! (x − 3)3

= 75 + 106(x − 3) + 54(x − 3)2 + 12(x − 3)3

6. f (x) = x2 + 1

x + 1
, a = −2

solution First calculate and evaluate the needed derivatives:

f (x) = x2 + 1

x + 1
f (a) = −5

f ′(x) = x2 + 2x − 1

(x + 1)2
f ′(a) = −1

f ′′(x) = 4

(x + 1)3
f ′′(a) = −4

f ′′′(x) = −12

(x + 1)4
f ′′′(a) = −12

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 = −5 − (x + 2) + −4

2
(x + 2)2

= −5 − (x + 2) − 2(x + 2)2

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)

3! (x − a)3

= −5 − (x + 2) + −4

2
(x + 2)2 + −12

3! (x + 2)3

= −5 − (x + 2) − 2(x + 2)2 − 2(x + 2)3
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7. f (x) = tan x, a = 0

solution First, we calculate and evaluate the needed derivatives:

f (x) = tan x f (a) = 0

f ′(x) = sec2 x f ′(a) = 1

f ′′(x) = 2 sec2 x tan x f ′′(a) = 0

f ′′′(x) = 2 sec4 x + 4 sec2 x tan2 x f ′′′(a) = 2

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 = 0 + 1(x − 0) + 0

2
(x − 0)2 = x; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 0 + 1(x − 0) + 0

2
(x − 0)2 + 2

6
(x − 0)3 = x + 1

3
x3.

8. f (x) = tan x, a = π

4

solution First, we calculate and evaluate the needed derivatives:

f (x) = tan x f (a) = 1

f ′(x) = sec2 x f ′(a) = 2

f ′′(x) = 2 sec2 x tan x f ′′(a) = 4

f ′′′(x) = 2 sec4 x + 4 sec2 x tan2 x f ′′′(a) = 16

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 = 1 + 2

(
x − π

4

)
+ 4

2

(
x − π

4

)2

= 1 + 2
(
x − π

4

)
+ 2

(
x − π

4

)2 ; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 1 + 2
(
x − π

4

)
+ 4

2

(
x − π

4

)2 + 16

6

(
x − π

4

)3 = 1 + 2
(
x − π

4

)
+ 2

(
x − π

4

)2 + 8

3

(
x − π

4

)3
.

9. f (x) = e−x + e−2x , a = 0

solution First, we calculate and evaluate the needed derivatives:

f (x) = e−x + e−2x f (a) = 2

f ′(x) = −e−x − 2e−2x f ′(a) = −3

f ′′(x) = e−x + 4e−2x f ′′(a) = 5

f ′′′(x) = −e−x − 8e−2x f ′′′(a) = −9

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2

= 2 + (−3)(x − 0) + 5

2
(x − 0)2 = 2 − 3x + 5

2
x2; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 2 + (−3)(x − 0) + 5

2
(x − 0)2 + −9

6
(x − 0)3 = 2 − 3x + 5

2
x2 − 3

2
x3.
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10. f (x) = e2x , a = ln 2

solution First calculate and evaluate the needed derivatives:

f (x) = e2x f (a) = 4

f ′(x) = 2e2x f ′(a) = 8

f ′′(x) = 4e2x f ′′(a) = 16

f ′′′(x) = 8e2x f ′′′(a) = 32

Now

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 = 4 + 8(x − ln 2) + 16

2! (x − ln 2)2

= 4 + 8(x − ln 2) + 8(x − ln 2)2

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)

3! (x − a)3

= 4 + 8(x − ln 2) + 16

2! (x − ln 2)2 + 32

6
(x − ln 2)3

= 4 + 8(x − ln 2) + 8(x − ln 2)2 + 16

3
(x − ln 2)3

11. f (x) = x2e−x , a = 1

solution First, we calculate and evaluate the needed derivatives:

f (x) = x2e−x f (a) = 1/e

f ′(x) = (2x − x2)e−x f ′(a) = 1/e

f ′′(x) = (x2 − 4x + 2)e−x f ′′(a) = −1/e

f ′′′(x) = (−x2 + 6x − 6)e−x f ′′′(a) = −1/e

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2

= 1

e
+ 1

e
(x − 1) + −1/e

2
(x − 1)2 = 1

e
+ 1

e
(x − 1) − 1

2e
(x − 1)2; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 1

e
+ 1

e
(x − 1) + −1/e

2
(x − 1)2 +

(−1/e

6

)
(x − 1)3

= 1

e
+ 1

e
(x − 1) − 1

2e
(x − 1)2 − 1

6e
(x − 1)3.

12. f (x) = cosh 2x, a = 0

solution First calculate and evaluate the needed derivatives:

f (x) = cosh 2x f (a) = 1

f ′(x) = 2 sinh 2x f ′(a) = 0

f ′′(x) = 4 cosh 2x f ′′(a) = 4

f ′′′(x) = 8 sinh 2x f ′′′(a) = 0

so that

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 = 1 + 0(x − 0) + 4

2! (x − 0)2

= 1 + 2x2
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T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)

3! (x − a)3

= 1 + 0(x − 0) + 2(x − 0)2 + 0

3! (x − 0)3

= 1 + 2x2

13. f (x) = ln x

x
, a = 1

solution First calculate and evaluate the needed derivatives:

f (x) = ln x

x
f (a) = 0

f ′(x) = 1 − ln x

x2
f (a) = 1

f ′′(x) = −3 + 2 ln x

x3
f (a) = −3

f ′′′(x) = 11 − 6 ln x

x4
f (a) = 11

so that

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 = 0 + 1(x − 1) + −3

2! (x − 1)2

= (x − 1) − 3

2
(x − 1)2

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)

3! (x − a)3

= 0 + 1(x − 1) + −3

2! (x − 1)2 + 11

3! (x − 1)3

= (x − 1) − 3

2
(x − 1)2 + 11

6
(x − 1)3

14. f (x) = ln(x + 1), a = 0

solution First, we calculate and evaluate the needed derivatives:

f (x) = ln(x + 1) f (a) = 0

f ′(x) = 1

x + 1
f ′(a) = 1

f ′′(x) = −1

(x + 1)2
f ′′(a) = −1

f ′′′(x) = 2

(x + 1)3
f ′′′(a) = 2

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 = 0 + 1(x − 0) + −1

2
(x − 0)2 = x − 1

2
x2; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 0 + 1(x − 0) + −1

2
(x − 0)2 + 2

6
(x − 0)3 = x − 1

2
x2 + 1

3
x3.

15. Show that the nth Maclaurin polynomial for ex is

Tn(x) = 1 + x

1! + x2

2! + · · · + xn

n!
solution With f (x) = ex , it follows that f (n)(x) = ex and f (n)(0) = 1 for all n. Thus,

Tn(x) = 1 + 1(x − 0) + 1

2
(x − 0)2 + · · · + 1

n! (x − 0)n = 1 + x + x2

2
+ · · · + xn

n! .
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16. Show that the nth Taylor polynomial for
1

x + 1
at a = 1 is

Tn(x) = 1

2
− (x − 1)

4
+ (x − 1)2

8
+ · · · + (−1)n

(x − 1)n

2n+1

solution Let f (x) = 1
x+1 . Then

f (x) = 1

x + 1
f (1) = 1

2
= (−1)00!

20+1

f ′(x) = −1

(x + 1)2
f ′(1) = −1

4
= (−1)11!

21+1

f ′′(x) = 2

(x + 1)3
f ′′(1) = 1

4
= (−1)22!

22+1

...
...

f (n)(x) = (−1)nn!
(x + 1)n+1

f (n)(1) = (−1)nn!
2n+1

Therefore,

Tn(x) = 1

2
+
(

−1

4

)
(x − 1) + 1

4

(x − 1)2

2! + · · · + (−1)nn!
2n+1

(x − 1)n

n!

= 1

2
− 1

4
(x − 1) + (x − 1)2

8
+ · · · + (−1)n

(x − 1)n

2n+1
.

17. Show that the Maclaurin polynomials for sin x are

T2n+1(x) = T2n+2(x) = x − x3

3! + x5

5! − · · · + (−1)n
x2n+1

(2n + 1)!
solution Let f (x) = sin x. Then

f (x) = sin x f (0) = 0

f ′(x) = cos x f ′(0) = 1

f ′′(x) = − sin x f ′′(0) = 0

f ′′′(x) = − cos x f ′′′(0) = −1

f (4)(x) = sin x f (4)(0) = 0

f (5)(x) = cos x f (5)(0) = 1

...
...

Consequently,

T2n+1(x) = x − x3

3! + x5

5! + · · · + (−1)n
x2n+1

(2n + 1)!
and

T2n+2(x) = x − x3

3! + x5

5! + · · · + (−1)n
x2n+1

(2n + 1)! + 0 = T2n+1(x).

18. Show that the Maclaurin polynomials for ln(1 + x) are

Tn(x) = x − x2

2
+ x3

3
+ · · · + (−1)n−1 xn

n

solution Let f (x) = ln(1 + x). Then

f (x) = ln(1 + x) f (0) = 0

f ′(x) = (1 + x)−1 f ′(0) = 1
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f ′′(x) = −(1 + x)−2 f ′′(0) = −1

f ′′′(x) = 2(1 + x)−3 f ′′′(0) = 2

f (4)(x) = −3!(1 + x)−4 f (4)(0) = −6

f (5)(x) = 4!(1 + x)−5 f (5)(0) = 24

so that in general

f (n)(x) = (−1)n−1(n − 1)!(1 + x)−n f (n)(0) = (−1)n−1(n − 1)!
Thus

Tn(x) = x − 1

2!x
2 + 2

3!x
3 − · · · + (−1)n−1(n − 1)!

n! xn = x − x2

2
+ x3

3
+ · · · + (−1)n−1 xn

n

In Exercises 19–24, find Tn(x) at x = a for all n.

19. f (x) = 1

1 + x
, a = 0

solution We have

1

1 + x
= (ln(1 + x))′

so that from Exercise 18, letting g(x) = ln(1 + x),

f (n)(x) = g(n+1)(x) = (−1)nn!(x + 1)−1−n and f (n)(0) = (−1)nn!
Then

Tn(x) = f (0) + f ′(0)x + f ′′(0)

2! x2 + · · · + f (n)(0)

n! xn

= 1 − x + 2!
2!x

2 − 3!
3!x

3 + · · · + (−1)n
n!
n!x

n

= 1 − x + x2 − x3 + · · · + (−1)nxn

20. f (x) = 1

x − 1
, a = 4

solution Let f (x) = 1
x−1 . Then

f (x) = 1

x − 1
f (4) = 1

3
= (−1)00!

30+1

f ′(x) = −1

(x − 1)2
f ′(4) = −1

9
= (−1)11!

31+1

f ′′(x) = 2

(x − 1)3
f ′′(4) = 2

27
= (−1)22!

32+1

...
...

f (n)(x) = (−1)nn!
(x − 1)n+1

f (n)(4) = (−1)nn!
3n+1

Therefore,

Tn(x) = 1

3
+
(

−1

9

)
(x − 4) + 2/27

2
(x − 4)2 + · · · + (−1)nn!

3n+1

(x − 4)n

n!

= 1

3
− 1

9
(x − 4) + 1

27
(x − 4)2 + · · · + (−1)n

3n+1
(x − 4)n.

21. f (x) = ex , a = 1

solution Let f (x) = ex . Then f (n)(x) = ex and f (n)(1) = e for all n. Therefore,

Tn(x) = e + e(x − 1) + e

2! (x − 1)2 + · · · + e

n! (x − 1)n.
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22. f (x) = x−2, a = 2

solution We have

f (x) = x−2 f (2) = 1

4

f ′(x) = −2x−3 f ′(2) = −1

4

f ′′(x) = 6x−4 f ′′(2) = 3

8

f ′′′(x) = −24x−5 f ′′′(2) = −3

4

...
...

f (n)(x) = (−1)n(n + 1)!x−n−2 f (n)(2) = (−1)n
(n + 1)!

2n+2

so that

Tn(x) = f (2) + f ′(2)(x − 2) + f ′′(2)

2! (x − 2)2 + · · · + f (n)(2)

n! (x − 2)n

= 1

4
− 1

4
(x − 2) + 3

16
(x − 2)2 + · · · + (−1)n

n + 1

2n+2
(x − 2)n

23. f (x) = cos x, a = π

4
solution Let f (x) = cos x. Then

f (x) = cos x f (π/4) = 1√
2

f ′(x) = − sin x f ′(π/4) = − 1√
2

f ′′(x) = − cos x f ′′(π/4) = − 1√
2

f ′′′(x) = sin x f ′′′(π/4) = 1√
2

This pattern of four values repeats indefinitely. Thus,

f (n)(π/4) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)(n+1)/2 1√
2
, n odd

(−1)n/2 1√
2
, n even

and

Tn(x) = 1√
2

− 1√
2

(
x − π

4

)
− 1

2
√

2

(
x − π

4

)2 + 1

6
√

2

(
x − π

4

)3 · · ·.

In general, the coefficient of (x − π/4)n is

± 1

(
√

2)n!
with the pattern of signs +, −, −, +, +, −, −, . . . .

24. f (θ) = sin 3θ , a = 0

solution We have

f (θ) = sin 3θ f (0) = 0

f ′(θ) = 3 cos 3θ f ′(0) = 3

f ′′(θ) = −9 sin 3θ f ′′(0) = 0

f ′′′(θ) = −27 cos 3θ f ′′′(0) = −27

f (4)(θ) = 81 sin 3θ f (4)(0) = 0
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and in general

f (2n)(θ) = (−1)n32n sin 3θ f (2n)(0) = 0

f (2n+1)(θ) = (−1)n32n+1 cos 3θ f (2n+1)(0) = (−1)n32n+1

Thus

Tn(x) = 3θ − 27

3! θ3 + 243

5! θ5 − . . .

where the coefficient of θ2n+1 is (−1)n 32n+1

(2n+1)! .

In Exercises 25–28, find T2(x) and use a calculator to compute the error |f (x) − T2(x)| for the given values of a and x.

25. y = ex , a = 0, x = −0.5

solution Let f (x) = ex . Then f ′(x) = ex , f ′′(x) = ex , f (a) = 1, f ′(a) = 1 and f ′′(a) = 1. Therefore

T2(x) = 1 + 1(x − 0) + 1

2
(x − 0)2 = 1 + x + 1

2
x2,

and

T2(−0.5) = 1 + (−0.5) + 1

2
(−0.5)2 = 0.625.

Using a calculator, we find

f (−0.5) = 1√
e

= 0.606531,

so

|T2(−0.5) − f (−0.5)| = 0.0185.

26. y = cos x, a = 0, x = π

12
solution Let f (x) = cos x. Then f ′(x) = − sin x, f ′′(x) = − cos x, f (a) = 1, f ′(a) = 0, and f ′′(a) = −1.
Therefore

T2(x) = 1 + 0(x − 0) + −1

2
(x − 0)2 = 1 − 1

2
x2,

and

T2

( π

12

)
= 1 − 1

2

( π

12

)2 ≈ 0.965731.

Using a calculator, we find

f
( π

12

)
= 0.965926,

so ∣∣∣T2

( π

12

)
− f

( π

12

)∣∣∣ = 0.000195.

27. y = x−2/3, a = 1, x = 1.2

solution Let f (x) = x−2/3. Then f ′(x) = − 2
3x−5/3, f ′′(x) = 10

9 x−8/3, f (1) = 1, f ′(1) = − 2
3 , and f ′′(1) = 10

9 .
Thus

T2(x) = 1 − 2

3
(x − 1) + 10

2 · 9
(x − 1)2 = 1 − 2

3
(x − 1) + 5

9
(x − 1)2

and

T2(1.2) = 1 − 2

3
(0.2) + 5

9
(0.2)2 = 8

9
≈ 0.88889

Using a calculator, f (1.2) = (1.2)−2/3 ≈ 0.88555 so that

|T2(1.2) − f (1.2)| ≈ 0.00334

28. y = esin x , a = π

2
, x = 1.5

solution Let f (x) = esin x . Then f ′(x) = cos xesin x , f ′′(x) = cos2 xesin x − sin xesin x , f (a) = e, f ′(a) = 0 and
f ′′(a) = −e. Therefore

T2(x) = e + 0
(
x − π

2

)
+ −e

2

(
x − π

2

)2 = e − e

2

(
x − π

2

)2
,
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and

T2(1.5) = e − e

2

(
1.5 − π

2

)2 ≈ 2.711469651.

Using a calculator, we find f (1.5) = 2.711481018, so

|T2(1.5) − f (1.5)| = 1.14 × 10−5.

29. Compute T3(x) for f (x) = √
x centered at a = 1. Then use a plot of the error |f (x) − T3(x)| to find a value

c > 1 such that the error on the interval [1, c] is at most 0.25.

solution We have

f (x) = x1/2 f (1) = 1

f ′(x) = 1

2
x−1/2 f ′(1) = 1

2

f ′′(x) = −1

4
x−3/2 f ′′(1) = −1

4

f ′′′(x) = 3

8
x−5/2 f ′′′(1) = 3

8

Therefore

T3(x) = 1 + 1

2
(x − 1) − 1

4 · 2! (x − 1)2 + 3

8 · 3! (x − 1)3 = 1 + 1

2
(x − 1) − 1

8
(x − 1)2 + 1

16
(x − 1)3

A plot of |f (x) − T3(x)| is below.

1.0 1.5 2.0 2.5 3.0

0.05

0.10

0.15

0.20

0.25

y

x

It appears that for x ∈ [1, 2.9] that the error does not exceed 0.25. The error at x = 3 appears to just exceed 0.25.

30. Plot f (x) = 1/(1 + x) together with the Taylor polynomials Tn(x) at a = 1 for 1 ≤ n ≤ 4 on the interval
[−2, 8] (be sure to limit the upper plot range).

(a) Over which interval does T4(x) appear to approximate f (x) closely?

(b) What happens for x < −1?

(c) Use your computer algebra system to produce and plot T30 together with f (x) on [−2, 8]. Over which interval does
T30 appear to give a close approximation?

solution Let f (x) = 1
1+x

. Then

f (x) = 1

1 + x
f (1) = 1

2

f ′(x) = − 1

(1 + x)2
f ′(1) = −1

4

f ′′(x) = 2

(1 + x)3
f ′′(1) = 1

4

f ′′′(x) = − 6

(1 + x)4
f ′′′(1) = −3

8

f (4)(x) = 24

(1 + x)5 f (4)(1) = 3

4
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and

T1(x) = 1

2
− 1

4
(x − 1);

T2(x) = 1

2
− 1

4
(x − 1) + 1

8
(x − 1)2;

T3(x) = 1

2
− 1

4
(x − 1) + 1

8
(x − 1)2 − 1

16
(x − 1)3; and

T4(x) = 1

2
− 1

4
(x − 1) + 1

8
(x − 1)2 − 1

16
(x − 1)3 + 1

32
(x − 1)4.

A plot of f (x), T1(x), T2(x), T3(x) and T4(x) is shown below.

y

2

1.5

1

0.5

−2 2 4 6 8
x

T1

T2

T3

T4

(a) The graph below displays f (x) and T4(x) over the interval [−0.5, 2.5]. It appears that T4(x) gives a close approxi-
mation to f (x) over the interval (0.1, 2).

y

0.5 1 1.5 2
x

1.2

1

0.8

0.6

0.4

0.2

(b) For x < −1, f (x) is negative, but the Taylor polynomials are positive; thus, the Taylor polynomials are poor
approximations for x < −1.

(c) The graph below displays f (x) and T30(x) over the interval [−2, 8]. It appears that T30(x) gives a close approximation
to f (x) over the interval (−1, 3).

y

10

8

6

4

2

−2 2 4 6 8
x

31. Let T3(x) be the Maclaurin polynomial of f (x) = ex . Use the error bound to find the maximum possible value of
|f (1.1) − T3(1.1)|. Show that we can take K = e1.1.

solution Since f (x) = ex , we have f (n)(x) = ex for all n; since ex is increasing, the maximum value of ex on the

interval [0, 1.1] is K = e1.1. Then by the error bound,

∣∣∣e1.1 − T3(1.1)

∣∣∣ ≤ K
(1.1 − 0)4

4! = e1.11.14

24
≈ 0.183
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32. Let T2(x) be the Taylor polynomial of f (x) = √
x at a = 4. Apply the error bound to find the maximum possible

value of the error |f (3.9) − T2(3.9)|.
solution We have f (x) = x1/2, f ′(x) = 1

2x−1/2, f ′′(x) = − 1
4x−3/2, and f ′′′(x) = 3

8x−5/2. This is a decreasing

function of x, so its maximum value on [3.9, 4] is achieved at x = 3.9; that value is 3
8·3.95/2 ≈ 0.0125, so we can take

K = 0.0125. Then

|f (x) − T2(x)| ≤ K
|3.9 − 4|3

3! = 0.0125
0.001

6
≈ 2.08 × 10−6

In Exercises 33–36, compute the Taylor polynomial indicated and use the error bound to find the maximum possible size
of the error. Verify your result with a calculator.

33. f (x) = cos x, a = 0; |cos 0.25 − T5(0.25)|
solution The Maclaurin series for cos x is

1 − x2

2! + x4

4! − x6

6! + . . .

so that

T5(x) = 1 − x2

2
+ x4

24

T5(0.25) ≈ 0.9689127604

In addition, f (6)(x) = − cos x so that |f (6)(x)| ≤ 1 and we may take K = 1 in the error bound formula. Then

|cos 0.25 − T5(0.25)| ≤ K
0.256

6! = 1

212 · 6! ≈ 3.390842014 · 10−7

(The true value is cos 0.25 ≈ 0.9689124217 and the difference is in fact ≈ 3.387 · 10−7.)

34. f (x) = x11/2, a = 1; |f (1.2) − T4(1.2)|
solution Let f (x) = x11/2. Then

f (x) = x11/2 f (1) = 1

f ′(x) = 11

2
x9/2 f ′(1) = 11

2

f ′′(x) = 99

4
x7/2 f ′′(1) = 99

4

f ′′′(x) = 693

8
x5/2 f ′′′(1) = 693

8

f (4)(x) = 3465

16
x3/2 f (4)(1) = 3465

16

and

T4(x) = 1 + 11

2
(x − 1) + 99

8
(x − 1)2 + 231

16
(x − 1)3 + 1155

128
(x − 1)4.

Using the Error Bound,

|f (1.2) − T4(1.2)| ≤ K|1.2 − 1|5
5! = K

375,000
,

where K is a number such that |f (5)(x)| ≤ K for x between 1 and 1.2. Now,

f (5)(x) = 10,395

32
x1/2,

which is increasing for x > 1. Consequently, on the interval [1, 1.2], f (5)(x) is maximized at x = 1.2. We can therefore
take K = 10,395

32

√
1.2, and then

|f (1.2) − T4(1.2)| ≤ 10,395

(32)(375,000)

√
1.2 ≈ 9.489 × 10−4.
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35. f (x) = x−1/2, a = 4; |f (4.3) − T3(4.3)|
solution We have

f (x) = x−1/2 f (4) = 1

2

f ′(x) = −1

2
x−3/2 f ′(4) = − 1

16

f ′′(x) = 3

4
x−5/2 f ′′(4) = 3

128

f ′′′(x) = −15

8
x−7/2 f ′′′(4) = − 15

1024

f (4)(x) = 105

16
x−9/2

so that

T3(x) = 1

2
− 1

16
(x − 4) + 3

256
(x − 4)2 − 5

2048
(x − 4)3

Using the error bound formula,

|f (4.3) − T3(4.3)| ≤ K
|4.3 − 4|4

4! = 27K

80,000

where K is a number such that |f (4)(x)| ≤ K for x between 4 and 4.3. Now, f (4)(x) is a decreasing function for x > 1,
so it takes its maximum value on [4, 4.3] at x = 4; there, its value is

K = 105

16
4−9/2 = 105

8192

so that

|f (4.3) − T3(4.3)| ≤ 27 105
8192

80,000
= 27 · 105

8192 · 80,000
≈ 4.3258667 · 10−6

36. f (x) = √
1 + x, a = 8; |√9.02 − T3(8.02)|

solution Let f (x) = √
1 + x. Then

f (x) = √
1 + x f (8) = 3

f ′(x) = 1

2
(x + 1)−1/2 f ′(8) = 1

6

f ′′(x) = −1

4
(x + 1)−3/2 f ′′(8) = −1

108

f ′′′(x) = 3

8
(x + 1)−5/2 f ′′′(8) = 1

648

and

T3(x) = 3 + 1

6
(x − 8) − 1

108 · 2! (x − 8)2 + 1

648 · 3! (x − 8)3 = 3 + 1

6
(x − 8) − 1

216
(x − 8)2 + 1

3888
(x − 8)3.

Therefore

T3(8.02) = 3 + 1

6
(0.02) − 1

216
(0.02)2 + 1

3888
(0.02)3 = 3.003331484.

Using the Error Bound, we have

|√9.02 − T3(8.02)| ≤ K
|8.02 − 8|4

4! = K

150,000,000
,

where K is a number such that |f (4)(x)| ≤ K for x between 8 and 8.02. Now

f (4)(x) = −15

16
(1 + x)−7/2,

which is a decreasing function for 8 ≤ x ≤ 8.02, so we may take

K = 15

16
9−7/2 = 15

34992
.
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Thus,

|√9.02 − T3(8.02)| ≤ 15/34992

150,000,000
≈ 2.858 × 10−12.

37. Calculate the Maclaurin polynomial T3(x) for f (x) = tan−1 x. Compute T3
( 1

2

)
and use the error bound to find a

bound for the error
∣∣ tan−1 1

2 − T3
( 1

2

)∣∣. Refer to the graph in Figure 10 to find an acceptable value of K . Verify your

result by computing
∣∣ tan−1 1

2 − T3
( 1

2

)∣∣ using a calculator.

y

x
21 3

−1

1

2

3

4

5

FIGURE 10 Graph of f (4)(x) = −24x(x2 − 1)

(x2 + 1)4
, where f (x) = tan−1 x.

solution Let f (x) = tan−1 x. Then

f (x) = tan−1 x f (0) = 0

f ′(x) = 1

1 + x2
f ′(0) = 1

f ′′(x) = −2x

(1 + x2)2
f ′′(0) = 0

f ′′′(x) = (1 + x2)2(−2) − (−2x)(2)(1 + x2)(2x)

(1 + x2)4
f ′′′(0) = −2

and

T3(x) = 0 + 1(x − 0) + 0

2
(x − 0)2 + −2

6
(x − 0)3 = x − x3

3
.

Since f (4)(x) ≤ 5 for x ≥ 0, we may take K = 5 in the error bound; then,∣∣∣∣tan−1
(

1

2

)
− T3

(
1

2

)∣∣∣∣ ≤ 5(1/2)4

4! = 5

384
.

38. Let f (x) = ln(x3 − x + 1). The third Taylor polynomial at a = 1 is

T3(x) = 2(x − 1) + (x − 1)2 − 7

3
(x − 1)3

Find the maximum possible value of |f (1.1) − T3(1.1)|, using the graph in Figure 11 to find an acceptable value of K .
Verify your result by computing |f (1.1) − T3(1.1)| using a calculator.

20

40
41

x

y

1.21.11.00.9

FIGURE 11 Graph of f (4)(x), where f (x) = ln(x3 − x + 1).

solution The maximum value of f (4)(x) on [1.0, 1.1] is less than 41, so we may take K = 41. Then

|f (1.1) − T3(1.1)| ≤ K
|1.1 − 1|4

4! = 41

24 · 10,000
≈ 0.00017083
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In fact, we have

f (1.1) = ln(1.13 − 1.1 + 1) = ln(1.231) ≈ 0.2078268472

T3(1.1) = 2(1.1 − 1) + (1.1 − 1)2 − 7

3
(1.1 − 1)3 ≈ 0.2076666667

|f (1.1) − T3(1.1)| ≈ 0.2078268472 − 0.2076666667 = 0.0001601805

which is in accordance with the error bound above.

39. Calculate the T3(x) at a = 0.5 for f (x) = cos(x2), and use the error bound to find the maximum possible

value of |f (0.6) − T3(0.6)|. Plot f (4)(x) to find an acceptable value of K .

solution We have

f (x) = cos(x2) f (0.5) = cos(0.25) ≈ 0.9689

f ′(x) = −2x sin(x2) f ′(0.5) = − sin(0.25) ≈ −0.2474039593

f ′′(x) = −4x2 cos(x2) − 2 sin(x2) f ′′(0.5) = − cos(0.25) − 2 sin(0.25) ≈ −1.463720340

f ′′′(x) = 8x3 sin(x2) − 12x cos(x2) f ′′′(0.5) = sin(0.25) − 6 cos(0.25) ≈ −5.566070571

f (4)(x) = 16x4 cos(x2) + 48x2 sin(x2) − 12 cos(x2)

so that

T3(x) = 0.9689 − 0.2472039593(x − 0.5) − 0.73186017(x − 0.5)2 − 0.92767843(x − 0.5)3

and T3(0.6) ≈ 0.9359257453. A graph of f (4)(x) for x near 0.5 is below.

−8

−7

−6

−5

−4

−3
0.4 0.5 0.6 0.7

y

x

Clearly the maximum value of |f (4)(x)| on [0.5, 0.6] is bounded by 8 (near x = 0.5), so we may take K = 8; then

|f (0.6) − T3(0.6)| ≤ K
|0.6 − 0.5|4

4! = 8

240,000
≈ 0.000033333

40. Calculate the Maclaurin polynomial T2(x) for f (x) = sech x and use the error bound to find the maximum

possible value of
∣∣f ( 1

2

)− T2
( 1

2

)∣∣. Plot f ′′′(x) to find an acceptable value of K .

solution To compute T2(x) for f (x) = sech x, we take the first two derivatives:

f (x) = sech x f (0) = 1

f ′(x) = − sech x tanh x f ′(0) = 0

f ′′(x) = sech x tanh2 x − sech3 x f ′′(0) = −1

From this,

T2(x) = 1 − 1

2
x2,

and

T2

(
1

2

)
= 1 − 1

2

(
1

2

)2
= 1 − 1

8
= 7

8
.

Using the Error Bound, we have

∣∣∣∣f
(

1

2

)
− T2

(
1

2

)∣∣∣∣ ≤ K
|1/2|3

6
= K

48
,
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where K is a number such that |f ′′′(x)| ≤ K| for x between 0 and 1
2 . Here,

f ′′′(x) = − sech x tanh3 x + 2 sech3 x tanh x + 3 sech2 x(sech x tanh x)

= 5 sech2 x tanh x − sech x tanh3 x.

A plot of f ′′′(x) is given below. From the plot, we see that |f ′′′(x)| ≤ 2 for all x between 0 and 1/2. Thus,∣∣∣∣f
(

1

2

)
− T2

(
1

2

)∣∣∣∣ ≤ 2

48
= 1

24
.

x

y

0.1 0.2 0.3 0.4 0.50

2

1.5

1

0.5

In Exercises 41–44, use the error bound to find a value of n for which the given inequality is satisfied. Then verify your
result using a calculator.

41. | cos 0.1 − Tn(0.1)| ≤ 10−7, a = 0

solution Using the error bound with K = 1 (every derivative of f (x) = cos x is ± sin x or ± cos x, so |f (n)(x)| ≤ 1
for all n), we have

|Tn(0.1) − cos 0.1| ≤ (0.1)n+1

(n + 1)! .

With n = 3,

(0.1)4

4! ≈ 4.17 × 10−6 > 10−7,

but with n = 4,

(0.1)5

5! ≈ 8.33 × 10−8 < 10−7,

so we choose n = 4. Now,

T4(x) = 1 − 1

2
x2 + 1

24
x4,

so

T4(0.1) = 1 − 1

2
(0.1)2 + 1

24
(0.1)4 = 0.995004166.

Using a calculator, cos 0.1 = 0.995004165, so

|T4(0.1) − cos 0.1| = 1.387 × 10−8 < 10−7.

42. | ln 1.3 − Tn(1.3)| ≤ 10−4, a = 1

solution Let f (x) = ln x. Then f ′(x) = x−1, f ′′(x) = −x−2, f ′′′(x) = 2x−3, f (4)(x) = −6x−4, etc. In general,

f (n)(x) = (−1)n+1(n − 1)!x−n.

Now, |f (n+1)(x)| is decreasing on the interval [1, 1.3], so |f (n+1)(x)| ≤ |f (n+1)(1)| = n! for all x ∈ [1, 1.3]. We can
therefore take K = n! in the error bound, and

| ln 1.3 − Tn(1.3)| ≤ n! |1.3 − 1|n+1

(n + 1)! = (0.3)n+1

n + 1
.

With n = 5,

(0.3)6

6
= 1.215 × 10−4 > 10−4,
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but with n = 6,

(0.3)7

7
= 3.124 × 10−5 < 10−4.

Therefore, the error is guaranteed to be below 10−4 for n = 6. Now,

T6(x) = (x − 1) − 1

2
(x − 1)2 + 1

3
(x − 1)3 − 1

4
(x − 1)4 + 1

5
(x − 1)5 − 1

6
(x − 1)6

and T6(1.3) ≈ 0.2623395000. Using a calculator, ln(1.3) ≈ 0.2623642645; the difference is

ln(1.3) − T6(1.3) ≈ 0.0000247645 < 10−4

43. |√1.3 − Tn(1.3)| ≤ 10−6, a = 1

solution Using the Error Bound, we have

|√1.3 − Tn(1.3)| ≤ K
|1.3 − 1|n+1

(n + 1)! = K
|0.3|n+1

(n + 1)! ,

where K is a number such that |f (n+1)(x)| ≤ K for x between 1 and 1.3. For f (x) = √
x, |f (n)(x)| is decreasing for

x > 1, hence the maximum value of |f (n+1)(x)| occurs at x = 1. We may therefore take

K = |f (n+1)(1)| = 1 · 3 · 5 · · · (2n + 1)

2n+1

= 1 · 3 · 5 · · · (2n + 1)

2n+1
· 2 · 4 · 6 · · · (2n + 2)

2 · 4 · 6 · · · (2n + 2)
= (2n + 2)!

(n + 1)!22n+2
.

Then

|√1.3 − Tn(1.3)| ≤ (2n + 2)!
(n + 1)!22n+2

· |0.3|n+1

(n + 1)! = (2n + 2)!
[(n + 1)!]2 (0.075)n+1.

With n = 9

(20)!
[(10)!]2 (0.075)10 = 1.040 × 10−6 > 10−6,

but with n = 10

(22)!
[(11)!]2 (0.075)11 = 2.979 × 10−7 < 10−6.

Hence, n = 10 will guarantee the desired accuracy. Using technology to compute and evaluate T10(1.3) gives

T10(1.3) ≈ 1.140175414,
√

1.3 ≈ 1.140175425

and

|√1.3 − T10(1.3)| ≈ 1.1 × 10−8 < 10−6

44. |e−0.1 − Tn(−0.1)| ≤ 10−6, a = 0

solution Using the Error Bound, we have

|e−0.1 − Tn(−0.1)| ≤ K
|−0.1 − 0|n+1

(n + 1)! = K
1

10n+1(n + 1)!
where K is a number such that |f (n+1)(x)| ≤ K for x between −0.1 and 0. Since f (x) = ex , f (n)(x) = ex for all n;
this is an increasing function, so it takes its maximum value at x = 0; this value is 1. So we may take K = 1 and then

|e−0.1 − Tn(−0.1)| ≤ 1

10n+1(n + 1)!
With n = 3

1

104 · 24
= 1

240,000
≈ 4.166666667 × 10−6 > 10−6

but with n = 4

1

105 · 120
= 1

12,000,000
≈ 8.333333333 × 10−8 < 10−6
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Thus n = 4 will guarantee the desired accuracy. Using technology to compute T4(x) and evalute,

T4(−0.1) ≈ 0.9048375000, e−0.1 ≈ 0.9048374180

and

|e−0.1 − T4(−0.1)| ≈ 8.2 × 10−8 < 10−6

45. Let f (x) = e−x and T3(x) = 1 − x + x2

2
− x3

6
. Use the error bound to show that for all x ≥ 0,

|f (x) − T3(x)| ≤ x4

24

If you have a GU, illustrate this inequality by plotting f (x) − T3(x) and x4/24 together over [0, 1].
solution Note that f (n)(x) = ±e−x , so that |f (n)(x)| = f (x). Now, f (x) is a decreasing function for x ≥ 0, so that

for any c > 0, |f (n)(x)| takes its maximum value at x = 0; this value is e0 = 1. Thus we may take K = 1 in the error
bound equation. Thus for any x,

|f (x) − T3(x)| ≤ K
|x − 0|4

4! = x4

24

A plot of f (x) − T3(x) and x4

24 is shown below.

2

1 2 3 4 5 6 7

4

6

8

10

1
24

y

x4

x

e−x − T3(x)

46. Use the error bound with n = 4 to show that∣∣∣∣∣sin x −
(

x − x3

6

)∣∣∣∣∣ ≤ |x|5
120

(for all x)

solution Note that all derivatives of sin x are either ± cos x or ± sin x so are bounded in absolute value by 1. Thus
we may take K = 1 in the Error Bound. Now,

T4(x) = x − x3

3!
so that

|sin x − T4(x)| =
∣∣∣∣∣sin x −

(
x − x3

6

)∣∣∣∣∣ ≤ K
|x − 0|5

5! = |x|5
120

47. Let Tn(x) be the Taylor polynomial for f (x) = ln x at a = 1, and let c > 1. Show that

| ln c − Tn(c)| ≤ |c − 1|n+1

n + 1

Then find a value of n such that | ln 1.5 − Tn(1.5)| ≤ 10−2.

solution With f (x) = ln x, we have

f ′(x) = x−1, f ′′(x) = −x−2, f ′′′(x) = 2x−3, f (4)(x) = −6x−4,

and, in general,

f (k+1)(x) = (−1)kk! x−k−1.
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Notice that |f (k+1)(x)| = k!|x|−k−1 is a decreasing function for x > 0. Therefore, the maximum value of |f (k+1)(x)|
on [1, c] is |f (k+1)(1)|. Using the Error Bound, we have

|ln c − Tn(c)| ≤ K
|c − 1|n+1

(n + 1)! ,

where K is a number such that |f (n+1)(x)| ≤ K for x between 1 and c. From part (a), we know that we may take
K = |f (n+1)(1)| = n!. Then

|ln c − Tn(c)| ≤ n! |c − 1|n+1

(n + 1)! = |c − 1|n+1

n + 1
.

Evaluating at c = 1.5 gives

|ln 1.5 − Tn(1.5)| ≤ |1.5 − 1|n+1

n + 1
= (0.5)n+1

n + 1
.

With n = 3,

(0.5)4

4
= 0.015625 > 10−2.

but with n = 4,

(0.5)5

5
= 0.00625 < 10−2.

Hence, n = 4 will guarantee the desired accuracy.

48. Let n ≥ 1. Show that if |x| is small, then

(x + 1)1/n ≈ 1 + x

n
+ 1 − n

2n2
x2

Use this approximation with n = 6 to estimate 1.51/6.

solution Let f (x) = (x + 1)1/n. Then

f (x) = (x + 1)1/n f (0) = 1

f ′(x) = 1

n
(x + 1)1/n−1 f ′(0) = 1

n

f ′′(x) = 1

n

(
1

n
− 1

)
(x + 1)1/n−2 f ′′(0) = 1

n

(
1

n
− 1

)

and

T2(x) = 1 + 1

n
(x) +

(
1

n2
− 1

n

)
x2

2
= 1 + x

n
+
(

1 − n

2n2

)
x2.

With n = 6 and x = 0.5,

1.51/6 ≈ T2(0.5) = 307

288
≈ 1.065972.

49. Verify that the third Maclaurin polynomial for f (x) = ex sin x is equal to the product of the third Maclaurin
polynomials of ex and sin x (after discarding terms of degree greater than 3 in the product).

solution Let f (x) = ex sin x. Then

f (x) = ex sin x f (0) = 0

f ′(x) = ex(cos x + sin x) f ′(0) = 1

f ′′(x) = 2ex cos x f ′′(0) = 2

f ′′′(x) = 2ex(cos x − sin x) f ′′′(0) = 2

and

T3(x) = 0 + (1)x + 2

2!x
2 + 2

3!x
3 = x + x2 + x3

3
.
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Now, the third Maclaurin polynomial for ex is 1 + x + x2

2 + x3

6 , and the third Maclaurin polynomial for sin x is x − x3

6 .
Multiplying these two polynomials, and then discarding terms of degree greater than 3, yields

ex sin x ≈ x + x2 + x3

3
,

which agrees with the Maclaurin polynomial obtained from the definition.

50. Find the fourth Maclaurin polynomial for f (x) = sin x cos x by multiplying the fourth Maclaurin polynomials for
f (x) = sin x and f (x) = cos x.

solution The fourth Maclaurin polynomial for sin x is x − x3

6 , and the fourth Maclaurin polynomial for cos x is

1 − x2

2 + x4

24 . Multiplying these two polynomials, and then discarding terms of degree greater than 4, we find that the
fourth Maclaurin polynomial for f (x) = sin x cos x is

T4(x) = x − 2x3

3
.

51. Find the Maclaurin polynomials Tn(x) for f (x) = cos(x2). You may use the fact that Tn(x) is equal to the sum of
the terms up to degree n obtained by substituting x2 for x in the nth Maclaurin polynomial of cos x.

solution The Maclaurin polynomials for cos x are of the form

T2n(x) = 1 − x2

2
+ x4

4! + · · · + (−1)n
x2n

(2n)! .

Accordingly, the Maclaurin polynomials for cos(x2) are of the form

T4n(x) = 1 − x4

2
+ x8

4! + · · · + (−1)n
x4n

(2n)! .

52. Find the Maclaurin polynomials of 1/(1 + x2) by substituting −x2 for x in the Maclaurin polynomials of 1/(1 − x).

solution The Maclaurin polynomials for 1
1−x

are of the form

Tn(x) = 1 + x + x2 + · · · + xn.

Accordingly, the Maclaurin polynomials for 1
1+x2 are of the form

T2n(x) = 1 − x2 + x4 − x6 + · · · + (−x2)n.

53. Let f (x) = 3x3 + 2x2 − x − 4. Calculate Tj (x) for j = 1, 2, 3, 4, 5 at both a = 0 and a = 1. Show that
T3(x) = f (x) in both cases.

solution Let f (x) = 3x3 + 2x2 − x − 4. Then

f (x) = 3x3 + 2x2 − x − 4 f (0) = −4 f (1) = 0

f ′(x) = 9x2 + 4x − 1 f ′(0) = −1 f ′(1) = 12

f ′′(x) = 18x + 4 f ′′(0) = 4 f ′′(1) = 22

f ′′′(x) = 18 f ′′′(0) = 18 f ′′′(1) = 18

f (4)(x) = 0 f (4)(0) = 0 f (4)(1) = 0

f (5)(x) = 0 f (5)(0) = 0 f (5)(1) = 0

At a = 0,

T1(x) = −4 − x;
T2(x) = −4 − x + 2x2;
T3(x) = −4 − x + 2x2 + 3x3 = f (x);
T4(x) = T3(x); and

T5(x) = T3(x).
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At a = 1,

T1(x) = 12(x − 1);
T2(x) = 12(x − 1) + 11(x − 1)2;
T3(x) = 12(x − 1) + 11(x − 1)2 + 3(x − 1)3 = −4 − x + 2x2 + 3x3 = f (x);
T4(x) = T3(x); and

T5(x) = T3(x).

54. Let Tn(x) be the nth Taylor polynomial at x = a for a polynomial f (x) of degree n. Based on the result of Exercise
53, guess the value of |f (x) − Tn(x)|. Prove that your guess is correct using the error bound.

solution Based on Exercise 53, we expect |f (x) − Tn(x)| = 0. From the Error Bound,

|f (x) − Tn(x)| ≤ K
|x − a|n+1

(n + 1)! ,

where K is a number such that |f (n+1)(u)| ≤ K for u between a and x. Since f (n+1)(x) = 0 for an nth degree
polynomial, we may take K = 0; the Error Bound then becomes |f (x) − Tn(x)| = 0.

55. Let s(t) be the distance of a truck to an intersection. At time t = 0, the truck is 60 meters from the intersection, is
traveling at a velocity of 24 m/s, and begins to slow down with an acceleration of a = −3 m/s2. Determine the second
Maclaurin polynomial of s(t), and use it to estimate the truck’s distance from the intersection after 4 s.

solution Place the origin at the intersection, so that s(0) = 60 (the truck is traveling away from the intersection). The
second Maclaurin polynomial of s(t) is

T2(t) = s(0) + s′(0)t + s′′(0)

2
t2

The conditions of the problem tell us that s(0) = 60, s′(0) = 24, and s′′(0) = −3. Thus

T2(t) = 60 + 24t − 3

2
t2

so that after 4 seconds,

T2(4) = 60 + 24 · 4 − 3

2
· 42 = 132 m

The truck is 132 m past the intersection.

56. A bank owns a portfolio of bonds whose value P(r) depends on the interest rate r (measured in percent; for example,
r = 5 means a 5% interest rate). The bank’s quantitative analyst determines that

P(5) = 100,000,
dP

dr

∣∣∣∣
r=5

= −40,000,
d2P

dr2

∣∣∣∣
r=5

= 50,000

In finance, this second derivative is called bond convexity. Find the second Taylor polynomial of P(r) centered at r = 5
and use it to estimate the value of the portfolio if the interest rate moves to r = 5.5%.

solution The second Taylor polynomial of P(r) at r = 5 is

T2(r) = P(5) + P ′(5)(r − 5) + P ′′(5)

2
(r − 5)2

From the conditions of the problem, P(5) = 100,000, P ′(5) = −40,000, and P ′′(5) = 50,000, so that

T2(r) = 100,000 − 40,000(r − 5) + 25,000(r − 5)2

If the interest rate moves to 5.5%, then the value of the portfolio can be estimated by

T2(5.5) = 100,000 − 40,000(0.5) + 25,000(0.5)2 = 86,250

57. A narrow, negatively charged ring of radius R exerts a force on a positively charged particle P located at distance x

above the center of the ring of magnitude

F(x) = − kx

(x2 + R2)3/2

where k > 0 is a constant (Figure 12).
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(a) Compute the third-degree Maclaurin polynomial for F(x).

(b) Show that F ≈ −(k/R3)x to second order. This shows that when x is small, F(x) behaves like a restoring force
similar to the force exerted by a spring.

(c) Show that F(x) ≈ −k/x2 when x is large by showing that

lim
x→∞

F(x)

−k/x2
= 1

Thus, F(x) behaves like an inverse square law, and the charged ring looks like a point charge from far away.

x

x

R

F(x)

Nearly linear
here

Nearly inverse square
here

P

FIGURE 12

solution

(a) Start by computing and evaluating the necessary derivatives:

F(x) = − kx

(x2 + R2)3/2
F(0) = 0

F ′(x) = k(2x2 − R2)

(x2 + R2)5/2
F ′(0) = − k

R3

F ′′(x) = 3kx(3R2 − 2x2)

(x2 + R2)7/2
F ′′(0) = 0

F ′′′(x) = 3k(8x4 − 24x2R2 + 3R4)

(x2 + R2)9/2
F ′′′(0) = 9k

R5

so that

T3(x) = F(0) + F ′(0)x + F ′′(0)

2! x2 + F ′′′(0)

3! x3 = − k

R3
x + 3k

2R5 x3

(b) To degree 2, F(x) ≈ T3(x) ≈ − k
R3 x as we may ignore the x3 term of T3(x).

(c) We have

lim
x→∞

F(x)

−k/x2
= lim

x→∞

(
−x2

k
· −kx

(x2 + R2)3/2

)
= lim

x→∞
x3

(x2 + R2)3/2

= lim
x→∞

1

x−3(x2 + R2)3/2
= lim

x→∞
1

(1 + R2/x2)3/2

= 1

Thus as x grows large, F(x) looks like an inverse square function.

58. A light wave of wavelength λ travels from A to B by passing through an aperture (circular region) located in a plane
that is perpendicular to AB (see Figure 13 for the notation). Let f (r) = d ′ + h′; that is, f (r) is the distance AC + CB

as a function of r .

(a) Show that f (r) =
√

d2 + r2 +
√

h2 + r2, and use the Maclaurin polynomial of order 2 to show that

f (r) ≈ d + h + 1

2

(
1

d
+ 1

h

)
r2

(b) The Fresnel zones, used to determine the optical disturbance at B, are the concentric bands bounded by the circles
of radius Rn such that f (Rn) = d + h + nλ/2. Show that Rn ≈ √

nλL, where L = (d−1 + h−1)−1.

(c) Estimate the radii R1 and R100 for blue light (λ = 475 × 10−7 cm) if d = h = 100 cm.
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O

d'

d

R1
R2

R3

C

B

A

h

r
h'

FIGURE 13 The Fresnel zones are the regions between the circles of radius Rn.

solution

(a) From the diagram, we see that AC =
√

d2 + r2 and CB =
√

h2 + r2. Therefore, f (r) =
√

d2 + r2 +
√

h2 + r2.
Moreover,

f ′(r) = r√
d2 + r2

+ r√
h2 + r2

, f ′′(r) = d2

(d2 + r2)3/2
+ h2

(h2 + r2)3/2
,

f (0) = d + h, f ′(0) = 0 and f ′′(0) = d−1 + h−1. Thus,

f (r) ≈ T2(r) = d + h + 1

2

(
1

d
+ 1

h

)
r2.

(b) Solving

f (Rn) ≈ d + h + 1

2

(
1

d
+ 1

h

)
R2

n = d + h + nλ

2

yields

Rn =
√

nλ(d−1 + h−1)−1 = √
nλL,

where L = (d−1 + h−1)−1.

(c) With d = h = 100 cm, L = 50 cm. Taking λ = 475 × 10−7 cm, it follows that

R1 ≈ √
λL = 0.04873 cm; and

R100 ≈ √
100λL = 0.4873 cm.

59. Referring to Figure 14, let a be the length of the chord AC of angle θ of the unit circle. Derive the following
approximation for the excess of the arc over the chord.

θ − a ≈ θ3

24

Hint: Show that θ − a = θ − 2 sin(θ/2) and use the third Maclaurin polynomial as an approximation.

C

1

B

A

b

a
θ

θ
2

FIGURE 14 Unit circle.

solution Draw a line from the center O of the circle to B, and label the point of intersection of this line with AC as

D. Then CD = a
2 , and the angle COB is θ

2 . Since CO = 1, we have

sin
θ

2
= a

2
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so that a = 2 sin(θ/2). Thus θ − a = θ − 2 sin(θ/2). Now, the third Maclaurin polynomial for f (θ) = sin(θ/2) can be
computed as follows: f (0) = 0, f ′(x) = 1

2 cos(θ/2) so that f ′(0) = 1
2 . f ′′(x) = − 1

4 sin(θ/2) and f ′′(0) = 0. Finally,

f ′′′(x) = − 1
8 cos(θ/2) and f ′′′(0) = − 1

8 . Thus

T3(θ) = f (0) + f ′(0)θ + f ′′(0)

2! θ2 + f ′′′(0)

3! θ3 = 1

2
θ − 1

48
θ3

Finally,

θ − a = θ − 2 sin
θ

2
≈ θ − 2T3(θ) = θ −

(
θ − 1

24
θ3
)

= θ3

24

60. To estimate the length θ of a circular arc of the unit circle, the seventeenth-century Dutch scientist Christian Huygens
used the approximation θ ≈ (8b − a)/3, where a is the length of the chord AC of angle θ and b is length of the chord
AB of angle θ/2 (Figure 14).

(a) Prove that a = 2 sin(θ/2) and b = 2 sin(θ/4), and show that the Huygens approximation amounts to the approxima-
tion

θ ≈ 16

3
sin

θ

4
− 2

3
sin

θ

2

(b) Compute the fifth Maclaurin polynomial of the function on the right.

(c) Use the error bound to show that the error in the Huygens approximation is less than 0.00022|θ |5.

solution

(a) By the Law of Cosines and the identity sin2(θ/2) = (1 − cos θ)/2:

a2 = 12 + 12 − 2 cos θ = 2(1 − cos θ) = 4 sin2 θ

2

and so a = 2 sin(θ/2). Similarly, b = 2 sin(θ/4). Substituting these expressions for a and b into the Huygens approxi-
mation yields

θ ≈ 8

3
· 2 sin

θ

4
− 1

3
· 2 sin

θ

2
= 16

3
sin

θ

4
− 2

3
sin

θ

2
.

(b) The fifth Maclaurin polynomial for sin x is x − x3

6 + x5

120 ; therefore, the fifth Maclaurin polynomial for sin(θ/2) is

θ

2
− (θ/2)3

6
+ (θ/2)5

120
= θ

2
− θ3

48
+ θ5

3840
,

and the fifth Maclaurin polynomial for sin(θ/4) is

θ

4
− (θ/4)3

6
+ (θ/4)5

120
= θ

4
− θ3

384
+ θ5

122,880
.

Thus, the fifth Maclaurin polynomial for f (θ) = 16
3 sin θ

4 − 2
3 sin θ

2 is

θ − 1

7680
θ5.

(c) Based on the result from part (b), the Huygens approximation for θ is equal to the fourth Maclaurin polynomial T4(θ)

for f (θ), and the error is at most K|θ |5/5!, where K is the maximum value of the absolute value of the fifth derivative
f (5)(θ). Because

f (5)(θ) = 1

192
cos

θ

4
− 1

48
cos

θ

2
,

we may take K = 1/48 + 1/192 = 0.0260417, so the error is at most |θ |5 times the constant

0.0261

5! = 0.00022.

Further Insights and Challenges
61. Show that the nth Maclaurin polynomial of f (x) = arcsin x for n odd is

Tn(x) = x + 1

2

x3

3
+ 1 · 3

2 · 4

x5

5
+ · · · + 1 · 3 · 5 · · · (n − 2)

2 · 4 · 6 · · · (n − 1)

xn

n
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solution Let f (x) = sin−1 x. Then

f (x) = sin−1 x f (0) = 0

f ′(x) = 1√
1 − x2

f ′(0) = 1

f ′′(x) = −1

2
(1 − x2)−3/2(−2x) f ′′(0) = 0

f ′′′(x) = 2x2 + 1

(1 − x2)5/2
f ′′′(0) = 1

f (4)(x) = −3x(2x2 + 3)

(1 − x2)7/2
f (4)(0) = 0

f (5)(x) = 24x4 + 72x2 + 9

(1 − x2)9/2
f (5)(0) = 9

...
...

f (7)(0) = 225

and

T7(x) = x + x3

3! + 9x5

5! + 225x7

7! = x + 1

2

x3

3
+ 1

2

3

4

x5

5
+ 1

2

3

4

5

6

x7

7
.

Thus, we can infer that

Tn(x) = x + 1

2
· x3

3
+ 1

2

3

4

x5

5
+ 1

2

3

4

5

6

x7

7
+ · · · + 1

2

3

4
· · · n − 2

n − 1

xn

n
.

62. Let x ≥ 0 and assume that f (n+1)(t) ≥ 0 for 0 ≤ t ≤ x. Use Taylor’s Theorem to show that the nth Maclaurin
polynomial Tn(x) satisfies

Tn(x) ≤ f (x) for all x ≥ 0

solution From Taylor’s Theorem,

Rn(x) = f (x) − Tn(x) = 1

n!
∫ x

0
(x − u)nf (n+1)(u) du.

If f (n+1)(t) ≥ 0 for all t then

1

n!
∫ x

0
(x − u)nf (n+1)(u) du ≥ 0

since (x − u)n ≥ 0 for 0 ≤ u ≤ x. Thus, f (x) − Tn(x) ≥ 0, or f (x) ≥ Tn(x).

63. Use Exercise 62 to show that for x ≥ 0 and all n,

ex ≥ 1 + x + x2

2! + · · · + xn

n!
Sketch the graphs of ex , T1(x), and T2(x) on the same coordinate axes. Does this inequality remain true for x < 0?

solution Let f (x) = ex . Then f (n)(x) = ex for all n. Because ex > 0 for all x, it follows from Exercise 62 that
f (x) ≥ Tn(x) for all x ≥ 0 and for all n. For f (x) = ex ,

Tn(x) = 1 + x + x2

2! + · · · + xn

n! ,

thus,

ex ≥ 1 + x + x2

2! + · · · + xn

n! .

From the figure below, we see that the inequality does not remain true for x < 0, as T2(x) ≥ ex for x < 0.
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x

y

21−1−2

2

4

6

ex

T1

T2

64. This exercise is intended to reinforce the proof of Taylor’s Theorem.

(a) Show that f (x) = T0(x) +
∫ x

a
f ′(u) du.

(b) Use Integration by Parts to prove the formula∫ x

a
(x − u)f (2)(u) du = −f ′(a)(x − a) +

∫ x

a
f ′(u) du

(c) Prove the case n = 2 of Taylor’s Theorem:

f (x) = T1(x) +
∫ x

a
(x − u)f (2)(u) du.

solution
(a)

T0(x) +
∫ x

a
f ′(u) du = T0(x) + f (x) − f (a) (from FTC2)

= f (a) + f (x) − f (a) = f (x).

(b) Using Integration by Parts with w = x − u and v′ = f ′′(u) du,∫ x

a
(x − u)f ′′(u) du = f ′(u)(x − u)

∣∣∣∣x
a

+
∫ x

a
f ′(u) du

= f ′(x)(x − x) − f ′(a)(x − a) +
∫ x

a
f ′(u) du

= −f ′(a)(x − a) +
∫ x

a
f ′(u) du.

(c)

T1(x) +
∫ x

a
(x − u)f ′′(u) du = f (a) + f ′(a)(x − a) + (−f ′(a)(x − a)

)+
∫ x

a
f ′(u) du

= f (a) + f (x) − f (a) = f (x).

In Exercises 65–69, we estimate integrals using Taylor polynomials. Exercise 66 is used to estimate the error.

65. Find the fourth Maclaurin polynomial T4(x) for f (x) = e−x2
, and calculate I = ∫ 1/2

0 T4(x) dx as an estimate∫ 1/2
0 e−x2

dx. A CAS yields the value I ≈ 0.4794255. How large is the error in your approximation? Hint: T4(x) is

obtained by substituting −x2 in the second Maclaurin polynomial for ex .

solution Following the hint, since the second Maclaurin polynomial for ex is

1 + x + x2

2

we substitute −x2 for x to get the fourth Maclaurin polynomial for ex2
:

T4(x) = 1 − x2 + x4

2

Then ∫ 1/2

0
e−x2

dx ≈
∫ 1/2

0
T4(x) dx =

(
x − 1

3
x3 + 1

10
x5
) ∣∣∣∣1/2

0
= 443

960
≈ 0.4614583333

Using a CAS, we have
∫ 1/2

0 e−x2
dx ≈ 0.4612810064, so the error is about 1.77 × 10−4.



March 30, 2011

1086 C H A P T E R 8 FURTHER APPLICATIONS OF THE INTEGRAL AND TAYLOR POLYNOMIALS

66. Approximating Integrals Let L > 0. Show that if two functions f (x) and g(x) satisfy |f (x) − g(x)| < L for all
x ∈ [a, b], then ∣∣∣∣

∫ b

a
f (x) dx −

∫ b

a
g(x) dx

∣∣∣∣ < L(b − a)

solution Because f (x) − g(x) ≤ |f (x) − g(x)|, it follows that

∣∣∣ ∫ b

a
f (x) dx −

∫ b

a
g(x) dx

∣∣∣ =
∣∣∣ ∫ b

a
(f (x) − g(x)) dx

∣∣∣ ≤
∫ b

a
|f (x) − g(x)| dx

<

∫ b

a
L dx = L(b − a).

67. Let T4(x) be the fourth Maclaurin polynomial for cos x.

(a) Show that | cos x − T4(x)| ≤ ( 1
2

)6
/6! for all x ∈ [

0, 1
2

]
. Hint: T4(x) = T5(x).

(b) Evaluate
∫ 1/2

0 T4(x) dx as an approximation to
∫ 1/2

0 cos x dx. Use Exercise 66 to find a bound for the size of the
error.

solution

(a) Let f (x) = cos x. Then

T4(x) = 1 − x2

2
+ x4

24
.

Moreover, with a = 0, T4(x) = T5(x) and

|cos x − T4(x)| ≤ K
|x|6
6! ,

where K is a number such that |f (6)(u)| ≤ K for u between 0 and x. Now |f (6)(u)| = | cos u| ≤ 1, so we may take
K = 1. Finally, with the restriction x ∈ [0, 1

2 ],

|cos x − T4(x)| ≤ (1/2)6

6! ≈ 0.000022.

(b)

∫ 1/2

0

(
1 − x2

2
+ x4

24

)
dx = 1841

3840
≈ 0.479427.

By (a) and Exercise 66, the error associated with this approximation is less than or equal to

(1/2)6

6!
(

1

2
− 0

)
= 1

92,160
≈ 1.1 × 10−5.

Note that
∫ 1/2

0
cos x dx ≈ 0.4794255, so the actual error is roughly 1.5 × 10−6.

68. Let Q(x) = 1 − x2/6. Use the error bound for sin x to show that

∣∣∣∣ sin x

x
− Q(x)

∣∣∣∣ ≤ |x|4
5!

Then calculate
∫ 1

0 Q(x) dx as an approximation to
∫ 1

0 (sin x/x) dx and find a bound for the error.

solution The third Maclaurin polynomial for sin x is

T3(x) = x − 1

3!x
3 = x − 1

6
x3 = xQ(x)

Additionally, this is also T4(x) since (sin x)(4)(0) = 0. All derivatives of sin x are either ± sin x or ± cos x, which are
bounded in absolute value by 1. Thus we may take K = 1 in the Error Bound, so

|sin x − xQ(x)| = |sin x − T3(x)| = |sin x − T4(x)| ≤ K
|x|5
5! = |x|5

5!
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Divide both sides of this inequality by |x| to get ∣∣∣∣ sin x

x
− Q(x)

∣∣∣∣ ≤ |x|4
5!

We can thus estimate
∫ 1

0 (sin x/x) dx by

∫ 1

0
Q(x) dx =

∫ 1

0
1 − x2

6
dx =

(
x − x3

18

) ∣∣∣∣1
0

= 17

18
≈ 0.9444444444

The error in this approximation is at most

|1|4
5! = 1

120
≈ 0.008333333333

The true value of the integral is approximately 0.9460830704, which is consistent with the error bound.

69. (a) Compute the sixth Maclaurin polynomial T6(x) for sin(x2) by substituting x2 in P(x) = x − x3/6, the third
Maclaurin polynomial for sin x.

(b) Show that | sin(x2) − T6(x)| ≤ |x|10

5! .

Hint: Substitute x2 for x in the error bound for | sin x − P(x)|, noting that P(x) is also the fourth Maclaurin polynomial
for sin x.

(c) Use T6(x) to approximate
∫ 1/2

0
sin(x2) dx and find a bound for the error.

solution Let s(x) = sin x and f (x) = sin(x2). Then

(a) The third Maclaurin polynomial for sin x is

S3(x) = x − x3

6

so, substituting x2 for x, we see that the sixth Maclaurin polynomial for sin(x2) is

T6(x) = x2 − x6

6

(b) Since all derivatives of s(x) are either ± cos x or ± sin x, they are bounded in magnitude by 1, so we may take K = 1
in the Error Bound for sin x. Since the third Maclaurin polynomial S3(x) for sin x is also the fourth Maclaurin polynomial
S4(x), we have

|sin x − S3(x)| = |sin x − S4(x)| ≤ K
|x|5
5! = |x|5

5!
Now substitute x2 for x in the above inequality and note from part (a) that S3(x2) = T6(x) to get

|sin(x2) − S3(x2)| = |sin(x2) − T6(x)| ≤ |x2|5
5! = |x|10

5!
(c)

∫ 1/2

0
sin(x2) dx ≈

∫ 1/2

0
T6(x) dx =

(
1

3
x3 − 1

42
x7
) ∣∣∣∣1/2

0
≈ 0.04148065476

From part (b), the error is bounded by

x10

5! = (1/2)10

120
= 1

1024 · 120
≈ 8.138020833 × 10−6

The true value of the integral is approximately 0.04148102420, which is consistent with the computed error bound.

70. Prove by induction that for all k,

dj

dxj

(
(x − a)k

k!

)
= k(k − 1) · · · (k − j + 1)(x − a)k−j

k!

dj

dxj

(
(x − a)k

k!

)∣∣∣∣∣
x=a

=
{

1 for k = j

0 for k = j

Use this to prove that Tn(x) agrees with f (x) at x = a to order n.
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solution The first formula is clearly true for j = 0. Suppose the formula is true for an arbitrary j . Then

dj+1

dxj+1

(
(x − a)k

k!

)
= d

dx

dj

dxj

(
(x − a)k

k!

)
= d

dx

(
k(k − 1) · · · (k − j + 1)(x − a)k−j

k!

)

= k(k − 1) · · · (k − j + 1)(k − (j + 1) + 1)(x − a)k−(j+1)

k!
as desired. Note that if k = j , then the numerator is k!, the denominator is k! and the value of the derivative is 1; otherwise,
the value of the derivative is 0 at x = a. In other words,

dj

dxj

(
(x − a)k

k!

) ∣∣∣∣
x=a

=
{

1 for k = j

0 for k = j

Applying this latter formula, it follows that

dj

dxj
Tn(a)

∣∣∣∣
x=a

=
n∑

k=0

dj

dxj

(
f (k)(a)

k! (x − a)k

) ∣∣∣∣
x=a

= f (j)(a)

as required.

71. Let a be any number and let

P(x) = anxn + an−1xn−1 + · · · + a1 + a0

be a polynomial of degree n or less.

(a) Show that if P (j)(a) = 0 for j = 0, 1, . . . , n, then P(x) = 0, that is, aj = 0 for all j . Hint: Use induction, noting
that if the statement is true for degree n − 1, then P ′(x) = 0.

(b) Prove that Tn(x) is the only polynomial of degree n or less that agrees with f (x) at x = a to order n. Hint: If Q(x)

is another such polynomial, apply (a) to P(x) = Tn(x) − Q(x).

solution

(a) Note first that if n = 0, i.e. if P(x) = a0 is a constant, then the statement holds: if P (0)(a) = P(a) = 0, then
a0 = 0 so that P(x) = 0. Next, assume the statement holds for all polynomials of degree n − 1 or less, and let P(x) be
a polynomial of degree at most n with P (j)(a) = 0 for j = 0, 1, . . . , n. If P(x) has degree less than n, then we know
P(x) = 0 by induction, so assume the degree of P(x) is exactly n. Then

P(x) = anxn + an−1xn−1 + · · · + a1x + a0

where an = 0; also,

P ′(x) = nanxn−1 + (n − 1)an−1xn−2 + · · · + a1

Note that P (j+1)(a) = (P ′)(j)(a) for j = 0, 1, . . . , n − 1. But then

0 = P (j+1)(a) = (P ′)(j)(a) for all j = 0, 1, . . . , n − 1

Since P ′(x) has degree at most n − 1, it follows by induction that P ′(x) = 0. Thus an = an−1 = · · · = a1 = 0 so that
P(x) = a0. But P(a) = 0 so that a0 = 0 as well and thus P(x) = 0.

(b) Suppose Q(x) is a polynomial of degree at most n that agrees with f (x) at x = a up to order n. Let P(x) =
Tn(x) − Q(x). Note that P(x) is a polynomial of degree at most n since both Tn(x) and Q(x) are. Since both Tn(x) and
Q(x) agree with f (x) at x = a to order n, we have

T
(j)
n (a) = f (j)(a) = Q(j)(a), j = 0, 1, 2, . . . , n

Thus

P (j)(a) = T
(j)
n (a) − Q(j)(a) = 0 for j = 0, 1, 2, . . . , n

But then by part (a), P(x) = 0 so that Tn(x) = Q(x).
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CHAPTER REVIEW EXERCISES

In Exercises 1–4, calculate the arc length over the given interval.

1. y = x5

10
+ x−3

6
, [1, 2]

solution Let y = x5

10
+ x−3

6
. Then

1 + (y′)2 = 1 +
(

x4

2
− x−4

2

)2

= 1 + x8

4
− 1

2
+ x−8

4

= x8

4
+ 1

2
+ x−8

4
=
(

x4

2
+ x−4

2

)2

.

Because 1
2 (x4 + x−4) > 0 on [1, 2], the arc length is

s =
∫ 2

1

√
1 + (y′)2 dx =

∫ 2

1

(
x4

2
+ x−4

2

)
dx =

(
x5

10
− x−3

6

)∣∣∣∣∣
2

1

= 779

240
.

2. y = ex/2 + e−x/2, [0, 2]
solution Let y = ex/2 + e−x/2 = 2 cosh x

2 . Then, y′ = sinh x
2 and

√
1 + (

y′)2 =
√

1 + sinh2 x

2
=
√

cosh2
(x

2

)
= cosh

x

2
.

Thus,

s =
∫ 2

0
cosh

(x

2

)
dx = 2 sinh

(x

2

) ∣∣∣∣2
0

= 2

(
sinh

(
2

2

)
− sinh(0)

)
= 2 sinh(1).

Alternately, y′ = 1
2 (ex/2 − e−x/2), so

1 + (y′)2 = 1

4
(ex − 2 + e−x) + 1 = 1

4
(ex + 2 + e−x) =

[
1

2
(ex/2 + e−x/2)

]2
.

Because 1
2 (ex/2 + e−x/2) > 0 on [0, 2],

s =
∫ 2

0

1

2
(ex/2 + e−x/2) dx = (ex/2 − e−x/2)

∣∣∣∣2
0

= e − e−1 = 2 sinh(1).

3. y = 4x − 2, [−2, 2]
solution Let y = 4x − 2. Then √

1 + (
y′)2 =

√
1 + 42 = √

17.

Hence,

s =
∫ 2

−2

√
17 dx = 4

√
17.

4. y = x2/3, [1, 8]
solution Let y = x2/3. Then y′ = 2

3x−1/3, and

√
1 + (

y′)2 =
√

1 + 4

9
x−2/3 =

√
4

9
x−2/3

(
9

4
x2/3 + 1

)
= 2

3
x−1/3

√
1 + 9

4
x2/3.

The arc length is

s =
∫ 2

1

√
1 + (

y′)2 dx =
∫ 2

1

2

3
x−1/3

√
1 + 9

4
x2/3 dx.
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Now, we make the substitution u = 1 + 9
4x2/3, du = 3

2x−1/3 dx. Then

s =
∫ 10

13/4

√
u · 4

9
du = 8

27
u3/2

∣∣∣∣10

13/4
= 8

27

⎡
⎣103/2 −

(√
13

2

)3
⎤
⎦

= 8

27

(
10

√
10 − 13

√
13

8

)
≈ 7.633705415.

5. Show that the arc length of y = 2
√

x over [0, a] is equal to
√

a(a + 1) + ln(
√

a + √
a + 1). Hint: Apply the

substitution x = tan2 θ to the arc length integral.

solution Let y = 2
√

x. Then y′ = 1√
x

, and

√
1 + (

y′)2 =
√

1 + 1

x
=
√

x + 1

x
= 1√

x

√
x + 1.

Thus,

s =
∫ a

0

1√
x

√
1 + x dx.

We make the substitution x = tan2θ , dx = 2 tan θ sec2θ dθ . Then

s =
∫ x=a

x=0

1

tan θ
sec θ · 2 tan θ sec2θ dθ = 2

∫ x=a

x=0
sec3θ dθ.

We use a reduction formula to obtain

s = 2

(
tan θ sec θ

2
+ 1

2
ln | sec θ + tan θ |

) ∣∣∣∣x=a

x=0
= (

√
x
√

1 + x + ln |√1 + x + √
x|)
∣∣∣∣a
0

= √
a
√

1 + a + ln |√1 + a + √
a| = √

a(a + 1) + ln
(√

a + √
a + 1

)
.

6. Compute the trapezoidal approximation T5 to the arc length s of y = tan x over
[
0, π

4

]
.

solution Let y = tan x. With N = 5, the subintervals are
[
(i − 1) π

20 , i π
20

]
, i = 1, 2, 3, 4, 5. Now,

1 + (y′)2 = 1 + (sec2 x)2 = 1 + sec4 x

so the arc length is approximately

s =
∫ π/4

1

√
1 + sec4 x dx

≈ π

40

(√
1 + sec4 0 + 2

√
1 + sec4 π

20
+ 2

√
1 + sec4 π

10
+ 2

√
1 + sec4 3π

20
+ 2

√
1 + sec4 π

5

+
√

1 + sec4 π

4

)

≈ π

40
(1.41421356 + 2 · 1.43206164 + 2 · 1.49073513 + 2 · 1.60830125 + 2 · 1.82602534 + 2.23606797)

≈ 1.285267058

In Exercises 7–10, calculate the surface area of the solid obtained by rotating the curve over the given interval about the
x-axis.

7. y = x + 1, [0, 4]
solution Let y = x + 1. Then y′ = 1, and

y

√
1 + y′2 = (x + 1)

√
1 + 1 = √

2(x + 1).

Thus,

SA = 2π

∫ 4

0

√
2(x + 1) dx = 2

√
2π

(
x2

2
+ x

)∣∣∣∣∣
4

0

= 24
√

2π.
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8. y = 2

3
x3/4 − 2

5
x5/4, [0, 1]

solution Let y = 2

3
x3/4 − 2

5
x5/4. Then

y′ = x−1/4

2
− x1/4

2
,

and

1 + (y′)2 = 1 +
(

x−1/4

2
− x1/4

2

)2

= x−1/2

4
+ 1

2
+ x1/2

4
=
(

x−1/4

2
+ x1/4

2

)2

.

Because 1
2 (x−1/4 + x1/4) ≥ 0, the surface area is

2π

∫ 1

0
y

√
1 + (y′)2 dy = 2π

∫ 1

0

(
2x3/4

3
− 2x5/4

5

)(
x1/4

2
+ x−1/4

2

)
dx

= 2π

∫ 1

0

(
−x3/2

5
− x

5
+ x

3
+

√
x

3

)
dx

= 2π

(
−2x5/2

25
+ x2

15
+ 2x3/2

9

)∣∣∣∣∣
1

0

= 94

225
π.

9. y = 2

3
x3/2 − 1

2
x1/2, [1, 2]

solution Let y = 2

3
x3/2 − 1

2
x1/2. Then

y′ = √
x − 1

4
√

x
,

and

1 + (
y′)2 = 1 +

(√
x − 1

4
√

x

)2
= 1 +

(
x − 1

2
+ 1

16x

)
= x + 1

2
+ 1

16x
=
(√

x + 1

4
√

x

)2
.

Because
√

x + 1√
x

≥ 0, the surface area is

2π

∫ b

a
y

√
1 + (

y′)2 dx = 2π

∫ 2

1

(
2

3
x3/2 −

√
x

2

)(√
x + 1

4
√

x

)
dx

= 2π

∫ 2

1

(
2

3
x2 + 1

6
x − 1

2
x − 1

8

)
dx = 2π

(
2x3

9
− x2

6
− 1

8
x

) ∣∣∣∣2
1

= 67

36
π.

10. y = 1

2
x2, [0, 2]

solution Let y = 1
2x2. Then y′ = x and

SA = 2π

∫ 2

0

1

2
x2
√

1 + x2 dx = π

∫ 2

0
x2
√

1 + x2 dx.

Using the substitution x = tan θ , dx = sec2 θ dθ , we find that∫
x2
√

1 + x2 dx =
∫

sec3 θ tan2 θ dθ =
∫ (

sec5 θ − sec3 θ
)
dθ

=
(

1

4
sec3 θ tan θ + 3

8
sec θ tan θ + 3

8
ln | sec θ + tan θ | − 1

2
sec θ tan θ − 1

2
ln | sec θ + tan θ |

)
+ C

= x

4
(1 + x2)3/2 − x

8

√
1 + x2 − 1

8
ln |

√
1 + x2 + x| + C.

Finally,

SA = π

(
x

4
(1 + x2)3/2 − x

8

√
1 + x2 − 1

8
ln |

√
1 + x2 + x|

)∣∣∣∣2
0

= π

(
5
√

5

2
−

√
5

4
− 1

8
ln(2 + √

5)

)
= 9

√
5

4
π − π

8
ln(2 + √

5).
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11. Compute the total surface area of the coin obtained by rotating the region in Figure 1 about the x-axis. The top and
bottom parts of the region are semicircles with a radius of 1 mm.

1 mm

4 mm
x

y

FIGURE 1

solution The generating half circle of the edge is y = 2 +
√

1 − x2. Then,

y′ = −2x

2
√

1 − x2
= −x√

1 − x2
,

and

1 + (y′)2 = 1 + x2

1 − x2
= 1

1 − x2
.

The surface area of the edge of the coin is

2π

∫ 1

−1
y

√
1 + (

y′)2dx = 2π

∫ 1

−1

(
2 +

√
1 − x2

) 1√
1 − x2

dx

= 2π

(
2
∫ 1

−1

dx√
1 − x2

+
∫ 1

−1

√
1 − x2√
1 − x2

dx

)

= 2π

(
2 arcsin x|1−1 +

∫ 1

−1
dx

)

= 2π(2π + 2) = 4π2 + 4π.

We now add the surface area of the two sides of the disk, which are circles of radius 2. Hence the surface area of the coin
is: (

4π2 + 4π
)

+ 2π · 22 = 4π2 + 12π.

12. Calculate the fluid force on the side of a right triangle of height 3 m and base 2 m submerged in water vertically, with
its upper vertex at the surface of the water.

solution To find the fluid force, we must find an expression for the horizontal width f (y) of the triangle at depth y.

3

2

y

f (y)

By similar triangles we have:

y

f (y)
= 3

2
so f (y) = 2y

3
.

Therefore, the fluid force on the side of the triangle is

F = ρg

∫ 3

0
yf (y) dy = ρg

∫ 3

0

2y2

3
dy = ρg · 2y3

9

∣∣∣∣3
0

= 6ρg.

For water, ρ = 103; g = 9.8, so F = 6 · 9800 = 58,800 N.
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13. Calculate the fluid force on the side of a right triangle of height 3 m and base 2 m submerged in water vertically, with
its upper vertex located at a depth of 4 m.

solution We need to find an expression for the horizontal width f (y) at depth y.

3

2

y

f (y)

y – 4

4

By similar triangles we have:

f (y)

y − 4
= 2

3
so f (y) = 2(y − 4)

3
.

Hence, the force on the side of the triangle is

F = ρg

∫ 7

4
yf (y) dy = 2ρg

3

∫ 7

4

(
y2 − 4y

)
dy = 2ρg

3

(
y3

3
− 2y2

)∣∣∣∣∣
7

4

= 18ρg.

For water, ρ = 103; g = 9.8, so F = 18 · 9800 = 176,400 N.

14. A plate in the shape of the shaded region in Figure 2 is submerged in water. Calculate the fluid force on a side of the
plate if the water surface is y = 1.

x

y

1−1

y =

y = 1
2

1 − x2

1 − x2

FIGURE 2

solution Here, we can proceed as follows: Calculate the force that would be exerted on the entire semicircle and then
subtract the force that would be exerted on the “missing” portion of the ellipse. The force on the semicircle is

2w

∫ 1

0
(1 − y)

√
1 − y2 dy = 2w

∫ 1

0

√
1 − y2 dy − 2w

∫ 1

0
y

√
1 − y2 dy.

The first integral can be interpreted as the area of one-quarter of a circle of radius 1. Hence,∫ 1

0

√
1 − y2 dy = π

4
.

On the other hand, ∫ 1

0
y

√
1 − y2 dy = −1

3
(1 − y2)3/2

∣∣∣∣1
0

= 1

3
.

Thus, the force on the semicircle is

2w

(
π

4
− 1

3

)
.

Now for the ellipse. The force that would be exerted on the upper half of the ellipse is

2w

∫ 1/2

0
(1 − y)

√
1 − 4y2 dy = 2w

∫ 1/2

0

√
1 − 4y2 dy − 2w

∫ 1/2

0
y

√
1 − 4y2 dy.

Using the substitution w = 2y, dw = 2 dy, it follows that∫ 1/2

0

√
1 − 4y2 dy = 1

2

∫ 1

0

√
1 − w2 dw = π

8
,
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and ∫ 1/2

0
y

√
1 − 4y2 dy = 1

4

∫ 1

0
w
√

1 − w2 dw = 1

12
.

Thus, the force on the “missing” ellipse is

2w

(
π

8
− 1

12

)
.

Finally, the force exerted on the plate shown in Figure 2 is

F = 2w

(
π

4
− 1

3

)
− 2w

(
π

8
− 1

12

)
= π − 2

4
w.

15. Figure 3 shows an object whose face is an equilateral triangle with 5-m sides. The object is 2 m thick and is submerged
in water with its vertex 3 m below the water surface. Calculate the fluid force on both a triangular face and a slanted
rectangular edge of the object.

5 2

3
Water level

FIGURE 3

solution Start with each triangular face of the object. Place the origin at the upper vertex of the triangle, with the
positive y-axis pointing downward. Note that because the equilateral triangle has sides of length 5 feet, the height of the

triangle is
5
√

3

2
feet. Moreover, the width of the triangle at location y is

2y√
3

. Thus,

F = 2ρg√
3

∫ 5
√

3/2

0
(y + 3)y dy = 2ρg√

3

(
1

3
y3 + 3

2
y2
)∣∣∣∣5

√
3/2

0
= ρg

4
(125 + 75

√
3) ≈ 624,514 N.

Now, consider the slanted rectangular edges of the object. Each edge is a constant 2 feet wide and makes an angle of 60◦
with the horizontal. Therefore,

F = ρg

sin 60◦
∫ 5

√
3/2

0
2(y + 3) dy = 2ρg√

3

(
y2 + 6y

)∣∣∣∣5
√

3/2

0
= ρg

(
25

√
3

2
+ 30

)
≈ 506,176 N.

The force on the bottom face can be computed without calculus:

F =
(

3 + 5
√

3

2

)
(2)(5)ρg ≈ 718,352 N.

16. The end of a horizontal oil tank is an ellipse (Figure 4) with equation (x/4)2 + (y/3)2 = 1 (length in meters). Assume
that the tank is filled with oil of density 900 kg/m3.

(a) Calculate the total force F on the end of the tank when the tank is full.

(b) Would you expect the total force on the lower half of the tank to be greater than, less than, or equal to 1
2F ?

Explain. Then compute the force on the lower half exactly and confirm (or refute) your expectation.

3

−3

y

x
4−4

FIGURE 4

solution

(a) Solving the equation of the ellipse for x yields

x = 4

3

√
9 − y2.
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Therefore, a horizontal strip of the ellipse at height y has width 8
3

√
9 − y2. This strip is at a depth of 3 − y, so the total

force on the end of the tank is

F = ρg

∫ 3

−3
(3 − y) · 8

3

√
9 − y2 dy = 8ρg

∫ 3

−3

√
9 − y2 dy − 8

3
ρg

∫ 3

−3
y

√
9 − y2 dy.

The first integral can be interpreted as the area of one-half of a circle of radius 3, so the value of this integral is 9π
2 . The

second integral is zero, since the integrand is an odd function and the interval of integration is symmetric about zero.
Hence,

F = 8ρg
9π

2
− 8

3
ρg(0) = 8 · 900 · 9.8 · 9π

2
≈ 997,518 N.

(b) The oil in the lower half of the tank is at a greater depth than the oil in the upper half, therefore we expect the total
force Fl on the lower half of the tank to be greater than the total force Fu on the upper half. We compute the two forces
to verify our expectation. Now,

Fl = ρg

∫ 0

−3
(3 − y) · 8

3

√
9 − y2 dy = 8ρg

∫ 0

−3

√
9 − y2 dy − 8

3
ρg

∫ 0

−3
y

√
9 − y2 dy.

Similarly,

Fu = 8ρg

∫ 3

0

√
9 − y2 dy − 8

3
ρg

∫ 3

0
y

√
9 − y2 dy.

The first integral in each expression,

∫ 0

−3

√
9 − y2 dy and

∫ 3

0

√
9 − y2 dy,

can be interpreted as the area of one-quarter of a circle of radius 3, so both integrals have the value 9π
4 . Using the

substitution u = 9 − y2, du = −2y dy we find

∫ 0

−3
y

√
9 − y2 dy =

∫ 9

0

√
u

(
−1

2

)
du = −1

3
u3/2

∣∣∣∣9
0

= −9.

Moreover, since the integrand is an odd function, we have

∫ 3

0
y

√
9 − y2 dy = −

∫ 0

−3
y

√
9 − y2 dy = 9.

Thus,

Fl = 8ρg
9π

4
− 8

3
ρg(−9) = (18π + 24)ρg; and

Fu = 8ρg
9π

4
− 8

3
ρg(9) = (18π − 24)ρg.

We see that Fl > Fu. That is, the total force on the lower half of the tank is greater than the total force on the upper half,
as expected.

17. Calculate the moments and COM of the lamina occupying the region under y = x(4 − x) for 0 ≤ x ≤ 4, assuming
a density of ρ = 1200 kg/m3.

solution Because the lamina is symmetric with respect to the vertical line x = 2, by the symmetry principle, we know
that xcm = 2. Now,

Mx = ρ

2

∫ 4

0
f (x)2 dx = 1200

2

∫ 4

0
x2(4 − x)2 dx = 1200

2

(
16

3
x3 − 2x4 + 1

5
x5
)∣∣∣∣4

0
= 20,480.

Moreover, the mass of the lamina is

M = ρ

∫ 4

0
f (x) dx = 1200

∫ 4

0
x(4 − x) dx = 1200

(
2x2 − 1

3
x3
)∣∣∣∣4

0
= 12,800.

Thus, the coordinates of the center of mass are (
2,

20,480

12,800

)
=
(

2,
8

5

)
.
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18. Sketch the region between y = 4(x + 1)−1 and y = 1 for 0 ≤ x ≤ 3, and find its centroid.

solution

x

y

1 2 3 40

1

2

3

4

y = 1

y = 4(x + 1)−1

First, we calculate the moments:

Mx = 1

2

∫ 3

0

(
16

(x + 1)2
− 1

)
dx = 1

2

(
− 16

x + 1
− x

) ∣∣∣∣3
0

= 9

2
,

and

My =
∫ 3

0
x
(

4(x + 1)−1 − 1
)

dx =
∫ 3

0

(
4x

x + 1
− x

)
dx

=
∫ 3

0

(
4(x + 1) − 4

x + 1
− x

)
dx =

∫ 3

0

(
4 − 4

x + 1
− x

)
dx

=
(

4x − x2

2
− 4 ln(x + 1)

)∣∣∣∣∣
3

0

= 15

2
− 4 ln 4.

The area of the region is

A =
∫ 3

0

(
4

x + 1
− 1

)
dx = (4 ln(x + 1) − x)|30 = 4 ln 4 − 3,

so the coordinates of the centroid are: (
15 − 8 ln 4

8 ln 4 − 6
,

9

8 ln 4 − 6

)
.

19. Find the centroid of the region between the semicircle y =
√

1 − x2 and the top half of the ellipse y = 1
2

√
1 − x2

(Figure 2).

solution Since the region is symmetric with respect to the y-axis, the centroid lies on the y-axis. To find ycm we
calculate

Mx = 1

2

∫ 1

−1

⎡
⎣(√1 − x2

)2 −
(√

1 − x2

2

)2
⎤
⎦ dx

= 1

2

∫ 1

−1

3

4

(
1 − x2

)
dx = 3

8

(
x − 1

3
x3
)∣∣∣∣1−1

= 1

2
.

The area of the lamina is π
2 − π

4 = π
4 , so the coordinates of the centroid are(

0,
1/2

π/4

)
=
(

0,
2

π

)
.

20. Find the centroid of the shaded region in Figure 5 bounded on the left by x = 2y2 − 2 and on the right by a semicircle
of radius 1. Hint: Use symmetry and additivity of moments.

x

y

semicircle
of radius 1

x = ± 1 − y /2

1

FIGURE 5
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solution The region is symmetric with respect to the x-axis, hence the centroid lies on the x-axis; that is, ycm = 0.
To compute the area and the moment with respect to the y-axis, we treat the left side and the right side of the region
separately. Starting with the left side, we find

M left
y = 2

∫ 0

−2
x

√
x

2
+ 1 dx and Aleft = 2

∫ 0

−2

√
x

2
+ 1 dx.

In each integral we make the substitution u = x
2 + 1, du = 1

2 dx, and find

M left
y = 8

∫ 1

0
(u − 1)u1/2 du = 8

∫ 1

0

(
u3/2 − u1/2

)
du = 8

(
2

5
u5/2 − 2

3
u3/2

)∣∣∣∣1
0

= −32

15

and

Aleft = 4
∫ 1

0
u1/2 du = 8

3
u3/2

∣∣∣∣1
0

= 8

3
.

On the right side of the region

M
right
y = 2

∫ 1

0
x
√

1 − x2 dx = −2

3
(1 − x2)3/2

∣∣∣∣1
0

= 2

3
,

and Aright = π
2 (because the right side of the region is one-half of a circle of radius 1). Thus,

My = M left
y + M

right
y = −32

15
+ 2

3
= −22

15
;

A = Aleft + Aright = 8

3
+ π

2
= 16 + 3π

6
;

and the coordinates of the centroid are ( −22/15

(16 + 3π)/6
, 0

)
=
(

− 44

80 + 15π
, 0

)
.

In Exercises 21–26, find the Taylor polynomial at x = a for the given function.

21. f (x) = x3, T3(x), a = 1

solution We start by computing the first three derivatives of f (x) = x3:

f ′(x) = 3x2

f ′′(x) = 6x

f ′′′(x) = 6

Evaluating the function and its derivatives at x = 1, we find

f (1) = 1, f ′(1) = 3, f ′′(1) = 6, f ′′′(1) = 6.

Therefore,

T3(x) = f (1) + f ′(1)(x − 1) + f ′′(1)

2! (x − 2)2 + f ′′′(1)

3! (x − 1)3

= 1 + 3(x − 1) + 6

2! (x − 2)2 + 6

3! (x − 1)3

= 1 + 3(x − 1) + 3(x − 2)2 + (x − 1)3.

22. f (x) = 3(x + 2)3 − 5(x + 2), T3(x), a = −2

solution T3(x) is the Taylor polynomial of f consisting of powers of (x + 2) up to three. Since f (x) is already in
this form we conclude that T3(x) = f (x).



March 30, 2011

1098 C H A P T E R 8 FURTHER APPLICATIONS OF THE INTEGRAL AND TAYLOR POLYNOMIALS

23. f (x) = x ln(x), T4(x), a = 1

solution We start by computing the first four derivatives of f (x) = x ln x:

f ′(x) = ln x + x · 1

x
= ln x + 1

f ′′(x) = 1

x

f ′′′(x) = − 1

x2

f (4)(x) = 2

x3

Evaluating the function and its derivatives at x = 1, we find

f (1) = 0, f ′(1) = 1, f ′′(1) = 1, f ′′′(1) = −1, f (4)(1) = 2.

Therefore,

T4(x) = f (1) + f ′(1)(x − 1) + f ′′(1)

2! (x − 1)2 + f ′′′(1)

3! (x − 1)3 + f (4)(1)

4! (x − 1)4

= 0 + 1(x − 1) + 1

2! (x − 1)2 − 1

3! (x − 1)3 + 2

4! (x − 1)4

= (x − 1) + 1

2
(x − 1)2 − 1

6
(x − 1)3 + 1

12
(x − 1)4.

24. f (x) = (3x + 2)1/3, T3(x), a = 2

solution We start by computing the first three derivatives of f (x) = (3x + 2)1/3:

f ′(x) = 1

3
(3x + 2)−2/3 · 3 = (3x + 2)−2/3

f ′′(x) = −2

3
(3x + 2)−5/3 · 3 = −2(3x + 2)−5/3

f ′′′(x) = 10

3
(3x + 2)−8/3 · 3 = 10(3x + 2)−8/3

Evaluating the function and its derivatives at x = 2, we find

f (2) = 2, f ′(2) = 1

4
, f ′′(2) = − 1

16
, f ′′′(2) = 5

128
.

Therefore,

T3(x) = f (2) + f ′(2)(x − 2) + f ′′(2)

2! (x − 2)2 + f ′′′(2)

3! (x − 2)3

= 2 + 1

4
(x − 2) + −1/16

2! (x − 2)2 + 5/128

3! (x − 2)3

= 2 + 1

4
(x − 2) − 1

32
(x − 2)2 − 5

768
(x − 2)3.

25. f (x) = xe−x2
, T4(x), a = 0

solution We start by computing the first four derivatives of f (x) = xe−x2
:

f ′(x) = e−x2 + x · (−2x)e−x2 = (1 − 2x2)e−x2

f ′′(x) = −4xe−x2 + (1 − 2x2) · (−2x)e−x2 = (4x3 − 6x)e−x2

f ′′′(x) = (12x2 − 6)e−x2 + (4x3 − 6x) · (−2x)e−x2 = (−8x4 + 24x2 − 6)e−x2

f (4)(x) = (−32x3 + 48x)e−x2 + (−8x4 + 24x2 − 6) · (−2x)e−x2 = (16x5 − 80x3 + 60x)e−x2

Evaluating the function and its derivatives at x = 0, we find

f (0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −6, f (4)(0) = 0.
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Therefore,

T4(x) = f (0) + f ′(0)x + f ′′(0)

2! x2 + f ′′′(0)

3! x3 + f (4)(0)

4! x4

= 0 + x + 0 · x2 − 6

3!x
3 + 0 · x4 = x − x3.

26. f (x) = ln(cos x), T3(x), a = 0

solution We start by computing the first three derivatives of f (x) = ln(cos x):

f ′(x) = − sin x

cos x
= − tan x

f ′′(x) = −sec2x

f ′′′(x) = −2 sec2x tan x

Evaluating the function and its derivatives at x = 0, we find

f (0) = 0, f ′(0) = 0, f ′′(0) = −1, f ′′′(0) = 0.

Therefore,

T3(x) = f (0) + f ′(0)x + f ′′(0)

2! x2 + f ′′′(0)

3! x3 = 0 + 0

1!x − 1

2!x
2 + 0

3!x
3 = −x2

2
.

27. Find the nth Maclaurin polynomial for f (x) = e3x .

solution We differentiate the function f (x) = e3x repeatedly, looking for a pattern:

f ′(x) = 3e3x = 31e3x

f ′′(x) = 3 · 3e3x = 32e3x

f ′′′(x) = 3 · 32e3x = 33e3x

Thus, for general n, f (n)(x) = 3ne3x and f (n)(0) = 3n. Substituting into the formula for the nth Taylor polynomial, we
obtain:

Tn(x) = 1 + 3x

1! + 32x2

2! + 33x3

3! + 34x4

4! + · · · + 3nxn

n!
= 1 + 3x + 1

2! (3x)2 + 1

3! (3x)3 + · · · + 1

n! (3x)n.

28. Use the fifth Maclaurin polynomial of f (x) = ex to approximate
√

e. Use a calculator to determine the error.

solution Let f (x) = ex . Then f (n)(x) = ex and f (n)(0) = 1 for all n. Hence,

T5(x) = f (0) + f ′(0)x + f ′′(0)

2! x2 + f ′′′(0)

3! x3 + f (4)(0)

4! x4 + f (5)(0)

5! x5

= 1 + x + x2

2! + x3

3! + x4

4! + x5

5! .

For x = 1
2 we have

T5

(
1

2

)
= 1 + 1

2
+
(

1
2

)2

2! +
(

1
2

)3

3! +
(

1
2

)4

4! +
(

1
2

)5

5!

= 1 + 1

2
+ 1

8
+ 1

48
+ 1

384
+ 1

3840
= 1.648697917

Using a calculator, we find that
√

e = 1.648721271. The error in the Taylor polynomial approximation is

|1.648697917 − 1.648721271| = 2.335 × 10−5.
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29. Use the third Taylor polynomial of f (x) = tan−1 x at a = 1 to approximate f (1.1). Use a calculator to determine
the error.

solution We start by computing the first three derivatives of f (x) = tan−1x:

f ′(x) = 1

1 + x2

f ′′(x) = − 2x(
1 + x2

)2

f ′′′(x) =
−2

(
1 + x2

)2 + 2x · 2
(

1 + x2
)

· 2x(
1 + x2

)4 =
2
(

3x2 − 1
)

(
1 + x2

)3
Evaluating the function and its derivatives at x = 1, we find

f (1) = π

4
, f ′(1) = 1

2
, f ′′(1) = −1

2
, f ′′′(1) = 1

2
.

Therefore,

T3(x) = f (1) + f ′(1)(x − 1) + f ′′(1)

2! (x − 1)2 + f ′′′(1)

3! (x − 1)3

= π

4
+ 1

2
(x − 1) − 1

4
(x − 1)2 + 1

12
(x − 1)3.

Setting x = 1.1 yields:

T3(1.1) = π

4
+ 1

2
(0.1) − 1

4
(0.1)2 + 1

12
(0.1)3 = 0.832981496.

Using a calculator, we find tan−11.1 = 0.832981266. The error in the Taylor polynomial approximation is∣∣∣T3(1.1) − tan−11.1
∣∣∣ = |0.832981496 − 0.832981266| = 2.301 × 10−7.

30. Let T4(x) be the Taylor polynomial for f (x) = √
x at a = 16. Use the error bound to find the maximum possible

size of |f (17) − T4(17)|.
solution Using the Error Bound, we have

|f (17) − T4(17)| ≤ K
(17 − 16)5

5! = K

5! ,

where K is a number such that
∣∣∣f (5)(x)

∣∣∣ ≤ K for all 16 ≤ x ≤ 17. Starting from f (x) = √
x we find

f ′(x) = 1

2
x−1/2, f ′′(x) = −1

4
x−3/2, f ′′′(x) = 3

8
x−5/2, f (4)(x) = −15

16
x−7/2,

and

f (5)(x) = 105

32
x−9/2.

For 16 ≤ x ≤ 17,

∣∣∣f (5)(x)

∣∣∣ = 105

32x9/2
≤ 105

32 · 169/2
= 105

8,388,608
.

Therefore, we may take

K = 105

8,388,608
.

Finally,

|f (17) − T4(17)| ≤ 105

8,388,608
· 1

5! ≈ 1.044 · 10−7.
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31. Find n such that |e − Tn(1)| < 10−8, where Tn(x) is the nth Maclaurin polynomial for f (x) = ex .

solution Using the Error Bound, we have

|e − Tn(1)| ≤ K
|1 − 0|n+1

(n + 1)! = K

(n + 1)!

where K is a number such that
∣∣∣f (n+1)(x)

∣∣∣ = ex ≤ K for all 0 ≤ x ≤ 1. Since ex is increasing, the maximum value

on the interval 0 ≤ x ≤ 1 is attained at the endpoint x = 1. Thus, for 0 ≤ u ≤ 1, eu ≤ e1 < 2.8. Hence we may take
K = 2.8 to obtain:

|e − Tn(1)| ≤ 2.8

(n + 1)!
We now choose n such that

2.8

(n + 1)! < 10−8

(n + 1)!
2.8

> 108

(n + 1)! > 2.8 × 108

For n = 10, (n + 1)! = 3.99 × 107 < 2.8 × 108 and for n = 11, (n + 1)! = 4.79 × 108 > 2.8 × 108. Hence, to make
the error less than 10−8, n = 11 is sufficient; that is,

|e − T11(1)| < 10−8.

32. Let T4(x) be the Taylor polynomial for f (x) = x ln x at a = 1 computed in Exercise 23. Use the error bound to find
a bound for |f (1.2) − T4(1.2)|.
solution Using the Error Bound, we have

|f (1.2) − T4(1.2)| ≤ K
(1.2 − 1)5

5! = (0.2)5

120
K,

where K is a number such that
∣∣∣f (5)x

∣∣∣ ≤ K for all 1 ≤ x ≤ 1.2. Starting from f (x) = x ln x, we find

f ′(x) = ln x + x
1

x
= ln x + 1, f ′′(x) = 1

x
, f ′′′(x) = − 1

x2
, f (4)(x) = 2

x3
,

and

f (5)(x) = −6

x4
.

For 1 ≤ x ≤ 1.2, ∣∣∣f (5)(x)

∣∣∣ = 6

x4
≤ 6

14
= 6.

Hence we may take K = 6 to obtain:

|f (1.2) − T4(1.2)| ≤ (0.2)5

120
6 = 1.6 × 10−5.

33. Verify that Tn(x) = 1 + x + x2 + · · · + xn is the nth Maclaurin polynomial of f (x) = 1/(1 − x). Show using
substitution that the nth Maclaurin polynomial for f (x) = 1/(1 − x/4) is

Tn(x) = 1 + 1

4
x + 1

42
x2 + · · · + 1

4n
xn

What is the nth Maclaurin polynomial for g(x) = 1

1 + x
?

solution Let f (x) = (1 − x)−1. Then, f ′(x) = (1 − x)−2, f ′′(x) = 2(1 − x)−3, f ′′′(x) = 3!(1 − x)−4, and, in

general, f (n)(x) = n!(1 − x)−(n+1). Therefore, f (n)(0) = n! and

Tn(x) = 1 + 1!
1!x + 2!

2!x
2 + · · · + n!

n!x
n = 1 + x + x2 + · · · + xn.
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Upon substituting x/4 for x, we find that the nth Maclaurin polynomial for f (x) = 1

1 − x/4
is

Tn(x) = 1 + 1

4
x + 1

42
x2 + · · · + 1

4n
xn.

Substituting −x for x, the nth Maclaurin polynomial for g(x) = 1

1 + x
is

Tn(x) = 1 − x + x2 − x3 + − · · · + (−x)n.

34. Let f (x) = 5

4 + 3x − x2
and let ak be the coefficient of xk in the Maclaurin polynomial Tn(x) of for k ≤ n.

(a) Show that f (x) =
(

1/4

1 − x/4
+ 1

1 + x

)
.

(b) Use Exercise 33 to show that ak = 1

4k+1
+ (−1)k .

(c) Compute T3(x).

solution

(a) Start by factoring the denominator and writing the form of the partial fraction decomposition:

f (x) = 5

4 + 3x − x2
= 5

(x + 1)(4 − x)
= A

x + 1
+ B

4 − x
.

Multiplying through by (x + 1)(4 − x), we obtain:

5 = A(4 − x) + B(x + 1).

Substituting x = 4 yields 5 = A(0) + B(5), so B = 1; substituting x = −1 yields 5 = A(5) + B(0), so A = 1. Thus,

f (x) = 1

x + 1
+ 1

4 − x
= 1

x + 1
+

1
4

1 − x
4

.

(b) The nth Maclaurin polynomial for f (x) =
1
4

1− x
4

+ 1
x+1 is the sum of the nth Maclaurin polynomials for the functions

g(x) = 1
4 · 1

1− x
4

and h(x) = 1
1+x

. In Exercise 33, we found that the nth Maclaurin polynomials Pn(x) and Qn(x) for g

and h are

Pn(x) = 1

4

(
1 + 1

4
x + 1

42
x2 + · · · + 1

4n
xn

)
= 1

4
+ 1

42
x + 1

43
x2 + · · · + 1

4n+1
xn =

n∑
k=0

xk

4k+1

Qn(x) = 1 − x + x2 − x3 + · · · + (−1)nxn =
n∑

k=0

(−1)kxk

Therefore,

Tn(x) = Pn(x) + Qn(x) =
n∑

k=0

xk

4k+1
+

n∑
k=0

(−1)kxk =
n∑

k=0

[
1

4k+1
+ (−1)k

]
xk;

that is, the coefficient of xk in Tn for k ≤ n is

ak = 1

4k+1
+ (−1)k.

(c) From part (b),

a0 = 1

4
+ 1, a1 = 1

42
− 1, a2 = 1

43
+ 1, a3 = 1

44
− 1

so that

T3(x) = 5

4
− 15

16
x + 65

64
x2 − 255

256
x3
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35. Let Tn(x) be the nth Maclaurin polynomial for the function f (x) = sin x + sinh x.

(a) Show that T5(x) = T6(x) = T7(x) = T8(x).

(b) Show that |f n(x)| ≤ 1 + cosh x for all n. Hint: Note that | sinh x| ≤ | cosh x| for all x.

(c) Show that |T8(x) − f (x)| ≤ 2.6

9! |x|9 for −1 ≤ x ≤ 1.

solution

(a) Let f (x) = sin x + sinh x. Then

f ′(x) = cos x + cosh x

f ′′(x) = − sin x + sinh x

f ′′′(x) = − cos x + cosh x

f (4)(x) = sin x + sinh x.

From this point onward, the pattern of derivatives repeats indefinitely. Thus

f (0) = f (4)(0) = f (8)(0) = sin 0 + sinh 0 = 0

f ′(0) = f (5)(0) = cos 0 + cosh 0 = 2

f ′′(0) = f (6)(0) = − sin 0 + sinh 0 = 0

f ′′′(0) = f (7)(0) = − cos 0 + cosh 0 = 0.

Consequently,

T5(x) = f ′(0)x + f (5)(0)

5! x5 = 2x + 1

60
x5,

and, because f (6)(0) = f (7)(0) = f (8)(0) = 0, it follows that

T6(x) = T7(x) = T8(x) = T5(x) = 2x + 1

60
x5.

(b) First note that | sin x| ≤ 1 and | cos x| ≤ 1 for all x. Moreover,

| sinh x| =
∣∣∣∣ ex − e−x

2

∣∣∣∣ ≤ ex + e−x

2
= cosh x.

Now, recall from part (a), that all derivatives of f (x) contain two terms: the first is ± sin x or ± cos x, while the second
is either sinh x or cosh x. In absolute value, the trigonometric term is always less than or equal to 1, while the hyperbolic
term is always less than or equal to cosh x. Thus, for all n,

f (n)(x) ≤ 1 + cosh x.

(c) Using the Error Bound, we have

|T8(x) − f (x)| ≤ K|x − 0|9
9! = K|x|9

9! ,

where K is a number such that
∣∣∣f (9)(u)

∣∣∣ ≤ K for all u between 0 and x. By part (b), we know that

f (9)(u) ≤ 1 + cosh u.

Now, cosh u is an even function that is increasing on (0, ∞). The maximum value for u between 0 and x is therefore
cosh x. Moreover, for −1 ≤ x ≤ 1, cosh x ≤ cosh 1 ≈ 1.543 < 1.6. Hence, we may take K = 1 + 1.6 = 2.6, and

|T8(x) − f (x)| ≤ 2.6

9! |x|9.
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9 INTRODUCTION TO
DIFFERENTIAL EQUATIONS

9.1 Solving Differential Equations

Preliminary Questions
1. Determine the order of the following differential equations:

(a) x5y′ = 1 (b) (y′)3 + x = 1

(c) y′′′ + x4y′ = 2 (d) sin(y′′) + x = y

solution

(a) The highest order derivative that appears in this equation is a first derivative, so this is a first order equation.

(b) The highest order derivative that appears in this equation is a first derivative, so this is a first order equation.

(c) The highest order derivative that appears in this equation is a third derivative, so this is a third order equation.

(d) The highest order derivative that appears in this equation is a second derivative, so this is a second order equation.

2. Is y′′ = sin x a linear differential equation?

solution Yes.

3. Give an example of a nonlinear differential equation of the form y′ = f (y).

solution One possibility is y′ = y2.

4. Can a nonlinear differential equation be separable? If so, give an example.

solution Yes. An example is y′ = y2.

5. Give an example of a linear, nonseparable differential equation.

solution One example is y′ + y = x.

Exercises
1. Which of the following differential equations are first-order?

(a) y′ = x2 (b) y′′ = y2

(c) (y′)3 + yy′ = sin x (d) x2y′ − exy = sin y

(e) y′′ + 3y′ = y

x
(f) yy′ + x + y = 0

solution

(a) The highest order derivative that appears in this equation is a first derivative, so this is a first order equation.

(b) The highest order derivative that appears in this equation is a second derivative, so this is not a first order equation.

(c) The highest order derivative that appears in this equation is a first derivative, so this is a first order equation.

(d) The highest order derivative that appears in this equation is a first derivative, so this is a first order equation.

(e) The highest order derivative that appears in this equation is a second derivative, so this is not a first order equation.

(f) The highest order derivative that appears in this equation is a first derivative, so this is a first order equation.

2. Which of the equations in Exercise 1 are linear?

solution

(a) Linear; (1)y′ − x2 = 0.

(b) Not linear; y2 is not a linear function of y.

(c) Not linear; (y′)3 is not a linear function of y′.
(d) Not linear; sin y is not a linear function of y.

(e) Linear; (1)y′′ + (3)y′ − 1
x y = 0.

(f) Not linear. yy′ cannot be expressed as a(x)y(n).

1104
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In Exercises 3–8, verify that the given function is a solution of the differential equation.

3. y′ − 8x = 0, y = 4x2

solution Let y = 4x2. Then y′ = 8x and

y′ − 8x = 8x − 8x = 0.

4. yy′ + 4x = 0, y =
√

12 − 4x2

solution Let y =
√

12 − 4x2. Then

y′ = −4x√
12 − 4x2

,

and

yy′ + 4x =
√

12 − 4x2 −4x√
12 − 4x2

+ 4x = −4x + 4x = 0.

5. y′ + 4xy = 0, y = 25e−2x2

solution Let y = 25e−2x2
. Then y′ = −100xe−2x2

, and

y′ + 4xy = −100xe−2x2 + 4x(25e−2x2
) = 0.

6. (x2 − 1)y′ + xy = 0, y = 4(x2 − 1)−1/2

solution Let y = 4(x2 − 1)−1/2. Then y′ = −4x(x2 − 1)−3/2, and

(x2 − 1)y′ + xy = (x2 − 1)(−4x)(x2 − 1)−3/2 + 4x(x2 − 1)−1/2

= −4x(x2 − 1)−1/2 + 4x(x2 − 1)−1/2 = 0.

7. y′′ − 2xy′ + 8y = 0, y = 4x4 − 12x2 + 3

solution Let y = 4x4 − 12x2 + 3. Then y′ = 16x3 − 24x, y′′ = 48x2 − 24, and

y′′ − 2xy′ + 8y = (48x2 − 24) − 2x(16x3 − 24x) + 8(4x4 − 12x2 + 3)

= 48x2 − 24 − 32x4 + 48x2 + 32x4 − 96x2 + 24 = 0.

8. y′′ − 2y′ + 5y = 0, y = ex sin 2x

solution Let y = ex sin 2x. Then

y′ = 2ex cos 2x + ex sin 2x,

y′′ = −4ex sin 2x + 2ex cos 2x + 2ex cos 2x + ex sin 2x = −3ex sin 2x + 4ex cos 2x,

and

y′′ − 2y′ + 5y = −3ex sin 2x + 4ex cos 2x − 4ex cos 2x − 2ex sin 2x + 5ex sin 2x

= (−3ex − 2ex + 5ex) sin 2x + (4ex − 4ex) cos 2x = 0.

9. Which of the following equations are separable? Write those that are separable in the form y′ = f (x)g(y) (but do
not solve).

(a) xy′ − 9y2 = 0 (b)
√

4 − x2y′ = e3y sin x

(c) y′ = x2 + y2 (d) y′ = 9 − y2

solution

(a) xy′ − 9y2 = 0 is separable:

xy′ − 9y2 = 0

xy′ = 9y2

y′ = 9

x
y2
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(b)
√

4 − x2y′ = e3y sin x is separable: √
4 − x2y′ = e3y sin x

y′ = e3y sin x√
4 − x2

.

(c) y′ = x2 + y2 is not separable; y′ is already isolated, but is not equal to a product f (x)g(y).
(d) y′ = 9 − y2 is separable: y′ = (1)(9 − y2).

10. The following differential equations appear similar but have very different solutions.

dy

dx
= x,

dy

dx
= y

Solve both subject to the initial condition y(1) = 2.

solution For the first differential equation, we have y′ = x so that, integrating,

y = x2

2
+ C

Since y(1) = 2, C = 3
2 , so that

y = x2 + 3

2

The second equation is separable: y−1 dy = 1 dx, so that ln |y| = x + C and y = Cex . Since y(1) = 2, we have 2 = Ce

or C = 2e−1. Thus y = 2ex−1.

11. Consider the differential equation y3y′ − 9x2 = 0.

(a) Write it as y3 dy = 9x2 dx.
(b) Integrate both sides to obtain 1

4y4 = 3x3 + C.

(c) Verify that y = (12x3 + C)1/4 is the general solution.
(d) Find the particular solution satisfying y(1) = 2.

solution Solving y3y′ − 9x2 = 0 for y′ gives y′ = 9x2y−3.

(a) Separating variables in the equation above yields

y3 dy = 9x2 dx

(b) Integrating both sides gives

y4

4
= 3x3 + C

(c) Simplify the equation above to get y4 = 12x3 + C, or y = (12x3 + C)1/4.
(d) Solve 2 = (12 · 13 + C)1/4 to get 16 = 12 + C, or C = 4. Thus the particular solution is y = (12x3 + 4)1/4.

12. Verify that x2y′ + e−y = 0 is separable.

(a) Write it as ey dy = −x−2 dx.
(b) Integrate both sides to obtain ey = x−1 + C.
(c) Verify that y = ln(x−1 + C) is the general solution.
(d) Find the particular solution satisfying y(2) = 4.

solution Solving x2y′ + e−y = 0 for y′ yields

y′ = −x−2e−y .

(a) Separating variables in the last equation yields

eydy = −x−2dx.

(b) Integrating both sides of the result of part (a), we find∫
eydy = −

∫
x−2dx

ey + C1 = x−1 + C2

ey = x−1 + C

(c) Solving the last expression from part (b) for y, we find

y = ln
∣∣x−1 + C

∣∣
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(d) y(2) = 4 yields 4 = ln
∣∣ 1

2 + C
∣∣, or e4 = C + 1

2 . Thus the particular solution is

y = ln

∣∣∣∣ 1

x
− 1

2
+ e4

∣∣∣∣
In Exercises 13–28, use separation of variables to find the general solution.

13. y′ + 4xy2 = 0

solution Rewrite

y′ + 4xy2 = 0 as
dy

dx
= −4xy2 and then as y−2 dy = −4x dx

Integrating both sides of this equation gives ∫
y−2 dy = −4

∫
x dx

−y−1 = −2x2 + C

y−1 = 2x2 + C

Solving for y gives

y = 1

2x2 + C

where C is an arbitrary constant.

14. y′ + x2y = 0

solution Rewrite

y′ + x2y = 0 as
dy

dx
= −x2y and then as y−1 dy = −x2 dx

Integrating both sides of this equation gives ∫
y−1 dy = −

∫
x2 dx

ln |y| = −x3

3
+ C1

Solve for y to get

y = ±e−x3/3+C1 = Ce−x3/3

where C = ±eC1 is an arbitrary constant.

15.
dy

dt
− 20t4e−y = 0

solution Rewrite

dy

dt
− 20t4e−y = 0 as

dy

dt
= 20t4e−y and then as ey dy = 20t4 dt

Integrating both sides of this equation gives ∫
ey dy =

∫
20t4 dt

ey = 4t5 + C

Solve for y to get y = ln(4t5 + C), where C is an arbitrary constant.

16. t3y′ + 4y2 = 0

solution Rewrite

t3y′ + 4y2 = 0 as
dy

dt
= −4y2t−3 and then as y−2 dy = −4t−3 dt

Integrating both sides of this equation gives ∫
y−2 dy = −4

∫
t−3 dt

−y−1 = 2t−2 + C
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Solve for y to get

y = −1

2t−2 + C
= −t2

2 + Ct2

where C is an arbitrary constant.

17. 2y′ + 5y = 4

solution Rewrite

2y′ + 5y = 4 as y′ = 2 − 5

2
y and then as (4 − 5y)−1 dy = 1

2
dx

Integrating both sides and solving for y gives ∫
dy

4 − 5y
= 1

2

∫
1 dx

−1

5
ln |4 − 5y| = 1

2
x + C1

ln |4 − 5y| = C2 − 5

2
x

4 − 5y = C3e−5x/2

5y = 4 − C3e−5x/2

y = Ce−5x/2 + 4

5

where C is an arbitrary constant.

18.
dy

dt
= 8

√
y

solution Rewrite

dy

dt
= 8

√
y as

dy√
y

= 8 dt.

Integrating both sides of this equation yields ∫
dy√

y
= 8

∫
dt

2
√

y = 8t + C.

Solving for y, we find
√

y = 4t + C

y = (4t + C)2,

where C is an arbitrary constant.

19.
√

1 − x2 y′ = xy

solution Rewrite

√
1 − x2 dy

dx
= xy as

dy

y
= x√

1 − x2
dx.

Integrating both sides of this equation yields ∫
dy

y
=

∫
x√

1 − x2
dx

ln |y| = −
√

1 − x2 + C.

Solving for y, we find

|y| = e−
√

1−x2+C = eCe−
√

1−x2

y = ±eCe−
√

1−x2 = Ae−
√

1−x2
,

where A is an arbitrary constant.
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20. y′ = y2(1 − x2)

solution Rewrite

dy

dx
= y2(1 − x2) as

dy

y2
= (1 − x2) dx.

Integrating both sides of this equation yields ∫
dy

y2
=

∫
(1 − x2) dx

−y−1 = x − 1

3
x3 + C.

Solving for y, we find

y−1 = 1

3
x3 − x + C

y = 1
1
3x3 − x + C

,

where C is an arbitrary constant.

21. yy′ = x

solution Rewrite

y
dy

dx
= x as y dy = x dx.

Integrating both sides of this equation yields ∫
y dy =

∫
x dx

1

2
y2 = 1

2
x2 + C.

Solving for y, we find

y2 = x2 + 2C

y = ±
√

x2 + A,

where A = 2C is an arbitrary constant.

22. (ln y)y′ − ty = 0

solution Rewrite

(ln y)y′ − ty = 0 as (ln y)
dy

dt
= ty and then as

ln y

y
dy = t dt

Integrating both sides of this equation gives ∫
ln y

y
dy =

∫
t dt

1

2
ln2 y = 1

2
t2 + C1

ln2 y = t2 + C

ln y = ±
√

t2 + C

y = e±
√

t2+C

23.
dx

dt
= (t + 1)(x2 + 1)

solution Rewrite

dx

dt
= (t + 1)(x2 + 1) as

1

x2 + 1
dx = (t + 1) dt.
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Integrating both sides of this equation yields∫
1

x2 + 1
dx =

∫
(t + 1) dt

tan−1 x = 1

2
t2 + t + C.

Solving for x, we find

x = tan

(
1

2
t2 + t + C

)
.

where A = tan C is an arbitrary constant.

24. (1 + x2)y′ = x3y

solution Rewrite

(1 + x2)
dy

dx
= x3y as

1

y
dy = x3

1 + x2
dx.

Integrating both sides of this equation yields

∫
1

y
dy =

∫
x3

1 + x2
dx.

To integrate x3

1+x2 , note

x3

1 + x2
= (x3 + x) − x

1 + x2
= x − x

1 + x2
.

Thus,

ln |y| = 1

2
x2 − 1

2
ln |x2 + 1| + C

|y| = eC ex2/2√
x2 + 1

y = ±eC ex2/2√
x2 + 1

= A
ex2/2√
x2 + 1

,

where A = ±eC is an arbitrary constant.

25. y′ = x sec y

solution Rewrite

dy

dx
= x sec y as cos y dy = x dx.

Integrating both sides of this equation yields ∫
cos y dy =

∫
x dx

sin y = 1

2
x2 + C.

Solving for y, we find

y = sin−1
(

1

2
x2 + C

)
,

where C is an arbitrary constant.

26.
dy

dθ
= tan y

solution Rewrite

dy

dθ
= tan y as cot y dy = dθ.
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Integrating both sides of this equation yields ∫
cos y

sin y
dy =

∫
dθ

ln |sin y| = θ + C.

Solving for y, we have

|sin y| = eθ+C = eCeθ

sin y = ±eCeθ

y = sin−1
(
Aeθ

)
,

where A = ±eC is an arbitrary constant.

27.
dy

dt
= y tan t

solution Rewrite

dy

dt
= y tan t as

1

y
dy = tan t dt.

Integrating both sides of this equation yields ∫
1

y
dy =

∫
tan t dt

ln |y| = ln |sec t | + C.

Solving for y, we find

|y| = eln |sec t |+C = eC |sec t |
y = ±eC sec t = A sec t,

where A = ±eC is an arbitrary constant.

28.
dx

dt
= t tan x

solution Rewrite

dx

dt
= t tan x as cot x dx = t dt.

Integrating both sides of this equation yields ∫
cot x dx =

∫
t dt

ln |sin x| = 1

2
t2 + C.

Solving for y, we find

| sin x| = e
1
2 t2+C = eCe

1
2 t2

sin x = ±eCe
1
2 t2

x = sin−1
(
Ae

1
2 t2

)
,

where A = ±eC is an arbitrary constant.

In Exercises 29–42, solve the initial value problem.

29. y′ + 2y = 0, y(ln 5) = 3

solution First, we find the general solution of the differential equation. Rewrite

dy

dx
+ 2y = 0 as

1

y
dy = −2 dx,



April 2, 2011

1112 C H A P T E R 9 INTRODUCTION TO DIFFERENTIAL EQUATIONS

and then integrate to obtain

ln |y| = −2x + C.

Thus,

y = Ae−2x,

where A = ±eC is an arbitrary constant. The initial condition y(ln 5) = 3 allows us to determine the value of A.

3 = Ae−2(ln 5); 3 = A
1

25
; so 75 = A.

Finally,

y = 75e−2x .

30. y′ − 3y + 12 = 0, y(2) = 1

solution First, we find the general solution of the differential equation. Rewrite

dy

dx
− 3y + 12 = 0 as

1

3y − 12
dy = 1 dx,

and then integrate to obtain

1

3
ln |3y − 12| = x + C.

Thus,

y = Ae3x + 4,

where A = ± 1
3 e3C is an arbitrary constant. The initial condition y(2) = 1 allows us to determine the value of A.

1 = Ae6 + 4; −3 = Ae6; so − 3e−6 = A.

Finally,

y = −3e−6e3x + 4 = −3e3x−6 + 4

31. yy′ = xe−y2
, y(0) = −2

solution First, we find the general solution of the differential equation. Rewrite

y
dy

dx
= xe−y2

as yey2
dy = x dx,

and then integrate to obtain

1

2
ey2 = 1

2
x2 + C.

Thus,

y = ±
√

ln(x2 + A),

where A = 2C is an arbitrary constant. The initial condition y(0) = −2 allows us to determine the value of A. Since
y(0) < 0, we have y = −

√
ln(x2 + A), and

−2 = −√
ln(A); 4 = ln(A); so e4 = A.

Finally,

y = −
√

ln(x2 + e4).

32. y2 dy

dx
= x−3, y(1) = 0

solution First, we find the general solution of the differential equation. Rewrite

y2 dy

dx
= x−3 as y2 dy = x−3 dx,
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and then integrate to obtain

1

3
y3 = −1

2
x−2 + C.

Thus,

y =
(

A − 3

2
x−2

)1/3
,

where A = 3C is an arbitrary constant. The initial condition y(1) = 0 allows us to determine the value of A.

0 =
(

A − 3

2
1−2

)1/3
; 0 =

(
A − 3

2

)1/3
; so A = 3

2
.

Finally,

y =
(

3

2
− 3

2
x−2

)1/3
.

33. y′ = (x − 1)(y − 2), y(2) = 4

solution First, we find the general solution of the differential equation. Rewrite

dy

dx
= (x − 1)(y − 2) as

1

y − 2
dy = (x − 1) dx,

and then integrate to obtain

ln |y − 2| = 1

2
x2 − x + C.

Thus,

y = Ae(1/2)x2−x + 2,

where A = ±eC is an arbitrary constant. The initial condition y(2) = 4 allows us to determine the value of A.

4 = Ae0 + 2 so A = 2.

Finally,

y = 2e(1/2)x2−x + 2.

34. y′ = (x − 1)(y − 2), y(2) = 2

solution First (as in the previous problem), we find the general solution of the differential equation. Rewrite

dy

dx
= (x − 1)(y − 2) as

1

y − 2
dy = (x − 1) dx,

and then integrate to obtain

ln |y − 2| = 1

2
x2 − x + C.

Thus,

y = Ae(1/2)x2−x + 2,

where A = ±eC is an arbitrary constant. The initial condition y(2) = 2 allows us to determine the value of A.

2 = Ae0 + 2 so A = 0.

Finally,

y = 2.

35. y′ = x(y2 + 1), y(0) = 0

solution First, find the general solution of the differential equation. Rewrite

dy

dx
= x(y2 + 1) as

1

y2 + 1
dy = x dx
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and integrate to obtain

tan−1 y = 1

2
x2 + C

so that

y = tan

(
1

2
x2 + C

)

where C is an arbitrary constant. The initial condition y(0) = 0 allows us to determine the value of C: 0 = tan(C), so
C = 0. Finally,

y = tan

(
1

2
x2

)

36. (1 − t)
dy

dt
− y = 0, y(2) = −4

solution First, we find the general solution of the differential equation. Rewrite

(1 − t)
dy

dt
= y as

1

y
dy = −1

t − 1
dt,

and then integrate to obtain

ln |y| = − ln |t − 1| + C.

Thus,

y = A

t − 1
,

where A = ±eC is an arbitrary constant. The initial condition y(2) = −4 allows us to determine the value of A.

−4 = A

2 − 1
= A.

Finally,

y = −4

t − 1
.

37.
dy

dt
= ye−t , y(0) = 1

solution First, we find the general solution of the differential equation. Rewrite

dy

dt
= ye−t as

1

y
dy = e−t dt,

and then integrate to obtain

ln |y| = −e−t + C.

Thus,

y = Ae−e−t
,

where A = ±eC is an arbitrary constant. The initial condition y(0) = 1 allows us to determine the value of A.

1 = Ae−1 so A = e.

Finally,

y = (e)e−e−t = e1−e−t
.

38.
dy

dt
= te−y , y(1) = 0

solution First, we find the general solution of the differential equation. Rewrite

dy

dt
= te−y as ey dy = t dt,

and then integrate to obtain

ey = 1

2
t2 + C.
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Thus,

y = ln

(
1

2
t2 + C

)
,

where C is an arbitrary constant. The initial condition y(1) = 0 allows us to determine the value of C.

0 = ln

(
1

2
+ C

)
; 1 = 1

2
+ C; so C = 1

2
.

Finally,

y = ln

(
1

2
t2 + 1

2

)
.

39. t2 dy

dt
− t = 1 + y + ty, y(1) = 0

solution First, we find the general solution of the differential equation. Rewrite

t2 dy

dt
= 1 + t + y + ty = (1 + t)(1 + y)

as

1

1 + y
dy = 1 + t

t2
dt,

and then integrate to obtain

ln |1 + y| = −t−1 + ln |t | + C.

Thus,

y = A
t

e1/t
− 1,

where A = ±eC is an arbitrary constant. The initial condition y(1) = 0 allows us to determine the value of A.

0 = A

(
1

e

)
− 1 so A = e.

Finally,

y = et

e1/t
− 1.

40.
√

1 − x2 y′ = y2 + 1, y(0) = 0

solution First, we find the general solution of the differential equation. Rewrite

√
1 − x2 dy

dx
= y2 + 1 as

1

y2 + 1
dy = 1√

1 − x2
dx,

and then integrate to obtain

tan−1 y = sin−1 x + C.

Thus,

y = tan(sin−1 x + C),

where C is an arbitrary constant. The initial condition y(0) = 0 allows us to determine the value of C.

0 = tan
(

sin−1 0 + C
)

= tan C so 0 = C.

Finally,

y = tan
(

sin−1 x
)

.

41. y′ = tan y, y(ln 2) = π

2
solution First, we find the general solution of the differential equation. Rewrite

dy

dx
= tan y as

dy

tan y
= dx,
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and then integrate to obtain

ln |sin y| = x + C.

Thus,

y = sin−1(Aex),

where A = ±eC is an arbitrary constant. The initial condition y(ln 2) = π
2 allows us to determine the value of A.

π

2
= sin−1(2A); 1 = 2A so A = 1

2
.

Finally,

y = sin−1
(

1

2
ex

)
.

42. y′ = y2 sin x, y(π) = 2

solution First, we find the general solution of the differential equation. Rewrite

dy

dx
= y2 sin x as y−2 dy = sin x dx,

and then integrate to obtain

−y−1 = − cos x + C.

Thus,

y = 1

A + cos x
,

where A = −C is an arbitrary constant. The initial condition y(π) = 2 allows us to determine the value of A.

2 = 1

A − 1
; A − 1 = 1

2
so A = 1

2
+ 1 = 3

2
.

Finally,

y = 1

cos x + (3/2)
= 2

3 + 2 cos x
.

43. Find all values of a such that y = xa is a solution of

y′′ − 12x−2y = 0

solution Let y = xa . Then

y′ = axa−1 and y′′ = a(a − 1)xa−2.

Substituting into the differential equation, we find

y′′ − 12x−2y = a(a − 1)xa−2 − 12xa−2 = xa−2(a2 − a − 12).

Thus, y′′ − 12x−2y = 0 if and only if

a2 − a − 12 = (a − 4)(a + 3) = 0.

Hence, y = xa is a solution of the differential equation y′′ − 12x−2y = 0 provided a = 4 or a = −3.

44. Find all values of a such that y = eax is a solution of

y′′ + 4y′ − 12y = 0

solution Let y = eax . Then

y′ = aeax and y′′ = a2eax .

Substituting into the differential equation, we find

y′′ + 4y′ − 12y = eax(a2 + 4a − 12).

Because eax is never zero, y′′ + 4y′ − 12y = 0 if only if a2 + 4a − 12 = (a + 6)(a − 2) = 0. Hence, y = eax is a
solution of the differential equation y′′ + 4y′ − 12y = 0 provided a = −6 or a = 2.
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In Exercises 45 and 46, let y(t) be a solution of (cos y + 1)
dy

dt
= 2t such that y(2) = 0.

45. Show that sin y + y = t2 + C. We cannot solve for y as a function of t , but, assuming that y(2) = 0, find the values
of t at which y(t) = π .

solution Rewrite

(cos y + 1)
dy

dt
= 2t as (cos y + 1) dy = 2t dt

and integrate to obtain

sin y + y = t2 + C

where C is an arbitrary constant. Since y(2) = 0, we have sin 0 + 0 = 4 + C so that C = −4 and the particular solution
we seek is sin y + y = t2 − 4. To find values of t at which y(t) = π , we must solve sin π + π = t2 − 4, or t2 − 4 = π ;
thus t = ±√

π + 4.

46. Assuming that y(6) = π/3, find an equation of the tangent line to the graph of y(t) at (6, π/3).

solution At (6, π/3), we have

(
cos

π

3
+ 1

) dy

dt
= 2(6) = 12 ⇒ 3

2
y′ = 12

and hence y′ = 8. The tangent line has equation

(y − π/3) = 8(x − 6)

In Exercises 47–52, use Eq. (4) and Torricelli’s Law [Eq. (5)].

47. Water leaks through a hole of area 0.002 m2 at the bottom of a cylindrical tank that is filled with water and has height
3 m and a base of area 10 m2. How long does it take (a) for half of the water to leak out and (b) for the tank to empty?

solution Because the tank has a constant cross-sectional area of 10 m2 and the hole has an area of 0.002 m2, the
differential equation for the height of the water in the tank is

dy

dt
= 0.002v

10
= 0.0002v.

By Torricelli’s Law,

v = −√
2gy = −√

19.6y,

using g = 9.8 m/s2. Thus,

dy

dt
= −0.0002

√
19.6y = −0.0002

√
19.6 · √

y.

Separating variables and then integrating yields

y−1/2 dy = −0.0002
√

19.6 dt

2y1/2 = −0.0002
√

19.6t + C

Solving for y, we find

y(t) =
(
C − 0.0001

√
19.6t

)2
.

Since the tank is originally full, we have the initial condition y(0) = 10, whence
√

10 = C. Therefore,

y(t) =
(√

10 − 0.0001
√

19.6t
)2

.

When half of the water is out of the tank, y = 1.5, so we solve:

1.5 =
(√

10 − 0.0001
√

19.6t
)2

for t , finding

t = 1

0.0002
√

19.6
(2

√
10 − √

6) ≈ 4376.44 sec.
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When all of the water is out of the tank, y = 0, so

√
10 − 0.0001

√
19.6t = 0 and t =

√
10

0.0001
√

19.6
≈ 7142.86 sec.

48. At t = 0, a conical tank of height 300 cm and top radius 100 cm [Figure 7(A)] is filled with water. Water leaks through
a hole in the bottom of area 3 cm2. Let y(t) be the water level at time t .

(a) Show that the tank’s cross-sectional area at height y is A(y) = π
9 y2.

(b) Find and solve the differential equation satisfied by y(t)

(c) How long does it take for the tank to empty?

(A)  Conical tank (B)  Horizontal tank

100 cm

300 cm

Hole Hole

15 m

Radius 4 m

y

y

FIGURE 7

solution

(a) By similar triangles, the radius r at height y satisfies

r

y
= 100

300
= 1

3
,

so r = y/3 and

A(y) = πr2 = π

9
y2.

(b) The area of the hole is B = 3 cm2, so the differential equation for the height of the water in the tank becomes:

dy

dt
= −3

√
19.6

√
y

A(y)
= −27

√
19.6

π
y−3/2.

Separating variables and integrating then yields

y3/2 dy = −27
√

19.6

π
dt

2

5
y5/2 = C − 27

√
19.6

π
t

When t = 0, y = 300, so we find C = 2
5 (300)5/2. Therefore,

y(t) =
(

3005/2 − 135
√

19.6

2π
t

)2/5

.

(c) The tank is empty when y = 0. Using the result from part (b), y = 0 when

t = 4000π
√

300

3
√

19.6
≈ 16,387.82 seconds.

Thus, it takes roughly 4 hours, 33 minutes for the tank to empty.
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49. The tank in Figure 7(B) is a cylinder of radius 4 m and height 15 m. Assume that the tank is half-filled with water
and that water leaks through a hole in the bottom of area B = 0.001 m2. Determine the water level y(t) and the time te
when the tank is empty.

solution When the water is at height y over the bottom, the top cross section is a rectangle with length 15 m, and with
width x satisfying the equation:

(x/2)2 + (y − 4)2 = 16.

Thus, x = 2
√

8y − y2, and

A(y) = 15x = 30
√

8y − y2.

With B = 0.001 m2 and v = −√
2gy = −√

19.6
√

y, it follows that

dy

dt
= −0.001

√
19.6

√
y

30
√

8y − y2
= −0.001

√
19.6

30
√

8 − y
.

Separating variables and integrating then yields:

√
8 − y dy = −0.001

√
19.6

30
dt = −0.0001

√
19.6

3
dt

−2

3
(8 − y)3/2 = −0.0001

√
19.6

3
t + C

When t = 0, y = 4, so C = − 2
3 43/2 = − 16

3 , and

−2

3
(8 − y)3/2 = −0.0001

√
19.6

3
t − 16

3

y(t) = 8 −
(

0.0001
√

19.6

2
t + 8

)2/3

.

The tank is empty when y = 0. Thus, te satisfies the equation

8 −
(

0.0001
√

19.6

2
t + 8

)2/3

= 0.

It follows that

te = 2(83/2 − 8)

0.0001
√

19.6
≈ 66,079.9 seconds.

50. Atank has the shape of the parabolay = x2, revolved around they-axis. Water leaks from a hole of areaB = 0.0005 m2

at the bottom of the tank. Let y(t) be the water level at time t . How long does it take for the tank to empty if it is initially
filled to height y0 = 1 m.

solution When the water is at height y, the surface of the water is a circle with radius
√

y, so the cross-sectional area

is A(y) = πy. With B = 0.0005 m and v = −√
2gy = −√

19.6
√

y, it follows that

dy

dt
= −0.0005

√
19.6

√
y

A(y)
= −0.0005

√
19.6

√
y

πy
= −0.0005

√
19.6

π
√

y

Separating variables and integrating yields

πy1/2 dy = −0.0005
√

19.6 dt

2

3
πy3/2 = −0.0005

√
19.6t + C

y3/2 = −0.00075
√

19.6

π
t + C

Since y(0) = 1, we have C = 1, so that

y =
(

1 − 0.00075
√

19.6

π
t

)2/3
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The tank is empty when y = 0, so when 1 − 0.00075
√

19.6
π t = 0 and thus

t = π

0.00075
√

19.6
≈ 946.15 s

51. A tank has the shape of the parabola y = ax2 (where a is a constant) revolved around the y-axis. Water drains from
a hole of area B m2 at the bottom of the tank.

(a) Show that the water level at time t is

y(t) =
(

y
3/2
0 − 3aB

√
2g

2π
t

)2/3

where y0 is the water level at time t = 0.
(b) Show that if the total volume of water in the tank has volume V at time t = 0, then y0 = √

2aV/π . Hint: Compute
the volume of the tank as a volume of rotation.
(c) Show that the tank is empty at time

te =
(

2

3B
√

g

) (
2πV 3

a

)1/4

We see that for fixed initial water volume V , the time te is proportional to a−1/4. A large value of a corresponds to a tall
thin tank. Such a tank drains more quickly than a short wide tank of the same initial volume.

solution
(a) When the water is at height y, the surface of the water is a circle of radius

√
y/a, so that the cross-sectional area is

A(y) = πy/a. With v = −√
2gy = −√

2g
√

y, we have

dy

dt
= −B

√
2g

√
y

A
= −aB

√
2g

√
y

πy
= −aB

√
2g

π
y−1/2

Separating variables and integrating gives

√
y dy = −aB

√
2g

π
dt

2

3
y3/2 = −aB

√
2g

π
t + C1

y3/2 = −3aB
√

2g

2π
t + C

Since y(0) = y0, we have C = y
3/2
0 ; solving for y gives

y =
(

y
3/2
0 − 3aB

√
2g

2π
t

)2/3

(b) The volume of the tank can be computed as a volume of rotation. Using the disk method and applying it to the function
x = √

y/a, we have

V =
∫ y0

0
π

√
y

a

2

dy = π

a

∫ y0

0
y dy = π

2a
y2

∣∣∣∣y0

0
= π

2a
y2

0

Solving for y0 gives

y0 = √
2aV/π

(c) The tank is empty when y = 0; this occurs when

y
3/2
0 − 3aB

√
2g

2π
t = 0

From part (b), we have

y
3/2
0 = √

2aV/π
3/2 = ((2aV/π)1/2)3/2 = (2aV/π)3/4

so that

te = 2πy
3/2
0

3aB
√

2g
= 2π

4√
8a3V 3

3π3/4B
4√
a4 4√4

√
g

= 2π1/4 4√
2V 3a−1

3B
√

g
=

(
2

3B
√

g

) (
2πV 3

a

)1/4
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52. A cylindrical tank filled with water has height h and a base of area A. Water leaks through a hole in the bottom
of area B.

(a) Show that the time required for the tank to empty is proportional to A
√

h/B.
(b) Show that the emptying time is proportional to V h−1/2, where V is the volume of the tank.
(c) Two tanks have the same volume and a hole of the same size, but they have different heights and bases. Which tank
empties first: the taller or the shorter tank?

solution Torricelli’s law gives the differential equation for the height of the water in the tank as

dy

dt
= −√

2g
B

√
y

A

Separating variables and integrating then yields:

y−1/2 dy = −√
2g

B

A
dt

2y1/2 = −√
2g

Bt

A
+ C

y1/2 = −√
g/2

Bt

A
+ C

When t = 0, y = h, so C = h1/2 and

y1/2 = √
h − √

g/2
Bt

A
.

(a) When the tank is empty, y = 0. Thus, the time required for the tank to empty, te, satisfies the equation

0 = √
h − √

g/2
Bte

A
.

It follows that

te = A

B

√
2h/g = √

2/g

(
A

√
h

B

)
;

that is, the time required for the tank to empty is proportional to A
√

h/B.
(b) The volume of the tank is V = Ah; therefore

A
√

h

B
= 1

B

V√
h

,

and

te = √
2/g

(
A

√
h

B

)
=

√
2/g

B

(
V√
h

)
;

that is, the time required for the tank to empty is proportional to V h−1/2.
(c) By part (b), with V and B held constant, the emptying time decreases with height. The taller tank therefore empties
first.

53. Figure 8 shows a circuit consisting of a resistor of R ohms, a capacitor of C farads, and a battery of voltage V . When
the circuit is completed, the amount of charge q(t) (in coulombs) on the plates of the capacitor varies according to the
differential equation (t in seconds)

R
dq

dt
+ 1

C
q = V

where R, C, and V are constants.

(a) Solve for q(t), assuming that q(0) = 0.
(b) Show that lim

t→∞ q(t) = CV .

(c) Show that the capacitor charges to approximately 63% of its final value CV after a time period of length τ = RC (τ
is called the time constant of the capacitor).

V C

R

FIGURE 8 An RC circuit.
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solution

(a) Upon rearranging the terms of the differential equation, we have

dq

dt
= −q − CV

RC
.

Separating the variables and integrating both sides, we obtain

dq

q − CV
= − dt

RC

∫
dq

q − CV
= −

∫
dt

RC

and

ln |q − CV | = − t

RC
+ k,

where k is an arbitrary constant. Solving for q(t) yields

q(t) = CV + Ke− 1
RC

t ,

where K = ±ek . We use the initial condition q(0) = 0 to solve for K:

0 = CV + K ⇒ K = −CV

so that the particular solution is

q(t) = CV (1 − e− 1
RC

t )

(b) Using the result from part (a), we calculate

lim
t→∞ q(t) = lim

t→∞ CV (1 − e− 1
RC

t ) = CV (1 − lim
t→∞ 1 − e− 1

RC
t ) = CV.

(c) We have

q(τ) = q(RC) = CV (1 − e− 1
RC

RC) = CV (1 − e−1) ≈ 0.632CV.

54. Assume in the circuit of Figure 8 that R = 200 �, C = 0.02 F, and V = 12 V. How many seconds does it take for
the charge on the capacitor plates to reach half of its limiting value?

solution From Exercise 53, we know that

q(t) = CV
(

1 − e−t/(RC)
)

= 0.24(1 − e−t/4),

and the limiting value of q(t) is CV = 0.24. If the charge on the capacitor plates has reached half its limiting value, then

0.24

2
= 0.24(1 − e−t/4)

1 − e−t/4 = 1/2

e−t/4 = 1/2

t = 4 ln 2

Therefore, the charge on the capacitor plates reaches half of its limiting value after 4 ln 2 ≈ 2.773 seconds.

55. According to one hypothesis, the growth rate dV/dt of a cell’s volume V is proportional to its surface area

A. Since V has cubic units such as cm3 and A has square units such as cm2, we may assume roughly that A ∝ V 2/3, and
hence dV/dt = kV 2/3 for some constant k. If this hypothesis is correct, which dependence of volume on time would we
expect to see (again, roughly speaking) in the laboratory?

(a) Linear (b) Quadratic (c) Cubic

solution Rewrite

dV

dt
= kV 2/3 as V −2/3 dv = k dt,
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and then integrate both sides to obtain

3V 1/3 = kt + C

V = (kt/3 + C)3.

Thus, we expect to see V increasing roughly like the cube of time.

56. We might also guess that the volume V of a melting snowball decreases at a rate proportional to its surface area.
Argue as in Exercise 55 to find a differential equation satisfied by V . Suppose the snowball has volume 1000 cm3 and
that it loses half of its volume after 5 min. According to this model, when will the snowball disappear?

solution Since the volume is decreasing, we write (as in Exercise 55) V ′ = −kV 2/3 where k is positive, so V (t) =
(C − kt/3)3. V (0) = 1000 implies that C = 10 so V (t) = (10 − kt/3)3. Since it loses half of its volume after 5 minutes,
we have V (5) = 1

2V (0), so that

(10 − 5k/3)3 = 500 so that k = 6 − 3 · 22/3 ≈ 1.2378

and finally the equation is

V (t) =
(

10 − 1.2378t

3

)3

The snowball is melted when its volume is zero, so when

10 − 1.2378t

3
= 0 ⇒ t = 30

1.2378
≈ 24.24 minutes

57. In general, (fg)′ is not equal to f ′g′, but let f (x) = e3x and find a function g(x) such that (fg)′ = f ′g′. Do the
same for f (x) = x.

solution If (fg)′ = f ′g′, we have

f ′(x)g(x) + g′(x)f (x) = f ′(x)g′(x)

g′(x)(f (x) − f ′(x)) = −g(x)f ′(x)

g′(x)

g(x)
= f ′(x)

f ′(x) − f (x)

Now, let f (x) = e3x . Then f ′(x) = 3e3x and

g′(x)

g(x)
= 3e3x

3e3x − e3x
= 3

2
.

Integrating and solving for g(x), we find

dg

g
= 3

2
dx

ln |g| = 3

2
x + C

g(x) = Ae(3/2)x ,

where A = ±eC is an arbitrary constant.
If f (x) = x, then f ′(x) = 1, and

g′(x)

g(x)
= 1

1 − x
.

Thus,

dg

g
= 1

1 − x
dx

ln |g| = − ln |1 − x| + C

g(x) = A

1 − x
,

where A = ±eC is an arbitrary constant.
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58. A boy standing at point B on a dock holds a rope of length � attached to a boat at point A [Figure 9(A)]. As the
boy walks along the dock, holding the rope taut, the boat moves along a curve called a tractrix (from the Latin tractus,
meaning “to pull”). The segment from a point P on the curve to the x-axis along the tangent line has constant length �.
Let y = f (x) be the equation of the tractrix.

(a) Show that y2 + (y/y′)2 = �2 and conclude y′ = − y√
�2 − y2

. Why must we choose the negative square root?

(b) Prove that the tractrix is the graph of

x = � ln

(
� +

√
�2 − y2

y

)
−

√
�2 − y2

x

A

B
Dock

�

�

x

A

f (x)

P = (x, f (x))

f (x)

f ' (x)

x

−

FIGURE 9

solution
(a) From the diagram on the right in Figure 9, we see that

f (x)2 +
(

− f (x)

f ′(x)

)2
= �2.

If we let y = f (x), this last equation reduces to y2 + (y/y′)2 = �2. Solving for y′, we find

y′ = − y√
�2 − y2

,

where we must choose the negative sign because y is a decreasing function of x.
(b) Rewrite

dy

dx
= − y√

�2 − y2
as

√
�2 − y2

y
dy = −dx,

and then integrate both sides to obtain

−x + C =
∫ √

�2 − y2

y
dy.

For the remaining integral, we use the trigonometric substitution y = � sin θ , dy = � cos θ dθ . Then

∫ √
�2 − y2

y
dy = �

∫
cos2 θ

sin θ
dθ = �

∫
1 − sin2 θ

sin θ
dθ = �

∫
(csc θ − sin θ) dθ

= � [ln | csc θ − cot θ | + cos θ ] + C = � ln

(
�

y
−

√
�2 − y2

y

)
+

√
�2 − y2 + C

Therefore,

x = −� ln

(
� −

√
�2 − y2

y

)
−

√
�2 − y2 + C = � ln

(
y

� −
√

�2 − y2

)
−

√
�2 − y2 + C

= � ln

(
� +

√
�2 − y2

y

)
−

√
�2 − y2 + C

Now, when x = 0, y = �, so we find C = 0. Finally, the equation for the tractrix is

x = � ln

(
� +

√
�2 − y2

y

)
−

√
�2 − y2.

59. Show that the differential equations y′ = 3y/x and y′ = −x/3y define orthogonal families of curves; that is, the
graphs of solutions to the first equation intersect the graphs of the solutions to the second equation in right angles (Figure
10). Find these curves explicitly.
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x

y

FIGURE 10 Two orthogonal families of curves.

solution Let y1 be a solution to y′ = 3y
x and let y2 be a solution to y′ = − x

3y
. Suppose these two curves intersect at

a point (x0, y0). The line tangent to the curve y1(x) at (x0, y0) has a slope of 3y0
x0

and the line tangent to the curve y2(x)

has a slope of − x0
3y0

. The slopes are negative reciprocals of one another; hence the tangent lines are perpendicular.

Separation of variables and integration applied to y′ = 3y
x gives

dy

y
= 3

dx

x

ln |y| = 3 ln |x| + C

y = Ax3

On the other hand, separation of variables and integration applied to y′ = − x
3y

gives

3y dy = −x dx

3y2/2 = −x2/2 + C

y = ±
√

C − x2/3

60. Find the family of curves satisfying y′ = x/y and sketch several members of the family. Then find the differential
equation for the orthogonal family (see Exercise 59), find its general solution, and add some members of this orthogonal
family to your plot.

solution Separation of variables and integration applied to y′ = x/y gives

y dy = x dx

1

2
y2 = 1

2
x2 + C

y = ±
√

x2 + C

If y(x) is a curve of the family orthogonal to these, it must have tangent lines of slope −y/x at every point (x, y). This
gives

y′ = −y/x

Separation of variables and integration give

dy

y
= −dx

x

ln |y| = − ln |x| + C

y = A

x

Several solution curves of both differential equations appear below:

–1 1

–1

"
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61. A 50-kg model rocket lifts off by expelling fuel at a rate of k = 4.75 kg/s for 10 s. The fuel leaves the end of the rocket
with an exhaust velocity of b = −100 m/s. Let m(t) be the mass of the rocket at time t . From the law of conservation of
momentum, we find the following differential equation for the rocket’s velocity v(t) (in meters per second):

m(t)v′(t) = −9.8m(t) + b
dm

dt

(a) Show that m(t) = 50 − 4.75t kg.
(b) Solve for v(t) and compute the rocket’s velocity at rocket burnout (after 10 s).

solution
(a) For 0 ≤ t ≤ 10, the rocket is expelling fuel at a constant rate of 4.75 kg/s, giving m′(t) = −4.75. Hence,
m(t) = −4.75t + C. Initially, the rocket has a mass of 50 kg, so C = 50. Therefore, m(t) = 50 − 4.75t .

(b) With m(t) = 50 − 4.75t and
dm

dt
= −4.75, the equation for v becomes

dv

dt
= −9.8 + b dm

dt

50 − 4.75t
= −9.8 + (100)(−4.75)

50 − 4.75t

and therefore

v(t) = −9.8t + 100
∫

4.75 dt

50 − 4.75t
= −9.8t − 100 ln(50 − 4.75t) + C

Because v(0) = 0, we find C = 100 ln 50 and

v(t) = −9.8t − 100 ln(50 − 4.75t) + 100 ln(50).

After 10 seconds the velocity is:

v(10) = −98 − 100 ln(2.5) + 100 ln(50) ≈ 201.573 m/s.

62. Let v(t) be the velocity of an object of mass m in free fall near the earth’s surface. If we assume that air resistance is
proportional to v2, then v satisfies the differential equation mdv

dt
= −g + kv2 for some constant k > 0.

(a) Set α = (g/k)1/2 and rewrite the differential equation as

dv

dt
= − k

m
(α2 − v2)

Then solve using separation of variables with initial condition v(0) = 0.
(b) Show that the terminal velocity lim

t→∞ v(t) is equal to −α.

solution

(a) Let α = (g/k)1/2. Then

dv

dt
= − g

m
+ k

m
v2 = − k

m

(g

k
− v2

)
= − k

m

(
α2 − v2

)
Separating variables and integrating yields∫

dv

α2 − v2
= − k

m

∫
dt = − k

m
t + C

We now use partial fraction decomposition for the remaining integral to obtain∫
dv

α2 − v2
= 1

2α

∫ ( 1

α + v
+ 1

α − v

)
dv = 1

2α
ln

∣∣∣α + v

α − v

∣∣∣
Therefore,

1

2α
ln

∣∣∣∣α + v

α − v

∣∣∣∣ = − k

m
t + C.

The initial condition v(0) = 0 allows us to determine the value of C:

1

2α
ln

∣∣∣∣α + 0

α − 0

∣∣∣∣ = − k

m
(0) + C

C = 1

2α
ln 1 = 0.

Finally, solving for v, we find

v(t) = −α

(
1 − e−2(

√
gk/m)t

1 + e−2(
√

gk/m)t

)
.
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(b) As t → ∞, e−2(
√

gk/m)t → 0, so

v(t) → −α

(
1 − 0

1 + 0

)
= −α.

63. If a bucket of water spins about a vertical axis with constant angular velocity ω (in radians per second), the water
climbs up the side of the bucket until it reaches an equilibrium position (Figure 11). Two forces act on a particle located
at a distance x from the vertical axis: the gravitational force −mg acting downward and the force of the bucket on the
particle (transmitted indirectly through the liquid) in the direction perpendicular to the surface of the water. These two
forces must combine to supply a centripetal force mω2x, and this occurs if the diagonal of the rectangle in Figure 11 is
normal to the water’s surface (that is, perpendicular to the tangent line). Prove that if y = f (x) is the equation of the
curve obtained by taking a vertical cross section through the axis, then −1/y′ = −g/(ω2x). Show that y = f (x) is a
parabola.

mg

m  2x

x
x

y

y = f (x)

FIGURE 11

solution At any point along the surface of the water, the slope of the tangent line is given by the value of y′ at that
point; hence, the slope of the line perpendicular to the surface of the water is given by −1/y′. The slope of the resultant
force generated by the gravitational force and the centrifugal force is

−mg

mω2x
= − g

ω2x
.

Therefore, the curve obtained by taking a vertical cross-section of the water surface is determined by the equation

− 1

y′ = − g

ω2x
or y′ = ω2

g
x.

Performing one integration yields

y = f (x) = ω2

2g
x2 + C,

where C is a constant of integration. Thus, y = f (x) is a parabola.

Further Insights and Challenges
64. In Section 6.2, we computed the volume V of a solid as the integral of cross-sectional area. Explain this
formula in terms of differential equations. Let V (y) be the volume of the solid up to height y, and let A(y) be the
cross-sectional area at height y as in Figure 12.
(a) Explain the following approximation for small 	y:

V (y + 	y) − V (y) ≈ A(y) 	y 8

(b) Use Eq. (8) to justify the differential equation dV /dy = A(y). Then derive the formula

V =
∫ b

a
A(y) dy

x

y

Volume of slice is
V(y + Δy) − V(y) ≈ A(y)Δy

Area of cross section
is A(y)y + Δy

y0 = a

y

b

FIGURE 12
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solution
(a) If 	y is very small, then the slice between y and y + 	y is very similar to the prism formed by thickening the
cross-sectional area A(y) by a thickness of 	y. A prism with cross-sectional area A and height 	y has volume A	y.
This gives

V (y + 	y) − V (y) ≈ A(y)	y.

(b) Dividing Eq. (8) by 	y, we obtain

V (y + 	y) − V (y)

	y
≈ A(y).

In the limit as 	y → 0, this becomes

dV

dy
= A(y).

Integrating this last equation yields

V =
∫ b

a
A(y) dy.

65. A basic theorem states that a linear differential equation of order n has a general solution that depends on n arbitrary
constants. There are, however, nonlinear exceptions.

(a) Show that (y′)2 + y2 = 0 is a first-order equation with only one solution y = 0.

(b) Show that (y′)2 + y2 + 1 = 0 is a first-order equation with no solutions.

solution

(a) (y′)2 + y2 ≥ 0 and equals zero if and only if y′ = 0 and y = 0

(b) (y′)2 + y2 + 1 ≥ 1 > 0 for all y′ and y, so (y′)2 + y2 + 1 = 0 has no solution

66. Show that y = Cerx is a solution of y′′ + ay′ + by = 0 if and only if r is a root of P(r) = r2 + ar + b. Then verify
directly that y = C1e3x + C2e−x is a solution of y′′ − 2y′ − 3y = 0 for any constants C1, C2.

solution

(a) Let y(x) = Cerx . Then y′ = rCerx , and y′′ = r2Cerx . Thus

y′′ + ay′ + by = r2Cerx + arCerx + bCerx = Cerx
(
r2 + ar + b

)
= CerxP (r).

Hence, Cerx is a solution of the differential equation y′′ + ay′ + by = 0 if and only if P(r) = 0.

(b) Let y(x) = C1e3x + C2e−x . Then

y′(x) = 3C1e3x − C2e−x

y′′(x) = 9C1e3x + C2e−x

and

y′′ − 2y′ − 3y = 9C1e3x + C2e−x − 6C1e3x + 2C2e−x − 3C1e3x − 3C2e−x

= (9 − 6 − 3) C1e3x + (1 + 2 − 3) C2e−x = 0.

67. A spherical tank of radius R is half-filled with water. Suppose that water leaks through a hole in the bottom of area
B. Let y(t) be the water level at time t (seconds).

(a) Show that
dy

dt
= −√

2gB
√

y

π(2Ry − y2)
.

(b) Show that for some constant C,

2π

15B
√

2g

(
10Ry3/2 − 3y5/2

)
= C − t

(c) Use the initial condition y(0) = R to compute C, and show that C = te, the time at which the tank is empty.

(d) Show that te is proportional to R5/2 and inversely proportional to B.

solution
(a) At height y above the bottom of the tank, the cross section is a circle of radius

r =
√

R2 − (R − y)2 =
√

2Ry − y2.
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The cross-sectional area function is then A(y) = π(2Ry − y2). The differential equation for the height of the water in
the tank is then

dy

dt
= −

√
2gB

√
y

π(2Ry − y2)

by Torricelli’s law.

(b) Rewrite the differential equation as

π√
2gB

(
2Ry1/2 − y3/2

)
dy = − dt,

and then integrate both sides to obtain

2π√
2gB

(
2

3
Ry3/2 − 1

5
y5/2

)
= C − t,

where C is an arbitrary constant. Simplifying gives

2π

15B
√

2g
(10Ry3/2 − 3y5/2) = C − t (*)

(c) From Equation (*) we see that y = 0 when t = C. It follows that C = te, the time at which the tank is empty.
Moreover, the initial condition y(0) = R allows us to determine the value of C:

2π

15B
√

2g
(10R5/2 − 3R5/2) = 14π

15B
√

2g
R5/2 = C

(d) From part (c),

te = 14π

15
√

2g
· R5/2

B
,

from which it is clear that te is proportional to R5/2 and inversely proportional to B.

9.2 Models Involving y′ = k( y − b)

Preliminary Questions
1. Write down a solution to y′ = 4(y − 5) that tends to −∞ as t → ∞.

solution The general solution is y(t) = 5 + Ce4t for any constant C; thus the solution tends to −∞ as t → ∞
whenever C < 0. One specific example is y(t) = 5 − e4t .

2. Does y′ = −4(y − 5) have a solution that tends to ∞ as t → ∞?

solution The general solution is y(t) = 5 + Ce−4t for any constant C. As t → ∞, y(t) → 5. Thus, there is no
solution of y′ = −4(y − 5) that tends to ∞ as t → ∞.

3. True or false? If k > 0, then all solutions of y′ = −k(y − b) approach the same limit as t → ∞.

solution True. The general solution of y′ = −k(y − b) is y(t) = b + Ce−kt for any constant C. If k > 0, then
y(t) → b as t → ∞.

4. As an object cools, its rate of cooling slows. Explain how this follows from Newton’s Law of Cooling.

solution Newton’s Law of Cooling states that y′ = −k(y − T0) where y(t) is the temperature and T0 is the ambient
temperature. Thus as y(t) gets closer to T0, y′(t), the rate of cooling, gets smaller and the rate of cooling slows.

Exercises
1. Find the general solution of y′ = 2(y − 10). Then find the two solutions satisfying y(0) = 25 and y(0) = 5, and

sketch their graphs.

solution The general solution of y′ = 2(y − 10) is y(t) = 10 + Ce2t for any constant C. If y(0) = 25, then

10 + C = 25, or C = 15; therefore, y(t) = 10 + 15e2t . On the other hand, if y(0) = 5, then 10 + C = 5, or C = −5;
therefore, y(t) = 10 − 5e2t . Graphs of these two functions are given below.
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2. Verify directly that y = 12 + Ce−3t satisfies y′ = −3(y − 12) for all C. Then find the two solutions satisfying
y(0) = 20 and y(0) = 0, and sketch their graphs.

solution The general solution of y′ = −3(y − 12) is y(t) = 12 + Ce−3t for any constant C. If y(0) = 20, then

12 + C = 20, or C = 8; therefore, y(t) = 12 + 8e−3t . On the other hand, if y(0) = 0, then 12 + C = 0, or C = −12;
therefore, y(t) = 12 − 12e−3t . Graphs of these two functions are given below.

0.5

5

10

15

20

y

x
1.0 1.5 2.0 2.5 3.0

y(t) = 12 + 8e−3t

y(t) = 12 − 12e−3t

3. Solve y′ = 4y + 24 subject to y(0) = 5.

solution Rewrite

y′ = 4y + 24 as
1

4y + 24
dy = 1 dt

Integrating gives

1

4
ln |4y + 24| = t + C

ln |4y + 24| = 4t + C

4y + 24 = ±e4t+C

y = Ae4t − 6

where A = ±eC/4 is any constant. Since y(0) = 5 we have 5 = A − 6 so that A = 11, and the solution is y = 11e4t − 6.

4. Solve y′ + 6y = 12 subject to y(2) = 10.

solution Rewrite

y′ + 6y = 12 as
dy

dt
= 12 − 6y and then as

1

12 − 6y
dy = 1 dt

Integrate both sides:

−1

6
ln |12 − 6y| = t + C

ln |12 − 6y| = −6t + C

12 − 6y = ±e−6t+C

y = Ae−6t + 2

where A = ±eC/6 is any constant. Since y(2) = 10 we have 10 = Ae−12 + 2 so that A = 8e12, and the solution is
y = 8e12−6t + 2.

In Exercises 5–12, use Newton’s Law of Cooling.

5. A hot anvil with cooling constant k = 0.02 s−1 is submerged in a large pool of water whose temperature is 10◦C.
Let y(t) be the anvil’s temperature t seconds later.

(a) What is the differential equation satisfied by y(t)?
(b) Find a formula for y(t), assuming the object’s initial temperature is 100◦C.
(c) How long does it take the object to cool down to 20◦?
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solution

(a) By Newton’s Law of Cooling, the differential equation is

y′ = −0.02(y − 10)

(b) Separating variables gives

1

y − 10
dy = −0.02 dt

Integrate to get

ln |y − 10| = −0.02t + C

y − 10 = ±e−0.02t+C

y = 10 + Ae−0.02t

where A = ±eC is a constant. Since the initial temperature is 100◦C, we have y(0) = 100 = 10 + A so that A = 90,
and y = 10 + 90e−0.02t .

(c) We must find the value of t such that y(t) = 20, so we need to solve 20 = 10 + 90e−0.02t . Thus

10 = 90e−0.02t ⇒ 1

9
= e−0.02t ⇒ − ln 9 = −0.02t ⇒ t = 50 ln 9 ≈ 109.86 s

6. Frank’s automobile engine runs at 100◦C. On a day when the outside temperature is 21◦C, he turns off the ignition
and notes that five minutes later, the engine has cooled to 70◦C.

(a) Determine the engine’s cooling constant k.

(b) What is the formula for y(t)?

(c) When will the engine cool to 40◦C?

solution

(a) The differential equation is

y′ = −k(y − 21)

Rewriting gives
1

y − 21
dy = −k dt . Integrate to get

ln |y − 21| = −kt + C

y − 21 = ±eC−kt

y = 21 + Ae−kt

where A = ±eC is a constant. The initial temperature is 100◦C, so y(0) = 100. Thus 100 = 21 + A and A = 79, so that
y = 21 + 79e−kt . The second piece of information tells us that y(5) = 70 = 21 + 79e−5k . Solving for k gives

k = −1

5
ln

49

79
≈ 0.0955

(b) From part (b), the equation is y = 21 + 79e−0.0955t .

(c) The engine has cooled to 40◦C when y(t) = 40; solving gives

40 = 21 + 79e−0.0955t ⇒ e−0.0955t = 19

79
⇒ t = − 1

0.0955
ln

19

79
≈ 14.92 m

7. At 10:30 am, detectives discover a dead body in a room and measure its temperature at 26◦C. One hour later, the
body’s temperature had dropped to 24.8◦C. Determine the time of death (when the body temperature was a normal 37◦C),
assuming that the temperature in the room was held constant at 20◦C.

solution Let t = 0 be the time when the person died, and let t0 denote 10:30am. The differential equation satisfied
by the body temperature, y(t), is

y′ = −k(y − 20)
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by Newton’s Law of Cooling. Separating variables gives
1

y − 20
dy = −k dt . Integrate to get

ln |y − 20| = −kt + C

y − 20 = ±e−kt+C

y = 20 + Ae−kt

where A = ±eC is a constant. Since normal body temperature is 37◦C, we have y(0) = 37 = 20 + A so that A = 17.
To determine k, note that

26 = 20 + 17e−kt0 and 24.8 = 20 + 17e−k(t0+1)

kt0 = − ln
6

17
kt0 + k = − ln

4.8

17

Subtracting these equations gives

k = ln
6

17
− ln

4.8

17
= ln

6

4.8
≈ 0.223

We thus have

y = 20 + 17e−0.223t

as the equation for the body temperature at time t . Since y(t0) = 26, we have

26 = 20 + 17e−0.223t ⇒ e−0.223t = 6

17
⇒ t = − 1

0.223
ln

6

17
≈ 4.667 h

so that the time of death was approximately 4 hours and 40 minutes ago.

8. A cup of coffee with cooling constant k = 0.09 min−1 is placed in a room at temperature 20◦C.

(a) How fast is the coffee cooling (in degrees per minute) when its temperature is T = 80◦C?

(b) Use the Linear Approximation to estimate the change in temperature over the next 6 s when T = 80◦C.

(c) If the coffee is served at 90◦C, how long will it take to reach an optimal drinking temperature of 65◦C?

solution

(a) According to Newton’s Law of Cooling, the coffee will cool at the rate k(T − T0), where k is the cooling constant
of the coffee, T is the current temperature of the coffee and T0 is the temperature of the surroundings. With k = 0.09
min−1, T = 80◦C and T0 = 20◦C, the coffee is cooling at the rate

0.09(80 − 20) = 5.4◦C/min.

(b) Using the result from part (a) and the Linear Approximation, we estimate that the coffee will cool

(5.4◦C/min)(0.1 min) = 0.54◦C

over the next 6 seconds.

(c) With T0 = 20◦C and an initial temperature of 90◦C, the temperature of the coffee at any time t is T (t) = 20 +
70e−0.09t . Solving 20 + 70e−0.09t = 65 for t yields

t = − 1

0.09
ln

(
45

70

)
≈ 4.91 minutes.

9. A cold metal bar at −30◦C is submerged in a pool maintained at a temperature of 40◦C. Half a minute later, the
temperature of the bar is 20◦C. How long will it take for the bar to attain a temperature of 30◦C?

solution With T0 = 40◦C, the temperature of the bar is given by F(t) = 40 + Ce−kt for some constants C and k.

From the initial condition, F(0) = 40 + C = −30, so C = −70. After 30 seconds, F(30) = 40 − 70e−30k = 20, so

k = − 1

30
ln

(
20

70

)
≈ 0.0418 seconds−1.

To attain a temperature of 30◦C we must solve 40 − 70e−0.0418t = 30 for t . This yields

t =
ln

(
10
70

)
−0.0418

≈ 46.55 seconds.
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10. When a hot object is placed in a water bath whose temperature is 25◦C, it cools from 100◦C to 50◦C in 150 s. In
another bath, the same cooling occurs in 120 s. Find the temperature of the second bath.

solution With T0 = 25◦C, the temperature of the object is given by F(t) = 25 + Ce−kt for some constants C and

k. From the initial condition, F(0) = 25 + C = 100, so C = 75. After 150 seconds, F(150) = 25 + 75e−150k = 50, so

k = − 1

150
ln

(
25

75

)
≈ 0.0073 seconds−1.

If we place the same object with a temperature of 100◦C into a second bath whose temperature is T0, then the temperature
of the object is given by

F(t) = T0 + (100 − T0)e−0.0073t .

To cool from 100◦C to 50◦C in 120 seconds, T0 must satisfy

T0 + (100 − T0)e−0.0073(120) = 50.

Thus, T0 = 14.32◦C.

11. Objects A and B are placed in a warm bath at temperature T0 = 40◦C. Object A has initial temperature

−20◦C and cooling constant k = 0.004 s−1. Object B has initial temperature 0◦C and cooling constant k = 0.002 s−1.
Plot the temperatures of A and B for 0 ≤ t ≤ 1000. After how many seconds will the objects have the same temperature?

solution With T0 = 40◦C, the temperature of A and B are given by

A(t) = 40 + CAe−0.004t B(t) = 40 + CBe−0.002t

Since A(0) = −20 and B(0) = 0, we have

A(t) = 40 − 60e−0.004t B(t) = 40 − 40e−0.002t

The two objects will have the same temperature whenever A(t) = B(t), so we must solve

40 − 60e−0.004t = 40 − 40e−0.002t ⇒ 3e−0.004t = 2e−0.002t

Take logs to get

−0.004t + ln 3 = −0.002t + ln 2 ⇒ t = ln 3 − ln 2

0.002
≈ 202.7 s

or about 3 minutes 22 seconds.

−20

−10

0
100 200 300

40 − 40e−0.002t

40 − 60e−0.004t

400

10

20

y

t

12. In Newton’s Law of Cooling, the constant τ = 1/k is called the “characteristic time.” Show that τ is the time
required for the temperature difference (y − T0) to decrease by the factor e−1 ≈ 0.37. For example, if y(0) = 100◦C
and T0 = 0◦C, then the object cools to 100/e ≈ 37◦C in time τ , to 100/e2 ≈ 13.5◦C in time 2τ , and so on.

solution If y′ = −k(y − T0), then y(t) = T0 + Ce−kt . But then

y(t + τ) − T0

y(t) − T0
= Ce−k(t+τ)

Ce−kt
= e−kτ = e−k·1/k = e−1

Thus after time τ starting from any time t , the temperature difference will have decreased by a factor of e−1.
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In Exercises 13–16, use Eq. (3) as a model for free-fall with air resistance.

13. A 60-kg skydiver jumps out of an airplane. What is her terminal velocity, in meters per second, assuming that
k = 10 kg/s for free-fall (no parachute)?

solution The free-fall terminal velocity is

−gm

k
= −9.8(60)

10
= −58.8 m/s.

14. Find the terminal velocity of a skydiver of weight w = 192 lb if k = 1.2 lb-s/ft. How long does it take him to reach
half of his terminal velocity if his initial velocity is zero? Mass and weight are related by w = mg, and Eq. (3) becomes
v′ = −(kg/w)(v + w/k) with g = 32 ft/s2.

solution The skydiver’s velocity v(t) satisfies the differential equation

v′ = −kg

w

(
v + w

k

)
,

where

kg

w
= (1.2)(32)

192
= 0.2 sec−1 and

w

k
= 192

1.2
= 160 ft/sec.

The general solution to this equation is v(t) = −160 + Ce−0.2t , for some constant C. From the initial condition v(0) = 0,
we find 0 = −160 + C, or C = 160. Therefore,

v(t) = −160 + 160e−0.2t = −160(1 − e−0.2t ).

Now, the terminal velocity of the skydiver is

lim
t→∞ v(t) = lim

t→∞ −160(1 − e−0.2t ) = −160 ft/sec.

To determine how long it takes for the skydiver to reach half this terminal velocity, we must solve the equation v(t) = −80
for t :

−160(1 − e−0.2t ) = −80

1 − e−0.2t = 1

2

e−0.2t = 1

2

t = − 1

0.2
ln

1

2
≈ 3.47 sec.

15. A80-kg skydiver jumps out of an airplane (with zero initial velocity).Assume that k = 12 kg/s with a closed parachute
and k = 70 kg/s with an open parachute. What is the skydiver’s velocity at t = 25 s if the parachute opens after 20 s of
free fall?

solution We first compute the skydiver’s velocity after 20 s of free fall, then use that as the initial velocity to calculate
her velocity after an additional 5 s of restrained fall. We have m = 80 and g = 9.8; for free fall, k = 12, so

k

m
= 12

80
= 0.15,

−mg

k
= −80 · 9.8

12
≈ −65.33

The general solution is thus v(t) = −65.33 + Ce−0.15t . Since v(0) = 0, we have C = 65.33, so that

v(t) = −65.33(1 − e−0.15t )

After 20 s of free fall, the diver’s velocity is thus

v(20) = −65.33(1 − e−0.15·20) ≈ −62.08 m/s

Once the parachute opens, k = 70, so

k

m
= 70

80
= 0.875,

mg

k
= 80 · 9.8

70
= 11.2

so that the general solution for the restrained fall model is vr (t) = −11.2 + Ce−0.875t . Here vr (0) = −62.08, so that
C = 11.2 − 62.08 = −50.88 and vr (t) = −11.20 − 50.88e−0.875t . After 5 additional seconds, the diver’s velocity is
therefore

vr (5) = −11.20 − 50.88e−0.875·5 ≈ −11.84 m/s
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16. Does a heavier or a lighter skydiver reach terminal velocity faster?

solution The velocity of a skydiver is

v(t) = −gm

k
+ Ce−kt/m.

As m decreases, the fraction −k/m becomes more negative and e−(k/m)t approaches zero more rapidly. Thus, a lighter
skydiver approaches terminal velocity faster.

17. A continuous annuity with withdrawal rate N = $5000/year and interest rate r = 5% is funded by an initial deposit
of P0 = $50,000.

(a) What is the balance in the annuity after 10 years?

(b) When will the annuity run out of funds?

solution

(a) From Equation , the value of the annuity is given by

P(t) = 5000

0.05
+ Ce0.05t = 100,000 + Ce0.05t

for some constant C. Since P(0) = 50,000, we have C = −50,000 and P(t) = 100,000 − 50,000e0.05t . After ten years,
then, the balance in the annuity is

P(10) = 100,000 − 50,000e0.05·10 = 100,000 − 50,000e0.5 ≈ $17,563.94

(b) The annuity will run out of funds when P(t) = 0:

0 = 100,000 − 50,000e0.05t ⇒ e0.05t = 2 ⇒ t = ln 2

0.05
≈ 13.86

The annuity will run out of funds after approximately 13 years 10 months.

18. Show that a continuous annuity with withdrawal rate N = $5000/year and interest rate r = 8%, funded by an initial
deposit of P0 = $75,000, never runs out of money.

solution Let P(t) denote the balance of the annuity at time t measured in years. Then

P(t) = N

r
+ Cert = 5000

0.08
+ Ce0.08t = 62500 + Ce0.08t

for some constant C. If P0 = 75,000, then 75,000 = 62,500 + C and C = 12,500. Thus, P(t) = 62,500 + 12,500e0.08t .
As t → ∞, P(t) → ∞, so the annuity lives forever. Note the annuity will live forever for any P0 ≥ $62,500.

19. Find the minimum initial deposit P0 that will allow an annuity to pay out $6000/year indefinitely if it earns interest
at a rate of 5%.

solution Let P(t) denote the balance of the annuity at time t measured in years. Then

P(t) = N

r
+ Cert = 6000

0.05
+ Ce0.05t = 120,000 + Ce0.05t

for some constant C. To fund the annuity indefinitely, we must have C ≥ 0. If the initial deposit is P0, then P0 =
120,000 + C and C = P0 − 120,000. Thus, to fund the annuity indefinitely, we must have P0 ≥ $120,000.

20. Find the minimum initial deposit P0 necessary to fund an annuity for 20 years if withdrawals are made at a rate of
$10,000/year and interest is earned at a rate of 7%.

solution Let P(t) denote the balance of the annuity at time t measured in years. Then

P(t) = N

r
+ Cert = 10,000

0.07
+ Ce0.07t = 142,857.14 + Ce0.07t

for some constant C. If the initial deposit is P0, then P0 = 142,857.14 + C and C = 142,857.14 − P0. To fund the
annuity for 20 years, we need

P(20) = 142,857.14 + (P0 − 142,857.14)e0.07(20) ≥ 0.

Hence,

P0 ≥ 142,857.14(1 − e−1.4) = $107,629.00.
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21. An initial deposit of 100,000 euros are placed in an annuity with a French bank. What is the minimum interest rate
the annuity must earn to allow withdrawals at a rate of 8000 euros/year to continue indefinitely?

solution Let P(t) denote the balance of the annuity at time t measured in years. Then

P(t) = N

r
+ Cert = 8000

r
+ Cert

for some constant C. To fund the annuity indefinitely, we need C ≥ 0. If the initial deposit is 100,000 euros, then
100,000 = 8000

r + C and C = 100,000 − 8000
r . Thus, to fund the annuity indefinitely, we need 100,000 − 8000

r ≥ 0, or
r ≥ 0.08. The bank must pay at least 8%.

22. Show that a continuous annuity never runs out of money if the initial balance is greater than or equal to N/r , where
N is the withdrawal rate and r the interest rate.

solution With a withdrawal rate of N and an interest rate of r , the balance in the annuity is P(t) = N
r + Cert for

some constant C. Let P0 denote the initial balance. Then P0 = P(0) = N
r + C and C = P0 − N

r . If P0 ≥ N
r , then

C ≥ 0 and the annuity lives forever.

23. Sam borrows $10,000 from a bank at an interest rate of 9% and pays back the loan continuously at a rate of
N dollars per year. Let P(t) denote the amount still owed at time t .

(a) Explain why P(t) satisfies the differential equation

y′ = 0.09y − N

(b) How long will it take Sam to pay back the loan if N = $1200?

(c) Will the loan ever be paid back if N = $800?

solution

(a)

Rate of Change of Loan = (Amount still owed)(Interest rate) − (Payback rate)

= P(t) · r − N = r

(
P − N

r

)
.

Therefore, if y = P(t),

y′ = r

(
y − N

r

)
= ry − N

(b) From the differential equation derived in part (a), we know that P(t) = N
r + Cert = 13,333.33 + Ce0.09t . Since

$10,000 was initially borrowed, P(0) = 13,333.33 + C = 10,000, and C = −3333.33. The loan is paid off when
P(t) = 13,333.33 − 3333.33e0.09t = 0. This yields

t = 1

0.09
ln

(
13,333.33

3333.33

)
≈ 15.4 years.

(c) If the annual rate of payment is $800, then P(t) = 800/0.09 + Ce0.09t = 8888.89 + Ce0.09t . With P(0) =
8888.89 + C = 10,000, it follows that C = 1111.11. Since C > 0 and e0.09t → ∞ as t → ∞, P (t) → ∞, and the
loan will never be paid back.

24. April borrows $18,000 at an interest rate of 5% to purchase a new automobile. At what rate (in dollars per year) must
she pay back the loan, if the loan must be paid off in 5 years? Hint: Set up the differential equation as in Exercise 23).

solution As in Exercise 23, the differential equation is

P(t)′ = rP (t) − N = r

(
P(t) − N

r

)

where r is the interest rate and N is the payment amount, so that here

P(t)′ = 0.05

(
P(t) − N

0.05

)
⇒ P(t) = N

0.05
+ Ce0.05t

Since P(0) = 18,000, we have C = 18,000 − N
0.05 , so that

P(t) = N

0.05
+

(
18,000 − N

0.05

)
e0.05t



April 2, 2011

S E C T I O N 9.2 Models Involving y′ = k( y − b) 1137

If the loan is to be paid back in 5 years, we must have

P(5) = 0 = N

0.05
+

(
18,000 − N

0.05

)
e0.05·5

Solving for N gives

N = 900

1 − e−0.25
≈ 4068.73

so the payments must be at least $4068.73 per year.

25. Let N(t) be the fraction of the population who have heard a given piece of news t hours after its initial release.
According to one model, the rate N ′(t) at which the news spreads is equal to k times the fraction of the population that
has not yet heard the news, for some constant k > 0.

(a) Determine the differential equation satisfied by N(t).
(b) Find the solution of this differential equation with the initial condition N(0) = 0 in terms of k.
(c) Suppose that half of the population is aware of an earthquake 8 hours after it occurs. Use the model to calculate k

and estimate the percentage that will know about the earthquake 12 hours after it occurs.

solution
(a) N ′(t) = k(1 − N(t)) = −k(N(t) − 1).
(b) The general solution of the differential equation from part (a) is N(t) = 1 + Ce−kt . The initial condition determines
the value of C: N(0) = 1 + C = 0 so C = −1. Thus, N(t) = 1 − e−kt .
(c) Knowing that N(8) = 1 − e−8k = 1

2 , we find that

k = −1

8
ln

(
1

2

)
≈ 0.0866 hours−1.

With the value of k determined, we estimate that

N(12) = 1 − e−0.0866(12) ≈ 0.6463 = 64.63%

of the population will know about the earthquake after 12 hours.

26. Current in a Circuit When the circuit in Figure 6 (which consists of a battery of V volts, a resistor of R ohms,
and an inductor of L henries) is connected, the current I (t) flowing in the circuit satisfies

L
dI

dt
+ RI = V

with the initial condition I (0) = 0.

(a) Find a formula for I (t) in terms of L, V , and R.
(b) Show that lim

t→∞ I (t) = V/R.

(c) Show that I (t) reaches approximately 63% of its maximum value at the “characteristic time” τ = L/R.

Inductor

ResistorBattery RV

L

FIGURE 6 Current flow approaches the level Imax = V/R.

solution

(a) Solve the differential equation for dI
dt

:

dI

dt
= − 1

L
(RI − V ) = −R

L

(
I − V

R

)

so that the general solution is

I (t) = V

R
+ Ce−(R/L)t

The initial condition I (0) = 0 gives C = −V
R

, so that

I (t) = V

R
(1 − e−(R/L)t )
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(b) As t → ∞, e−(R/L)t → 0, so that I (t) → V
R

.

(c) When t = τ = L/R,

I (τ ) = V

R
(1 − e−(R/L)τ ) = V

R
(1 − e−(R/L)(L/R)) = V

R
(1 − e−1) ≈ 0.63

V

R

which is 63% of the maximum value of V/R.

Further Insights and Challenges
27. Show that the cooling constant of an object can be determined from two temperature readings y(t1) and y(t2) at times
t1 �= t2 by the formula

k = 1

t1 − t2
ln

(
y(t2) − T0

y(t1) − T0

)

solution We know that y(t1) = T0 + Ce−kt1 and y(t2) = T0 + Ce−kt2 . Thus, y(t1) − T0 = Ce−kt1 and y(t2) − T0 =
Ce−kt2 . Dividing the latter equation by the former yields

e−kt2+kt1 = y(t2) − T0

y(t1) − T0
,

so that

k(t1 − t2) = ln

(
y(t2) − T0

y(t1) − T0

)
and k = 1

t1 − t2
ln

(
y(t2) − T0

y(t1) − T0

)
.

28. Show that by Newton’s Law of Cooling, the time required to cool an object from temperature A to temperature B is

t = 1

k
ln

(
A − T0

B − T0

)

where T0 is the ambient temperature.

solution At any time t , the temperature of the object is y(t) = T0 + Ce−kt for some constant C. Suppose the object
is initially at temperature A and reaches temperature B at time t . Then A = T0 + C, so C = A − T0. Moreover,

B = T0 + Ce−kt = T0 + (A − T0)e−kt .

Solving this last equation for t yields

t = 1

k
ln

(
A − T0

B − T0

)
.

29. Air Resistance A projectile of mass m = 1 travels straight up from ground level with initial velocity v0. Suppose
that the velocity v satisfies v′ = −g − kv.

(a) Find a formula for v(t).

(b) Show that the projectile’s height h(t) is given by

h(t) = C(1 − e−kt ) − g

k
t

where C = k−2(g + kv0).

(c) Show that the projectile reaches its maximum height at time tmax = k−1 ln(1 + kv0/g).

(d) In the absence of air resistance, the maximum height is reached at time t = v0/g. In view of this, explain why we
should expect that

lim
k→0

ln(1 + kv0
g )

k
= v0

g
8

(e) Verify Eq. (8). Hint: Use Theorem 2 in Section 5.8 to show that lim
k→0

(
1 + kv0

g

)1/k

= ev0/g or use L’Hôpital’s Rule.

solution

(a) Since v′ = −g − kv = −k

(
v − −g

k

)
it follows that v(t) = −g

k
+ Be−kt for some constant B. The initial condition

v(0) = v0 determines B: v0 = − g
k

+ B, so B = v0 + g
k

. Thus,

v(t) = −g

k
+

(
v0 + g

k

)
e−kt .



April 2, 2011

S E C T I O N 9.3 Graphical and Numerical Methods 1139

(b) v(t) = h′(t) so

h(t) =
∫ (

−g

k
+

(
v0 + g

k

)
e−kt

)
dt = −g

k
t − 1

k

(
v0 + g

k

)
e−kt + D.

The initial condition h(0) = 0 determines

D = 1

k

(
v0 + g

k

)
= 1

k2
(v0k + g).

Let C = 1
k2 (v0k + g). Then

h(t) = C(1 − e−kt ) − g

k
t.

(c) The projectile reaches its maximum height when v(t) = 0. This occurs when

−g

k
+

(
v0 + g

k

)
e−kt = 0,

or

t = 1

−k
ln

(
g

kv0 + g

)
= 1

k
ln

(
1 + kv0

g

)
.

(d) Recall that k is the proportionality constant for the force due to air resistance. Thus, as k → 0, the effect of air
resistance disappears. We should therefore expect that, as k → 0, the time at which the maximum height is achieved from
part (c) should approach v0/g. In other words, we should expect

lim
k→0

1

k
ln

(
1 + kv0

g

)
= v0

g
.

(e) Recall that

ex = lim
n→∞

(
1 + x

n

)n
.

If we substitute x = v0/g and k = 1/n, we find

ev0/g = lim
k→0

(
1 + v0k

g

)1/k

.

Then

lim
k→0

1

k
ln

(
1 + kv0

g

)
= lim

k→0
ln

(
1 + v0k

g

)1/k

= ln

(
lim
k→0

(
1 + v0k

g

)1/k
)

= ln(ev0/g) = v0

g
.

9.3 Graphical and Numerical Methods

Preliminary Questions
1. What is the slope of the segment in the slope field for ·

y = ty + 1 at the point (2, 3)?

solution The slope of the segment in the slope field for ·
y = ty + 1 at the point (2, 3) is (2)(3) + 1 = 7.

2. What is the equation of the isocline of slope c = 1 for ·
y = y2 − t?

solution The isocline of slope c = 1 has equation y2 − t = 1, or y = ±√
1 + t .

3. For which of the following differential equations are the slopes at points on a vertical line t = C all equal?

(a) ·
y = ln y (b) ·

y = ln t

solution Only for the equation in part (b). The slope at a point is simply the value of ẏ at that point, so for part (a),
the slope depends on y, while for part (b), the slope depends only on t .

4. Let y(t) be the solution to ·
y = F(t, y) with y(1) = 3. How many iterations of Euler’s Method are required to

approximate y(3) if the time step is h = 0.1?

solution The initial condition is specified at t = 1 and we want to obtain an approximation to the value of the solution
at t = 3. With a time step of h = 0.1,

3 − 1

0.1
= 20

iterations of Euler’s method are required.
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Exercises
1. Figure 8 shows the slope field for ·

y = sin y sin t . Sketch the graphs of the solutions with initial conditions y(0) = 1
and y(0) = −1. Show that y(t) = 0 is a solution and add its graph to the plot.

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

FIGURE 8 Slope field for ·
y = sin y sin t .

solution The sketches of the solutions appear below.

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

If y(t) = 0, then y′ = 0; moreover, sin 0 sin t = 0. Thus, y(t) = 0 is a solution of ·
y = sin y sin t .

2. Figure 9 shows the slope field for ·
y = y2 − t2 . Sketch the integral curve passing through the point (0, −1), the

curve through (0, 0), and the curve through (0, 2). Is y(t) = 0 a solution?

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

FIGURE 9 Slope field for ·
y = y2 − t2.

solution The sketches of the solutions appear below.

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

Let y(t) = 0. Because ·
y = 0 but y2 − t2 = −t2 �= 0, it follows that y(t) = 0 is not a solution of ·

y = y2 − t2.

3. Show that f (t) = 1
2

(
t − 1

2

)
is a solution to ·

y = t − 2y. Sketch the four solutions with y(0) = ±0.5, ±1 on the slope
field in Figure 10. The slope field suggests that every solution approaches f (t) as t → ∞. Confirm this by showing that
y = f (t) + Ce−2t is the general solution.

t

−1 −0.5 210.5 1.50
−1

−0.5

0

0.5

1
y

y = (t − )1
2

1
2

FIGURE 10 Slope field for ·
y = t − 2y.
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solution Let y = f (t) = 1
2 (t − 1

2 ). Then ·
y = 1

2 and

·
y + 2y = 1

2
+ t − 1

2
= t,

so f (t) = 1
2 (t − 1

2 ) is a solution to ·
y = t − 2y. The slope field with the four required solutions is shown below.

0 1−1 2

0

1

−1

y

t

Now, let y = f (t) + Ce−2t = 1
2 (t − 1

2 ) + Ce−2t . Then

·
y = 1

2
− 2Ce−2t ,

and

·
y + 2y = 1

2
− 2Ce−2t +

(
t − 1

2

)
+ 2Ce−2t = t.

Thus, y = f (t) + Ce−2t is the general solution to the equation ·
y = t − 2y.

4. One of the slope fields in Figures 11(A) and (B) is the slope field for ·
y = t2. The other is for ·

y = y2. Identify which
is which. In each case, sketch the solutions with initial conditions y(0) = 1, y(0) = 0, and y(0) = −1.

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

FIGURE 11(A)

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

FIGURE 11(B)

solution For y′ = t2, y′ only depends on t . The isoclines of any slope c will be the two vertical lines t = ±√
c. This

indicates that the slope field will be the one given in Figure 11(A). The solutions are sketched below:

0 21
−2

−1

−2 −1

t0

1

2
y

For y′ = y2, y′ only depends on y. The isoclines of any slope c will be the two horizontal lines y = ±√
c. This indicates

that the slope field will be the one given in Figure 11(B). The solutions are sketched below:

0 21
−2

−1

−2 −1

t0

1

2
y
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5. Consider the differential equation ·
y = t − y.

(a) Sketch the slope field of the differential equation ·
y = t − y in the range −1 ≤ t ≤ 3, −1 ≤ y ≤ 3. As an aid, observe

that the isocline of slope c is the line t − y = c, so the segments have slope c at points on the line y = t − c.

(b) Show that y = t − 1 + Ce−t is a solution for all C. Since lim
t→∞ e−t = 0, these solutions approach the particular

solution y = t − 1 as t → ∞. Explain how this behavior is reflected in your slope field.

solution

(a) Here is a sketch of the slope field:

0 3
−1

−1 1 2

t0

1

2

3
y

(b) Let y = t − 1 + Ce−t . Then ·
y = 1 − C−t , and

t − y = t − (t − 1 + Ce−t ) = 1 − Ce−t .

Thus, y = t − 1 + Ce−t is a solution of ·
y = t − y. On the slope field, we can see that the isoclines of 1 all lie along

the line y = t − 1. Whenever y > t − 1, ·
y = t − y < 1, so the solution curve will converge downward towards the

line y = t − 1. On the other hand, if y < t − 1, ·
y = t − y > 1, so the solution curve will converge upward towards

y = t − 1. In either case, the solution is approaching t − 1.

6. Show that the isoclines of ·
y = 1/y are horizontal lines. Sketch the slope field for −2 ≤ t ≤ 2, −2 ≤ y ≤ 2 and plot

the solutions with initial conditions y(0) = 0 and y(0) = 1.

solution The isocline of slope c is defined by 1
y = c. This is equivalent to y = 1

c , which is a horizontal line. The
slope field and the solutions are shown below.

−1 0 1 2 3
−3

−1

−2

0

1

2

3
y

t

7. Show that the isoclines of ·
y = t are vertical lines. Sketch the slope field for −2 ≤ t ≤ 2, −2 ≤ y ≤ 2 and plot the

integral curves passing through (0, −1) and (0, 1).

solution The isocline of slope c for the differential equation ·
y = t has equation t = c, which is the equation of a

vertical line. The slope field and the required solution curves are shown below.

2
−2

−1

−2 −1 0 1

t

2

1

0

y
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8. Sketch the slope field of ·
y = ty for −2 ≤ t ≤ 2, −2 ≤ y ≤ 2. Based on the sketch, determine lim

t→∞ y(t), where y(t)

is a solution with y(0) > 0. What is lim
t→∞ y(t) if y(0) < 0?

solution The slope field for ·
y = ty is shown below.

0 21
−2

−1

−2 −1

t0

1

2
y

With y(0) > 0, the slope field indicates that y is an always increasing, always concave up function; consequently,
limt→∞ y = ∞. On the other hand, when y(0) < 0, the slope field indicates that y is an always decreasing, always
concave down function; consequently, limt→∞ y = −∞.

9. Match each differential equation with its slope field in Figures 12(A)–(F).

(i) ·
y = −1

(ii) ·
y = y

t

(iii) ·
y = t2y

(iv) ·
y = ty2

(v) ·
y = t2 + y2

(vi) ·
y = t

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

FIGURE 12(A)

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3

y

FIGURE 12(B)

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

FIGURE 12(C)

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

FIGURE 12(D)

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

FIGURE 12(E)

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

FIGURE 12(F)

solution
(i) Every segment in the slope field for ·

y = −1 will have slope −1; this matches Figure 12(C).

(ii) The segments in the slope field for ·
y = y

t
will have positive slope in the first and third quadrants and negative slopes

in the second and fourth quadrant; this matches Figure 12(B).
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(iii) The segments in the slope field for ·
y = t2y will have positive slope in the upper half of the plane and negative slopes

in the lower half of the plane; this matches Figure 12(F).
(iv) The segments in the slope field for ·

y = ty2 will have positive slope on the right side of the plane and negative slopes
on the left side of the plane; this matches Figure 12(D).
(v) Every segment in the slope field for ·

y = t2 + y2, except at the origin, will have positive slope; this matches
Figure 12(A).
(vi) The isoclines for ·

y = t are vertical lines; this matches Figure 12(E).

10. Sketch the solution of ·
y = ty2 satisfying y(0) = 1 in the appropriate slope field of Figure 12(A)–(F). Then show,

using separation of variables, that if y(t) is a solution such that y(0) > 0, then y(t) tends to infinity as t → √
2/y(0).

solution Rewrite

·
y = ty2 as

1

y2
dy = t dt

Integrate both sides: ∫
1

y2
dy =

∫
t dt

−y−1 = 1

2
t2 + C1

−y = 2

t2 + C

y = 2

C − t2

where C = −C1 is an arbitrary constant. Then y(0) = 2/C so that C = 2/y(0), and then the denominator of y approaches
0 as t → √

2/y(0), so that y tends to infinity.

11. (a) Sketch the slope field of ·
y = t/y in the region −2 ≤ t ≤ 2, −2 ≤ y ≤ 2.

(b) Check that y = ±
√

t2 + C is the general solution.
(c) Sketch the solutions on the slope field with initial conditions y(0) = 1 and y(0) = −1.

solution
(a) The slope field is shown below:

2
−2

−1

−2 −1 0 1

t

2

1

0

y

(b) Rewrite

dy

dt
= t

y
as y dy = t dt,

and then integrate both sides to obtain

1

2
y2 = 1

2
t2 + C.

Solving for y, we find that the general solution is

y = ±
√

t2 + C.

(c) The sketches of the two solutions are shown below:

2
−2

−1

−2 −1 0 1

t

2

1

0

y
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12. Sketch the slope field of ·
y = t2 − y in the region −3 ≤ t ≤ 3, −3 ≤ y ≤ 3 and sketch the solutions satisfying

y(1) = 0, y(1) = 1, and y(1) = −1.

solution The slope field for ·
y = t2 − y, together with the required solution curves, is shown below.

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

13. Let F(t, y) = t2 − y and let y(t) be the solution of ·
y = F(t, y) satisfying y(2) = 3. Let h = 0.1 be the time step in

Euler’s Method, and set y0 = y(2) = 3.

(a) Calculate y1 = y0 + hF(2, 3).
(b) Calculate y2 = y1 + hF(2.1, y1).
(c) Calculate y3 = y2 + hF(2.2, y2) and continue computing y4, y5, and y6.
(d) Find approximations to y(2.2) and y(2.5).

solution

(a) With y0 = 3, t0 = 2, h = 0.1, and F(t, y) = t2 − y, we find

y1 = y0 + hF(t0, y0) = 3 + 0.1(1) = 3.1.

(b) With y1 = 3.1, t1 = 2.1, h = 0.1, and F(t, y) = t2 − y, we find

y2 = y1 + hF(t1, y1) = 3.1 + 0.1(4.41 − 3.1) = 3.231.

(c) Continuing as in the previous two parts, we find

y3 = y2 + hF(t2, y2) = 3.3919;
y4 = y3 + hF(t3, y3) = 3.58171;
y5 = y4 + hF(t4, y4) = 3.799539;
y6 = y5 + hF(t5, y5) = 4.0445851.

(d) y(2.2) ≈ y2 = 3.231, and y(2.5) ≈ y5 = 3.799539.

14. Let y(t) be the solution to ·
y = te−y satisfying y(0) = 0.

(a) Use Euler’s Method with time step h = 0.1 to approximate y(0.1), y(0.2), . . . , y(0.5).
(b) Use separation of variables to find y(t) exactly.
(c) Compute the errors in the approximations to y(0.1) and y(0.5).

solution
(a) With y0 = 0, t0 = 0, h = 0.1, and F(t, y) = te−y , we compute

n tn yn

0 0 0

1 0.1 y0 + hF(t0, y0) = 0

2 0.2 y1 + hF(t1, y1) = 0.01

3 0.3 y2 + hF(t2, y2) = 0.029801

4 0.4 y3 + hF(t3, y3) = 0.058920

5 0.5 y4 + hF(t4, y4) = 0.096631

6 0.6 y5 + hF(t5, y5) = 0.142026

7 0.7 y6 + hF(t6, y6) = 0.194082

8 0.8 y7 + hF(t7, y7) = 0.251733

9 0.9 y8 + hF(t8, y8) = 0.313929

10 1.0 y9 + hF(t9, y9) = 0.379681
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(b) Rewrite

dy

dt
= te−y as ey dy = t dt,

and then integrate both sides to obtain

ey = 1

2
t2 + C.

Thus,

y = ln

∣∣∣∣1

2
t2 + C

∣∣∣∣ .
Applying the initial condition y(0) = 0 yields 0 = ln |C|, so C = 1. The exact solution to the initial value problem is

then y = ln
(

1
2 t2 + 1

)
.

(c) The two errors requested are computed here:

|y(0.1) − y1| = |0.00498754 − 0| = 0.00498754;
|y(0.5) − y5| = |0.117783 − 0.0966314| = 0.021152

In Exercises 15–20, use Euler’s Method to approximate the given value of y(t) with the time step h indicated.

15. y(0.5); ·
y = y + t , y(0) = 1, h = 0.1

solution With y0 = 1, t0 = 0, h = 0.1, and F(t, y) = y + t , we compute

n tn yn

0 0 1

1 0.1 y0 + hF(t0, y0) = 1.1

2 0.2 y1 + hF(t1, y1) = 1.22

3 0.3 y2 + hF(t2, y2) = 1.362

4 0.4 y3 + hF(t3, y3) = 1.5282

5 0.5 y4 + hF(t4, y4) = 1.72102

16. y(0.7); ·
y = 2y, y(0) = 3, h = 0.1

solution With y0 = 3, t0 = 0, h = 0.1, and F(t, y) = 2y, we compute

n tn yn

0 0 3

1 0.1 y0 + hF(t0, y0) = 3.6

2 0.2 y1 + hF(t1, y1) = 4.32

3 0.3 y2 + hF(t2, y2) = 5.184

4 0.4 y3 + hF(t3, y3) = 6.2208

5 0.5 y4 + hF(t4, y4) = 7.464960

6 0.6 y5 + hF(t5, y5) = 8.957952

7 0.7 y6 + hF(t6, y6) = 10.749542
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17. y(3.3); ·
y = t2 − y, y(3) = 1, h = 0.05

solution With y0 = 1, t0 = 3, h = 0.05, and F(t, y) = t2 − y, we compute

n tn yn

0 3 1

1 3.05 y0 + hF(t0, y0) = 1.4

2 3.1 y1 + hF(t1, y1) = 1.795125

3 3.15 y2 + hF(t2, y2) = 2.185869

4 3.2 y3 + hF(t3, y3) = 2.572700

5 3.25 y4 + hF(t4, y4) = 2.956065

6 3.3 y5 + hF(t5, y5) = 3.336387

18. y(3); ·
y = √

t + y, y(2.7) = 5, h = 0.05

solution With y0 = 5, t0 = 2.7, h = 0.05, and F(t, y) = √
t + y, we compute

n tn yn

0 2.7 5

1 2.75 y0 + hF(t0, y0) = 5.138744

2 2.8 y1 + hF(t1, y1) = 5.279179

3 2.85 y2 + hF(t2, y2) = 5.421298

4 2.9 y3 + hF(t3, y3) = 5.565098

5 2.95 y4 + hF(t4, y4) = 5.710572

6 3.0 y5 + hF(t5, y5) = 5.857716

19. y(2); ·
y = t sin y, y(1) = 2, h = 0.2

solution Let F(t, y) = t sin y. With t0 = 1, y0 = 2 and h = 0.2, we compute

n tn yn

0 1 2

1 1.2 y0 + hF(t0, y0) = 2.181859

2 1.4 y1 + hF(t1, y1) = 2.378429

3 1.6 y2 + hF(t2, y2) = 2.571968

4 1.8 y3 + hF(t3, y3) = 2.744549

5 2.0 y4 + hF(t4, y4) = 2.883759

20. y(5.2); ·
y = t − sec y, y(4) = −2, h = 0.2

solution With t0 = 4, y0 = −2, F (t, y) = t − sec y, and h = 0.2, we compute

n tn yn

0 4 -2

1 4.2 y0 + hF(t0, y0) = −0.7194

2 4.4 y1 + hF(t1, y1) = −0.142587

3 4.6 y2 + hF(t2, y2) = 0.532584

4 4.8 y3 + hF(t3, y3) = 1.220430

5 5.0 y4 + hF(t4, y4) = 1.597751

6 5.2 y5 + hF(t5, y5) = 10.018619

Note that sec y has a discontinuity at y = π/2 ≈ 1.57 and at y = 3π/2 ≈ 4.71, so this numerical solution should be
regarded with some skepticism.
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Further Insights and Challenges
21. If f (t) is continuous on [a, b], then the solution to ·

y = f (t) with initial condition y(a) = 0 is y(t) = ∫ t
a f (u) du.

Show that Euler’s Method with time step h = (b − a)/N for N steps yields the N th left-endpoint approximation to
y(b) = ∫ b

a f (u) du.

solution For a differential equation of the form ·
y = f (t), the equation for Euler’s method reduces to

yk = yk−1 + hf (tk−1).

With a step size of h = (b − a)/N , y(b) =≈ yN . Starting from y0 = 0, we compute

y1 = y0 + hf (t0) = hf (t0)

y2 = y1 + hf (t1) = h [f (t0) + f (t1)]

y3 = y2 + hf (t2) = h [f (t0) + f (t1) + f (t2)]

...

yN = yN1 + hf (tN−1) = h
[
f (t0) + f (t1) + f (t2) + . . . + f (tN−1)

] = h

N−1∑
k=0

f (tk)

Observe this last expression is exactly the N th left-endpoint approximation to y(b) =
∫ b

a
f (u) du.

Exercises 22–27: Euler’s Midpoint Method is a variation on Euler’s Method that is significantly more accurate in general.
For time step h and initial value y0 = y(t0), the values yk are defined successively by

yk = yk−1 + hmk−1

where mk−1 = F

(
tk−1 + h

2
, yk−1 + h

2
F(tk−1, yk−1)

)
.

22. Apply both Euler’s Method and the Euler Midpoint Method with h = 0.1 to estimate y(1.5), where y(t) satisfies·
y = y with y(0) = 1. Find y(t) exactly and compute the errors in these two approximations.

solution Let F(t, y) = y. With t0 = 0, y0 = 1, and h = 0.1, fifteen iterations of Euler’s method yield

y(1.5) ≈ y15 = 4.177248.

The Euler midpoint approximation with F(t, y) = y is

mk−1 = F

(
tk−1 + h

2
, yk−1 + h

2
F(tk−1, yk−1)

)
= yk−1 + h

2
yk−1

yk = yk−1 + h

(
yk−1 + h

2
yk−1

)
= yk−1 + hyk−1 + h2

2
yk−1

Fifteen iterations of Euler’s midpoint method yield:

y(1.5) ≈ y15 = 4.471304.

The exact solution to y′ = y, y(0) = 1 is y(t) = et ; therefore y(1.5) = 4.481689. The error from Euler’s method is
|4.177248 − 4.481689| = 0.304441, while the error from Euler’s midpoint method is |4.471304 − 4.481689| = 0.010385.

In Exercises 23–26, use Euler’s Midpoint Method with the time step indicated to approximate the given value of y(t).

23. y(0.5); ·
y = y + t , y(0) = 1, h = 0.1

solution With t0 = 0, y0 = 1, F(t, y) = y + t , and h = 0.1 we compute

n tn yn

0 0 1

1 0.1 y0 + hF(t0 + h/2, y0 + (h/2)F (t0, y0)) = 1.11

2 0.2 y1 + hF(t1 + h/2, y1 + (h/2)F (t1, y1)) = 1.242050

3 0.3 y2 + hF(t2 + h/2, y2 + (h/2)F (t2, y2)) = 1.398465

4 0.4 y3 + hF(t3 + h/2, y3 + (h/2)F (t3, y3)) = 1.581804

5 0.5 y4 + hF(t4 + h/2, y4 + (h/2)F (t4, y4)) = 1.794894
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24. y(2); ·
y = t2 − y, y(1) = 3, h = 0.2

solution With t0 = 1, y0 = 3, F(t, y) = t2 − y, and h = 0.2 we compute

n tn yn

0 1 3

1 1.2 y0 + hF(t0 + h/2, y0 + (h/2)F (t0, y0)) = 2.682

2 1.4 y1 + hF(t1 + h/2, y1 + (h/2)F (t1, y1)) = 2.50844

3 1.6 y2 + hF(t2 + h/2, y2 + (h/2)F (t2, y2)) = 2.467721

4 1.8 y3 + hF(t3 + h/2, y3 + (h/2)F (t3, y3)) = 2.550331

5 2.0 y4 + hF(t4 + h/2, y4 + (h/2)F (t4, y4)) = 2.748471

25. y(0.25); ·
y = cos(y + t), y(0) = 1, h = 0.05

solution With t0 = 0, y0 = 1, F(t, y) = cos(y + t), and h = 0.05 we compute

n tn yn

0 0 1

1 0.05 y0 + hF(t0 + h/2, y0 + (h/2)F (t0, y0)) = 1.025375

2 0.10 y1 + hF(t1 + h/2, y1 + (h/2)F (t1, y1)) = 1.047507

3 0.15 y2 + hF(t2 + h/2, y2 + (h/2)F (t2, y2)) = 1.066425

4 0.20 y3 + hF(t3 + h/2, y3 + (h/2)F (t3, y3)) = 1.082186

5 0.25 y4 + hF(t4 + h/2, y4 + (h/2)F (t4, y4)) = 1.094871

26. y(2.3); ·
y = y + t2, y(2) = 1, h = 0.05

solution With t0 = 2, y0 = 1, F(t, y) = y + t2, and h = 0.05 we compute

n tn yn

0 2.00 1

1 2.05 y0 + hF(t0 + h/2, y0 + (h/2)F (t0, y0)) = 1.261281

2 2.10 y1 + hF(t1 + h/2, y1 + (h/2)F (t1, y1)) = 1.546456

3 2.15 y2 + hF(t2 + h/2, y2 + (h/2)F (t2, y2)) = 1.857006

4 2.20 y3 + hF(t3 + h/2, y3 + (h/2)F (t3, y3)) = 2.194487

5 2.25 y4 + hF(t4 + h/2, y4 + (h/2)F (t4, y4)) = 2.560536

6 2.30 y5 + hF(t5 + h/2, y5 + (h/2)F (t5, y5)) = 2.956872

27. Assume that f (t) is continuous on [a, b]. Show that Euler’s Midpoint Method applied to ·
y = f (t) with initial

condition y(a) = 0 and time step h = (b − a)/N for N steps yields the N th midpoint approximation to

y(b) =
∫ b

a
f (u) du

solution For a differential equation of the form ·
y = f (t), the equations for Euler’s midpoint method reduce to

mk−1 = f

(
tk−1 + h

2

)
and yk = yk−1 + hf

(
tk−1 + h

2

)
.

With a step size of h = (b − a)/N , y(b) =≈ yN . Starting from y0 = 0, we compute

y1 = y0 + hf

(
t0 + h

2

)
= hf

(
t0 + h

2

)

y2 = y1 + hf

(
t1 + h

2

)
= h

[
f

(
t0 + h

2

)
+ f

(
t1 + h

2

)]
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y3 = y2 + hf

(
t2 + h

2

)
= h

[
f

(
t0 + h

2

)
+ f

(
t1 + h

2

)
+ f

(
t2 + h

2

)]

...

yN = yN1 + hf

(
tN−1 + h

2

)
= h

[
f

(
t0 + h

2

)
+ f

(
t1 + h

2

)
+ f

(
t2 + h

2

)
+ . . . + f

(
tN−1 + h

2

)]

= h

N−1∑
k=0

f

(
tk + h

2

)

Observe this last expression is exactly the N th midpoint approximation to y(b) =
∫ b

a
f (u) du.

9.4 The Logistic Equation

Preliminary Questions
1. Which of the following differential equations is a logistic differential equation?

(a) ·
y = 2y(1 − y2) (b) ·

y = 2y
(

1 − y

3

)
(c) ·

y = 2y

(
1 − t

4

)
(d) ·

y = 2y(1 − 3y)

solution The differential equations in (b) and (d) are logistic equations. The equation in (a) is not a logistic equation

because of the y2 term inside the parentheses on the right-hand side; the equation in (c) is not a logistic equation because
of the presence of the independent variable on the right-hand side.

2. Is the logistic equation a linear differential equation?

solution No, the logistic equation is not linear.

·
y = ky

(
1 − y

A

)
can be rewritten ·

y = ky − k

A
y2

and we see that a term involving y2 occurs.

3. Is the logistic equation separable?

solution Yes, the logistic equation is a separable differential equation.

Exercises
1. Find the general solution of the logistic equation

·
y = 3y

(
1 − y

5

)
Then find the particular solution satisfying y(0) = 2.

solution ·
y = 3y(1 − y/5) is a logistic equation with k = 3 and A = 5; therefore, the general solution is

y = 5

1 − e−3t /C
.

The initial condition y(0) = 2 allows us to determine the value of C:

2 = 5

1 − 1/C
; 1 − 1

C
= 5

2
; so C = −2

3
.

The particular solution is then

y = 5

1 + 3
2 e−3t

= 10

2 + 3e−3t
.

2. Find the solution of ·
y = 2y(3 − y), y(0) = 10.

solution By rewriting

2y(3 − y) as 6y
(

1 − y

3

)
,
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we identify the given differential equation as a logistic equation with k = 6 and A = 3. The general solution is therefore

y = 3

1 − e−6t /C
.

The initial condition y(0) = 10 allows us to determine the value of C:

10 = 3

1 − 1/C
; 1 − 1

C
= 3

10
; so C = 10

7
.

The particular solution is then

y = 3

1 − 7
10 e−6t

= 30

10 − 7e−6t
.

3. Let y(t) be a solution of ·
y = 0.5y(1 − 0.5y) such that y(0) = 4. Determine lim

t→∞ y(t) without finding y(t) explicitly.

solution This is a logistic equation with k = 1

2
and A = 2, so the carrying capacity is 2. Thus the required limit is 2.

4. Let y(t) be a solution of ·
y = 5y(1 − y/5). State whether y(t) is increasing, decreasing, or constant in the following

cases:

(a) y(0) = 2 (b) y(0) = 5 (c) y(0) = 8

solution This is a logistic equation with k = A = 5.

(a) 0 < y(0) < A, so y(t) is increasing and approaches A asymptotically.

(b) y(0) = A; this represents a stable equilibrium and y(t) is constant.

(c) y(0) > A, so y(t) is decreasing and approaches A asymptotically.

5. A population of squirrels lives in a forest with a carrying capacity of 2000. Assume logistic growth with growth
constant k = 0.6 yr−1.

(a) Find a formula for the squirrel population P(t), assuming an initial population of 500 squirrels.

(b) How long will it take for the squirrel population to double?

solution

(a) Since k = 0.6 and the carrying capacity is A = 2000, the population P(t) of the squirrels satisfies the differential
equation

P ′(t) = 0.6P(t)(1 − P(t)/2000),

with general solution

P(t) = 2000

1 − e−0.6t /C
.

The initial condition P(0) = 500 allows us to determine the value of C:

500 = 2000

1 − 1/C
; 1 − 1

C
= 4; so C = −1

3
.

The formula for the population is then

P(t) = 2000

1 + 3e−0.6t
.

(b) The squirrel population will have doubled at the time t where P(t) = 1000. This gives

1000 = 2000

1 + 3e−0.6t
; 1 + 3e−0.6t = 2; so t = 5

3
ln 3 ≈ 1.83.

It therefore takes approximately 1.83 years for the squirrel population to double.

6. The population P(t) of mosquito larvae growing in a tree hole increases according to the logistic equation with
growth constant k = 0.3 day−1 and carrying capacity A = 500.

(a) Find a formula for the larvae population P(t), assuming an initial population of P0 = 50 larvae.

(b) After how many days will the larvae population reach 200?
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solution

(a) Since k = 0.3 and A = 500, the population of the larvae satisfies the differential equation

P ′(t) = 0.3P(t)(1 − P(t)/500),

with general solution

P(t) = 500

1 − e−0.3t /C
.

The initial condition P(0) = 50 allows us to determine the value of C:

50 = 500

1 − 1/C
; 1 − 1

C
= 10; so C = −1

9
.

The particular solution is then

P(t) = 500

1 + 9e−0.3t
.

(b) The population will reach 200 after t days, where P(t) = 200. This gives

200 = 500

1 + 9e−0.3t
; 1 + 9e−0.3t = 2.5; so t = 10

3
ln 6 ≈ 5.97.

It therefore takes approximately 5.97 days for the larvae to reach 200 in number.

7. Sunset Lake is stocked with 2000 rainbow trout, and after 1 year the population has grown to 4500. Assuming logistic
growth with a carrying capacity of 20,000, find the growth constant k (specify the units) and determine when the population
will increase to 10,000.

solution Since A = 20,000, the trout population P(t) satisfies the logistic equation

P ′(t) = kP (t)(1 − P(t)/20,000),

with general solution

P(t) = 20,000

1 − e−kt /C
.

The initial condition P(0) = 2000 allows us to determine the value of C:

2000 = 20,000

1 − 1/C
; 1 − 1

C
= 10; so C = −1

9
.

After one year, we know the population has grown to 4500. Let’s measure time in years. Then

4500 = 20,000

1 + 9e−k

1 + 9e−k = 40

9

e−k = 31

81

k = ln
81

31
≈ 0.9605 years−1.

The population will increase to 10,000 at time t where P(t) = 10,000. This gives

10,000 = 20,000

1 + 9e−0.9605t

1 + 9e−0.9605t = 2

e−0.9605t = 1

9

t = 1

0.9605
ln 9 ≈ 2.29 years.
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8. Spread of a Rumor A rumor spreads through a small town. Let y(t) be the fraction of the population that has heard
the rumor at time t and assume that the rate at which the rumor spreads is proportional to the product of the fraction y of
the population that has heard the rumor and the fraction 1 − y that has not yet heard the rumor.

(a) Write down the differential equation satisfied by y in terms of a proportionality factor k.

(b) Find k (in units of day−1), assuming that 10% of the population knows the rumor at t = 0 and 40% knows it at t = 2
days.

(c) Using the assumptions of part (b), determine when 75% of the population will know the rumor.

solution

(a) y′(t) is the rate at which the rumor is spreading, in percentage of the population per day. By the description given,
the rate satisfies:

y′(t) = ky(1 − y),

where k is a constant of proportionality.

(b) The equation in part (a) is a logistic equation with constant k and capacity 1 (no more than 100% of the population
can hear the rumor). Thus, y takes the form

y(t) = 1

1 − e−kt /C
.

The initial condition y(0) = 1
10 allows us to determine the value of C:

1

10
= 1

1 − 1/C
; 1 − 1

C
= 10; so C = −1

9
.

The condition y(2) = 2
5 now allows us to determine the value of k:

2

5
= 1

1 + 9e−2k
; 1 + 9e−2k = 5

2
; so k = 1

2
ln 6 ≈ 0.896 days−1.

The particular solution of the differential equation for y is then

y(t) = 1

1 + 9e−0.896t
.

(c) If 75% of the population knows the rumor at time t , we have

3

4
= 1

1 + 9e−0.896t

1 + 9e−0.896t = 4

3

t = ln 27

0.896
≈ 3.67839

Thus, 75% of the population knows the rumor after approximately 3.67 days.

9. A rumor spreads through a school with 1000 students. At 8 am, 80 students have heard the rumor, and by noon, half
the school has heard it. Using the logistic model of Exercise 8, determine when 90% of the students will have heard the
rumor.

solution Let y(t) be the proportion of students that have heard the rumor at a time t hours after 8 am. In the logistic
model of Exercise 8, we have a capacity of A = 1 (100% of students) and an unknown growth factor of k. Hence,

y(t) = 1

1 − e−kt /C
.

The initial condition y(0) = 0.08 allows us to determine the value of C:

2

25
= 1

1 − 1/C
; 1 − 1

C
= 25

2
; so C = − 2

23
.

so that

y(t) = 2

2 + 23e−kt
.
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The condition y(4) = 0.5 now allows us to determine the value of k:

1

2
= 2

2 + 23e−4k
; 2 + 23e−4k = 4; so k = 1

4
ln

23

2
≈ 0.6106 hours−1.

90% of the students have heard the rumor when y(t) = 0.9. Thus

9

10
= 2

2 + 23e−0.6106t

2 + 23e−0.6106t = 20

9

t = 1

0.6106
ln

207

2
≈ 7.6 hours.

Thus, 90% of the students have heard the rumor after 7.6 hours, or at 3:36 pm.

10. A simpler model for the spread of a rumor assumes that the rate at which the rumor spreads is proportional
(with factor k) to the fraction of the population that has not yet heard the rumor.

(a) Compute the solutions to this model and the model of Exercise 8 with the values k = 0.9 and y0 = 0.1.

(b) Graph the two solutions on the same axis.

(c) Which model seems more realistic? Why?

solution

(a) Let y(t) denote the fraction of a population that has heard a rumor, and suppose the rumor spreads at a rate proportional
to the fraction of the population that has not yet heard the rumor. Then

y′ = k(1 − y),

for some constant of proportionality k. Separating variables and integrating both sides yields

dy

1 − y
= k dt

− ln |1 − y| = kt + C.

Thus,

y(t) = 1 − Ae−kt ,

where A = ±e−C is an arbitrary constant. The initial condition y(0) = 0.1 allows us to determine the value of A:

0.1 = 1 − A so A = 0.9.

With k = 0.9, we have y(t) = 1 − 0.9e−0.9t .
Using the model from Exercise 8 with k = 0.9 and y(0) = 0.1, we find

y(t) = 1

1 + 9e−0.9t
.

(b) The figure below shows the solutions from part (a): the solid curve corresponds to the model presented in this exercise
while the dashed curve corresponds to the model from Exercise 8.

2 4 6 8

0.2

0.4

0.6

0.8

1

(c) The model from Exercise 8 seems more realistic because it predicts the rumor starts spreading slowly, picks up speed
and then levels off as we near the time when the entire population has heard the rumor.

11. Let k = 1 and A = 1 in the logistic equation.

(a) Find the solutions satisfying y1(0) = 10 and y2(0) = −1.

(b) Find the time t when y1(t) = 5.

(c) When does y2(t) become infinite?
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solution The general solution of the logistic equation with k = 1 and A = 1 is

y(t) = 1

1 − e−t /C
.

(a) Given y1(0) = 10, we find C = 10
9 , and

y1(t) = 1

1 − 10
9 e−t

= 10

10 − 9e−t
.

On the other hand, given y2(0) = −1, we find C = 1
2 , and

y2(t) = 1

1 − 2e−t
.

(b) From part (a), we have

y1(t) = 10

10 − 9e−t
.

Thus, y1(t) = 5 when

5 = 10

10 − 9e−t
; 10 − 9e−t = 2; so t = ln

9

8
.

(c) From part (a), we have

y2(t) = 1

1 − 2e−t
.

Thus, y2(t) becomes infinite when

1 − 2e−t = 0 or t = ln 2.

12. A tissue culture grows until it has a maximum area of M cm2. The area A(t) of the culture at time t may be modeled
by the differential equation

·
A = k

√
A

(
1 − A

M

)
7

where k is a growth constant.

(a) Show that if we set A = u2, then

·
u = 1

2
k

(
1 − u2

M

)

Then find the general solution using separation of variables.
(b) Show that the general solution to Eq. (7) is

A(t) = M

(
Ce(k/

√
M)t − 1

Ce(k/
√

M)t + 1

)2

solution

(a) Let A = u2. This gives
·
A = 2u

·
u, so that Eq. (7) becomes:

2u
·
u = ku

(
1 − u2

M

)

·
u = k

2

(
1 − u2

M

)

Now, rewrite

du

dt
= k

2

(
1 − u2

M

)
as

du

1 − u2/M
= 1

2k dt.

The partial fraction decomposition for the term on the left-hand side is

1

1 − u2/M
=

√
M

2

( 1√
M + u

+ 1√
M − u

)
,
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so after integrating both sides, we obtain

√
M

2
ln

∣∣∣∣∣
√

M + u√
M − u

∣∣∣∣∣ = 1
2kt + C.

Thus,

√
M + u√
M − u

= Ce(k/
√

M)t

u(Ce(k/
√

M)t + 1) = √
M(Ce(k/

√
M)t − 1)

and

u = √
M

Ce(k/
√

M)t − 1

Ce(k/
√

M)t + 1
.

(b) Recall A = u2. Therefore,

A(t) = M

(
Ce(k/

√
M)t − 1

Ce(k/
√

M)t + 1

)2

.

13. In the model of Exercise 12, let A(t) be the area at time t (hours) of a growing tissue culture with initial size

A(0) = 1 cm2, assuming that the maximum area is M = 16 cm2 and the growth constant is k = 0.1.

(a) Find a formula for A(t). Note: The initial condition is satisfied for two values of the constant C. Choose the value of
C for which A(t) is increasing.

(b) Determine the area of the culture at t = 10 hours.

(c) Graph the solution using a graphing utility.

solution

(a) From the values for M and k we have

A(t) = 16

(
Cet/40 − 1

Cet/40 + 1

)2

and the initial condition then gives us

A(0) = 1 = 16

(
Ce0/40 − 1

Ce0/40 + 1

)2

so, simplifying,

1 = 16

(
C − 1

C + 1

)2
⇒ C2 + 2C + 1 = 16C2 − 32C + 16 ⇒ 15C2 − 34C + 15 = 0

and thus C = 5

3
or C = 3

5
. The derivative of A(t) is

A′(t) = 16Cet/40

(Cet/40 + 1)3
· (Cet/40 − 1)

For C = 3/5, A′(t) can be negative, while for C = 5/3, it is always positive. So let C = 5/3.

(b) From part (a), we have

A(t) = 16

(
5
3 et/40 − 1
5
3 et/40 + 1

)2

and A(10) ≈ 2.11.
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(c)

500

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

y

t
100 150 200

14. Show that if a tissue culture grows according to Eq. (7), then the growth rate reaches a maximum when A = M/3.

solution According to Eq. (7), the growth rate of the tissue culture is k
√

A(1 − A
M

). Therefore

d

dA

(
k
√

A

(
1 − A

M

))
= 1

2
kA−1/2 − 3

2
kA1/2/M = 1

2
kA−1/2

(
1 − 3A

M

)
= 0

when A = M/3. Because the growth rate is zero for A = 0 and for A = M and is positive for 0 < A < M , it follows
that the maximum growth rate occurs when A = M/3.

15. In 1751, Benjamin Franklin predicted that the U.S. population P(t) would increase with growth constant k =
0.028 year−1. According to the census, the U.S. population was 5 million in 1800 and 76 million in 1900. Assuming
logistic growth with k = 0.028, find the predicted carrying capacity for the U.S. population. Hint: Use Eqs. (3) and (4)
to show that

P(t)

P (t) − A
= P0

P0 − A
ekt

solution Assuming the population grows according to the logistic equation,

P(t)

P (t) − A
= Cekt .

But

C = P0

P0 − A
,

so

P(t)

P (t) − A
= P0

P0 − A
ekt .

Now, let t = 0 correspond to the year 1800. Then the year 1900 corresponds to t = 100, and with k = 0.028, we have

76

76 − A
= 5

5 − A
e(0.028)(100).

Solving for A, we find

A = 5(e2.8 − 1)

5
76 e2.8 − 1

≈ 943.07.

Thus, the predicted carrying capacity for the U.S. population is approximately 943 million.

16. Reverse Logistic Equation Consider the following logistic equation (with k, B > 0):

dP

dt
= −kP

(
1 − P

B

)
8

(a) Sketch the slope field of this equation.

(b) The general solution is P(t) = B/(1 − ekt /C), where C is a nonzero constant. Show that P(0) > B if C > 1 and
0 < P(0) < B if C < 0.

(c) Show that Eq. (8) models an “extinction–explosion” population. That is, P(t) tends to zero if the initial population
satisfies 0 < P(0) < B, and it tends to ∞ after a finite amount of time if P(0) > B.

(d) Show that P = 0 is a stable equilibrium and P = B an unstable equilibrium.
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solution
(a) The slope field of this equation is shown below.

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

(b) Suppose that C > 0. Then 1 − 1
C

< 1,
(

1 − 1
C

)−1
> 1, and

P(0) = B

1 − 1
C

> B.

On the other hand, if C < 0, then 1 − 1
C

> 1, 0 <
(

1 − 1
C

)−1
< 1, and

0 < P(0) = B

1 − 1
C

< B.

(c) From part (b), 0 < P(0) < B when C < 0. In this case, 1 − ekt /C is never zero, but

1 − ekt

C
→ ∞

as t → ∞. Thus, P(t) → 0 as t → ∞. On the other hand, P(0) > B when C > 0. In this case 1 − ekt /C = 0 when
t = 1

k
ln C. Thus,

P(t) → ∞ as t → 1

k
ln C.

(d) Let

F(P ) = −kP

(
1 − P

B

)
.

Then, F ′(P ) = −k + 2kP
B

. Thus, F ′(0) = −k < 0, and F ′(B) = −k + 2k = k > 0, so P = 0 is a stable equilibrium
and P = B is an unstable equilibrium.

Further Insights and Challenges
In Exercises 17 and 18, let y(t) be a solution of the logistic equation

dy

dt
= ky

(
1 − y

A

)
9

where A > 0 and k > 0.

17. (a) Differentiate Eq. (9) with respect to t and use the Chain Rule to show that

d2y

dt2
= k2y

(
1 − y

A

) (
1 − 2y

A

)

(b) Show that y(t) is concave up if 0 < y < A/2 and concave down if A/2 < y < A.
(c) Show that if 0 < y(0) < A/2, then y(t) has a point of inflection at y = A/2 (Figure 6).
(d) Assume that 0 < y(0) < A/2. Find the time t when y(t) reaches the inflection point.

A

A
2

y

y(0)
t

Inflection point

FIGURE 6 An inflection point occurs at y = A/2 in the logistic curve.
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solution
(a) The derivative of Eq. (9) with respect to t is

y′′ = ky′ − 2kyy′
A

= ky′
(

1 − 2y

A

)
= k

(
1 − y

A

)
ky

(
1 − 2y

A

)
= k2y

(
1 − y

A

) (
1 − 2y

A

)
.

(b) If 0 < y < A/2, 1 − y
A

and 1 − 2y
A

are both positive, so y′′ > 0. Therefore, y is concave up. If A/2 < y < A,

1 − y
A

> 0, but 1 − 2y
A

< 0, so y′′ < 0, so y is concave down.

(c) If y0 < A, y grows and lim
t→∞ y(t) = A. If 0 < y < A/2, y is concave up at first. Once y passes A/2, y becomes

concave down, so y has an inflection point at y = A/2.

(d) The general solution to Eq. (9) is

y = A

1 − e−kt /C
;

thus, y = A/2 when

A

2
= A

1 − e−kt /C

1 − e−kt /C = 2

t = −1

k
ln(−C)

Now, C = y0/(y0 − A), so

t = −1

k
ln

y0

A − y0
= 1

k
ln

A − y0

y0
.

18. Let y = A

1 − e−kt /C
be the general nonequilibrium Eq. (9). If y(t) has a vertical asymptote at t = tb, that is, if

lim
t→tb−

y(t) = ±∞, we say that the solution “blows up” at t = tb.

(a) Show that if 0 < y(0) < A, then y does not blow up at any time tb.

(b) Show that if y(0) > A, then y blows up at a time tb, which is negative (and hence does not correspond to a real time).

(c) Show that y blows up at some positive time tb if and only if y(0) < 0 (and hence does not correspond to a real
population).

solution
(a) Let y(0) = y0. From the general solution, we find

y0 = A

1 − 1/C
; 1 − 1

C
= A

y0
; so C = y0

y0 − A
.

If y0 < A, then C < 0, and the denominator in the general solution, 1 − e−kt /C, is always positive. Thus, when
0 < y(0) < A, y does not blow up at any time.

(b) 1 − e−kt /C = 0 when C = e−kt . Solving for t we find

t = −1

k
ln C.

Because C = y0
y0−A

and y0 > A, it follows that C > 1, and thus, ln C > 0. Therefore, y blows up at a time which is
negative.

(c) Suppose that y blows up at some tb > 0. From part (b), we know that

tb = −1

k
ln C.

Thus, in order for tb to be positive, we must have ln C < 0, which requires C < 1. Now,

C = y0

y0 − A
,

so tb > 0 if and only if

y0

y0 − A
< 1 or equivalently

y0 − A

y0
= 1 − A

y0
> 1.

This last inequality holds if and only if y0 = y(0) < 0.
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9.5 First-Order Linear Equations

Preliminary Questions
1. Which of the following are first-order linear equations?

(a) y′ + x2y = 1 (b) y′ + xy2 = 1

(c) x5y′ + y = ex (d) x5y′ + y = ey

solution The equations in (a) and (c) are first-order linear differential equations. The equation in (b) is not linear

because of the y2 factor in the second term on the left-hand side of the equation; the equation in (d) is not linear because
of the ey term on the right-hand side of the equation.

2. If α(x) is an integrating factor for y′ + A(x)y = B(x), then α′(x) is equal to (choose the correct answer):

(a) B(x) (b) α(x)A(x)

(c) α(x)A′(x) (d) α(x)B(x)

solution The correct answer is (b): α(x)A(x).

Exercises
1. Consider y′ + x−1y = x3.

(a) Verify that α(x) = x is an integrating factor.

(b) Show that when multiplied by α(x), the differential equation can be written (xy)′ = x4.

(c) Conclude that xy is an antiderivative of x4 and use this information to find the general solution.

(d) Find the particular solution satisfying y(1) = 0.

solution

(a) The equation is of the form

y′ + A(x)y = B(x)

for A(x) = x−1 and B(x) = x3. By Theorem 1, α(x) is defined by

α(x) = e
∫

A(x) dx = eln x = x.

(b) When multiplied by α(x), the equation becomes:

xy′ + y = x4.

Now, xy′ + y = xy′ + (x)′y = (xy)′, so

(xy)′ = x4.

(c) Since (xy)′ = x4, (xy) = x5

5 + C and

y = x4

5
+ C

x

(d) If y(1) = 0, we find

0 = 1

5
+ C so − 1

5
= C.

The solution, therefore, is

y = x4

5
− 1

5x
.

2. Consider
dy

dt
+ 2y = e−3t .

(a) Verify that α(t) = e2t is an integrating factor.

(b) Use Eq. (4) to find the general solution.

(c) Find the particular solution with initial condition y(0) = 1.
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solution
(a) The equation is of the form

y′ + A(t)y = B(t)

for A(t) = 2 and B(t) = e−3t . Thus,

α(t) = e
∫

A(t) dt = e2t .

(b) According to Eq. (4),

y(t) = 1

α(t)

(∫
α(t)B(t) dt + C

)
.

With α(t) = e2t and B(t) = e−3t , this yields

y(t) = e−2t

(∫
e−t dt + C

)
= e−2t

(
C − e−t

) = Ce−2t − e−3t .

(c) Using the initial condition y(0) = 1, we find

1 = −1 + C so 2 = C.

The particular solution is therefore

y = −e−3t + 2e−2t .

3. Let α(x) = ex2
. Verify the identity

(α(x)y)′ = α(x)(y′ + 2xy)

and explain how it is used to find the general solution of

y′ + 2xy = x

solution Let α(x) = ex2
. Then

(α(x)y)′ = (ex2
y)′ = 2xex2

y + ex2
y′ = ex2 (

2xy + y′) = α(x)
(
y′ + 2xy

)
.

If we now multiply both sides of the differential equation y′ + 2xy = x by α(x), we obtain

α(x)(y′ + 2xy) = xα(x) = xex2
.

But α(x)(y′ + 2xy) = (α(x)y)′, so by integration we find

α(x)y =
∫

xex2
dx = 1

2
ex2 + C.

Finally,

y(x) = 1

2
+ Ce−x2

.

4. Find the solution of y′ − y = e2x , y(0) = 1.

solution We first find the general solution of the differential equation y′ − y = e2x . This is of the standard linear
form

y′ + A(x)y = B(x)

with A(x) = −1, B(x) = e2x . By Theorem 1, the integrating factor is

α(x) = e
∫

A(x) dx = e−x .

When multiplied by the integrating factor, the original differential equation becomes

e−xy′ − e−xy = ex or (e−xy)′ = ex .

Integration of both sides now yields

e−xy =
∫

ex dx = ex + C.
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Therefore,

y(x) = e2x + Cex.

Using the initial condition y(0) = 1, we find

1 = 1 + C so 0 = C.

Therefore,

y = e2x .

In Exercises 5–18, find the general solution of the first-order linear differential equation.

5. xy′ + y = x

solution Rewrite the equation as

y′ + 1

x
y = 1,

which is in standard linear form with A(x) = 1
x and B(x) = 1. By Theorem 1, the integrating factor is

α(x) = e
∫

A(x) dx = eln x = x.

When multiplied by the integrating factor, the rewritten differential equation becomes

xy′ + y = x or (xy)′ = x.

Integration of both sides now yields

xy = 1

2
x2 + C.

Finally,

y(x) = 1

2
x + C

x
.

6. xy′ − y = x2 − x

solution Rewrite the equation as

y′ − 1

x
y = x − 1,

which is in standard linear form with A(x) = − 1
x and B(x) = x − 1. By Theorem 1, the integrating factor is

α(x) = e
∫

A(x) dx = e− ln x = x−1.

When multiplied by the integrating factor, the rewritten differential equation becomes

1

x
y′ − 1

x2
y = 1 − 1

x
or

(y

x

)′ = 1 − 1

x
.

Integration of both sides now yields

y

x
= x − ln x + C.

Finally,

y(x) = x2 − x ln x + Cx.

7. 3xy′ − y = x−1

solution Rewrite the equation as

y′ − 1

3x
y = 1

3x2
,

which is in standard form with A(x) = − 1
3x−1 and B(x) = 1

3x−2. By Theorem 1, the integrating factor is

α(x) = e
∫

A(x) dx = e−(1/3) ln x = x−1/3.
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When multiplied by the integrating factor, the rewritten differential equation becomes

x−1/3y′ − 1

3
x−4/3 = 1

3
x−7/3 or (x−1/3y)′ = 1

3
x−7/3.

Integration of both sides now yields

x−1/3y = −1

4
x−4/3 + C.

Finally,

y(x) = −1

4
x−1 + Cx1/3.

8. y′ + xy = x

solution This equation is in standard form with A(x) = x and B(x) = x. By Theorem 1, the integrating factor is

α(x) = e
∫

x dx = e(1/2)x2
.

When multiplied by the integrating factor, the original differential equation becomes

e(1/2)x2
y′ + xe(1/2)x2

y = xe(1/2)x2
or (e(1/2)x2

y)′ = xe(1/2)x2
.

Integration of both sides now yields

e(1/2)x2
y = e(1/2)x2 + C.

Finally,

y(x) = 1 + Ce−(1/2)x2
.

9. y′ + 3x−1y = x + x−1

solution This equation is in standard form with A(x) = 3x−1 and B(x) = x + x−1. By Theorem 1, the integrating
factor is

α(x) = e
∫

3x−1 = e3 ln x = x3.

When multiplied by the integrating factor, the original differential equation becomes

x3y′ + 3x2y = x4 + x2 or (x3y)′ = x4 + x3.

Integration of both sides now yields

x3y = 1

5
x5 + 1

3
x3 + C.

Finally,

y(x) = 1

5
x2 + 1

3
+ Cx−3.

10. y′ + x−1y = cos(x2)

solution This equation is in standard form with A(x) = x−1 and B(x) = cos(x2). By Theorem 1, the integrating
factor is

α(x) = e
∫

x−1 dx = eln x = x.

When multiplied by the integrating factor, the original differential equation becomes

xy′ + y = x cos(x2) or (xy)′ = x cos(x2).

Integration of both sides now yields

xy = 1

2
sin(x2) + C.

Finally,

y(x) = 1

2
x−1 sin(x2) + Cx−1.
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11. xy′ = y − x

solution Rewrite the equation as

y′ − 1

x
y = −1,

which is in standard form with A(x) = − 1
x and B(x) = −1. By Theorem 1, the integrating factor is

α(x) = e
∫ −(1/x) dx = e− ln x = x−1.

When multiplied by the integrating factor, the rewritten differential equation becomes

1

x
y′ − 1

x2
y = − 1

x
or

(
1

x
y

)′
= − 1

x
.

Integration on both sides now yields

1

x
y = − ln x + C.

Finally,

y(x) = −x ln x + Cx.

12. xy′ = x−2 − 3y

x

solution Rewrite the equation is

y′ + 3

x2
y = 1

x3

which is in standard form with A(x) = 3
x2 and B(x) = 1

x3 . By Theorem 1, the integrating factor is

α(x) = e
∫
(3/x2) dx = e−3x−1

.

When multiplied by the integrating factor, the rewritten differential equation becomes

e−3/xy′ + 3

x2
e−3/xy = 1

x3
e−3/x

Integration on both sides now yields

e−3/xy = x + 3

9x
e−3/x + C or y = x + 3

9x
+ Ce3/x

13. y′ + y = ex

solution This equation is in standard form with A(x) = 1 and B(x) = ex . By Theorem 1, the integrating factor is

α(x) = e
∫

1 dx = ex .

When multiplied by the integrating factor, the original differential equation becomes

exy′ + exy = e2x or (exy)′ = e2x .

Integration on both sides now yields

exy = 1

2
e2x + C.

Finally,

y(x) = 1

2
ex + Ce−x .

14. y′ + (sec x)y = cos x

solution This equation is in standard form with A(x) = sec x and B(x) = cos x. By Theorem 1, the integrating factor
is

α(x) = e
∫

sec x dx = eln(sec x+tan x) = sec x + tan x.
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When multiplied by the integrating factor, the original differential equation becomes

(sec x + tan x)y′ + (sec2 x + sec x tan x)y = 1 + sin x

or

((sec x + tan x)y)′ = 1 + sin x.

Integration on both sides now yields

(sec x + tan x)y = x − cos x + C.

Finally,

y(x) = x − cos x + C

sec x + tan x
.

15. y′ + (tan x)y = cos x

solution This equation is in standard form with A(x) = tan x and B(x) = cos x. By Theorem 1, the integrating factor
is

α(x) = e
∫

tan x dx = eln sec x = sec x.

When multiplied by the integrating factor, the original differential equation becomes

sec xy′ + sec x tan xy = 1 or (y sec x)′ = 1.

Integration on both sides now yields

y sec x = x + C.

Finally,

y(x) = x cos x + C cos x.

16. e2xy′ = 1 − exy

solution Rewrite the equation as

y′ + e−xy = e−2x,

which is in standard form with A(x) = e−x and B(x) = e−2x . By Theorem 1, the integrating factor is

α(x) = e
∫

e−x dx = e−e−x
.

When multiplied by the integrating factor, the rewritten differential equation becomes

e−e−x
y′ + e−x−e−x

y = e−2xe−e−x
or (e−e−x

y)′ = e−2xe−e−x
.

Integration on both sides now yields

(e−e−x
y) =

∫
e−2xe−e−x

dx.

To handle the remaining integral, make the substitution u = −e−x , du = e−x dx. Then∫
e−2xe−e−x

dx = −
∫

ueu du = −ueu + eu + C = e−xe−e−x + e−e−x + C.

Finally,

y(x) = 1 + e−x + Cee−x
.

17. y′ − (ln x)y = xx

solution This equation is in standard form with A(x) = − ln x and B(x) = xx . By Theorem 1, the integrating factor
is

α(x) = e
∫ − ln x dx = ex−x ln x = ex

xx
.
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When multiplied by the integrating factor, the original differential equation becomes

x−xexy′ − (ln x)x−xexy = ex or (x−xexy)′ = ex.

Integration on both sides now yields

x−xexy = ex + C.

Finally,

y(x) = xx + Cxxe−x .

18. y′ + y = cos x

solution This equation is in standard form with A(x) = 1 and B(x) = cos x. By Theorem 1, the integrating factor is

α(x) = e
∫

1 dx = ex .

When multiplied by the integrating factor, the original differential equation becomes

exy′ + exy = ex cos x or (exy)′ = ex cos x.

Integration on both sides (integration by parts is needed on the right-hand side of the equation) now yields

exy = 1

2
ex (sin x + cos x) + C.

Finally,

y(x) = 1

2
(sin x + cos x) + Ce−x .

In Exercises 19–26, solve the initial value problem.

19. y′ + 3y = e2x , y(0) = −1

solution First, we find the general solution of the differential equation. This linear equation is in standard form with

A(x) = 3 and B(x) = e2x . By Theorem 1, the integrating factor is

α(x) = e3x .

When multiplied by the integrating factor, the original differential equation becomes

(e3xy)′ = e5x .

Integration on both sides now yields

(e3xy) = 1

5
e5x + C;

hence,

y(x) = 1

5
e2x + Ce−3x .

The initial condition y(0) = −1 allows us to determine the value of C:

−1 = 1

5
+ C so C = −6

5
.

The solution to the initial value problem is therefore

y(x) = 1

5
e2x − 6

5
e−3x .

20. xy′ + y = ex , y(1) = 3

solution First, we find the general solution of the differential equation. Rewrite the equation as

y′ + 1

x
y = 1

x
ex,

which is in standard form with A(x) = x−1 and B(x) = x−1ex . By Theorem 1, the integrating factor is

α(x) = e
∫

x−1 dx = eln x = x.
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When multiplied by the integrating factor, the rewritten differential equation becomes

(xy)′ = ex .

Integration on both sides now yields

xy = ex + C;
hence,

y(x) = 1

x
ex + C

x
.

The initial condition y(1) = 3 allows us to determine the value of C:

3 = e + C

1
so C = 3 − e.

The solution to the initial value problem is therefore

y(x) = 1

x
ex + 3 − e

x
.

21. y′ + 1

x + 1
y = x−2, y(1) = 2

solution First, we find the general solution of the differential equation. This linear equation is in standard form with

A(x) = 1
x+1 and B(x) = x−2. By Theorem 1, the integrating factor is

α(x) = e
∫

1/(x+1) dx = eln(x+1) = x + 1.

When multiplied by the integrating factor, the original differential equation becomes

((x + 1)y)′ = x−1 + x−2.

Integration on both sides now yields

(x + 1)y = ln x − x−1 + C;
hence,

y(x) = 1

x + 1

(
C + ln x − 1

x

)
.

The initial condition y(1) = 2 allows us to determine the value of C:

2 = 1

2
(C − 1) so C = 5.

The solution to the initial value problem is therefore

y(x) = 1

x + 1

(
5 + ln x − 1

x

)
.

22. y′ + y = sin x, y(0) = 1

solution First, we find the general solution of the differential equation. This equation is in standard form with A(x) = 1
and B(x) = sin x. By Theorem 1, the integrating factor is

α(x) = e
∫

1 dx = ex.

When multiplied by the integrating factor, the original differential equation becomes

(exy)′ = ex sin x.

Integration on both sides (integration by parts is needed on the right-hand side of the equation) now yields

(exy) = 1

2
ex (sin x − cos x) + C;

hence,

y(x) = 1

2
(sin x − cos x) + Ce−x .
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The initial condition y(0) = 1 allows us to determine the value of C:

1 = −1

2
+ C so C = 3

2
.

The solution to the initial value problem is therefore

y(x) = 1

2
(sin x − cos x) + 3

2
e−x .

23. (sin x)y′ = (cos x)y + 1, y
(π

4

)
= 0

solution First, we find the general solution of the differential equation. Rewrite the equation as

y′ − (cot x)y = csc x,

which is in standard form with A(x) = − cot x and B(x) = csc x. By Theorem 1, the integrating factor is

α(x) = e
∫ − cot x dx = e− ln sin x = csc x.

When multiplied by the integrating factor, the rewritten differential equation becomes

(csc xy)′ = csc2 x.

Integration on both sides now yields

(csc x)y = − cot x + C;
hence,

y(x) = − cos x + C sin x.

The initial condition y(π/4) = 0 allows us to determine the value of C:

0 = −
√

2

2
+ C

√
2

2
so C = 1.

The solution to the initial value problem is therefore

y(x) = − cos x + sin x.

24. y′ + (sec t)y = sec t , y
(π

4

)
= 1

solution First, we find the general solution of the differential equation. This equation is in standard form with A(t) =
sec t and B(t) = sec t . By Theorem 1, the integrating factor is

α(t) = e
∫

sec t dt = eln(sec t+tan t) = sec t + tan t.

When multiplied by the integrating factor, the original differential equation becomes

((sec t + tan t)y)′ = sec2 t + sec t tan t.

Integration on both sides now yields

(sec t + tan t)y = tan t + sec t + C;
hence,

y(t) = 1 + C

sec t + tan t
.

The initial condition y(π/4) = 1 allows us to determine the value of C:

1 = 1 + C√
2 + 1

so C = 0.

The solution to the initial value problem is therefore

y(x) = 1.

25. y′ + (tanh x)y = 1, y(0) = 3

solution First, we find the general solution of the differential equation. This equation is in standard form with A(x) =
tanh x and B(x) = 1. By Theorem 1, the integrating factor is

α(x) = e
∫

tanh x dx = eln cosh x = cosh x.
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When multiplied by the integrating factor, the original differential equation becomes

(cosh xy)′ = cosh x.

Integration on both sides now yields

(cosh xy) = sinh x + C;
hence,

y(x) = tanh x + C sech x.

The initial condition y(0) = 3 allows us to determine the value of C:

3 = C.

The solution to the initial value problem is therefore

y(x) = tanh x + 3 sech x.

26. y′ + x

1 + x2
y = 1

(1 + x2)3/2
, y(1) = 0

solution First, we find the general solution of the differential equation. This equation is in standard form with A(x) =
x

1+x2 and B(x) = 1
(1+x2)3/2 . By Theorem 1, the integrating factor is

α(x) = e
∫
(x/(1+x2)) dx = e(1/2) ln(1+x2) =

√
1 + x2.

When multiplied by the integrating factor, the original differential equation becomes

(√
1 + x2y

)′ = 1

1 + x2
.

Integration on both sides now yields √
1 + x2y = tan−1 x + C;

hence,

y(x) = tan−1 x√
1 + x2

+ C√
1 + x2

.

The initial condition y(1) = 0 allows us to determine the value of C:

0 = 1√
2

(π

4
+ C

)
so C = −π

4
.

The solution to the initial value problem is therefore

y(x) = 1√
1 + x2

(
tan−1 x − π

4

)
.

27. Find the general solution of y′ + ny = emx for all m, n. Note: The case m = −n must be treated separately.

solution For any m, n, Theorem 1 gives us the formula for α(x):

α(x) = e
∫

n dx = enx.

When multiplied by the integrating factor, the original differential equation becomes

(enxy)′ = e(m+n)x .

If m �= −n, integration on both sides yields

enxy = 1

m + n
e(m+n)x + C,

so

y(x) = 1

m + n
emx + Ce−nx.
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However, if m = −n, then m + n = 0 and the equation reduces to

(enxy)′ = 1,

so integration yields

enxy = x + C or y(x) = (x + C)e−nx.

28. Find the general solution of y′ + ny = cos x for all n.

solution This equation is in standard form with A(x) = n and B(x) = cos x. By Theorem 1, the integrating factor is

α(x) = e
∫

n dx = enx

When multiplied by the integrating factor, the differential equation becomes

enxy′ + nenxy = enx cos x

Integrating both sides gives

enxy = enx

n2 + 1
(sin x + n cos x) + C

(To integrate the right hand side, apply integration by parts twice with u = enx ). Finally

y = Ce−nx + sin x + n cos x

n2 + 1

In Exercises 29–32, a 1000 L tank contains 500 L of water with a salt concentration of 10 g/L. Water with a salt
concentration of 50 g/L flows into the tank at a rate of 80 L/min. The fluid mixes instantaneously and is pumped out at a
specified rate Rout . Let y(t) denote the quantity of salt in the tank at time t .

29. Assume that Rout = 40 L/min.

(a) Set up and solve the differential equation for y(t).
(b) What is the salt concentration when the tank overflows?

solution Because water flows into the tank at the rate of 80 L/min but flows out at the rate of Rout = 40 L/min, there
is a net inflow of 40 L/min. Therefore, at any time t , there are 500 + 40t liters of water in the tank.

(a) The net flow of salt into the tank at time t is

dy

dt
= salt rate in − salt rate out =

(
80

L

min

) (
50

g

L

)
−

(
40

L

min

) (
y g

500 + 40t L

)
= 4000 − 40 · y

500 + 40t

Rewriting this linear equation in standard form, we have

dy

dt
+ 4

50 + 4t
y = 4000,

so A(t) = 4
50+4t

and B(t) = 4000. By Theorem 1, the integrating factor is

α(t) = e
∫

4(50+4t)−1 dt = eln(50+4t) = 50 + 4t.

When multiplied by the integrating factor, the rewritten differential equation becomes

((50 + 4t)y)′ = 4000(50 + 4t).

Integration on both sides now yields

(50 + 4t)y = 200,000t + 16,000t2 + C;
hence,

y(t) = 200,000t + 8000t2 + C

50 + 4t
.

The initial condition y(0) = 10 allows us to determine the value of C:

10 = C

50
so C = 500.

The solution to the initial value problem is therefore

y(t) = 200,000t + 8000t2 + 500

50 + 4t
= 250 + 4000t2 + 100,000t

25 + 2t
.
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(b) The tank overflows when t = 25/2 = 12.5. The amount of salt in the tank at that time is

y(12.5) = 37,505 g,

so the concentration of salt is

37,505 g

1000 L
= 37.505 g/L.

30. Find the salt concentration when the tank overflows, assuming that Rout = 60 L/min.

solution We work as in Exercise 29, but with Rout = 60. There is a net inflow of 20 L/min, so at time t , there are
500 + 20t liters of water in the tank. The net flow of salt into the tank at time t is

dy

dt
= salt rate in − salt rate out =

(
80

L

min

) (
50

g

L

)
−

(
60

L

min

) (
y g

500 + 20t L

)
= 4000 − 6 · y

50 + 2t

Rewriting this linear equation in standard form, we have

dy

dt
+ 6

50 + 2t
y = 4000,

so A(t) = 6
50+2t

and B(t) = 4000. By Theorem 1, the integrating factor is

α(t) = e
∫

6(50+2t)−1 dt = e3 ln(50+2t) = (50 + 2t)3.

When multiplied by the integrating factor, the rewritten differential equation becomes

((50 + 2t)3y)′ = 4000(50 + 2t)3.

Integration on both sides now yields

(50 + 2t)3y = 500(50 + 2t)4 + C;
hence,

y(t) = 25,000 + 1000t + C

(50 + 2t)3
.

The initial condition y(0) = 10 allows us to determine the value of C:

10 = 25,000 + C

503
so C = −3123.75 × 106.

The solution to the initial value problem is therefore

y(t) = 25,000 + 1000t − 390,468,750

(25 + t)2
.

The tank overflows when t = 25. The amount of salt in the tank at that time is

y(25) = 46,876.25 g,

so the concentration of salt is

46,876.25 g

1000 L
≈ 46.876 g/L.

31. Find the limiting salt concentration as t → ∞ assuming that Rout = 80 L/min.

solution The total volume of water is now constant at 500 liters, so the net flow of salt at time t is

dy

dt
= salt rate in − salt rate out =

(
80

L

min

) (
50

g

L

)
−

(
80

L

min

) ( y g

500 L

)
= 4000 − 8

50
y

Rewriting this equation in standard form gives

dy

dt
+ 8

50
y = 4000

so that the integrating factor is

e
∫
(8/50) dt = e0.16t
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Multiplying both sides by the integrating factor gives

(e0.16t y)′ = 4000e0.16t

Integrate both sides to get

e0.16t y = 25,000e0.16t + C so that y = 25,000 + Ce−0.16t

As t → ∞, the exponential term tends to zero, so that the amount of salt tends to 25,000g, or 50 g/L. (Note that this is
precisely what would be expected naïvely, since the salt concentration flowing in is also 50 g/L).

32. Assuming that Rout = 120 L/min. Find y(t). Then calculate the tank volume and the salt concentration at t = 10
minutes.

solution We work as in Exercise 29, but with Rout = 120. There is a net outflow of 40 L/min, so at time t , there are
500 − 40t liters of water in the tank. Note that after ten minutes, the volume of water in the tank is 100 liters.

The net flow of salt into the tank at time t is

dy

dt
= salt rate in − salt rate out =

(
80

L

min

) (
50

g

L

)
−

(
120

L

min

) (
y g

500 − 40t L

)
= 4000 − 12 · y

50 − 4t

Rewriting this linear equation in standard form, we have

dy

dt
+ 6

25 − 2t
y = 4000,

so A(t) = 6
25−2t

and B(t) = 4000. By Theorem 1, the integrating factor is

α(t) = e
∫

6(25−2t)−1 dt = e−3 ln(25−2t) = (25 − 2t)−3.

When multiplied by the integrating factor, the rewritten differential equation becomes

((25 − 2t)−3y)′ = 4000(25 − 2t)−3.

Integration on both sides now yields

(25 − 2t)−3y = 1000(25 − 2t)−2 + C;
hence,

y(t) = 25,000 − 2000t + C(25 − 2t)3.

The initial condition y(0) = 10 allows us to determine the value of C:

10 = 25,000 + C · 503 so C = −1.599.

The solution to the initial value problem is therefore

y(t) = 25,000 − 2000t − 1.599(25 − 2t)3.

The amount of salt in the tank at time t = 10 is then

y(10) = 4800.08 g,

so the concentration of salt is

4800.08 g

100 L
≈ 48 g/L.

33. Water flows into a tank at the variable rate of Rin = 20/(1 + t) gal/min and out at the constant rate Rout = 5 gal/min.
Let V (t) be the volume of water in the tank at time t .

(a) Set up a differential equation for V (t) and solve it with the initial condition V (0) = 100.

(b) Find the maximum value of V .

(c) Plot V (t) and estimate the time t when the tank is empty.

solution

(a) The rate of change of the volume of water in the tank is given by

dV

dt
= Rin − Rout = 20

1 + t
− 5.
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Because the right-hand side depends only on the independent variable t , we integrate to obtain

V (t) = 20 ln(1 + t) − 5t + C.

The initial condition V (0) = 100 allows us to determine the value of C:

100 = 20 ln 1 − 0 + C so C = 100.

Therefore

V (t) = 20 ln(1 + t) − 5t + 100.

(b) Using the result from part (a),

dV

dt
= 20

1 + t
− 5 = 0

when t = 3. Because dV
dt

> 0 for t < 3 and dV
dt

< 0 for t > 3, it follows that

V (3) = 20 ln 4 − 15 + 100 ≈ 112.726 gal

is the maximum volume.
(c) V (t) is plotted in the figure below at the left. On the right, we zoom in near the location where the curve crosses the
t-axis. From this graph, we estimate that the tank is empty after roughly 34.25 minutes.

10 20 30 40

20

40

60

80

100

120

32 34 36 38

34. A stream feeds into a lake at a rate of 1000 m3/day. The stream is polluted with a toxin whose concentration is 5 g/m3.
Assume that the lake has volume 106 m3 and that water flows out of the lake at the same rate of 1000 m3/day.

(a) Set up a differential equation for the concentration c(t) of toxin in the lake and solve for c(t), assuming that c(0) = 0.
Hint: Find the differential equation for the quantity of toxin y(t), and observe that c(t) = y(t)/106.
(b) What is the limiting concentration for large t?

solution
(a) Let M(t) denote the amount of toxin, in grams, in the lake at time t . The rate at which toxin enters the lake is given
by

5
g

m3
· 1000

m3

day
= 5000

g

day
,

while the rate at which toxin exits the lake is given by

M(t) g

106 m3
· 1000

m3

day
= M(t)

1000

g

day
,

where we have assumed that any toxin in the lake is spread uniformly throughout the lake. The differential equation for
M(t) is then

dM

dt
= 5000 − M

1000
.

The concentration of the toxin in the lake is given by c(t) = M(t)

106
, so c′(t) = 1

106 M ′(t), giving

dc

dt
= 1

200
− 1

1000
c.

Rewriting this linear equation in standard form, we have

dc

dt
+ 1

1000
c = 1

200
,

so A(t) = 1
1000 and B(t) = 1

200 . By Theorem 1, the integrating factor is

α(t) = et/1000.
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When multiplied by the integrating factor, the rewritten differential equation becomes

(et/1000c)′ = 1

200
et/1000.

Integration on both sides now yields

et/1000c = 5et/1000 + A;
hence,

c(t) = 5 + Ae−t/1000.

The initial condition c(0) = 0 allows us to determine the value of A:

0 = 5 + A so A = −5.

Therefore

c(t) = 5
(

1 − e−t/1000
)

grams/m3.

(b) As t → ∞, c(t) → 5, so the limiting concentration of pollution is 5
grams

m3
.

In Exercises 35–38, consider a series circuit (Figure 4) consisting of a resistor of R ohms, an inductor of L henries, and
a variable voltage source of V (t) volts (time t in seconds). The current through the circuit I (t) (in amperes) satisfies the
differential equation

dI

dt
+ R

L
I = 1

L
V (t) 10

35. Find the solution to Eq. (10) with initial condition I (0) = 0, assuming that R = 100 �, L = 5 H, and V (t) is constant
with V (t) = 10 V.

solution If R = 100, V (t) = 10, and L = 5, the differential equation becomes

dI

dt
+ 20I = 2,

which is a linear equation in standard form with A(t) = 20 and B(t) = 2. The integrating factor is α(t) = e20t , and when
multiplied by the integrating factor, the differential equation becomes

(e20t I )′ = 2e20t .

Integration of both sides now yields

e20t I = 1

10
e20t + C;

hence,

I (t) = 1

10
+ Ce−20t .

The initial condition I (0) = 0 allows us to determine the value of C:

0 = 1

10
+ C so C = − 1

10
.

Finally,

I (t) = 1

10

(
1 − e−20t

)
.

36. Assume that R = 110 �, L = 10 H, and V (t) = e−t .

(a) Solve Eq. (10) with initial condition I (0) = 0.

(b) Calculate tm and I (tm), where tm is the time at which I (t) has a maximum value.

(c) Use a computer algebra system to sketch the graph of the solution for 0 ≤ t ≤ 3.
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solution

(a) If R = 110, V (t) = e−t , and L = 10, the differential equation becomes

dI

dt
+ 11I = 1

10
e−t ,

which is a linear equation in standard form with A(t) = 11 and B(t) = 1
10 e−t . The integrating factor is α(t) = e11t , and

when multiplied by the integrating factor, the differential equation becomes

(e11t I )′ = 1

10
e10t .

Integration of both sides now yields

e11t I = 1

100
e10t + C;

hence,

I (t) = 1

100
e−t + Ce−11t .

The initial condition I (0) = 0 allows us to determine the value of C:

0 = 1

100
+ C so C = − 1

100
.

Finally,

I (t) = 1

100

(
e−t − e−11t

)
.

(b) Using the result from part (a),

dI

dt
= 1

100

(
−e−t + 11e−11t

)
= 0

when

t = tm = 1

10
ln 11 seconds.

Now,

I (tm) = 1

100

(
e−(1/10) ln 11 − e−(11/10) ln 11

)
= 1

100

(
11−1/10 − 11−11/10

)
≈ 0.00715 amperes.

(c) The graph of I (t) is shown below.

I

t

0.004

0.006

0.002

0 2 31 1.5 2.50.5

37. Assume that V (t) = V is constant and I (0) = 0.

(a) Solve for I (t).

(b) Show that lim
t→∞ I (t) = V/R and that I (t) reaches approximately 63% of its limiting value after L/R seconds.

(c) How long does it take for I (t) to reach 90% of its limiting value if R = 500 �, L = 4 H, and V = 20 V?

solution

(a) The equation

dI

dt
+ R

L
I = 1

L
V

is a linear equation in standard form with A(t) = R
L

and B(t) = 1
L

V (t). By Theorem 1, the integrating factor is

α(t) = e
∫
(R/L) dt = e(R/L) t .
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When multiplied by the integrating factor, the original differential equation becomes

(e(R/L) t I )′ = e(R/L) t V

L
.

Integration on both sides now yields

(e(R/L) t I ) = V

R
e(R/L) t + C;

hence,

I (t) = V

R
+ Ce−(R/L) t .

The initial condition I (0) = 0 allows us to determine the value of C:

0 = V

R
+ C so C = −V

R
.

Therefore the current is given by

I (t) = V

R

(
1 − e−(R/L) t

)
.

(b) As t → ∞, e−(R/L) t → 0, so I (t) → V
R

. Moreover, when t = (L/R) seconds, we have

I

(
L

R

)
= V

R

(
1 − e−(R/L) (L/R)

)
= V

R

(
1 − e−1

)
≈ 0.632

V

R
.

(c) Using the results from part (a) and part (b), I (t) reaches 90% of its limiting value when

9

10
= 1 − e−(R/L) t ,

or when

t = L

R
ln 10.

With L = 4 and R = 500, this takes approximately 0.0184 seconds.

38. Solve for I (t), assuming that R = 500 �, L = 4 H, and V = 20 cos(80t) volts.

solution With R = 500, L = 4, and V = 20 cos(80t), Eq. (10) becomes

dI

dt
+ 125I = 5 cos(80t)

which is a linear equation in standard form with A(t) = 125 and B(t) = 5 cos(80t). The integrating factor is e125t ; when
multiplied by the integrating factor, the differential equation becomes

(e125t I )′ = 5e125t cos(80t)

To integrate the right side, apply integration by parts twice and solve the resulting formula for the desired integral, giving∫
5e125t cos(80t) dt = 1

881
e125t (25 cos(80t) + 16 sin(80t) + C

so that the solution is

e125t I = 1

881
e125t (25 cos(80t) + 16 sin(80t) + C

Multiply through by e−125t to get

I = 1

881
(25 cos(80t) + 16 sin(80t) + Ce−125t

LV(t)

R

FIGURE 4 RL circuit.
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39. Tank 1 in Figure 5 is filled with V1 liters of water containing blue dye at an initial concentration of c0 g/L.
Water flows into the tank at a rate of R L/min, is mixed instantaneously with the dye solution, and flows out through the
bottom at the same rate R. Let c1(t) be the dye concentration in the tank at time t .

(a) Explain why c1 satisfies the differential equation
dc1

dt
= − R

V1
c1.

(b) Solve for c1(t) with V1 = 300 L, R = 50, and c0 = 10 g/L.

R  (L/min)

Tank 2

R  (L/min)

R (L/min)

Tank 1

FIGURE 5

solution
(a) Let g1(t) be the number of grams of dye in the tank at time t . Then g1(t) = V1c1(t) and g′

1(t) = V1c′
1(t). Now,

g′
1(t) = grams of dye in − grams of dye out = 0 − g(t)

V1
g/L · R L/min = − R

V1
g(t)

Substituting gives

V1c′
1(t) = − R

V1
c1(t)V1 and simplifying yields c′

1(t) = − R

V1
c1(t)

(b) In standard form, the equation is

c′
1(t) + R

V1
c1(t) = 0

so that A(t) = R

V1
and B(t) = 0. The integrating factor is e(R/V1)t ; multiplying through gives

(e(R/V1)t c1(t))′ = 0 so, integrating, e(R/V1)t c1(t) = C

and thus c1(t) = Ce−(R/V1)t . With R = 50 and V1 = 300 we have c1(t) = Ce−t/6; the initial condition c1(0) = c0 = 10
gives C = 10. Finally,

c1(t) = 10e−t/6

40. Continuing with the previous exercise, let Tank 2 be another tank filled with V2 gal of water. Assume that
the dye solution from Tank 1 empties into Tank 2 as in Figure 5, mixes instantaneously, and leaves Tank 2 at the same
rate R. Let c2(t) be the dye concentration in Tank 2 at time t .

(a) Explain why c2 satisfies the differential equation

dc2

dt
= R

V2
(c1 − c2)

(b) Use the solution to Exercise 39 to solve for c2(t) if V1 = 300, V2 = 200, R = 50, and c0 = 10.
(c) Find the maximum concentration in Tank 2.
(d) Plot the solution.

solution
(a) Let g2(t) be the amount in grams of dye in Tank 2 at time t . At time t , the concentration of dye in Tank 1, and thus
the concentration of dye coming into Tank 2, is c1(t). Thus

g′
2(t) = grams of dye in − grams of dye out

= c1(t) g/L · R L/min − c2(t)g/L · R L/min = R(c1(t) − c2(t))
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Since g′
2(t) = V2c′

2(t), we get

c′
2(t) = R

V2
(c1(t) − c2(t))

(b) With V1 = 300, R = 50, and c0 = 10, part (a) tells us that

c1(t) = 10e−t/6

Since V2 = 200, we have

c′
2(t) = 1

4
(10e−t/6 − c2(t))

Putting this linear equation in standard form gives

c′
2(t) + 1

4
c2(t) = 5

2
e−t/6

The integrating factor is et/4; multiplying through gives

(et/4c2(t))′ = 5

2
et/12

Integrate to get

et/4c2(t) = 30et/12 + C so that c2(t) = 30e−t/6 + Ce−t/4

Since Tank 2 starts out filled entirely with water, we have c2(0) = 0 so that C = −30 and

c2(t) = 30(e−t/6 − e−t/4)

(c) The maximum concentration in Tank 2 occurs when c′
2(t) = 0.

c′
2(t) = 0 = −5e−t/6 + 15

2
e−t/4

Solve this equation for t as follows:

5e−t/6 = 15

2
e−t/4

2e−t/6 = 3e−t/4

− t

6
+ ln 2 = − t

4
+ ln 3

t

12
= ln 3 − ln 2 = ln(3/2)

t = 12 ln(3/2) ≈ 4.866

When t = 12 ln(3/2),

c2(t) = 30(e−2 ln(3/2) − e−3 ln(3/2)) = 30

(
4

9
− 8

27

)
= 40

9

41. Let a, b, r be constants. Show that

y = Ce−kt + a + bk

(
k sin rt − r cos rt

k2 + r2

)

is a general solution of

dy

dt
= −k

(
y − a − b sin rt

)

solution This is a linear differential equation; in standard form, it is

dy

dt
+ ky = k(a + b sin rt)
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The integrating factor is then ekt ; multiplying through gives

(ekt y)′ = kaekt + kbekt sin rt (*)

The first term on the right-hand side has integral aekt . To integrate the second term, use integration by parts twice; this
result in an equation of the form ∫

kbekt sin rt = F(t) + A

∫
kbekt sin rt

for some function F(t) and constant A. Solving for the integral gives∫
kbekt sin rt = kbekt k sin rt − r cos rt

k2 + r2

so that integrating equation (*) gives

ekt y = aekt + kbekt k sin rt − r cos rt

k2 + r2
+ C

Divide through by ekt to get

y = a + bk

(
k sin rt − r cos rt

k2 + r2

)
+ Ce−kt

42. Assume that the outside temperature varies as

T (t) = 15 + 5 sin(πt/12)

where t = 0 is 12 noon. A house is heated to 25◦C at t = 0 and after that, its temperature y(t) varies according to
Newton’s Law of Cooling (Figure 6):

dy

dt
= −0.1

(
y(t) − T (t)

)
Use Exercise 41 to solve for y(t).

y(t)

T(t)

t (hours)

y(°C)

12 24 36 48 60 8472

5

10

15

20

25

FIGURE 6 House temperature y(t)

solution The differential equation is

dy

dt
= −0.1

(
y(t) − 15 − 5 sin(

πt

12
)
)

This differential equation is of the form considered in Exercise 41, with a = 15, b = 5, r = π/12, and k = 0.1. Thus the
general solution is

y(t) = Ce−0.1t + 15 + 0.5

(
0.1 sin(πt/12) − (π/12) cos(πt/12)

0.01 + π2/144

)

Since y(0) = 25, we have

25 = C + 15 + 0.5

(
0 − π/12

0.01 + π2/144

)
≈ C + 15 − 1.667

so that C ≈ 11.667 and

y(t) = 11.667e−0.1t + 15 + 0.5

(
0.1 sin(πt/12) − (π/12) cos(πt/12)

0.01 + π2/144

)
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Further Insights and Challenges
43. Let α(x) be an integrating factor for y′ + A(x)y = B(x). The differential equation y′ + A(x)y = 0 is called the
associated homogeneous equation.

(a) Show that 1/α(x) is a solution of the associated homogeneous equation.

(b) Show that if y = f (x) is a particular solution of y′ + A(x)y = B(x), then f (x) + C/α(x) is also a solution for any
constant C.

solution

(a) Remember that α′(x) = A(x)α(x). Now, let y(x) = (α(x))−1. Then

y′ + A(x)y = − 1

(α(x))2
α′(x) + A(x)

α(x)
= − 1

(α(x))2
A(x)α(x) + A(x)

α(x)
= 0.

(b) Suppose f (x) satisfies f ′(x) + A(x)f (x) = B(x). Now, let y(x) = f (x) + C/α(x), where C is an arbitrary
constant. Then

y′ + A(x)y = f ′(x) − C

(α(x))2
α′(x) + A(x)f (x) + CA(x)

α(x)

= (
f ′(x) + A(x)f (x)

) + C

α(x)

(
A(x) − α′(x)

α(x)

)
= B(x) + 0 = B(x).

44. Use the Fundamental Theorem of Calculus and the Product Rule to verify directly that for any x0, the function

f (x) = α(x)−1
∫ x

x0

α(t)B(t) dt

is a solution of the initial value problem

y′ + A(x)y = B(x), y(x0) = 0

where α(x) is an integrating factor [a solution to Eq. (3)].

solution Remember that α′(x) = A(x)α(x). Now, let

y(x) = 1

α(x)

∫ x

x0

α(t)B(t) dt.

Then,

y(x0) = 1

α(x)

∫ x0

x0

α(t)B(t) dt = 0,

and

y′ + A(x)y = − α′(x)

(α(x))2

∫ x

x0

α(t)B(t) dt + B(x) + A(x)

α(x)

∫ x

x0

α(t)B(t) dt

= B(x) +
(

−A(x)

α(x)
+ A(x)

α(x)

) ∫ x

x0

α(t)B(t) dt = B(x).

45. Transient Currents Suppose the circuit described by Eq. (10) is driven by a sinusoidal voltage source V (t) =
V sin ωt (where V and ω are constant).

(a) Show that

I (t) = V

R2 + L2ω2
(R sin ωt − Lω cos ωt) + Ce−(R/L) t

(b) Let Z =
√

R2 + L2ω2. Choose θ so that Z cos θ = R and Z sin θ = Lω. Use the addition formula for the sine
function to show that

I (t) = V

Z
sin(ωt − θ) + Ce−(R/L) t

This shows that the current in the circuit varies sinusoidally apart from a DC term (called the transient current in
electronics) that decreases exponentially.
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solution
(a) With V (t) = V sin ωt , the equation

dI

dt
+ R

L
I = 1

L
V (t)

becomes

dI

dt
+ R

L
I = V

L
sin ωt.

This is a linear equation in standard form with A(t) = R
L

and B(t) = V
L

sin ωt . By Theorem 1, the integrating factor is

α(t) =
∫

e
∫

A(t) dt = e(R/L) t .

When multiplied by the integrating factor, the equation becomes

(e(R/L) t I )′ = V

L
e(R/L) t sin ωt.

Integration on both sides (integration by parts is needed for the integral on the right-hand side) now yields

(e(R/L) t I ) = V

R2 + L2ω2
e(R/L) t (R sin ωt − Lω cos ωt) + C;

hence,

I (t) = V

R2 + L2ω2
(R sin ωt − Lω cos ωt) + Ce−(R/L) t .

(b) Let Z =
√

R2 + L2ω2, and choose θ so that Z cos θ = R and Z sin θ = Lω. Then

V

R2 + L2ω2
(R sin ωt − Lω cos ωt) = V

Z2
(Z cos θ sin ωt − Z sin θ cos ωt)

= V

Z
(cos θ sin ωt − sin θ cos ωt) = V

Z
sin(ωt − θ).

Thus,

I (t) = V

Z
sin(ωt − θ) + Ce−(R/L) t .

CHAPTER REVIEW EXERCISES

1. Which of the following differential equations are linear? Determine the order of each equation.

(a) y′ = y5 − 3x4y (b) y′ = x5 − 3x4y

(c) y = y′′′ − 3x
√

y (d) sin x · y′′ = y − 1

solution

(a) y5 is a nonlinear term involving the dependent variable, so this is not a linear equation; the highest order derivative
that appears in the equation is a first derivative, so this is a first-order equation.
(b) This is linear equation; the highest order derivative that appears in the equation is a first derivative, so this is a
first-order equation.
(c)

√
y is a nonlinear term involving the dependent variable, so this is not a linear equation; the highest order derivative

that appears in the equation is a third derivative, so this is a third-order equation.
(d) This is linear equation; the highest order derivative that appears in the equation is a second derivative, so this is a
second-order equation.

2. Find a value of c such that y = x − 2 + ecx is a solution of 2y′ + y = x.

solution Let y = x − 2 + ecx . Then

y′ = 1 + cecx,

and

2y′ + y = 2
(
1 + cecx

) + (
x − 2 + ecx

) = 2 + 2cecx + x − 2 + ecx = (2c + 1)ecx + x.

For this to equal x, we must have 2c + 1 = 0, or c = − 1
2 (remember that ecx is never zero).
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In Exercises 3–6, solve using separation of variables.

3.
dy

dt
= t2y−3

solution Rewrite the equation as

y3 dy = t2 dt.

Upon integrating both sides of this equation, we obtain:∫
y3 dy =

∫
t2 dt

y4

4
= t3

3
+ C.

Thus,

y = ±
(

4

3
t3 + C

)1/4
,

where C is an arbitrary constant.

4. xyy′ = 1 − x2

solution Rewrite the equation

xy
dy

dx
= 1 − x2 as y dy =

(
1

x
− x

)
dx.

Upon integrating both sides of this equation, we obtain∫
y dy =

∫ (
1

x
− x

)
dx

y2

2
= ln |x| − x2

2
+ C.

Thus,

y = ±
√

ln x2 + A − x2,

where A = 2C is an arbitrary constant.

5. x
dy

dx
− y = 1

solution Rewrite the equation as

dy

1 + y
= dx

x
.

upon integrating both sides of this equation, we obtain∫
dy

1 + y
=

∫
dx

x

ln |1 + y| = ln |x| + C.

Thus,

y = −1 + Ax,

where A = ±eC is an arbitrary constant.

6. y′ = xy2

x2 + 1

solution Rewrite

dy

dx
= xy2

x2 + 1
as

dy

y2
= x

x2 + 1
dx.
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Upon integrating both sides of this equation, we obtain∫
dy

y2
=

∫
x

x2 + 1
dx

− 1

y
= 1

2
ln

(
x2 + 1

)
+ C.

Thus,

y = − 1
1
2 ln

(
x2 + 1

) + C
,

where C is an arbitrary constant.

In Exercises 7–10, solve the initial value problem using separation of variables.

7. y′ = cos2x, y(0) = π

4
solution First, we find the general solution of the differential equation. Because the variables are already separated,
we integrate both sides to obtain

y =
∫

cos2x dx =
∫ (

1

2
+ 1

2
cos 2x

)
dx = x

2
+ sin 2x

4
+ C.

The initial condition y(0) = π
4 allows us to determine C = π

4 . Thus, the solution is:

y(x) = x

2
+ sin 2x

4
+ π

4
.

8. y′ = cos2y, y(0) = π

4
solution First, we find the general solution of the differential equation. Rewrite

dy

dx
= cos2 y as

dy

cos2 y
= dx.

Upon integrating both sides of this equation, we find

tan y = x + C;
thus,

y = tan−1(x + C).

The initial condition y(0) = π
4 allows us to determine the value of C:

π

4
= tan−1 C so C = 1.

Hence, the solution is y = tan−1(x + 1).

9. y′ = xy2, y(1) = 2

solution First, we find the general solution of the differential equation. Rewrite

dy

dx
= xy2 as

dy

y2
= x dx.

Upon integrating both sides of this equation, we find∫
dy

y2
=

∫
x dx

− 1

y
= 1

2
x2 + C.

Thus,

y = − 1
1
2x2 + C

.
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The initial condition y(1) = 2 allows us to determine the value of C:

2 = − 1
1
2 · 12 + C

= − 2

1 + 2C

1 + 2C = −1

C = −1

Hence, the solution to the initial value problem is

y = − 1
1
2x2 − 1

= − 2

x2 − 2
.

10. xyy′ = 1, y(3) = 2

solution First, we find the general solution of the differential equation. Rewrite

xy
dy

dx
= 1 as y dy = dx

x
.

Next we integrate both sides of the equation to obtain∫
y dy =

∫
dx

x

1

2
y2 = ln |x| + C.

Thus,

y = ±√
2(ln |x| + C).

To satisfy the initial condition y(3) = 2 we must choose the positive square root; moreover,

2 = √
2(ln 3 + C) so C = 2 − ln 3.

Hence, the solution to the initial value problem is

y = √
2(ln |x| + 2 − ln 3) =

√
ln

(
x2

9

)
+ 4.

11. Figure 1 shows the slope field for ·
y = sin y + ty. Sketch the graphs of the solutions with the initial conditions

y(0) = 1 , y(0) = 0, and y(0) = −1.

0 1−2 2−1

−2

−1

0

1

2

t

y

FIGURE 1

solution

−3
−3

−2

−1

0

1

2

3

−2 −1 0 1 2 3

y

t

12. Which of the equations (i)–(iii) corresponds to the slope field in Figure 2?

(i) ·
y = 1 − y2

(ii) ·
y = 1 + y2

(iii) ·
y = y2



April 2, 2011

Chapter Review Exercises 1185

0 1−2 2−1

−2

−1

0

1

y

t

2

FIGURE 2

solution From the figure we see that the the slope is positive even for y > 1, thus, the slope field does not correspond

to the equation ·
y = 1 − y2. Moreover, the slope at y = 0 is positive, so the slope field also does not correspond to the

equation ·
y = y2. The slope field must therefore correspond to (ii): ·

y = 1 + y2.

13. Let y(t) be the solution to the differential equation with slope field as shown in Figure 2, satisfying y(0) = 0. Sketch
the graph of y(t). Then use your answer to Exercise 12 to solve for y(t).

solution As explained in the previous exercise, the slope field in Figure 2 corresponds to the equation ·
y = 1 + y2.

The graph of the solution satisfying y(0) = 0 is:

−3

−3

−2

−1

0

1

2

3

−2 −1 10 2 3

y

t

To solve the initial value problem ·
y = 1 + y2, y(0) = 0, we first find the general solution of the differential equation.

Separating variables yields:

dy

1 + y2
= dt.

Upon integrating both sides of this equation, we find

tan−1 y = t + C or y = tan(t + C).

The initial condition gives C = 0, so the solution is y = tan x.

14. Let y(t) be the solution of 4 ·
y = y2 + t satisfying y(2) = 1. Carry out Euler’s Method with time step h = 0.05 for

n = 6 steps.

solution Rewrite the differential equation as ·
y = 1

4 (y2 + t) to identify F(t, y) = 1
4

(
y2 + t

)
. With t0 = 2, y0 = 1,

and h = 0.05, we calculate

y1 = y0 + hF(t0, y0) = 1.0375

y2 = y1 + hF(t1, y1) = 1.076580

y3 = y2 + hF(t2, y2) = 1.117318

y4 = y3 + hF(t3, y3) = 1.159798

y5 = y4 + hF(t4, y4) = 1.204112

y6 = y5 + hF(t5, y5) = 1.250361

15. Let y(t) be the solution of (x3 + 1)
·
y = y satisfying y(0) = 1. Compute approximations to y(0.1), y(0.2), and y(0.3)

using Euler’s Method with time step h = 0.1.

solution Rewriting the equation as ·
y = y

x3+1
we have F(x, y) = y

x3+1
. Using Euler’s Method with x0 = 0, y0 = 1

and h = 0.1, we calculate

y(0.1) ≈ y1 = y0 + hF(x0, y0) = 1 + 0.1 · 1

03 + 1
= 1.1

y(0.2) ≈ y2 = y1 + hF(x1, y1) = 1.209890

y(0.3) ≈ y3 = y2 + hF(x2, y2) = 1.329919
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In Exercises 16–19, solve using the method of integrating factors.

16.
dy

dt
= y + t2, y(0) = 4

solution First, we find the general solution of the differential equation. Rewrite the equation as

y′ − y = t2,

which is in standard form with A(t) = −1 and B(t) = t2. The integrating factor is

α(t) = e
∫ −1 dt = e−t .

When multiplied by the integrating factor, the rewritten differential equation becomes

(e−t y)′ = t2e−t .

Integration on both sides (integration by parts is needed for the integral on the right-hand side of the equation) now yields

e−t y = −e−t (t2 + 2t + 2) + C;
hence,

y(t) = Cet − t2 − 2t − 2.

The initial condition y(0) = 4 allows us to determine the value of C:

4 = −2 + C so C = 6.

The solution to the initial value problem is then

y = 6et − t2 − 2t − 2.

17.
dy

dx
= y

x
+ x, y(1) = 3

solution First, we find the general solution of the differential equation. Rewrite the equation as

y′ − 1

x
y = x,

which is in standard form with A(x) = − 1
x and B(x) = x. The integrating factor is

α(x) = e
∫ − 1

x
dx = e− ln x = 1

x
.

When multiplied by the integrating factor, the rewritten differential equation becomes(
1

x
y

)′
= 1.

Integration on both sides now yields

1

x
y = x + C;

hence,

y(x) = x2 + Cx.

The initial condition y(1) = 3 allows us to determine the value of C:

3 = 1 + C so C = 2.

The solution to the initial value problem is then

y = x2 + 2x.

18.
dy

dt
= y − 3t , y(−1) = 2

solution First, we find the general solution of the differential equation. Rewrite the equation as

y′ − y = −3t,
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which is in standard form with A(t) = −1 and B(t) = −3t . The integrating factor is

α(t) = e
∫

A(t) dt = e
∫ −dt = e−t .

When multiplied by the integrating factor, the rewritten differential equation becomes

(e−t y)′ = −3te−t .

Integration on both sides (integration by parts is needed for the integral on the right-hand side of the equation) now yields

e−t y = (3t + 3)e−t + C;
hence,

y(t) = 3t + 3 + Cet .

The initial condition y(−1) = 2 allows us to determine the value of C;

2 = Ce−1 + 3(−1) + 3 so C = 2e.

The solution to the initial value problem is then

y = 2e · et + 3t + 3 = 2et+1 + 3t + 3.

19. y′ + 2y = 1 + e−x , y(0) = −4

solution The equation is already in standard form with A(x) = 2 and B(x) = 1 + e−x . The integrating factor is

α(x) = e
∫

2 dx = e2x .

When multiplied by the integrating factor, the original differential equation becomes

(e2xy)′ = e2x + ex .

Integration on both sides now yields

e2xy = 1

2
e2x + ex + C;

hence,

y(x) = 1

2
+ e−x + Ce−2x .

The initial condition y(0) = −4 allows us to determine the value of C:

−4 = 1

2
+ 1 + C so C = −11

2
.

The solution to the initial value problem is then

y(x) = 1

2
+ e−x − 11

2
e−2x .

In Exercises 20–27, solve using the appropriate method.

20. x2y′ = x2 + 1, y(1) = 10

solution First, we find the general solution of the differential equation. Rewrite the equation as

y′ = 1 + 1

x2
.

Because the variables have already been separated, we integrate both sides to obtain

y =
∫ (

1 + 1

x2

)
dx = x − 1

x
+ C.

The initial condition y(1) = 10 allows us to determine the value of C:

10 = 1 − 1 + C so C = 10.

The solution to the initial value problem is then

y = x − 1

x
+ 10.
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21. y′ + (tan x)y = cos2 x, y(π) = 2

solution First, we find the general solution of the differential equation. As this is a first order linear equation with

A(x) = tan x and B(x) = cos2x, we compute the integrating factor

α(x) = e
∫

A(x) dx = e
∫

tan x dx = e− ln cos x = 1

cos x
.

When multiplied by the integrating factor, the original differential equation becomes

(
1

cos x
y

)′
= cos x.

Integration on both sides now yields

1

cos x
y = sin x + C;

hence,

y(x) = sin x cos x + C cos x = 1

2
sin 2x + C cos x.

The initial condition y(π) = 2 allows us to determine the value of C:

2 = 0 + C(−1) so C = −2.

The solution to the initial value problem is then

y = 1

2
sin 2x − 2 cos x.

22. xy′ = 2y + x − 1, y
( 3

2

) = 9

solution First, we find the general solution of the differential equation. This is a linear equation which can be rewritten
as

y′ − 2

x
y = 1 − 1

x
.

Thus, A(x) = − 2
x , B(x) = 1 − 1

x and the integrating factor is

α(x) = e
∫

A(x) dx = e
∫ − 2

x
dx = e−2 ln x = 1

x2
.

When multiplied by the integrating factor, the rewritten differential equation becomes

(
1

x2
y

)′
= 1

x2
− 1

x3
.

Integration on both sides now yields

1

x2
y = − 1

x
+ 1

2x2
+ C;

hence,

y(x) = −x + 1

2
+ Cx2.

The initial condition y
(

3
2

)
= 9 allows us to determine the value of C:

9 = −3

2
+ 1

2
+ 9

4
C so C = 40

9
.

The solution to the initial value problem is then

y = 40

9
x2 − x + 1

2
.
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23. (y − 1)y′ = t , y(1) = −3

solution First, we find the general solution of the differential equation. This is a separable equation that we rewrite as

(y − 1) dy = t dt.

Upon integrating both sides of this equation, we find∫
(y − 1) dy =

∫
t dt

y2

2
− y = 1

2
t2 + C

y2 − 2y + 1 = t2 + C

(y − 1)2 = t2 + C

y(t) = ±
√

t2 + C + 1

To satisfy the initial condition y(1) = −3 we must choose the negative square root; moreover,

−3 = −√
1 + C + 1 so C = 15.

The solution to the initial value problem is then

y(t) = −
√

t2 + 15 + 1

24.
(√

y + 1
)
y′ = ytet2

, y(0) = 1

solution First, we find the general solution of the differential equation. This is a separable equation that we rewrite as(
1√
y

+ 1

y

)
dy = tet2

dt.

Upon integrating both sides of this equation, we find∫ (
1√
y

+ 1

y

)
dy =

∫
tet2

dt

2
√

y + ln y = 1

2
et2 + C.

Note that we cannot solve explicitly for y(t). The initial condition y(0) = 1 still allows us to determine the value
of C:

2(1) + ln 1 = 1

2
+ C so C = 3

2
.

Hence, the general solution is given implicitly by the equation

2
√

y + ln y = 1

2
ex2 + 3

2
.

25.
dw

dx
= k

1 + w2

x
, w(1) = 1

solution First, we find the general solution of the differential equation. This is a separable equation that we rewrite as

dw

1 + w2
= k

x
dx.

Upon integrating both sides of this equation, we find∫
dw

1 + w2
=

∫
k

x
dx

tan−1 w = k ln x + C

w(x) = tan(k ln x + C).

Because the initial condition is specified at x = 1, we are interested in the solution for x > 0; we can therefore omit
the absolute value within the natural logarithm function. The initial condition w(1) = 1 allows us to determine the value
of C:

1 = tan(k ln 1 + C) so C = tan−11 = π

4
.
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The solution to the initial value problem is then

w = tan
(
k ln x + π

4

)
.

26. y′ + 3y − 1

t
= t + 2

solution We rewrite this first order linear equation in standard form:

y′ + 3

t
y = t + 2 + 1

t
.

Thus, A(t) = 3
t , B(t) = t + 2 + 1

t , and the integrating factor is

α(t) = e
∫

A(t) dt = e3 ln t = t3.

When multiplied by the integrating factor, the rewritten differential equation becomes

(t3y)′ = t4 + 2t3 + t2.

Integration on both sides now yields

t3y = 1

5
t5 + 1

2
t4 + 1

3
t3 + C;

hence,

y(t) = 1

5
t2 + 1

2
t + 1

3
+ C

t3
.

27. y′ + y

x
= sin x

solution This is a first order linear equation with A(x) = 1
x and B(x) = sin x. The integrating factor is

α(x) = e
∫

A(x) dx = eln x = x.

When multiplied by the integrating factor, the original differential equation becomes

(xy)′ = x sin x.

Integration on both sides (integration by parts is needed for the integral on the right-hand side) now yields

xy = −x cos x + sin x + C;
hence,

y(x) = − cos x + sin x

x
+ C

x
.

28. Find the solutions to y′ = 4(y − 12) satisfying y(0) = 20 and y(0) = 0, and sketch their graphs.

solution The general solution of the differential equation y′ = 4(y − 12) is

y(t) = 12 + Ce4t ,

for some constant C. If y(0) = 20, then

20 = 12 + Ce0 and C = 8.

Thus, y(t) = 12 + 8e4t . If y(0) = 0, then

0 = 12 + Ce0 and C = −12;
hence, y(t) = 12(1 − e4t ). The graphs of the two solutions are shown below.

–1 –0.5 0.5 1
–20

20

40

y = 12 + 8e4t

y = 12(1 – e4t)
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29. Find the solutions to y′ = −2y + 8 satisfying y(0) = 3 and y(0) = 4, and sketch their graphs.

solution First, rewrite the differential equation as y′ = −2(y − 4); from here we see that the general solution is

y(t) = 4 + Ce−2t ,

for some constant C. If y(0) = 3, then

3 = 4 + Ce0 and C = −1.

Thus, y(t) = 4 − e−2t . If y(0) = 4, then

4 = 4 + Ce0 and C = 0;
hence, y(t) = 4. The graphs of the two solutions are shown below.

−0.5

−2

2

4

y

y = 4

y = 4 − e−2t

x
0.5 1.0 1.5

30. Show that y = sin−1 x satisfies the differential equation y′ = sec y with initial condition y(0) = 0.

solution Let y = sin−1 x. Then x = sin y and we construct the right triangle shown below.

1 − x2

x

y

1

Thus,

sec y = 1√
1 − x2

= d

dx
sin−1 x = y′.

Moreover, y(0) = sin−1 0 = 0. Consequently, y = sin−1 x satisfies the differential equation y′ = sec y with initial
condition y(0) = 0.

31. What is the limit lim
t→∞ y(t) if y(t) is a solution of:

(a)
dy

dt
= −4(y − 12)? (b)

dy

dt
= 4(y − 12)?

(c)
dy

dt
= −4y − 12?

solution

(a) The general solution of
dy

dt
= −4(y − 12) is y(t) = 12 + Ce−4t , where C is an arbitrary constant. Regardless of

the value of C,

lim
t→∞ y(t) = lim

t→∞(12 + Ce−4t ) = 12.

(b) The general solution of
dy

dt
= 4(y − 12) is y(t) = 12 + Ce4t , where C is an arbitrary constant. Here, the limit

depends on the value of C. Specifically,

lim
t→∞ y(t) = lim

t→∞(12 + Ce4t ) =

⎧⎪⎨
⎪⎩

∞, C > 0

12, C = 0

−∞, C < 0
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(c) The general solution of
dy

dt
= −4y − 12 = −4(y + 3) is y(t) = −3 + Ce−4t , where C is an arbitrary constant.

Regardless of the value of C,

lim
t→∞ y(t) = lim

t→∞(−3 + Ce−4t ) = −3.

In Exercises 32–35, let P(t) denote the balance at time t (years) of an annuity that earns 5% interest continuously
compounded and pays out $20,000/year continuously.

32. Find the differential equation satisfied by P(t).

solution Since money is withdrawn continuously at a rate of $20,000 a year and the growth due to interest is 0.05P ,
the rate of change of the balance is

P ′(t) = 0.05P − 20,000.

Thus, the differential equation satisfied by P(t) is

P ′(t) = 0.05(P − 400,000).

33. Determine P(5) if P(0) = $200,000.

solution In the previous exercise we concluded that P(t) satisfies the equation P ′ = 0.05(P − 400,000). The general
solution of this differential equation is

P(t) = 400,000 + Ce0.05t .

Given P(0) = 200,000, it follows that

200,000 = 400,000 + Ce0.05·0 = 400,000 + C

or

C = −200,000.

Thus,

P(t) = 400,000 − 200,000e0.05t ,

and

P(5) = 400,000 − 200,000e0.05(5) ≈ $143,194.90.

34. When does the annuity run out of money if P(0) = $300,000?

solution We found that

P(t) = 400,000 + Ce0.05t .

If P(0) = 300,000, then

300,000 = 400,000 + Ce0.05·0 = 400,000 + C

or

C = −100,000.

Thus,

P(t) = 400,000 − 100,000e0.05t .

The annuity runs out of money when P(t) = 0; that is, when

400,000 − 100,000e0.05t = 0.

Solving for t yields

t = 1

0.05
ln 4 = 20 ln 4 ≈ 27.73.

The money runs out after roughly 27.73 years.
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35. What is the minimum initial balance that will allow the annuity to make payments indefinitely?

solution In Exercise 33, we found that the balance at time t is

P(t) = 400,000 + Ce0.05t .

If initial balance is P0 then

P0 = P(0) = 400,000 + Ce0.05·0 = 400,000 + C

or

C = P0 − 400,000.

Thus,

P(t) = 400,000 + (P0 − 400,000) e0.05t .

If P0 ≥ 400,000, then P(t) is always positive. Therefore, the minimum initial balance that allows the annuity to make
payments indefinitely is P0 = $400,000.

36. State whether the differential equation can be solved using separation of variables, the method of integrating factors,
both, or neither.

(a) y′ = y + x2 (b) xy′ = y + 1

(c) y′ = y2 + x2 (d) xy′ = y2

solution

(a) The equation y′ = y + x2 is a first order linear equation; hence, it can be solved by the method of integration factors.
However, it cannot be written in the form y′ = f (x)g(y); therefore, separation of variables cannot be used.

(b) The equation xy′ = y + 1 is a first order linear equation; hence, it can be solved using the method of integration
factors. We can rewrite this equation as y′ = 1

x (y + 1); therefore, it can also be solved by separating the variables.

(c) The equation y′ = y2 + x2 cannot be written in the form y′ = f (x)g(y); hence, separation of variables cannot be
used. This equation is also not linear; hence, the method of integrating factors cannot be used.

(d) The equation xy′ = y2 can be rewritten as y′ = 1
x y2; therefore, it can be solved by separating the variables. Since it

is not a linear equation, the method of integrating factors cannot be used.

37. Let A and B be constants. Prove that if A > 0, then all solutions of dy
dt

+ Ay = B approach the same limit as t → ∞.

solution This is a linear first-order equation in standard form with integrating factor

α(t) = e
∫

A dt = eAt .

When multiplied by the integrating factor, the original differential equation becomes

(eAt y)′ = BeAt .

Integration on both sides now yields

eAty = B

A
eAt + C;

hence,

y(t) = B

A
+ Ce−At .

Because A > 0,

lim
t→∞ y(t) = lim

t→∞

(
B

A
+ Ce−At

)
= B

A
.

We conclude that if A > 0, all solutions approach the limit B
A

as t → ∞.
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38. At time t = 0, a tank of height 5 m in the shape of an inverted pyramid whose cross section at the top is a square of
side 2 m is filled with water. Water flows through a hole at the bottom of area 0.002 m2. Use Torricelli’s Law to determine
the time required for the tank to empty.

solution y(t), the height of the water at time t , obeys the differential equation:

dy

dt
= Bv(y)

A(y)

where v(y) is the velocity of the water flowing through the hole when the height of the water is y, B is the area of
the hole, and A(y) is the cross-sectional area of the surface of the water when it is at height y. By Torricelli’s Law,
v(y) = −√

19.6
√

y = −14
√

y/
√

10 m/s. The area of the hole is B = 0.002. To determine A(y), note that the ratio of
the length of a side of the square forming the surface of the water to the height of the water is 2/5 (using similar triangles).

Thus when the water is at height y, the area is A(y) =
(

2

5
y

)2
= 4y2

25
. Thus

dy

dt
= −0.002 · 14

√
y · 25

4y2
√

10
= −0.175√

10
y−3/2

Separating variables gives

y3/2 dy = −0.175√
10

dt

Integrating both sides gives

2

5
y5/2 = −0.175√

10
t + C so that y =

(−0.4375√
10

t + 5

2
C

)2/5

At t = 0, y(t) = 5, so that

5 =
(

5

2
C

)2/5
and C ≈ 22.36

so that

y(t) ≈ (−0.138t + 55.9)2/5

The tank is empty when y(t) = 0, so when t = 55.9/0.138 ≈ 405.07. The tank is empty after approximately 405 seconds,
or 6 minutes 45 seconds.

39. The trough in Figure 3 (dimensions in centimeters) is filled with water. At time t = 0 (in seconds), water begins
leaking through a hole at the bottom of area 4 cm2. Let y(t) be the water height at time t . Find a differential equation for
y(t) and solve it to determine when the water level decreases to 60 cm.

180

120

360

260

FIGURE 3

solution y(t) obeys the differential equation:

dy

dt
= Bv(y)

A(y)
,

where v(y) denotes the velocity of the water flowing through the hole when the trough is filled to height y, B denotes the
area of the hole and A(y) denotes the area of the horizontal cross section of the trough at height y. Since measurements
are all in centimeters, we will work in centimeters. We have

g = 9.8 m/s2 = 980 cm/s2
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By Torricelli’s Law, v(y) = −√
2 · 980

√
y = −14

√
10

√
y m/s. The area of the hole is B = 4 cm2. The horizontal cross

section of the trough at height y is a rectangle of length 360 and width w(y). As w(y) varies linearly from 180 when
y = 0 to 260 when y = 120, it follows that

w(y) = 180 + 80y

120
= 180 + 2

3
y

so that the area of the horizontal cross-section at height y is

A(y) = 360w(y) = 64800 + 240y = 240(y + 270)

The differential equation for y(t) then becomes

dy

dt
= Bv(y)

A(y)
= −4 · 14

√
10

√
y

240(y + 270)
= −7

√
10

30
·

√
y

y + 270

This equation is separable, so

y + 270√
y

dy = −7
√

10

30
dt

(y1/2 + 270y−1/2) dy = −7
√

10

30
dt

∫
(y1/2 + 270y−1/2) dy = −7

√
10

30

∫
1 dt

2

3
y3/2 + 540y1/2 = −7

√
10

30
t + C

y3/2 + 810y1/2 = −7
√

10

20
t + C

The initial condition y(0) = 120 allows us to determine the value of C:

1203/2 + 810 · 1201/2 = 0 + C so C = 930
√

120 = 1860
√

30

Thus the height of the water is given implicitly by the equation

y3/2 + 810y1/2 = −7
√

10

20
t + 1860

√
30

We want to find t such that y(t) = 60:

603/2 + 810 · 601/2 = −7
√

10

20
t + 1860

√
30

1740
√

15 = −7
√

10

20
t + 1860

√
30

t = 120

7

√
10(31

√
30 − 29

√
15) ≈ 3115.88 s

The height of the water in the tank is 60 cm after approximately 3116 seconds, or 51 minutes 56 seconds.

40. Find the solution of the logistic equation ·
y = 0.4y(4 − y) satisfying y(0) = 8.

solution We can write the given equation as

·
y = 1.6y

(
1 − y

4

)
.

This is a logistic equation with k = 1.6 and A = 4. Therefore,

y(t) = A

1 − e−kt /C
= 4

1 − e−1.6t /C
.

The initial condition y(0) = 8 allows us to determine the value of C:

8 = 4

1 − 1
C

; 1 − 1

C
= 1

2
; so C = 2.

Thus,

y(t) = 4

1 − e−1.6t /2
= 8

2 − e−1.6t
.
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41. Let y(t) be the solution of ·
y = 0.3y(2 − y) with y(0) = 1. Determine lim

t→∞ y(t) without solving for y explicitly.

solution We write the given equation in the form

·
y = 0.6y

(
1 − y

2

)
.

This is a logistic equation with A = 2 and k = 0.6. Because the initial condition y(0) = y0 = 1 satisfies 0 < y0 < A,
the solution is increasing and approaches A as t → ∞. That is, lim

t→∞y(t) = 2.

42. Suppose that y′ = ky(1 − y/8) has a solution satisfying y(0) = 12 and y(10) = 24. Find k.

solution The given differential equation is a logistic equation with A = 8. Thus,

y(t) = 8

1 − e−kt /C
.

The initial condition y(0) = 12 allows us to determine the value of C:

12 = 8

1 − 1
C

; 1 − 1

C
= 2

3
; so C = 3.

Hence,

y(t) = 8

1 − e−kt /3
= 24

3 − e−kt
.

Now, the condition y(10) = 24 allows us to determine the value of k:

24 = 24

3 − e−10k

3 − e−10k = 1

k = − ln 2

10
≈ −0.0693.

43. A lake has a carrying capacity of 1000 fish. Assume that the fish population grows logistically with growth constant
k = 0.2 day−1. How many days will it take for the population to reach 900 fish if the initial population is 20 fish?

solution Let y(t) represent the fish population. Because the population grows logistically with k = 0.2 and A = 1000,

y(t) = 1000

1 − e−0.2t /C
.

The initial condition y(0) = 20 allows us to determine the value of C:

20 = 1000

1 − 1
C

; 1 − 1

C
= 50; so C = − 1

49
.

Hence,

y(t) = 1000

1 + 49e−0.2t
.

The population will reach 900 fish when

1000

1 + 49e−0.2t
= 900.

Solving for t , we find

t = 5 ln 441 ≈ 30.44 days.

44. A rabbit population on an island increases exponentially with growth rate k = 0.12 months−1. When the
population reaches 300 rabbits (say, at time t = 0), wolves begin eating the rabbits at a rate of r rabbits per month.

(a) Find a differential equation satisfied by the rabbit population P(t).

(b) How large can r be without the rabbit population becoming extinct?
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solution

(a) The rabbit population P(t) obeys the differential equation

dP

dt
= 0.12P − r,

where the term 0.12P accounts for the exponential growth of the population and the term −r accounts for the rate of
decline in the rabbit population due to their being food for wolves.

(b) Rewrite the linear differential equation from part (a) as

dP

dt
− 0.12P = −r,

which is in standard form with A = −0.12 and B = −r . The integrating factor is

α(t) = e
∫

A dt = e
∫ −0.12 dt = e−0.12t .

When multiplied by the integrating factor, the rewritten differential equation becomes

(e−0.12t P )′ = −re−0.12t .

Integration on both sides now yields

e−0.12t P = r

0.12
e−0.12t + C;

hence,

P(t) = r

0.12
+ Ce0.12t .

The initial condition P(0) = 300 allows us to determine the value of C:

300 = r

0.12
+ C so C = 300 − r

0.12
.

The solution to the initial value problem is then

P(t) =
(

300 − r

0.12

)
e0.12t + r

0.12
.

Now, if 300 − r
0.12 < 0, then lim

t→∞P(t) = −∞, and the population becomes extinct. Therefore, in order for the population

to survive, we must have

300 − r

0.12
≥ 0 or r ≤ 36.

We conclude that the maximum rate at which the wolves can eat the rabbits without driving the rabbits to extinction is
r = 36 rabbits per month.

45. Show that y = sin(tan−1 x + C) is the general solution of y′ =
√

1 − y2/
(
1 + x2)

. Then use the addition formula
for the sine function to show that the general solution may be written

y = (cos C)x + sin C√
1 + x2

solution Rewrite

dy

dx
=

√
1 − y2

1 + x2
as

dy√
1 − y2

= dx

1 + x2
.

Upon integrating both sides of this equation, we find∫
dy√

1 − y2
=

∫
dx

1 + x2

sin−1y = tan−1x + C

Thus,

y(x) = sin
(
tan−1x + C

)
.
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To express the solution in the required form, we use the addition formula

sin(α + β) = sin α cos β + sin β cos α

This yields

y(x) = sin
(
tan−1x

)
cos C + sin C cos

(
tan−1x

)
.

Using the figure below, we see that

sin
(
tan−1x

) = x√
1 + x2

; and

cos
(
tan−1x

) = 1√
1 + x2

.

Finally,

y = x cos C√
1 + x2

+ sin C√
1 + x2

= (cos C)x + sin C√
1 + x2

.

x

1

1 + x2

tan−1 x

46. A tank is filled with 300 liters of contaminated water containing 3 kg of toxin. Pure water is pumped in at a rate of
40 L/min, mixes instantaneously, and is then pumped out at the same rate. Let y(t) be the quantity of toxin present in the
tank at time t .

(a) Find a differential equation satisfied by y(t).

(b) Solve for y(t).

(c) Find the time at which there is 0.01 kg of toxin present.

solution

(a) The net flow of toxin into or out of the tank at time t is

dy

dt
= toxin rate in − toxin rate out =

(
40

L

min

) (
0

kg

L

)
−

(
40

L

min

) (
y(t)

300

kg

L

)

= − 2

15
y(t)

(b) This is a linear differential equation. Putting it in standard form gives

dy

dt
+ 2

15
y = 0

The integrating factor is

α(t) = e
∫
(2/15) dt = e2t/15

When multiplied by the integrating factor, the differential equation becomes

(e2t/15y)′ = 0

Integrate both sides and multiply through by e−2t/15 to get

y = Ce−2t/15

Since there are initially 3 kg of toxin present, y(0) = 3 so that C = 3. Finally, we have

y = 3e−2t/15
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(c) We solve for t :

0.01 = 3e−2t/15 ⇒ t = −5

2
ln 0.01 ≈ 11.51

There is 0.01 kg of toxin in the tank after about 11 and a half minutes.

47. At t = 0, a tank of volume 300 L is filled with 100 L of water containing salt at a concentration of 8 g/L. Fresh water
flows in at a rate of 40 L/min, mixes instantaneously, and exits at the same rate. Let c1(t) be the salt concentration at
time t .

(a) Find a differential equation satisfied by c1(t) Hint: Find the differential equation for the quantity of salt y(t), and
observe that c1(t) = y(t)/100.

(b) Find the salt concentration c1(t) in the tank as a function of time.

solution

(a) Let y(t) be the amount of salt in the tank at time t ; then c1(t) = y(t)/100. The rate of change of the amount of salt
in the tank is

dy

dt
= salt rate in − salt rate out =

(
40

L

min

) (
0

g

L

)
−

(
40

L

min

) ( y

100
· g

L

)

= −2

5
y

Now, c′
1(t) = y′(t)/100 and c(t) = y(t)/100, so that c1 satisfies the same differential equation:

dc1

dt
= −2

5
c1

(b) This is a linear differential equation. Putting it in standard form gives

dc1

dt
+ 2

5
c1 = 0

The integrating factor is e2t/5; multiplying both sides by the integrating factor gives

(e2t/5c1)′ = 0

Integrate and multiply through by e−2t/5 to get

c1(t) = Ce−2t/5

The initial condition tells us that y(0) = Ce−2·0/5 = C = 8, so that finally,

c1(t) = 8e−2t/5

48. The outflow of the tank in Exercise 47 is directed into a second tank containing V liters of fresh water where it mixes
instantaneously and exits at the same rate of 40 L/min. Determine the salt concentration c2(t) in the second tank as a
function of time in the following two cases:

(a) V = 200 (b) V = 300

In each case, determine the maximum concentration.

solution Let y2(t) be the amount of salt in the second tank at time t ; then y2(t) = c2(t)V and y′
2(t) = c′

2(t)V . The
rate of change in the amount of salt in the second tank is

dy2

dt
= salt rate in − salt rate out =

(
40

L

min

) (
c1

g

L

)
−

(
40

L

min

) (y2

V
· g

L

)

= 40c1 − 40

V
y2

Substituting for y2(t) and y′
2(t) gives

V c′
2(t) = 40c1(t) − 40

V
V c2(t) so c′

2(t) = 40

V
(c1(t) − c2(t))

This is a linear differential equation; in standard form, it is

c′
2(t) + 40

V
c2(t) = 40

V
c1(t)



April 2, 2011

1200 C H A P T E R 9 INTRODUCTION TO DIFFERENTIAL EQUATIONS

From the previous problem, we know that c1(t) = 8e−2t/5; substituting gives

c′
2(t) + 40

V
c2(t) = 320

V
e−2t/5

The integrating factor is e40t/V ; multiplying through by this factor gives

(e40t/V c2)′ = 320

V
e(40t/V )−(2t/5) = 320

V
e(200−2V )t/5V

Integrate both sides to get

e40t/V c2 = 320

V
· 5V

200 − 2V
e(200−2V )t/5V + C = 800

100 − V
e(200−2V )t/5V + C

Multiply through by e−40t/V to get

c2(t) = 800

100 − V
e−2t/5 + Ce−40t/V

Since tank 2 initially contains fresh water, c2(0) = 0, so that C = − 800
100−V

and

c2(t) = 800

100 − V
(e−2t/5 − e−40t/V )

(a) If V = 200, we have

c2(t) = −8(e−2t/5 − e−t/5) = 8(e−t/5 − e−2t/5)

The concentration of salt is at a maximum when c′
2(t) = 0:

0 = c′
2(t) = 16

5
e−2t/5 − 8

5
e−t/5

e−t/5 = 2e−2t/5

− t

5
= −2t

5
+ ln 2

t = 5 ln 2 ≈ 3.47

so that the concentration of salt is at a maximum after about 3 and a half minutes.

(b) If V = 300, we have

c2(t) = −4(e−2t/5 − e−2t/15) = 4(e−2t/15 − e−2t/5)

The concentration of salt is at a maximum when c′
2(t) = 0:

0 = c′
2(t) = 8

5
e−2t/5 − 8

15
e−2t/15

e−2t/15 = 3e−2t/5

− 2

15
t = −2

5
t + ln 3

t = 15

4
ln 3 ≈ 4.12

so that the concentration of salt is at a maximum after about 4 minutes 7 seconds.
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10.1 Sequences

Preliminary Questions
1. What is a4 for the sequence an = n2 − n?

solution Substituting n = 4 in the expression for an gives

a4 = 42 − 4 = 12.

2. Which of the following sequences converge to zero?

(a)
n2

n2 + 1
(b) 2n (c)

(−1

2

)n

solution

(a) This sequence does not converge to zero:

lim
n→∞

n2

n2 + 1
= lim

x→∞
x2

x2 + 1
= lim

x→∞
1

1 + 1
x2

= 1

1 + 0
= 1.

(b) This sequence does not converge to zero: this is a geometric sequence with r = 2 > 1; hence, the sequence diverges
to ∞.

(c) Recall that if |an| converges to 0, then an must also converge to zero. Here,∣∣∣∣
(

−1

2

)n∣∣∣∣ =
(

1

2

)n

,

which is a geometric sequence with 0 < r < 1; hence, ( 1
2 )n converges to zero. It therefore follows that (− 1

2 )n converges
to zero.

3. Let an be the nth decimal approximation to
√

2. That is, a1 = 1, a2 = 1.4, a3 = 1.41, etc. What is lim
n→∞ an?

solution lim
n→∞ an = √

2.

4. Which of the following sequences is defined recursively?

(a) an = √
4 + n (b) bn = √

4 + bn−1

solution

(a) an can be computed directly, since it depends on n only and not on preceding terms. Therefore an is defined explicitly
and not recursively.

(b) bn is computed in terms of the preceding term bn−1, hence the sequence {bn} is defined recursively.

5. Theorem 5 says that every convergent sequence is bounded. Determine if the following statements are true or false
and if false, give a counterexample.

(a) If {an} is bounded, then it converges.

(b) If {an} is not bounded, then it diverges.

(c) If {an} diverges, then it is not bounded.

solution

(a) This statement is false. The sequence an = cos πn is bounded since −1 ≤ cos πn ≤ 1 for all n, but it does not
converge: since an = cos nπ = (−1)n, the terms assume the two values 1 and −1 alternately, hence they do not approach
one value.

(b) By Theorem 5, a converging sequence must be bounded. Therefore, if a sequence is not bounded, it certainly does
not converge.

(c) The statement is false. The sequence an = (−1)n is bounded, but it does not approach one limit.

1201
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Exercises
1. Match each sequence with its general term:

a1, a2, a3, a4, . . . General term

(a) 1
2 , 2

3 , 3
4 , 4

5 , . . . (i) cos πn

(b) −1, 1, −1, 1, . . . (ii)
n!
2n

(c) 1, −1, 1, −1, . . . (iii) (−1)n+1

(d) 1
2 , 2

4 , 6
8 , 24

16 . . . (iv)
n

n + 1

solution
(a) The numerator of each term is the same as the index of the term, and the denominator is one more than the numerator;
hence an = n

n+1 , n = 1, 2, 3, . . . .

(b) The terms of this sequence are alternating between −1 and 1 so that the positive terms are in the even places. Since
cos πn = 1 for even n and cos πn = −1 for odd n, we have an = cos πn, n = 1, 2, . . . .

(c) The terms an are 1 for odd n and −1 for even n. Hence, an = (−1)n+1, n = 1, 2, . . .

(d) The numerator of each term is n!, and the denominator is 2n; hence, an = n!
2n , n = 1, 2, 3, . . . .

2. Let an = 1

2n − 1
for n = 1, 2, 3, . . . . Write out the first three terms of the following sequences.

(a) bn = an+1 (b) cn = an+3

(c) dn = a2
n (d) en = 2an − an+1

solution
(a) The first three terms of {bn} are:

b1 = a2 = 1

2 · 2 − 1
= 1

3
, b2 = a3 = 1

2 · 3 − 1
= 1

5
, b3 = a4 = 1

2 · 4 − 1
= 1

7
.

(b) The first three terms of {cn} are:

c1 = a4 = 1

2 · 4 − 1
= 1

7
, c2 = a5 = 1

2 · 5 − 1
= 1

9
, c3 = a6 = 1

2 · 6 − 1
= 1

11
.

(c) Note

a1 = 1

2 · 1 − 1
= 1, a2 = 1

2 · 2 − 1
= 1

3
, a3 = 1

2 · 3 − 1
= 1

5
.

Thus,

d1 = a2
1 = 12 = 1, d2 = a2

2 =
(

1

3

)2
= 1

9
, d3 = a2

3 =
(

1

5

)2
= 1

25
.

(d) The first three terms of {en} are:

e1 = 2a1 − a2, e2 = 2a2 − a3, e3 = 2a3 − a4.

Thus, we must compute a1, a2, a3 and a4. We set n = 1, 2, 3 and 4 in the formula for an to obtain:

a1 = 1

2 · 1 − 1
= 1, a2 = 1

2 · 2 − 1
= 1

3
, a3 = 1

2 · 3 − 1
= 1

5
, a4 = 1

2 · 4 − 1
= 1

7
.

Therefore,

e1 = 2 · 1 − 1

3
= 5

3
, e2 = 2 · 1

3
− 1

5
= 7

15
, e3 = 2 · 1

5
− 1

7
= 9

35
.

In Exercises 3–12, calculate the first four terms of the sequence, starting with n = 1.

3. cn = 3n

n!
solution Setting n = 1, 2, 3, 4 in the formula for cn gives

c1 = 31

1! = 3

1
= 3, c2 = 32

2! = 9

2
,

c3 = 33

3! = 27

6
= 9

2
, c4 = 34

4! = 81

24
= 27

8
.
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4. bn = (2n − 1)!
n!

solution Setting n = 1, 2, 3, 4 in the formula for bn gives

b1 = (2 · 1 − 1)!
1! = 1

1
= 1, b2 = (2 · 2 − 1)

2! = 6

2
= 3,

b3 = (2 · 3 − 1)!
3! = 120

6
= 20, b4 = (2 · 4 − 1)

4! = 5040

24
= 210.

5. a1 = 2, an+1 = 2a2
n − 3

solution For n = 1, 2, 3 we have:

a2 = a1+1 = 2a2
1 − 3 = 2 · 4 − 3 = 5;

a3 = a2+1 = 2a2
2 − 3 = 2 · 25 − 3 = 47;

a4 = a3+1 = 2a2
3 − 3 = 2 · 2209 − 3 = 4415.

The first four terms of {an} are 2, 5, 47, 4415.

6. b1 = 1, bn = bn−1 + 1

bn−1

solution For n = 2, 3, 4 we have

b2 = b1 + 1

b1
= 1 + 1

1
= 2;

b3 = b2 + 1

b2
= 2 + 1

2
= 5

2
;

b4 = b3 + 1

b2
= 5

2
+ 2

5
= 29

10
.

The first four terms of {bn} are 1, 2,
5

2
,

29

10
.

7. bn = 5 + cos πn

solution For n = 1, 2, 3, 4 we have

b1 = 5 + cos π = 4;
b2 = 5 + cos 2π = 6;
b3 = 5 + cos 3π = 4;
b4 = 5 + cos 4π = 6.

The first four terms of {bn} are 4, 6, 4, 6.

8. cn = (−1)2n+1

solution for n = 1, 2, 3, 4 we have

c1 = (−1)2·1+1 = (−1)3 = −1;
c2 = (−1)2·2+1 = (−1)5 = −1;
c3 = (−1)2·3+1 = (−1)7 = −1;
c4 = (−1)2·4+1 = (−1)9 = −1.

The first four terms of {cn} are −1, −1, −1, −1.

9. cn = 1 + 1

2
+ 1

3
+ · · · + 1

n

solution

c1 = 1;

c2 = 1 + 1

2
= 3

2
;

c3 = 1 + 1

2
+ 1

3
= 3

2
+ 1

3
= 11

6
;

c4 = 1 + 1

2
+ 1

3
+ 1

4
= 11

6
+ 1

4
= 25

12
.
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10. an = n + (n + 1) + (n + 2) + · · · + (2n)

solution The general term an is the sum of n + 1 successive numbers, where the first one is n and the last one is 2n.
Thus,

a1 = 1 + 2 = 3;
a2 = 2 + 3 + 4 = 9;
a3 = 3 + 4 + 5 + 6 = 18;
a4 = 4 + 5 + 6 + 7 + 8 = 30.

11. b1 = 2, b2 = 3, bn = 2bn−1 + bn−2

solution We need to find b3 and b4. Setting n = 3 and n = 4 and using the given values for b1 and b2 we obtain:

b3 = 2b3−1 + b3−2 = 2b2 + b1 = 2 · 3 + 2 = 8;
b4 = 2b4−1 + b4−2 = 2b3 + b2 = 2 · 8 + 3 = 19.

The first four terms of the sequence {bn} are 2, 3, 8, 19.

12. cn = n-place decimal approximation to e

solution Using a calculator we find that e = 2.718281828 . . .. Thus, the four first terms of {cn} are

c1 = 2.7; c2 = 2.72; c3 = 2.718; c4 = 2.7183.

13. Find a formula for the nth term of each sequence.

(a)
1

1
,
−1

8
,

1

27
, . . . (b)

2

6
,

3

7
,

4

8
, . . .

solution

(a) The denominators are the third powers of the positive integers starting with n = 1. Also, the sign of the terms is
alternating with the sign of the first term being positive. Thus,

a1 = 1

13
= (−1)1+1

13
; a2 = − 1

23
= (−1)2+1

23
; a3 = 1

33
= (−1)3+1

33
.

This rule leads to the following formula for the nth term:

an = (−1)n+1

n3
.

(b) Assuming a starting index of n = 1, we see that each numerator is one more than the index and the denominator is
four more than the numerator. Thus, the general term an is

an = n + 1

n + 5
.

14. Suppose that lim
n→∞ an = 4 and lim

n→∞ bn = 7. Determine:

(a) lim
n→∞(an + bn) (b) lim

n→∞ a3
n

(c) lim
n→∞ cos(πbn) (d) lim

n→∞(a2
n − 2anbn)

solution

(a) By the Limit Laws for Sequences, we find

lim
n→∞ (an + bn) = lim

n→∞ an + lim
n→∞ bn = 4 + 7 = 11.

(b) By the Limit Laws for Sequences, we find

lim
n→∞ a3

n = lim
n→∞ (an · an · an) =

(
lim

n→∞ an

)
·
(

lim
n→∞ an

)
·
(

lim
n→∞ an

)
=
(

lim
n→∞ an

)3 = 43 = 64.

(c) By Theorem 4, we can “bring the limit inside the function":

lim
n→∞ cos(πbn) = cos

(
lim

n→∞ πbn

)
= cos

(
π lim

n→∞ bn

)
= cos(7π) = −1.
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(d) By the Limit Laws of Sequences, we find

lim
n→∞

(
a2
n − 2anbn

)
= lim

n→∞ a2
n − lim

n→∞ 2anbn =
(

lim
n→∞ an

)2 − 2
(

lim
n→∞ an

) (
lim

n→∞ bn

)
= 42 − 2 · 4 · 7 = −40.

In Exercises 15–26, use Theorem 1 to determine the limit of the sequence or state that the sequence diverges.

15. an = 12

solution We have an = f (n) where f (x) = 12; thus,

lim
n→∞ an = lim

x→∞ f (x) = lim
x→∞ 12 = 12.

16. an = 20 − 4

n2

solution We have an = f (n) where f (x) = 20 − 4

x2
; thus,

lim
n→∞

(
20 − 4

n2

)
= lim

x→∞

(
20 − 4

x2

)
= 20 − 0 = 20.

17. bn = 5n − 1

12n + 9

solution We have bn = f (n) where f (x) = 5x − 1

12x + 9
; thus,

lim
n→∞

5n − 1

12n + 9
= lim

x→∞
5x − 1

12x + 9
= 5

12
.

18. an = 4 + n − 3n2

4n2 + 1

solution We have an = f (n) where f (x) = 4 + x − 3x2

4x2 + 1
; thus,

lim
n→∞

4 + n − 3n2

4n2 + 1
= lim

x→∞
4 + x − 3x2

4x2 + 1
= −3

4

19. cn = −2−n

solution We have cn = f (n) where f (x) = −2−x ; thus,

lim
n→∞

(−2−n
) = lim

x→∞ −2−x = lim
x→∞ − 1

2x
= 0.

20. zn =
(

1

3

)n

solution We have zn = f (n) where f (x) =
(

1

3

)x

; thus,

lim
n→∞

(
1

3

)n

= lim
x→∞

(
1

3

)x

= 0.

21. cn = 9n

solution We have cn = f (n) where f (x) = 9x ; thus,

lim
n→∞ 9n = lim

x→∞ 9x = ∞
Thus, the sequence 9n diverges.

22. zn = 10−1/n

solution We have zn = f (n) where f (x) = (0.1)−1/x ; thus

lim
n→∞(0.1)−1/n = lim

x→∞(0.1)−1/x = (0.1)limx→∞(−1/x) = (0.1)0 = 1.

23. an = n√
n2 + 1

solution We have an = f (n) where f (x) = x√
x2 + 1

; thus,

lim
n→∞

n√
n2 + 1

= lim
x→∞

x√
x2 + 1

= lim
x→∞

x
x√

x2+1
x

= lim
x→∞

1√
x2+1
x2

= lim
x→∞

1√
1 + 1

x2

= 1√
1 + 0

= 1.
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24. an = n√
n3 + 1

solution We have an = f (n) where f (x) = x√
x3 + 1

; thus,

lim
n→∞

n√
n3 + 1

= lim
x→∞

x√
x3 + 1

= lim
x→∞

x
x3/2√
x3+1
x3/2

= lim
x→∞

1√
x√

1 + 1
x3

= 0√
1 + 0

= 0

1
= 0.

25. an = ln

(
12n + 2

−9 + 4n

)

solution We have an = f (n) where f (x) = ln

(
12x + 2

−9 + 4x

)
; thus,

lim
n→∞ ln

(
12n + 2

−9 + 4n

)
= lim

x→∞ ln

(
12x + 2

−9 + 4x

)
= ln lim

x→∞

(
12x + 2

−9 + 4x

)
= ln 3

26. rn = ln n − ln(n2 + 1)

solution We have rn = f (n) where f (x) = ln x − ln(x2 + 1); thus,

lim
n→∞(ln n − ln(n2 + 1)) = lim

x→∞(ln x − ln(x2 + 1)) = lim
x→∞ ln

x

x2 + 1

But this function diverges as x → ∞, so that rn diverges as well.

In Exercises 27–30, use Theorem 4 to determine the limit of the sequence.

27. an =
√

4 + 1

n

solution We have

lim
n→∞ 4 + 1

n
= lim

x→∞ 4 + 1

x
= 4

Since
√

x is a continuous function for x > 0, Theorem 4 tells us that

lim
n→∞

√
4 + 1

n
=
√

lim
n→∞ 4 + 1

n
= √

4 = 2

28. an = e4n/(3n+9)

solution We have

lim
n→∞

4n

3n + 9
= 4

3

Since ex is continuous for all x, Theorem 4 tells us that

lim
n→∞ e4n/(3n+9) = elimn→∞ 4n/(3n+9) = e4/3

29. an = cos−1

(
n3

2n3 + 1

)

solution We have

lim
n→∞

n3

2n3 + 1
= 1

2

Since cos−1(x) is continuous for all x, Theorem 4 tells us that

lim
n→∞ cos−1

(
n3

2n3 + 1

)
= cos−1

(
lim

n→∞
n3

2n3 + 1

)
= cos−1(1/2) = π

3

30. an = tan−1(e−n)

solution We have

lim
n→∞ = e−n lim

x→∞ e−x = 0

Since tan−1(x) is continuous for all x, Theorem 4 tells us that

lim
n→∞ tan−1(e−n) = tan−1

(
lim

n→∞ e−n
)

= tan−1(0) = 0
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31. Let an = n

n + 1
. Find a number M such that:

(a) |an − 1| ≤ 0.001 for n ≥ M .

(b) |an − 1| ≤ 0.00001 for n ≥ M .

Then use the limit definition to prove that lim
n→∞ an = 1.

solution
(a) We have

|an − 1| =
∣∣∣∣ n

n + 1
− 1

∣∣∣∣ =
∣∣∣∣n − (n + 1)

n + 1

∣∣∣∣ =
∣∣∣∣ −1

n + 1

∣∣∣∣ = 1

n + 1
.

Therefore |an − 1| ≤ 0.001 provided 1
n+1 ≤ 0.001, that is, n ≥ 999. It follows that we can take M = 999.

(b) By part (a), |an − 1| ≤ 0.00001 provided 1
n+1 ≤ 0.00001, that is, n ≥ 99999. It follows that we can take M = 99999.

We now prove formally that lim
n→∞ an = 1. Using part (a), we know that

|an − 1| = 1

n + 1
< ε,

provided n > 1
ε − 1. Thus, Let ε > 0 and take M = 1

ε − 1. Then, for n > M , we have

|an − 1| = 1

n + 1
<

1

M + 1
= ε.

32. Let bn = ( 1
3

)n.

(a) Find a value of M such that |bn| ≤ 10−5 for n ≥ M .

(b) Use the limit definition to prove that lim
n→∞ bn = 0.

solution

(a) Solving
( 1

3

)n ≤ 10−5 for n, we find

n ≥ 5 log3 10 = 5
ln 10

ln 3
≈ 10.48.

It follows that we can take M = 10.5.

(b) We see that ∣∣∣∣
(

1

3

)n

− 0

∣∣∣∣ = 1

3n
< ε

provided

n > log3
1

ε
.

Thus, let ε > 0 and take M = log3
1
ε . Then, for n > M , we have∣∣∣∣

(
1

3

)n

− 0

∣∣∣∣ = 1

3n
<

1

3M
= ε.

33. Use the limit definition to prove that lim
n→∞ n−2 = 0.

solution We see that

|n−2 − 0| =
∣∣∣∣ 1

n2

∣∣∣∣ = 1

n2
< ε

provided

n >
1√
ε
.

Thus, let ε > 0 and take M = 1√
ε

. Then, for n > M , we have

|n−2 − 0| =
∣∣∣∣ 1

n2

∣∣∣∣ = 1

n2
<

1

M2
= ε.
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34. Use the limit definition to prove that lim
n→∞

n

n + n−1
= 1.

solution Since

n

n + n−1
= n2

n(n + n−1)
= n2

n2 + 1

we see that ∣∣∣∣∣ n2

n2 + 1
− 1

∣∣∣∣∣ =
∣∣∣∣ −1

n2 + 1

∣∣∣∣ = 1

n2 + 1
< ε

provided

n >

√
1

ε
− 1

So choose ε > 0, and let M =
√

1

ε
− 1. Then, for n > M , we have

∣∣∣∣ n

n + n−1
− 1

∣∣∣∣ =
∣∣∣∣ −1

n2 + 1

∣∣∣∣ = 1

n2 + 1
<

1

( 1
ε − 1) + 1

= ε

In Exercises 35–62, use the appropriate limit laws and theorems to determine the limit of the sequence or show that it
diverges.

35. an = 10 +
(

−1

9

)n

solution By the Limit Laws for Sequences we have:

lim
n→∞

(
10 +

(
−1

9

)n)
= lim

n→∞ 10 + lim
n→∞

(
−1

9

)n

= 10 + lim
n→∞

(
−1

9

)n

.

Now,

−
(

1

9

)n

≤
(

−1

9

)n

≤
(

1

9

)n

.

Because

lim
n→∞

(
1

9

)n

= 0,

by the Limit Laws for Sequences,

lim
n→∞ −

(
1

9

)n

= − lim
n→∞

(
1

9

)n

= 0.

Thus, we have

lim
n→∞

(
−1

9

)n

= 0,

and

lim
n→∞

(
10 +

(
−1

9

)n)
= 10 + 0 = 10.

36. dn = √
n + 3 − √

n

solution We multiply and divide dn by the conjugate expression
√

n + 3 + √
n and use the identity (a − b)(a + b) =

a2 − b2 to obtain:

dn =
(√

n + 3 − √
n
) (√

n + 3 + √
n
)

√
n + 3 + √

n
= (n + 3) − n√

n + 3 + √
n

= 3√
n + 3 + √

n
.

Thus,

lim
n→∞ dn = lim

n→∞
3√

n + 3 + √
n

= lim
x→∞

3√
x + 3 + √

x
= 0.
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37. cn = 1.01n

solution Since cn = f (n) where f (x) = 1.01x , we have

lim
n→∞ 1.01n = lim

x→∞ 1.01x = ∞

so that the sequence diverges.

38. bn = e1−n2

solution Since bn = f (n) where f (x) = e1−x2
, we have

lim
n→∞ e1−n2 = lim

x→∞ e1−x2 = lim
x→∞

e

ex2 = 0

39. an = 21/n

solution Because 2x is a continuous function,

lim
n→∞ 21/n = lim

x→∞ 21/x = 2limx→∞(1/x) = 20 = 1.

40. bn = n1/n

solution Let bn = n1/n. Take the natural logarithm of both sides of this expression to obtain

ln bn = ln n1/n = ln n

n
.

Thus,

lim
n→∞ (ln bn) = lim

n→∞
ln n

n
= lim

x→∞
ln x

x
= lim

x→∞
1

x
= 0.

Because f (x) = ex is a continuous function, it follows that

lim
n→∞ bn = lim

n→∞ eln bn = elimn→∞(ln bn) = e0 = 1.

That is,

lim
n→∞ n1/n = 1.

41. cn = 9n

n!
solution For n ≥ 9, write

cn = 9n

n! = 9

1
· 9

2
· · · 9

9︸ ︷︷ ︸
call this C

· 9

10
· 9

11
· · · 9

n − 1
· 9

n︸ ︷︷ ︸
Each factor is less than 1

Then clearly

0 ≤ 9n

n! ≤ C
9

n

since each factor after the first nine is < 1. The squeeze theorem tells us that

lim
n→∞ 0 ≤ lim

n→∞
9n

n! ≤ lim
n→∞ C

9

n
= C lim

n→∞
9

n
= C · 0 = 0

so that limn→∞ cn = 0 as well.

42. an = 82n

n!
solution Note that

an = 82n

n! = 64n

n!
Now apply the same method as in the Exercise 41. For n ≥ 64, write

cn = 64n

n! = 64

1
· 64

2
· · · 64

64︸ ︷︷ ︸
call this C

· 64

65
· 64

66
· · · 64

n − 1
· 64

n︸ ︷︷ ︸
Each factor is less than 1
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Then clearly

0 ≤ 64n

n! ≤ C
64

n

since each factor after the first 64 is < 1. The squeeze theorem tells us that

lim
n→∞ 0 ≤ lim

n→∞
64n

n! ≤ lim
n→∞ C

64

n
= C lim

n→∞
64

n
= C · 0 = 0

so that limn→∞ an = 0 as well.

43. an = 3n2 + n + 2

2n2 − 3

solution

lim
n→∞

3n2 + n + 2

2n2 − 3
= lim

x→∞
3x2 + x + 2

2x2 − 3
= 3

2
.

44. an =
√

n√
n + 4

solution

lim
n→∞

√
n√

n + 4
= lim

x→∞

√
x√

x + 4
= lim

x→∞

√
x√
x√

x√
x

+ 4√
x

= lim
x→∞

1

1 + 4√
x

= 1

1 + 0
= 1.

45. an = cos n

n

solution Since −1 ≤ cos n ≤ 1 the following holds:

− 1

n
≤ cos n

n
≤ 1

n
.

We now apply the Squeeze Theorem for Sequences and the limits

lim
n→∞ − 1

n
= lim

n→∞
1

n
= 0

to conclude that lim
n→∞

cos n
n = 0.

46. cn = (−1)n√
n

solution Clearly

− 1√
n

≤ (−1)n√
n

≤ 1√
n

Since

lim
n→∞

−1√
n

= lim
n→∞

1√
n

= 0,

the Squeeze Theorem tells us that lim
n→∞

(−1)n√
n

= 0.

47. dn = ln 5n − ln n!
solution Note that

dn = ln
5n

n!
so that

edn = 5n

n! so lim
n→∞ edn = lim

n→∞
5n

n! = 0

by the method of Exercise 41. If dn converged, we could, since f (x) = ex is continuous, then write

lim
n→∞ edn = elimn→∞ dn = 0

which is impossible. Thus {dn} diverges.
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48. dn = ln(n2 + 4) − ln(n2 − 1)

solution Note that

dn = ln
n2 + 4

n2 − 1

so exponentiating both sides of this expression gives

edn = n2 + 4

n2 − 1
= 1 + (4/n2)

1 − (1/n2)

Thus,

lim
n→∞ edn = lim

n→∞
1 + (4/n2)

1 − (1/n2)
= 1

Because f (x) = ln x is continuous for x > 0, it follows that

lim
n→∞ dn = lim

n→∞ ln(edn) = ln( lim
n→∞ edn) = ln 1 = 0

49. an =
(

2 + 4

n2

)1/3

solution Let an =
(

2 + 4
n2

)1/3
. Taking the natural logarithm of both sides of this expression yields

ln an = ln

(
2 + 4

n2

)1/3
= 1

3
ln

(
2 + 4

n2

)
.

Thus,

lim
n→∞ ln an = lim

n→∞
1

3
ln

(
2 + 4

n2

)1/3
= 1

3
lim

x→∞ ln

(
2 + 4

x2

)
= 1

3
ln

(
lim

x→∞

(
2 + 4

x2

))

= 1

3
ln (2 + 0) = 1

3
ln 2 = ln 21/3.

Because f (x) = ex is a continuous function, it follows that

lim
n→∞ an = lim

n→∞ eln an = elimn→∞(ln an) = eln 21/3 = 21/3.

50. bn = tan−1
(

1 − 2

n

)

solution Because f (x) = tan−1 x is a continuous function, it follows that

lim
n→∞ an = lim

x→∞ tan−1
(

1 − 2

x

)
= tan−1

(
lim

x→∞

(
1 − 2

x

))
= tan−11 = π

4
.

51. cn = ln

(
2n + 1

3n + 4

)

solution Because f (x) = ln x is a continuous function, it follows that

lim
n→∞ cn = lim

x→∞ ln

(
2x + 1

3x + 4

)
= ln

(
lim

x→∞
2x + 1

3x + 4

)
= ln

2

3
.

52. cn = n

n + n1/n

solution We rewrite n
n+n1/n as follows:

n

n + n1/n
=

n
n

n
n + n1/n

n

= 1

1 + n1/n

n

.

Now,

n1/n

n
= n

1
n
−1 = 1

n1−1/n
,
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and

lim
n→∞

n1/n

n
= lim

n→∞
1

n1−1/n
= lim

x→∞
1

x1−1/x
= 0.

Thus,

lim
n→∞

n

n + n1/n
= lim

x→∞
1

1 + x1/x

x

= limx→∞ 1

limx→∞
(

1 + x1/x

x

) = limx→∞ 1

limx→∞ 1 + limx→∞ x1/x

x

= 1

1 + 0
= 1.

53. yn = en

2n

solution en

2n = (
e
2

)n and e
2 > 1. By the Limit of Geometric Sequences,we conclude that limn→∞

(
e
2

)n = ∞. Thus,
the given sequence diverges.

54. an = n

2n

solution

lim
n→∞

n

2n
= lim

x→∞
x

2x
= lim

x→∞
d
dx

(x)

d
dx

(2x)
= lim

x→∞
1

(ln 2) 2x
= 1

ln 2
lim

x→∞
1

2x
= 1

ln 2
· 0 = 0.

55. yn = en + (−3)n

5n

solution

lim
n→∞

en + (−3)n

5n
= lim

n→∞
( e

5

)n + lim
n→∞

(−3

5

)n

assuming both limits on the right-hand side exist. But by the Limit of Geometric Sequences, since

−1 <
−3

5
< 0 <

e

5
< 1

both limits on the right-hand side are 0, so that yn converges to 0.

56. bn = (−1)nn3 + 2−n

3n3 + 4−n

solution Assuming both limits on the right-hand side exist, we have

lim
n→∞

(−1)nn3 + 2−n

3n3 + 4−n
= lim

n→∞
(−1)nn3

3n3 + 4−n
+ lim

n→∞
2−n

3n3 + 4−n

For the first limit, let us consider instead the limit of its reciprocal:

lim
n→∞(−1)n

3n3 + 4−n

n3
= lim

n→∞(−1)n
3n3

n3
+ lim

n→∞(−1)n
4−n

n3

= lim
n→∞(−1)n · 3 + lim

n→∞(−1)n
1

4nn3

= lim
n→∞

(
(−1)n · 3

) + 0

so that one limit on the right-hand side exists and the other does not; thus the left-hand side diverges as well.

57. an = n sin
π

n

solution By the Theorem on Sequences Defined by a Function, we have

lim
n→∞ n sin

π

n
= lim

x→∞ x sin
π

x
.

Now,

lim
x→∞ x sin

π

x
= lim

x→∞
sin π

x
1
x

= lim
x→∞

(
cos π

x

) (− π
x2

)
− 1

x2

= lim
x→∞

(
π cos

π

x

)

= π lim
x→∞ cos

π

x
= π cos 0 = π · 1 = π.
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Thus,

lim
n→∞ n sin

π

n
= π.

58. bn = n!
πn

solution By the method of Exercise 41, we can see that limn→∞
4n

n! = 0 so that cn = n!
4n

diverges. But π < 4 so

that cn < bn and thus bn diverges as well.

59. bn = 3 − 4n

2 + 7 · 4n

solution Divide the numerator and denominator by 4n to obtain

an = 3 − 4n

2 + 7 · 4n
=

3
4n − 4n

4n

2
4n + 7·4n

4n

=
3
4n − 1
2
4n + 7

.

Thus,

lim
n→∞ an = lim

x→∞
3

4x − 1
2

4x + 7
=

limx→∞
(

3
4x − 1

)
limx→∞

(
2

4x + 7
) = 3 limx→∞ 1

4x − limx→∞ 1

2 limx→∞ 1
4x − limx→∞ 7

= 3 · 0 − 1

2 · 0 + 7
= −1

7
.

60. an = 3 − 4n

2 + 7 · 3n

solution Divide the numerator and denominator by 3n to obtain

an = 3 − 4n

2 + 7 · 3n
=

3
3n − 4n

3n

2
3n + 7·3n

3n

=
3
3n −

(
4
3

)n

2
3n + 7

.

We examine the limits of the numerator and the denominator:

lim
n→∞

(
3

3n
−
(

4

3

)n)
= 3 lim

n→∞

(
1

3

)n

− 3 lim
n→∞

(
4

3

)n

= 3 · 0 − ∞ = −∞,

whereas

lim
n→∞

(
2

3n
+ 7

)
= lim

n→∞
2

3n
+ lim

n→∞ 7 = 2 lim
n→∞

(
1

3

)n

+ lim
n→∞ 7 = 2 · 0 + 7 = 7.

Thus, lim
n→∞ an = −∞; that is, the sequence diverges.

61. an =
(

1 + 1

n

)n

solution Taking the natural logarithm of both sides of this expression yields

ln an = ln

(
1 + 1

n

)n

= n ln

(
1 + 1

n

)
=

ln
(

1 + 1
n

)
1
n

.

Thus,

lim
n→∞ (ln an) = lim

x→∞
ln
(

1 + 1
x

)
1
x

= lim
x→∞

d
dx

(
ln
(

1 + 1
x

))
d
dx

(
1
x

) = lim
x→∞

1
1+ 1

x

·
(
− 1

x2

)
− 1

x2

= lim
x→∞

1

1 + 1
x

= 1

1 + 0
= 1.

Because f (x) = ex is a continuous function, it follows that

lim
n→∞ an = lim

n→∞ eln an = elimn→∞(ln an) = e1 = e.
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62. an =
(

1 + 1

n2

)n

solution Taking the natural logarithm of both sides of this expression yields

ln an = ln

(
1 + 1

n2

)n

= n ln

(
1 + 1

n2

)
=

ln
(

1 + 1
n2

)
1
n

.

Thus,

lim
n→∞ (ln an) = lim

x→∞
ln(1 + x−2)

x−1
= lim

x→∞

d
dx

(
ln(1 + x−2)

)
d
dx

(x−1)

= lim
x→∞

1
1+x−2 (−2x−3)

−x−2
= lim

x→∞
2x−1

1 + x−2
= lim

x→∞
2
x

1 + 1
x2

= 0

1 + 0
= 0.

Because f (x) = ex is a continuous function, it follows that

lim
n→∞ an = lim

n→∞ eln an = elimn→∞(ln an) = e0 = 1.

In Exercises 63–66, find the limit of the sequence using L’Hôpital’s Rule.

63. an = (ln n)2

n

solution

lim
n→∞

(ln n)2

n
= lim

x→∞
(ln x)2

x
= lim

x→∞
d
dx

(ln x)2

d
dx

x
= lim

x→∞
2 ln x

x

1
= lim

x→∞
2 ln x

x

= lim
x→∞

d
dx

2 ln x

d
dx

x
= lim

x→∞
2
x

1
= lim

x→∞
2

x
= 0

64. bn = √
n ln

(
1 + 1

n

)
solution

lim
n→∞

√
n ln

(
1 + 1

n

)
= lim

x→∞
√

x ln

(
1 + 1

x

)
= lim

x→∞
ln
(

1 + 1
x

)
x−1/2

= lim
x→∞

d
dx

ln
(

1 + 1
x

)
d
dx

x−1/2

= lim
x→∞

1
1+ 1

x

·
(−1

x2

)
−1
2 x−3/2

= lim
x→∞

2
√

x
(

1 + 1
x

) = 0

65. cn = n
(√

n2 + 1 − n
)

solution

lim
n→∞ n

(√
n2 + 1 − n

)
= lim

x→∞ x
(√

x2 + 1 − x
)

= lim
x→∞

x
(√

x2 + 1 − x
) (√

x2 + 1 + x
)

√
x2 + 1 + x

= lim
x→∞

x√
x2 + 1 + x

= lim
x→∞

d
dx

x

d
dx

√
x2 + 1 + x

= lim
x→∞

1

1 + x√
x2+1

= lim
x→∞

1

1 +
√

x2

x2+1

= lim
x→∞

1

1 +
√

1
1+(1/x2)

= 1

2

66. dn = n2( 3
√

n3 + 1 − n
)

solution We rewrite dn as follows:

dn = n2
(

3
√

n3 + 1 − n
)

= n2

(
3

√
n3

(
1 + 1

n3

)
− n

)
= n2

(
n

3

√
1 + 1

n3
− n

)

= n3

(
3

√
1 + 1

n3
− 1

)
=

(
(1 + n−3)

1/3 − 1
)

n−3
.
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Thus,

lim
n→∞ dn = lim

x→∞
(1 + x−3)

1/3 − 1

x−3
= lim

x→∞

d
dx

[
(1 + x−3)

1/3 − 1
]

d
dx

[x−3]

= lim
x→∞

1
3 (1 + x−3)

−2/3
(−3x−4)

−3x−4
= lim

x→∞
1

3
(1 + x−3)

−2/3 = lim
x→∞

1

3
(

1 + 1
x3

)2/3
= 1

3
.

In Exercises 67–70, use the Squeeze Theorem to evaluate lim
n→∞ an by verifying the given inequality.

67. an = 1√
n4 + n8

,
1√
2n4

≤ an ≤ 1√
2n2

solution For all n > 1 we have n4 < n8, so the quotient 1√
n4+n8

is smaller than 1√
n4+n4

and larger than 1√
n8+n8

.

That is,

an <
1√

n4 + n4
= 1√

n4 · 2
= 1√

2n2
; and

an >
1√

n8 + n8
= 1√

2n8
= 1√

2n4
.

Now, since lim
n→∞

1√
2n4

= lim
n→∞

1√
2n2

= 0, the Squeeze Theorem for Sequences implies that lim
n→∞ an = 0.

68. cn = 1√
n2 + 1

+ 1√
n2 + 2

+ · · · + 1√
n2 + n

,

n√
n2 + n

≤ cn ≤ n√
n2 + 1

solution Since each of the n terms in the sum defining cn is not smaller than 1√
n2+n

and not larger than 1√
n2+1

we

obtain the following inequalities:

cn ≥ 1√
n2 + n

+ · · · + 1√
n2 + n︸ ︷︷ ︸

n terms

= n · 1√
n2 + n

= n√
n2 + n

;

cn ≤ 1√
n2 + 1

+ · · · + 1√
n2 + 1︸ ︷︷ ︸

n terms

= n · 1√
n2 + 1

= n√
n2 + 1

.

Thus,

n√
n2 + n

≤ cn ≤ n√
n2 + 1

.

We now compute the limits of the two sequences:

lim
n→∞

n√
n2 + 1

= lim
n→∞

n
n√

n2+1
n

= lim
n→∞

1√
n2+1√
n2

= lim
n→∞

1√
1 + 1

n2

= 1;

lim
n→∞

n√
n2 + n

= lim
n→∞

n
n√

n2+n
n

= lim
n→∞

1√
n2+n√
n2

= lim
n→∞

1√
1 + 1

n

= 1.

By the Squeeze Theorem we conclude that:

lim
n→∞ cn = 1.

69. an = (2n + 3n)1/n, 3 ≤ an ≤ (2 · 3n)1/n = 21/n · 3

solution Clearly 2n + 3n ≥ 3n for all n ≥ 1. Therefore:

(2n + 3n)
1/n ≥ (3n)

1/n = 3.
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Also 2n + 3n ≤ 3n + 3n = 2 · 3n, so

(2n + 3n)
1/n ≤ (2 · 3n)

1/n = 21/n · 3.

Thus,

3 ≤ (2n + 3n)
1/n ≤ 21/n · 3.

Because

lim
n→∞ 21/n · 3 = 3 lim

n→∞ 21/n = 3 · 1 = 3

and limn→∞ 3 = 3, the Squeeze Theorem for Sequences guarantees

lim
n→∞ (2n + 3n)

1/n = 3.

70. an = (n + 10n)1/n, 10 ≤ an ≤ (2 · 10n)1/n

solution Clearly

10n ≤ n + 10n ≤ 10n + 10n = 2 · 10n

for all n ≥ 0. Thus

10 ≤ (n + 10n)1/n ≤ (2 · 10n)1/n

Now,

lim
n→∞(2 · 10n)1/n = lim

n→∞ 21/n · 10 = 10 lim
n→∞ 21/n = 10 · 1 = 10

and limn→∞ 10 = 10, so that the Squeeze Theorem for Sequences tells us that

lim
n→∞(n + 10n)1/n = 10

71. Which of the following statements is equivalent to the assertion lim
n→∞ an = L? Explain.

(a) For every ε > 0, the interval (L − ε, L + ε) contains at least one element of the sequence {an}.
(b) For every ε > 0, the interval (L − ε, L + ε) contains all but at most finitely many elements of the sequence {an}.
solution Statement (b) is equivalent to Definition 1 of the limit, since the assertion “|an − L| < ε for all n > M”
means that L − ε < an < L + ε for all n > M; that is, the interval (L − ε, L + ε) contains all the elements an except
(maybe) the finite number of elements a1, a2, . . . , aM .

Statement (a) is not equivalent to the assertion lim
n→∞ an = L. We show this, by considering the following sequence:

an =

⎧⎪⎪⎨
⎪⎪⎩

1

n
for odd n

1 + 1

n
for even n

Clearly for every ε > 0, the interval (−ε, ε) = (L − ε, L + ε) for L = 0 contains at least one element of {an}, but the
sequence diverges (rather than converges to L = 0). Since the terms in the odd places converge to 0 and the terms in the
even places converge to 1. Hence, an does not approach one limit.

72. Show that an = 1

2n + 1
is decreasing.

solution Let f (x) = 1
2x+1 . Then

f ′(x) = − 1

(2x + 1)2
· 2 = −2

(2x + 1)2
< 0 for x 	= −1

2
.

Since f ′(x) < 0 for x 	= − 1
2 , f is decreasing on the interval x > − 1

2 . It follows that an = f (n) is also decreasing.
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73. Show that an = 3n2

n2 + 2
is increasing. Find an upper bound.

solution Let f (x) = 3x2

x2+2
. Then

f ′(x) = 6x(x2 + 2) − 3x2 · 2x

(x2 + 2)
2

= 12x

(x2 + 2)
2
.

f ′(x) > 0 for x > 0, hence f is increasing on this interval. It follows that an = f (n) is also increasing. We now show
that M = 3 is an upper bound for an, by writing:

an = 3n2

n2 + 2
≤ 3n2 + 6

n2 + 2
= 3(n2 + 2)

n2 + 2
= 3.

That is, an ≤ 3 for all n.

74. Show that an = 3√
n + 1 − n is decreasing.

solution Let f (x) = 3√
x + 1 − x. Then

f ′(x) = d

dx

(
(x + 1)1/3 − x

)
= 1

3
(x + 1)−2/3 − 1.

For x ≥ 1,

1

3
(x + 1)−2/3 − 1 ≤ 1

3
2−2/3 − 1 < 0.

We conclude that f is decreasing on the interval x ≥ 1. It follows that an = f (n) is also decreasing.

75. Give an example of a divergent sequence {an} such that lim
n→∞ |an| converges.

solution Let an = (−1)n. The sequence {an} diverges because the terms alternate between +1 and −1; however, the
sequence {|an|} converges because it is a constant sequence, all of whose terms are equal to 1.

76. Give an example of divergent sequences {an} and {bn} such that {an + bn} converges.

solution Let an = 2n and bn = −2n. Then {an} and {bn} are divergent geometric sequences. However, since
an + bn = 2n − 2n = 0, the sequence {an + bn} is the constant sequence with all the terms equal zero, so it converges
to zero.

77. Using the limit definition, prove that if {an} converges and {bn} diverges, then {an + bn} diverges.

solution We will prove this result by contradiction. Suppose limn→∞ an = L1 and that {an + bn} converges to a
limit L2. Now, let ε > 0. Because {an} converges to L1 and {an + bn} converges to L2, it follows that there exist numbers
M1 and M2 such that:

|an − L1| <
ε

2
for all n > M1,

| (an + bn) − L2| <
ε

2
for all n > M2.

Thus, for n > M = max{M1, M2},

|an − L1| <
ε

2
and | (an + bn) − L2| <

ε

2
.

By the triangle inequality,

|bn − (L2 − L1)| = |an + bn − an − (L2 − L1)| = |(−an + L1) + (an + bn − L2)|
≤ |L1 − an| + |an + bn − L2|.

Thus, for n > M ,

|bn − (L2 − L1) | <
ε

2
+ ε

2
= ε;

that is, {bn} converges to L2 − L1, in contradiction to the given data. Thus, {an + bn} must diverge.
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78. Use the limit definition to prove that if {an} is a convergent sequence of integers with limit L, then there exists a
number M such that an = L for all n ≥ M .

solution Suppose {an} converges to L, and let ε = 1
2 . Then, there exists a number M such that

|an − L| <
1

2

for all n ≥ M . In other words, for all n ≥ M ,

L − 1

2
< an < L + 1

2
.

However, we are given that {an} is a sequence of integers. Thus, it must be that an = L for all n ≥ M .

79. Theorem 1 states that if lim
x→∞ f (x) = L, then the sequence an = f (n) converges and lim

n→∞ an = L. Show that the

converse is false. In other words, find a function f (x) such that an = f (n) converges but lim
x→∞ f (x) does not exist.

solution Let f (x) = sin πx and an = sin πn. Then an = f (n). Since sin πx is oscillating between −1 and 1 the
limit lim

x→∞ f (x) does not exist. However, the sequence {an} is the constant sequence in which an = sin πn = 0 for all n,

hence it converges to zero.

80. Use the limit definition to prove that the limit does not change if a finite number of terms are added or removed from
a convergent sequence.

solution Suppose that {an} is a sequence such that limn→∞ an = L. For every ε > 0, there is a number M such that
|an − L| < ε for all n > M . That is, the inequality |an − L| < ε holds for all the terms of {an} except possibly a finite
number of terms. If we add a finite number of terms, these terms may not satisfy the inequality |an − L| < ε, but there are
still only a finite number of terms that do not satisfy this inequality. By removing terms from the sequence, the number
of terms in the new sequence that do not satisfy |an − L| < ε are no more than in the original sequence. Hence the new
sequence also converges to L.

81. Let bn = an+1. Use the limit definition to prove that if {an} converges, then {bn} also converges and lim
n→∞ an =

lim
n→∞ bn.

solution Suppose {an} converges to L. Let bn = an+1, and let ε > 0. Because {an} converges to L, there exists an
M ′ such that |an − L| < ε for n > M ′. Now, let M = M ′ − 1. Then, whenever n > M , n + 1 > M + 1 = M ′. Thus,
for n > M ,

|bn − L| = |an+1 − L| < ε.

Hence, {bn} converges to L.

82. Let {an} be a sequence such that lim
n→∞ |an| exists and is nonzero. Show that lim

n→∞ an exists if and only if there exists

an integer M such that the sign of an does not change for n > M .

solution Let {an} be a sequence such that lim
n→∞ |an| exists and is nonzero. Suppose lim

n→∞ an exists and let

L = lim
n→∞ an. Note that L cannot be zero for then lim

n→∞ |an| would also be zero. Now, choose ε < |L|. Then there exists

an integer M such that |an − L| < ε, or L − ε < an < L + ε, for all n > M . If L < 0, then −2L < an < 0, whereas if
L > 0, then 0 < an < 2L; that is, an does not change for n > M .

Now suppose that there exists an integer M such that an does not change for n > M . If an > 0 for n > M , then
an = |an| for n > M and

lim
n→∞ an = lim

n→∞ |an|.

On the other hand, if an < 0 for n > M , then an = −|an| for n > M and

lim
n→∞ an = lim

n→∞ −|an| = − lim
n→∞ |an|.

In either case, lim
n→∞ an exists. Thus, lim

n→∞ an exists if and only if there exists an integer M such that the sign of an does

not change for n > M .

83. Proceed as in Example 12 to show that the sequence
√

3,

√
3
√

3,

√
3

√
3
√

3, . . . is increasing and bounded above by
M = 3. Then prove that the limit exists and find its value.

solution This sequence is defined recursively by the formula:

an+1 = √
3an, a1 = √

3.
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Consider the following inequalities:

a2 = √
3a1 =

√
3
√

3 >
√

3 = a1 ⇒ a2 > a1;
a3 = √

3a2 >
√

3a1 = a2 ⇒ a3 > a2;
a4 = √

3a3 >
√

3a2 = a3 ⇒ a4 > a3.

In general, if we assume that ak > ak−1, then

ak+1 = √
3ak >

√
3ak−1 = ak.

Hence, by mathematical induction, an+1 > an for all n; that is, the sequence {an} is increasing.
Because an+1 = √

3an, it follows that an ≥ 0 for all n. Now, a1 = √
3 < 3. If ak ≤ 3, then

ak+1 = √
3ak ≤ √

3 · 3 = 3.

Thus, by mathematical induction, an ≤ 3 for all n.
Since {an} is increasing and bounded, it follows by the Theorem on Bounded Monotonic Sequences that this sequence

is converging. Denote the limit by L = limn→∞ an. Using Exercise 81, it follows that

L = lim
n→∞ an+1 = lim

n→∞
√

3an =
√

3 lim
n→∞ an = √

3L.

Thus, L2 = 3L, so L = 0 or L = 3. Because the sequence is increasing, we have an ≥ a1 = √
3 for all n. Hence, the

limit also satisfies L ≥ √
3. We conclude that the appropriate solution is L = 3; that is, lim

n→∞ an = 3.

84. Let {an} be the sequence defined recursively by

a0 = 0, an+1 = √
2 + an

Thus, a1 = √
2, a2 =

√
2 + √

2, a3 =
√

2 +
√

2 + √
2, . . . .

(a) Show that if an < 2, then an+1 < 2. Conclude by induction that an < 2 for all n.

(b) Show that if an < 2, then an ≤ an+1. Conclude by induction that {an} is increasing.

(c) Use (a) and (b) to conclude that L = lim
n→∞ an exists. Then compute L by showing that L = √

2 + L.

solution

(a) Assume an < 2. Then

an+1 = √
2 + an <

√
2 + 2 = 2

so that an+1 < 2. So by induction, an < 2 for all n and {an} is bounded above by 2.

(b) Assume an < 2. Then

an+1 = √
2 + an >

√
an + an = √

2an >

√
a2
n = an

so that an < an+1. It follows by induction that {an} is increasing.

(c) Since {an} is increasing and bounded above, the Theorem on Bounded Monotone Sequences tells us that L =
limn→∞ an exists. We have

L = lim
n→∞ an+1 = lim

n→∞
√

2 + an =
√

2 + lim
n→∞ an = √

2 + L

by Exercise 81. It follows that L = √
2 + L, so that L2 − L − 2 = 0. Thus L = 2 or L = −1. But all terms of {an} are

positive, so we must have L = 2.

Further Insights and Challenges
85. Show that lim

n→∞
n
√

n! = ∞. Hint: Verify that n! ≥ (n/2)n/2 by observing that half of the factors of n! are greater

than or equal to n/2.

solution We show that n! ≥ (
n
2

)n/2. For n ≥ 4 even, we have:

n! = 1 · · · · · n

2︸ ︷︷ ︸
n
2 factors

·
(n

2
+ 1

)
· · · · · n︸ ︷︷ ︸

n
2 factors

≥
(n

2
+ 1

)
· · · · · n︸ ︷︷ ︸

n
2 factors

.
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Since each one of the n
2 factors is greater than n

2 , we have:

n! ≥
(n

2
+ 1

)
· · · · · n︸ ︷︷ ︸

n
2 factors

≥ n

2
· · · · · n

2︸ ︷︷ ︸
n
2 factors

=
(n

2

)n/2
.

For n ≥ 3 odd, we have:

n! = 1 · · · · · n − 1

2︸ ︷︷ ︸
n−1

2 factors

· n + 1

2
· · · · · n︸ ︷︷ ︸

n+1
2 factors

≥ n + 1

2
· · · · · n︸ ︷︷ ︸

n+1
2 factors

.

Since each one of the n+1
2 factors is greater than n

2 , we have:

n! ≥ n + 1

2
· · · · · n︸ ︷︷ ︸

n+1
2 factors

≥ n

2
· · · · · n

2︸ ︷︷ ︸
n+1

2 factors

=
(n

2

)(n+1)/2 =
(n

2

)n/2
√

n

2
≥
(n

2

)n/2
.

In either case we have n! ≥ (
n
2

)n/2. Thus,

n
√

n! ≥
√

n

2
.

Since lim
n→∞

√
n
2 = ∞, it follows that lim

n→∞
n
√

n! = ∞. Thus, the sequence an = n
√

n! diverges.

86. Let bn =
n
√

n!
n

.

(a) Show that ln bn = 1

n

n∑
k=1

ln
k

n
.

(b) Show that ln bn converges to
∫ 1

0
ln x dx, and conclude that bn → e−1.

solution

(a) Let bn = (n!)1/n

n . Then

ln bn = ln (n!)1/n − ln n = 1

n
ln (n!) − ln n = ln (n!) − n ln n

n
= 1

n

[
ln (n!) − ln nn

] = 1

n
ln

n!
nn

= 1

n
ln

(
1

n
· 2

n
· 3

n
· · · · · n

n

)
= 1

n

(
ln

1

n
+ ln

2

n
+ ln

3

n
+ · · · + ln

n

n

)
= 1

n

n∑
k=1

ln
k

n
.

(b) By part (a) we have,

lim
n→∞ (ln bn) = lim

n→∞
1

n

n∑
k=1

ln
k

n
.

Notice that 1
n

∑n
k=1 ln k

n is the nth right-endpoint approximation of the integral of ln x over the interval [0, 1]. Hence,

lim
n→∞

1

n

n∑
k=1

ln
k

n
=
∫ 1

0
ln x dx.

We compute the improper integral using integration by parts, with u = ln x and v′ = 1. Then u′ = 1
x , v = x and

∫ 1

0
ln x dx = x ln x

∣∣∣∣1
0

−
∫ 1

0

1

x
x dx = 1 · ln 1 − lim

x→0+ (x ln x) −
∫ 1

0
dx

= 0 − lim
x→0+ (x ln x) − x

∣∣∣∣1
0

= −1 − lim
x→0+ (x ln x) .

We compute the remaining limit using L’Hôpital’s Rule. This gives:

lim
x→0+(x · ln x) = lim

x→0+
ln x

1
x

= lim
x→0+

1
x

− 1
x2

= lim
x→0+(−x) = 0.
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Thus,

lim
n→∞ ln bn =

∫ 1

0
ln x dx = −1,

and

lim
n→∞ bn = e−1.

87. Given positive numbers a1 < b1, define two sequences recursively by

an+1 = √
anbn, bn+1 = an + bn

2

(a) Show that an ≤ bn for all n (Figure 13).

(b) Show that {an} is increasing and {bn} is decreasing.

(c) Show that bn+1 − an+1 ≤ bn − an

2
.

(d) Prove that both {an} and {bn} converge and have the same limit. This limit, denoted AGM(a1, b1), is called the
arithmetic-geometric mean of a1 and b1.

(e) Estimate AGM(1,
√

2) to three decimal places.

x
an an+1 bn+1 bn

Geometric
mean

AGM(a1, b1)

Arithmetic
mean

FIGURE 13

solution

(a) Examine the following:

bn+1 − an+1 = an + bn

2
− √

anbn = an + bn − 2
√

anbn

2
=

(√
an

)2 − 2
√

an
√

bn + (√
bn

)2

2

=
(√

an − √
bn

)2

2
≥ 0.

We conclude that bn+1 ≥ an+1 for all n > 1. By the given information b1 > a1; hence, bn ≥ an for all n.

(b) By part (a), bn ≥ an for all n, so

an+1 = √
anbn ≥ √

an · an =
√

a2
n = an

for all n. Hence, the sequence {an} is increasing. Moreover, since an ≤ bn for all n,

bn+1 = an + bn

2
≤ bn + bn

2
= 2bn

2
= bn

for all n; that is, the sequence {bn} is decreasing.

(c) Since {an} is increasing, an+1 ≥ an. Thus,

bn+1 − an+1 ≤ bn+1 − an = an + bn

2
− an = an + bn − 2an

2
= bn − an

2
.

Now, by part (a), an ≤ bn for all n. By part (b), {bn} is decreasing. Hence bn ≤ b1 for all n. Combining the two inequalities
we conclude that an ≤ b1 for all n. That is, the sequence {an} is increasing and bounded (0 ≤ an ≤ b1). By the Theorem
on Bounded Monotonic Sequences we conclude that {an} converges. Similarly, since {an} is increasing, an ≥ a1 for all
n. We combine this inequality with bn ≥ an to conclude that bn ≥ a1 for all n. Thus, {bn} is decreasing and bounded
(a1 ≤ bn ≤ b1); hence this sequence converges.

To show that {an} and {bn} converge to the same limit, note that

bn − an ≤ bn−1 − an−1

2
≤ bn−2 − an−2

22
≤ · · · ≤ b1 − a1

2n−1
.

Thus,

lim
n→∞(bn − an) = (b1 − a1) lim

n→∞
1

2n−1
= 0.
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(d) We have

an+1 = √
anbn, a1 = 1; bn+1 = an + bn

2
, b1 = √

2

Computing the values of an and bn until the first three decimal digits are equal in successive terms, we obtain:

a2 = √
a1b1 =

√
1 · √

2 = 1.1892

b2 = a1 + b1

2
= 1 + √

2

2
= 1.2071

a3 = √
a2b2 = √

1.1892 · 1.2071 = 1.1981

b3 = a2 + b2

2
= 1.1892 · 1.2071

2
= 1.1981

a4 = √
a3b3 = 1.1981

b4 = a3 + b3

2
= 1.1981

Thus,

AGM
(

1,
√

2
)

≈ 1.198.

88. Let cn = 1

n
+ 1

n + 1
+ 1

n + 2
+ · · · + 1

2n
.

(a) Calculate c1, c2, c3, c4.

(b) Use a comparison of rectangles with the area under y = x−1 over the interval [n, 2n] to prove that∫ 2n

n

dx

x
+ 1

2n
≤ cn ≤

∫ 2n

n

dx

x
+ 1

n

(c) Use the Squeeze Theorem to determine lim
n→∞ cn.

solution
(a)

c1 = 1 + 1

2
= 3

2
;

c2 = 1

2
+ 1

3
+ 1

4
= 13

12
;

c3 = 1

3
+ 1

4
+ 1

5
+ 1

6
= 19

20
;

c4 = 1

4
+ 1

5
+ 1

6
+ 1

7
+ 1

8
= 743

840
;

(b) We consider the left endpoint approximation to the integral of y = 1
x over the interval [n, 2n]. Since the function

y = 1
x is decreasing, the left endpoint approximation is greater than

∫ 2n
n

dx
x ; that is,

∫ 2n

n

dx

x
≤ 1

n
· 1 + 1

n + 1
· 1 + 1

n + 2
· 1 + · · · + 1

2n − 1
· 1.

1

1

y

x
0 2 3 n n + 1

1/n

1
2

1
3

y = 1
x

We express the right hand-side of the inequality in terms of cn, obtaining:∫ 2n

n

dx

x
≤ cn − 1

2n
.
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We now consider the right endpoint approximation to the integral
∫ 2n
n

dx
x ; that is,

1

n + 1
· 1 + 1

n + 2
· 1 + · · · + 1

2n
· 1 ≤

∫ 2n

n

dx

x
.

y

x
0 n n + 1

y = 1
x

1
n + 1

We express the left hand-side of the inequality in terms of cn, obtaining:

cn − 1

n
≤
∫ 2n

n

dx

x
.

Thus, ∫ 2n

n

dx

x
+ 1

2n
≤ cn ≤

∫ 2n

n

dx

x
+ 1

n
.

(c) With ∫ 2n

n

dx

x
= ln x|2n

n = ln 2n − ln n = ln
2n

n
= ln 2,

the result from part (b) becomes

ln 2 + 1

2n
≤ cn ≤ ln 2 + 1

n
.

Because

lim
n→∞

1

2n
= lim

n→∞
1

n
= 0,

it follows from the Squeeze Theorem that

lim
n→∞ cn = ln 2.

89. Let an = Hn − ln n, where Hn is the nth harmonic number

Hn = 1 + 1

2
+ 1

3
+ · · · + 1

n

(a) Show that an ≥ 0 for n ≥ 1. Hint: Show that Hn ≥
∫ n+1

1

dx

x
.

(b) Show that {an} is decreasing by interpreting an − an+1 as an area.
(c) Prove that lim

n→∞ an exists.

This limit, denoted γ , is known as Euler’s Constant. It appears in many areas of mathematics, including analysis and
number theory, and has been calculated to more than 100 million decimal places, but it is still not known whether γ is an
irrational number. The first 10 digits are γ ≈ 0.5772156649.

solution

(a) Since the function y = 1
x is decreasing, the left endpoint approximation to the integral

∫ n+1
1

dx
x is greater than this

integral; that is,

1 · 1 + 1

2
· 1 + 1

3
· 1 + · · · + 1

n
· 1 ≥

∫ n+1

1

dx

x

or

Hn ≥
∫ n+1

1

dx

x
.
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1

1

y

x
2 3 n n + 1

1/n

1
2 1

3

Moreover, since the function y = 1
x is positive for x > 0, we have:

∫ n+1

1

dx

x
≥
∫ n

1

dx

x
.

Thus,

Hn ≥
∫ n

1

dx

x
= ln x

∣∣∣n
1

= ln n − ln 1 = ln n,

and

an = Hn − ln n ≥ 0 for all n ≥ 1.

(b) To show that {an} is decreasing, we consider the difference an − an+1:

an − an+1 = Hn − ln n − (
Hn+1 − ln(n + 1)

) = Hn − Hn+1 + ln(n + 1) − ln n

= 1 + 1

2
+ · · · + 1

n
−
(

1 + 1

2
+ · · · + 1

n
+ 1

n + 1

)
+ ln(n + 1) − ln n

= − 1

n + 1
+ ln(n + 1) − ln n.

Now, ln(n + 1) − ln n = ∫ n+1
n

dx
x , whereas 1

n+1 is the right endpoint approximation to the integral
∫ n+1
n

dx
x . Recalling

y = 1
x is decreasing, it follows that

∫ n+1

n

dx

x
≥ 1

n + 1

y

x
n n + 1

y = 1
x

1
n + 1

so

an − an+1 ≥ 0.

(c) By parts (a) and (b), {an} is decreasing and 0 is a lower bound for this sequence. Hence 0 ≤ an ≤ a1 for all n. A
monotonic and bounded sequence is convergent, so limn→∞ an exists.

10.2 Summing an Infinite Series

Preliminary Questions
1. What role do partial sums play in defining the sum of an infinite series?

solution The sum of an infinite series is defined as the limit of the sequence of partial sums. If the limit of this sequence
does not exist, the series is said to diverge.
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2. What is the sum of the following infinite series?

1

4
+ 1

8
+ 1

16
+ 1

32
+ 1

64
+ · · ·

solution This is a geometric series with c = 1
4 and r = 1

2 . The sum of the series is therefore

1
4

1 − 1
2

=
1
4
1
2

= 1

2
.

3. What happens if you apply the formula for the sum of a geometric series to the following series? Is the formula valid?

1 + 3 + 32 + 33 + 34 + · · ·

solution This is a geometric series with c = 1 and r = 3. Applying the formula for the sum of a geometric series
then gives

∞∑
n=0

3n = 1

1 − 3
= −1

2
.

Clearly, this is not valid: a series with all positive terms cannot have a negative sum. The formula is not valid in this case
because a geometric series with r = 3 diverges.

4. Arvind asserts that
∞∑

n=1

1

n2
= 0 because

1

n2
tends to zero. Is this valid reasoning?

solution Arvind’s reasoning is not valid. Though the terms in the series do tend to zero, the general term in the
sequence of partial sums,

Sn = 1 + 1

22
+ 1

32
+ · · · + 1

n2
,

is clearly larger than 1. The sum of the series therefore cannot be zero.

5. Colleen claims that
∞∑

n=1

1√
n

converges because

lim
n→∞

1√
n

= 0

Is this valid reasoning?

solution Colleen’s reasoning is not valid. Although the general term of a convergent series must tend to zero, a series

whose general term tends to zero need not converge. In the case of
∞∑

n=1

1√
n

, the series diverges even though its general

term tends to zero.

6. Find an N such that SN > 25 for the series
∞∑

n=1

2.

solution The N th partial sum of the series is:

SN =
N∑

n=1

2 = 2 + · · · + 2︸ ︷︷ ︸
N

= 2N.

7. Does there exist an N such that SN > 25 for the series
∞∑

n=1

2−n? Explain.

solution The series
∞∑

n=1

2−n is a convergent geometric series with the common ratio r = 1

2
. The sum of the series is:

S =
1
2

1 − 1
2

= 1.

Notice that the sequence of partial sums {SN } is increasing and converges to 1; therefore SN ≤ 1 for all N . Thus, there
does not exist an N such that SN > 25.
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8. Give an example of a divergent infinite series whose general term tends to zero.

solution Consider the series
∞∑

n=1

1

n
9
10

. The general term tends to zero, since lim
n→∞

1

n
9
10

= 0. However, the N th partial

sum satisfies the following inequality:

SN = 1

1
9

10

+ 1

2
9

10

+ · · · + 1

N
9
10

≥ N

N
9

10

= N1− 9
10 = N

1
10 .

That is, SN ≥ N
1
10 for all N . Since lim

N→∞N
1

10 = ∞, the sequence of partial sums Sn diverges; hence, the series
∞∑

n=1

1

n
9
10

diverges.

Exercises
1. Find a formula for the general term an (not the partial sum) of the infinite series.

(a)
1

3
+ 1

9
+ 1

27
+ 1

81
+ · · · (b)

1

1
+ 5

2
+ 25

4
+ 125

8
+ · · ·

(c)
1

1
− 22

2 · 1
+ 33

3 · 2 · 1
− 44

4 · 3 · 2 · 1
+ · · ·

(d)
2

12 + 1
+ 1

22 + 1
+ 2

32 + 1
+ 1

42 + 1
+ · · ·

solution

(a) The denominators of the terms are powers of 3, starting with the first power. Hence, the general term is:

an = 1

3n
.

(b) The numerators are powers of 5, and the denominators are the same powers of 2. The first term is a1 = 1 so,

an =
(

5

2

)n−1
.

(c) The general term of this series is,

an = (−1)n+1 nn

n! .

(d) Notice that the numerators of an equal 2 for odd values of n and 1 for even values of n. Thus,

an =

⎧⎪⎪⎨
⎪⎪⎩

2

n2 + 1
odd n

1

n2 + 1
even n

The formula can also be rewritten as follows:

an = 1 + (−1)n+1+1
2

n2 + 1
.

2. Write in summation notation:

(a) 1 + 1

4
+ 1

9
+ 1

16
+ · · · (b)

1

9
+ 1

16
+ 1

25
+ 1

36
+ · · ·

(c) 1 − 1

3
+ 1

5
− 1

7
+ · · ·

(d)
125

9
+ 625

16
+ 3125

25
+ 15,625

36
+ · · ·

solution

(a) The general term is an = 1

n2
, n = 1, 2, 3, . . .; hence, the series is

∞∑
n=1

1

n2
.
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(b) The general term is an = 1

n2
, n = 3, 4, 5, . . . or an = 1

(n + 2)2
, n = 1, 2, 3, . . .; hence, the series is

∞∑
n=3

1

n2
=

∞∑
n=1

1

(n + 2)2
.

(c) The general term is an = (−1)n+1

2n − 1
, n = 1, 2, 3, . . .; hence, the series is

∞∑
n=1

(−1)n+1

2n − 1
.

(d) The general term is an = 5n

n2
, n = 3, 4, 5, . . . or an = 5n+2

(n + 2)2
, n = 1, 2, 3, . . .; hence, the series is

∞∑
n=3

5n

n2
=

∞∑
n=1

5n+2

(n + 2)2
.

In Exercises 3–6, compute the partial sums S2, S4, and S6.

3. 1 + 1

22
+ 1

32
+ 1

42
+ · · ·

solution

S2 = 1 + 1

22
= 5

4
;

S4 = 1 + 1

22
+ 1

32
+ 1

42
= 205

144
;

S6 = 1 + 1

22
+ 1

32
+ 1

42
+ 1

52
+ 1

62
= 5369

3600
.

4.
∞∑

k=1

(−1)kk−1

solution

S2 = (−1)1 · 1−1 + (−1)2 · 2−1 = −1 + 1

2
= −1

2
;

S4 = (−1)1 · 1−1 + (−1)2 · 2−1 + (−1)3 · 3−1 + (−1)4 · 4−1 = S2 − 1

3
+ 1

4
= −1

2
− 1

3
+ 1

4
= − 7

12
;

S6 = − 7

12
+ (−1)5 · 5−1 + (−1)6 · 6−1 = − 7

12
− 1

5
+ 1

6
= −37

60
.

5.
1

1 · 2
+ 1

2 · 3
+ 1

3 · 4
+ · · ·

solution

S2 = 1

1 · 2
+ 1

2 · 3
= 1

2
+ 1

6
= 4

6
= 2

3
;

S4 = S2 + a3 + a4 = 2

3
+ 1

3 · 4
+ 1

4 · 5
= 2

3
+ 1

12
+ 1

20
= 4

5
;

S6 = S4 + a5 + a6 = 4

5
+ 1

5 · 6
+ 1

6 · 7
= 4

5
+ 1

30
+ 1

42
= 6

7
.

6.
∞∑

j=1

1

j !

solution

S2 = 1

1! + 1

2! = 1 + 1

2
= 3

2
;

S4 = S2 + 1

3! + 1

4! = 3

2
+ 1

6
+ 1

24
= 41

24
;

S6 = S4 + 1

5! + 1

6! = 41

24
+ 1

120
+ 1

720
= 1237

720
.
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7. The series S = 1 + ( 1
5

) + ( 1
5

)2 + ( 1
5

)3 + · · · converges to 5
4 . Calculate SN for N = 1, 2, . . . until you find an SN

that approximates 5
4 with an error less than 0.0001.

solution

S1 = 1

S2 = 1 + 1

5
= 6

5
= 1.2

S3 = 1 + 1

5
+ 1

25
= 31

25
= 1.24

S3 = 1 + 1

5
+ 1

25
+ 1

125
= 156

125
= 1.248

S4 = 1 + 1

5
+ 1

25
+ 1

125
+ 1

625
= 781

625
= 1.2496

S5 = 1 + 1

5
+ 1

25
+ 1

125
+ 1

625
+ 1

3125
= 3906

3125
= 1.24992

Note that

1.25 − S5 = 1.25 − 1.24992 = 0.00008 < 0.0001

8. The series S = 1

0! − 1

1! + 1

2! − 1

3! + · · · is known to converge to e−1 (recall that 0! = 1). Calculate SN for N =
1, 2, . . . until you find an SN that approximates e−1 with an error less than 0.001.

solution The general term of the series is

an = (−1)n−1

(n − 1)! ;

thus, the N th partial sum of the series is

SN =
N∑

n=1

an =
N∑

n=1

(−1)n−1

(n − 1)! = 1

0! − 1

1! + 1

2! − · · · + (−1)N−1

(N − 1)! .

Using a calculator we find e−1 = 0.367879. Working sequentially, we find

S1 = 1

0! = 1

S2 = S1 + a2 = 1 − 1

1! = 0

S3 = S2 + a3 = 0 + 1

2! = 1

2
= 0.5

S4 = S3 + a4 = 0.5 − 1

3! = 0.333333

S5 = S4 + a5 = 0.333333 + 1

4! = 0.375

S6 = S5 + a6 = 0.375 − 1

5! = 0.366667

S7 = S6 + a7 = 0.366667 + 1

6! = 0.368056

Note that

|S7 − e−1| = 1.76 × 10−4 < 10−3.

In Exercises 9 and 10, use a computer algebra system to compute S10, S100, S500, and S1000 for the series. Do these
values suggest convergence to the given value?

9.

π − 3

4
= 1

2 · 3 · 4
− 1

4 · 5 · 6
+ 1

6 · 7 · 8
− 1

8 · 9 · 10
+ · · ·
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solution Write

an = (−1)n+1

2n · (2n + 1) · (2n + 2)

Then

SN =
N∑

i=1

an

Computing, we find

π − 3

4
≈ 0.0353981635

S10 ≈ 0.03535167962

S100 ≈ 0.03539810274

S500 ≈ 0.03539816290

S1000 ≈ 0.03539816334

It appears that SN → π−3
4 .

10.

π4

90
= 1 + 1

24
+ 1

34
+ 1

44
+ · · ·

solution Write

SN =
N∑

i=1

1

i4

Computing, we find

π4

90
≈ 1.082323234

S(10) ≈ 1.082036583

S(100) ≈ 1.082322905

S(500) ≈ 1.082323231

S(1000) ≈ 1.082323233

It appears that SN → π4

90 .

11. Calculate S3, S4, and S5 and then find the sum of the telescoping series

S =
∞∑

n=1

(
1

n + 1
− 1

n + 2

)

solution

S3 =
(

1

2
− 1

3

)
+
(

1

3
− 1

4

)
+
(

1

4
− 1

5

)
= 1

2
− 1

5
= 3

10
;

S4 = S3 +
(

1

5
− 1

6

)
= 1

2
− 1

6
= 1

3
;

S5 = S4 +
(

1

6
− 1

7

)
= 1

2
− 1

7
= 5

14
.

The general term in the sequence of partial sums is

SN =
(

1

2
− 1

3

)
+
(

1

3
− 1

4

)
+
(

1

4
− 1

5

)
+ · · · +

(
1

N + 1
− 1

N + 2

)
= 1

2
− 1

N + 2
;
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thus,

S = lim
N→∞ SN = lim

N→∞

(
1

2
− 1

N + 2

)
= 1

2
.

The sum of the telescoping series is therefore 1
2 .

12. Write
∞∑

n=3

1

n(n − 1)
as a telescoping series and find its sum.

solution By partial fraction decomposition

1

n(n − 1)
= 1

n − 1
− 1

n
,

so

∞∑
n=3

1

n(n − 1)
=

∞∑
n=3

(
1

n − 1
− 1

n

)
.

The general term in the sequence of partial sums for this series is

SN =
(

1

2
− 1

3

)
+
(

1

3
− 1

4

)
+
(

1

4
− 1

5

)
+ · · · +

(
1

N − 1
− 1

N

)
= 1

2
− 1

N
;

thus,

S = lim
N→∞ SN = lim

N→∞

(
1

2
− 1

N

)
= 1

2
.

13. Calculate S3, S4, and S5 and then find the sum S =
∞∑

n=1

1

4n2 − 1
using the identity

1

4n2 − 1
= 1

2

(
1

2n − 1
− 1

2n + 1

)

solution

S3 = 1

2

(
1

1
− 1

3

)
+ 1

2

(
1

3
− 1

5

)
+ 1

2

(
1

5
− 1

7

)
= 1

2

(
1 − 1

7

)
= 3

7
;

S4 = S3 + 1

2

(
1

7
− 1

9

)
= 1

2

(
1 − 1

9

)
= 4

9
;

S5 = S4 + 1

2

(
1

9
− 1

11

)
= 1

2

(
1 − 1

11

)
= 5

11
.

The general term in the sequence of partial sums is

SN = 1

2

(
1

1
− 1

3

)
+ 1

2

(
1

3
− 1

5

)
+ 1

2

(
1

5
− 1

7

)
+ · · · + 1

2

(
1

2N − 1
− 1

2N + 1

)
= 1

2

(
1 − 1

2N + 1

)
;

thus,

S = lim
N→∞ SN = lim

N→∞
1

2

(
1 − 1

2N + 1

)
= 1

2
.

14. Use partial fractions to rewrite
∞∑

n=1

1

n(n + 3)
as a telescoping series and find its sum.

solution By partial fraction decomposition

1

n (n + 3)
= A

n
+ B

n + 3
;

clearing denominators gives

1 = A (n + 3) + Bn.

Setting n = 0 yields A = 1
3 , while setting n = −3 yields B = − 1

3 . Thus,

1

n(n + 3)
= 1

3

(
1

n
− 1

n + 3

)
,
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and

∞∑
n=1

1

n(n + 3)
=

∞∑
n=1

1

3

(
1

n
− 1

n + 3

)
.

The general term in the sequence of partial sums for the series on the right-hand side is

SN = 1

3

(
1 − 1

4

)
+ 1

3

(
1

2
− 1

5

)
+ 1

3

(
1

3
− 1

6

)
+ 1

3

(
1

4
− 1

7

)
+ 1

3

(
1

5
− 1

8

)
+ 1

3

(
1

6
− 1

9

)

+ · · · + 1

3

(
1

N − 2
− 1

N + 1

)
+ 1

3

(
1

N − 1
− 1

N + 2

)
+ 1

3

(
1

N
− 1

N + 3

)

= 1

3

(
1 + 1

2
+ 1

3

)
− 1

3

(
1

N + 1
+ 1

N + 2
+ 1

N + 3

)
= 11

18
− 1

3

(
1

N + 1
+ 1

N + 2
+ 1

N + 3

)
.

Thus,

lim
N→∞ SN = lim

N→∞

[
11

18
− 1

3

(
1

N + 1
+ 1

N + 2
+ 1

N + 3

)]
= 11

18
,

and

∞∑
n=1

1

n(n + 3)
= 11

18
.

15. Find the sum of
1

1 · 3
+ 1

3 · 5
+ 1

5 · 7
+ · · · .

solution We may write this sum as

∞∑
n=1

1

(2n − 1)(2n + 1)
=

∞∑
n=1

1

2

(
1

2n − 1
− 1

2n + 1

)
.

The general term in the sequence of partial sums is

SN = 1

2

(
1

1
− 1

3

)
+ 1

2

(
1

3
− 1

5

)
+ 1

2

(
1

5
− 1

7

)
+ · · · + 1

2

(
1

2N − 1
− 1

2N + 1

)
= 1

2

(
1 − 1

2N + 1

)
;

thus,

lim
N→∞ SN = lim

N→∞
1

2

(
1 − 1

2N + 1

)
= 1

2
,

and

∞∑
n=1

1

(2n − 1)(2n + 1)
= 1

2
.

16. Find a formula for the partial sum SN of
∞∑

n=1

(−1)n−1 and show that the series diverges.

solution The partial sums of the series are:

S1 = (−1)1−1 = 1;
S2 = (−1)0 + (−1)1 = 1 − 1 = 0;
S3 = (−1)0 + (−1)1 + (−1)2 = 1;
S4 = (−1)0 + (−1)1 + (−1)2 + (−1)3 = 0; · · ·

In general,

SN =
{

1 if N odd
0 if N even

Because the values of SN alternate between 0 and 1, the sequence of partial sums diverges; this, in turn, implies that the

series
∞∑

n=1

(−1)n−1 diverges.
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In Exercises 17–22, use Theorem 3 to prove that the following series diverge.

17.
∞∑

n=1

n

10n + 12

solution The general term,
n

10n + 12
, has limit

lim
n→∞

n

10n + 12
= lim

n→∞
1

10 + (12/n)
= 1

10

Since the general term does not tend to zero, the series diverges.

18.
∞∑

n=1

n√
n2 + 1

solution The general term,
n√

n2 + 1
, has limit

lim
n→∞

n√
n2 + 1

= lim
n→∞

√
n2

n2 + 1
= lim

n→∞

√
1

1 + (1/n2)
= 1

Since the general term does not tend to zero, the series diverges.

19.
0

1
− 1

2
+ 2

3
− 3

4
+ · · ·

solution The general term an = (−1)n−1 n−1
n does not tend to zero. In fact, because limn→∞ n−1

n = 1, limn→∞ an

does not exist. By Theorem 3, we conclude that the given series diverges.

20.
∞∑

n=1

(−1)nn2

solution The general term an = (−1)nn2 does not tend to zero. In fact, because limn→∞ n2 = ∞, limn→∞ an does
not exist. By Theorem 3, we conclude that the given series diverges.

21. cos
1

2
+ cos

1

3
+ cos

1

4
+ · · ·

solution The general term an = cos 1
n+1 tends to 1, not zero. By Theorem 3, we conclude that the given series

diverges.

22.
∞∑

n=0

(√
4n2 + 1 − n

)
solution The general term of the series satisfies

√
4n2 + 1 − n >

√
4n2 − n = n

Thus the general term tends to infinity. The series diverges by Theorem 2.

In Exercises 23–36, use the formula for the sum of a geometric series to find the sum or state that the series diverges.

23.
1

1
+ 1

8
+ 1

82
+ · · ·

solution This is a geometric series with c = 1 and r = 1
8 , so its sum is

1

1 − 1
8

= 1

7/8
= 8

7

24.
43

53
+ 44

54
+ 45

55 + · · ·
solution This is a geometric series with

c = 43

53
and r = 4

5

so its sum is

c

1 − r
= 43/53

1 − 4
5

= 43

53 − 4 · 52
= 64

25
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25.
∞∑

n=3

(
3

11

)−n

solution Rewrite this series as

∞∑
n=3

(
11

3

)n

This is a geometric series with r = 11

3
> 1, so it is divergent.

26.
∞∑

n=2

7 · (−3)n

5n

solution This is a geometric series with c = 7 and r = −3

5
, starting at n = 2. Its sum is thus

cr2

1 − r
= 7 · (9/25)

1 − 3
5

= 63

25
· 5

8
= 63

40

27.
∞∑

n=−4

(
−4

9

)n

solution This is a geometric series with c = 1 and r = −4

9
, starting at n = −4. Its sum is thus

cr−4

1 − r
= c

r4 − r5
= 1

44

94 + 45

95

= 95

9 · 44 + 45
= 59,049

3328

28.
∞∑

n=0

(π

e

)n

solution Since π > e, this is a geometric series with r > 1, so it diverges.

29.
∞∑

n=1

e−n

solution Rewrite the series as

∞∑
n=1

(
1

e

)n

to recognize it as a geometric series with c = 1
e and r = 1

e . Thus,

∞∑
n=1

e−n =
1
e

1 − 1
e

= 1

e − 1
.

30.
∞∑

n=2

e3−2n

solution Rewrite the series as

∞∑
n=2

e3e−2n =
∞∑

n=2

e3
(

1

e2

)n

to recognize it as a geometric series with c = e3
(

1
e2

)2 = 1
e and r = 1

e2 . Thus,

∞∑
n=2

e3−2n =
1
e

1 − 1
e2

= e

e2 − 1
.

31.
∞∑

n=0

8 + 2n

5n

solution Rewrite the series as

∞∑
n=0

8

5n
+

∞∑
n=0

2n

5n
=

∞∑
n=0

8 ·
(

1

5

)n

+
∞∑

n=0

(
2

5

)n

,
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which is a sum of two geometric series. The first series has c = 8
(

1
5

)0 = 8 and r = 1
5 ; the second has c =

(
2
5

)0 = 1

and r = 2
5 . Thus,

∞∑
n=0

8 ·
(

1

5

)n

= 8

1 − 1
5

= 8
4
5

= 10,

∞∑
n=0

(
2

5

)n

= 1

1 − 2
5

= 1
3
5

= 5

3
,

and

∞∑
n=0

8 + 2n

5n
= 10 + 5

3
= 35

3
.

32.
∞∑

n=0

3(−2)n − 5n

8n

solution Rewrite the series as

∞∑
n=0

3(−2)n − 5n

8n
=

∞∑
n=0

3(−2)n

8n
−

∞∑
n=0

5n

8n

which is a difference of two geometric series. The first has c = 3 and r = − 1
4 ; the second has c = 1 and r = 5

8 . Thus

∞∑
n=0

3(−2)n

8n
= 3

1 + 1
4

= 12

5

∞∑
n=0

5n

8n
= 1

1 − 5
8

= 8

3

so that

∞∑
n=0

3(−2)n − 5n

8n
= 12

5
− 8

3
= − 4

15

33. 5 − 5

4
+ 5

42
− 5

43
+ · · ·

solution This is a geometric series with c = 5 and r = − 1
4 . Thus,

∞∑
n=0

5 ·
(

−1

4

)n

= 5

1 −
(
− 1

4

) = 5

1 + 1
4

= 5
5
4

= 4.

34.
23

7
+ 24

72
+ 25

73
+ 26

74
+ · · ·

solution This is a geometric series with c = 8
7 and r = 2

7 . Thus,

∞∑
n=0

8

7
·
(

2

7

)n

=
8
7

1 − 2
7

=
8
7
5
7

= 8

5
.

35.
7

8
− 49

64
+ 343

512
− 2401

4096
+ · · ·

solution This is a geometric series with c = 7
8 and r = − 7

8 . Thus,

∞∑
n=0

7

8
·
(

−7

8

)n

=
7
8

1 −
(
− 7

8

) =
7
8
15
8

= 7

15
.
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36.
25

9
+ 5

3
+ 1 + 3

5
+ 9

25
+ 27

125
+ · · ·

solution This appears to be a geometric series with

c = 25

9
and r = 3

5

so its sum is

c

1 − r
= 25/9

1 − 3
5

= 25

9
· 5

2
= 125

18

37. Which of the following are not geometric series?

(a)
∞∑

n=0

7n

29n
(b)

∞∑
n=3

1

n4

(c)
∞∑

n=0

n2

2n
(d)

∞∑
n=5

π−n

solution

(a)
∞∑

n=0

7n

29n =
∞∑

n=0

(
7

29

)n

: this is a geometric series with common ratio r = 7

29
.

(b) The ratio between two successive terms is

an+1

an
=

1
(n+1)4

1
n4

= n4

(n + 1)4
=
(

n

n + 1

)4
.

This ratio is not constant since it depends on n. Hence, the series
∞∑

n=3

1

n4
is not a geometric series.

(c) The ratio between two successive terms is

an+1

an
=

(n+1)2

2n+1

n2

2n

= (n + 1)2

n2
· 2n

2n+1
=
(

1 + 1

n

)2
· 1

2
.

This ratio is not constant since it depends on n. Hence, the series
∞∑

n=0

n2

2n
is not a geometric series.

(d)
∞∑

n=5

π−n =
∞∑

n=5

(
1

π

)n

: this is a geometric series with common ratio r = 1

π
.

38. Use the method of Example 8 to show that
∞∑

k=1

1

k1/3
diverges.

solution Each term in the N th partial sum is greater than or equal to
1

N
1
3

, hence:

SN = 1

11/3
+ 1

21/3
+ 3

31/3
+ · · · + 1

N1/3
≥ 1

N1/3
+ 1

N1/3
+ 1

N1/3
+ · · · + 1

N1/3
= N · 1

N1/3
= N2/3.

Since lim
N→∞N2/3 = ∞, it follows that

lim
N→∞ SN = ∞.

Thus, the series
∞∑

k=1

1

k1/3
diverges.

39. Prove that if
∞∑

n=1

an converges and
∞∑

n=1

bn diverges, then
∞∑

n=1

(an + bn) diverges. Hint: If not, derive a contradiction

by writing

∞∑
n=1

bn =
∞∑

n=1

(an + bn) −
∞∑

n=1

an
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solution Suppose to the contrary that
∑∞

n=1 an converges,
∑∞

n=1 bn diverges, but
∑∞

n=1(an + bn) converges. Then
by the Linearity of Infinite Series, we have

∞∑
n=1

bn =
∞∑

n=1

(an + bn) −
∞∑

n=1

an

so that
∑∞

n=1 bn converges, a contradiction.

40. Prove the divergence of
∞∑

n=0

9n + 2n

5n
.

solution Note that this is the sum of two infinite series:

∞∑
n=0

9n + 2n

5n
=

∞∑
n=0

9n

5n
+

∞∑
n=0

2n

5n

The first of these is a geometric series with r = 9
5 > 1, so diverges, while the second is a geometric series with r = 2

5 < 1,
so converges. By the previous exercise, the sum of the two also diverges.

41. Give a counterexample to show that each of the following statements is false.

(a) If the general term an tends to zero, then
∞∑

n=1

an = 0.

(b) The N th partial sum of the infinite series defined by {an} is aN .

(c) If an tends to zero, then
∞∑

n=1

an converges.

(d) If an tends to L, then
∞∑

n=1

an = L.

solution

(a) Let an = 2−n. Then limn→∞ an = 0, but an is a geometric series with c = 20 = 1 and r = 1/2, so its sum is
1

1 − (1/2)
= 2.

(b) Let an = 1. Then the nth partial sum is a1 + a2 + · · · + an = n while an = 1.

(c) Let an = 1√
n

. An example in the text shows that while an tends to zero, the sum
∑∞

n=1
an does not converge.

(d) Let an = 1. Then clearly an tends to L = 1, while the series
∑∞

n=1 an obviously diverges.

42. Suppose that S =
∞∑

n=1

an is an infinite series with partial sum SN = 5 − 2

N2
.

(a) What are the values of
10∑

n=1

an and
16∑

n=5

an?

(b) What is the value of a3?

(c) Find a general formula for an.

(d) Find the sum
∞∑

n=1

an.

solution

(a)

10∑
n=1

an = S10 = 5 − 2

102
= 249

50
;

16∑
n=5

an = (a1 + · · · + a16) − (a1 + a2 + a3 + a4) = S16 − S4 =
(

5 − 2

162

)
−
(

5 − 2

42

)
= 2

16
− 2

256
= 15

128
.

(b)

a3 = (a1 + a2 + a3) − (a1 + a2) = S3 − S2 =
(

5 − 2

32

)
−
(

5 − 2

22

)
= 1

2
− 2

9
= 5

18
.
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(c) Since an = Sn − Sn−1, we have:

an = Sn − Sn−1 =
(

5 − 2

n2

)
−
(

5 − 2

(n − 1)2

)
= 2

(n − 1)2
− 2

n2

=
2
(
n2 − (n − 1)2

)
(n (n − 1))2

=
2
(
n2 − n2 + 2n − 1

)
(n (n − 1))2

= 2 (2n − 1)

n2(n − 1)2
.

(d) The sum
∞∑

n=1

an is the limit of the sequence of partial sums {SN }. Hence:

∞∑
n=1

an = lim
N→∞ SN = lim

N→∞

(
5 − 2

N2

)
= 5.

43. Compute the total area of the (infinitely many) triangles in Figure 4.

1
8

1
4

1
2

1
16

1
2

y

x
1

FIGURE 4

solution The area of a triangle with base B and height H is A = 1
2BH . Because all of the triangles in Figure 4 have

height 1
2 , the area of each triangle equals one-quarter of the base. Now, for n ≥ 0, the nth triangle has a base which

extends from x = 1
2n+1 to x = 1

2n . Thus,

B = 1

2n
− 1

2n+1
= 1

2n+1
and A = 1

4
B = 1

2n+3
.

The total area of the triangles is then given by the geometric series

∞∑
n=0

1

2n+3
=

∞∑
n=0

1

8

(
1

2

)n

=
1
8

1 − 1
2

= 1

4
.

44. The winner of a lottery receives m dollars at the end of each year for N years. The present value (PV) of this prize

in today’s dollars is PV =
N∑

i=1

m(1 + r)−i , where r is the interest rate. Calculate PV if m = $50,000, r = 0.06, and

N = 20. What is PV if N = ∞?

solution For the given values r , m and N , we have

PV =
20∑
i=1

50,000(1 + 0.06)−i =
20∑
i=1

50,000

(
50

53

)i

= 50,000
1 −

(
50
53

)21

1 − 50
53

= $623,496.06.

If we extend the payments forever, then N = ∞ and

PV =
∞∑
i=1

50,000(1 + 0.06)−i =
∞∑
i=1

50,000

(
50

53

)i

=
50,000

(
50
53

)
1 − 50

53

= $833,333.33.

45. Find the total length of the infinite zigzag path in Figure 5 (each zag occurs at an angle of π
4 ).

1

π /4 π /4

FIGURE 5



March 31, 2011

1238 C H A P T E R 10 INFINITE SERIES

solution Because the angle at the lower left in Figure 5 has measure π
4 and each zag in the path occurs at an angle of

π
4 , every triangle in the figure is an isosceles right triangle. Accordingly, the length of each new segment in the path is
1√
2

times the length of the previous segment. Since the first segment has length 1, the total length of the path is

∞∑
n=0

(
1√
2

)n

= 1

1 − 1√
2

=
√

2√
2 − 1

= 2 + √
2.

46. Evaluate
∞∑

n=1

1

n(n + 1)(n + 2)
. Hint: Find constants A, B, and C such that

1

n(n + 1)(n + 2)
= A

n
+ B

n + 1
+ C

n + 2

solution By partial fraction decomposition

1

n(n + 1)(n + 2)
= A

n
+ B

n + 1
+ C

n + 2
;

clearing denominators then gives

1 = A (n + 1) (n + 2) + Bn (n + 2) + Cn (n + 1) .

Setting n = 0 now yields A = 1
2 , while setting n = −1 yields B = −1 and setting n = −2 yields C = 1

2 . Thus,

1

n (n + 1) (n + 2)
=

1
2
n

− 1

n + 1
+

1
2

n + 2
= 1

2

(
1

n
− 2

n + 1
+ 1

n + 2

)
,

and

∞∑
n=1

1

n(n + 1)(n + 2)
=

∞∑
n=1

1

2

(
1

n
− 2

n + 1
+ 1

n + 2

)
.

The general term of the sequence of partial sums for the series on the right-hand side is

SN = 1

2

(
1 − 2

2
+ 1

3

)
+ 1

2

(
1

2
− 2

3
+ 1

4

)
+ 1

2

(
1

3
− 2

4
+ 1

5

)
+ 1

2

(
1

4
+ 2

5
+ 1

6

)
+ 1

2

(
1

5
− 2

6
+ 1

7

)

+ · · · + 1

2

(
1

N − 2
− 2

N − 1
+ 1

N

)
+ 1

2

(
1

N − 1
− 2

N
+ 1

N + 1

)
+ 1

2

(
1

N
− 2

N + 1
+ 1

N + 2

)

= 1

2

(
1

2
− 1

N + 1
+ 1

N + 2

)
.

Thus,

∞∑
n=1

1

n(n + 1)(n + 2)
= lim

N→∞ SN = lim
N→∞

1

2

(
1

2
− 1

N + 1
+ 1

N + 2

)
= 1

4
.

47. Show that if a is a positive integer, then

∞∑
n=1

1

n(n + a)
= 1

a

(
1 + 1

2
+ · · · + 1

a

)

solution By partial fraction decomposition

1

n (n + a)
= A

n
+ B

n + a
;

clearing the denominators gives

1 = A(n + a) + Bn.

Setting n = 0 then yields A = 1
a , while setting n = −a yields B = − 1

a . Thus,

1

n (n + a)
=

1
a

n
−

1
a

n + a
= 1

a

(
1

n
− 1

n + a

)
,
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and

∞∑
n=1

1

n(n + a)
=

∞∑
n=1

1

a

(
1

n
− 1

n + a

)
.

For N > a, the N th partial sum is

SN = 1

a

(
1 + 1

2
+ 1

3
+ · · · + 1

a

)
− 1

a

(
1

N + 1
+ 1

N + 2
+ 1

N + 3
+ · · · + 1

N + a

)
.

Thus,

∞∑
n=1

1

n(n + a)
= lim

N→∞ SN = 1

a

(
1 + 1

2
+ 1

3
+ · · · + 1

a

)
.

48. A ball dropped from a height of 10 ft begins to bounce. Each time it strikes the ground, it returns to two-thirds of its
previous height. What is the total distance traveled by the ball if it bounces infinitely many times?

solution The distance traveled by the ball is shown in the accompanying figure:

2
3

h

h = 10

(  )

2
3

h

2
3

2
h (  )2

3

2
h

The total distance d traveled by the ball is given by the following infinite sum:

d = h + 2 · 2

3
h + 2 ·

(
2

3

)2
h + 2 ·

(
2

3

)3
h + · · · = h + 2h

(
2

3
+
(

2

3

)2
+
(

2

3

)3
+ · · ·

)
= h + 2h

∞∑
n=1

(
2

3

)n

.

We use the formula for the sum of a geometric series to compute the sum of the resulting series:

d = h + 2h ·
(

2
3

)1

1 − 2
3

= h + 2h(2) = 5h.

With h = 10 feet, it follows that the total distance traveled by the ball is 50 feet.

49. Let {bn} be a sequence and let an = bn − bn−1. Show that
∞∑

n=1

an converges if and only if lim
n→∞ bn exists.

solution Let an = bn − bn−1. The general term in the sequence of partial sums for the series
∞∑

n=1

an is then

SN = (b1 − b0) + (b2 − b1) + (b3 − b2) + · · · + (bN − bN−1) = bN − b0.

Now, if lim
N→∞ bN exists, then so does lim

N→∞ SN and
∞∑

n=1

an converges. On the other hand, if
∞∑

n=1

an converges, then

lim
N→∞ SN exists, which implies that lim

N→∞ bN also exists. Thus,
∞∑

n=1

an converges if and only if lim
n→∞ bn exists.

50. Assumptions Matter Show, by giving counterexamples, that the assertions of Theorem 1 are not valid if the series
∞∑

n=0

an and
∞∑

n=0

bn are not convergent.

solution Let an = 2−n − 2n and bn = 2n. Then, both

∞∑
n=0

an and
∞∑

n=0

bn
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diverge, so the sum

∞∑
n=0

an +
∞∑

n=0

bn

is not defined. However,

∞∑
n=0

(an + bn) =
∞∑

n=0

((2−n − 2n) + 2n) =
∞∑

n=0

2−n = 1.

Further Insights and Challenges
Exercises 51–53 use the formula

1 + r + r2 + · · · + rN−1 = 1 − rN

1 − r
7

51. Professor GeorgeAndrews of Pennsylvania State University observed that we can use Eq. (7) to calculate the derivative
of f (x) = xN (for N ≥ 0). Assume that a 	= 0 and let x = ra. Show that

f ′(a) = lim
x→a

xN − aN

x − a
= aN−1 lim

r→1

rN − 1

r − 1

and evaluate the limit.

solution According to the definition of derivative of f (x) at x = a

f ′ (a) = lim
x→a

xN − aN

x − a
.

Now, let x = ra. Then x → a if and only if r → 1, and

f ′ (a) = lim
x→a

xN − aN

x − a
= lim

r→1

(ra)N − aN

ra − a
= lim

r→1

aN
(
rN − 1

)
a (r − 1)

= aN−1 lim
r→1

rN − 1

r − 1
.

By Eq. (7) for a geometric sum,

1 − rN

1 − r
= rN − 1

r − 1
= 1 + r + r2 + · · · + rN−1,

so

lim
r→1

rN − 1

r − 1
= lim

r→1

(
1 + r + r2 + · · · + rN−1

)
= 1 + 1 + 12 + · · · + 1N−1 = N.

Therefore, f ′ (a) = aN−1 · N = NaN−1

52. Pierre de Fermat used geometric series to compute the area under the graph of f (x) = xN over [0, A]. For 0 < r < 1,
let F(r) be the sum of the areas of the infinitely many right-endpoint rectangles with endpoints Arn, as in Figure 6. As r

tends to 1, the rectangles become narrower and F(r) tends to the area under the graph.

(a) Show that F(r) = AN+1 1 − r

1 − rN+1
.

(b) Use Eq. (7) to evaluate
∫ A

0
xN dx = lim

r→1
F(r).

y

f (x) = xN

r3A r2A rA A
x

FIGURE 6

solution

(a) The area of the rectangle whose base extends from x = rnA to x = rn−1A is

(rn−1A)N(rn−1A − rnA).
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Hence, F(r) is the sum

F(r) =
∞∑

n=1

(
rn−1A

)N (
rn−1A − rnA

)
=

∞∑
n=1

r(n−1)N rn−1(1 − r)AN+1 = AN+1(1 − r)

∞∑
n=1

rnN−N+n−1

= AN+1(1 − r)

rN+1

∞∑
n=1

(
rN+1

)n = AN+1(1 − r)

rN+1
· rN+1

1 − rN+1
= AN+1 1 − r

1 − rN+1
.

(b) Using the result from part (a) and Eq. (7) from Exercise 51,∫ A

0
xN dx = lim

r→1
F(r) = AN+1 lim

r→1

1 − r

1 − rN+1
= AN+1 lim

r→1

1

1 + r + r2 + · · · + rN
= AN+1 · 1

N + 1
= AN+1

N + 1
.

53. Verify the Gregory–Leibniz formula as follows.

(a) Set r = −x2 in Eq. (7) and rearrange to show that

1

1 + x2
= 1 − x2 + x4 − · · · + (−1)N−1x2N−2 + (−1)Nx2N

1 + x2

(b) Show, by integrating over [0, 1], that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · + (−1)N−1

2N − 1
+ (−1)N

∫ 1

0

x2N dx

1 + x2

(c) Use the Comparison Theorem for integrals to prove that

0 ≤
∫ 1

0

x2N dx

1 + x2
≤ 1

2N + 1

Hint: Observe that the integrand is ≤ x2N .

(d) Prove that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− · · ·

Hint: Use (b) and (c) to show that the partial sums SN of satisfy
∣∣SN − π

4

∣∣ ≤ 1
2N+1 , and thereby conclude that

lim
N→∞ SN = π

4 .

solution

(a) Start with Eq. (7), and substitute −x2 for r:

1 + r + r2 + · · · + rN−1 = 1 − rN

1 − r

1 − x2 + x4 + · · · + (−1)N−1x2N−2 = 1 − (−1)Nx2N

1 − (−x2)

1 − x2 + x4 + · · · + (−1)N−1x2N−2 = 1

1 + x2
− (−1)Nx2N

1 + x2

1

1 + x2
= 1 − x2 + x4 + · · · + (−1)N−1x2N−2 + (−1)Nx2N

1 + x2

(b) The integrals of both sides must be equal. Now,

∫ 1

0

1

1 + x2
dx = tan−1 x

∣∣∣∣1
0

= tan−1 1 − tan−1 0 = π

4

while ∫ 1

0

(
1 − x2 + x4 + · · · + (−1)N−1x2N−2 + (−1)Nx2N

1 + x2

)
dx

=
(

x − 1

3
x3 + 1

5
x5 + · · · + (−1)N−1 1

2N − 1
x2N−1

)
+ (−1)N

∫ 1

0

x2N dx

1 + x2

= 1 − 1

3
+ 1

5
+ · · · + (−1)N−1 1

2N − 1
+ (−1)N

∫ 1

0

x2N dx

1 + x2
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(c) Note that for x ∈ [0, 1], we have 1 + x2 ≥ 1, so that

0 ≤ x2N

1 + x2
≤ x2N

By the Comparison Theorem for integrals, we then see that

0 ≤
∫ 1

0

x2N dx

1 + x2
≤
∫ 1

0
x2N dx = 1

2N + 1
x2N+1

∣∣∣∣1
0

= 1

2N + 1

(d) Write

an = (−1)n
1

2n − 1
, n ≥ 1

and let SN be the partial sums. Then

∣∣∣SN − π

4

∣∣∣ =
∣∣∣∣∣(−1)N

∫ 1

0

x2N dx

1 + x2

∣∣∣∣∣ =
∫ 1

0

x2N dx

1 + x2
≤ 1

2N + 1

Thus limN→∞ SN = π

4
so that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− . . .

54. Cantor’s Disappearing Table (following Larry Knop of Hamilton College) Take a table of length L (Figure 7).
At stage 1, remove the section of length L/4 centered at the midpoint. Two sections remain, each with length less than
L/2. At stage 2, remove sections of length L/42 from each of these two sections (this stage removes L/8 of the table).
Now four sections remain, each of length less than L/4. At stage 3, remove the four central sections of length L/43, etc.

(a) Show that at the N th stage, each remaining section has length less than L/2N and that the total amount of table
removed is

L

(
1

4
+ 1

8
+ 1

16
+ · · · + 1

2N+1

)

(b) Show that in the limit as N → ∞, precisely one-half of the table remains.

This result is curious, because there are no nonzero intervals of table left (at each stage, the remaining sections have a
length less than L/2N ). So the table has “disappeared.” However, we can place any object longer than L/4 on the table.
It will not fall through because it will not fit through any of the removed sections.

L/16 L/16L/4

FIGURE 7

solution
(a) After the N th stage, the total amount of table that has been removed is

L

4
+ 2L

42
+ 4L

43
+ · · · + 2N−1L

4N
= L

(
1

4
+ 1

8
+ 1

16
+ · · · + 2N−1

22N

)
= L

(
1

4
+ 1

8
+ 1

16
+ · · · + 1

2N+1

)

At the first stage (N = 1), there are two remaining sections each of length

L − L
4

2
= 3L

8
<

L

2
.

Suppose that at the Kth stage, each of the 2K remaining sections has length less than
L

2K
. The (K + 1)st stage is obtained

by removing the section of length
L

4K+1
centered at the midpoint of each segment in the Kth stage. Let ak and aK+1,

respectively, denote the length of each segment in the Kth and (K + 1)st stage. Then,

aK+1 = aK − L
4K+1

2
<

L
2K − L

4K+1

2
= L

2K

(
1 − 1

2K+2

2

)
<

L

2K
· 1

2
= L

2K+1
.
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Thus, by mathematical induction, each remaining section at the N th stage has length less than
L

2N
.

(b) From part (a), we know that after N stages, the amount of the table that has been removed is

L

(
1

4
+ 1

8
+ 1

16
+ · · · + 1

2N+1

)
=

N∑
n=1

1

2n+1
.

As N → ∞, the amount of the table that has been removed becomes a geometric series whose sum is

L

∞∑
n=1

1

2

(
1

2

)n

= L

1
4

1 − 1
2

= 1

2
L.

Thus, the amount of table that remains is L − 1
2L = 1

2L.

55. The Koch snowflake (described in 1904 by Swedish mathematician Helge von Koch) is an infinitely jagged “fractal”
curve obtained as a limit of polygonal curves (it is continuous but has no tangent line at any point). Begin with an
equilateral triangle (stage 0) and produce stage 1 by replacing each edge with four edges of one-third the length, arranged
as in Figure 8. Continue the process: At the nth stage, replace each edge with four edges of one-third the length.
(a) Show that the perimeter Pn of the polygon at the nth stage satisfies Pn = 4

3Pn−1. Prove that lim
n→∞ Pn = ∞. The

snowflake has infinite length.
(b) Let A0 be the area of the original equilateral triangle. Show that (3)4n−1 new triangles are added at the nth stage,
each with area A0/9n (for n ≥ 1). Show that the total area of the Koch snowflake is 8

5A0.

Stage 1 Stage 3Stage 2

FIGURE 8

solution
(a) Each edge of the polygon at the (n − 1)st stage is replaced by four edges of one-third the length; hence the perimeter
of the polygon at the nth stage is 4

3 times the perimeter of the polygon at the (n − 1)th stage. That is, Pn = 4
3Pn−1. Thus,

P1 = 4

3
P0; P2 = 4

3
P1 =

(
4

3

)2
P0, P3 = 4

3
P2 =

(
4

3

)3
P0,

and, in general, Pn = ( 4
3

)n
P0. As n → ∞, it follows that

lim
n→∞ Pn = P0 lim

n→∞

(
4

3

)n

= ∞.

(b) When each edge is replaced by four edges of one-third the length, one new triangle is created. At the (n − 1)st stage,
there are 3 · 4n−1 edges in the snowflake, so 3 · 4n−1 new triangles are generated at the nth stage. Because the area of an
equilateral triangle is proportional to the square of its side length and the side length for each new triangle is one-third
the side length of triangles from the previous stage, it follows that the area of the triangles added at each stage is reduced
by a factor of 1

9 from the area of the triangles added at the previous stage. Thus, each triangle added at the nth stage has
an area of A0/9n. This means that the nth stage contributes

3 · 4n−1 · A0

9n
= 3

4
A0

(
4

9

)n

to the area of the snowflake. The total area is therefore

A = A0 + 3

4
A0

∞∑
n=1

(
4

9

)n

= A0 + 3

4
A0

4
9

1 − 4
9

= A0 + 3

4
A0 · 4

5
= 8

5
A0.

10.3 Convergence of Series with Positive Terms

Preliminary Questions

1. Let S =
∞∑

n=1

an. If the partial sums SN are increasing, then (choose the correct conclusion):

(a) {an} is an increasing sequence.
(b) {an} is a positive sequence.
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solution The correct response is (b). Recall that SN = a1 + a2 + a3 + · · · + aN ; thus, SN − SN−1 = aN . If SN is
increasing, then SN − SN−1 ≥ 0. It then follows that aN ≥ 0; that is, {an} is a positive sequence.

2. What are the hypotheses of the Integral Test?

solution The hypotheses for the Integral Test are: A function f (x) such that an = f (n) must be positive, decreasing,
and continuous for x ≥ 1.

3. Which test would you use to determine whether
∞∑

n=1

n−3.2 converges?

solution Because n−3.2 = 1
n3.2 , we see that the indicated series is a p-series with p = 3.2 > 1. Therefore, the series

converges.

4. Which test would you use to determine whether
∞∑

n=1

1

2n + √
n

converges?

solution Because

1

2n + √
n

<
1

2n
=
(

1

2

)n

,

and
∞∑

n=1

(
1

2

)n

is a convergent geometric series, the comparison test would be an appropriate choice to establish that the given series
converges.

5. Ralph hopes to investigate the convergence of
∞∑

n=1

e−n

n
by comparing it with

∞∑
n=1

1

n
. Is Ralph on the right track?

solution No, Ralph is not on the right track. For n ≥ 1,

e−n

n
<

1

n
;

however,
∞∑

n=1

1

n
is a divergent series. The Comparison Test therefore does not allow us to draw a conclusion about the

convergence or divergence of the series
∞∑

n=1

e−n

n
.

Exercises
In Exercises 1–14, use the Integral Test to determine whether the infinite series is convergent.

1.
∞∑

n=1

1

n4

solution Let f (x) = 1

x4
. This function is continuous, positive and decreasing on the interval x ≥ 1, so the Integral

Test applies. Moreover, ∫ ∞
1

dx

x4
= lim

R→∞

∫ R

1
x−4 dx = −1

3
lim

R→∞

(
1

R3
− 1

)
= 1

3
.

The integral converges; hence, the series
∞∑

n=1

1

n4
also converges.

2.
∞∑

n=1

1

n + 3

solution Let f (x) = 1

x + 3
. This function is continuous, positive and decreasing on the interval x ≥ 1, so the Integral

Test applies. Moreover, ∫ ∞
1

dx

x + 3
= lim

R→∞

∫ R

1

dx

x + 3
= lim

R→∞ (ln(R + 3) − ln 4) = ∞.

The integral diverges; hence, the series
∞∑

n=1

1

n + 3
also diverges.
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3.
∞∑

n=1

n−1/3

solution Let f (x) = x− 1
3 = 1

3√x
. This function is continuous, positive and decreasing on the interval x ≥ 1, so the

Integral Test applies. Moreover,

∫ ∞
1

x−1/3 dx = lim
R→∞

∫ R

1
x−1/3 dx = 3

2
lim

R→∞
(
R2/3 − 1

)
= ∞.

The integral diverges; hence, the series
∞∑

n=1

n−1/3 also diverges.

4.
∞∑

n=5

1√
n − 4

solution Let f (x) = 1√
x − 4

. This function is continuous, positive and decreasing on the interval x ≥ 5, so the

Integral Test applies. Moreover,

∫ ∞
5

dx√
x − 4

= lim
R→∞

∫ R

5

dx√
x − 4

= 2 lim
R→∞

(√
R − 4 − 1

)
= ∞.

The integral diverges; hence, the series
∞∑

n=5

1√
n − 4

also diverges.

5.
∞∑

n=25

n2

(n3 + 9)5/2

solution Let f (x) = x2(
x3 + 9

)5/2
. This function is positive and continuous for x ≥ 25. Moreover, because

f ′(x) = 2x(x3 + 9)
5/2 − x2 · 5

2 (x3 + 9)
3/2 · 3x2

(x3 + 9)
5 = x(36 − 11x3)

2(x3 + 9)
7/2

,

we see that f ′(x) < 0 for x ≥ 25, so f is decreasing on the interval x ≥ 25. The Integral Test therefore applies. To
evaluate the improper integral, we use the substitution u = x3 + 9, du = 3x2dx. We then find

∫ ∞
25

x2

(x3 + 9)5/2
dx = lim

R→∞

∫ R

25

x2

(x3 + 9)5/2
dx = 1

3
lim

R→∞

∫ R3+9

15634

du

u5/2

= −2

9
lim

R→∞

(
1

(R3 + 9)3/2
− 1

156343/2

)
= 2

9 · 156343/2
.

The integral converges; hence, the series
∞∑

n=25

n2(
n3 + 9

)5/2
also converges.

6.
∞∑

n=1

n

(n2 + 1)3/5

solution Let f (x) = x

(x2 + 1)3/5
. Because

f ′(x) = (x2 + 1)3/5 − x · 6
5x(x2 + 1)−2/5

(x2 + 1)6/5
= 1 − 1

5x2

(x2 + 1)8/5
,

we see that f ′(x) < 0 for x >
√

5 ≈ 2.236. We conclude that f is decreasing on the interval x ≥ 3. Since f is also
positive and continuous on this interval, the Integral Test can be applied. To evaluate the improper integral, we make the
substitution u = x2 + 1, du = 2x dx. This gives

∫ ∞
3

x

(x2 + 1)3/5
dx = lim

R→∞

∫ R

3

x

(x2 + 1)3/5
dx = 1

2
lim

R→∞

∫ R2+1

10

du

u3/5
= 5

4
lim

R→∞
(
(R2 + 1)2/5 − 102/5

)
= ∞.
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The integral diverges; therefore, the series
∞∑

n=3

n

(n2 + 1)3/5
also diverges. Since the divergence of the series is not affected

by adding the finite sum
2∑

n=1

n

(n2 + 1)3/5
, the series

∞∑
n=1

n

(n2 + 1)3/5
also diverges.

7.
∞∑

n=1

1

n2 + 1

solution Let f (x) = 1

x2 + 1
. This function is positive, decreasing and continuous on the interval x ≥ 1, hence the

Integral Test applies. Moreover,

∫ ∞
1

dx

x2 + 1
= lim

R→∞

∫ R

1

dx

x2 + 1
= lim

R→∞
(

tan−1 R − π

4

)
= π

2
− π

4
= π

4
.

The integral converges; hence, the series
∞∑

n=1

1

n2 + 1
also converges.

8.
∞∑

n=4

1

n2 − 1

solution Let f (x) = 1

x2 − 1
.This function is continuous, positive and decreasing on the interval x ≥ 4; therefore,

the Integral Test applies. We compute the improper integral using partial fractions:

∞∫
4

dx

x2 − 1
= lim

R→∞

R∫
4

(
1
2

x − 1
−

1
2

x + 1

)
dx = 1

2
lim

R→∞ ln
x − 1

x + 1

∣∣∣∣R
4

= 1

2
lim

R→∞

(
ln

R − 1

R + 1
− ln

3

5

)

= 1

2

(
ln 1 − ln

3

5

)
= −1

2
ln

3

5
.

The integral converges; hence, the series
∞∑

n=4

1

n2 − 1
also converges.

9.
∞∑

n=1

1

n(n + 1)

solution Let f (x) = 1

x(x + 1)
. This function is positive, continuous and decreasing on the interval x ≥ 1, so the

Integral Test applies. We compute the improper integral using partial fractions:

∫ ∞
1

dx

x(x + 1)
= lim

R→∞

∫ R

1

(
1

x
− 1

x + 1

)
dx = lim

R→∞ ln
x

x + 1

∣∣∣∣R
1

= lim
R→∞

(
ln

R

R + 1
− ln

1

2

)
= ln 1 − ln

1

2
= ln 2.

The integral converges; hence, the series
∞∑

n=1

1

n(n + 1)
converges.

10.
∞∑

n=1

ne−n2

solution Let f (x) = xe−x2
. This function is continuous and positive on the interval x ≥ 1. Moreover, because

f ′(x) = 1 · e−x2 + x · e−x2 · (−2x) = e−x2
(

1 − 2x2
)

,

we see that f ′(x) < 0 for x ≥ 1, so f is decreasing on this interval. To compute the improper integral we make the
substitution u = x2, du = 2x dx. Then, we find

∫ ∞
1

xe−x2
dx = lim

R→∞

∫ R

1
xe−x2

dx = 1

2

∫ R2

1
e−u du = −1

2
lim

R→∞
(
e−R2 − e−1

)
= 1

2e
.

The integral converges; hence, the series
∞∑

n=1

ne−n2
also converges.
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11.
∞∑

n=2

1

n(ln n)2

solution Let f (x) = 1

x(ln x)2
. This function is positive and continuous for x ≥ 2. Moreover,

f ′(x) = − 1

x2(ln x)4

(
1 · (ln x)2 + x · 2 (ln x) · 1

x

)
= − 1

x2(ln x)4

(
(ln x)2 + 2 ln x

)
.

Since ln x > 0 for x > 1, f ′(x) is negative for x > 1; hence, f is decreasing for x ≥ 2. To compute the improper integral,

we make the substitution u = ln x, du = 1

x
dx. We obtain:

∫ ∞
2

1

x(ln x)2
dx = lim

R→∞

∫ R

2

1

x(ln x)2
dx = lim

R→∞

∫ ln R

ln 2

du

u2

= − lim
R→∞

(
1

ln R
− 1

ln 2

)
= 1

ln 2
.

The integral converges; hence, the series
∞∑

n=2

1

n(ln n)2
also converges.

12.
∞∑

n=1

ln n

n2

solution Let f (x) = ln x

x2
. Because

f ′(x) =
1
x · x2 − 2x ln x

x4
= x (1 − 2 ln x)

x4
= 1 − 2 ln x

x3
,

we see that f ′(x) < 0 for x >
√

e ≈ 1.65. We conclude that f is decreasing on the interval x ≥ 2. Since f is also positive
and continuous on this interval, the Integral Test can be applied. By Integration by Parts, we find∫

ln x

x2
dx = − ln x

x
+
∫

x−2 dx = − ln x

x
− 1

x
+ C;

therefore, ∫ ∞
2

ln x

x2
dx = lim

R→∞

∫ R

2

ln x

x2
dx = lim

R→∞

(
1

2
+ ln 2

2
− 1

R
− ln R

R

)
= 1 + ln 2

2
− lim

R→∞
ln R

R
.

We compute the resulting limit using L’Hôpital’s Rule:

lim
R→∞

ln R

R
= lim

R→∞
1/R

1
= 0.

Hence, ∫ ∞
2

ln x

x2
dx = 1 + ln 2

2
.

The integral converges; therefore, the series
∞∑

n=2

ln n

n2
also converges. Since the convergence of the series is not affected

by adding the finite sum
1∑

n=1

ln n

n2
, the series

∞∑
n=1

ln n

n2
also converges.

13.
∞∑

n=1

1

2ln n

solution Note that

2ln n = (eln 2)ln n = (eln n)ln 2 = nln 2.

Thus,

∞∑
n=1

1

2ln n
=

∞∑
n=1

1

nln 2
.
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Now, let f (x) = 1

xln 2
. This function is positive, continuous and decreasing on the interval x ≥ 1; therefore, the Integral

Test applies. Moreover,

∫ ∞
1

dx

xln 2
= lim

R→∞

∫ R

1

dx

xln 2
= 1

1 − ln 2
lim

R→∞(R1−ln 2 − 1) = ∞,

because 1 − ln 2 > 0. The integral diverges; hence, the series
∞∑

n=1

1

2ln n
also diverges.

14.
∞∑

n=1

1

3ln n

solution Note that

3ln n = (eln 3)ln n = (eln n)ln 3 = nln 3.

Thus,

∞∑
n=1

1

3ln n
=

∞∑
n=1

1

nln 3
.

Now, let f (x) = 1

xln 3
. This function is positive, continuous and decreasing on the interval x ≥ 1; therefore, the Integral

Test applies. Moreover,

∫ ∞
1

dx

xln 3
= lim

R→∞

∫ R

1

dx

xln 3
= 1

1 − ln 3
lim

R→∞(R1−ln 3 − 1) = − 1

1 − ln 3
,

because 1 − ln 3 < 0. The integral converges; hence, the series
∞∑

n=1

1

3ln n
also converges.

15. Show that
∞∑

n=1

1

n3 + 8n
converges by using the Comparison Test with

∞∑
n=1

n−3.

solution We compare the series with the p-series
∞∑

n=1

n−3. For n ≥ 1,

1

n3 + 8n
≤ 1

n3
.

Since
∞∑

n=1

1

n3
converges (it is a p-series with p = 3 > 1), the series

∞∑
n=1

1

n3 + 8n
also converges by the Comparison Test.

16. Show that
∞∑

n=2

1√
n2 − 3

diverges by comparing with
∞∑

n=2

n−1.

solution For n ≥ 2,

1√
n2 − 3

≥ 1√
n2

= 1

n
.

The harmonic series
∞∑

n=1

1

n
diverges, and it still diverges if we drop the first term. Thus, the series

∞∑
n=2

1

n
also diverges.

The Comparison Test now lets us conclude that the larger series
∞∑

n=2

1√
n2 − 3

also diverges.

17. Let S =
∞∑

n=1

1

n + √
n

. Verify that for n ≥ 1,

1

n + √
n

≤ 1

n
,

1

n + √
n

≤ 1√
n

Can either inequality be used to show that S diverges? Show that
1

n + √
n

≥ 1

2n
and conclude that S diverges.



March 31, 2011

S E C T I O N 10.3 Convergence of Series with Positive Terms 1249

solution For n ≥ 1, n + √
n ≥ n and n + √

n ≥ √
n. Taking the reciprocal of each of these inequalities yields

1

n + √
n

≤ 1

n
and

1

n + √
n

≤ 1√
n

.

These inequalities indicate that the series
∞∑

n=1

1

n + √
n

is smaller than both
∞∑

n=1

1

n
and

∞∑
n=1

1√
n

; however,
∞∑

n=1

1

n
and

∞∑
n=1

1√
n

both diverge so neither inequality allows us to show that S diverges.

On the other hand, for n ≥ 1, n ≥ √
n, so 2n ≥ n + √

n and

1

n + √
n

≥ 1

2n
.

The series
∞∑

n=1

1

2n
= 2

∞∑
n=1

1

n
diverges, since the harmonic series diverges. The Comparison Test then lets us conclude

that the larger series
∞∑

n=1

1

n + √
n

also diverges.

18. Which of the following inequalities can be used to study the convergence of
∞∑

n=2

1

n2 + √
n

? Explain.

1

n2 + √
n

≤ 1√
n

,
1

n2 + √
n

≤ 1

n2

solution The series
∞∑

n=1

1√
n

is a divergent p-series, hence the series
∞∑

n=2

1√
n

also diverges. The first inequality given

above therefore establishes that
∞∑

n=2

1

n2 + √
n

is smaller than a divergent series, which does not allow us to conclude

whether
∞∑

n=2

1

n2 + √
n

converges or diverges.

However, the second inequality given above establishes that
∞∑

n=2

1

n2 + √
n

is smaller than the convergent p-series

∞∑
n=2

1

n2
. By the Comparison Test, we therefore conclude that

∞∑
n=2

1

n2 + √
n

also converges.

In Exercises 19–30, use the Comparison Test to determine whether the infinite series is convergent.

19.
∞∑

n=1

1

n2n

solution We compare with the geometric series
∞∑

n=1

(
1

2

)n

. For n ≥ 1,

1

n2n
≤ 1

2n
=
(

1

2

)n

.

Since
∞∑

n=1

(
1

2

)n

converges (it is a geometric series with r = 1
2 ), we conclude by the Comparison Test that

∞∑
n=1

1

n2n
also

converges.

20.
∞∑

n=1

n3

n5 + 4n + 1

solution For n ≥ 1,

n3

n5 + 4n + 1
≤ n3

n5 = 1

n2
.



March 31, 2011

1250 C H A P T E R 10 INFINITE SERIES

The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges. By the Comparison Test we can therefore conclude that

the series
∞∑

n=1

n3

n5 + 4n + 1
also converges.

21.
∞∑

n=1

1

n1/3 + 2n

solution For n ≥ 1,

1

n1/3 + 2n
≤ 1

2n

The series
∑∞

n=1
1

2n
is a geometric series with r = 1

2
, so it converges. By the Comparison test, so does

∞∑
n=1

1

n1/3 + 2n
.

22.
∞∑

n=1

1√
n3 + 2n − 1

solution For n ≥ 1, we have 2n − 1 ≥ 0 so that

1√
n3 + 2n − 1

≤ 1√
n3

= 1

n3/2
.

This latter series is a p-series with p = 3
2 > 1, so it converges. By the Comparison Test, so does

∞∑
n=1

1√
n3 + 2n − 1

.

23.
∞∑

m=1

4

m! + 4m

solution For m ≥ 1,

4

m! + 4m
≤ 4

4m
=
(

1

4

)m−1
.

The series
∞∑

m=1

(
1

4

)m−1
is a geometric series with r = 1

4
, so it converges. By the Comparison Test we can therefore

conclude that the series
∞∑

m=1

4

m! + 4m
also converges.

24.
∞∑

n=4

√
n

n − 3

solution For n ≥ 4,
√

n

n − 3
≥

√
n

n
= 1

n1/2
.

The series
∞∑

n=1

1

n1/2
is a p-series with p = 1

2
< 1, so it diverges, and it continues to diverge if we drop the terms

n = 1, 2, 3; that is,
∞∑

n=4

1

n1/2
also diverges. By the Comparison Test we can therefore conclude that series

∞∑
n=4

√
n

n − 3

diverges.

25.
∞∑

k=1

sin2 k

k2

solution For k ≥ 1, 0 ≤ sin2 k ≤ 1, so

0 ≤ sin2 k

k2
≤ 1

k2
.

The series
∞∑

k=1

1

k2
is a p-series with p = 2 > 1, so it converges. By the Comparison Test we can therefore conclude that

the series
∞∑

k=1

sin2k

k2
also converges.
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26.
∞∑

k=2

k1/3

k5/4 − k

solution For k ≥ 2, k5/4 − k < k5/4 so that

k1/3

k5/4 − k
≥ k1/3

k5/4
= 1

k11/12

The series
∑∞

k=2
1

k11/12
is a p-series with p = 11

12
< 1, so it diverges. By the Comparison Test, so does

∞∑
k=2

k1/3

k5/4 − k
.

27.
∞∑

n=1

2

3n + 3−n

solution Since 3−n > 0 for all n,

2

3n + 3−n
≤ 2

3n
= 2

(
1

3

)n

.

The series
∞∑

n=1

2

(
1

3

)n

is a geometric series with r = 1

3
, so it converges. By the Comparison Theorem we can therefore

conclude that the series
∞∑

n=1

2

3n + 3−n
also converges.

28.
∞∑

k=1

2−k2

solution For k ≥ 1, k2 ≥ k and

1

2k2 ≤ 1

2k
=
(

1

2

)k

.

The series
∞∑

k=1

(
1

2

)k

is a geometric series with r = 1

2
, so it converges. By the Comparison Test we can therefore conclude

that the series
∞∑

k=1

1

2k2 =
∞∑

k=1

2−k2
also converges.

29.
∞∑

n=1

1

(n + 1)!
solution Note that for n ≥ 2,

(n + 1)! = 1 · 2 · 3 · · · n · (n + 1)︸ ︷︷ ︸
n factors

≤ 2n

so that

∞∑
n=1

1

(n + 1)! = 1 +
∞∑

n=2

1

(n + 1)! ≤ 1 +
∞∑

n=2

1

2n

But
∑∞

n=2
1

2n
is a geometric series with ratio r = 1

2
, so it converges. By the comparison test,

∞∑
n=1

1

(n + 1)! converges as

well.

30.
∞∑

n=1

n!
n3

solution Note that for n ≥ 4, we have (n − 1)(n − 2) > n [to see this, solve the equation (n − 1)(n − 2) = n for n;

the positive root is 2 + √
2 ≈ 3.4]. Thus

∞∑
n=4

n!
n3

=
∞∑

n=4

n(n − 1)(n − 2)(n − 3)!
n3

≥
∞∑

n=4

(n − 3)!
n

≥
∞∑

n=4

1

n

But
∑∞

n=4
1

n
is the harmonic series, which diverges, so that

∑∞
n=4

n!
n3 also diverges. Adding back in the terms for n = 1,

2, and 3 does not affect this result. Thus the original series diverges.
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Exercise 31–36: For all a > 0 and b > 1, the inequalities

ln n ≤ na, na < bn

are true for n sufficiently large (this can be proved using L’Hopital’s Rule). Use this, together with the Comparison
Theorem, to determine whether the series converges or diverges.

31.
∞∑

n=1

ln n

n3

solution For n sufficiently large (say n = k, although in this case n = 1 suffices), we have ln n ≤ n, so that

∞∑
n=k

ln n

n3
≤

∞∑
n=k

n

n3
=

∞∑
n=k

1

n2

This is a p-series with p = 2 > 1, so it converges. Thus
∑∞

n=k
ln n
n3 also converges; adding back in the finite number of

terms for 1 ≤ n ≤ k does not affect this result.

32.
∞∑

m=2

1

ln m

solution For m > 1 sufficiently large (say m = k, although in this case m = 2 suffices), we have ln m ≤ m, so that

∞∑
m=k

1

ln m
≥

∞∑
m=k

1

m

This is the harmonic series, which diverges (the absence of the finite number of terms for m = 1, . . . , k − 1 does not

affect convergence). By the comparison theorem,
∞∑

m=2

1

ln m
also diverges (again, ignoring the finite number of terms for

m = 1, . . . , k − 1 does not affect convergence).

33.
∞∑

n=1

(ln n)100

n1.1

solution Choose N so that ln n ≤ n0.0005 for n ≥ N . Then also for n > N , (ln n)100 ≤ (n0.0005)100 = n0.05. Then

∞∑
n=N

(ln n)100

n1.1
≤

∞∑
n=N

n0.05

n1.1
=

∞∑
n=N

1

n1.05

But
∞∑

n=N

1

n1.05
is a p-series with p = 1.05 > 1, so is convergent. It follows that

∑∞
n=N

(ln n)100
n1.1 is also convergent;

adding back in the finite number of terms for n = 1, 2, . . . , N − 1 shows that
∞∑

n=1

(ln n)100

n1.1
converges as well.

34.
∞∑

n=1

1

(ln n)10

solution Choose N such that ln n ≤ n0.1 for n ≥ N ; then also (ln n)10 ≤ n for n ≥ N . So we have

∞∑
n=N

1

(ln n)10
≥

∞∑
n=N

1

n

The latter sum is the harmonic series, which diverges, so the series on the left diverges as well. Adding back in the finite

number of terms for n < N shows that
∞∑

n=1

1

(ln n)10
diverges.

35.
∞∑

n=1

n

3n

solution Choose N such that n ≤ 2n for n ≥ N . Then

∞∑
n=N

n

3n
≤

∞∑
n=N

(
2

3

)n



March 31, 2011

S E C T I O N 10.3 Convergence of Series with Positive Terms 1253

The latter sum is a geometric series with r = 2

3
< 1, so it converges. Thus the series on the left converges as well. Adding

back in the finite number of terms for n < N shows that
∞∑

n=1

n

3n
converges.

36.
∞∑

n=1

n5

2n

solution Choose N such that n5 ≤ 1.5n for n ≥ N . Then

∞∑
n=N

n5

2n
≤

∞∑
n=N

(
1.5

2

)n

The latter sum is a geometric series with r = 1.5

2
< 1, so it converges. Thus the series on the left converges as well.

Adding back in the finite number of terms for n < N shows that
∞∑

n=1

n5

2n
converges.

37. Show that
∞∑

n=1

sin
1

n2
converges. Hint: Use the inequality sin x ≤ x for x ≥ 0.

solution For n ≥ 1,

0 ≤ 1

n2
≤ 1 < π;

therefore, sin 1
n2 > 0 for n ≥ 1. Moreover, for n ≥ 1,

sin
1

n2
≤ 1

n2
.

The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges. By the Comparison Test we can therefore conclude that

the series
∞∑

n=1

sin
1

n2
also converges.

38. Does
∞∑

n=2

sin(1/n)

ln n
converge?

solution No, it diverges. Either the Comparison Theorem or the Limit Comparison Theorem may be used. Using the
Comparison Theorem, recall that

sin x

x
> cos x for x > 0

so that sin x > x cos x. Substituting 1/n for x gives

sin

(
1

n

)
>

1

n
cos

(
1

n

)
= cos(1/n)

n
≥ 1

2n

since cos

(
1

n

)
≥ 1

2
for n ≥ 2. Thus

∞∑
n=1

sin(1/n)

ln n
>

∞∑
n=1

1

2n ln n

Apply the Integral Test to the latter expression, making the substitution u = ln x:∫ ∞
1

1

2x ln x
dx = 1

2

∫ ∞
0

1

u
du = 1

2
ln u

∣∣∞
0

and the integral diverges. Thus

∞∑
n=1

1

2n ln n
diverges, and thus

∞∑
n=1

sin(1/n)

ln n
diverges as well.
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Applying the Limit Comparison Test is similar but perhaps simpler: Recall that

lim
x→∞

sin(1/x)

1/x
= lim

x→0

sin x

x
= 1

so apply the Limit Comparison Test with bn = 1/x

ln x
:

L = lim
x→∞

sin(1/x)

ln x
· ln x

1/x
= lim

x→∞
sin(1/x)

1/x
= 1

so that either both series converge or both diverge. But by the Integral Test as above,

∞∑
n=1

(1/x)

ln x
=

∞∑
n=1

1

x ln x

diverges.

In Exercises 39–48, use the Limit Comparison Test to prove convergence or divergence of the infinite series.

39.
∞∑

n=2

n2

n4 − 1

solution Let an = n2

n4 − 1
. For large n,

n2

n4 − 1
≈ n2

n4
= 1

n2
, so we apply the Limit Comparison Test with bn = 1

n2
.

We find

L = lim
n→∞

an

bn
= lim

n→∞

n2

n4−1
1
n2

= lim
n→∞

n4

n4 − 1
= 1.

The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges; hence,

∞∑
n=2

1

n2
also converges. Because L exists, by the

Limit Comparison Test we can conclude that the series
∞∑

n=2

n2

n4 − 1
converges.

40.
∞∑

n=2

1

n2 − √
n

solution Let an = 1

n2 − √
n

. For large n,
1

n2 − √
n

≈ 1

n2
, so we apply the Limit Comparison Test with bn = 1

n2
.

We find

L = lim
n→∞

an

bn
= lim

n→∞

1
n2−√

n

1
n2

= lim
n→∞

n2

n2 − √
n

= 1.

The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges; hence, the series

∞∑
n=2

1

n2
also converges. Because L

exists, by the Limit Comparison Test we can conclude that the series
∞∑

n=2

1

n2 − √
n

converges.

41.
∞∑

n=2

n√
n3 + 1

solution Let an = n√
n3 + 1

. For large n,
n√

n3 + 1
≈ n√

n3
= 1√

n
, so we apply the Limit Comparison test with

bn = 1√
n

. We find

L = lim
n→∞

an

bn
= lim

n→∞

n√
n3+1
1√
n

= lim
n→∞

√
n3√

n3 + 1
= 1.
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The series
∞∑

n=1

1√
n

is a p-series with p = 1
2 < 1, so it diverges; hence,

∞∑
n=2

1√
n

also diverges. Because L > 0, by the

Limit Comparison Test we can conclude that the series
∞∑

n=2

n√
n3 + 1

diverges.

42.
∞∑

n=2

n3√
n7 + 2n2 + 1

solution Let an be the general term of our series. Observe that

an = n3√
n7 + 2n2 + 1

= n−3 · n3

n−3 ·
√

n7 + 2n2 + 1
= 1√

n + 2n−4 + n−6

This suggests that we apply the Limit Comparison Test, comparing our series with

∞∑
n=2

bn =
∞∑

n=2

1

n1/2

The ratio of the terms is

an

bn
= 1√

n + 2n−4 + n−6
·
√

n

1
= 1√

1 + 2n−5 + n−7

Hence

lim
n→∞

an

bn
= lim

n→∞
1√

1 + 2n−5 + n−7
= 1

The p-series
∞∑

n=2

1

n1/2
diverges since p = 1/2 < 1. Therefore, our original series diverges.

43.
∞∑

n=3

3n + 5

n(n − 1)(n − 2)

solution Let an = 3n + 5

n(n − 1)(n − 2)
. For large n,

3n + 5

n(n − 1)(n − 2)
≈ 3n

n3
= 3

n2
, so we apply the Limit Comparison

Test with bn = 1

n2
. We find

L = lim
n→∞

an

bn
= lim

n→∞

3n+5
n(n+1)(n+2)

1
n2

= lim
n→∞

3n3 + 5n2

n(n + 1)(n + 2)
= 3.

The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges; hence, the series

∞∑
n=3

1

n2
also converges. Because L

exists, by the Limit Comparison Test we can conclude that the series
∞∑

n=3

3n + 5

n(n − 1)(n − 2)
converges.

44.
∞∑

n=1

en + n

e2n − n2

solution Let

an = en + n

e2n − n2
= en + n

(en − n)(en + n)
= 1

en − n
.

For large n,

1

en − n
≈ 1

en
= e−n,

so we apply the Limit Comparison Test with bn = e−n. We find

L = lim
n→∞

an

bn
= lim

n→∞
1

en−n

e−n
= lim

n→∞
en

en − n
= 1.



March 31, 2011

1256 C H A P T E R 10 INFINITE SERIES

The series
∞∑

n=1

e−n =
∞∑

n=1

(
1

e

)n

is a geometric series with r = 1
e < 1, so it converges. Because L exists, by the Limit

Comparison Test we can conclude that the series
∞∑

n=1

en + n

e2n − n2
also converges.

45.
∞∑

n=1

1√
n + ln n

solution Let

an = 1√
n + ln n

For large n,
√

n + ln n ≈ √
n, so apply the Comparison Test with bn = 1√

n
. We find

L = lim
n→∞

an

bn
= lim

n→∞
1√

n + ln n
·
√

n

1
= lim

n→∞
1

1 + ln n√
n

= 1

The series
∞∑

n=1

1√
n

is a p-series with p = 1

2
< 1, so it diverges. Because L exists, the Limit Comparison Test tells us the

the original series also diverges.

46.
∞∑

n=1

ln(n + 4)

n5/2

solution Let

an = ln(n + 4)

n5/2

For large n, an ≈ ln n

n5/2
, so apply the Comparison Test with bn = ln n

n5/2
. We find

L = lim
n→∞

an

bn
= lim

n→∞
ln(n + 4)

n5/2
· n5/2

ln n
= lim

n→∞
ln(n + 4)

ln n

Applying L’Hôpital’s rule gives

L = lim
n→∞

ln(n + 4)

ln n
= lim

n→∞
1/(n + 4)

1/n
= lim

n→∞
n

n + 4
= lim

n→∞
1

1 + 4/n
= 1

To see that
∑∞

n=1 bn converges, choose N so that ln n < n for n ≥ N ; then

∞∑
n=N

ln n

n5/2
≤

∞∑
n=N

n

n5/2
=

∞∑
n=N

1

n3/2

which is a p-series with p = 3

2
> 1, so it converges. Adding back in the finite number of terms for n < N shows that∑

bn converges as well. Since L exists and
∑

bn converges, the Limit Comparison Test tells us that
∑∞

n=1 an converges.

47.
∞∑

n=1

(
1 − cos

1

n

)
Hint: Compare with

∞∑
n=1

n−2.

solution Let an = 1 − cos
1

n
, and apply the Limit Comparison Test with bn = 1

n2
. We find

L = lim
n→∞

an

bn
= lim

n→∞
1 − cos 1

n
1
n2

= lim
x→∞

1 − cos 1
x

1
x2

= lim
x→∞

− 1
x2 sin 1

x

− 2
x3

= 1

2
lim

x→∞
sin 1

x
1
x

.

As x → ∞, u = 1
x → 0, so

L = 1

2
lim

x→∞
sin 1

x
1
x

= 1

2
lim
u→0

sin u

u
= 1

2
.
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The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges. Because L exists, by the Limit Comparison Test we can

conclude that the series
∞∑

n=1

(
1 − cos

1

n

)
also converges.

48.
∞∑

n=1

(1 − 2−1/n) Hint: Compare with the harmonic series.

solution Let an = 1 − 2−1/n, and apply the Limit Comparison Test with bn = 1

n
. We find

L = lim
n→∞

an

bn
= lim

n→∞
1 − 2−1/n

1
n

= lim
x→∞

1 − 2−1/x

1
x

= lim
x→∞

− 1
x2 (ln 2)2−1/x

− 1
x2

= lim
x→∞

(
2−1/x ln 2

)
= ln 2.

The harmonic series
∞∑

n=1

1

n
diverges; because L > 0, we can conclude by the Limit Comparison Test that the series

∞∑
n=1

(1 − 2−1/n) also diverges.

In Exercises 49–74, determine convergence or divergence using any method covered so far.

49.
∞∑

n=4

1

n2 − 9

solution Apply the Limit Comparison Test with an = 1

n2 − 9
and bn = 1

n2
:

L = lim
n→∞

an

bn
= lim

n→∞

1
n2−9

1
n2

= lim
n→∞

n2

n2 − 9
= 1.

Since the p-series
∞∑

n=1

1

n2
converges, the series

∞∑
n=4

1

n2
also converges. Because L exists, by the Limit Comparison Test

we can conclude that the series
∞∑

n=4

1

n2 − 9
converges.

50.
∞∑

n=1

cos2 n

n2

solution For all n ≥ 1, 0 ≤ cos2n ≤ 1, so

0 ≤ cos2n

n2
≤ 1

n2
.

The series
∞∑

n=1

1

n2
is a convergent p-series; hence, by the Comparison Test we can conclude that the series

∞∑
n=1

cos2n

n2
also

converges.

51.
∞∑

n=1

√
n

4n + 9

solution Apply the Limit Comparison Test with an =
√

n

4n + 9
and bn = 1√

n
:

L = lim
n→∞

an

bn
= lim

n→∞

√
n

4n+9
1√
n

= lim
n→∞

n

4n + 9
= 1

4
.

The series
∞∑

n=1

1√
n

is a divergent p-series. Because L > 0, by the Limit Comparison Test we can conclude that the series

∞∑
n=1

√
n

4n + 9
also diverges.
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52.
∞∑

n=1

n − cos n

n3

solution Apply the Limit Comparison Test with an = n − cos n

n3
and bn = 1

n2
:

L = lim
n→∞

an

bn
= lim

n→∞
n−cos n

n3

1
n2

= lim
n→∞

(
1 − cos n

n

)
= 1.

The series
∞∑

n=1

1

n2
is a convergent p-series. Because L exists, by the Limit Comparison Test we can conclude that the

series
∞∑

n=1

n − cos n

n3
also converges.

53.
∞∑

n=1

n2 − n

n5 + n

solution First rewrite an = n2 − n

n5 + n
= n (n − 1)

n
(
n4 + 1

) = n − 1

n4 + 1
and observe

n − 1

n4 + 1
<

n

n4
= 1

n3

for n ≥ 1. The series
∞∑

n=1

1

n3
is a convergent p-series, so by the Comparison Test we can conclude that the series

∞∑
n=1

n2 − n

n5 + n
also converges.

54.
∞∑

n=1

1

n2 + sin n

solution Apply the Limit Comparison Test with an = 1

n2 + sin n
and bn = 1

n2
:

L = lim
n→∞

an

bn
= lim

n→∞

1
n2+sin n

1
n2

= lim
n→∞

1

1 + sin n
n2

= 1.

The series
∞∑

n=1

1

n2
is a convergent p-series. Because L exists, by the Limit Comparison Test we can conclude that the

series
∞∑

n=1

1

n2 + sin n
also converges.

55.
∞∑

n=5

(4/5)−n

solution

∞∑
n=5

(
4

5

)−n

=
∞∑

n=5

(
5

4

)n

which is a geometric series starting at n = 5 with ratio r = 5

4
> 1. Thus the series diverges.

56.
∞∑

n=1

1

3n2

solution Because n2 ≥ n for n ≥ 1, 3n2 ≥ 3n and

1

3n2 ≤ 1

3n
=
(

1

3

)n

.
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The series
∞∑

n=1

(
1

3

)n

is a geometric series with r = 1

3
, so it converges. By the Comparison Test we can therefore conclude

that the series
∞∑

n=1

1

3n2 also converges.

57.
∞∑

n=2

1

n3/2 ln n

solution For n ≥ 3, ln n > 1, so n3/2 ln n > n3/2 and

1

n3/2 ln n
<

1

n3/2
.

The series
∞∑

n=1

1

n3/2
is a convergent p-series, so the series

∞∑
n=3

1

n3/2
also converges. By the Comparison Test we can

therefore conclude that the series
∞∑

n=3

1

n3/2 ln n
converges. Hence, the series

∞∑
n=2

1

n3/2 ln n
also converges.

58.
∞∑

n=2

(ln n)12

n9/8

solution By the comment preceding Exercise 31, we can choose N so that for n ≥ N , we have ln n < n1/192. Then

also for n ≥ N we have (ln n)12 < n12/192 = n1/16. Then

∞∑
n=N

(ln n)12

n9/8
≤

∞∑
n=N

n1/16

n9/8
=

∞∑
n=N

1

n17/16

which is a convergent p-series. Thus the series on the left converges as well; adding back in the finite number of terms

for n ≤ N shows that
∞∑

n=2

(ln n)12

n9/8
converges.

59.
∞∑

k=1

41/k

solution

lim
k→∞ ak = lim

k→∞ 41/k = 40 = 1 	= 0;

therefore, the series
∞∑

k=1

41/k diverges by the Divergence Test.

60.
∞∑

n=1

4n

5n − 2n

solution Apply the Limit Comparison Test with an = 4n

5n − 2n
and bn = 4n

5n
:

L = lim
n→∞

an

bn
= lim

n→∞
4n

5n−2n

4n

5n

= lim
n→∞

1

1 − 2n
5n

.

Now,

lim
n→∞

2n

5n
= lim

x→∞
2x

5x
= lim

x→∞
2

5x ln 5
= 0,

so

L = lim
n→∞

an

bn
= 1

1 − 0
= 1.

The series
∞∑

n=1

(
4

5

)n

is a convergent geometric series. Because L exists, by the Limit Comparison Test we can conclude

that the series
∞∑

n=1

4n

5n − 2n
also converges.
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61.
∞∑

n=2

1

(ln n)4

solution By the comment preceding Exercise 31, we can choose N so that for n ≥ N , we have ln n < n1/8, so that

(ln n)4 < n1/2. Then

∞∑
n=N

1

(ln n)4
>

∞∑
n=N

1

n1/2

which is a divergent p-series. Thus the series on the left diverges as well, and adding back in the finite number of terms

for n < N does not affect the result. Thus
∞∑

n=2

1

(ln n)4
diverges.

62.
∞∑

n=1

2n

3n − n

solution Apply the Limit Comparison Test with an = 2n

3n − n
and bn = 2n

3n
:

L = lim
n→∞

an

bn
= lim

n→∞
2n

3n−n

2n

3n

= lim
n→∞

1

1 − n
3n

.

Now,

lim
n→∞

n

3n
= lim

x→∞
x

3x
= lim

x→∞
1

3x ln 3
= 0,

so

L = lim
n→∞

an

bn
= 1

1 − 0
= 1.

The series
∞∑

n=1

(
2

3

)n

is a convergent geometric series. Because L exists, by the Limit Comparison Test we can conclude

that the series
∞∑

n=1

2n

3n − n
also converges.

63.
∞∑

n=1

1

n ln n − n

solution For n ≥ 2, n ln n − n ≤ n ln n; therefore,

1

n ln n − n
≥ 1

n ln n
.

Now, let f (x) = 1

x ln x
. For x ≥ 2, this function is continuous, positive and decreasing, so the Integral Test applies. Using

the substitution u = ln x, du = 1
x dx, we find

∫ ∞
2

dx

x ln x
= lim

R→∞

∫ R

2

dx

x ln x
= lim

R→∞

∫ ln R

ln 2

du

u
= lim

R→∞ (ln(ln R) − ln(ln 2)) = ∞.

The integral diverges; hence, the series
∞∑

n=2

1

n ln n
also diverges. By the Comparison Test we can therefore conclude that

the series
∞∑

n=2

1

n ln n − n
diverges.

64.
∞∑

n=1

1

n(ln n)2 − n

solution Use the Integral Test. Note that x(ln x)2 − x has a zero at x = e, so restrict the integral to [4, ∞):

∫ ∞
4

1

x(ln x)2 − x
dx
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Substitute u = ln x so that du = 1

x
dx to get

∫ ∞
ln 4

1

u2 − 1
du = lim

R→∞

(
1

2
ln

∣∣∣∣x − 1

x + 1

∣∣∣∣
∣∣∣∣R
4

)
= 1

2
lim

R→∞

(
ln

(
R − 1

R + 1

)
− ln

(
3

5

))

= 1

2

(
ln lim

R→∞

(
R − 1

R + 1

)
− ln

(
3

5

))
= 1

2

(
ln 1 − ln

(
3

5

))
= 1

2
ln

(
5

3

)
< ∞

Since the integral converges, the series does as well starting at n = 4, using the Integral Test. Adding in the terms for
n = 1, 2, 3 does not affect this result.

65.
∞∑

n=1

1

nn

solution For n ≥ 2, nn ≥ 2n; therefore,

1

nn
≤ 1

2n
=
(

1

2

)n

.

The series
∞∑

n=1

(
1

2

)n

is a convergent geometric series, so
∞∑

n=2

(
1

2

)n

also converges. By the Comparison Test we can

therefore conclude that the series
∞∑

n=2

1

nn
converges. Hence, the series

∞∑
n=1

1

nn
converges.

66.
∞∑

n=1

n2 − 4n3/2

n3

solution Let an = 1
n and bn = − 4

n3/2 . Then

∞∑
n=1

(an + bn) =
∞∑

n=1

n2 − 4n3/2

n3

∞∑
n=1

an diverges since it is the harmonic series

∞∑
n=1

bn is a p-series with p = 3

2
> 1, so converges

Since
∑

an diverges and
∑

bn converges, it follows that
∑

(an + bn) diverges.

67.
∞∑

n=1

1 + (−1)n

n

solution Let

an = 1 + (−1)n

n

Then

an =
{

0 n odd
2

2k
= 1

k
n = 2k even

Therefore, {an} consists of 0s in the odd places and the harmonic series in the even places, so
∑∞

i=1 an is just the sum of
the harmonic series, which diverges. Thus

∑∞
i=1 an diverges as well.

68.
∞∑

n=1

2 + (−1)n

n3/2

solution For n ≥ 1

0 <
2 + (−1)n

n3/2
≤ 2 + 1

n3/2
= 3

n3/2
.

The series
∞∑

n=1

1

n3/2
is a convergent p-series; hence, the series

∞∑
n=1

3

n3/2
also converges. By the Comparison Test we can

therefore conclude that the series
∞∑

n=1

2 + (−1)n

n3/2
converges.
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69.
∞∑

n=1

sin
1

n

solution Apply the Limit Comparison Test with an = sin
1

n
and bn = 1

n
:

L = lim
n→∞

sin 1
n

1
n

= lim
u→0

sin u

u
= 1,

where u = 1
n . The harmonic series diverges. Because L > 0, by the Limit Comparison Test we can conclude that the

series
∞∑

n=1

sin
1

n
also diverges.

70.
∞∑

n=1

sin(1/n)√
n

solution Apply the Limit Comparison Test with an = sin(1/n)√
n

and bn = 1/n√
n

:

L = lim
n→∞

sin(1/n)√
n

·
√

n

1/n
= lim

n→∞
sin(1/n)

1/n
= lim

u→0

sin u

u
= 1

so that
∑

an and
∑

bn either both converge or both diverge. But

∞∑
n=1

bn =
∞∑

n=1

1/n√
n

=
∞∑

n=1

1

n3/2

is a convergent p-series. Thus
∞∑

n=1

sin(1/n)√
n

converges as well.

71.
∞∑

n=1

2n + 1

4n

solution For n ≥ 3, 2n + 1 < 2n, so

2n + 1

4n
<

2n

4n
=
(

1

2

)n

.

The series
∞∑

n=1

(
1

2

)n

is a convergent geometric series, so
∞∑

n=3

(
1

2

)n

also converges. By the Comparison Test we can

therefore conclude that the series
∞∑

n=3

2n + 1

4n
converges. Finally, the series

∞∑
n=1

2n + 1

4n
converges.

72.
∞∑

n=3

1

e
√

n

solution Apply the integral test, making the substitution z = √
x so that z2 = x and 2z dz = dx:

∫ ∞
3

1

e
√

x
dx =

∫ ∞
3

e−x1/2
dx =

∫ ∞
√

3
2ze−z dz

Evaluate this integral using integration by parts with u = 2z, dv = e−z dz:

∫ ∞
√

3
2ze−z dz = uv

∣∣∣∣∞√
3

−
∫ ∞
√

3
v du = (−2ze−z)

∣∣∣∣∞√
3

−
∫ ∞
√

3
(−2e−z) dz = 2

√
3e−√

3 − (2e−z)

∣∣∣∣∞√
3

= 2
√

3e−√
3 + 2e−√

3 < ∞

Since the integral converges, so does the series
∞∑

n=3

1

e
√

n
.
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73.
∞∑

n=4

ln n

n2 − 3n

solution By the comment preceding Exercise 31, we can choose N ≥ 4 so that for n ≥ N , ln n < n1/2. Then

∞∑
n=N

ln n

n2 − 3n
≤

∞∑
n=N

n1/2

n2 − 3n
=

∞∑
n=N

1

n3/2 − 3n1/2

To evaluate convergence of the latter series, let an = 1

n3/2 − 3n1/2
and bn = 1

n3/2
, and apply the Limit Comparison

Test:

L = lim
n→∞

an

bn
= lim

n→∞
1

n3/2 − 3n1/2
· n3/2 = lim

n→∞
1

1 − 3n−1
= 0

Thus
∑

an converges if
∑

bn does. But
∑

bn is a convergent p-series. Thus
∑

an converges and, by the comparison
test, so does the original series. Adding back in the finite number of terms for n < N does not affect convergence.

74.
∞∑

n=1

1

3ln n

solution Note that

3ln n = (eln 3)ln n = (eln n)ln 3 = nln 3.

Thus the sum is a p-series with p = ln 3 > 1, so is convergent.

75.
∞∑

n=2

1

n1/2 ln n

solution By the comment preceding Exercise 31, we can choose N ≥ 2 so that for n ≥ N , ln n < n1/4. Then

∞∑
n=N

1

n1/2 ln n
>

∞∑
n=N

1

n3/4

which is a divergent p-series. Thus the original series diverges as well - as usual, adding back in the finite number of
terms for n < N does not affect convergence.

76.
∞∑

n=1

1

n3/2 − ln4 n

solution Let

an = 1

n3/2 − ln4 n
, bn = 1

n3/2
,

and apply the Limit Comparison Test:

L = lim
n→∞

an

bn
= lim

n→∞
n3/2

n3/2 − ln4 n
= lim

n→∞
1

1 − ln4 n
n3/2

But by the comment preceding Exercise 31, ln n, and thus ln4 n, are eventually smaller than any positive power of n, so

for n sufficiently large,
ln4 n

n3/2
is arbitrarily small. Thus L = 1 and

∑
an converges if and only if

∑
bn does. But

∑
bn is

a convergent p-series, so
∞∑

n=1

1

n3/2 − ln4 n
converges.

77.
∞∑

n=1

4n2 + 15n

3n4 − 5n2 − 17

solution Apply the Limit Comparison Test with

an = 4n2 + 15n

3n4 − 5n2 − 17
, bn = 4n2

3n4
= 4

3n2

We have

L = lim
n→∞

an

bn
= lim

n→∞
4n2 + 15n

3n4 − 5n2 − 17
· 3n2

4
= lim

n→∞
12n4 + 45n3

12n4 − 20n2 − 68
= lim

n→∞
12 + 45/n

12 − 20/n2 − 68/n4
= 1
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Now,
∑∞

n=1 bn is a p-series with p = 2 > 1, so converges. Since L = 1, we see that
∞∑

n=1

4n2 + 15n

3n4 − 5n2 − 17
converges as

well.

78.
∞∑

n=1

n

4−n + 5−n

solution Note that

lim
n→∞

n

4−n + 5−n
= lim

n→∞
n4n

1 +
(

4
5

)n

This limit approaches ∞/1 = ∞, so the terms of the sequence do not tend to zero. Thus the series is divergent.

79. For which a does
∞∑

n=2

1

n(ln n)a
converge?

solution First consider the case a > 0 but a 	= 1. Let f (x) = 1

x(ln x)a
. This function is continuous, positive and

decreasing for x ≥ 2, so the Integral Test applies. Now,

∫ ∞
2

dx

x(ln x)a
= lim

R→∞

∫ R

2

dx

x(ln x)a
= lim

R→∞

∫ ln R

ln 2

du

ua
= 1

1 − a
lim

R→∞

(
1

(ln R)a−1
− 1

(ln 2)a−1

)
.

Because

lim
R→∞

1

(ln R)a−1
=
{

∞, 0 < a < 1

0, a > 1

we conclude the integral diverges when 0 < a < 1 and converges when a > 1. Therefore

∞∑
n=2

1

n(ln n)a
converges for a > 1 and diverges for 0 < a < 1.

Next, consider the case a = 1. The series becomes
∞∑

n=2

1

n ln n
. Let f (x) = 1

x ln x
. For x ≥ 2, this function is continuous,

positive and decreasing, so the Integral Test applies. Using the substitution u = ln x, du = 1
x dx, we find

∫ ∞
2

dx

x ln x
= lim

R→∞

∫ R

2

dx

x ln x
= lim

R→∞

∫ ln R

ln 2

du

u
= lim

R→∞ (ln(ln R) − ln(ln 2)) = ∞.

The integral diverges; hence, the series also diverges.

Finally, consider the case a < 0. Let b = −a > 0 so the series becomes
∞∑

n=2

(ln n)b

n
. Since ln n > 1 for all n ≥ 3, it

follows that

(ln n)b > 1 so
(ln n)b

n
>

1

n
.

The series
∞∑

n=3

1

n
diverges, so by the Comparison Test we can conclude that

∞∑
n=3

(ln n)b

n
also diverges. Consequently,

∞∑
n=2

(ln n)b

n
diverges. Thus,

∞∑
n=2

1

n(ln n)a
diverges for a < 0.

To summarize:

∞∑
n=2

1

n(ln n)a
converges if a > 1 and diverges if a ≤ 1.
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80. For which a does
∞∑

n=2

1

na ln n
converge?

solution First consider the case a > 1. For n ≥ 3, ln n > 1 and

1

na ln n
<

1

na
.

The series
∞∑

n=1

1

na
is a p-series with p = a > 1, so it converges; hence,

∞∑
n=3

1

na
also converges. By the Comparison Test

we can therefore conclude that the series
∞∑

n=3

1

na ln n
converges, which implies the series

∞∑
n=2

1

na ln n
also converges.

For a ≤ 1, na ≤ n so

1

na ln n
≥ 1

n ln n

for n ≥ 2. Let f (x) = 1

x ln x
. For x ≥ 2, this function is continuous, positive and decreasing, so the Integral Test applies.

Using the substitution u = ln x, du = 1
x dx, we find

∫ ∞
2

dx

x ln x
= lim

R→∞

∫ R

2

dx

x ln x
= lim

R→∞

∫ ln R

ln 2

du

u
= lim

R→∞ (ln(ln R) − ln(ln 2)) = ∞.

The integral diverges; hence, the series
∞∑

n=2

1

n ln n
also diverges. By the Comparison Test we can therefore conclude that

the series
∞∑

n=2

1

na ln n
diverges.

To summarize,

∞∑
n=2

1

na ln n
converges for a > 1 and diverges for a ≤ 1.

Approximating Infinite Sums In Exercises 81–83, let an = f (n), where f (x) is a continuous, decreasing function such
that f (x) ≥ 0 and

∫∞
1 f (x) dx converges.

81. Show that

∫ ∞
1

f (x) dx ≤
∞∑

n=1

an ≤ a1 +
∫ ∞

1
f (x) dx 3

solution From the proof of the Integral Test, we know that

a2 + a3 + a4 + · · · + aN ≤
∫ N

1
f (x) dx ≤

∫ ∞
1

f (x) dx;

that is,

SN − a1 ≤
∫ ∞

1
f (x) dx or SN ≤ a1 +

∫ ∞
1

f (x) dx.

Also from the proof of the Integral test, we know that

∫ N

1
f (x) dx ≤ a1 + a2 + a3 + · · · + aN−1 = SN − aN ≤ SN .

Thus,

∫ N

1
f (x) dx ≤ SN ≤ a1 +

∫ ∞
1

f (x) dx.

Taking the limit as N → ∞ yields Eq. (3), as desired.
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82. Using Eq. (3), show that

5 ≤
∞∑

n=1

1

n1.2
≤ 6

This series converges slowly. Use a computer algebra system to verify that SN < 5 for N ≤ 43,128 and S43,129 ≈
5.00000021.

solution By Eq. (3), we have

∫ ∞
1

dx

x1.2
≤

∞∑
n=1

1

n1.2
≤ 1 +

∫ ∞
1

dx

x1.2
.

Since ∫ ∞
1

dx

x1.2
= lim

R→∞

∫ R

1

dx

x1.2
= lim

R→∞

(
1

0.2
− R−0.2

0.2

)
= 5,

it follows that

5 ≤
∞∑

n=1

1

n1.2
≤ 6.

Because an = n−1.2 ≥ 0 for all N , SN is increasing and it suffices to show that SN < 5 for N = 43,128 to conclude
that SN < 5 for all N ≤ 43,128. Using a computer algebra system, we obtain:

S43,128 =
43,128∑
n=1

1

n1.2
= 4.9999974685

and

S43,129 =
43,129∑
n=1

1

n1.2
= 5.0000002118.

83. Let S =
∞∑

n=1

an. Arguing as in Exercise 81, show that

M∑
n=1

an +
∫ ∞
M+1

f (x) dx ≤ S ≤
M+1∑
n=1

an +
∫ ∞
M+1

f (x) dx 4

Conclude that

0 ≤ S −
⎛
⎝ M∑

n=1

an +
∫ ∞
M+1

f (x) dx

⎞
⎠ ≤ aM+1 5

This provides a method for approximating S with an error of at most aM+1.

solution Following the proof of the Integral Test and the argument in Exercise 81, but starting with n = M + 1 rather
than n = 1, we obtain ∫ ∞

M+1
f (x) dx ≤

∞∑
n=M+1

an ≤ aM+1 +
∫ ∞
M+1

f (x) dx.

Adding
M∑

n=1

an to each part of this inequality yields

M∑
n=1

an +
∫ ∞
M+1

f (x) dx ≤
∞∑

n=1

an = S ≤
M+1∑
n=1

an +
∫ ∞
M+1

f (x) dx.

Subtracting
M∑

n=1

an +
∫ ∞
M+1

f (x) dx from each part of this last inequality then gives us

0 ≤ S −
⎛
⎝ M∑

n=1

an +
∫ ∞
M+1

f (x) dx

⎞
⎠ ≤ aM+1.
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84. Use Eq. (4) with M = 43,129 to prove that

5.5915810 ≤
∞∑

n=1

1

n1.2
≤ 5.5915839

solution Using Eq. (4) with f (x) = 1

x1.2
, an = 1

n1.2
and M = 43129, we find

S43129 +
∫ ∞

43130

dx

x1.2
≤

∞∑
n=1

1

n1.2
≤ S43130 +

∫ ∞
43130

dx

x1.2
.

Now,

S43129 = 5.0000002118;

S43130 = S43129 + 1

431301.2
= 5.0000029551;

and ∫ ∞
43130

dx

x1.2
= lim

R→∞

∫ R

43130

dx

x1.2
= −5 lim

R→∞

(
1

R0.2
− 1

431300.2

)
= 5

431300.2
= 0.5915808577.

Thus,

5.0000002118 + 0.5915808577 ≤
∞∑

n=1

1

n1.2
≤ 5.0000029551 + 0.5915808577,

or

5.5915810695 ≤
∞∑

n=1

1

n1.2
≤ 5.5915838128.

85. Apply Eq. (4) with M = 40,000 to show that

1.644934066 ≤
∞∑

n=1

1

n2
≤ 1.644934068

Is this consistent with Euler’s result, according to which this infinite series has sum π2/6?

solution Using Eq. (4) with f (x) = 1

x2
, an = 1

n2
and M = 40,000, we find

S40,000 +
∫ ∞

40,001

dx

x2
≤

∞∑
n=1

1

n2
≤ S40,001 +

∫ ∞
40,001

dx

x2
.

Now,

S40,000 = 1.6449090672;

S40,001 = S40,000 + 1

40,001
= 1.6449090678;

and ∫ ∞
40,001

dx

x2
= lim

R→∞

∫ R

40,001

dx

x2
= − lim

R→∞

(
1

R
− 1

40,001

)
= 1

40,001
= 0.0000249994.

Thus,

1.6449090672 + 0.0000249994 ≤
∞∑

n=1

1

n2
≤ 1.6449090678 + 0.0000249994,

or

1.6449340665 ≤
∞∑

n=1

1

n2
≤ 1.6449340672.

Since
π2

6
≈ 1.6449340668, our approximation is consistent with Euler’s result.
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86. Using a CAS and Eq. (5), determine the value of
∞∑

n=1

n−6 to within an error less than 10−4. Check that your

result is consistent with that of Euler, who proved that the sum is equal to π6/945.

solution According to Eq. (5), if we choose M so that (M + 1)−6 < 10−4, we can then approximate the sum to

within 10−4. Solving (M + 1)−6 = 10−4 gives M + 1 = 10−2/3 ≈ 4.641, so the smallest such integral M is M = 4.
Denote by S the sum of the series. Then

0 ≤ S −
⎛
⎝ 4∑

n=1

n−6 +
∫ ∞

5
x−6 dx

⎞
⎠ ≤ (M + 1)−6 < 10−4

We have

4∑
n=1

n−6 = 1

1
+ 1

64
+ 1

729
+ 1

4096
≈ 1.017240883

∫ ∞
5

x−6 dx = −1

5
x−5

∣∣∣∣∞
5

= 1

56
≈ 0.000064

The sum of these two is ≈ 1.017304883, while
π6

945
≈ 1.017343063. These two values differ by approximately

0.000038180 < 10−4, so the result is consistent with Euler’s calculation.

87. Using a CAS and Eq. (5), determine the value of
∞∑

n=1

n−5 to within an error less than 10−4.

solution Using Eq. (5) with f (x) = x−5 and an = n−5, we have

0 ≤
∞∑

n=1

n−5 −
⎛
⎝M+1∑

n=1

n−5 +
∫ ∞
M+1

x−5 dx

⎞
⎠ ≤ (M + 1)−5.

To guarantee an error less than 10−4, we need (M + 1)−5 ≤ 10−4. This yields M ≥ 104/5 − 1 ≈ 5.3, so we choose
M = 6. Now,

7∑
n=1

n−5 = 1.0368498887,

and ∫ ∞
7

x−5 dx = lim
R→∞

∫ R

7
x−5 dx = −1

4
lim

R→∞
(
R−4 − 7−4

)
= 1

4 · 74
= 0.0001041233.

Thus,

∞∑
n=1

n−5 ≈
7∑

n=1

n−5 +
∫ ∞

7
x−5 dx = 1.0368498887 + 0.0001041233 = 1.0369540120.

88. How far can a stack of identical books (of mass m and unit length) extend without tipping over? The stack will not
tip over if the (n + 1)st book is placed at the bottom of the stack with its right edge located at the center of mass of the
first n books (Figure 5). Let cn be the center of mass of the first n books, measured along the x-axis, where we take the
positive x-axis to the left of the origin as in Figure 6. Recall that if an object of mass m1 has center of mass at x1 and a
second object of m2 has center of mass x2, then the center of mass of the system has x-coordinate

m1x1 + m2x2

m1 + m2

(a) Show that if the (n + 1)st book is placed with its right edge at cn, then its center of mass is located at cn + 1
2 .

(b) Consider the first n books as a single object of mass nm with center of mass at cn and the (n + 1)st book as a second

object of mass m. Show that if the (n + 1)st book is placed with its right edge at cn, then cn+1 = cn + 1

2(n + 1)
.

(c) Prove that lim
n→∞ cn = ∞. Thus, by using enough books, the stack can be extended as far as desired without tipping

over.
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solution Let f (x) = 1
x . This function is continuous, positive and decreasing, so following the argument of Exercise

81, we know that ∫ N

1
f (x) dx ≤ SN ≤ a1 +

∫ N

1
f (x) dx,

or

ln N ≤ 1 + 1

2
+ 1

3
+ · · · + 1

N
≤ 1 + ln N.

Using the inequality on the right-hand side, we know that

S8100 ≤ 1 + ln 8100 = 9.999619 < 10;
using the inequality on the left-hand side, we can guarantee SN ≥ 100 by making ln N ≥ 100. Thus, we can take

N ≥ e100 ≈ 2.688 × 1043.

89. The following argument proves the divergence of the harmonic series S =
∞∑

n=1

1/n without using the Integral Test.

Let

S1 = 1 + 1

3
+ 1

5
+ · · · , S2 = 1

2
+ 1

4
+ 1

6
+ · · ·

Show that if S converges, then

(a) S1 and S2 also converge and S = S1 + S2.
(b) S1 > S2 and S2 = 1

2S.

Observe that (b) contradicts (a), and conclude that S diverges.

solution Assume throughout that S converges; we will derive a contradiction. Write

an = 1

n
, bn = 1

2n − 1
, cn = 1

2n

for the nth terms in the series S, S1, and S2. Since 2n − 1 ≥ n for n ≥ 1, we have bn < an. Since S = ∑
an converges,

so does S1 = ∑
bn by the Comparison Test. Also, cn = 1

2
an, so again by the Comparison Test, the convergence of S

implies the convergence of S2 = ∑
cn. Now, define two sequences

b′
n =

{
b(n+1)/2 n odd

0 n even

c′
n =

{
0 n odd

cn/2 n even

That is, b′
n and c′

n look like bn and cn, but have zeros inserted in the “missing” places compared to an. Then an = b′
n + c′

n;
also S1 = ∑

bn = ∑
b′
n and S2 = ∑

cn = ∑
c′
n. Finally, since S, S1, and S2 all converge, we have

S =
∞∑

n=1

an =
∞∑

n=1

(b′
n + c′

n) =
∞∑

n=1

b′
n +

∞∑
n=1

c′
n =

∞∑
n=1

bn +
∞∑

n=1

cn = S1 + S2

Now, bn > cn for every n, so that S1 > S2. Also, we showed above that cn = 1

2
an, so that 2S2 = S. Putting all this

together gives

S = S1 + S2 > S2 + S2 = 2S2 = S

so that S > S, a contradiction. Thus S must diverge.
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Further Insights and Challenges

90. Let S =
∞∑

n=2

an, where an = (ln(ln n))− ln n.

(a) Show, by taking logarithms, that an = n− ln(ln(ln n)).

(b) Show that ln(ln(ln n)) ≥ 2 if n > C, where C = eee2
.

(c) Show that S converges.

solution

(a) Let an = (ln(ln n))− ln n. Then

ln an = (− ln n) ln(ln(ln n)),

and

an = e(− ln n) ln(ln(ln n)) =
(
eln n

)− ln(ln(ln n)) = n− ln(ln(ln n)).

(b) Suppose n > eee2
. Then

ln n > ln eee2

= ee2 ;
ln(ln n) > ln ee2 = e2; and

ln(ln(ln n)) > ln e2 = 2.

(c) Combining the results from parts (a) and (b), we have

an = 1

nln(ln(ln n))
≤ 1

n2

for n > C = eee2
. The series

∞∑
n=1

1

n2
is a convergent p-series, so

∞∑
n=C+1

1

n2
also converges. By the Comparison Test we

can therefore conclude that the series
∞∑

n=C+1

an converges, which means that the series
∞∑

n=2

an converges.

91. Kummer’s Acceleration Method Suppose we wish to approximate S =
∞∑

n=1

1/n2. There is a similar telescoping

series whose value can be computed exactly (Example 1 in Section 10.2):

∞∑
n=1

1

n(n + 1)
= 1

(a) Verify that

S =
∞∑

n=1

1

n(n + 1)
+

∞∑
n=1

(
1

n2
− 1

n(n + 1)

)

Thus for M large,

S ≈ 1 +
M∑

n=1

1

n2(n + 1)
6

(b) Explain what has been gained. Why is Eq. (6) a better approximation to S than is
M∑

n=1

1/n2?

(c) Compute

1000∑
n=1

1

n2
, 1 +

100∑
n=1

1

n2(n + 1)

Which is a better approximation to S, whose exact value is π2/6?
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solution

(a) Because the series
∞∑

n=1

1

n2
and

∞∑
n=1

1

n(n + 1)
both converge,

∞∑
n=1

1

n(n + 1)
+

∞∑
n=1

(
1

n2
− 1

n(n + 1)

)
=

∞∑
n=1

1

n(n + 1)
+

∞∑
n=1

1

n2
−

∞∑
n=1

1

n(n + 1)
=

∞∑
n=1

1

n2
= S.

Now,

1

n2
− 1

n(n + 1)
= n + 1

n2(n + 1)
− n

n2(n + 1)
= 1

n2(n + 1)
,

so, for M large,

S ≈ 1 +
M∑

n=1

1

n2(n + 1)
.

(b) The series
∑∞

n=1
1

n2(n+1)
converges more rapidly than

∞∑
n=1

1

n2
since the degree of n in the denominator is larger.

(c) Using a computer algebra system, we find

1000∑
n=1

1

n2
= 1.6439345667 and 1 +

100∑
n=1

1

n2(n + 1)
= 1.6448848903.

The second sum is more accurate because it is closer to the exact solution
π2

6
≈ 1.6449340668.

92. The series S =
∞∑

k=1

k−3 has been computed to more than 100 million digits. The first 30 digits are

S = 1.202056903159594285399738161511

Approximate S using the Acceleration Method of Exercise 91 with M = 100 and auxiliary series

R =
∞∑

n=1

(n(n + 1)(n + 2))−1.

According to Exercise 46 in Section 10.2, R is a telescoping series with the sum R = 1
4 .

solution We compute the difference between the general term of the given series and the general term of the auxiliary
series:

1

k3
− 1

k(k + 1)(k + 2)
= (k + 1)(k + 2) − k2

k3(k + 1)(k + 2)
= k2 + 3k + 2 − k2

k3(k + 1)(k + 2)
= 3k + 2

k3(k + 1)(k + 2)

Hence,

∞∑
k=1

1

k3
=

∞∑
k=1

1

k(k + 1)(k + 2)
+

∞∑
k=1

3k + 2

k3(k + 1)(k + 2)
= 1

4
+

∞∑
k=1

3k + 2

k3(k + 1)(k + 2)

With M = 100 and using a computer algebra system, we find

∞∑
k=1

1

k3
≈ 1

4
+

100∑
k=1

3k + 2

k3(k + 1)(k + 2)
= 1.2020559349.
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10.4 Absolute and Conditional Convergence

Preliminary Questions
1. Give an example of a series such that

∑
an converges but

∑
|an| diverges.

solution The series
∑

(−1)n

3√n
converges by the Leibniz Test, but the positive series

∑ 1
3√n

is a divergent p-series.

2. Which of the following statements is equivalent to Theorem 1?

(a) If
∞∑

n=0

|an| diverges, then
∞∑

n=0

an also diverges.

(b) If
∞∑

n=0

an diverges, then
∞∑

n=0

|an| also diverges.

(c) If
∞∑

n=0

an converges, then
∞∑

n=0

|an| also converges.

solution The correct answer is (b): If
∞∑

n=0

an diverges, then
∞∑

n=0

|an| also diverges. Take an = (−1)n 1
n to see that

statements (a) and (c) are not true in general.

3. Lathika argues that
∞∑

n=1

(−1)n
√

n is an alternating series and therefore converges. Is Lathika right?

solution No. Although
∞∑

n=1

(−1)n
√

n is an alternating series, the terms an = √
n do not form a decreasing sequence

that tends to zero. In fact, an = √
n is an increasing sequence that tends to ∞, so

∞∑
n=1

(−1)n
√

n diverges by the Divergence

Test.

4. Suppose that an is positive, decreasing, and tends to 0, and let S =
∞∑

n=1

(−1)n−1an. What can we say about |S − S100|

if a101 = 10−3? Is S larger or smaller than S100?

solution From the text, we know that |S − S100| < a101 = 10−3.Also, the Leibniz test tells us that S2N < S < S2N+1
for any N ≥ 1, so that S100 < S.

Exercises
1. Show that

∞∑
n=0

(−1)n

2n

converges absolutely.

solution The positive series
∞∑

n=0

1

2n
is a geometric series with r = 1

2
. Thus, the positive series converges, and the

given series converges absolutely.

2. Show that the following series converges conditionally:

∞∑
n=1

(−1)n−1 1

n2/3
= 1

12/3
− 1

22/3
+ 1

32/3
− 1

42/3
+ · · ·

solution Let an = 1
n2/3 . Then an forms a decreasing sequence that tends to zero; hence, the series

∞∑
n=1

(−1)n−1 1

n2/3

converges by the Leibniz Test. However, the positive series
∞∑

n=1

1

n2/3
is a divergent p-series, so the original series

converges conditionally.
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In Exercises 3–10, determine whether the series converges absolutely, conditionally, or not at all.

3.
∞∑

n=1

(−1)n−1

n1/3

solution The sequence an = 1
n1/3 is positive, decreasing, and tends to zero; hence, the series

∞∑
n=1

(−1)n−1

n1/3
converges

by the Leibniz Test. However, the positive series
∞∑

n=1

1

n1/3
is a divergent p-series, so the original series converges

conditionally.

4.
∞∑

n=1

(−1)n n4

n3 + 1

solution Because

lim
n→∞

n4

n3 + 1
= ∞,

the general term
(−1)nn4

n3 + 1
of the series does not tend to zero; hence, this series diverges by the Divergence Test.

5.
∞∑

n=0

(−1)n−1

(1.1)n

solution The positive series
∞∑

n=0

(
1

1.1

)n

is a convergent geometric series; thus, the original series converges abso-

lutely.

6.
∞∑

n=1

sin( πn
4 )

n2

solution Because ∣∣∣∣∣ sin
(
πn
4

)
n2

∣∣∣∣∣ =
∣∣sin

(
πn
4

)∣∣
n2

≤ 1

n2

the positive series forms a convergent p-series; thus, the original series converges absolutely.

7.
∞∑

n=2

(−1)n

n ln n

solution Let an = 1
n ln n

. Then an forms a decreasing sequence (note that n and ln n are both increasing functions of

n) that tends to zero; hence, the series
∞∑

n=2

(−1)n

n ln n
converges by the Leibniz Test. However, the positive series

∞∑
n=2

1

n ln n

diverges, so the original series converges conditionally.

8.
∞∑

n=1

(−1)n

1 + 1
n

solution Because

lim
n→∞

1

1 + 1
n

= 1

1 + 0
= 1,

the general term (−1)n

1+ 1
n

of the series does not tend to zero; hence, the series diverges by the Divergent Test.

9.
∞∑

n=2

cos nπ

(ln n)2

solution Since cos nπ alternates between +1 and −1,

∞∑
n=2

cos nπ

(lnn)2
=

∞∑
n=2

(−1)n

(lnn)2
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This is an alternating series whose general term decreases to zero, so it converges. The associated positive series,

∞∑
n=2

1

(ln n)2

is a divergent series, so the original series converges conditionally.

10.
∞∑

n=1

cos n

2n

solution The associated positive series is

∞∑
n=1

|cos n|
2n

≤
∞∑

n=1

1

2n

which is a convergent geometric series. Thus the associated positive series converges, so the original series converges
absolutely.

11. Let S =
∞∑

n=1

(−1)n+1 1

n3
.

(a) Calculate Sn for 1 ≤ n ≤ 10.

(b) Use Eq. (2) to show that 0.9 ≤ S ≤ 0.902.

solution
(a)

S1 = 1 S6 = S5 − 1

63
= 0.899782407

S2 = 1 − 1

23
= 7

8
= 0.875 S7 = S6 + 1

73
= 0.902697859

S3 = S2 + 1

33
= 0.912037037 S8 = S7 − 1

83
= 0.900744734

S4 = S3 − 1

43
= 0.896412037 S9 = S8 + 1

93
= 0.902116476

S5 = S4 + 1

53
= 0.904412037 S10 = S9 − 1

103
= 0.901116476

(b) By Eq. (2),

|S10 − S| ≤ a11 = 1

113
,

so

S10 − 1

113
≤ S ≤ S10 + 1

113
,

or

0.900365161 ≤ S ≤ 0.901867791.

12. Use Eq. (2) to approximate

∞∑
n=1

(−1)n+1

n!

to four decimal places.

solution Let S =
∞∑

n=1

(−1)n+1

n! , so that an = 1

n! . By Eq. (2),

|SN − S| ≤ aN+1 = 1

(N + 1)! .

To guarantee accuracy to four decimal places, we must choose N so that

1

(N + 1)! < 5 × 10−5 or (N + 1)! > 20,000.
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Because 7! = 5040 and 8! = 40, 320, the smallest value that satisfies the required inequality is N = 7. Thus,

S ≈ S7 = 1 − 1

2! + 1

3! − 1

4! + 1

5! − 1

6! + 1

7! = 0.632142857.

13. Approximate
∞∑

n=1

(−1)n+1

n4
to three decimal places.

solution Let S =
∞∑

n=1

(−1)n+1

n4
, so that an = 1

n4
. By Eq. (2),

|SN − S| ≤ aN+1 = 1

(N + 1)4
.

To guarantee accuracy to three decimal places, we must choose N so that

1

(N + 1)4
< 5 × 10−4 or N >

4√
2000 − 1 ≈ 5.7.

The smallest value that satisfies the required inequality is then N = 6. Thus,

S ≈ S6 = 1 − 1

24
+ 1

34
− 1

44
+ 1

54
− 1

64
= 0.946767824.

14. Let

S =
∞∑

n=1

(−1)n−1 n

n2 + 1

Use a computer algebra system to calculate and plot the partial sums Sn for 1 ≤ n ≤ 100. Observe that the partial sums
zigzag above and below the limit.

solution The partial sums associated with the alternating series
∞∑

n=1

(−1)n−1 n

n2 + 1
are plotted below. As expected,

the partial sums alternate between overestimating and underestimating the sum.

0.1
0 8040 60 10020

0.2

0.3

0.4

0.5

Sn

n

In Exercises 15 and 16, find a value of N such that SN approximates the series with an error of at most 10−5. If you have
a CAS, compute this value of SN .

15.
∞∑

n=1

(−1)n+1

n(n + 2)(n + 3)

solution Let S =
∞∑

n=1

(−1)n+1

n (n + 2) (n + 3)
, so that an = 1

n (n + 2) (n + 3)
. By Eq. (2),

|SN − S| ≤ aN+1 = 1

(N + 1)(N + 3)(N + 4)
.

We must choose N so that

1

(N + 1)(N + 3)(N + 4)
≤ 10−5 or (N + 1)(N + 3)(N + 4) ≥ 105.



March 31, 2011

1276 C H A P T E R 10 INFINITE SERIES

For N = 43, the product on the left hand side is 95,128, while for N = 44 the product is 101,520; hence, the smallest
value of N which satisfies the required inequality is N = 44. Thus,

S ≈ S44 =
44∑

n=1

(−1)n+1

n(n + 2)(n + 3)
= 0.0656746.

16.
∞∑

n=1

(−1)n+1 ln n

n!

solution Let S =
∞∑

n=1

(−1)n+1 ln n

n! , so that an = ln n

n! . By Eq. (2),

|SN − S| ≤ aN+1 = ln(N + 1)

(N + 1)! .

To make the error at most 10−5, we must choose N so that

ln(N + 1)

(N + 1)! ≤ 10−5.

For N = 7, the left-hand side of the above inequality is 5.157 × 10−5, while for N = 8, the left-hand side is 6.055 × 10−6;
hence, the smallest value for N which satisfies the required inequality is N = 8. Thus,

S ≈ S8 =
8∑

n=1

(−1)n+1 ln n

n! = −0.209975859.

In Exercises 17–32, determine convergence or divergence by any method.

17.
∞∑

n=0

7−n

solution This is a (positive) geometric series with r = 1

7
< 1, so it converges.

18.
∞∑

n=1

1

n7.5

solution This is a p-series with p = 7.5 > 1, so it converges.

19.
∞∑

n=1

1

5n − 3n

solution Use the Limit Comparison Test with
1

5n
:

L = lim
n→∞

1/(5n − 3n)

1/5n
= lim

n→∞
5n

5n − 3n
= lim

n→∞
1

1 − (3/5)n
= 1

But
∑∞

n=1
1

5n
is a convergent geometric series. Since L = 1, the Limit Comparison Test tells us that the original series

converges as well.

20.
∞∑

n=2

n

n2 − n

solution Apply the Limit Comparison Test and compare with the divergent harmonic series:

L = lim
n→∞

n
n2−n

1
n

= lim
n→∞

n2

n2 − n
= 1.

Because L > 0, we conclude that the series
∞∑

n=2

n

n2 − n
diverges.
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21.
∞∑

n=1

1

3n4 + 12n

solution Use the Limit Comparison Test with
1

3n4
:

L = lim
n→∞

(1/(3n4 + 12n)

1/3n4
= lim

n→∞
3n4

3n4 + 12n
= lim

n→∞
1

1 + 4n−3
= 1

But
∑∞

n=1
1

3n4
= 1

3
∑∞

n=1
1
n4 is a convergent p-series. Since L = 1, the Limit Comparison Test tells us that the original

series converges as well.

22.
∞∑

n=1

(−1)n√
n2 + 1

solution This is an alternating series with an = 1√
n2 + 1

. Because an is a decreasing sequence that converges to

zero, the series
∞∑

n=1

(−1)n√
n2 + 1

converges by the Leibniz Test.

23.
∞∑

n=1

1√
n2 + 1

solution Apply the Limit Comparison Test and compare the series with the divergent harmonic series:

L = lim
n→∞

1√
n2+1
1
n

= lim
n→∞

n√
n2 + 1

= 1.

Because L > 0, we conclude that the series
∞∑

n=1

1√
n2 + 1

diverges.

24.
∞∑

n=0

(−1)nn√
n2 + 1

solution This series diverges, since the general term of the associated positive series tends to 1, not to 0:

lim
n→∞

n√
n2 + 1

= lim
n→∞

√
n2

n2 + 1
= lim

n→∞

√
1

1 + n−2
= 1

25.
∞∑

n=1

3n + (−2)n

5n

solution The series

∞∑
n=1

3n

5n
=

∞∑
n=1

(
3

5

)n

is a convergent geometric series, as is the series

∞∑
n=1

(−1)n 2n

5n
=

∞∑
n=1

(
−2

5

)n

.

Hence,

∞∑
n=1

3n + (−1)n2n

5n
=

∞∑
n=1

(
3

5

)n

+
∞∑

n=1

(
−2

5

)n

also converges.

26.
∞∑

n=1

(−1)n+1

(2n + 1)!

solution This is an alternating series with an = 1

(2n + 1)! . Because an is a decreasing sequence which converges to

zero, the series
∞∑

n=1

(−1)n+1

(2n + 1)! converges by the Leibniz Test.



March 31, 2011

1278 C H A P T E R 10 INFINITE SERIES

27.
∞∑

n=1

(−1)nn2e−n3/3

solution Consider the associated positive series
∞∑

n=1

n2e−n3/3. This series can be seen to converge by the Integral

Test: ∫ ∞
1

x2e−x3/3 dx = lim
R→∞

∫ R

1
x2e−x3/3 dx = − lim

R→∞ e−x3/3∣∣R
1 = e−1/3 + lim

R→∞ e−R3/3 = e−1/3.

The integral converges, so the original series converges absolutely.

28.
∞∑

n=1

ne−n3/3

solution This is a positive series, and by the Comparison Test with the associated positive series in the previous
exercise,

∞∑
n=1

ne−n3/3 ≤
∞∑

n=1

n2e−n3/3

Since the series on the right converges, so does the original series.

29.
∞∑

n=2

(−1)n

n1/2(ln n)2

solution This is an alternating series with an = 1

n1/2(ln n)2
. Because an is a decreasing sequence which converges

to zero, the series
∞∑

n=2

(−1)n

n1/2(ln n)2
converges by the Leibniz Test. (Note that the series converges only conditionally, not

absolutely; the associated positive series is eventually greater than
1

n3/4
, which is a divergent p-series).

30.
∞∑

n=2

1

n(ln n)1/4

solution Use the Integral Test, with the substitution u = ln x:

∫ ∞
2

1

x ln1/4 x
dx = lim

R→∞

∫ R

2

1

x ln1/4 x
dx = lim

R→∞

∫ R

ln 2
u−1/4 du = lim

R→∞
4

3
u3/4∣∣R

ln 2

= −4

3

(
(ln 2)3/4 + lim

R→∞ R3/4
)

The integral diverges, so the original series diverges as well.

31.
∞∑

n=1

ln n

n1.05

solution Choose N so that for n ≥ N we have ln n ≤ n0.01. Then

∞∑
n=N

ln n

n1.05
≤

∞∑
n=N

n0.01

n1.05
=

∞∑
n=N

1

n1.04

This is a convergent p-series, so by the Comparison Test, the original series converges as well.

32.
∞∑

n=2

1

(ln n)2

solution Choose N so that for n ≥ N we have ln n < n0.25 so that ln2 n < n0.5. Then

∞∑
n=N

1

(ln n)2
>

∞∑
n=N

1

n0.5

This is a divergent p-series, so by the Comparison Test, the original series diverges as well.
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33. Show that

S = 1

2
− 1

2
+ 1

3
− 1

3
+ 1

4
− 1

4
+ · · ·

converges by computing the partial sums. Does it converge absolutely?

solution The sequence of partial sums is

S1 = 1

2

S2 = S1 − 1

2
= 0

S3 = S2 + 1

3
= 1

3

S4 = S3 − 1

3
= 0

and, in general,

SN =
⎧⎨
⎩

1

N
, for odd N

0, for even N

Thus, lim
N→∞ SN = 0, and the series converges to 0. The positive series is

1

2
+ 1

2
+ 1

3
+ 1

3
+ 1

4
+ 1

4
+ · · · = 2

∞∑
n=2

1

n
;

which diverges. Therefore, the original series converges conditionally, not absolutely.

34. The Leibniz Test cannot be applied to

1

2
− 1

3
+ 1

22
− 1

32
+ 1

23
− 1

33
+ · · ·

Why not? Show that it converges by another method.

solution The sequence of terms {an} for this alternating series is

1

2
,

1

3
,

1

22
,

1

32
,

1

23
,

1

33
, . . . ,

1

2n
,

1

3n
,

1

2n+1
,

1

3n+1
, . . .

Now,

1

32
= 1

9
<

1

8
= 1

23
.

Moreover, if we assume that

1

3k
<

1

2k+1

for some k, then

1

3k+1
= 1

3
· 1

3k
<

1

3

1

2k+1
<

1

2

1

2k+1
= 1

2k+2
.

Thus, by mathematical induction,

1

3n
<

1

2n+1

for all n ≥ 2. The sequence {an} is therefore not decreasing, and the Leibniz Test does not apply.
We may express the given series as

∞∑
n=1

(
1

2n
− 1

3n

)
.

Because

∞∑
n=1

1

2n
=

∞∑
n=1

(
1

2

)n

and
∞∑

n=1

1

3n
=

∞∑
n=1

(
1

3

)n
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are both convergent geometric series, it follows that this series converges, and

∞∑
n=1

(
1

2n
− 1

3n

)
=

∞∑
n=1

(
1

2

)n

−
∞∑

n=1

(
1

3

)n

=
1
2

1 − 1
2

−
1
3

1 − 1
3

= 1 − 1

2
= 1

2
.

35. Assumptions Matter Show by counterexample that the Leibniz Test does not remain true if the sequence
an tends to zero but is not assumed nonincreasing. Hint: Consider

R = 1

2
− 1

4
+ 1

3
− 1

8
+ 1

4
− 1

16
+ · · · +

(
1

n
− 1

2n

)
+ · · ·

solution Let

R = 1

2
− 1

4
+ 1

3
− 1

8
+ 1

4
− 1

16
+ · · · +

(
1

n + 1
− 1

2n+1

)
+ · · ·

This is an alternating series with

an =

⎧⎪⎪⎨
⎪⎪⎩

1

k + 1
, n = 2k − 1

1

2k+1
, n = 2k

Note that an → 0 as n → ∞, but the sequence {an} is not decreasing. We will now establish that R diverges.
For sake of contradiction, suppose that R converges. The geometric series

∞∑
n=1

1

2n+1

converges, so the sum of R and this geometric series must also converge; however,

R +
∞∑

n=1

1

2n+1
=

∞∑
n=2

1

n
,

which diverges because the harmonic series diverges. Thus, the series R must diverge.

36. Determine whether the following series converges conditionally:

1 − 1

3
+ 1

2
− 1

5
+ 1

3
− 1

7
+ 1

4
− 1

9
+ 1

5
− 1

11
+ · · ·

solution Although the signs alternate, the terms an are not decreasing, so we cannot apply the Leibniz Test. However,
we may express the series as

∞∑
n=1

(
1

n
− 1

2n + 1

)
=

∞∑
n=1

n + 1

n(2n + 1)
.

Using the Limit Comparison Test and comparing with the harmonic series, we find

L = lim
n→∞

n+1
n(2n+1)

1
n

= lim
n→∞

n + 1

2n + 1
= 1

2
.

Because L > 0, we conclude that the series

1 − 1

3
+ 1

2
− 1

5
+ 1

3
− 1

7
+ 1

4
− 1

9
+ 1

5
− 1

11
+ · · ·

diverges.

37. Prove that if
∑

an converges absolutely, then
∑

a2
n also converges. Then give an example where

∑
an is only

conditionally convergent and
∑

a2
n diverges.

solution Suppose the series
∑

an converges absolutely. Because
∑

|an| converges, we know that

lim
n→∞ |an| = 0.

Therefore, there exists a positive integer N such that |an| < 1 for all n ≥ N . It then follows that for n ≥ N ,

0 ≤ a2
n = |an|2 = |an| · |an| < |an| · 1 = |an|.
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By the Comparison Test we can then conclude that
∑

a2
n also converges.

Consider the series
∞∑

n=1

(−1)n√
n

. This series converges by the Leibniz Test, but the corresponding positive series is a

divergent p-series; that is,
∞∑

n=1

(−1)n√
n

is conditionally convergent. Now,
∞∑

n=1

a2
n is the divergent harmonic series

∞∑
n=1

1

n
.

Thus,
∑

a2
n need not converge if

∑
an is only conditionally convergent.

Further Insights and Challenges
38. Prove the following variant of the Leibniz Test: If {an} is a positive, decreasing sequence with lim

n→∞ an = 0, then the

series

a1 + a2 − 2a3 + a4 + a5 − 2a6 + · · ·
converges. Hint: Show that S3N is increasing and bounded by a1 + a2, and continue as in the proof of the Leibniz Test.

solution Following the hint, we first examine the sequence {S3N }. Now,

S3N+3 = S3(N+1) = S3N + a3N+1 + a3N+2 − 2a3N+3 = S3N + (
a3N+1 − a3N+3

) + (
a3N+2 − a3N+3

) ≥ S3N

because {an} is a decreasing sequence. Moreover,

S3N = a1 + a2 −
N−1∑
k=1

(
2a3k − a3k+1 − a3k+2

) − 2a3N

= a1 + a2 −
N−1∑
k=1

[(
a3k − a3k+1

) + (
a3k − a3k+2

) − 2a3N

] ≤ a1 + a2

again because {an} is a decreasing sequence. Thus, {S3N } is an increasing sequence with an upper bound; hence, {S3N }
converges. Next,

S3N+1 = S3N + a3N+1 and S3N+2 = S3N + a3N+1 + a3N+2.

Given that lim
n→∞ an = 0, it follows that

lim
N→∞ S3N+1 = lim

N→∞ S3N+2 = lim
N→∞ S3N .

Having just established that lim
N→∞ S3N exists, it follows that the sequences {S3N+1} and {S3N+2} converge to the same

limit. Finally, we can conclude that the sequence of partial sums {SN } converges, so the given series converges.

39. Use Exercise 38 to show that the following series converges:

S = 1

ln 2
+ 1

ln 3
− 2

ln 4
+ 1

ln 5
+ 1

ln 6
− 2

ln 7
+ · · ·

solution The given series has the structure of the generic series from Exercise 38 with an = 1
ln(n+1)

. Because an is
a positive, decreasing sequence with lim

n→∞ an = 0, we can conclude from Exercise 38 that the given series converges.

40. Prove the conditional convergence of

R = 1 + 1

2
+ 1

3
− 3

4
+ 1

5
+ 1

6
+ 1

7
− 3

8
+ · · ·

solution Using Exercise 38 as a template, we first examine the sequence {R4N }. Now,

R4N+4 = R4(N+1) = R4N + 1

4N + 1
+ 1

4N + 2
+ 1

4N + 3
− 3

4N + 4

= RN +
(

1

4N + 1
− 1

4N + 4

)
+
(

1

4N + 2
− 1

4N + 4

)
+
(

1

4N + 3
− 1

4N + 4

)
≥ R4N .

Moreover,

R4N = 1 + 1

2
+ 1

3
−

N−1∑
k=1

(
3

4k
− 1

4k + 1
− 1

4k + 2
− 1

4k + 3

)
− 3

4N
≤ 1 + 1

2
+ 1

3
.
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Thus, {R4N } is an increasing sequence with an upper bound; hence, {R4N } converges. Next,

R4N+1 = R4N + 1

4N + 1
;

R4N+2 = R4N + 1

4N + 1
+ 1

4N + 2
; and

R4N+3 = R4N + 1

4N + 1
+ 1

4N + 2
+ 1

4N + 3
,

so

lim
n→∞ R4N+1 = lim

N→∞ R4N+2 = lim
N→∞ R4N+3 = lim

N→∞ R4N .

Having just established that lim
N→∞ R4N exists, it follows that the sequences {R4N+1}, {R4N+2} and {R4N+3} converge

to the same limit. Finally, we can conclude that the sequence of partial sums {RN } converges, so the series R converges.
Now, consider the positive series

R+ = 1 + 1

2
+ 1

3
+ 3

4
+ 1

5
+ 1

6
+ 1

7
+ 3

8
+ · · ·

Because the terms in this series are greater than or equal to the corresponding terms in the divergent harmonic series, it
follows from the Comparison Test that R+ diverges. Thus, by definition, R converges conditionally.

41. Show that the following series diverges:

S = 1 + 1

2
+ 1

3
− 2

4
+ 1

5
+ 1

6
+ 1

7
− 2

8
+ · · ·

Hint: Use the result of Exercise 40 to write S as the sum of a convergent series and a divergent series.

solution Let

R = 1 + 1

2
+ 1

3
− 3

4
+ 1

5
+ 1

6
+ 1

7
− 3

8
+ · · ·

and

S = 1 + 1

2
+ 1

3
− 2

4
+ 1

5
+ 1

6
+ 1

7
− 2

8
+ · · ·

For sake of contradiction, suppose the series S converges. From Exercise 40, we know that the series R converges. Thus,
the series S − R must converge; however,

S − R = 1

4
+ 1

8
+ 1

12
+ · · · = 1

4

∞∑
k=1

1

k
,

which diverges because the harmonic series diverges. Thus, the series S must diverge.

42. Prove that

∞∑
n=1

(−1)n+1 (ln n)a

n

converges for all exponents a. Hint: Show that f (x) = (ln x)a/x is decreasing for x sufficiently large.

solution This is an alternating series with an = (ln n)a

n . Following the hint, consider the function f (x) = (ln x)a

x
.

Now,

f ′(x) = a(ln x)a−1 − (ln x)a

x2
= (ln x)a−1

x2
(a − ln x),

so f ′(x) < 0 and f is decreasing for x > ea . If a ≤ 0, then it is clear that

lim
x→∞

(ln x)a

x
= 0;

if a > 0, then repeated use of L’Hôpital’s Rule leads to the same conclusion. Let N be any integer greater than ea ; then,

{an} is a decreasing sequence for n ≥ N which converges to zero and the series
∞∑

n=N

(−1)n+1 (ln n)a

n
converges by the

Leibniz Test. Finally, the series
∞∑

n=1

(−1)n+1 (ln n)a

n
also converges.
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43. We say that {bn} is a rearrangement of {an} if {bn} has the same terms as {an} but occurring in a different order. Show

that if {bn} is a rearrangement of {an} and S =
∞∑

n=1

an converges absolutely, then T =
∞∑

n=1

bn also converges absolutely.

(This result does not hold if S is only conditionally convergent.) Hint: Prove that the partial sums
N∑

n=1

|bn| are bounded.

It can be shown further that S = T .

solution Suppose the series S =
∞∑

n=1

an converges absolutely and denote the corresponding positive series by

S+ =
∞∑

n=1

|an|.

Further, let TN =
N∑

n=1

|bn| denote the N th partial sum of the series
∞∑

n=1

|bn|. Because {bn} is a rearrangement of {an}, we

know that

0 ≤ TN ≤
∞∑

n=1

|an| = S+;

that is, the sequence {TN } is bounded. Moreover,

TN+1 =
N+1∑
n=1

|bn| = TN + |bN+1| ≥ TN ;

that is, {TN } is increasing. It follows that {TN } converges, so the series
∞∑

n=1

|bn| converges, which means the series
∞∑

n=1

bn

converges absolutely.

44. Assumptions Matter In 1829, Lejeune Dirichlet pointed out that the great French mathematician Augustin Louis
Cauchy made a mistake in a published paper by improperly assuming the Limit Comparison Test to be valid for nonpositive
series. Here are Dirichlet’s two series:

∞∑
n=1

(−1)n√
n

,

∞∑
n=1

(−1)n√
n

(
1 + (−1)n√

n

)

Explain how they provide a counterexample to the Limit Comparison Test when the series are not assumed to be positive.

solution Let

R =
∞∑

n=1

(−1)n√
n

and S =
∞∑

n=1

(−1)n√
n

(
1 + (−1)n√

n

)

R is an alternating series that converges by the Leibniz Test; however, we cannot apply the Leibniz Test to S because the
absolute value of the terms in S is not decreasing. Because

L = lim
n→∞

(−1)n√
n

(
1 + (−1)n√

n

)
(−1)n√

n

= lim
n→∞

(
1 + (−1)n√

n

)
= 1,

if the Limit Comparison Test were valid for nonpositive series, we would conclude that S converges. However, if we
assume that S converges, then the series S − R would also converge. But

S − R =
∞∑

n=1

(
(−1)n√

n
+ 1

n
− (−1)n√

n

)
=

∞∑
n=1

1

n
,

which is the divergent harmonic series. Thus, S diverges, and the Limit Comparison Test is not valid for nonpositive
series.
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10.5 The Ratio and Root Tests

Preliminary Questions

1. In the Ratio Test, is ρ equal to lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ or lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣?
solution In the Ratio Test ρ is the limit lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣.
2. Is the Ratio Test conclusive for

∞∑
n=1

1

2n
? Is it conclusive for

∞∑
n=1

1

n
?

solution The general term of
∞∑

n=1

1

2n
is an = 1

2n
; thus,

∣∣∣∣an+1

an

∣∣∣∣ = 1

2n+1
· 2n

1
= 1

2
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
< 1.

Consequently, the Ratio Test guarantees that the series
∞∑

n=1

1

2n
converges.

The general term of
∞∑

n=1

1

n
is an = 1

n
; thus,

∣∣∣∣an+1

an

∣∣∣∣ = 1

n + 1
· n

1
= n

n + 1
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

n

n + 1
= 1.

The Ratio Test is therefore inconclusive for the series
∞∑

n=1

1

n
.

3. Can the Ratio Test be used to show convergence if the series is only conditionally convergent?

solution No. The Ratio Test can only establish absolute convergence and divergence, not conditional convergence.

Exercises
In Exercises 1–20, apply the Ratio Test to determine convergence or divergence, or state that the Ratio Test is inconclusive.

1.
∞∑

n=1

1

5n

solution With an = 1
5n ,∣∣∣∣an+1

an

∣∣∣∣ = 1

5n+1
· 5n

1
= 1

5
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

5
< 1.

Therefore, the series
∞∑

n=1

1

5n
converges by the Ratio Test.

2.
∞∑

n=1

(−1)n−1n

5n

solution With an = (−1)n−1n
5n ,∣∣∣∣an+1

an

∣∣∣∣ = n + 1

5n+1
· 5n

n
= n + 1

5n
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

5
< 1.

Therefore, the series
∞∑

n=1

(−1)n−1n

5n
converges by the Ratio Test.
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3.
∞∑

n=1

1

nn

solution With an = 1
nn ,

∣∣∣∣an+1

an

∣∣∣∣ = 1

(n + 1)n+1
· nn

1
= 1

n + 1

(
n

n + 1

)n

= 1

n + 1

(
1 + 1

n

)−n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 · 1

e
= 0 < 1.

Therefore, the series
∞∑

n=1

1

nn
converges by the Ratio Test.

4.
∞∑

n=0

3n + 2

5n3 + 1

solution With an = 3n+2
5n3+1

,

∣∣∣∣an+1

an

∣∣∣∣ = 3(n + 1) + 2

5(n + 1)3 + 1
· 5n3 + 1

3n + 2
= 3n + 5

3n + 2
· 5n3 + 1

5(n + 1)3 + 1
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · 1 = 1.

Therefore, for the series
∞∑

n=0

3n + 2

5n3 + 1
, the Ratio Test is inconclusive.

We can show that this series converges by using the Limit Comparison Test and comparing with the convergent p-series
∞∑

n=1

1

n2
.

5.
∞∑

n=1

n

n2 + 1

solution With an = n
n2+1

,

∣∣∣∣an+1

an

∣∣∣∣ = n + 1

(n + 1)2 + 1
· n2 + 1

n
= n + 1

n
· n2 + 1

n2 + 2n + 2
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · 1 = 1.

Therefore, for the series
∞∑

n=1

n

n2 + 1
, the Ratio Test is inconclusive.

We can show that this series diverges by using the Limit Comparison Test and comparing with the divergent harmonic
series.

6.
∞∑

n=1

2n

n

solution With an = 2n

n ,

∣∣∣∣an+1

an

∣∣∣∣ = 2n+1

n + 1
· n

2n
= 2n

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 2 > 1.

Therefore, the series
∞∑

n=1

2n

n
diverges by the Ratio Test.
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7.
∞∑

n=1

2n

n100

solution With an = 2n

n100 ,

∣∣∣∣an+1

an

∣∣∣∣ = 2n+1

(n + 1)100
· n100

2n
= 2

(
n

n + 1

)100
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 2 · 1100 = 2 > 1.

Therefore, the series
∞∑

n=1

2n

n100
diverges by the Ratio Test.

8.
∞∑

n=1

n3

3n2

solution With an = n3

3n2 ,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)3

3(n+1)2 · 3n2

n3
=
(

n + 1

n

)3
· 1

32n+1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 13 · 0 = 0 < 1.

Therefore, the series
∞∑

n=1

n3

3n2 converges by the Ratio Test.

9.
∞∑

n=1

10n

2n2

solution With an = 10n

2n2 ,

∣∣∣∣an+1

an

∣∣∣∣ = 10n+1

2(n+1)2 · 2n2

10n
= 10 · 1

22n+1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 10 · 0 = 0 < 1.

Therefore, the series
∞∑

n=1

10n

2n2 converges by the Ratio Test.

10.
∞∑

n=1

en

n!

solution With an = en

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = en+1

(n + 1)! · n!
en

= e

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 < 1.

Therefore, the series
∞∑

n=1

en

n! converges by the Ratio Test.

11.
∞∑

n=1

en

nn

solution With an = en

nn ,

∣∣∣∣an+1

an

∣∣∣∣ = en+1

(n + 1)n+1
· nn

en
= e

n + 1

(
n

n + 1

)n

= e

n + 1

(
1 + 1

n

)−n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 · 1

e
= 0 < 1.

Therefore, the series
∞∑

n=1

en

nn
converges by the Ratio Test.
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12.
∞∑

n=1

n40

n!

solution With an = n40

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)40

(n + 1)! · n!
n40

= 1

n + 1

(
n + 1

n

)40
= 1

n + 1

(
1 + 1

n

)40
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 · 1 = 0 < 1.

Therefore, the series
∞∑

n=1

n40

n! converges by the Ratio Test.

13.
∞∑

n=0

n!
6n

solution With an = n!
6n ,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)!
6n+1

· 6n

n! = n + 1

6
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ∞ > 1.

Therefore, the series
∞∑

n=0

n!
6n

diverges by the Ratio Test.

14.
∞∑

n=1

n!
n9

solution With an = n!
n9 ,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)!
(n + 1)9

· n9

n! = n9

(n + 1)8
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ∞ > 1.

Therefore, the series
∞∑

n=1

n!
n9

diverges by the Ratio Test.

15.
∞∑

n=2

1

n ln n

solution With an = 1
n ln n

,

∣∣∣∣an+1

an

∣∣∣∣ = 1

(n + 1) ln(n + 1)
· n ln n

1
= n

n + 1

ln n

ln(n + 1)
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · lim
n→∞

ln n

ln(n + 1)
.

Now,

lim
n→∞

ln n

ln(n + 1)
= lim

x→∞
ln x

ln(x + 1)
= lim

x→∞
1/(x + 1)

1/x
= lim

x→∞
x

x + 1
= 1.

Thus, ρ = 1, and the Ratio Test is inconclusive for the series
∞∑

n=2

1

n ln n
.

Using the Integral Test, we can show that the series
∞∑

n=2

1

n ln n
diverges.
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16.
∞∑

n=1

1

(2n)!

solution With an = 1
(2n)! ,∣∣∣∣an+1

an

∣∣∣∣ = 1

(2n + 2)! · (2n)!
1

= 1

(2n + 2)(2n + 1)
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 < 1.

Therefore, the series
∞∑

n=1

1

(2n)! converges by the Ratio Test.

17.
∞∑

n=1

n2

(2n + 1)!

solution With an = n2

(2n+1)! ,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)2

(2n + 3)! · (2n + 1)!
n2

=
(

n + 1

n

)2 1

(2n + 3)(2n + 2)
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 12 · 0 = 0 < 1.

Therefore, the series
∞∑

n=1

n2

(2n + 1)! converges by the Ratio Test.

18.
∞∑

n=1

(n!)3

(3n)!

solution With an = (n!)3

(3n)! ,

∣∣∣∣an+1

an

∣∣∣∣ = ((n + 1)!)3

(3(n + 1))! · (3n)!
(n!)3

= (n + 1)3

(3n + 3)(3n + 2)(3n + 1)
= n3 + 3n2 + 3n + 1

27n3 + 54n2 + 33n + 6

= 1 + 3n−1 + 3n−2 + 1n−3

27 + 54n−1 + 33n−2 + 6n−3

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

27
< 1

Therefore, the series
∞∑

n=1

(n!)3

(3n)! converges by the Ratio Test.

19.
∞∑

n=2

1

2n + 1

solution With an = 1

2n + 1
,

∣∣∣∣an+1

an

∣∣∣∣ = 1

2n+1 + 1
· 2n + 1

1
= 1 + 2−n

2 + 2−n

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
< 1

Therefore, the series
∞∑

n=2

1

2n + 1
converges by the Ratio Test.
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20.
∞∑

n=2

1

ln n

solution With an = 1

ln n
,

∣∣∣∣an+1

an

∣∣∣∣ = 1

ln n
· ln(n + 1)

1
= ln(n + 1)

ln n

and (using L’Hôpital’s rule)

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
x→∞

d
dx

ln(x + 1)

d
dx

ln x
= lim

x→∞
x

x + 1
= 1

Therefore, the Ratio Test is inconclusive for
∞∑

n=2

1

ln n
. This series can be shown to diverge using the Comparison Test

with the harmonic series since ln n < n for n ≥ 2.

21. Show that
∞∑

n=1

nk 3−n converges for all exponents k.

solution With an = nk3−n,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)k3−(n+1)

nk3−n
= 1

3

(
1 + 1

n

)k

,

and, for all k,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

3
· 1 = 1

3
< 1.

Therefore, the series
∞∑

n=1

nk 3−n converges for all exponents k by the Ratio Test.

22. Show that
∞∑

n=1

n2xn converges if |x| < 1.

solution With an = n2xn,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)2|x|n+1

n2|x|n =
(

1 + 1

n

)2
|x| and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · |x| = |x|.

Therefore, by the Ratio Test, the series
∞∑

n=1

n2xn converges provided |x| < 1.

23. Show that
∞∑

n=1

2nxn converges if |x| < 1
2 .

solution With an = 2nxn,

∣∣∣∣an+1

an

∣∣∣∣ = 2n+1|x|n+1

2n|x|n = 2|x| and ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 2|x|.

Therefore, ρ < 1 and the series
∞∑

n=1

2nxn converges by the Ratio Test provided |x| < 1
2 .

24. Show that
∞∑

n=1

rn

n! converges for all r .

solution With an = rn

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = |r|n+1

(n + 1)! · n!
|r|n = |r|

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 · |r| = 0 < 1.

Therefore, the series
∞∑

n=1

rn

n! converges by the Ratio Test for all r .



March 31, 2011

1290 C H A P T E R 10 INFINITE SERIES

25. Show that
∞∑

n=1

rn

n
converges if |r| < 1.

solution With an = rn

n ,∣∣∣∣an+1

an

∣∣∣∣ = |r|n+1

n + 1
· n

|r|n = |r| n

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · |r| = |r|.

Therefore, by the Ratio Test, the series
∞∑

n=1

rn

n
converges provided |r| < 1.

26. Is there any value of k such that
∞∑

n=1

2n

nk
converges?

solution With an = 2n

nk ,

∣∣∣∣an+1

an

∣∣∣∣ = 2n+1

(n + 1)k
· nk

2n
= 2

(
n

n + 1

)k

,

and, for all k,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 2 · 1k = 2 > 1.

Therefore, by the Ratio Test, there is no value for k such that the series
∞∑

n=1

2n

nk
converges.

27. Show that
∞∑

n=1

n!
nn

converges. Hint: Use lim
n→∞

(
1 + 1

n

)n

= e.

solution With an = n!
nn , ∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)!
(n + 1)n+1

· nn

n! =
(

n

n + 1

)n

=
(

1 + 1

n

)−n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

e
< 1.

Therefore, the series
∞∑

n=1

n!
nn

converges by the Ratio Test.

In Exercises 28–33, assume that |an+1/an| converges to ρ = 1
3 . What can you say about the convergence of the given

series?

28.
∞∑

n=1

nan

solution Let bn = nan. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

n + 1

n

∣∣∣∣an+1

an

∣∣∣∣ = 1 · 1

3
= 1

3
< 1.

Therefore, the series
∞∑

n=1

nan converges by the Ratio Test.

29.
∞∑

n=1

n3an

solution Let bn = n3an. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

(
n + 1

n

)3 ∣∣∣∣an+1

an

∣∣∣∣ = 13 · 1

3
= 1

3
< 1.

Therefore, the series
∞∑

n=1

n3an converges by the Ratio Test.
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30.
∞∑

n=1

2nan

solution Let bn = 2nan. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

2n+1

2n

∣∣∣∣an+1

an

∣∣∣∣ = 2 · 1

3
= 2

3
< 1.

Therefore, the series
∞∑

n=1

2nan converges by the Ratio Test.

31.
∞∑

n=1

3nan

solution Let bn = 3nan. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

3n+1

3n

∣∣∣∣an+1

an

∣∣∣∣ = 3 · 1

3
= 1.

Therefore, the Ratio Test is inconclusive for the series
∞∑

n=1

3nan.

32.
∞∑

n=1

4nan

solution Let bn = 4nan. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

4n+1

4n

∣∣∣∣an+1

an

∣∣∣∣ = 4 · 1

3
= 4

3
> 1.

Therefore, the series
∞∑

n=1

4nan diverges by the Ratio Test.

33.
∞∑

n=1

a2
n

solution Let bn = a2
n. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣2 =
(

1

3

)2
= 1

9
< 1.

Therefore, the series
∞∑

n=1

a2
n converges by the Ratio Test.

34. Assume that
∣∣an+1/an

∣∣ converges to ρ = 4. Does
∑∞

n=1 a−1
n converge (assume that an 	= 0 for all n)?

solution Let bn = a−1
n . Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ = 1

limn→∞
∣∣∣ an+1

an

∣∣∣ = 1

4
< 1.

Therefore, the series
∞∑

n=1

a−1
n converges by the Ratio Test.

35. Is the Ratio Test conclusive for the p-series
∞∑

n=1

1

np
?

solution With an = 1
np ,∣∣∣∣an+1

an

∣∣∣∣ = 1

(n + 1)p
· np

1
=
(

n

n + 1

)p

and ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1p = 1.

Therefore, the Ratio Test is inconclusive for the p-series
∞∑

n=1

1

np
.



March 31, 2011

1292 C H A P T E R 10 INFINITE SERIES

In Exercises 36–41, use the Root Test to determine convergence or divergence (or state that the test is inconclusive).

36.
∞∑

n=0

1

10n

solution With an = 1
10n ,

n
√

an = n

√
1

10n
= 1

10
and lim

n→∞
n
√

an = 1

10
< 1.

Therefore, the series
∞∑

n=0

1

10n
converges by the Root Test.

37.
∞∑

n=1

1

nn

solution With an = 1
nn ,

n
√

an = n

√
1

nn
= 1

n
and lim

n→∞
n
√

an = 0 < 1.

Therefore, the series
∞∑

n=1

1

nn
converges by the Root Test.

38.
∞∑

k=0

(
k

k + 10

)k

solution With ak =
(

k
k+10

)k
,

k
√

ak = k

√(
k

k + 10

)k

= k

k + 10
and lim

k→∞
k
√

ak = 1.

Therefore, the Root Test is inconclusive for the series
∞∑

k=0

(
k

k + 10

)k

. Because

lim
k→∞ ak = lim

k→∞

(
1 + 10

k

)−k

= lim
k→∞

[(
1 + 10

k

)k/10
]−10

= e−10 	= 0,

this series diverges by the Divergence Test.

39.
∞∑

k=0

(
k

3k + 1

)k

solution With ak =
(

k
3k+1

)k
,

k
√

ak = k

√(
k

3k + 1

)k

= k

3k + 1
and lim

k→∞
k
√

ak = 1

3
< 1.

Therefore, the series
∞∑

k=0

(
k

3k + 1

)k

converges by the Root Test.

40.
∞∑

n=1

(
1 + 1

n

)−n

solution With ak = (
1 + 1

n

)−n,

n
√

an = n

√(
1 + 1

n

)−n

=
(

1 + 1

n

)−1
and lim

n→∞
n
√

an = 1−1 = 1.

Therefore, the Root Test is inconclusive for the series
∞∑

n=1

(
1 + 1

n

)−n

.
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Because

lim
n→∞ an = lim

n→∞

(
1 + 1

n

)−n

= lim
n→∞

[(
1 + 1

n

)n]−1

= e−1 	= 0,

this series diverges by the Divergence Test.

41.
∞∑

n=4

(
1 + 1

n

)−n2

solution With ak = (
1 + 1

n

)−n2
,

n
√

an = n

√(
1 + 1

n

)−n2

=
(

1 + 1

n

)−n

and lim
n→∞

n
√

an = e−1 < 1.

Therefore, the series
∞∑

n=4

(
1 + 1

n

)−n2

converges by the Root Test.

42. Prove that
∞∑

n=1

2n2

n! diverges. Hint: Use 2n2 = (2n)n and n! ≤ nn.

solution Because n! ≤ nn,

2n2

n! ≥ 2n2

nn
.

Now, let an = 2n2

nn . Then

n
√

an = n

√
2n2

nn
= 2n

n
,

and

lim
n→∞

n
√

an = lim
n→∞

2n

n
= lim

x→∞
2x

x
= lim

x→∞
2x ln 2

1
= ∞ > 1.

Therefore, the series
∞∑

n=1

2n2

nn
diverges by the Root Test. By the Comparison Test, we can then conclude that the series

∞∑
n=1

2n2

n! also diverges.

In Exercises 43–56, determine convergence or divergence using any method covered in the text so far.

43.
∞∑

n=1

2n + 4n

7n

solution Because the series

∞∑
n=1

2n

7n
=

∞∑
n=1

(
2

7

)n

and
∞∑

n=1

4n

7n
=

∞∑
n=1

(
4

7

)n

are both convergent geometric series, it follows that

∞∑
n=1

2n + 4n

7n
=

∞∑
n=1

(
2

7

)n

+
∞∑

n=1

(
4

7

)n

also converges.

44.
∞∑

n=1

n3

n!
solution The presence of the factorial suggests applying the Ratio Test. With an = n3

n! ,∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)3

(n + 1)! · n!
n3

= (n + 1)2

n3
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 < 1.

Therefore, the series
∞∑

n=1

n3

n! converges by the Ratio Test.
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45.
∞∑

n=1

n3

5n

solution The presence of the exponential term suggests applying the Ratio Test. With an = n3

5n ,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)3

5n+1
· 5n

n3
= 1

5

(
1 + 1

n

)3
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

5
· 13 = 1

5
< 1.

Therefore, the series
∞∑

n=1

n3

5n
converges by the Ratio Test.

46.
∞∑

n=2

1

n(ln n)3

solution The general term in this series suggests applying the Integral Test. Let f (x) = 1
x(ln x)3 . This function is

continuous, positive and decreasing for x ≥ 2, so the Integral Test does apply. Now∫ ∞
2

dx

x(ln x)3
= lim

R→∞

∫ R

2

dx

x(ln x)3
= lim

R→∞

∫ ln R

ln 2

du

u3
= −1

2
lim

R→∞

(
1

(ln R)2
− 1

(ln 2)2

)
= 1

2(ln 2)2
.

The integral converges; hence, the series
∞∑

n=2

1

n(ln n)3
also converges.

47.
∞∑

n=2

1√
n3 − n2

solution This series is similar to a p-series; because

1√
n3 − n2

≈ 1√
n3

= 1

n3/2

for large n, we will apply the Limit Comparison Test comparing with the p-series with p = 3
2 . Now,

L = lim
n→∞

1√
n3−n2

1
n3/2

= lim
n→∞

√
n3

n3 − n2
= 1.

The p-series with p = 3
2 converges and L exists; therefore, the series

∞∑
n=2

1√
n3 − n2

also converges.

48.
∞∑

n=1

n2 + 4n

3n4 + 9

solution This series is similar to a p-series; because

n2 + 4n

3n4 + 9
≈ n2

√
3n4

= 1

3n2

for large n, we will apply the Limit Comparison Test comparing with the p-series with p = 2. Now,

L = lim
n→∞

n2+4n
3n4+9

1
n2

= lim
n→∞

n4 + 4n3

3n4 + 9
= 1

3
.

The p-series with p = 2 converges and L exists; therefore, the series
∞∑

n=1

n2 + 4n

3n4 + 9
also converges.

49.
∞∑

n=1

n−0.8

solution

∞∑
n=1

n−0.8 =
∞∑

n=1

1

n0.8

so that this is a divergent p-series.



March 31, 2011

S E C T I O N 10.5 The Ratio and Root Tests 1295

50.
∞∑

n=1

(0.8)−nn−0.8

solution
∞∑

n=1

(0.8)−nn−0.8 =
∞∑

n=1

(0.8−1)nn−0.8 =
∞∑

n=1

1.25n

n0.8

With an = 1.25n

n0.8 we have ∣∣∣∣an+1

an

∣∣∣∣ = 1.25n+1

(n + 1)0.8
· n0.8

1.25n
= 1.25

(
n

n + 1

)0.8

so that

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1.25 > 1

Thus the original series diverges, by the Ratio Test.

51.
∞∑

n=1

4−2n+1

solution Observe
∞∑

n=1

4−2n+1 =
∞∑

n=1

4 · (4−2)n =
∞∑

n=1

4

(
1

16

)n

is a geometric series with r = 1
16 ; therefore, this series converges.

52.
∞∑

n=1

(−1)n−1
√

n

solution This is an alternating series with an = 1√
n

. Because an forms a decreasing sequence which converges to

zero, the series
∞∑

n=1

(−1)n−1
√

n
converges by the Leibniz Test.

53.
∞∑

n=1

sin
1

n2

solution Here, we will apply the Limit Comparison Test, comparing with the p-series with p = 2. Now,

L = lim
n→∞

sin 1
n2

1
n2

= lim
u→0

sin u

u
= 1,

where u = 1
n2 . The p-series with p = 2 converges and L exists; therefore, the series

∞∑
n=1

sin
1

n2
also converges.

54.
∞∑

n=1

(−1)n cos
1

n

solution Because

lim
n→∞ cos

1

n
= cos 0 = 1 	= 0,

the general term in the series
∞∑

n=1

(−1)n cos
1

n
does not tend toward zero; therefore, the series diverges by the Divergence

Test.

55.
∞∑

n=1

(−2)n√
n

solution Because

lim
n→∞

2n

√
n

= lim
x→∞

2x

√
x

= lim
x→∞

2x ln 2
1

2
√

x

= lim
x→∞ 2x+1√

x ln 2 = ∞ 	= 0,

the general term in the series
∞∑

n=1

(−2)n√
n

does not tend toward zero; therefore, the series diverges by the Divergence Test.
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56.
∞∑

n=1

(
n

n + 12

)n

solution Because the general term has the form of a function of n raised to the nth power, we might be tempted to
use the Root Test; however, the Root Test is inconclusive for this series. Instead, note

lim
n→∞ an = lim

n→∞

(
1 + 12

n

)−n

= lim
n→∞

[(
1 + 12

n

)n/12
]−12

= e−12 	= 0.

Therefore, the series diverges by the Divergence Test.

Further Insights and Challenges

57. Proof of the Root Test Let S =
∞∑

n=0

an be a positive series, and assume that L = lim
n→∞

n
√

an exists.

(a) Show that S converges if L < 1. Hint: Choose R with L < R < 1 and show that an ≤ Rn for n sufficiently large.
Then compare with the geometric series

∑
Rn.

(b) Show that S diverges if L > 1.

solution Suppose lim
n→∞

n
√

an = L exists.

(a) If L < 1, let ε = 1 − L

2
. By the definition of a limit, there is a positive integer N such that

−ε ≤ n
√

an − L ≤ ε

for n ≥ N . From this, we conclude that

0 ≤ n
√

an ≤ L + ε

for n ≥ N . Now, let R = L + ε. Then

R = L + 1 − L

2
= L + 1

2
<

1 + 1

2
= 1,

and

0 ≤ n
√

an ≤ R or 0 ≤ an ≤ Rn

for n ≥ N . Because 0 ≤ R < 1, the series
∞∑

n=N

Rn is a convergent geometric series, so the series
∞∑

n=N

an converges by

the Comparison Test. Therefore, the series
∞∑

n=0

an also converges.

(b) If L > 1, let ε = L − 1

2
. By the definition of a limit, there is a positive integer N such that

−ε ≤ n
√

an − L ≤ ε

for n ≥ N . From this, we conclude that

L − ε ≤ n
√

an

for n ≥ N . Now, let R = L − ε. Then

R = L − L − 1

2
= L + 1

2
>

1 + 1

2
= 1,

and

R ≤ n
√

an or Rn ≤ an

for n ≥ N . Because R > 1, the series
∞∑

n=N

Rn is a divergent geometric series, so the series
∞∑

n=N

an diverges by the

Comparison Test. Therefore, the series
∞∑

n=0

an also diverges.
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58. Show that the Ratio Test does not apply, but verify convergence using the Comparison Test for the series

1

2
+ 1

32
+ 1

23
+ 1

34
+ 1

25 + · · ·

solution The general term of the series is:

an =

⎧⎪⎪⎨
⎪⎪⎩

1

2n
n odd

1

3n
n even

First use the Ratio Test. If n is even,

an+1

an
=

1
2n+1

1
3n

= 3n

2n+1
= 1

2
·
(

3

2

)n

whereas, if n is odd,

an+1

an
=

1
3n+1

1
2n

= 2n

3n+1
= 1

3
·
(

2

3

)n

Since lim
n→∞

1

3
·
(

2

3

)n

= 0 and lim
n→∞

1

2
·
(

3

2

)n

= ∞, the sequence
an+1

an
does not converge, and the Ratio Test is incon-

clusive.

However, we have 0 ≤ an ≤ 1

2n
for all n, so the series converges by comparison with the convergent geometric series

∞∑
n=1

1

2n

59. Let S =
∞∑

n=1

cnn!
nn

, where c is a constant.

(a) Prove that S converges absolutely if |c| < e and diverges if |c| > e.

(b) It is known that lim
n→∞

enn!
nn+1/2

= √
2π . Verify this numerically.

(c) Use the Limit Comparison Test to prove that S diverges for c = e.

solution

(a) With an = cnn!
nn ,

∣∣∣∣an+1

an

∣∣∣∣ = |c|n+1(n + 1)!
(n + 1)n+1

· nn

|c|nn! = |c|
(

n

n + 1

)n

= |c|
(

1 + 1

n

)−n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |c|e−1.

Thus, by the Ratio Test, the series
∞∑

n=1

cnn!
nn

converges when |c|e−1 < 1, or when |c| < e. The series diverges when

|c| > e.

(b) The table below lists the value of enn!
nn+1/2 for several increasing values of n. Since

√
2π = 2.506628275, the numerical

evidence verifies that

lim
n→∞

enn!
nn+1/2

= √
2π.

n 100 1000 10000 100000

enn!
nn+1/2 2.508717995 2.506837169 2.506649163 2.506630363
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(c) With c = e, the series S becomes
∞∑

n=1

enn!
nn

. Using the result from part (b),

L = lim
n→∞

enn!
nn√
n

= lim
n→∞

enn!
nn+1/2

= √
2π.

Because the series
∞∑

n=1

√
n diverges by the Divergence Test and L > 0, we conclude that

∞∑
n=1

enn!
nn

diverges by the Limit

Comparison Test.

10.6 Power Series

Preliminary Questions
1. Suppose that

∑
anxn converges for x = 5. Must it also converge for x = 4? What about x = −3?

solution The power series
∑

anxn is centered at x = 0. Because the series converges for x = 5, the radius of
convergence must be at least 5 and the series converges absolutely at least for the interval |x| < 5. Both x = 4 and
x = −3 are inside this interval, so the series converges for x = 4 and for x = −3.

2. Suppose that
∑

an(x − 6)n converges for x = 10. At which of the points (a)–(d) must it also converge?

(a) x = 8 (b) x = 11 (c) x = 3 (d) x = 0

solution The given power series is centered at x = 6. Because the series converges for x = 10, the radius of
convergence must be at least |10 − 6| = 4 and the series converges absolutely at least for the interval |x − 6| < 4, or
2 < x < 10.

(a) x = 8 is inside the interval 2 < x < 10, so the series converges for x = 8.

(b) x = 11 is not inside the interval 2 < x < 10, so the series may or may not converge for x = 11.

(c) x = 3 is inside the interval 2 < x < 10, so the series converges for x = 2.

(d) x = 0 is not inside the interval 2 < x < 10, so the series may or may not converge for x = 0.

3. What is the radius of convergence of F(3x) if F(x) is a power series with radius of convergence R = 12?

solution If the power series F(x) has radius of convergence R = 12, then the power series F(3x) has radius of

convergence R = 12
3 = 4.

4. The power series F(x) =
∞∑

n=1

nxn has radius of convergence R = 1. What is the power series expansion of F ′(x)

and what is its radius of convergence?

solution We obtain the power series expansion for F ′(x) by differentiating the power series expansion for F(x)

term-by-term. Thus,

F ′(x) =
∞∑

n=1

n2xn−1.

The radius of convergence for this series is R = 1, the same as the radius of convergence for the series expansion for
F(x).

Exercises

1. Use the Ratio Test to determine the radius of convergence R of
∞∑

n=0

xn

2n
. Does it converge at the endpoints x = ±R?

solution With an = xn

2n ,

∣∣∣∣an+1

an

∣∣∣∣ = |x|n+1

2n+1
· 2n

|x|n = |x|
2

and ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |x|
2

.

By the Ratio Test, the series converges when ρ = |x|
2 < 1, or |x| < 2, and diverges when ρ = |x|

2 > 1, or |x| > 2.

The radius of convergence is therefore R = 2. For x = −2, the left endpoint, the series becomes
∑∞

n=0(−1)n, which is

divergent. For x = 2, the right endpoint, the series becomes
∑∞

n=0 1, which is also divergent. Thus the series diverges at
both endpoints.
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2. Use the Ratio Test to show that
∞∑

n=1

xn

√
n2n

has radius of convergence R = 2. Then determine whether it converges

at the endpoints R = ±2.

solution With an = xn√
n2n ,

∣∣∣∣an+1

an

∣∣∣∣ = |x|n+1
√

n + 1 · 2n+1
·
√

n · 2n

|x|n = |x|
2

·
√

n

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |x|
2

· 1 = |x|
2

.

By the Ratio Test, the series converges when ρ = |x|
2 < 1, or |x| < 2, and diverges when ρ = |x|

2 > 1, or |x| > 2. The
radius of convergence is therefore R = 2.

For the endpoint x = 2, the series becomes

∞∑
n=1

2n

√
n · 2n

=
∞∑

n=1

1√
n

,

which is a divergent p-series. For the endpoint x = −2, the series becomes

∞∑
n=1

(−2)n√
n · 2n

=
∞∑

n=1

(−1)n√
n

.

This alternating series converges by the Leibniz Test, but its associated positive series is a divergent p-series. Thus, the
series for x = −2 is conditionally convergent.

3. Show that the power series (a)–(c) have the same radius of convergence. Then show that (a) diverges at both endpoints,
(b) converges at one endpoint but diverges at the other, and (c) converges at both endpoints.

(a)
∞∑

n=1

xn

3n
(b)

∞∑
n=1

xn

n3n
(c)

∞∑
n=1

xn

n23n

solution

(a) With an = xn

3n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
n+1

3n+1
· 3n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣x
3

∣∣∣ =
∣∣∣x
3

∣∣∣
Then ρ < 1 if |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes

∞∑
n=1

3n

3n
=

∞∑
n=1

1,

which diverges by the Divergence Test. For the endpoint x = −3, the series becomes

∞∑
n=1

(−3)n

3n
=

∞∑
n=1

(−1)n,

which also diverges by the Divergence Test.

(b) With an = xn

n3n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

(n + 1)3n+1
· n3n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x3
(

n

n + 1

)∣∣∣∣ =
∣∣∣x
3

∣∣∣ .
Then ρ < 1 when |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes

∞∑
n=1

3n

n3n
=

∞∑
n=1

1

n
,

which is the divergent harmonic series. For the endpoint x = −3, the series becomes

∞∑
n=1

(−3)n

n3n
=

∞∑
n=1

(−1)n

n
,

which converges by the Leibniz Test.
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(c) With an = xn

n23n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

(n + 1)23n+1
· n23n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x3
(

n

n + 1

)2
∣∣∣∣∣ =

∣∣∣x
3

∣∣∣
Then ρ < 1 when |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes

∞∑
n=1

3n

n23n
=

∞∑
n=1

1

n2
,

which is a convergent p-series. For the endpoint x = −3, the series becomes

∞∑
n=1

(−3)n

n23n
=

∞∑
n=1

(−1)n

n2
,

which converges by the Leibniz Test.

4. Repeat Exercise 3 for the following series:

(a)
∞∑

n=1

(x − 5)n

9n
(b)

∞∑
n=1

(x − 5)n

n9n
(c)

∞∑
n=1

(x − 5)n

n29n

solution

(a) With an = (x−5)n

9n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (x − 5)n+1

9n+1
· 9n

(x − 5)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x − 5

9

∣∣∣∣ =
∣∣∣∣x − 5

9

∣∣∣∣
Then ρ < 1 when |x − 5| < 9, so that the radius of convergence is R = 9. Because the series is centered at x = 5, the
series converges absolutely on the interval |x − 5| < 9, or −4 < x < 14. For the endpoint x = 14, the series becomes

∞∑
n=1

(14 − 5)n

9n
=

∞∑
n=1

1,

which diverges by the Divergence Test. For the endpoint x = −4, the series becomes

∞∑
n=1

(−4 − 5)n

9n
=

∞∑
n=1

(−1)n,

which also diverges by the Divergence Test.

(b) With an = (x−5)n

n9n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (x − 5)n+1

(n + 1)9n+1
· n9n

(x − 5)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x − 5

9

n

n + 1

∣∣∣∣ =
∣∣∣∣x − 5

9

∣∣∣∣ .
Then ρ < 1 when |x − 5| < 9, so that the radius of convergence is R = 9. Because the series is centered at x = 5, the
series converges absolutely on the interval |x − 5| < 9, or −4 < x < 14. For the endpoint x = 14, the series becomes

∞∑
n=1

(14 − 5)n

n9n
=

∞∑
n=1

1

n
,

which is the divergent harmonic series. For the endpoint x = −4, the series becomes

∞∑
n=1

(−4 − 5)n

n9n
=

∞∑
n=1

(−1)n

n
,

which converges by the Leibniz Test.

(c) With an = (x−5)n

n29n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (x − 5)n+1

(n + 1)29n+1
· n29n

(x − 5)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x − 5

9

(
n

n + 1

)2
∣∣∣∣∣ =

∣∣∣∣x − 5

9

∣∣∣∣ .
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Then ρ < 1 when |x − 5| < 9, so that the radius of convergence is R = 9. Because the series is centered at x = 5, the
series converges absolutely on the interval |x − 5| < 9, or −4 < x < 14. For the endpoint x = 14, the series becomes

∞∑
n=1

(14 − 5)n

n29n
=

∞∑
n=1

1

n2
,

which is a convergent p-series. For the endpoint x = −4, the series becomes

∞∑
n=1

(−4 − 5)n

n29n
=

∞∑
n=1

(−1)n

n2
,

which converges by the Leibniz Test.

5. Show that
∞∑

n=0

nnxn diverges for all x 	= 0.

solution With an = nnxn, and assuming x 	= 0,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)n+1xn+1

nnxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x
(

1 + 1

n

)n

(n + 1)

∣∣∣∣ = ∞

ρ < 1 only if x = 0, so that the radius of convergence is therefore R = 0. In other words, the power series converges
only for x = 0.

6. For which values of x does
∞∑

n=0

n!xn converge?

solution With an = n!xn, and assuming x 	= 0,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)!xn+1

n!xn

∣∣∣∣∣ = lim
n→∞ |(n + 1)x| = ∞

ρ < 1 only if x = 0, so that the radius of convergence is R = 0. In other words, the power series converges only for
x = 0.

7. Use the Ratio Test to show that
∞∑

n=0

x2n

3n
has radius of convergence R = √

3.

solution With an = x2n

3n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
2(n+1)

3n+1
· 3n

x2n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
2

3

∣∣∣∣∣ =
∣∣∣∣∣x

2

3

∣∣∣∣∣
Then ρ < 1 when |x2| < 3, or x = √

3, so the radius of convergence is R = √
3.

8. Show that
∞∑

n=0

x3n+1

64n
has radius of convergence R = 4.

solution With an = x3n+1

64n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
3(n+1)+1

64n+1
· 64n

x3n+1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
3

64

∣∣∣∣∣ =
∣∣∣∣∣x

3

64

∣∣∣∣∣
Then ρ < 1 when |x|3 < 64 or |x| = 4, so the radius of convergence is R = 4.

In Exercises 9–34, find the interval of convergence.

9.
∞∑

n=0

nxn

solution With an = nxn,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)xn+1

nxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x n + 1

n

∣∣∣∣ = |x|
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Then ρ < 1 when |x| < 1, so that the radius of convergence is R = 1, and the series converges absolutely on the interval

|x| < 1, or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=0

n, which diverges by the Divergence Test.

For the endpoint x = −1, the series becomes
∞∑

n=1

(−1)nn, which also diverges by the Divergence Test. Thus, the series

∞∑
n=0

nxn converges for −1 < x < 1 and diverges elsewhere.

10.
∞∑

n=1

2n

n
xn

solution With an = 2n

n xn,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣2n+1xn+1

n + 1
· n

2nxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣2x
n

n + 1

∣∣∣∣ = |2x|

ρ < 1 when |x| < 1
2 , so the radius of convergence is R = 1

2 , and the series converges absolutely on the interval |x| < 1
2 ,

or − 1
2 < x < 1

2 . For the endpoint x = 1
2 , the series becomes

∞∑
n=1

1

n
, which is the divergent harmonic series. For the

endpoint x = − 1
2 , the series becomes

∞∑
n=1

(−1)n

n
, which converges by the Leibniz Test. Thus, the series

∞∑
n=1

xn

n
xn

converges for − 1
2 ≤ x < 1

2 and diverges elsewhere.

11.
∞∑

n=1

(−1)n
x2n+1

2nn

solution With an = (−1)n
x2n+1

2nn
,

ρ = lim
n→∞

∣∣∣∣∣ x2(n+1)+1

2n+1(n + 1)
· 2nn

x2n+1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
2

2
· n

n + 1

∣∣∣∣∣ =
∣∣∣∣∣x

2

2

∣∣∣∣∣
Then ρ < 1 when |x| <

√
2, so the radius of convergence is R = √

2, and the series converges absolutely on the interval

−√
2 < x <

√
2. For the endpoint x = −√

2, the series becomes
∞∑

n=1

(−1)n
−√

2

n
=

∞∑
n=1

(−1)n+1
√

2

n
, which converges

by the Leibniz test. For the endpoint x = √
2, the series becomes

∞∑
n=1

(−1)n

√
2

n
which also converges by the Leibniz test.

Thus the series
∞∑

n=1

(−1)n
x2n+1

2nn
converges for −√

2 ≤ x ≤ √
2 and diverges elsewhere.

12.
∞∑

n=0

(−1)n
n

4n
x2n

solution With an = (−1)n
n

4n
x2n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)x2(n+1)

4n+1
· 4n

nx2n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
2

4
· n + 1

n

∣∣∣∣∣ =
∣∣∣∣∣x

2

4

∣∣∣∣∣
Then ρ < 1 when |x2| < 4, or |x| < 2, so the radius of convergence is R = 2, and the series converges absolutely for

−2 < x < 2. At both endpoints x = ±2, the series becomes
∞∑

n=0

(−1)nn, which diverges by the Divergence Test. Thus,

the series
∞∑

n=0

(−1)n
n

4n
x2n converges for −2 < x < 2 and diverges elsewhere.
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13.
∞∑

n=4

xn

n5

solution With an = xn

n5 ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

(n + 1)5 · n5

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
(

n

n + 1

)5
∣∣∣∣∣ = |x|

Then ρ < 1 when |x| < 1, so the radius of convergence is R = 1, and the series converges absolutely on the interval

|x| < 1, or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=1

1

n5 , which is a convergent p-series. For the

endpoint x = −1, the series becomes
∞∑

n=1

(−1)n

n5 , which converges by the Leibniz Test. Thus, the series
∞∑

n=4

xn

n5 converges

for −1 ≤ x ≤ 1 and diverges elsewhere.

14.
∞∑

n=8

n7xn

solution With an = n7xn,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)7xn+1

n7xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
(

n + 1

n

)7
∣∣∣∣∣ = |x|

Then ρ < 1 when |x| < 1, so that the radius of convergence is R = 1, and the series converges absolutely on the intervale

−1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=8

n7, which diverges by the Divergence test; for the endpoints

x = −1, the series becomes
∞∑

n=8

(−1)nn7, which also diverges by the Divergence test. Thus the series
∞∑

n=8

n7xn converges

for −1 < x < 1 and diverges elsewhere.

15.
∞∑

n=0

xn

(n!)2

solution With an = xn

(n!)2 ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

((n + 1)!)2
· (n!)2

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
(

1

n + 1

)2
∣∣∣∣∣ = 0

ρ < 1 for all x, so the radius of convergence is R = ∞, and the series converges absolutely for all x.

16.
∞∑

n=0

8n

n! xn

solution With an = 8nxn

n! ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣8n+1xn+1

(n + 1)! · n!
8nxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣8x · 1

n + 1

∣∣∣∣ = 0

ρ < 1 for all x, so the radius of convergence is R = ∞, and the series converges absolutely for all x.

17.
∞∑

n=0

(2n)!
(n!)3

xn

solution With an = (2n)!xn

(n!)3 , and assuming x 	= 0,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (2(n + 1))!xn+1

((n + 1)!)3
· (n!)3

(2n)!xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x (2n + 2)(2n + 1)

(n + 1)3

∣∣∣∣
= lim

n→∞

∣∣∣∣∣x 4n2 + 6n + 2

n3 + 3n2 + 3n + 1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x 4n−1 + 6n−1 + 2n−3

1 + 3n−1 + 3n−2 + n−3

∣∣∣∣∣ = 0

Then ρ < 1 for all x, so the radius of convergence is R = ∞, and the series converges absolutely for all x.
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18.
∞∑

n=0

4n

(2n + 1)!x
2n−1

solution With an = 4nx2n−1

(2n+1)! ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣4n+1x2n+1

(2n + 3)! · (2n + 1)!
4nx2n−1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣ 4x2

(2n + 3)(2n + 2)

∣∣∣∣∣ = 0

Then ρ is always less than 1, and the series converges absolutely for all x.

19.
∞∑

n=0

(−1)nxn√
n2 + 1

solution With an = (−1)nxn√
n2+1

,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−1)n+1xn+1√
n2 + 2n + 2

·
√

n2 + 1

(−1)nxn

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣x
√

n2 + 1√
n2 + 2n + 2

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣x
√

n2 + 1

n2 + 2n + 2

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣x
√

1 + 1/n2

1 + 2/n + 2/n2

∣∣∣∣∣∣
= |x|

Then ρ < 1 when |x| < 1, so the radius of convergence is R = 1, and the series converges absolutely on the interval

−1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=1

(−1)n√
n2 + 1

, which converges by the Leibniz Test. For the

endpoint x = −1, the series becomes
∞∑

n=1

1√
n2 + 1

, which diverges by the Limit Comparison Test comparing with the

divergent harmonic series. Thus, the series
∞∑

n=0

(−1)nxn√
n2 + 1

converges for −1 < x ≤ 1 and diverges elsewhere.

20.
∞∑

n=0

xn

n4 + 2

solution With an = xn

n4+2
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

(n + 1)4 + 2
· n4 + 2

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x n4 + 2

n4 + 4n3 + 6n2 + 4n + 3

∣∣∣∣∣ = |x|

ρ < 1 when |x| < 1, so the radius of convergence is R = 1, and the series converges absolutely on the interval |x| < 1,

or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=1

1

n4 + 2
. Because 1

n4+2
< 1

n4 and the series
∞∑

n=0

1

n4
is a

convergent p-series, the endpoint series converges by the Comparison Test. For the endpoint x = −1, the series becomes
∞∑

n=1

(−1)n

n4 + 2
, which converges by the Leibniz Test. Thus, the series

∞∑
n=0

xn

n4 + 2
converges for −1 ≤ x ≤ 1 and diverges

elsewhere.

21.
∞∑

n=15

x2n+1

3n + 1

solution With an = x2n+1

3n + 1
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ x2n+3

3n + 4
· 3n + 1

x2n+1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x2 3n + 1

3n + 4

∣∣∣∣ = |x2|

Then ρ < 1 when |x2| < 1, so the radius of convergence is R = 1, and the series converges absolutely for −1 < x < 1.

For the endpoint x = 1, the series becomes
∞∑

n=15

1

3n + 1
, which diverges by the Limit Comparison Test comparing
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with the divergent harmonic series. For the endpoint x = −1, the series becomes
∞∑

n=15

−1

3n + 1
, which also diverges by

the Limit Comparison Test comparing with the divergent harmonic series. Thus, the series
∞∑

n=15

x2n+1

3n + 1
converges for

−1 < x < 1 and diverges elsewhere.

22.
∞∑

n=1

xn

n − 4 ln n

solution With an = xn

n−4 ln n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

(n + 1) − 4 ln(n + 1)
· n − 4 ln n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x n − 4 ln n

(n + 1) − 4 ln(n + 1)

∣∣∣∣
= lim

n→∞

∣∣∣∣x 1 − 4(ln n)/n

1 + n−1 − 4(ln(n + 1))/n

∣∣∣∣ = |x|

Then ρ < 1 when |x| < 1, so the radius of convergence is 1, and the series converges absolutely on the interval |x| < 1,

or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=1

1

n − 4 ln n
. Because 1

n−4 ln n
> 1

n and
∞∑

n=1

1

n
is the

divergent harmonic series, the endpoint series diverges by the Comparison Test. For the endpoint x = −1, the series

becomes
∞∑

n=1

(−1)n

n − 4 ln n
, which converges by the Leibniz Test. Thus, the series

∞∑
n=1

xn

n − 4 ln n
converges for −1 ≤ x < 1

and diverges elsewhere.

23.
∞∑

n=2

xn

ln n

solution With an = xn

ln n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

ln(n + 1)
· ln n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x ln(n + 1)

ln n

∣∣∣∣ = lim
n→∞

∣∣∣∣x 1/(n + 1)

1/n

∣∣∣∣ = lim
n→∞

∣∣∣∣x n

n + 1

∣∣∣∣ = |x|

using L’Hôpital’s rule. Then ρ < 1 when |x| < 1, so the radius of convergence is 1, and the series converges absolutely

on the interval |x| < 1, or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=2

1

ln n
. Because 1

ln n
> 1

n and

∞∑
n=2

1

n
is the divergent harmonic series, the endpoint series diverges by the Comparison Test. For the endpoint x = −1,

the series becomes
∞∑

n=2

(−1)n

ln n
, which converges by the Leibniz Test. Thus, the series

∞∑
n=2

xn

ln n
converges for −1 ≤ x < 1

and diverges elsewhere.

24.
∞∑

n=2

x3n+2

ln n

solution With an = x3n+2

ln n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ x3n+5

ln(n + 1)
· ln n

x3n+2

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x3 · ln(n + 1)

ln n

∣∣∣∣ = lim
n→∞

∣∣∣∣x3 · 1/(n + 1)

1/n

∣∣∣∣
= lim

n→∞

∣∣∣∣x3 · n

n + 1

∣∣∣∣ = |x3|

using L’Hôpital’s rule. Thus ρ < 1 when |x3| < 1, so the radius of convergence is 1, and the series converges absolutely

on the interval |x| < 1, or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=2

1

ln n
. Because 1

ln n
> 1

n and

∞∑
n=2

1

n
is the divergent harmonic series, the endpoint series diverges by the Comparison Test. For the endpoint x = −1,

the series becomes
∞∑

n=2

(−1)3n+2

ln n
=

∞∑
n=2

(−1)n

ln n
, which converges by the Leibniz Test. Thus, the series

∞∑
n=2

x3n+2

ln n

converges for −1 ≤ x < 1 and diverges elsewhere.
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25.
∞∑

n=1

n(x − 3)n

solution With an = n(x − 3)n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)(x − 3)n+1

n(x − 3)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣(x − 3) · n + 1

n

∣∣∣∣ = |x − 3|

Then ρ < 1 when |x − 3| < 1, so the radius of convergence is 1, and the series converges absolutely on the interval

|x − 3| < 1, or 2 < x < 4. For the endpoint x = 4, the series becomes
∞∑

n=1

n, which diverges by the Divergence Test.

For the endpoint x = 2, the series becomes
∞∑

n=1

(−1)nn, which also diverges by the Divergence Test. Thus, the series

∞∑
n=1

n(x − 3)n converges for 2 < x < 4 and diverges elsewhere.

26.
∞∑

n=1

(−5)n(x − 3)n

n2

solution With an = (−5)n(x−3)n

n2 ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−5)n+1(x − 3)n+1

(n + 1)2
· n2

(−5)n(x − 3)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣5(x − 3) · n2

n2 + 2n + 1

∣∣∣∣∣
= lim

n→∞

∣∣∣∣5(x − 3) · 1

1 + 2n−1 + n−2

∣∣∣∣ = |5(x − 3)|

Then ρ < 1 when |5(x − 3)| < 1, or |x − 3| < 1
5 . Thus the radius of convergence is 5, and the series converges absolutely

on the interval |x − 3| < 1
5 , or 14

5 < x < 16
5 . For the endpoint x = 16

5 , the series becomes
∞∑

n=1

(−1)n

n2
, which converges

by the Leibniz Test. For the endpoint x = 14
5 , the series becomes

∞∑
n=1

1

n2
, which is a convergent p-series. Thus, the series

∞∑
n=1

(−5)n(x − 3)n

n2
converges for 14

5 ≤ x ≤ 16
5 and diverges elsewhere.

27.
∞∑

n=1

(−1)nn5(x − 7)n

solution With an = (−1)nn5(x − 7)n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−1)n+1(n + 1)5(x − 7)n+1

(−1)nn5(x − 7)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣(x − 7) · (n + 1)5

n5

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣(x − 7) · n5 + . . .

n5

∣∣∣∣∣ = |x − 7|

Then ρ < 1 when |x − 7| < 1, so the radius of convergence is 1, and the series converges absolutely on the interval

|x − 7| < 1, or 6 < x < 8. For the endpoint x = 6, the series becomes
∞∑

n=1

(−1)2nn5 =
∞∑

n=1

n5, which diverges by the

Divergence Test. For the endpoint x = 8, the series becomes
∞∑

n=1

(−1)nn5, which also diverges by the Divergence Test.

Thus, the series
∞∑

n=1

(−1)nn5(x − 7)n converges for 6 < x < 8 and diverges elsewhere.
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28.
∞∑

n=0

27n(x − 1)3n+2

solution With an = 27n(x − 1)3n+2,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣27n+1(x − 1)3n+5

27n(x − 1)3n+2

∣∣∣∣∣ = lim
n→∞

∣∣∣27(x − 1)3
∣∣∣ = |27(x − 1)3|

Then ρ < 1 when |27(x − 1)3| < 1, or when |(x − 1)3| < 1
27 , so when |x − 1| < 1

3 . Thus the radius of convergence is 1
3 ,

and the series converges absolutely when 2
3 < x < 4

3 . For the endpoint x = 2
3 , the series becomes

∞∑
n=0

27n

(−1

3

)3n+2
=

1

9

∞∑
n=0

(−1)n which diverges by the Divergence test. For the endpoint x = 4
3 , the series becomes

∞∑
n=0

27n

(
1

3

)3n+2
=

1

9

∞∑
n=0

1, which also diverges by the Divergence Test. Thus the series
∞∑

n=0

27n(x − 1)3n+2 converges for 2
3 < x < 4

3 and

diverges elsewhere.

29.
∞∑

n=1

2n

3n
(x + 3)n

solution With an = 2n(x+3)n

3n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣2n+1(x + 3)n+1

3(n + 1)
· 3n

2n(x + 3)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣2(x + 3) · 3n

3n + 3

∣∣∣∣
= lim

n→∞

∣∣∣∣2(x + 3) · 1

1 + 1/n

∣∣∣∣ = |2(x + 3)|

Then ρ < 1 when |2(x + 3)| < 1, so when |x + 3| < 1
2 . Thus the radius of convergence is 1

2 , and the series converges

absolutely on the interval |x + 3| < 1
2 , or − 7

2 < x < − 5
2 . For the endpoint x = − 5

2 , the series becomes
∞∑

n=1

1

3n
,

which diverges because it is a multiple of the divergent harmonic series. For the endpoint x = − 7
2 , the series becomes

∞∑
n=1

(−1)n

3n
, which converges by the Leibniz Test. Thus, the series

∞∑
n=1

2n

3n
(x + 3)n converges for − 7

2 ≤ x < − 5
2 and

diverges elsewhere.

30.
∞∑

n=0

(x − 4)n

n!

solution With an = (x−4)n

n! ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (x − 4)n+1

(n + 1)! · n!
(x − 4)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣(x − 4)
1

n

∣∣∣∣ = 0

Thus ρ < 1 for all x, so the radius of convergence is infinite, and
∞∑

n=0

(x − 4)n

n! converges for all x.

31.
∞∑

n=0

(−5)n

n! (x + 10)n

solution With an = (−5)n

n! (x + 10)n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−5)n+1(x + 10)n+1

(n + 1)! · n!
(−5)n(x + 10)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣5(x + 10)
1

n

∣∣∣∣ = 0

Thus ρ < 1 for all x, so the radius of convergence is infinite, and
∞∑

n=0

(−5)n

n! (x + 10)n converges for all x.
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32.
∞∑

n=10

n! (x + 5)n

solution With an = n!(x + 5)n„ and assuming x + 5 	= 0,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)!(x + 5)n+1

n!(x + 5)n

∣∣∣∣∣ = lim
n→∞ |(n + 1)(x + 5)| = ∞

Thus ρ < 1 only if x + 5 = 0, so the radius of convergence is zero, and
∞∑

n=10

n! (x + 5)n converges only for x = −5.

33.
∞∑

n=12

en(x − 2)n

solution With an = en(x − 2)n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ e
n+1(x − 2)n+1

en(x − 2)n

∣∣∣∣∣ = lim
n→∞ |e(x − 2)| = |e(x − 2)|

Thus ρ < 1 when |e(x − 2)| < 1, so when |x − 2| < e−1. Thus the radius of convergence is e−1, and the series converges
absolutely on the interval |x − 2| < e−1, or 2 − e−1 < x < 2 + e−1. For the endpoint x = 2 + e−1, the series becomes
∞∑

n=1

1, which diverges by the Divergence Test. For the endpoint x = 2 − e−1, the series becomes
∞∑

n=1

(−1)n, which also

diverges by the Divergence Test. Thus, the series
∞∑

n=12

en(x − 2)n converges for 2 − e−1 < x < 2 + e−1 and diverges

elsewhere.

34.
∞∑

n=2

(x + 4)n

(n ln n)2

solution With an = (x+4)n

(n ln n)2 ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (x + 4)n+1

((n + 1) ln(n + 1))2
· (n ln n)2

(x + 4)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣(x + 4) ·
(

n

n + 1
· ln n

ln(n + 1)

)2
∣∣∣∣∣ = |x + 4|

applying L’Hôpital’s rule to evaluate the second term in the product. Thus ρ < 1 when |x + 4| < 1, so the radius of
convergence is 1, and the series converges absolutely on the interval |x + 4| < 1, or −5 < x < −3. For the endpoint

x = −3, the series becomes
∞∑

n=1

1

(n ln n)2
, which converges by the Limit Comparison Test comparing with the convergent

p-series
∞∑

n=2

1

n2
. For the endpoint x = −5, the series becomes

∞∑
n=1

(−1)n

(n ln n)2
, which converges by the Leibniz Test. Thus,

the series
∞∑

n=2

(x + 4)n

(n ln n)2
converges for −5 ≤ x ≤ −3 and diverges elsewhere.

In Exercises 35–40, use Eq. (2) to expand the function in a power series with center c = 0 and determine the interval of
convergence.

35. f (x) = 1

1 − 3x

solution Substituting 3x for x in Eq. (2), we obtain

1

1 − 3x
=

∞∑
n=0

(3x)n =
∞∑

n=0

3nxn.

This series is valid for |3x| < 1, or |x| < 1
3 .
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36. f (x) = 1

1 + 3x

solution Substituting −3x for x in Eq. (2), we obtain

1

1 + 3x
=

∞∑
n=0

(−3x)n =
∞∑

n=0

(−3)nxn.

This series is valid for | − 3x| < 1, or |x| < 1
3 .

37. f (x) = 1

3 − x

solution First write

1

3 − x
= 1

3
· 1

1 − x
3

.

Substituting x
3 for x in Eq. (2), we obtain

1

1 − x
3

=
∞∑

n=0

(x

3

)n =
∞∑

n=0

xn

3n
;

Thus,

1

3 − x
= 1

3

∞∑
n=0

xn

3n
=

∞∑
n=0

xn

3n+1
.

This series is valid for |x/3| < 1, or |x| < 3.

38. f (x) = 1

4 + 3x

solution First write

1

4 + 3x
= 1

4
· 1

1 + 3x
4

.

Substituting − 3x
4 for x in Eq. (2), we obtain

1

1 + 3x
4

=
∞∑

n=0

(
−3x

4

)n

=
∞∑

n=0

(−1)n
3nxn

4n
;

Thus,

1

4 + 3x
= 1

4

∞∑
n=0

(−1)n
3nxn

4n
=

∞∑
n=0

(−1)n
3nxn

4n+1
.

This series is valid for | − 3x/4| < 1, or |x| < 4
3 .

39. f (x) = 1

1 + x2

solution Substituting −x2 for x in Eq. (2), we obtain

1

1 + x2
=

∞∑
n=0

(−x2)n =
∞∑

n=0

(−1)nx2n

This series is valid for |x| < 1.

40. f (x) = 1

16 + 2x3

solution First rewrite

1

16 + 2x3
= 1

16
· 1

1 + x3

8

Now substitute − x3

8 for x in Eq. (2) to obtain

1

1 + x3

8

=
∞∑

n=0

(
−x3

8

)n

=
∞∑

n=0

(−1)n
x3n

8
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Thus,

1

16 + 2x3
= 1

16
· 1

1 + x3

8

= 1

16
·

∞∑
n=0

(−1)n
x3n

8

This series is valid for |x3| < 8, or |x| < 2.

41. Use the equalities

1

1 − x
= 1

−3 − (x − 4)
= − 1

3

1 + (
x−4

3

)
to show that for |x − 4| < 3,

1

1 − x
=

∞∑
n=0

(−1)n+1 (x − 4)n

3n+1

solution Substituting − x−4
3 for x in Eq. (2), we obtain

1

1 +
(

x−4
3

) =
∞∑

n=0

(
−x − 4

3

)n

=
∞∑

n=0

(−1)n
(x − 4)n

3n
.

Thus,

1

1 − x
= −1

3

∞∑
n=0

(−1)n
(x − 4)n

3n
=

∞∑
n=0

(−1)n+1 (x − 4)n

3n+1
.

This series is valid for | − x−4
3 | < 1, or |x − 4| < 3.

42. Use the method of Exercise 41 to expand 1/(1 − x) in power series with centers c = 2 and c = −2. Determine the
interval of convergence.

solution For c = 2, write

1

1 − x
= 1

−1 − (x − 2)
= − 1

1 + (x − 2)
.

Substituting −(x − 2) for x in Eq. (2), we obtain

1

1 + (x − 2)
=

∞∑
n=0

(−(x − 2))n =
∞∑

n=0

(−1)n(x − 2)n.

Thus,

1

1 − x
= −

∞∑
n=0

(−1)n(x − 2)n =
∞∑

n=0

(−1)n+1(x − 2)n.

This series is valid for | − (x − 2)| < 1, or |x − 2| < 1.
For c = −2, write

1

1 − x
= 1

3 − (x + 2)
= 1

3
· 1

1 − x+2
3

.

Substituting x+2
3 for x in Eq. (2), we obtain

1

1 − x+2
3

=
∞∑

n=0

(
x + 2

3

)n

=
∞∑

n=0

(x + 2)n

3n
.

Thus,

1

1 − x
= 1

3

∞∑
n=0

(x + 2)n

3n
=

∞∑
n=0

(x + 2)n

3n+1
.

This series is valid for | x+2
3 | < 1, or |x + 2| < 3.
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43. Use the method of Exercise 41 to expand 1/(4 − x) in a power series with center c = 5. Determine the interval of
convergence.

solution First write

1

4 − x
= 1

−1 − (x − 5)
= − 1

1 + (x − 5)
.

Substituting −(x − 5) for x in Eq. (2), we obtain

1

1 + (x − 5)
=

∞∑
n=0

(−(x − 5))n =
∞∑

n=0

(−1)n(x − 5)n.

Thus,

1

4 − x
= −

∞∑
n=0

(−1)n(x − 5)n =
∞∑

n=0

(−1)n+1(x − 5)n.

This series is valid for | − (x − 5)| < 1, or |x − 5| < 1.

44. Find a power series that converges only for x in [2, 6).

solution The power series must be centered at c = 6 + 2

2
= 4, with radius of convergence R = 2. Consider the

following series:

∞∑
n=1

(x − 4)n

n2n
.

With an = 1
n2n ,

r = lim
n→∞

n2n

(n + 1)2n+1
= 1

2
lim

n→∞
n

n + 1
= 1

2
.

The radius of convergence is therefore R = r−1 = 2, and the series converges absolutely for |x − 4| < 2, or 2 < x < 6.

For the endpoint x = 6, the series becomes
∞∑

n=1

(6 − 4)n

n·2n =
∞∑

n=1

1

n
, which is the divergent harmonic series. For the

endpoint x = 2, the series becomes
∞∑

n=1

(2 − 4)n

n·2n =
∞∑

n=1

(−1)n

n
, which converges by the Leibniz Test. Therefore, the

series converges for 2 ≤ x < 6, as desired.

45. Apply integration to the expansion

1

1 + x
=

∞∑
n=0

(−1)nxn = 1 − x + x2 − x3 + · · ·

to prove that for −1 < x < 1,

ln(1 + x) =
∞∑

n=1

(−1)n−1xn

n
= x − x2

2
+ x3

3
− x4

4
+ · · ·

solution To obtain the first expansion, substitute −x for x in Eq. (2):

1

1 + x
=

∞∑
n=0

(−x)n =
∞∑

n=0

(−1)nxn.

This expansion is valid for | − x| < 1, or −1 < x < 1.
Upon integrating both sides of the above equation, we find

ln(1 + x) =
∫

dx

1 + x
=
∫ ⎛

⎝ ∞∑
n=0

(−1)nxn

⎞
⎠ dx.
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Integrating the series term-by-term then yields

ln(1 + x) = C +
∞∑

n=0

(−1)n
xn+1

n + 1
.

To determine the constant C, set x = 0. Then 0 = ln(1 + 0) = C. Finally,

ln(1 + x) =
∞∑

n=0

(−1)n
xn+1

n + 1
=

∞∑
n=1

(−1)n−1 xn

n
.

46. Use the result of Exercise 45 to prove that

ln
3

2
= 1

2
− 1

2 · 22
+ 1

3 · 23
− 1

4 · 24
+ · · ·

Use your knowledge of alternating series to find an N such that the partial sum SN approximates ln 3
2 to within an error

of at most 10−3. Confirm using a calculator to compute both SN and ln 3
2 .

solution In the previous exercise we found that

ln(1 + x) =
∞∑

n=0

(−1)n
xn+1

n + 1
.

Setting x = 1
2 yields:

ln
3

2
=

∞∑
n=1

(−1)n−1

(
1
2

)n

n
=

∞∑
n=1

(−1)n−1

n2n
= 1

2
− 1

2 · 22
+ 1

3 · 23
− 1

4 · 24
+ · · ·

Note that the series for ln 3
2 is an alternating series with an = 1

n2n . The error in approximating ln 3
2 by the partial sum

SN is therefore bounded by ∣∣∣∣ln 3

2
− SN

∣∣∣∣ < aN+1 = 1

(N + 1)2N+1
.

To obtain an error of at most 10−3, we must find an N such that

1

(N + 1)2N+1
< 10−3 or (N + 1)2N+1 > 1000.

For N = 6, (N + 1)2N+1 = 7 · 27 = 896 < 1000, but for N = 7, (N + 1)2N+1 = 8 · 28 = 2048 > 1000; hence, the
smallest value for N is N = 7. The corresponding approximation is

S7 = 1

2
− 1

2 · 22
+ 1

3 · 23
− 1

4 · 24
+ 1

5 · 25 − 1

6 · 26
+ 1

7 · 27 = 0.405803571.

Now, ln 3
2 = 0.405465108, so

∣∣∣∣ln 3

2
− S7

∣∣∣∣ = 3.385 × 10−4 < 10−3.

47. Let F(x) = (x + 1) ln(1 + x) − x.

(a) Apply integration to the result of Exercise 45 to prove that for −1 < x < 1,

F(x) =
∞∑

n=1

(−1)n+1 xn+1

n(n + 1)

(b) Evaluate at x = 1
2 to prove

3

2
ln

3

2
− 1

2
= 1

1 · 2 · 22
− 1

2 · 3 · 23
+ 1

3 · 4 · 24
− 1

4 · 5 · 25 + · · ·

(c) Use a calculator to verify that the partial sum S4 approximates the left-hand side with an error no greater than the
term a5 of the series.
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solution
(a) Note that ∫

ln(x + 1) dx = (x + 1) ln(x + 1) − x + C

Then integrating both sides of the result of Exercise 45 gives

(x + 1) ln(x + 1) − x =
∫

ln(x + 1) dx =
∫ ∞∑

n=1

(−1)n−1xn

n
dx

For −1 < x < 1, which is the interval of convergence of the series in Exercise 45, therefore, we can integrate term by
term to get

(x + 1) ln(x + 1) − x =
∞∑

n=1

(−1)n−1

n

∫
xn dx =

∞∑
n=1

(−1)n−1

n
· xn+1

n + 1
+ C =

∞∑
n=1

(−1)n+1 xn+1

n(n + 1)
+ C

(noting that (−1)n−1 = (−1)n+1). To determine C, evaluate both sides at x = 0 to get

0 = ln 1 − 0 = 0 + C

so that C = 0 and we get finally

(x + 1) ln(x + 1) − x =
∞∑

n=1

(−1)n+1 xn+1

n(n + 1)

(b) Evaluating the result of part(a) at x = 1
2 gives

3

2
ln

3

2
− 1

2
=

∞∑
n=1

(−1)n+1 1

n(n + 1)2n+1

= 1

1 · 2 · 22
− 1

2 · 3 · 23
+ 1

3 · 4 · 24
− 1

4 · 5 · 25 + . . .

(c)

S4 = 1

1 · 2 · 22
− 1

2 · 3 · 23
+ 1

3 · 4 · 24
− 1

4 · 5 · 25 = 0.1078125

a5 = 1

5 · 6 · 26
≈ 0.0005208

3

2
ln

3

2
− 1

2
≈ 0.10819766

and ∣∣∣∣S4 − 3

2
ln

3

2
− 1

2

∣∣∣∣ ≈ 0.0003852 < a5

48. Prove that for |x| < 1, ∫
dx

x4 + 1
= x − x5

5
+ x9

9
− · · ·

Use the first two terms to approximate
∫ 1/2

0 dx/(x4 + 1) numerically. Use the fact that you have an alternating series to
show that the error in this approximation is at most 0.00022.

solution Substitute −x4 for x in Eq. (2) to get

1

1 + x4
=

∞∑
n=0

(−x4)n =
∞∑

n=0

(−1)nx4n

This is valid for |x| < 1, so for x in that range we can integrate the right-hand side term by term to get

∫
1

1 + x4
dx =

∞∑
n=0

∫
(−1)nx4n dx =

∞∑
n=0

(−1)n
x4n+1

4n + 1
+ C

= x − x5

5
+ x9

9
− x13

13
+ · · · + C
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Using the first two terms, we have

∫ 1/2

0

1

1 + x4
dx ≈ 1

2
− 1

25 · 5
= 79

160
= 0.49375

Since this is an alternating series, the error in the approximation is bounded by the first unused term, so by

1

29 · 9
= 1

4608
≈ 0.000217 < 0.00022

49. Use the result of Example 7 to show that

F(x) = x2

1 · 2
− x4

3 · 4
+ x6

5 · 6
− x8

7 · 8
+ · · ·

is an antiderivative of f (x) = tan−1 x satisfying F(0) = 0. What is the radius of convergence of this power series?

solution For −1 < x < 1, which is the interval of convergence for the power series for arctangent, we can integrate
term-by-term, so integrate that power series to get

F(x) =
∫

tan−1 x dx =
∞∑

n=0

∫
(−1)nx2n+1

2n + 1
dx =

∞∑
n=0

(−1)n
x2n+2

(2n + 1)(2n + 2)

= x2

1 · 2
− x4

3 · 4
+ x6

5 · 6
− x8

7 · 8
+ · · · + C

If we assume F(0) = 0, then we have C = 0. The radius of convergence of this power series is the same as that of the
original power series, which is 1.

50. Verify that function F(x) = x tan−1 x − 1
2 log(x2 + 1) is an antiderivative of f (x) = tan−1 x satisfying F(0) = 0.

Then use the result of Exercise 49 with x = π
6 to show that

π

6
√

3
− 1

2
ln

4

3
= 1

1 · 2(3)
− 1

3 · 4(32)
+ 1

5 · 6(33)
− 1

7 · 8(34)
+ · · ·

Use a calculator to compare the value of the left-hand side with the partial sum S4 of the series on the right.

solution We have

F ′(x) = tan−1 x + x

1 + x2
− 1

2
· 1

x2 + 1
· 2x = tan−1 x + x

1 + x2
− x

1 + x2
= tan−1 x

so that F(x) is an antiderivative of tan−1 x, and clearly F(0) = 0. So applying Exercise 49 for this F , and setting x = 1√
3

,

gives

1√
3

tan−1 1√
3

− 1

2
ln

(
1

3
+ 1

)
= π

6
√

3
− 1

2
ln

4

3

= (1/
√

3)2

1 · 2
− (1/

√
3)4

3 · 4
+ (1/

√
3)6

5 · 6
− (1/

√
3)8

7 · 8
+ . . .

= 1

1 · 2(3)
− 1

3 · 4(32)
+ 1

5 · 6(33)
− 1

7 · 8(34)
+ . . .

Now, we have

S4 = 1

1 · 2(3)
− 1

3 · 4(32)
+ 1

5 · 6(33)
− 1

7 · 8(34)
= 3593

22680
≈ 0.1548215

π

6
√

3
− 1

2
ln

4

3
≈ 0.158459

so the two differ by less than 0.00004.
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51. Evaluate
∞∑

n=1

n

2n
. Hint: Use differentiation to show that

(1 − x)−2 =
∞∑

n=1

nxn−1 (for |x| < 1)

solution Differentiate both sides of Eq. (2) to obtain

1

(1 − x)2
=

∞∑
n=1

nxn−1.

Setting x = 1
2 then yields

∞∑
n=1

n

2n−1
= 1(

1 − 1
2

)2
= 4.

Divide this equation by 2 to obtain

∞∑
n=1

n

2n
= 2.

52. Use the power series for (1 + x2)−1 and differentiation to prove that for |x| < 1,

2x

(x2 + 1)2
=

∞∑
n=1

(−1)n−1(2n)x2n−1

solution From Exercise 39, we know that for −1 < x < 1,

1

1 + x2
=

∞∑
n=0

(−1)nx2n

Thus for x in this range, we can differentiate both sides, and differentiate the right-hand side term by term, to get

d

dx

1

1 + x2
= −2x

(x2 + 1)2
=

∞∑
n=1

(−1)n2nx2n−1

(Note the change in the lower limit of summation, since the n = 0 term is a constant, whose derivative is zero). Cancelling
the minus sign on the left gives

2x

(x2 + 1)2
=

∞∑
n=1

(−1)n−1(2n)x2n−1

53. Show that the following series converges absolutely for |x| < 1 and compute its sum:

F(x) = 1 − x − x2 + x3 − x4 − x5 + x6 − x7 − x8 + · · ·
Hint: Write F(x) as a sum of three geometric series with common ratio x3.

solution Because the coefficients in the power series are all ±1, we find

r = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1.

The radius of convergence is therefore R = r−1 = 1, and the series converges absolutely for |x| < 1.
By Exercise 43 of Section 11.4, any rearrangement of the terms of an absolutely convergent series yields another

absolutely convergent series with the same sum as the original series. Following the hint, we now rearrange the terms of
F(x) as the sum of three geometric series:

F(x) =
(

1 + x3 + x6 + · · ·
)

−
(
x + x4 + x7 + · · ·

)
−
(
x2 + x5 + x8 + · · ·

)

=
∞∑

n=0

(x3)n −
∞∑

n=0

x(x3)n −
∞∑

n=0

x2(x3)n = 1

1 − x3
− x

1 − x3
− x2

1 − x3
= 1 − x − x2

1 − x3
.



March 31, 2011

1316 C H A P T E R 10 INFINITE SERIES

54. Show that for |x| < 1,

1 + 2x

1 + x + x2
= 1 + x − 2x2 + x3 + x4 − 2x5 + x6 + x7 − 2x8 + · · ·

Hint: Use the hint from Exercise 53.

solution The terms in the series on the right-hand side are either of the form xn or −2xn for some n. Because

lim
n→∞

n
√

2 = lim
n→∞

n
√

1 = 1,

it follows that

lim
n→∞

n
√|an| = |x|.

Hence, by the Root Test, the series converges absolutely for |x| < 1.
By Exercise 43 of Section 11.4, any rearrangement of the terms of an absolutely convergent series yields another

absolutely convergent series with the same sum as the original series. If we let S denote the sum of the series, then

S =
(

1 + x3 + x6 + · · ·
)

+
(
x + x4 + x7 + · · ·

)
− 2

(
x2 + x5 + x8 + · · ·

)

= 1

1 − x3
+ x

1 − x3
− 2x2

1 − x3
= 1 + x − 2x2

1 − x3
= (1 − x)(2x + 1)

(1 − x)(1 + x + x2)
= 2x + 1

1 + x + x2
.

55. Find all values of x such that
∞∑

n=1

xn2

n! converges.

solution With an = xn2

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = |x|(n+1)2

(n + 1)! · n!
|x|n2 = |x|2n+1

n + 1
.

if |x| ≤ 1, then

lim
n→∞

|x|2n+1

n + 1
= 0,

and the series converges absolutely. On the other hand, if |x| > 1, then

lim
n→∞

|x|2n+1

n + 1
= ∞,

and the series diverges. Thus,
∞∑

n=1

xn2

n! converges for −1 ≤ x ≤ 1 and diverges elsewhere.

56. Find all values of x such that the following series converges:

F(x) = 1 + 3x + x2 + 27x3 + x4 + 243x5 + · · ·
solution Observe that F(x) can be written as the sum of two geometric series:

F(x) =
(

1 + x2 + x4 + · · ·
)

+
(

3x + 27x3 + 243x5 + · · ·
)

=
∞∑

n=0

(x2)n +
∞∑

n=0

3x(9x2)n

The first geometric series converges for |x2| < 1, or |x| < 1; the second geometric series converges for |9x2| < 1, or
|x| < 1

3 . Since both geometric series must converge for F(x) to converge, we find that F(x) converges for |x| < 1
3 , the

intersection of the intervals of convergence for the two geometric series.

57. Find a power series P(x) =
∞∑

n=0

anxn satisfying the differential equation y′ = −y with initial condition y(0) = 1.

Then use Theorem 1 of Section 5.8 to conclude that P(x) = e−x .

solution Let P(x) =
∞∑

n=0

anxn and note that P(0) = a0; thus, to satisfy the initial condition P(0) = 1, we must take

a0 = 1. Now,

P ′(x) =
∞∑

n=1

nanxn−1,
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so

P ′(x) + P(x) =
∞∑

n=1

nanxn−1 +
∞∑

n=0

anxn =
∞∑

n=0

[
(n + 1)an+1 + an

]
xn.

In order for this series to be equal to zero, the coefficient of xn must be equal to zero for each n; thus

(n + 1)an+1 + an = 0 or an+1 = − an

n + 1
.

Starting from a0 = 1, we then calculate

a1 = −a0

1
= −1;

a2 = −a1

2
= 1

2
;

a3 = −a2

3
= −1

6
= − 1

3! ;
and, in general,

an = (−1)n
1

n! .
Hence,

P(x) =
∞∑

n=0

(−1)n
xn

n! .

The solution to the initial value problem y′ = −y, y(0) = 1 is y = e−x . Because this solution is unique, it follows that

P(x) =
∞∑

n=0

(−1)n
xn

n! = e−x .

58. Let C(x) = 1 − x2

2! + x4

4! − x6

6! + · · · .

(a) Show that C(x) has an infinite radius of convergence.
(b) Prove that C(x) and f (x) = cos x are both solutions of y′′ = −y with initial conditions y(0) = 1, y′(0) = 0. This
initial value problem has a unique solution, so we have C(x) = cos x for all x.

solution
(a) Consider the series

C(x) = 1 − x2

2! + x4

4! − x6

6! + · · · =
∞∑

n=0

(−1)n
x2n

(2n)! .

With an = (−1)n x2n

(2n)! , ∣∣∣∣an+1

an

∣∣∣∣ = |x|2n+2

(2n + 2)! · (2n)!
|x|2n

= |x|2
(2n + 2)(2n + 1)

,

and

r = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0.

The radius of convergence for C(x) is therefore R = r−1 = ∞.
(b) Differentiating the series defining C(x) term-by-term, we find

C′(x) =
∞∑

n=1

(−1)n(2n)
x2n−1

(2n)! =
∞∑

n=1

(−1)n
x2n−1

(2n − 1)!
and

C′′(x) =
∞∑

n=1

(−1)n(2n − 1)
x2n−2

(2n − 1)! =
∞∑

n=1

(−1)n
x2n−2

(2n − 2)!

=
∞∑

n=0

(−1)n+1 x2n

(2n)! = −
∞∑

n=0

(−1)n
x2n

(2n)! = −C(x).

Moreover, C(0) = 1 and C′(0) = 0.
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59. Use the power series for y = ex to show that

1

e
= 1

2! − 1

3! + 1

4! − · · ·

Use your knowledge of alternating series to find an N such that the partial sum SN approximates e−1 to within an error
of at most 10−3. Confirm this using a calculator to compute both SN and e−1.

solution Recall that the series for ex is

∞∑
n=0

xn

n! = 1 + x + x2

2! + x3

3! + x4

4! + · · · .

Setting x = −1 yields

e−1 = 1 − 1 + 1

2! − 1

3! + 1

4! − + · · · = 1

2! − 1

3! + 1

4! − + · · · .

This is an alternating series with an = 1
(n+1)! . The error in approximating e−1 with the partial sum SN is therefore

bounded by

|SN − e−1| ≤ aN+1 = 1

(N + 2)! .

To make the error at most 10−3, we must choose N such that

1

(N + 2)! ≤ 10−3 or (N + 2)! ≥ 1000.

For N = 4, (N + 2)! = 6! = 720 < 1000, but for N = 5, (N + 2)! = 7! = 5040; hence, N = 5 is the smallest value
that satisfies the error bound. The corresponding approximation is

S5 = 1

2! − 1

3! + 1

4! − 1

5! + 1

6! = 0.368055555

Now, e−1 = 0.367879441, so

|S5 − e−1| = 1.761 × 10−4 < 10−3.

60. Let P(x) =
∑
n=0

anxn be a power series solution to y′ = 2xy with initial condition y(0) = 1.

(a) Show that the odd coefficients a2k+1 are all zero.

(b) Prove that a2k = a2k−2/k and use this result to determine the coefficients a2k .

solution Let P(x) =
∞∑

n=0

anxn and note that P(0) = a0; thus, to satisfy the initial condition P(0) = 1, we must take

a0 = 1. Now,

P ′(x) =
∞∑

n=1

nanxn−1,

so

P ′(x) − 2xP (x) =
∞∑

n=1

nanxn−1 −
∞∑

n=0

2anxn+1 =
∞∑

n=1

nanxn−1 −
∞∑

n=2

2an−2xn−1

= a1 +
∞∑

n=2

[
nan − 2an−2

]
xn−1.

In order for this series to be equal to zero, the coefficient of xn must be equal to zero for each n; thus, a1 = 0 and

nan − 2an−2 = 0 or an = 2an−2

n
.

(a) We know that a1 = 0 and

an = 2an−2

n
.
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Thus,

a3 = 2a1

3
= 0;

a5 = 2a3

5
= 0;

a7 = 2a5

7
= 0;

and, in general, a2k+1 = 0 for all k.
(b) Replace n by 2k in the equation

an = 2an−2

n
to obtain a2k = 2a2k−2

2k
= a2k−2

k
.

Starting from a0 = 1, we then calculate

a2 = a0

1
= 1 = 1

1! ;

a4 = a2

2
= 1

2
= 1

2! ;

a6 = a4

3
= 1

6
= 1

3! ;

and, in general, a2k = 1
k! .

61. Find a power series P(x) satisfying the differential equation

y′′ − xy′ + y = 0 9

with initial condition y(0) = 1, y′(0) = 0. What is the radius of convergence of the power series?

solution Let P(x) =
∞∑

n=0

anxn. Then

P ′(x) =
∞∑

n=1

nanxn−1 and P ′′(x) =
∞∑

n=2

n(n − 1)anxn−2.

Note that P(0) = a0 and P ′(0) = a1; in order to satisfy the initial conditions P(0) = 1, P ′(0) = 0, we must have a0 = 1
and a1 = 0. Now,

P ′′(x) − xP ′(x) + P(x) =
∞∑

n=2

n(n − 1)anxn−2 −
∞∑

n=1

nanxn +
∞∑

n=0

anxn

=
∞∑

n=0

(n + 2)(n + 1)an+2xn −
∞∑

n=1

nanxn +
∞∑

n=0

anxn

= 2a2 + a0 +
∞∑

n=1

[
(n + 2)(n + 1)an+2 − nan + an

]
xn.

In order for this series to be equal to zero, the coefficient of xn must be equal to zero for each n; thus, 2a2 + a0 = 0 and
(n + 2)(n + 1)an+2 − (n − 1)an = 0, or

a2 = −1

2
a0 and an+2 = n − 1

(n + 2)(n + 1)
an.

Starting from a1 = 0, we calculate

a3 = 1 − 1

(3)(2)
a1 = 0;

a5 = 2

(5)(4)
a3 = 0;

a7 = 4

(7)(6)
a5 = 0;

and, in general, all of the odd coefficients are zero. As for the even coefficients, we have a0 = 1, a2 = − 1
2 ,
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a4 = 1

(4)(3)
a2 = − 1

4! ;

a6 = 3

(6)(5)
a4 = − 3

6! ;

a8 = 5

(8)(7)
a6 = −15

8!
and so on. Thus,

P(x) = 1 − 1

2
x2 − 1

4!x
4 − 3

6!x
6 − 15

8! x8 − · · ·

To determine the radius of convergence, treat this as a series in the variable x2, and observe that

r = lim
k→∞

∣∣∣∣a2k+2

a2k

∣∣∣∣ = lim
k→∞

2k − 1

(2k + 2)(2k + 1)
= 0.

Thus, the radius of convergence is R = r−1 = ∞.

62. Find a power series satisfying Eq. (9) with initial condition y(0) = 0, y′(0) = 1.

solution Let P(x) =
∞∑

n=0

anxn be a solution to Eq. (9). From the previous exercise, we know that

a2 = −1

2
a0 and an+2 = n − 1

(n + 2)(n + 1)
an.

To satisfy the initial condition P(0) = 0, P ′(0) = 1, we must have a0 = 0 and a1 = 1. Then

a2 = −1

2
a0 = 0;

a4 = 1

(4)(3)
a2 = 0;

a6 = 3

(6)(5)
a4 = 0;

and, in general, all of the even coefficients are zero. As in the previous exercise, all of the odd coefficients past a1 are also
equal to zero. Thus,

P(x) = x.

63. Prove that

J2(x) =
∞∑

k=0

(−1)k

22k+2 k! (k + 3)!x
2k+2

is a solution of the Bessel differential equation of order 2:

x2y′′ + xy′ + (x2 − 4)y = 0

solution Let J2(x) =
∞∑

k=0

(−1)k

22k+2 k! (k + 2)!x
2k+2. Then

J ′
2(x) =

∞∑
k=0

(−1)k(k + 1)

22k+1 k! (k + 2)!x
2k+1

J ′′
2 (x) =

∞∑
k=0

(−1)k(k + 1)(2k + 1)

22k+1 k! (k + 2)! x2k

and

x2J ′′
2 (x) + xJ ′

2(x) + (x2 − 4)J2(x) =
∞∑

k=0

(−1)k(k + 1)(2k + 1)

22k+1 k! (k + 2)! x2k+2 +
∞∑

k=0

(−1)k(k + 1)

22k+1 k! (k + 2)!x
2k+2

−
∞∑

k=0

(−1)k

22k+2 k! (k + 2)!x
2k+4 −

∞∑
k=0

(−1)k

22k k! (k + 2)!x
2k+2
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=
∞∑

k=0

(−1)kk(k + 2)

22kk!(k + 2)! x2k+2 +
∞∑

k=1

(−1)k−1

22k (k − 1)! (k + 1)!x
2k+2

=
∞∑

k=1

(−1)k

22k(k − 1)!(k + 1)!x
2k+2 −

∞∑
k=1

(−1)k

22k(k − 1)!(k + 1)!x
2k+2 = 0.

64. Why is it impossible to expand f (x) = |x| as a power series that converges in an interval around x = 0?
Explain using Theorem 2.

solution Suppose that there exists a c > 0 such that f can be represented by a power series on the interval (−c, c);
that is,

|x| =
∞∑

n=0

anxn

for |x| < c. Then it follows by Theorem 2 that |x| is differentiable on (−c, c). This contradicts the well known property
that f (x) = |x| is not differentiable at the point x = 0.

Further Insights and Challenges

65. Suppose that the coefficients of F(x) =
∞∑

n=0

anxn are periodic; that is, for some whole number M > 0, we have

aM+n = an. Prove that F(x) converges absolutely for |x| < 1 and that

F(x) = a0 + a1x + · · · + aM−1xM−1

1 − xM

Hint: Use the hint for Exercise 53.

solution Suppose the coefficients of F(x) are periodic, with aM+n = an for some whole number M and all n. The
F(x) can be written as the sum of M geometric series:

F(x) = a0

(
1 + xM + x2M + · · ·

)
+ a1

(
x + xM+1 + x2M+1 + · · ·

)
+

= a2

(
x2 + xM+2 + x2M+2 + · · ·

)
+ · · · + aM−1

(
xM−1 + x2M−1 + x3M−1 + · · ·

)

= a0

1 − xM
+ a1x

1 − xM
+ a2x2

1 − xM
+ · · · + aM−1xM−1

1 − xM
= a0 + a1x + a2x2 + · · · + aM−1xM−1

1 − xM
.

As each geometric series converges absolutely for |x| < 1, it follows that F(x) also converges absolutely for |x| < 1.

66. Continuity of Power Series Let F(x) =
∞∑

n=0

anxn be a power series with radius of convergence R > 0.

(a) Prove the inequality

|xn − yn| ≤ n|x − y|(|x|n−1 + |y|n−1) 10

Hint: xn − yn = (x − y)(xn−1 + xn−2y + · · · + yn−1).

(b) Choose R1 with 0 < R1 < R. Show that the infinite series M =
∞∑

n=0

2n|an|Rn
1 converges. Hint: Show that n|an|Rn

1 <

|an|xn for all n sufficiently large if R1 < x < R.
(c) Use Eq. (10) to show that if |x| < R1 and |y| < R1, then |F(x) − F(y)| ≤ M|x − y|.
(d) Prove that if |x| < R, then F(x) is continuous at x. Hint: Choose R1 such that |x| < R1 < R. Show that if ε > 0 is
given, then |F(x) − F(y)| ≤ ε for all y such that |x − y| < δ, where δ is any positive number that is less than ε/M and
R1 − |x| (see Figure 6).

(     )(     )( ) x
0 R1 R−R x

x − d x + d

FIGURE 6 If x > 0, choose δ > 0 less than ε/M and R1 − x.

solution
(a) Take the absolute value of both sides of the identity

xn − yn = (x − y)(xn−1 + xn−2y + · · · + yn−1),

and then apply the triangle inequality to obtain

|xn − yn| ≤ |x − y|
(
|x|n−1 + |x|n−2|y| + |x|n−3|y|2 + · · · + |x||y|n−2 + |y|n−1

)
.
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Now, if |x| ≤ |y| then |x|n−k |y|k−1 ≤ |y|n−k |y|k−1 = |y|n−1, and if |y| ≤ |x| then |x|n−k |y|k−1 ≤ |x|n−k |x|k−1 =
|x|n−1. In either case, |x|n−k |y|k−1 ≤ |x|n−1 + |y|n−1. Thus,

|xn − yn| ≤ |x − y|
(
|x|n−1 + (n − 2)(|x|n−1 + |y|n−1) + |y|n−1

)
= (n − 1)|x − y|

(
|x|n−1 + |y|n−1

)
≤ n|x − y|

(
|x|n−1 + |y|n−1

)
.

(b) Let 0 < R1 < R. Then,

ρ = lim
n→∞

2(n + 1)|an+1|Rn+1
1

2n|an|Rn
1

= R1 lim
n→∞

n + 1

n
·
∣∣∣∣an+1

an

∣∣∣∣ = R1 · 1 · 1

R
= R1

R
< 1.

Thus, the series M =
∞∑

n=0

2n|an|Rn
1 converges by the Ratio Test.

(c) Suppose |x| < R1 and |y| < R1. Then

|F(x) − F(y)| =
∣∣∣∣∣∣

∞∑
n=0

anxn −
∞∑

n=0

anyn

∣∣∣∣∣∣ ≤
∞∑

n=0

|an||xn − yn| ≤
∞∑

n=0

n|an||x − y|
(
|x|n−1 + |y|n−1

)

≤ |x − y|
∞∑

n=0

n|an|
(
Rn−1

1 + Rn−1
1

)
= M|x − y|

(d) Let |x| < R, and let R1 be a number such that |x| < R1 < R. Then by part (b), M =
∞∑

n=0

2n|an|Rn
1 is finite and by

part (c)

|F (x) − F (y) | ≤ M|x − y|
for |y| < R1. Now, let ε > 0, and choose δ > 0 so that δ <

ε

M
and δ < R1 − |x|. Then, whenever |y − x| < δ,

|y| = | (y − x) + x| ≤ |y − x| + |x| < δ + |x| < R1,

so

|F (x) − F (y) | < M|x − y| < Mδ < M · ε

M
= ε.

Thus, F is continuous at x.

10.7 Taylor Series

Preliminary Questions
1. Determine f (0) and f ′′′(0) for a function f (x) with Maclaurin series

T (x) = 3 + 2x + 12x2 + 5x3 + · · ·
solution The Maclaurin series for a function f has the form

f (0) + f ′ (0)

1! x + f ′′ (0)

2! x2 + f ′′′ (0)

3! x3 + · · ·

Matching this general expression with the given series, we find f (0) = 3 and
f ′′′(0)

3! = 5. From this latter equation, it

follows that f ′′′(0) = 30.

2. Determine f (−2) and f (4)(−2) for a function with Taylor series

T (x) = 3(x + 2) + (x + 2)2 − 4(x + 2)3 + 2(x + 2)4 + · · ·
solution The Taylor series for a function f centered at x = −2 has the form

f (−2) + f ′ (−2)

1! (x + 2) + f ′′ (−2)

2! (x + 2)2 + f ′′′ (−2)

3! (x + 2)3 + f (4)(−2)

4! (x + 2)4 + · · ·

Matching this general expression with the given series, we find f (−2) = 0 and
f (4)(−2)

4! = 2. From this latter equation,

it follows that f (4)(−2) = 48.
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3. What is the easiest way to find the Maclaurin series for the function f (x) = sin(x2)?

solution The easiest way to find the Maclaurin series for sin
(
x2
)

is to substitute x2 for x in the Maclaurin series for

sin x.

4. Find the Taylor series for f (x) centered at c = 3 if f (3) = 4 and f ′(x) has a Taylor expansion

f ′(x) =
∞∑

n=1

(x − 3)n

n

solution Integrating the series for f ′(x) term-by-term gives

f (x) = C +
∞∑

n=1

(x − 3)n+1

n(n + 1)
.

Substituting x = 3 then yields

f (3) = C = 4;
so

f (x) = 4 +
∞∑

n=1

(x − 3)n+1

n(n + 1)
.

5. Let T (x) be the Maclaurin series of f (x). Which of the following guarantees that f (2) = T (2)?

(a) T (x) converges for x = 2.
(b) The remainder Rk(2) approaches a limit as k → ∞.
(c) The remainder Rk(2) approaches zero as k → ∞.

solution The correct response is (c): f (2) = T (2) if and only if the remainder Rk(2) approaches zero as k → ∞.

Exercises
1. Write out the first four terms of the Maclaurin series of f (x) if

f (0) = 2, f ′(0) = 3, f ′′(0) = 4, f ′′′(0) = 12

solution The first four terms of the Maclaurin series of f (x) are

f (0) + f ′(0)x + f ′′(0)

2! x2 + f ′′′(0)

3! x3 = 2 + 3x + 4

2
x2 + 12

6
x3 = 2 + 3x + 2x2 + 2x3.

2. Write out the first four terms of the Taylor series of f (x) centered at c = 3 if

f (3) = 1, f ′(3) = 2, f ′′(3) = 12, f ′′′(3) = 3

solution The first four terms of the Taylor series centered at c = 3 are:

f (3) + f ′(3)(x − 3) + f ′′(3)

2! (x − 3)2 + f ′′′(3)

3! (x − 3)3 = 1 + 2(x − 3) + 12

2
(x − 3)2 + 3

6
(x − 3)3

= 1 + 2(x − 3) + 6(x − 3)2 + 1

2
(x − 3)3.

In Exercises 3–18, find the Maclaurin series and find the interval on which the expansion is valid.

3. f (x) = 1

1 − 2x

solution Substituting 2x for x in the Maclaurin series for 1
1−x

gives

1

1 − 2x
=

∞∑
n=0

(2x)n =
∞∑

n=0

2nxn.

This series is valid for |2x| < 1, or |x| < 1
2 .

4. f (x) = x

1 − x4

solution Substituting x4 for x in the Maclaurin series for 1
1−x

gives

1

1 − x4
=

∞∑
n=0

(x4)n =
∞∑

n=0

x4n.
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Therefore

x

1 − x4
= x

∞∑
n=0

x4n =
∞∑

n=0

x4n+1.

This series is valid for |x4| < 1, or |x| < 1.

5. f (x) = cos 3x

solution Substituting 3x for x in the Maclaurin series for cos x gives

cos 3x =
∞∑

n=0

(−1)n
(3x)2n

(2n)! =
∞∑

n=0

(−1)n
9nx2n

(2n)! .

This series is valid for all x.

6. f (x) = sin(2x)

solution Substituting 2x for x in the Maclaurin series for sin x gives

sin 2x =
∞∑

n=0

(−1)n
(2x)2n+1

(2n + 1)! =
∞∑

n=0

(−1)n
22n+1x2n+1

(2n + 1)! .

This series is valid for all x.

7. f (x) = sin(x2)

solution Substituting x2 for x in the Maclaurin series for sin x gives

sin x2 =
∞∑

n=0

(−1)n
(x2)2n+1

(2n + 1)! =
∞∑

n=0

(−1)n
x4n+2

(2n + 1)! .

This series is valid for all x.

8. f (x) = e4x

solution Substituting 4x for x in the Maclaurin series for ex gives

e4x =
∞∑

n=0

(4x)n

n! =
∞∑

n=o

4nxn

n! .

This series is valid for all x.

9. f (x) = ln(1 − x2)

solution Substituting −x2 for x in the Maclaurin series for ln(1 + x) gives

ln(1 − x2) =
∞∑

n=1

(−1)n−1(−x2)n

n
=

∞∑
n=1

(−1)2n−1x2n

n
= −

∞∑
n=1

x2n

n
.

This series is valid for |x| < 1.

10. f (x) = (1 − x)−1/2

solution Substituting −x for x and using a = − 1
2 in the Binomial series gives

(1 − x)−1/2 =
∞∑

n=0

( − 1
2

n

)
(−x)n =

∞∑
n=0

(−1)n
( − 1

2
n

)
xn.

This series is valid for |x| < 1.

11. f (x) = tan−1(x2)

solution Substituting x2 for x in the Maclaurin series for tan−1 x gives

tan−1(x2) =
∞∑

n=0

(−1)n
(x2)2n+1

2n + 1
=

∞∑
n=0

(−1)n
x4n+2

2n + 1
.

This series is valid for |x| ≤ 1.
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12. f (x) = x2ex2

solution First substitute x2 for x in the Maclaurin series for ex to obtain

ex2 =
∞∑

n=0

(x2)n

n! =
∞∑

n=0

x2n

n! .

Now, multiply by x2 to obtain

x2ex2 = x2
∞∑

n=0

x2n

n! =
∞∑

n=0

x2n+2

n! .

This series is valid for all x.

13. f (x) = ex−2

solution ex−2 = e−2ex ; thus,

ex−2 = e−2
∞∑

n=0

xn

n! =
∞∑

n=0

xn

e2n! .

This series is valid for all x.

14. f (x) = 1 − cos x

x

solution cos x =
∞∑

n=0

(−1)n
x2n

(2n)! , so

1 − cos x

x
=

∞∑
n=1

(−1)n+1 x2n−1

(2n)!

This series is valid for all x.

15. f (x) = ln(1 − 5x)

solution Substituting −5x for x in the Maclaurin series for ln(1 + x) gives

ln(1 − 5x) =
∞∑

n=1

(−1)n−1(−5x)n

n
=

∞∑
n=1

(−1)2n−15nxn

n
= −

∞∑
n=1

5nxn

n
.

This series is valid for |5x| < 1, or |x| < 1
5 , and for x = − 1

5 .

16. f (x) = (x2 + 2x)ex

solution Using the Maclaurin series for ex , we find

(x2 + 2x)ex = x2
∞∑

n=0

xn

n! + 2x

∞∑
n=0

xn

n! =
∞∑

n=0

xn+2

n! +
∞∑

n=0

2xn+1

n! = 2x +
∞∑

n=1

(
1

(n − 1)! + 2

n!
)

xn+1

= 2x +
∞∑

n=1

n + 2

n! xn+1 =
∞∑

n=0

n + 2

n! xn+1.

This series is valid for all x.

17. f (x) = sinh x

solution Recall that

sinh x = 1

2
(ex − e−x).

Therefore,

sinh x = 1

2

⎛
⎝ ∞∑

n=0

xn

n! −
∞∑

n=0

(−x)n

n!

⎞
⎠ =

∞∑
n=0

xn

2(n!)
(
1 − (−1)n

)
.
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Now,

1 − (−1)n =
{

0, n even

2, n odd

so

sinh x =
∞∑

k=0

2
x2k+1

2(2k + 1)! =
∞∑

k=0

x2k+1

(2k + 1)! .

This series is valid for all x.

18. f (x) = cosh x

solution Recall that

cosh x = 1

2
(ex + e−x).

Therefore,

cosh x = 1

2

⎛
⎝ ∞∑

n=0

xn

n! +
∞∑

n=0

(−x)n

n!

⎞
⎠ =

∞∑
n=0

xn

2(n!)
(
1 + (−1)n

)
.

Now,

1 + (−1)n =
{

0, n odd

2, n even

so

cosh x =
∞∑

k=0

2
x2k

2(2k)! =
∞∑

k=0

x2k

(2k)! .

This series is valid for all x.

In Exercises 19–28, find the terms through degree four of the Maclaurin series of f (x). Use multiplication and substitution
as necessary.

19. f (x) = ex sin x

solution Multiply the fourth-order Taylor Polynomials for ex and sin x:(
1 + x + x2

2
+ x3

6
+ x4

24

)(
x − x3

6

)

= x + x2 − x3

6
+ x3

2
− x4

6
+ x4

6
+ higher-order terms

= x + x2 + x3

3
+ higher-order terms.

The terms through degree four in the Maclaurin series for f (x) = ex sin x are therefore

x + x2 + x3

3
.

20. f (x) = ex ln(1 − x)

solution Multiply the fourth order Taylor Polynomials for ex and ln(1 − x):(
1 + x + x2

2
+ x3

6
+ x4

24

)(
−x − x2

2
− x3

3
− x4

4

)

= −x − x2

2
− x2 − x3

3
− x3

2
− x3

2
− x4

4
− x4

3
− x4

4
− x4

6
+ higher-order terms

= −x − 3x2

2
− 4x3

3
− x4 + higher-order terms.
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The first four terms of the Maclaurin series for f (x) = ex ln(1 − x) are therefore

−x − 3x2

2
− 4x3

3
− x4.

21. f (x) = sin x

1 − x

solution Multiply the fourth order Taylor Polynomials for sin x and
1

1 − x
:

(
x − x3

6

)(
1 + x + x2 + x3 + x4

)

= x + x2 − x3

6
+ x3 + x4 − x4

6
+ higher-order terms

= x + x2 + 5x3

6
+ 5x4

6
+ higher-order terms.

The terms through order four of the Maclaurin series for f (x) = sin x

1 − x
are therefore

x + x2 + 5x3

6
+ 5x4

6
.

22. f (x) = 1

1 + sin x

solution Substituting sin x for x in the Maclaurin series for 1
1−x

and then using the Maclaurin series for sin x gives

1

1 + sin x
= 1 − sin x + sin2 x − sin3 x + sin4 x − . . .

= 1 −
(

x − x3

6
+ · · ·

)
+
(

x − x3

6
+ · · ·

)2

−
(

x − x3

6
+ . . .

)3

+
(

x − x3

6
+ . . .

)4

· · ·

= 1 − x + x3

6
+ x2 − x4

3
− x3 + x4 = 1 − x + x2 − 5x3

6
+ 2x4

3

Therefore, the terms of the Maclaurin series for f (x) = 1

1 + sin x
through order four are

1 − x + x2 − 5x3

6
+ 2x4

3
.

23. f (x) = (1 + x)1/4

solution The first five generalized binomial coefficients for a = 1
4 are

1,
1

4
,

1
4

(−3
4

)
2! = − 3

32
,

1
4

(−3
4

) (−7
4

)
3! = 7

128
,

1
4

(−3
4

) (−7
4

) (−11
4

)
4! = −77

2048

Therefore, the first four terms in the binomial series for (1 + x)1/4 are

1 + 1

4
x − 3

32
x2 + 7

128
x3 − 77

2048
x4

24. f (x) = (1 + x)−3/2

solution The first five generalized binomial coefficients for a = − 3
2 are

1, −3

2
,

− 3
2 (− 5

2 )

2! = 15

8
,

− 3
2 (− 5

2 )(− 7
2 )

3! = −35

16
,

− 3
2 (− 5

2 )(− 7
2 )(− 9

2 )

4! = 315

128
.

Therefore, the first five terms in the binomial series for f (x) = (1 + x)−3/2 are

1 − 3

2
x + 15

8
x2 − 35

16
x3 + 315

128
x4.
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25. f (x) = ex tan−1 x

solution Using the Maclaurin series for ex and tan−1 x, we find

ex tan−1 x =
(

1 + x + x2

2
+ x3

6
+ · · ·

)(
x − x3

3
+ · · ·

)
= x + x2 − x3

3
+ x3

2
+ x4

6
− x4

3
+ · · ·

= x + x2 + 1

6
x3 − 1

6
x4 + · · · .

26. f (x) = sin (x3 − x)

solution Substitute x3 − x into the first two terms of the Maclaurin series for sin x:

(x3 − x) − (x3 − x)3

3! = x3 − x − x9 − 3x7 + 3x5 − x3

3!
so that the terms of the Maclaurin series for sin(x3 − x) through degree four are

−x + 7

6
x3

27. f (x) = esin x

solution Substituting sin x for x in the Maclaurin series for ex and then using the Maclaurin series for sin x, we find

esin x = 1 + sin x + sin2 x

2
+ sin3 x

6
+ sin4 x

24
+ · · ·

= 1 +
(

x − x3

6
+ · · ·

)
+ 1

2

(
x − x3

6
+ · · ·

)2

+ 1

6
(x − · · · )3 + 1

24
(x − · · · )4

= 1 + x + 1

2
x2 − 1

6
x3 + 1

6
x3 − 1

6
x4 + 1

24
x4 + · · ·

= 1 + x + 1

2
x2 − 1

8
x4 + · · · .

28. f (x) = e(ex)

solution With f (x) = e(ex), we find

f ′(x) = e(ex) · ex

f ′′(x) = e(ex) · ex + e(ex) · e2x = e(ex)
(
e2x + ex

)

f ′′′(x) = e(ex)
(

2e2x + ex
)

+ e(ex)
(
e2x + ex

)
ex

= e(ex)
(
e3x + 3e2x + ex

)

f (4)(x) = e(ex)(3e3x + 6e2x + ex) + e(ex)(e3x + 3e2x + ex)ex

= e(ex)(e4x + 6e3x + 7e2x + ex)

and

f (0) = e, f ′(0) = e, f ′′(0) = 2e, f ′′′(0) = 5e, f (4)(0) = 15e.

Therefore, the first four terms of the Maclaurin for f (x) = e(ex) are

e + ex + ex2 + 5e

6
x3 + 5e

8
x4.
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In Exercises 29–38, find the Taylor series centered at c and find the interval on which the expansion is valid.

29. f (x) = 1

x
, c = 1

solution Write

1

x
= 1

1 + (x − 1)
,

and then substitute −(x − 1) for x in the Maclaurin series for 1
1−x

to obtain

1

x
=

∞∑
n=0

[−(x − 1)]n =
∞∑

n=0

(−1)n(x − 1)n.

This series is valid for |x − 1| < 1.

30. f (x) = e3x , c = −1

solution Write

e3x = e3(x+1)−3 = e−3e3(x+1).

Now, substitute 3(x + 1) for x in the Maclaurin series for ex to obtain

e3(x+1) =
∞∑

n=0

(3(x + 1))n

n! =
∞∑

n=0

3n

n! (x + 1)n.

Thus,

e3x = e−3
∞∑

n=0

3n

n! (x + 1)n =
∞∑

n=0

3ne−3

n! (x + 1)n,

This series is valid for all x.

31. f (x) = 1

1 − x
, c = 5

solution Write

1

1 − x
= 1

−4 − (x − 5)
= −1

4
· 1

1 + x−5
4

.

Substituting − x−5
4 for x in the Maclaurin series for 1

1−x
yields

1

1 + x−5
4

=
∞∑

n=0

(
−x − 5

4

)n

=
∞∑

n=0

(−1)n
(x − 5)n

4n
.

Thus,

1

1 − x
= −1

4

∞∑
n=0

(−1)n
(x − 5)n

4n
=

∞∑
n=0

(−1)n+1 (x − 5)n

4n+1
.

This series is valid for
∣∣∣ x−5

4

∣∣∣ < 1, or |x − 5| < 4.

32. f (x) = sin x, c = π

2
solution Note that the odd derivatives of sin x are zero at π

2 , and the even derivatives alternate between +1 and −1.
Thus the Taylor series centered at π

2 is

∞∑
n=0

(−1)n

(
x − π

2

)2n

(2n)!

33. f (x) = x4 + 3x − 1, c = 2

solution To determine the Taylor series with center c = 2, we compute

f ′(x) = 4x3 + 3, f ′′(x) = 12x2, f ′′′(x) = 24x,

and f (4)(x) = 24. All derivatives of order five and higher are zero. Now,
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f (2) = 21, f ′(2) = 35, f ′′(2) = 48, f ′′′(2) = 48,

and f (4)(2) = 24. Therefore, the Taylor series is

21 + 35(x − 2) + 48

2
(x − 2)2 + 48

6
(x − 2)3 + 24

24
(x − 2)4,

or

21 + 35(x − 2) + 24(x − 2)2 + 8(x − 2)3 + (x − 2)4.

34. f (x) = x4 + 3x − 1, c = 0

solution The function x4 + 3x − 1 is a polynomial in x, hence it is already in the form of a Maclaurin series.

35. f (x) = 1

x2
, c = 4

solution We will first find the Taylor series for 1
x and then differentiate to obtain the series for 1

x2 . Write

1

x
= 1

4 + (x − 4)
= 1

4
· 1

1 + x−4
4

.

Now substitute − x−4
4 for x in the Maclaurin series for 1

1−x
to obtain

1

x
= 1

4

∞∑
n=

(
−x − 4

4

)n

=
∞∑

n=0

(−1)n
(x − 4)n

4n+1
.

Differentiating term-by-term yields

− 1

x2
=

∞∑
n=1

(−1)nn
(x − 4)n−1

4n+1
,

so that

1

x2
=

∞∑
n=1

(−1)n−1n
(x − 4)n−1

4n+1
=

∞∑
n=0

(−1)n(n + 1)
(x − 4)n

4n+2
.

This series is valid for
∣∣∣ x−4

4

∣∣∣ < 1, or |x − 4| < 4.

36. f (x) = √
x, c = 4

solution Write

√
x = √

4 + (x − 4) = 2

√
1 + x − 4

4
.

Substituting x−4
4 for x in the binomial series with a = 1

2 yields

√
x = 2

∞∑
n=0

( 1
2
n

)(
x − 4

4

)n

=
∞∑

n=0

1

22n−1

( 1
2
n

)
(x − 4)n.

This series is valid for
∣∣∣ x−4

4

∣∣∣ < 1, or |x − 4| < 4.

37. f (x) = 1

1 − x2
, c = 3

solution By partial fraction decomposition

1

1 − x2
=

1
2

1 − x
+

1
2

1 + x
,

so

1

1 − x2
=

1
2

−2 − (x − 3)
+

1
2

4 + (x − 3)
= −1

4
· 1

1 + x−3
2

+ 1

8
· 1

1 + x−3
4

.
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Substituting − x−3
2 for x in the Maclaurin series for 1

1−x
gives

1

1 + x−3
2

=
∞∑

n=0

(
−x − 3

2

)n

=
∞∑

n=0

(−1)n

2n
(x − 3)n,

while substituting − x−3
4 for x in the same series gives

1

1 + x−3
4

=
∞∑

n=0

(
−x − 3

4

)n

=
∞∑

n=0

(−1)n

4n
(x − 3)n.

Thus,

1

1 − x2
= −1

4

∞∑
n=0

(−1)n

2n
(x − 3)n + 1

8

∞∑
n=0

(−1)n

4n
(x − 3)n =

∞∑
n=0

(−1)n+1

2n+2
(x − 3)n +

∞∑
n=0

(−1)n

22n+3
(x − 3)n

=
∞∑

n=0

(
(−1)n+1

2n+2
+ (−1)n

22n+3

)
(x − 3)n =

∞∑
n=0

(−1)n+1(2n+1 − 1)

22n+3
(x − 3)n.

This series is valid for |x − 3| < 2.

38. f (x) = 1

3x − 2
, c = −1

solution Write

1

3x − 2
= 1

−5 + 3(x + 1)
= −1

5

1

1 − 3(x+1)
5

,

and then substitute 3(x+1)
5 for x in the Maclaurin series for 1

1−x
to obtain

1

1 − 3(x+1)
5

=
∞∑

n=0

(
3(x + 1)

5

)n

=
∞∑

n=0

3n

5n
(x + 1)n.

Thus,

1

3x − 2
= −

∞∑
n=0

3n

5n+1
(x + 1)n.

This series is valid for
∣∣∣ 3(x+1)

5

∣∣∣ < 1, or |x + 1| < 5
3 .

39. Use the identity cos2 x = 1
2 (1 + cos 2x) to find the Maclaurin series for cos2 x.

solution The Maclaurin series for cos 2x is

∞∑
n=0

(−1)n
(2x)2n

(2n)! =
∞∑

n=0

(−1)n
22nx2n

(2n)!

so the Maclaurin series for cos2 x = 1
2 (1 + cos 2x) is

1 +
(

1 + ∑∞
n=1(−1)n 22nx2n

(2n)!
)

2
= 1 +

∞∑
n=1

(−1)n
22n−1x2n

(2n)!

40. Show that for |x| < 1,

tanh−1 x = x + x3

3
+ x5

5
+ · · ·

Hint: Recall that
d

dx
tanh−1 x = 1

1 − x2
.

solution Because

d

dx
tanh−1 x = 1

1 − x2
=

∞∑
n=0

(x2)n =
∞∑

n=0

x2n,
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we have

tanh−1 x = C +
∞∑

n=0

x2n+1

2n + 1
= C + x + x3

3
+ x5

5
+ · · · .

Now, tanh−1 0 = 0, so it follows that C = 0, and

tanh−1 x =
∞∑

n=0

x2n+1

2n + 1
= x + x3

3
+ x5

5
+ · · · .

41. Use the Maclaurin series for ln(1 + x) and ln(1 − x) to show that

1

2
ln

(
1 + x

1 − x

)
= x + x3

3
+ x5

5
+ · · ·

for |x| < 1. What can you conclude by comparing this result with that of Exercise 40?

solution Using the Maclaurin series for ln (1 + x) and ln (1 − x), we have for |x| < 1

ln(1 + x) − ln(1 − x) =
∞∑

n=1

(−1)n−1

n
xn −

∞∑
n=1

(−1)n−1

n
(−x)n

=
∞∑

n=1

(−1)n−1

n
xn +

∞∑
n=1

xn

n
=

∞∑
n=1

1 + (−1)n−1

n
xn.

Since 1 + (−1)n−1 = 0 for even n and 1 + (−1)n−1 = 2 for odd n,

ln (1 + x) − ln (1 − x) =
∞∑

k=0

2

2k + 1
x2k+1.

Thus,

1

2
ln

(
1 + x

1 − x

)
= 1

2
(ln(1 + x) − ln(1 − x)) = 1

2

∞∑
k=0

2

2k + 1
x2k+1 =

∞∑
k=0

x2k+1

2k + 1
.

Observe that this is the same series we found in Exercise 40; therefore,

1

2
ln

(
1 + x

1 − x

)
= tanh−1 x.

42. Differentiate the Maclaurin series for
1

1 − x
twice to find the Maclaurin series of

1

(1 − x)3
.

solution Differentiating the Maclaurin series for
1

1 − x
term-by-term, we obtain

1

(1 − x)2
=

∞∑
n=1

nxn−1.

Differentiating again then yields

2

(1 − x)3
=

∞∑
n=2

n(n − 1)xn−2,

so that

1

(1 − x)3
=

∞∑
n=2

n(n − 1)

2
xn−2 =

∞∑
n=0

(n + 2)(n + 1)

2
xn.

43. Show, by integrating the Maclaurin series for f (x) = 1√
1 − x2

, that for |x| < 1,

sin−1 x = x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1
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solution From Example 10, we know that for |x| < 1

1√
1 − x2

=
∞∑

n=0

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
x2n = 1 +

∞∑
n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
x2n,

so, for |x| < 1,

sin−1 x =
∫

dx√
1 − x2

= C + x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1
.

Since sin−1 0 = 0, we find that C = 0. Thus,

sin−1 x = x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1
.

44. Use the first five terms of the Maclaurin series in Exercise 43 to approximate sin−1 1
2 . Compare the result with the

calculator value.

solution From Exercise 43 we know that for |x| < 1,

sin−1 x = x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1
.

The first five terms of the series are:

x + 1

2

x3

3
+ 1 · 3

2 · 4

x5

5
+ 1 · 3 · 5

2 · 4 · 6

x7

7
+ 1 · 3 · 5 · 7

2 · 4 · 6 · 8

x9

9
= x + x3

6
+ 3x5

40
+ 5x7

112
+ 35x9

1152

Setting x = 1

2
, we obtain the following approximation:

sin−1 1

2
≈ 1

2
+

(
1
2

)3

6
+

3 ·
(

1
2

)5

40
+

5 ·
(

1
2

)7

112
+

35 ·
(

1
2

)9

1152
≈ 0.52358519539.

The calculator value is sin−1 1
2 ≈ 0.5235988775.

45. How many terms of the Maclaurin series of f (x) = ln(1 + x) are needed to compute ln 1.2 to within an error of at
most 0.0001? Make the computation and compare the result with the calculator value.

solution Substitute x = 0.2 into the Maclaurin series for ln (1 + x) to obtain:

ln 1.2 =
∞∑

n=1

(−1)n−1 (0.2)n

n
=

∞∑
n=1

(−1)n−1 1

5nn
.

This is an alternating series with an = 1

n · 5n
. Using the error bound for alternating series

|ln 1.2 − SN | ≤ aN+1 = 1

(N + 1)5N+1
,

so we must choose N so that

1

(N + 1)5N+1
< 0.0001 or (N + 1)5N+1 > 10,000.

For N = 3, (N + 1)5N+1 = 4 · 54 = 2500 < 10, 000, and for N = 4, (N + 1)5N+1 = 5 · 55 = 15, 625 > 10, 000;
thus, the smallest acceptable value for N is N = 4. The corresponding approximation is:

S4 =
4∑

n=1

(−1)n−1

5n · n
= 1

5
− 1

52 · 2
+ 1

53 · 3
− 1

54 · 4
= 0.182266666.

Now, ln 1.2 = 0.182321556, so

|ln 1.2 − S4| = 5.489 × 10−5 < 0.0001.
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46. Show that

π − π3

3! + π5

5! − π7

7! + · · ·

converges to zero. How many terms must be computed to get within 0.01 of zero?

solution Set x = π in the Maclaurin series for sin x to obtain:

0 = sin π = π − π3

3! + π5

5! − π7

7! + · · · .

Using the error bound for an alternating series, we have∣∣∣∣∣∣0 −
N∑

n=0

(−1)nπ2n+1

(2n + 1)!

∣∣∣∣∣∣ ≤ π2N+3

(2N + 3)! .

N = 4 is the smallest value for which the error bound is less than 0.01, so five terms are needed.

47. Use the Maclaurin expansion for e−t2
to express the function F(x) = ∫ x

0 e−t2
dt as an alternating power series in x

(Figure 4).

(a) How many terms of the Maclaurin series are needed to approximate the integral for x = 1 to within an error of at
most 0.001?

(b) Carry out the computation and check your answer using a computer algebra system.

F(x)

T15(x)

1 2

y

x

FIGURE 4 The Maclaurin polynomial T15(x) for F(t) =
∫ x

0
e−t2

dt.

solution Substituting −t2 for t in the Maclaurin series for et yields

e−t2 =
∞∑

n=0

(−t2)n

n! =
∞∑

n=0

(−1)n
t2n

n! ;

thus,

∫ x

0
e−t2

dt =
∞∑

n=0

(−1)n
x2n+1

n!(2n + 1)
.

(a) For x = 1,

∫ 1

0
e−t2

dt =
∞∑

n=0

(−1)n
1

n!(2n + 1)
.

This is an alternating series with an = 1
n!(2n+1)

; therefore, the error incurred by using SN to approximate the value of
the definite integral is bounded by∣∣∣∣∣

∫ 1

0
e−t2

dt − SN

∣∣∣∣∣ ≤ aN+1 = 1

(N + 1)!(2N + 3)
.

To guarantee the error is at most 0.001, we must choose N so that

1

(N + 1)!(2N + 3)
< 0.001 or (N + 1)!(2N + 3) > 1000.

For N = 3, (N + 1)!(2N + 3) = 4! · 9 = 216 < 1000 and for N = 4, (N + 1)!(2N + 3) = 5! · 11 = 1320 > 1000;
thus, the smallest acceptable value for N is N = 4. The corresponding approximation is

S4 =
4∑

n=0

(−1)n

n!(2n + 1)
= 1 − 1

3
+ 1

2! · 5
− 1

3! · 7
+ 1

4! · 9
= 0.747486772.
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(b) Using a computer algebra system, we find

∫ 1

0
e−t2

dt = 0.746824133;

therefore ∣∣∣∣∣
∫ 1

0
e−t2

dt − S4

∣∣∣∣∣ = 6.626 × 10−4 < 10−3.

48. Let F(x) =
∫ x

0

sin t dt

t
. Show that

F(x) = x − x3

3 · 3! + x5

5 · 5! − x7

7 · 7! + · · ·

Evaluate F(1) to three decimal places.

solution Divide the Maclaurin series for sin t by t to obtain

sin t

t
= 1

t

∞∑
n=0

(−1)n
t2n+1

(2n + 1)! =
∞∑

n=0

(−1)n
t2n

(2n + 1)! .

Integrating both sides of this equation and using term-by-term integration, we find

F(x) =
∫ x

0

sin t

t
dt =

∞∑
n=0

(−1)n
x2n+1

(2n + 1)!(2n + 1)
= x − x3

3 · 3! + x5

5 · 5! − x7

7 · 7! + · · ·

For x = 1,

F(1) =
∞∑

n=0

(−1)n
1

(2n + 1)!(2n + 1)
.

This is an alternating series with an = 1
(2n+1)!(2n+1)

; therefore, the error incurred by using SN to approximate the value
of the definite integral is bounded by∣∣∣∣∣

∫ 1

0

sin t

t
dt − SN

∣∣∣∣∣ ≤ aN+1 = 1

(2N + 3)!(2N + 3)
.

To guarantee the error is at most 0.0005, we must choose N so that

1

(2N + 3)!(2N + 3)
< 0.0005 or (2N + 3)!(2N + 3) > 2000.

For N = 1, (2N + 3)!(2N + 3) = 5! · 5 = 600 < 2000 and for N = 2, (2N + 3)!(2N + 3) = 7! · 7 = 35,280 > 2000;
thus, the smallest acceptable value for N is N = 2. The corresponding approximation is

S2 =
2∑

n=0

(−1)n

(2n + 1)!(2n + 1)
= 1 − 1

3 · 3! + 1

5 · 5! = 0.946111111.

In Exercises 49–52, express the definite integral as an infinite series and find its value to within an error of at most 10−4.

49.
∫ 1

0
cos(x2) dx

solution Substituting x2 for x in the Maclaurin series for cos x yields

cos(x2) =
∞∑

n=0

(−1)n
(x2)2n

(2n)! =
∞∑

n=0

(−1)n
x4n

(2n)! ;

therefore,

∫ 1

0
cos(x2) dx =

∞∑
n=0

(−1)n
x4n+1

(2n)!(4n + 1)

∣∣∣∣∣
1

0

=
∞∑

n=0

(−1)n

(2n)!(4n + 1)
.
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This is an alternating series with an = 1
(2n)!(4n+1)

; therefore, the error incurred by using SN to approximate the value of
the definite integral is bounded by∣∣∣∣∣

∫ 1

0
cos(x2) dx − SN

∣∣∣∣∣ ≤ aN+1 = 1

(2N + 2)!(4N + 5)
.

To guarantee the error is at most 0.0001, we must choose N so that

1

(2N + 2)!(4N + 5)
< 0.0001 or (2N + 2)!(4N + 5) > 10,000.

For N = 2, (2N + 2)!(4N + 5) = 6! · 13 = 9360 < 10,000 and for N = 3, (2N + 2)!(4N + 5) = 8! · 17 = 685,440 >

10,000; thus, the smallest acceptable value for N is N = 3. The corresponding approximation is

S3 =
3∑

n=0

(−1)n

(2n)!(4n + 1)
= 1 − 1

5 · 2! + 1

9 · 4! − 1

13 · 6! = 0.904522792.

50.
∫ 1

0
tan−1(x2) dx

solution Substituting x2 for x in the Maclaurin series for tan−1 x yields

tan−1(x2) =
∞∑

n=0

(−1)n
(x2)2n+1

2n + 1
=

∞∑
n=0

(−1)n
x4n+2

2n + 1
;

therefore,

∫ 1

0
tan−1(x2) dx =

∞∑
n=0

(−1)n
x4n+3

(2n + 1)(4n + 3)

∣∣∣∣∣
1

0

=
∞∑

n=0

(−1)n

(2n + 1)(4n + 3)
.

This is an alternating series with an = 1
(2n+1)(4n+3)

; therefore, the error incurred by using SN to approximate the value
of the definite integral is bounded by∣∣∣∣∣

∫ 1

0
tan−1(x2) dx − SN

∣∣∣∣∣ ≤ aN+1 = 1

(2N + 3)(4N + 7)
.

To guarantee the error is at most 0.0001, we must choose N so that

1

(2N + 3)(4N + 7)
< 0.0001 or (2N + 3)(4N + 7) > 10,000.

For N = 33, (2N + 3)(4N + 7) = (69)(139) = 9591 < 10,000 and for N = 34, (2N + 3)(4N + 7) = (71)(143) =
10,153 > 10,000; thus, the smallest acceptable value for N is N = 34. The corresponding approximation is

S34 =
34∑

n=0

(−1)n

(2n)!(4n + 1)
= 0.297953297.

51.
∫ 1

0
e−x3

dx

solution Substituting −x3 for x in the Maclaurin series for ex yields

e−x3 =
∞∑

n=0

(−x3)n

n! =
∞∑

n=0

(−1)n
x3n

n! ;

therefore,

∫ 1

0
e−x3

dx =
∞∑

n=0

(−1)n
x3n+1

n!(3n + 1)

∣∣∣∣∣
1

0

=
∞∑

n=0

(−1)n

n!(3n + 1)
.

This is an alternating series with an = 1
n!(3n+1)

; therefore, the error incurred by using SN to approximate the value of
the definite integral is bounded by∣∣∣∣∣

∫ 1

0
e−x3

dx − SN

∣∣∣∣∣ ≤ aN+1 = 1

(N + 1)!(3N + 4)
.
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To guarantee the error is at most 0.0001, we must choose N so that

1

(N + 1)!(3N + 4)
< 0.0001 or (N + 1)!(3N + 4) > 10,000.

For N = 4, (N + 1)!(3N + 4) = 5! · 16 = 1920 < 10,000 and for N = 5, (N + 1)!(3N + 4) = 6! · 19 = 13,680 >

10,000; thus, the smallest acceptable value for N is N = 5. The corresponding approximation is

S5 =
5∑

n=0

(−1)n

n!(3n + 1)
= 0.807446200.

52.
∫ 1

0

dx√
x4 + 1

solution From Example 10, we know that for |x| < 1

1√
1 − x2

=
∞∑

n=0

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
x2n =

∞∑
n=0

(2n)!
22n(n!)2

x2n;

therefore,

1√
x4 + 1

=
∞∑

n=0

(2n)!
22n(n!)2

(−x2)2n =
∞∑

n=0

(−1)n
(2n)!

22n(n!)2
x4n,

and

∫ 1

0

dx√
x4 + 1

=
∞∑

n=0

(−1)n
(2n)!

22n(n!)2

x4n+1

4n + 1

∣∣∣∣∣
1

0

=
∞∑

n=0

(−1)n
(2n)!

22n(4n + 1)(n!)2
.

This is an alternating series with

an = (2n)!
22n(4n + 1)(n!)2

;

therefore, the error incurred by using SN to approximate the value of the definite integral is bounded by∣∣∣∣∣
∫ 1

0

dx√
x4 + 1

− SN

∣∣∣∣∣ ≤ aN+1 = (2N + 2)!
22N+2(4N + 5)((N + 1)!)2

.

To guarantee the error is at most 0.0001, we must choose N so that

(2N + 2)!
22N+2(4N + 5)((N + 1)!)2

< 0.0001.

For N = 124,

(2N + 2)!
22N+2(4N + 5)((N + 1)!)2

= 0.0001006 > 0.0001,

and for N = 125,

(2N + 2)!
22N+2(4N + 5)((N + 1)!)2

= 0.00009943 < 0.0001,

thus, the smallest acceptable value for N is N = 125. The corresponding approximation is

S125 =
125∑
n=0

(−1)n
(2n)!

22n(4n + 1)(n!)2
= 0.926987328.

In Exercises 53–56, express the integral as an infinite series.

53.
∫ x

0

1 − cos(t)

t
dt , for all x

solution The Maclaurin series for cos t is

cos t =
∞∑

n=0

(−1)n
t2n

(2n)! = 1 +
∞∑

n=1

(−1)n
t2n

(2n)! ,
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so

1 − cos t = −
∞∑

n=1

(−1)n
t2n

(2n)! =
∞∑

n=1

(−1)n+1 t2n

(2n)! ,

and

1 − cos t

t
= 1

t

∞∑
n=1

(−1)n+1 t2n

(2n)! =
∞∑

n=1

(−1)n+1 t2n−1

(2n)! .

Thus,

∫ x

0

1 − cos(t)

t
dt =

∞∑
n=1

(−1)n+1 t2n

(2n)!2n

∣∣∣∣∣
x

0

=
∞∑

n=1

(−1)n+1 x2n

(2n)!2n
.

54.
∫ x

0

t − sin t

t
dt , for all x

solution The Maclaurin series for sin t is

sin t =
∞∑

n=0

(−1)n
t2n+1

(2n + 1)! = t +
∞∑

n=1

(−1)n
t2n+1

(2n + 1)! ,

so

t − sin t = −
∞∑

n=1

(−1)n
t2n+1

(2n + 1)! =
∞∑

n=1

(−1)n+1 t2n+1

(2n + 1)! ,

and

t − sin t

t
= 1

t

∞∑
n=1

(−1)n+1 t2n+1

(2n + 1)! =
∞∑

n=1

(−1)n+1 t2n

(2n + 1)! .

Thus,

∫ x

0

t − sin(t)

t
dt =

∞∑
n=1

(−1)n+1 t2n+1

(2n + 1)!(2n + 1)

∣∣∣∣∣
x

0

=
∞∑

n=1

(−1)n+1 x2n+1

(2n + 1)!(2n + 1)
.

55.
∫ x

0
ln(1 + t2) dt , for |x| < 1

solution Substituting t2 for t in the Maclaurin series for ln(1 + t) yields

ln(1 + t2) =
∞∑

n=1

(−1)n−1 (t2)n

n
=

∞∑
n=1

(−1)n
t2n

n
.

Thus,

∫ x

0
ln(1 + t2) dt =

∞∑
n=1

(−1)n
t2n+1

n(2n + 1)

∣∣∣∣∣
x

0

=
∞∑

n=1

(−1)n
x2n+1

n(2n + 1)
.

56.
∫ x

0

dt√
1 − t4

, for |x| < 1

solution From Example 10, we know that for |t | < 1

1√
1 − t2

=
∞∑

n=0

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
t2n =

∞∑
n=0

(2n)!
22n(n!)2

t2n;

therefore,

1√
1 − t4

=
∞∑

n=0

(2n)!
22n(n!)2

(t2)2n =
∞∑

n=0

(2n)!
22n(n!)2

t4n,
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and

∫ x

0

dt√
1 − t4

=
∞∑

n=0

(2n)!
22n(n!)2

t4n+1

4n + 1

∣∣∣∣∣
x

0

=
∞∑

n=0

(2n)!
22n(n!)2

x4n+1

4n + 1
.

57. Which function has Maclaurin series
∞∑

n=0

(−1)n2nxn?

solution We recognize that

∞∑
n=0

(−1)n2nxn =
∞∑

n=0

(−2x)n

is the Maclaurin series for 1
1−x

with x replaced by −2x. Therefore,

∞∑
n=0

(−1)n2nxn = 1

1 − (−2x)
= 1

1 + 2x
.

58. Which function has Maclaurin series

∞∑
k=0

(−1)k

3k+1
(x − 3)k?

For which values of x is the expansion valid?

solution Write the series as

∞∑
k=0

(−1)k

3k+1
(x − 3)k = 1

3

∞∑
k=0

(
−x − 3

3

)k

,

which we recognize as 1
3 times the Maclaurin series for 1

1−x
with x replaced by − x−3

3 . Therefore,

∞∑
k=0

(−1)k

3k+1
(x − 3)k = 1

3
· 1

1 + x−3
3

= 1

3 + x − 3
= 1

x
.

The series is valid for
∣∣∣ x−3

3

∣∣∣ < 1, or |x − 3| < 3.

In Exercises 59–62, use Theorem 2 to prove that the f (x) is represented by its Maclaurin series on the interval I .

59. f (x) = sin
(
x
2

) + cos
(
x
3

)
,

solution All derivatives of f (x) consist of sin or cos applied to each of x/2 and x/3 and added together, so each

summand is bounded by 1. Thus
∣∣∣f (n)(x)

∣∣∣ ≤ 2 for all n and x. By Theorem 2, f (x) is represented by its Taylor series for
every x.

60. f (x) = e−x ,

solution For any c, choose any R > 0 and consider the interval (c − R, c + R). For f (x) = e−x , we have

∣∣∣f (n)(x)

∣∣∣ = ∣∣(−1)ne−x
∣∣ = e−x

and on (c − R, c + R), e−x is bounded above by e−(c−R) = eR−c. Thus all derivatives of f (x) are bounded by eR−c

for any x ∈ (c − R, c + R), so by Theorem 2, f (x) is represented by its Taylor series centered at c.

61. f (x) = sinh x,

solution By definition, sinh x = 1
2 (ex − e−x), so if both ex and e−x are represented by their Taylor series centered

at c, then so is sinh x. But the previous exercise shows that e−x is so represented, and the text shows that ex is.

62. f (x) = (1 + x)100

solution f (x) is a polynomial, so it is equal to its Taylor series and thus is obviously represented by its Taylor series.
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In Exercises 63–66, find the functions with the following Maclaurin series (refer to Table 1 on page 599).

63. 1 + x3 + x6

2! + x9

3! + x12

4! + · · ·
solution We recognize

1 + x3 + x6

2! + x9

3! + x12

4! + · · · =
∞∑

n=0

x3n

n! =
∞∑

n=0

(x3)n

n!

as the Maclaurin series for ex with x replaced by x3. Therefore,

1 + x3 + x6

2! + x9

3! + x12

4! + · · · = ex3
.

64. 1 − 4x + 42x2 − 43x3 + 44x4 − 45x5 + · · ·
solution We recognize

1 − 4x + 42x2 − 43x3 + 44x4 − 45x5 + · · · =
∞∑

n=0

(−4x)n

as the Maclaurin series for 1
1−x

with x replaced by −4x. Therefore,

1 − 4x + 42x2 − 43x3 + 44x4 − 45x5 + · · · = 1

1 − (−4x)
= 1

1 + 4x
.

65. 1 − 53x3

3! + 55x5

5! − 57x7

7! + · · ·
solution Note

1 − 53x3

3! + 55x5

5! − 57x7

7! + · · · = 1 − 5x +
(

5x − 53x3

3! + 55x5

5! − 57x7

7! + · · ·
)

= 1 − 5x +
∞∑

n=0

(−1)n
(5x)2n+1

(2n + 1)! .

The series is the Maclaurin series for sin x with x replaced by 5x, so

1 − 53x3

3! + 55x5

5! − 57x7

7! + · · · = 1 − 5x + sin(5x).

66. x4 − x12

3
+ x20

5
− x28

7
+ · · ·

solution We recognize

x4 − x12

3
+ x20

5
− x28

7
+ · · · =

∞∑
n=0

(−1)n
(x4)2n+1

2n + 1

as the Maclaurin series for tan−1 x with x replaced by x4. Therefore,

x4 − x12

3
+ x20

5
− x28

7
+ · · · = tan−1(x4).

In Exercises 67 and 68, let

f (x) = 1

(1 − x)(1 − 2x)

67. Find the Maclaurin series of f (x) using the identity

f (x) = 2

1 − 2x
− 1

1 − x
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solution Substituting 2x for x in the Maclaurin series for
1

1 − x
gives

1

1 − 2x
=

∞∑
n=0

(2x)n =
∞∑

n=0

2nxn

which is valid for |2x| < 1, or |x| < 1
2 . Because the Maclaurin series for

1

1 − x
is valid for |x| < 1, the two series

together are valid for |x| < 1
2 . Thus, for |x| < 1

2 ,

1

(1 − 2x)(1 − x)
= 2

1 − 2x
− 1

1 − x
= 2

∞∑
n=0

2nxn −
∞∑

n=0

xn

=
∞∑

n=0

2n+1xn −
∞∑

n=0

xn =
∞∑

n=0

(
2n+1 − 1

)
xn.

68. Find the Taylor series for f (x) at c = 2. Hint: Rewrite the identity of Exercise 67 as

f (x) = 2

−3 − 2(x − 2)
− 1

−1 − (x − 2)

solution Using the given identity,

f (x) = 2

−3 − 2(x − 2)
− 1

−1 − (x − 2)
= −2

3

1

1 + 2
3 (x − 2)

+ 1

1 + (x − 2)
.

Substituting − 2
3 (x − 2) for x in the Maclaurin series for 1

1−x
yields

1

1 + 2
3 (x − 2)

=
∞∑

n=0

(−1)n
(

2

3

)n

(x − 2)n,

and substituting −(x − 2) for x in the same Maclaurin series yields

1

1 + (x − 2)
=

∞∑
n=0

(−1)n(x − 2)n.

The first series is valid for
∣∣∣− 2

3 (x − 2)

∣∣∣ < 1, or |x − 2| < 3
2 , and the second series is valid for |x − 2| < 1; therefore, the

two series together are valid for |x − 2| < 1. Finally, for |x − 2| < 1,

f (x) = −2

3

∞∑
n=0

(−1)n
(

2

3

)n

(x − 2)n +
∞∑

n=0

(−1)n(x − 2)n =
∞∑

n=0

(−1)n

[
1 −

(
2

3

)n+1
]

(x − 2)n.

69. When a voltage V is applied to a series circuit consisting of a resistor R and an inductor L, the current at time t is

I (t) =
(

V

R

) (
1 − e−Rt/L

)

Expand I (t) in a Maclaurin series. Show that I (t) ≈ V t

L
for small t .

solution Substituting −Rt
L

for t in the Maclaurin series for et gives

e−Rt/L =
∞∑

n=0

(
−Rt

L

)n

n! =
∞∑

n=0

(−1)n

n!
(

R

L

)n

tn = 1 +
∞∑

n=1

(−1)n

n!
(

R

L

)n

tn

Thus,

1 − e−Rt/L = 1 −
⎛
⎝1 +

∞∑
n=1

(−1)n

n!
(

R

L

)n

tn

⎞
⎠ =

∞∑
n=1

(−1)n+1

n!
(

Rt

L

)n

,

and

I (t) = V

R

∞∑
n=1

(−1)n+1

n!
(

Rt

L

)n

= V t

L
+ V

R

∞∑
n=2

(−1)n+1

n!
(

Rt

L

)n

.



March 31, 2011

1342 C H A P T E R 10 INFINITE SERIES

If t is small, then we can approximate I (t) by the first (linear) term, and ignore terms with higher powers of t ; then we
find

V (t) ≈ V t

L
.

70. Use the result of Exercise 69 and your knowledge of alternating series to show that

V t

L

(
1 − R

2L
t

)
≤ I (t) ≤ V t

L
(for all t)

solution Since the series for I (t) is an alternating series, we know that the true value lies between any two successive
partial sums. Since the term for n = 2 is negative, we have

S2 ≤ I (t) ≤ S1 for all t

Clearly S1 = V t
L

, and

S2 = V t

L
+ V

R

(
−1

n! · R2t2

L2

)
= V t

L
− V R2t2

2RL2
= V t

L

(
1 − R

2L
t

)

71. Find the Maclaurin series for f (x) = cos(x3) and use it to determine f (6)(0).

solution The Maclaurin series for cos x is

cos x =
∞∑

n=0

(−1)n
x2n

(2n)!

Substituting x3 for x gives

cos(x3) =
∞∑

n=0

(−1)n
x6n

(2n)!

Now, the coefficient of x6 in this series is

− 1

2! = −1

2
= f (6)(0)

6!
so

f (6)(0) = −6!
2

= −360

72. Find f (7)(0) and f (8)(0) for f (x) = tan−1 x using the Maclaurin series.

solution The Maclaurin series for f (x) = tan−1x is:

∞∑
n=0

(−1)n
x2n+1

2n + 1
.

The coefficient of x7 in this series is

(−1)3

7
= −1

7
= f (7)(0)

7! ,

so

f (7)(0) = −7!
7

= −6! = −720.

The coefficient of x8 is 0, so f (8)(0) = 0.

73. Use substitution to find the first three terms of the Maclaurin series for f (x) = ex20
. How does the result

show that f (k)(0) = 0 for 1 ≤ k ≤ 19?

solution Substituting x20 for x in the Maclaurin series for ex yields

ex20 =
∞∑

n=0

(x20)n

n! =
∞∑

n=0

x20n

n! ;
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the first three terms in the series are then

1 + x20 + 1

2
x40.

Recall that the coefficient of xk in the Maclaurin series for f is f (k)(0)
k! . For 1 ≤ k ≤ 19, the coefficient of xk in the

Maclaurin series for f (x) = ex20
is zero; it therefore follows that

f (k)(0)

k! = 0 or f (k)(0) = 0

for 1 ≤ k ≤ 19.

74. Use the binomial series to find f (8)(0) for f (x) =
√

1 − x2.

solution We obtain the Maclaurin series for f (x) =
√

1 − x2 by substituting −x2 for x in the binomial series with

a = 1
2 . This gives

√
1 − x2 =

∞∑
n=0

( 1
2
n

)(
−x2

)n =
∞∑

n=0

(−1)n
( 1

2
n

)
x2n.

The coefficient of x8 is

(−1)4
( 1

2
4

)
=

1
2

(
1
2 − 1

) (
1
2 − 2

) (
1
2 − 3

)
4! = − 15

16 · 4! = f (8)(0)

8! ,

so

f (8) (0) = −15 · 8!
16 · 4! = −1575.

75. Does the Maclaurin series for f (x) = (1 + x)3/4 converge to f (x) at x = 2? Give numerical evidence to support
your answer.

solution The Taylor series for f (x) = (1 + x)3/4 converges to f (x) for |x| < 1; because x = 2 is not contained on
this interval, the series does not converge to f (x) at x = 2. The graph below displays

SN =
N∑

n=0

( 3
4
n

)
2n

for 0 ≤ N ≤ 14. The divergent nature of the sequence of partial sums is clear.

0
2 14106 8 124

5

10

15

−20

−15

−10

−5

SN

N

76. Explain the steps required to verify that the Maclaurin series for f (x) = ex converges to f (x) for all x.

solution To show that the Maclaurin series for ex converges to ex for all x, we show that for any real number c,
the Maclaurin series converges to ex on an interval containing c. To do this, it suffices to show that for any interval
I = (−R, R), the Maclaurin series for ex converges to ex on I , since each real number is contained in some such interval.
By Theorem 2, it suffices to show that there is a number K that bounds all derivatives of ex for all numbers in the interval
(−R, R). But each derivative of ex is also ex , so it suffices to show that there is a number K that bounds ex for all
x ∈ (−R, R). But ex is an increasing function, so that ex < eR for all x ∈ (−R, R). Thus K = eR is the bound we want.
Theorem 2 then assures us that the Maclaurin series for ex converges to ex on I .

77. Let f (x) = √
1 + x.

(a) Use a graphing calculator to compare the graph of f with the graphs of the first five Taylor polynomials for f . What
do they suggest about the interval of convergence of the Taylor series?

(b) Investigate numerically whether or not the Taylor expansion for f is valid for x = 1 and x = −1.
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solution

(a) The five first terms of the Binomial series with a = 1
2 are

√
1 + x = 1 + 1

2
x +

1
2

(
1
2 − 1

)
2! x2 +

1
2

(
1
2 − 1

) (
1
2 − 2

)
3! x3 +

1
2

(
1
2 − 1

) (
1
2 − 2

) (
1
2 − 3

)
4! x4 + · · ·

= 1 + 1

2
x − 1

8
x2 + 9

4
x3 − 45

2
x4 + · · ·

Therefore, the first five Taylor polynomials are

T0(x) = 1;

T1(x) = 1 + 1

2
x;

T2(x) = 1 + 1

2
x − 1

8
x2;

T3(x) = 1 + 1

2
x − 1

8
x2 + 1

8
x3;

T4(x) = 1 + 1

2
x − 1

8
x2 + 1

8
x3 − 5

128
x4.

The figure displays the graphs of these Taylor polynomials, along with the graph of the function f (x) = √
1 + x, which

is shown in red.

–1 0.5 0.5 1

1.5

1

1.5

The graphs suggest that the interval of convergence for the Taylor series is −1 < x < 1.

(b) Using a computer algebra system to calculate SN =
N∑

n=0

( 1
2
n

)
xn for x = 1 we find

S10 = 1.409931183, S100 = 1.414073048, S1000 = 1.414209104,

which appears to be converging to
√

2 as expected. At x = −1 we calculate SN =
N∑

n=0

( 1
2
n

)
· (−1)n, and find

S10 = 0.176197052, S100 = 0.056348479, S1000 = 0.017839011,

which appears to be converging to zero, though slowly.

78. Use the first five terms of the Maclaurin series for the elliptic function E(k) to estimate the period T of a 1-meter
pendulum released at an angle θ = π

4 (see Example 11).

solution The period T of a pendulum of length L released from an angle θ is

T = 4

√
L

g
E(k),

where g ≈ 9.8 m/s2 is the acceleration due to gravity, E(k) is the elliptic function of the first kind and k = sin θ
2 . From

Example 11, we know that

E(k) = π

2

∞∑
n=0

(
1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

)2
k2n.

With θ = π
4 ,

k = sin
π

8
=

√
2 − √

2

2
,
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and using the first five terms of the series for E(k), we find

E
(

sin
π

8

)
≈ π

2

(
1 +

(
1

2

)2
sin2 π

8
+
(

1 · 3

2 · 4

)2
sin4 π

8
+
(

1 · 3 · 5

2 · 4 · 6

)2
sin6 π

8
+
(

1 · 3 · 5 · 7

2 · 4 · 6 · 8

)2
sin8 π

8

)

= 1.633578996

Therefore,

T ≈ 4

√
1

9.8
· 1.633578996 = 2.09 seconds.

79. Use Example 11 and the approximation sin x ≈ x to show that the period T of a pendulum released at an angle θ has
the following second-order approximation:

T ≈ 2π

√
L

g

(
1 + θ2

16

)

solution The period T of a pendulum of length L released from an angle θ is

T = 4

√
L

g
E(k),

where g ≈ 9.8 m/s2 is the acceleration due to gravity, E(k) is the elliptic function of the first kind and k = sin θ
2 . From

Example 11, we know that

E(k) = π

2

∞∑
n=0

(
1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

)2
k2n.

Using the approximation sin x ≈ x, we have

k = sin
θ

2
≈ θ

2
;

moreover, using the first two terms of the series for E(k), we find

E(k) ≈ π

2

[
1 +

(
1

2

)2 ( θ

2

)2
]

= π

2

(
1 + θ2

16

)
.

Therefore,

T = 4

√
L

g
E(k) ≈ 2π

√
L

g

(
1 + θ2

16

)
.

In Exercises 80–83, find the Maclaurin series of the function and use it to calculate the limit.

80. lim
x→0

cos x − 1 + x2

2

x4

solution Using the Maclaurin series for cos x, we find

cos x =
∞∑

n=0

(−1)n
x2n

(2n)! = 1 − x2

2
+ x4

24
+

∞∑
n=3

(−1)n
x2n

(2n)! .

Thus,

cos x − 1 + x2

2
= x4

24
+

∞∑
n=3

(−1)n
x2n

(2n)!

and

cos x − 1 + x2

2

x4
= 1

24
+

∞∑
n=3

(−1)n
x2n−4

(2n)!
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Note that the radius of convergence for this series is infinite, and recall from the previous section that a convergent power
series is continuous within its radius of convergence. Thus to calculate the limit of this power series as x → 0 it suffices
to evaluate it at x = 0:

lim
x→0

cos x − 1 + x2

2

x4
= lim

x→0

⎛
⎝ 1

24
+

∞∑
n=3

(−1)n
x2n−4

(2n)!

⎞
⎠ = 1

24
+ 0 = 1

24
.

81. lim
x→0

sin x − x + x3

6
x5

solution Using the Maclaurin series for sin x, we find

sin x =
∞∑

n=0

(−1)n
x2n+1

(2n + 1)! = x − x3

6
+ x5

120
+

∞∑
n=3

(−1)n
x2n+1

(2n + 1)! .

Thus,

sin x − x + x3

6
= x5

120
+

∞∑
n=3

(−1)n
x2n+1

(2n + 1)!

and

sin x − x + x3

6
x5 = 1

120
+

∞∑
n=3

(−1)n
x2n−4

(2n + 1)!

Note that the radius of convergence for this series is infinite, and recall from the previous section that a convergent power
series is continuous within its radius of convergence. Thus to calculate the limit of this power series as x → 0 it suffices
to evaluate it at x = 0:

lim
x→0

sin x − x + x3

6
x5 = lim

x→0

⎛
⎝ 1

120
+

∞∑
n=3

(−1)n
x2n−4

(2n + 1)!

⎞
⎠ = 1

120
+ 0 = 1

120

82. lim
x→0

tan−1 x − x cos x − 1
6x3

x5

solution Start with the Maclaurin series for tan−1 x and cos x:

tan−1 x =
∞∑

n=0

(−1)n
x2n+1

2n + 1
cos x =

∞∑
n=0

(−1)n
x2n

(2n)!

Then

x cos x =
∞∑

n=0

(−1)n
x2n+1

(2n)!

so that

tan−1 x − x cos x =
∞∑

n=0

(−1)n
(

1

2n + 1
− 1

(2n)!
)

x2n+1

= 1

6
x3 + 19

120
x5 +

∞∑
n=3

(−1)n
(

1

2n + 1
− 1

(2n)!
)

x2n+1

and

tan−1 x − x cos x − 1
6x3

x5 = 19

120
+

∞∑
n=3

(−1)n
(

1

2n + 1
− 1

(2n)!
)

x2n−4
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Since the radius of convergence of the series for tan−1 x is 1 and that of cos x is infinite, the radius of convergence of this
series is 1. Recall from the previous section that a convergent power series is continuous within its radius of convergence.
Thus to calculate the limit of this power series as x → 0 it suffices to evaluate it at x = 0:

lim
x→0

tan−1 x − x cos x − 1
6x3

x5 = lim
x→0

⎛
⎝ 19

120
+

∞∑
n=3

(−1)n
(

1

2n + 1
− 1

(2n)!
)

x2n−4

⎞
⎠ = 19

120
+ 0 = 19

120

83. lim
x→0

(
sin(x2)

x4
− cos x

x2

)

solution We start with

sin x =
∞∑

n=0

(−1)n
x2n+1

(2n + 1)! cos x =
∞∑

n=0

(−1)n
x2n

(2n)!

so that

sin(x2)

x4
=

∞∑
n=0

(−1)n
x4n+2

(2n + 1)!x4
=

∞∑
n=0

(−1)n
x4n−2

(2n + 1)!

cos x

x2
=

∞∑
n=0

(−1)n
x2n−2

(2n)!

Expanding the first few terms gives

sin(x2)

x4
= 1

x2
−

∞∑
n=1

(−1)n
x4n−2

(2n + 1)!

cos x

x2
= 1

x2
− 1

2
+

∞∑
n=2

(−1)n
x2n−2

(2n)!

so that

sin(x2)

x4
− cos x

x2
= 1

2
−

∞∑
n=1

(−1)n
x4n−2

(2n + 1)! −
∞∑

n=2

(−1)n
x2n−2

(2n)!

Note that all terms under the summation signs have positive powers of x. Now, the radius of convergence of the series
for both sin and cos is infinite, so the radius of convergence of this series is infinite. Recall from the previous section that
a convergent power series is continuous within its radius of convergence. Thus to calculate the limit of this power series
as x → 0 it suffices to evaluate it at x = 0:

lim
x→0

(
sin(x2)

x4
− cos x

x2

)
= lim

x→0

⎛
⎝1

2
−

∞∑
n=1

(−1)n
x4n−2

(2n + 1)! −
∞∑

n=2

(−1)n
x2n−2

(2n)!

⎞
⎠ = 1

2
+ 0 = 1

2

Further Insights and Challenges
84. In this exercise we show that the Maclaurin expansion of f (x) = ln(1 + x) is valid for x = 1.

(a) Show that for all x 	= −1,

1

1 + x
=

N∑
n=0

(−1)nxn + (−1)N+1xN+1

1 + x

(b) Integrate from 0 to 1 to obtain

ln 2 =
N∑

n=1

(−1)n−1

n
+ (−1)N+1

∫ 1

0

xN+1 dx

1 + x

(c) Verify that the integral on the right tends to zero as N → ∞ by showing that it is smaller than
∫ 1

0 xN+1dx.
(d) Prove the formula

ln 2 = 1 − 1

2
+ 1

3
− 1

4
+ · · ·



March 31, 2011

1348 C H A P T E R 10 INFINITE SERIES

solution

(a) Substituting −x for x in the Maclaurin series for 1
1−x

yields

1

1 + x
=

∞∑
n=0

(−1)nxn.

Now, rewrite the series as

N∑
n=0

(−1)nxn +
∞∑

n=N+1

(−1)nxn,

and use the formula for the sum of a geometric series on the second term to obtain

1

1 + x
=

N∑
n=0

(−1)nxn + (−1)N+1xN+1

1 + x
.

(b) Integrate the equation derived in part (a) from 0 to 1 to obtain

ln(1 + x)

∣∣∣∣1
0

=
N∑

n=0

(−1)n
xn+1

n + 1

∣∣∣∣1
0

+ (−1)N+1
∫ 1

0

xN+1

1 + x
dx,

or

ln 2 =
N∑

n=0

(−1)n

n + 1
+ (−1)N+1

∫ 1

0

xN+1

1 + x
dx =

N+1∑
n=1

(−1)n−1

n
+ (−1)N+1

∫ 1

0

xN+1

1 + x
dx.

(c) For 0 < x < 1,

0 ≤ xN+1

1 + x
≤ xN+1 so 0 ≤

∫ 1

0

xN+1

1 + x
dx ≤

∫ 1

0
xN+1 dx.

Now,

∫ 1

0
xN+1 dx = xN+2

N + 2

∣∣∣∣∣
1

0

= 1

N + 2
→ 0 as N → ∞.

Thus, by the Squeeze Theorem,

lim
N→∞

∫ 1

0

xN+1

1 + x
dx = 0.

(d) Taking the limit as N → ∞ of the equation derived in part (b) and using the result from part (c), we find

ln 2 =
∞∑

n=1

(−1)n−1

n
= 1 − 1

2
+ 1

3
− 1

4
+ · · · .

85. Let g(t) = 1

1 + t2
− t

1 + t2
.

(a) Show that
∫ 1

0
g(t) dt = π

4
− 1

2
ln 2.

(b) Show that g(t) = 1 − t − t2 + t3 − t4 − t5 + · · · .

(c) Evaluate S = 1 − 1
2 − 1

3 + 1
4 − 1

5 − 1
6 + · · · .

solution
(a)

∫ 1

0
g(t) dt =

(
tan−1 t − 1

2
ln(t2 + 1)

) ∣∣∣∣1
0

= tan−1 1 − 1

2
ln 2 = π

4
− 1

2
ln 2

(b) Start with the Taylor series for 1
1+t

:

1

1 + t
=

∞∑
n=0

(−1)ntn
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and substitute t2 for t to get

1

1 + t2
=

∞∑
n=0

(−1)nt2n = 1 − t2 + t4 − t6 + . . .

so that

t

1 + t2
=

∞∑
n=0

(−1)nt2n+1 = t − t3 + t5 − t7 + . . .

Finally,

g(t) = 1

1 + t2
− t

1 + t2
= 1 − t − t2 + t3 + t4 − t5 − t6 + t7 + . . .

(c) We have∫
g(t) dt =

∫
(1 − t − t2 + t3 + t4 − t5 − . . . ) dt = t − 1

2
t2 − 1

3
t3 + 1

4
t4 + 1

5
t5 − 1

6
t6 − · · · + C

The radius of convergence of the series for g(t) is 1, so the radius of convergence of this series is also 1. However, this
series converges at the right endpoint, t = 1, since(

1 − 1

2

)
−
(

1

3
− 1

4

)
+
(

1

5
− 1

6

)
− . . .

is an alternating series with general term decreasing to zero. Thus by part (a),

1 − 1

2
− 1

3
+ 1

4
+ 1

5
− 1

6
− · · · = π

4
− 1

2
ln 2

In Exercises 86 and 87, we investigate the convergence of the binomial series

Ta(x) =
∞∑

n=0

(
a

n

)
xn

86. Prove that Ta(x) has radius of convergence R = 1 if a is not a whole number. What is the radius of convergence if a

is a whole number?

solution Suppose that a is not a whole number. Then(
a

n

)
= a (a − 1) · · · (a − n + 1)

n!
is never zero. Moreover,∣∣∣∣∣∣∣∣

(
a

n + 1

)
(

a

n

)
∣∣∣∣∣∣∣∣
=
∣∣∣∣a(a − 1) · · · (a − n + 1)(a − n)

(n + 1)! · n!
a(a − 1) · · · (a − n + 1)

∣∣∣∣ =
∣∣∣∣a − n

n + 1

∣∣∣∣ ,

so, by the formula for the radius of convergence

r = lim
n→∞

∣∣∣∣a − n

n + 1

∣∣∣∣ = 1.

The radius of convergence of Ta(x) is therefore R = r−1 = 1.

If a is a whole number, then

(
a

n

)
= 0 for all n > a. The infinite series then reduces to a polynomial of degree a,

so it converges for all x (i.e. R = ∞).

87. By Exercise 86, Ta(x) converges for |x| < 1, but we do not yet know whether Ta(x) = (1 + x)a .

(a) Verify the identity

a

(
a

n

)
= n

(
a

n

)
+ (n + 1)

(
a

n + 1

)

(b) Use (a) to show that y = Ta(x) satisfies the differential equation (1 + x)y′ = ay with initial condition y(0) = 1.

(c) Prove that Ta(x) = (1 + x)a for |x| < 1 by showing that the derivative of the ratio
Ta(x)

(1 + x)a
is zero.
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solution
(a)

n

(
a

n

)
+ (n + 1)

(
a

n + 1

)
= n · a (a − 1) · · · (a − n + 1)

n! + (n + 1) · a (a − 1) · · · (a − n + 1) (a − n)

(n + 1)!

= a (a − 1) · · · (a − n + 1)

(n − 1)! + a (a − 1) · · · (a − n + 1) (a − n)

n!

= a (a − 1) · · · (a − n + 1) (n + (a − n))

n! = a ·
(

a

n

)

(b) Differentiating Ta(x) term-by-term yields

T ′
a(x) =

∞∑
n=1

n

(
a

n

)
xn−1.

Thus,

(1 + x)T ′
a(x) =

∞∑
n=1

n

(
a

n

)
xn−1 +

∞∑
n=1

n

(
a

n

)
xn =

∞∑
n=0

(n + 1)

(
a

n + 1

)
xn +

∞∑
n=0

n

(
a

n

)
xn

=
∞∑

n=0

[
(n + 1)

(
a

n + 1

)
+ n

(
a

n

)]
xn = a

∞∑
n=0

(
a

n

)
xn = aTa(x).

Moreover,

Ta(0) =
(

a

0

)
= 1.

(c)

d

dx

(
Ta(x)

(1 + x)a

)
= (1 + x)aT ′

a(x) − a(1 + x)a−1Ta(x)

(1 + x)2a
= (1 + x)T ′

a(x) − aTa(x)

(1 + x)a+1
= 0.

Thus,

Ta(x)

(1 + x)a
= C,

for some constant C. For x = 0,

Ta(0)

(1 + 0)a
= 1

1
= 1, so C = 1.

Finally, Ta(x) = (1 + x)a .

88. The function G(k) = ∫ π/2
0

√
1 − k2 sin2 t dt is called an elliptic function of the second kind. Prove that for |k| < 1,

G(k) = π

2
− π

2

∞∑
n=1

(
1 · 3 · · · (2n − 1)

2 · · · 4 · (2n)

)2 k2n

2n − 1

solution For |k| < 1, |k2 sin2 t | < 1 for all t . Substituting −k2 sin2 t for t in the binomial series for a = 1
2 , we find

√
1 − k2 sin2 t = 1 +

∞∑
n=1

( 1
2
n

)(
−k2 sin2 t

)n

= 1 +
∞∑

n=1

(−1)n
1
2

(
1
2 − 1

) (
1
2 − 2

)
· · ·

(
1
2 − n + 1

)
n! k2n sin2n t

= 1 +
∞∑

n=1

(−1)n
1(1 − 2)(1 − 4) · · · (1 − 2(n − 1))

2nn! k2n sin2n t

= 1 +
∞∑

n=1

(−1)n(−1)n−1 (2 − 1)(4 − 1) · · · (2n − 3)

2nn! k2n sin2n t

= 1 −
∞∑

n=1

1 · 3 · 5 · · · (2n − 3)

2 · 4 · 6 · · · (2n)
k2n sin2n t.
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Integrating from 0 to π
2 term-by-term, we obtain

G(k) = π

2
−

∞∑
n=1

1 · 3 · 5 · · · (2n − 3)

2 · 4 · 6 · · · (2n)
k2n

∫ π/2

0
sin2n t dt.

Finally, using the formula

∫ π/2

0
sin2n t dt = 1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

π

2
,

we arrive at

G(k) = π

2
− π

2

∞∑
n=1

(
1 · 3 · 5 · · · (2n − 3)

2 · 4 · 6 · · · (2n)

)2
(2n − 1)k2n = π

2
− π

2

∞∑
n=1

(
1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

)2 k2n

2n − 1
.

89. Assume that a < b and let L be the arc length (circumference) of the ellipse
(
x
a

)2 + ( y
b

)2 = 1 shown in Figure 5.

There is no explicit formula for L, but it is known that L = 4bG(k), with G(k) as in Exercise 88 and k =
√

1 − a2/b2.
Use the first three terms of the expansion of Exercise 88 to estimate L when a = 4 and b = 5.

a

b

y

x

FIGURE 5 The ellipse
(x

a

)2 +
(y

b

)2 = 1.

solution With a = 4 and b = 5,

k =
√

1 − 42

52
= 3

5
,

and the arc length of the ellipse
(x

4

)2 +
(y

5

)2 = 1 is

L = 20G

(
3

5

)
= 20

⎛
⎜⎝π

2
− π

2

∞∑
n=1

(
1 · 3 · · · (2n − 1)

2 · 4 · · · (2n)

)2
(

3
5

)2n

2n − 1

⎞
⎟⎠ .

Using the first three terms in the series for G(k) gives

L ≈ 10π − 10π

((
1

2

)2
· (3/5)2

1
+
(

1 · 3

2 · 4

)2
· (3/5)4

3

)
= 10π

(
1 − 9

100
− 243

40,000

)
= 36,157π

4000
≈ 28.398.

90. Use Exercise 88 to prove that if a < b and a/b is near 1 (a nearly circular ellipse), then

L ≈ π

2

(
3b + a2

b

)
Hint: Use the first two terms of the series for G(k).

solution From the previous exercise, we know that

L = 4bG(k), where k =
√

1 − a2

b2
.

Following the hint and using only the first two terms of the series expansion for G(k) from Exercise 88, we find

L ≈ 4b

(
π

2
− π

2

(
1

2

)2
k2

)
= π

2

(
4b − b

(
1 − a2

b2

))
= π

2

(
3b + a2

b

)
.



March 31, 2011

1352 C H A P T E R 10 INFINITE SERIES

91. Irrationality of e Prove that e is an irrational number using the following argument by contradiction. Suppose that
e = M/N , where M, N are nonzero integers.

(a) Show that M! e−1 is a whole number.

(b) Use the power series for ex at x = −1 to show that there is an integer B such that M! e−1 equals

B + (−1)M+1
(

1

M + 1
− 1

(M + 1)(M + 2)
+ · · ·

)

(c) Use your knowledge of alternating series with decreasing terms to conclude that 0 < |M! e−1 − B| < 1 and observe
that this contradicts (a). Hence, e is not equal to M/N .

solution Suppose that e = M/N , where M, N are nonzero integers.

(a) With e = M/N ,

M!e−1 = M! N
M

= (M − 1)!N,

which is a whole number.

(b) Substituting x = −1 into the Maclaurin series for ex and multiplying the resulting series by M! yields

M!e−1 = M!
(

1 − 1 + 1

2! − 1

3! + · · · + (−1)k

k! + · · ·
)

.

For all k ≤ M ,
M!
k! is a whole number, so

M!
(

1 − 1 + 1

2! − 1

3! + · · · + (−1)k

M!

)

is an integer. Denote this integer by B. Thus,

M! e−1 = B + M!
(

(−1)M+1

(M + 1)! + (−1)M+2

(M + 2)! + · · ·
)

= B + (−1)M+1
(

1

M + 1
− 1

(M + 1)(M + 2)
+ · · ·

)
.

(c) The series for M! e−1 obtained in part (b) is an alternating series with an = M!
n! . Using the error bound for an

alternating series and noting that B = SM , we have

∣∣∣M! e−1 − B

∣∣∣ ≤ aM+1 = 1

M + 1
< 1.

This inequality implies that M! e−1 − B is not a whole number; however, B is a whole number so M! e−1 cannot be a
whole number. We get a contradiction to the result in part (a), which proves that the original assumption that e is a rational
number is false.

92. Use the result of Exercise 73 in Section 4.5 to show that the Maclaurin series of the function

f (x) =
{

e−1/x2
for x 	= 0

0 for x = 0

is T (x) = 0. This provides an example of a function f (x) whose Maclaurin series converges but does not converge to
f (x) (except at x = 0).

solution By the referenced exercise, f (x) has continuous derivatives of all orders at 0, and f (n)(0) = 0 for all n > 0.
But then the Maclaurin series is

f (x) =
∞∑

n=0

f (n)(0)

n! xn = f (0) +
∞∑

n=1

f (n)(0)

n! xn = 0

CHAPTER REVIEW EXERCISES

1. Let an = n − 3

n! and bn = an+3. Calculate the first three terms in each sequence.

(a) a2
n (b) bn

(c) anbn (d) 2an+1 − 3an
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solution

(a)

a2
1 =

(
1 − 3

1!
)2

= (−2)2 = 4;

a2
2 =

(
2 − 3

2!
)2

=
(

−1

2

)2
= 1

4
;

a2
3 =

(
3 − 3

3!
)2

= 0.

(b)

b1 = a4 = 4 − 3

4! = 1

24
;

b2 = a5 = 5 − 3

5! = 1

60
;

b3 = a6 = 6 − 3

6! = 1

240
.

(c) Using the formula for an and the values in (b) we obtain:

a1b1 = 1 − 3

1! · 1

24
= − 1

12
;

a2b2 = 2 − 3

2! · 1

60
= − 1

120
;

a3b3 = 3 − 3

3! · 1

240
= 0.

(d)

2a2 − 3a1 = 2

(
−1

2

)
− 3(−2) = 5;

2a3 − 3a2 = 2 · 0 − 3

(
−1

2

)
= 3

2
;

2a4 − 3a3 = 2 · 1

24
− 3 · 0 = 1

12
.

2. Prove that lim
n→∞

2n − 1

3n + 2
= 2

3
using the limit definition.

solution Note ∣∣∣∣2n − 1

3n + 2
− 2

3

∣∣∣∣ =
∣∣∣∣6n − 3 − 2(3n + 2)

3(3n + 2)

∣∣∣∣ =
∣∣∣∣− 7

3(3n + 2)

∣∣∣∣ = 7

3(3n + 2)
<

7

9n
.

Therefore, to have
∣∣∣an − 2

3

∣∣∣ < ε, we need

7

9n
< ε or n >

7

9ε
.

Thus, let ε > 0 and take M = 7
9ε

. Then, whenever n > M ,∣∣∣∣2n − 1

3n + 2
− 2

3

∣∣∣∣ = 7

3(3n + 2)
<

7

9n
<

7

9
· 9ε

7
= ε.

In Exercises 3–8, compute the limit (or state that it does not exist) assuming that lim
n→∞ an = 2.

3. lim
n→∞(5an − 2a2

n)

solution

lim
n→∞

(
5an − 2a2

n

)
= 5 lim

n→∞ an − 2 lim
n→∞ a2

n = 5 lim
n→∞ an − 2

(
lim

n→∞ an

)2 = 5 · 2 − 2 · 22 = 2.
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4. lim
n→∞

1

an

solution lim
n→∞

1

an
= 1

limn→∞ an
= 1

2
.

5. lim
n→∞ ean

solution The function f (x) = ex is continuous, hence:

lim
n→∞ ean = elimn→∞ an = e2.

6. lim
n→∞ cos(πan)

solution The function f (x) = cos(πx) is continuous, hence:

lim
n→∞ cos(πan) = cos

(
π lim

n→∞ an

)
= cos(2π) = 1.

7. lim
n→∞(−1)nan

solution Because lim
n→∞ an 	= 0, it follows that lim

n→∞(−1)nan does not exist.

8. lim
n→∞

an + n

an + n2

solution Because the sequence {an} converges, {an} is bounded and

lim
n→∞

an

n2
= 0.

Thus,

lim
n→∞

an + n

an + n2
= lim

n→∞

an

n2 + 1
n

an

n2 + 1
= 0 + 0

0 + 1
= 0.

In Exercises 9–22, determine the limit of the sequence or show that the sequence diverges.

9. an = √
n + 5 − √

n + 2

solution First rewrite an as follows:

an =
(√

n + 5 − √
n + 2

) (√
n + 5 + √

n + 2
)

√
n + 5 + √

n + 2
= (n + 5) − (n + 2)√

n + 5 + √
n + 2

= 3√
n + 5 + √

n + 2
.

Thus,

lim
n→∞ an = lim

n→∞
3√

n + 5 + √
n + 2

= 0.

10. an = 3n3 − n

1 − 2n3

solution lim
n→∞ an = lim

n→∞
3n3 − n

1 − 2n3
= −3

2
.

11. an = 21/n2

solution The function f (x) = 2x is continuous, so

lim
n→∞ an = lim

n→∞ 21/n2 = 2limn→∞(1/n2) = 20 = 1.

12. an = 10n

n!
solution For n > 10, write an as

0 ≤ an =
(

10

1
· 10

2
· · · · · 10

10

)
︸ ︷︷ ︸

equals 1010
10!

(
10

11

)
·
(

10

12

)
· · · · ·

(
10

n

)
︸ ︷︷ ︸

each factor is less than 1

<
1010

10! · 10

n
= 1010

9!n ;

Thus, by the Squeeze Theorem, lim
n→∞ an = 0.
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13. bm = 1 + (−1)m

solution Because 1 + (−1)m is equal to 0 for m odd and is equal to 2 for m even, the sequence {bm} does not approach
one limit; hence this sequence diverges.

14. bm = 1 + (−1)m

m

solution The numerator is equal to zero for m odd and is equal to 2 for m even. Therefore,

0 ≤ 1 + (−1)m

m
≤ 2

m
,

and by the Squeeze Theorem, lim
m→∞ bm = 0.

15. bn = tan−1
(

n + 2

n + 5

)

solution The function tan−1x is continuous, so

lim
n→∞ bn = lim

n→∞ tan−1
(

n + 2

n + 5

)
= tan−1

(
lim

n→∞
n + 2

n + 5

)
= tan−1 1 = π

4
.

16. an = 100n

n! − 3 + πn

5n

solution For n > 100,

0 ≤ 100n

n! =
(

100

1
· 100

2
· · · 100

100

)
100

101
· 100

102
· 100

n
<

100100

99!n ;

therefore,

lim
n→∞

100n

n! = 0

by the Squeeze Theorem. Moreover,

lim
n→∞

(
3 + πn

5n

)
= lim

n→∞
3

5n
+ lim

n→∞
(π

5

)n = 0 + 0 = 0.

Thus,

lim
n→∞ an = 0 + 0 = 0.

17. bn =
√

n2 + n −
√

n2 + 1

solution Rewrite bn as

bn =
(√

n2 + n −
√

n2 + 1
) (√

n2 + n +
√

n2 + 1
)

√
n2 + n +

√
n2 + 1

=
(
n2 + n

)
−
(
n2 + 1

)
√

n2 + n +
√

n2 + 1
= n − 1√

n2 + n +
√

n2 + 1
.

Then

lim
n→∞ bn = lim

n→∞
n
n − 1

n√
n2

n2 + n
n2 +

√
n2

n2 + 1
n2

= lim
n→∞

1 − 1
n√

1 + 1
n +

√
1 + 1

n2

= 1 − 0√
1 + 0 + √

1 + 0
= 1

2
.

18. cn =
√

n2 + n −
√

n2 − n

solution Rewrite cn as

cn =
(√

n2 + n −
√

n2 − n
) (√

n2 + n +
√

n2 − n
)

√
n2 + n +

√
n2 − n

=
(
n2 + n

)
−
(
n2 − n

)
√

n2 + n +
√

n2 − n
= 2n√

n2 + n +
√

n2 − n
.

Then

lim
n→∞ cn = lim

n→∞
2n
n√

n2

n2 + n
n2 +

√
n2

n2 − n
n2

= lim
n→∞

2√
1 + 1

n +
√

1 − 1
n

= 2√
1 + 0 + √

1 − 0
= 1.
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19. bm =
(

1 + 1

m

)3m

solution lim
m→∞ bm = lim

m→∞

(
1 + 1

m

)m

= e.

20. cn =
(

1 + 3

n

)n

solution Write

cn =
(

1 + 1

n/3

)n

=
[(

1 + 1

n/3

)n/3
]3

.

Then, because x3 is a continuous function,

lim
n→∞ cn =

[
lim

n→∞

(
1 + 1

n/3

)n/3
]3

= e3.

21. bn = n
(

ln(n + 1) − ln n
)

solution Write

bn = n ln

(
n + 1

n

)
=

ln
(

1 + 1
n

)
1
n

.

Using L’Hôpital’s Rule, we find

lim
n→∞ bn = lim

n→∞
ln
(

1 + 1
n

)
1
n

= lim
x→∞

ln
(

1 + 1
x

)
1
x

= lim
x→∞

(
1 + 1

x

)−1 ·
(
− 1

x2

)
− 1

x2

= lim
x→∞

(
1 + 1

x

)−1
= 1.

22. cn = ln(n2 + 1)

ln(n3 + 1)

solution Using L’Hôpital’s Rule, we find

lim
n→∞ cn = lim

n→∞
ln(n2 + 1)

ln(n3 + 1)
= lim

n→∞
2n/(n2 + 1)

3n2/(n3 + 1)
= lim

n→∞
2n4 + 2n

3n4 + 3n2
= lim

n→∞
2 + 2n−3

3 + 3n−2
= 2

3

23. Use the Squeeze Theorem to show that lim
n→∞

arctan(n2)√
n

= 0.

solution For all x,

−π

2
< arctan x <

π

2
,

so

−π/2√
n

<
arctan(n2)√

n
<

π/2√
n

,

for all n. Because

lim
n→∞

(
−π/2√

n

)
= lim

n→∞
π/2√

n
= 0,

it follows by the Squeeze Theorem that

lim
n→∞

arctan(n2)√
n

= 0.

24. Give an example of a divergent sequence {an} such that {sin an} is convergent.

solution Let an = (−1)nπ . This is an alternating series, which does not approach 0, hence it diverges. However, an

is a multiple of π for every n, and thus, sin an = 0. Since {sin an} is a constant sequence, it converges.



March 31, 2011

Chapter Review Exercises 1357

25. Calculate lim
n→∞

an+1

an
, where an = 1

2
3n − 1

3
2n.

solution Because

1

2
3n − 1

3
2n ≥ 1

2
3n − 1

3
3n = 3n

6

and

lim
n→∞

3n

6
= ∞,

we conclude that limn→∞ an = ∞, so L’Hôpital’s rule may be used:

lim
n→∞

an+1

an
= lim

n→∞
1
2 3n+1 − 1

3 2n+1

1
2 3n − 1

3 2n
= lim

n→∞
3n+2 − 2n+2

3n+1 − 2n+1
= lim

n→∞
3 − 2

(
2
3

)n+1

1 −
(

2
3

)n+1
= 3 − 0

1 − 0
= 3.

26. Define an+1 = √
an + 6 with a1 = 2.

(a) Compute an for n = 2, 3, 4, 5.

(b) Show that {an} is increasing and is bounded by 3.

(c) Prove that lim
n→∞ an exists and find its value.

solution

(a) We compute the first four values of an recursively:

a2 = √
a1 + 6 = √

2 + 6 = √
8 = 2

√
2 ≈ 2.828427;

a3 = √
a2 + 6 =

√
2
√

2 + 6 ≈ 2.971267;

a4 = √
a3 + 6 =

√√
2
√

2 + 6 + 6 ≈ 2.995207;

a5 = √
a4 + 6 =

√√√
2
√

2 + 6 + 6 + 6 ≈ 2.999201.

(b) By part (a) and the given data, a2 ≈ 2.8 and a1 = 2, so a2 > a1. Now, suppose that ak > ak−1; then

ak+1 = √
ak + 6 >

√
ak−1 + 6 = ak.

Thus, by mathematical induction, an+1 > an for all n and {an} is increasing.
Next, note that a1 = 2 < 3. Suppose ak < 3, then

ak+1 = √
ak + 6 <

√
3 + 6 = 3.

Thus, by mathematical induction, an < 3 for all n.

(c) Since {an} is increasing and has an upper bound, {an} converges. Let

L = lim
n→∞ an.

Then,

L = √
L + 6

L2 = L + 6

L2 − L − 6 = 0

(L − 3)(L + 2) = 0

so L = 3 or L = −2; however, the sequence is increasing and its first term is positive, so −2 cannot be the limit.
Therefore,

lim
n→∞ an = 3.
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27. Calculate the partial sums S4 and S7 of the series
∞∑

n=1

n − 2

n2 + 2n
.

solution

S4 = −1

3
+ 0 + 1

15
+ 2

24
= − 11

60
= −0.183333;

S7 = −1

3
+ 0 + 1

15
+ 2

24
+ 3

35
+ 4

48
+ 5

63
= 287

4410
= 0.065079.

28. Find the sum 1 − 1

4
+ 1

42
− 1

43
+ · · · .

solution This is a geometric series with r = − 1
4 . Therefore,

1 − 1

4
+ 1

42
− 1

43
+ · · · = 1

1 − (− 1
4 )

= 4

5
.

29. Find the sum
4

9
+ 8

27
+ 16

81
+ 32

243
+ · · · .

solution This is a geometric series with common ratio r = 2
3 . Therefore,

4

9
+ 8

27
+ 16

81
+ 32

243
+ · · · =

4
9

1 − 2
3

= 4

3
.

30. Find the sum
∞∑

n=2

(
2

e

)n

.

solution This is a geometric series with common ratio r = 2
e . Therefore,

∞∑
n=2

(
2

e

)n

=
(

2
e

)2

1 − 2
e

=
4
e2

1 − 2
e

= 4

e2 − 2e
.

31. Find the sum
∞∑

n=−1

2n+3

3n
.

solution Note

∞∑
n=−1

2n+3

3n
= 23

∞∑
n=−1

2n

3n
= 8

∞∑
n=−1

(
2

3

)n

;

therefore,

∞∑
n=−1

2n+3

3n
= 8 · 3

2
· 1

1 − 2
3

= 36.

32. Show that
∞∑

n=1

(
b − tan−1 n2) diverges if b 	= π

2
.

solution Note

lim
n→∞

(
b − tan−1 n2

)
= b − lim

n→∞ tan−1 n2 = b − π

2
.

If b 	= π
2 , then the limit of the terms in the series is not 0; hence, the series diverges by the Divergence Test.

33. Give an example of divergent series
∞∑

n=1

an and
∞∑

n=1

bn such that
∞∑

n=1

(an + bn) = 1.

solution Let an =
(

1
2

)n + 1, bn = −1. The corresponding series diverge by the Divergence Test; however,

∞∑
n=1

(an + bn) =
∞∑

n=1

(
1

2

)n

=
1
2

1 − 1
2

= 1.
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34. Let S =
∞∑

n=1

(
1

n
− 1

n + 2

)
. Compute SN for N = 1, 2, 3, 4. Find S by showing that

SN = 3

2
− 1

N + 1
− 1

N + 2

solution

S1 = 1 − 1

3
= 2

3
;

S2 =
(

1 − 1

3

)
+
(

1

2
− 1

4

)
= 3

2
− 7

12
= 11

12
;

S3 =
(

1 − 1

3

)
+
(

1

2
− 1

4

)
+
(

1

3
− 1

5

)
= 3

2
− 9

20
= 21

20
;

S4 =
(

1 − 1

3

)
+
(

1

2
− 1

4

)
+
(

1

3
− 1

5

)
+
(

1

4
− 1

6

)
= 3

2
− 11

30
= 17

15
.

The general term in the sequence of partial sums is

SN =
(

1 − 1

3

)
+
(

1

2
− 1

4

)
+
(

1

3
− 1

5

)
+
(

1

4
− 1

6

)
+ · · · +

(
1

N − 1
− 1

N + 1

)
+
(

1

N
− 1

N + 2

)

= 1 + 1

2
− 1

N + 1
− 1

N + 2
= 3

2
−
(

1

N + 1
+ 1

N + 2

)
.

Finally,

S = lim
N→∞ SN = lim

N→∞

[
3

2
−
(

1

N + 1
+ 1

N + 2

)]
= 3

2
.

35. Evaluate S =
∞∑

n=3

1

n(n + 3)
.

solution Note that

1

n(n + 3)
= 1

3

(
1

n
− 1

n + 3

)

so that

N∑
n=3

1

n(n + 3)
= 1

3

N∑
n=3

(
1

n
− 1

n + 3

)

= 1

3

((
1

3
− 1

6

)
+
(

1

4
− 1

7

)
+
(

1

5
− 1

8

)
(

1

6
− 1

9

)
+ · · · +

(
1

N − 1
− 1

N + 2

)
+
(

1

N
− 1

N + 3

))

= 1

3

(
1

3
+ 1

4
+ 1

5
− 1

N + 1
− 1

N + 2
− 1

N + 3

)

Thus

∞∑
n=3

1

n(n + 3)
= 1

3
lim

N→∞

N∑
n=3

(
1

n
− 1

n + 3

)

= 1

3

(
1

3
+ 1

4
+ 1

5
− 1

N + 1
− 1

N + 2
− 1

N + 3

)
= 1

3

(
1

3
+ 1

4
+ 1

5

)
= 47

180

36. Find the total area of the infinitely many circles on the interval [0, 1] in Figure 1.

x

1
0

1
8

1
4

1
2

FIGURE 1
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solution The diameter of the largest circle is 1
2 , and the diameter of each smaller circle is 1

2 the diameter of the

previous circle; thus, the diameter of the nth circle (for n ≥ 1) is 1
2n and the area is

π

(
1

2n+1

)2
= π

4n+1
.

The total area of the circles is

∞∑
n=1

π

4n+1
= π

4

∞∑
n=1

(
1

4

)n

= π

4
·

1
4

1 − 1
4

= π

12
.

In Exercises 37–40, use the Integral Test to determine whether the infinite series converges.

37.
∞∑

n=1

n2

n3 + 1

solution Let f (x) = x2

x3+1
. This function is continuous and positive for x ≥ 1. Because

f ′(x) = (x3 + 1)(2x) − x2(3x2)

(x3 + 1)2
= x(2 − x3)

(x3 + 1)2
,

we see that f ′(x) < 0 and f is decreasing on the interval x ≥ 2. Therefore, the Integral Test applies on the interval x ≥ 2.
Now,

∫ ∞
2

x2

x3 + 1
dx = lim

R→∞

∫ R

2

x2

x3 + 1
dx = 1

3
lim

R→∞
(

ln(R3 + 1) − ln 9
)

= ∞.

The integral diverges; hence, the series
∞∑

n=2

n2

n3 + 1
diverges, as does the series

∞∑
n=1

n2

n3 + 1
.

38.
∞∑

n=1

n2

(n3 + 1)1.01

solution Let f (x) = x2

(x3+1)1.01 . This function is continuous and positive for x ≥ 1. Because

f ′(x) = (x3 + 1)1.01(2x) − x2 · 1.01(x3 + 1)0.01(3x2)

(x3 + 1)2.02
= x(x3 + 1)0.01(2 − 1.03x3)

(x3 + 1)2.02
,

we see that f ′(x) < 0 and f is decreasing on the interval x ≥ 2. Therefore, the Integral Test applies on the interval x ≥ 2.
Now,

∫ ∞
2

x2

(x3 + 1)1.01
dx = lim

R→∞

∫ R

2

x2

(x3 + 1)1.01
dx = − 1

0.03
lim

R→∞

(
1

(R3 + 1)0.01
− 1

90.01

)
= 1

0.03 · 90.01
.

The integral converges; hence, the series
∞∑

n=2

n2

(n3 + 1)1.01
converges, as does the series

∞∑
n=1

n2

(n3 + 1)1.01
.

39.
∞∑

n=1

1

(n + 2)(ln(n + 2))3

solution Let f (x) = 1
(x+2) ln3(x+2)

. Using the substitution u = ln(x + 2), so that du = 1
x+2 dx, we have

∫ ∞
0

f (x) dx =
∫ ∞

ln 2

1

u3
du = lim

R→∞

∫ ∞
ln 2

1

u3
du = lim

R→∞

(
− 1

2u2

∣∣∣∣R
ln 2

)

= lim
R→∞

(
1

2(ln 2)2
− 1

2(ln R)2

)
= 1

2(ln 2)2

Since the integral of f (x) converges, so does the series.
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40.
∞∑

n=1

n3

en4

solution Let f (x) = x3e−x4
. This function is continuous and positive for x ≥ 1. Because

f ′(x) = x3
(
−4x3e−x4

)
+ 3x2e−x4 = x2e−x4

(
3 − 4x4

)
,

we see that f ′(x) < 0 and f is decreasing on the interval x ≥ 1. Therefore, the Integral Test applies on the interval x ≥ 1.
Now, ∫ ∞

1
x3e−x4

dx = lim
R→∞

∫ R

1
x3e−x4

dx = −1

4
lim

R→∞
(
e−R4 − e−1

)
= 1

4e
.

The integral converges; hence, the series
∞∑

n=1

n3

en4 also converges.

In Exercises 41–48, use the Comparison or Limit Comparison Test to determine whether the infinite series converges.

41.
∞∑

n=1

1

(n + 1)2

solution For all n ≥ 1,

0 <
1

n + 1
<

1

n
so

1

(n + 1)2
<

1

n2
.

The series
∞∑

n=1

1

n2
is a convergent p-series, so the series

∞∑
n=1

1

(n + 1)2
converges by the Comparison Test.

42.
∞∑

n=1

1√
n + n

solution Apply the Limit Comparison Test with an = 1√
n+n

and bn = 1
n . Now,

L = lim
n→∞

1√
n+n

1
n

= lim
n→∞

n√
n + n

= lim
n→∞

1
1√
n

+ 1
= 1.

Because L > 0 and
∞∑

n=1

1

n
is the divergent harmonic series, we conclude by the Limit Comparison Test that the series

∞∑
n=1

1√
n + n

also diverges.

43.
∞∑

n=2

n2 + 1

n3.5 − 2

solution Apply the Limit Comparison Test with an = n2+1
n3.5−2

and bn = 1
n1.5 . Now,

L = lim
n→∞

n2+1
n3.5−2

1
n1.5

= lim
n→∞

n3.5 + n1.5

n3.5 − 2
= 1.

Because L exists and
∞∑

n=1

1

n1.5
is a convergent p-series, we conclude by the Limit Comparison Test that the series

∞∑
n=2

n2 + 1

n3.5 − 2
also converges.

44.
∞∑

n=1

1

n − ln n

solution Since 0 ≤ ln n ≤ n for all n ≥ 1, we have 0 ≤ n − ln n ≤ n and

1

n
≤ 1

n − ln n

The harmonic series
∞∑

n=1

1

n
diverges, so we conclude by the Comparison Test that

∞∑
n=1

1

n − ln n
also diverges.
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45.
∞∑

n=2

n√
n5 + 5

solution For all n ≥ 2,

n√
n5 + 5

<
n

n5/2
= 1

n3/2
.

The series
∞∑

n=2

1

n3/2
is a convergent p-series, so the series

∞∑
n=2

n√
n5 + 5

converges by the Comparison Test.

46.
∞∑

n=1

1

3n − 2n

solution Apply the Limit Comparison Test with an = 1
3n−2n and bn = 1

3n . Then,

L = lim
n→∞

an

bn
= lim

n→∞
3n

3n − 2n
= lim

n→∞
1

1 −
(

2
3

)n = 1.

The series
∞∑

n=1

1

3n
is a convergent geometric series; because L exists, we may therefore conclude by the Limit Comparison

Test that the series
∞∑

n=1

1

3n − 2n
also converges.

47.
∞∑

n=1

n10 + 10n

n11 + 11n

solution Apply the Limit Comparison Test with an = n10+10n

n11+11n and bn =
(

10
11

)n
. Then,

L = lim
n→∞

an

bn
= lim

n→∞

n10+10n

n11+11n(
10
11

)n = lim
n→∞

n10+10n

10n

n11+11n

11n

= lim
n→∞

n10

10n + 1

n11

11n + 1
= 1.

The series
∞∑

n=1

(
10

11

)n

is a convergent geometric series; because L exists, we may therefore conclude by the Limit

Comparison Test that the series
∞∑

n=1

n10 + 10n

n11 + 11n
also converges.

48.
∞∑

n=1

n20 + 21n

n21 + 20n

solution Apply the Limit Comparison Theorem with an = n20+21n

n21+20n and bn =
(

21
20

)n
. Then

L = lim
n→∞

an

bn
= lim

n→∞

n20+21n

n21+20n(
21
20

)n = lim
n→∞

n20+21n

21n

n21+20n

20n

= lim
n→∞

n20

21n + 1

n21

20n + 1
= 1

The series
∞∑

n=1

(
21

20

)n

is a divergent geometric series. Since L = 1, the two series either both converge or both diverge;

thus, we may conclude from the Limit Comparison Test that the series
∞∑

n=1

n20 + 21n

n21 + 20n
diverges.

49. Determine the convergence of
∞∑

n=1

2n + n

3n − 2
using the Limit Comparison Test with bn = ( 2

3

)n.

solution With an = 2n+n
3n−2 , we have

L = lim
n→∞

an

bn
= lim

n→∞
2n + n

3n − 2
· 3n

2n
= lim

n→∞
6n + n3n

6n − 2n+1
= lim

n→∞
1 + n

(
1
2

)n

1 − 2
(

1
3

)n = 1
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Since L = 1, the two series either both converge or both diverge. Since
∞∑

n=1

(
2

3

)n

is a convergent geometric series, the

Limit Comparison Test tells us that
∞∑

n=1

2n + n

3n − 2
also converges.

50. Determine the convergence of
∞∑

n=1

ln n

1.5n
using the Limit Comparison Test with bn = 1

1.4n
.

solution With an = ln n

1.5n
, and using L’Hôpital’s Rule,

L = lim
n→∞

an

bn
= lim

n→∞
ln n
1.5n

1
1.4n

= lim
n→∞

ln n(
1.5
1.4

)n

= lim
n→∞

1/n

ln(1.5/1.4)
(

1.5
1.4

)n = 1

ln(1.5/1.4)
lim

n→∞

(
1.4
1.5

)n

n
= 0

Since L < ∞ and
∞∑

n=1

bn is a convergent geometric series, it follows from the Limit Comparison Test that
∞∑

n=1

ln n

1.5n
also

converges.

51. Let an = 1 −
√

1 − 1
n . Show that lim

n→∞ an = 0 and that
∞∑

n=1

an diverges. Hint: Show that an ≥ 1
2n

.

solution

1 −
√

1 − 1

n
= 1 −

√
n − 1

n
=

√
n − √

n − 1√
n

= n − (n − 1)√
n(

√
n + √

n − 1)
= 1

n +
√

n2 − n

≥ 1

n +
√

n2
= 1

2n
.

The series
∞∑

n=2

1

2n
diverges, so the series

∑∞
n=2

(
1 −

√
1 − 1

n

)
also diverges by the Comparison Test.

52. Determine whether
∞∑

n=2

(
1 −

√
1 − 1

n2

)
converges.

solution

1 −
√

1 − 1

n2
= 1 −

√
n2 − 1

n2
= n −

√
n2 − 1

n
=

n2 −
(
n2 − 1

)
n
(
n +

√
n2 − 1

)

= 1

n
(
n +

√
n2 − 1

) = 1

n2 + n
√

n2 − 1
≤ 1

n2

The series
∞∑

n=1

1

n2
is a convergent p-series, so the series

∞∑
n=2

(
1 −

√
1 − 1

n2

)
also converges by the Comparison Test.

53. Let S =
∞∑

n=1

n

(n2 + 1)2
.

(a) Show that S converges.
(b) Use Eq. (4) in Exercise 83 of Section 10.3 with M = 99 to approximate S. What is the maximum size of the
error?

solution
(a) For n ≥ 1,

n

(n2 + 1)2
<

n

(n2)2
= 1

n3
.

The series
∞∑

n=1

1

n3
is a convergent p-series, so the series

∞∑
n=1

n

(n2 + 1)2
also converges by the Comparison Test.
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(b) With an = n
(n2+1)2 , f (x) = x

(x2+1)2 and M = 99, Eq. (4) in Exercise 83 of Section 10.3 becomes

99∑
n=1

n

(n2 + 1)2
+
∫ ∞

100

x

(x2 + 1)2
dx ≤ S ≤

100∑
n=1

n

(n2 + 1)2
+
∫ ∞

100

x

(x2 + 1)2
dx,

or

0 ≤ S −
⎛
⎝ 99∑

n=1

n

(n2 + 1)2
+
∫ ∞

100

x

(x2 + 1)2
dx

⎞
⎠ ≤ 100

(1002 + 1)2
.

Now,

99∑
n=1

n

(n2 + 1)2
= 0.397066274; and

∫ ∞
100

x

(x2 + 1)2
dx = lim

R→∞

∫ R

100

x

(x2 + 1)2
dx = 1

2
lim

R→∞

(
− 1

R2 + 1
+ 1

1002 + 1

)

= 1

20002
= 0.000049995;

thus,

S ≈ 0.397066274 + 0.000049995 = 0.397116269.

The bound on the error in this approximation is

100

(1002 + 1)2
= 9.998 × 10−7.

In Exercises 54–57, determine whether the series converges absolutely. If it does not, determine whether it converges
conditionally.

54.
∞∑

n=1

(−1)n

3√n + 2n

solution Both 3√n and 2n are increasing functions, so 3√n + 2n is also increasing. Therefore, 1
3√n+2n

is decreasing.

Moreover,

lim
n→∞

1
3√n + 2n

= 0,

so the series
∞∑

n=1

(−1)n

3√n + 2n
converges by the Leibniz Test.

The corresponding positive series is
∞∑

n=1

1
3√n + 2n

. Because

1
3√n + 2n

>
1

n + 2n
= 1

3
· 1

n

and the harmonic series
∞∑

n=1

1

n
diverges,

∞∑
n=1

1
3√n + 2n

also diverges by the Comparison Test. Thus,
∑∞

n=1
(−1)n

3√n+2n

converges conditionally.

55.
∞∑

n=1

(−1)n

n1.1 ln(n + 1)

solution Consider the corresponding positive series
∞∑

n=1

1

n1.1 ln(n + 1)
. Because

1

n1.1 ln(n + 1)
<

1

n1.1
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and
∞∑

n=1

1

n1.1
is a convergent p-series, we can conclude by the Comparison Test that

∞∑
n=1

(−1)n

n1.1 ln(n + 1)
also converges.

Thus,
∞∑

n=1

(−1)n

n1.1 ln(n + 1)
converges absolutely.

56.
∞∑

n=1

cos
(
π
4 + πn

)
√

n

solution Note

cos
(π

4
+ πn

)
= cos

π

4
cos nπ − sin

π

4
sin nπ = (−1)n

√
2

2
.

Therefore,

∞∑
n=1

cos
(
π
4 + πn

)
√

n
=

∞∑
n=1

(−1)n√
n

2√
2

= 2√
2

∞∑
n=1

(−1)n√
n

.

Now, the sequence { 1√
n
} is decreasing and converges to 0 as n → ∞. Therefore,

∞∑
n=1

cos
(
π
4 + πn

)
√

n
converges by the

Leibniz Test. However, the corresponding positive series is a divergent p-series (p = 1
2 ), so the original series converges

conditionally.

57.
∞∑

n=1

cos
(
π
4 + 2πn

)
√

n

solution cos
(
π
4 + 2πn

) = cos π
4 =

√
2

2 , so

∞∑
n=1

cos
(
π
4 + 2πn

)
√

n
=

√
2

2

∞∑
n=1

1√
n

.

This is a divergent p-series, so the series
∞∑

n=1

cos
(
π
4 + 2πn

)
√

n
diverges.

58. Use a computer algebra system to approximate
∞∑

n=1

(−1)n

n3 + √
n

to within an error of at most 10−5.

solution The sequence { 1
n3+√

n
} is decreasing and converges to 0, so the series

∑∞
n=1

(−1)n

n3+√
n

converges by the

Leibniz Test. Using the error bound for an alternating series,∣∣∣∣∣∣SN −
∞∑

n=1

(−1)n

n3 + √
n

∣∣∣∣∣∣ ≤ aN+1 = 1

(N + 1)3 + √
N + 1

.

If we want an approximation with an error of at most 10−5, we must choose N such that

1

(N + 1)3 + √
N + 1

< 10−5 or (N + 1)3 + √
N + 1 > 105.

For N = 45, (N + 1)3 + √
N + 1 = 97,342.8 < 105, and for N = 46, (N + 1)3 + √

N + 1 = 103,829.9 > 105. The
smallest acceptable value for N is therefore N = 46. Using a computer algebra system, we find

∞∑
n=1

(−1)n

n3 + √
n

≈ S46 = −0.418452236.

59. Catalan’s constant is defined by K =
∞∑

k=0

(−1)k

(2k + 1)2
.

(a) How many terms of the series are needed to calculate K with an error of less than 10−6?

(b) Carry out the calculation.
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solution Using the error bound for an alternating series, we have

|SN − K| ≤ 1

(2(N + 1) + 1)2
= 1

(2N + 3)2
.

For accuracy to three decimal places, we must choose N so that

1

(2N + 3)2
< 5 × 10−3 or (2N + 3)2 > 2000.

Solving for N yields

N >
1

2

(√
2000 − 3

)
≈ 20.9.

Thus,

K ≈
21∑

k=0

(−1)k

(2k + 1)2
= 0.915707728.

60. Give an example of conditionally convergent series
∞∑

n=1

an and
∞∑

n=1

bn such that
∞∑

n=1

(an + bn) converges absolutely.

solution Let an = (−1)n

n and bn = (−1)n+1

n . The corresponding alternating series converge by the Leibniz Test; how-

ever, the corresponding positive series are the divergent harmonic series. Thus,
∞∑

n=1

an and
∞∑

n=1

bn converge conditionally.

On the other hand, the series

∞∑
n=1

(an + bn) =
∞∑

n=1

(
(−1)n

n
+ (−1)n+1

n

)
=

∞∑
n=1

(−1)n
(

1

n
+ −1

n

)
=

∞∑
n=1

0

converges absolutely.

61. Let
∞∑

n=1

an be an absolutely convergent series. Determine whether the following series are convergent or divergent:

(a)
∞∑

n=1

(
an + 1

n2

)
(b)

∞∑
n=1

(−1)nan

(c)
∞∑

n=1

1

1 + a2
n

(d)
∞∑

n=1

|an|
n

solution Because
∞∑

n=1

an converges absolutely, we know that
∞∑

n=1

an converges and that
∞∑

n=1

|an| converges.

(a) Because we know that
∞∑

n=1

an converges and the series
∞∑

n=1

1

n2
is a convergent p-series, the sum of these two series,

∞∑
n=1

(
an + 1

n2

)
also converges.

(b) We have,

∞∑
n=1

∣∣(−1)nan

∣∣ =
∞∑

n=1

|an|

Because
∞∑

n=1

|an| converges, it follows that
∞∑

n=1

(−1)nan converges absolutely, which implies that
∞∑

n=1

(−1)nan converges.

(c) Because
∞∑

n=1

an converges, limn→∞ an = 0. Therefore,

lim
n→∞

1

1 + a2
n

= 1

1 + 02
= 1 	= 0,

and the series
∞∑

n=1

1

1 + a2
n

diverges by the Divergence Test.
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(d) |an|
n ≤ |an| and the series

∞∑
n=1

|an| converges, so the series
∞∑

n=1

|an|
n

also converges by the Comparison Test.

62. Let {an} be a positive sequence such that lim
n→∞

n
√

an = 1
2 . Determine whether the following series converge or

diverge:

(a)
∞∑

n=1

2an (b)
∞∑

n=1

3nan (c)
∞∑

n=1

√
an

solution
(a)

L = lim
n→∞

n
√

2an = lim
n→∞

n
√

2 n
√

an = 1 · 1

2
= 1

2
.

Because L < 1, the series converges by the Root Test.
(b)

L = lim
n→∞

n
√

3nan = lim
n→∞ 3 n

√
an = 3 · 1

2
= 3

2
.

Because L > 1, the series diverges by the Root Test.
(c)

L = lim
n→∞

n

√√
an = lim

n→∞
√

n
√

an =
√

1

2
.

Because L < 1, the series converges by the Root Test.

In Exercises 63–70, apply the Ratio Test to determine convergence or divergence, or state that the Ratio Test is inconclusive.

63.
∞∑

n=1

n5

5n

solution With an = n5

5n ,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)5

5n+1
· 5n

n5 = 1

5

(
1 + 1

n

)5
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

5
lim

n→∞

(
1 + 1

n

)5
= 1

5
· 1 = 1

5
.

Because ρ < 1, the series converges by the Ratio Test.

64.
∞∑

n=1

√
n + 1

n8

solution With an =
√

n+1
n8 ,

∣∣∣∣an+1

an

∣∣∣∣ =
√

n + 2

(n + 1)8
· n8
√

n + 1
=
√

n + 2

n + 1

(
n

n + 1

)8
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · 18 = 1.

Because ρ = 1, the Ratio Test is inconclusive.

65.
∞∑

n=1

1

n2n + n3

solution With an = 1
n2n+n3 ,

∣∣∣∣an+1

an

∣∣∣∣ = n2n + n3

(n + 1)2n+1 + (n + 1)3
=

n2n
(

1 + n2

2n

)
(n + 1)2n+1

(
1 + (n+1)2

2n+1

) = 1

2
· n

n + 1
· 1 + n2

2n

1 + (n+1)2

2n+1

,
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and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
· 1 · 1 = 1

2
.

Because ρ < 1, the series converges by the Ratio Test.

66.
∞∑

n=1

n4

n!

solution With an = n4

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)4

(n + 1)! · n!
n4

= (n + 1)3

n4
and ρ = lim

n→∞
an+1

an
= 0.

Because ρ < 1, the series converges by the Ratio Test.

67.
∞∑

n=1

2n2

n!

solution With an = 2n2

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = 2(n+1)2

(n + 1)! · n!
2n2 = 22n+1

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ∞.

Because ρ > 1, the series diverges by the Ratio Test.

68.
∞∑

n=4

ln n

n3/2

solution With an = ln n
n3/2 ,

∣∣∣∣an+1

an

∣∣∣∣ = ln(n + 1)

(n + 1)3/2
· n3/2

ln n
=
(

n

n + 1

)3/2 ln(n + 1)

ln n
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 13/2 · 1 = 1.

Because ρ = 1, the Ratio Test is inconclusive.

69.
∞∑

n=1

(n

2

)n 1

n!
solution With an = (

n
2

)n 1
n! ,∣∣∣∣an+1

an

∣∣∣∣ =
(

n + 1

2

)n+1 1

(n + 1)! ·
(

2

n

)n

n! = 1

2

(
n + 1

n

)n

= 1

2

(
1 + 1

n

)n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
e.

Because ρ = e
2 > 1, the series diverges by the Ratio Test.

70.
∞∑

n=1

(n

4

)n 1

n!
solution With an = (

n
4

)n 1
n! ,∣∣∣∣an+1

an

∣∣∣∣ =
(

n + 1

4

)n+1 1

(n + 1)! ·
(

4

n

)n

n! = 1

4

(
n + 1

n

)n

= 1

4

(
1 + 1

n

)n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

4
e.

Because ρ = e
4 < 1, the series converges by the Ratio Test.
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In Exercises 71–74, apply the Root Test to determine convergence or divergence, or state that the Root Test is inconclusive.

71.
∞∑

n=1

1

4n

solution With an = 1
4n ,

L = lim
n→∞

n
√

an = lim
n→∞

n

√
1

4n
= 1

4
.

Because L < 1, the series converges by the Root Test.

72.
∞∑

n=1

(
2

n

)n

solution With an =
(

2
n

)n
,

L = lim
n→∞

n

√(
2

n

)n

= lim
n→∞

2

n
= 0.

Because L < 1, the series converges by the Root Test.

73.
∞∑

n=1

(
3

4n

)n

solution With an =
(

3
4n

)n
,

L = lim
n→∞

n
√

an = lim
n→∞

n

√(
3

4n

)n

= lim
n→∞

3

4n
= 0.

Because L < 1, the series converges by the Root Test.

74.
∞∑

n=1

(
cos

1

n

)n3

solution With an =
(

cos 1
n

)n3

,

L = lim
n→∞

n
√

an = lim
n→∞

n

√
cos

(
1

n

)n3

= lim
n→∞ cos

(
1

n

)n2

= lim
x→∞ cos

(
1

x

)x2

.

Now,

ln L = lim
x→∞ x2 ln cos

(
1

x

)
= lim

x→∞
ln cos

(
1
x

)
1
x2

= lim
x→∞

1

cos
(

1
x

) (− sin
(

1
x

)) (
− 1

x2

)
− 2

x3

= −1

2
lim

x→∞
1

cos
(

1
x

) · lim
x→∞

sin
(

1
x

)
1
x

= −1

2
· 1 · 1 = −1

2
.

Therefore, L = e−1/2. Because L < 1, the series converges by the Root Test.

In Exercises 75–92, determine convergence or divergence using any method covered in the text.

75.
∞∑

n=1

(
2

3

)n

solution This is a geometric series with ratio r = 2
3 < 1; hence, the series converges.

76.
∞∑

n=1

π7n

e8n

solution This is a geometric series with ratio r = π7

e8 ≈ 1.013, so it diverges.
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77.
∞∑

n=1

e−0.02n

solution This is a geometric series with common ratio r = 1
e0.02 ≈ 0.98 < 1; hence, the series converges.

78.
∞∑

n=1

ne−0.02n

solution With an = ne−0.02n,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)e−0.02(n+1)

ne−0.02n
= n + 1

n
e−0.02,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · e−0.02 = e−0.02.

Because ρ < 1, the series converges by the Ratio Test.

79.
∞∑

n=1

(−1)n−1
√

n + √
n + 1

solution In this alternating series, an = 1√
n+√

n+1
. The sequence {an} is decreasing, and

lim
n→∞ an = 0;

therefore the series converges by the Leibniz Test.

80.
∞∑

n=10

1

n(ln n)3/2

solution Let f (x) = 1
x(ln x)3/2 . This function is continuous, positive and decreasing for x > e−3/2 and thus for

x ≥ 10; therefore, the Integral Test applies. Now,

∫ ∞
10

dx

x(ln x)3/2
= lim

R→∞

∫ R

10

dx

x(ln x)3/2
= lim

R→∞

∫ ln R

ln 10

1

u3/2
du

= lim
R→∞

(−2√
u

∣∣∣∣ln R

ln 10

)
= 2 lim

R→∞

(
1√

ln 10
− 1√

ln R

)
= 2.

The integral converges; hence, the series converges as well.

81.
∞∑

n=2

(−1)n

ln n

solution The sequence an = 1
ln n

is decreasing for n ≥ 10 and

lim
n→∞ an = 0;

therefore, the series converges by the Leibniz Test.

82.
∞∑

n=1

en

n!

solution With an = en

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = en+1

(n + 1)! · n!
en

= e

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0.

Because ρ < 1, the series converges by the Ratio Test.
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83.
∞∑

n=1

1

n
√

n + ln n

solution For n ≥ 1,

1

n
√

n + ln n
≤ 1

n
√

n
= 1

n3/2
.

The series
∞∑

n=1

1

n3/2
is a convergent p-series, so the series

∞∑
n=1

1

n
√

n + ln n
converges by the Comparison Test.

84.
∞∑

n=1

1
3√n(1 + √

n)

solution Apply the Limit Comparison Test with an = 1
3√n(1+√

n)
and bn = 1

n5/6 . Then,

L = lim
n→∞

1
3√n(1+√

n)

1
n5/6

= lim
n→∞

n5/6

3√n + n5/6
= lim

n→∞
1

1√
n

+ 1
= 1.

The series
∞∑

n=1

1

n5/6
is a divergent p-series. Because L > 0, the series

∞∑
n=1

1
3√n(1 + √

n)
also diverges by the Limit

Comparison Test.

85.
∞∑

n=1

(
1√
n

− 1√
n + 1

)

solution This series telescopes:

∞∑
n=1

(
1√
n

− 1√
n + 1

)
=
(

1 − 1√
2

)
+
(

1√
2

− 1√
3

)
+
(

1√
3

− 1√
4

)
+ . . .

so that the nth partial sum Sn is

Sn =
(

1 − 1√
2

)
+
(

1√
2

− 1√
3

)
+
(

1√
3

− 1√
4

)
+ · · · +

(
1√
n

− 1√
n + 1

)
= 1 − 1√

n + 1

and then

∞∑
n=1

(
1√
n

− 1√
n + 1

)
= lim

n→∞ Sn = 1 − lim
n→∞

1√
n + 1

= 1

86.
∞∑

n=1

(
ln n − ln(n + 1)

)

solution This series telescopes:

∞∑
n=1

(
ln n − ln(n + 1)

) = (ln 1 − ln 2) + (ln 2 − ln 3) + (ln 3 − ln 4) + . . .

so that the nth partial sum Sn is

Sn = (ln 1 − ln 2) + (ln 2 − ln 3) + (ln 3 − ln 4) + · · · + (ln n − ln(n + 1))

= ln 1 − ln(n + 1) = − ln(n + 1)

and then

∞∑
n=1

(
ln n − ln(n + 1)

) = lim
n→∞ Sn = − lim

n→∞ ln(n + 1) = ∞

so the series diverges.
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87.
∞∑

n=1

1

n + √
n

solution For n ≥ 1,
√

n ≤ n, so that

∞∑
n=1

1

n + √
n

≥
∞∑

n=1

1

2n

which diverges since it is a constant multiple of the harmonic series. Thus
∞∑

n=1

1

n + √
n

diverges as well, by the Comparison

Test.

88.
∞∑

n=2

cos(πn)

n2/3

solution cos(πn) = (−1)n, so

∞∑
n=2

cos(πn)

n2/3
=

∞∑
n=2

(−1)n

n2/3
.

The sequence an = 1
n2/3 is decreasing and

lim
n→∞ an = 0;

therefore, the series converges by the Leibniz Test.

89.
∞∑

n=2

1

nln n

solution For n ≥ N large enough, ln n ≥ 2 so that

∞∑
n=N

1

nln n
≤

∞∑
n=N

1

n2

which is a convergent p-series. Thus by the Comparison Test,
∞∑

n=N

1

nln n
also converges; adding back in the terms for

n < N does not affect convergence.

90.
∞∑

n=2

1

ln3 n

solution For N large enough, ln n ≤ n1/4 when n ≥ N so that

∞∑
n=N

1

ln3 n
>

∞∑
n=N

1

n3/4

which is a divergent p-series. Thus by the Comparison Test,
∞∑

n=N

1

ln3 n
diverges; adding back in the terms for n < N

does not affect this result.

91.
∞∑

n=1

sin2 π

n

solution For all x > 0, sin x < x. Therefore, sin2 x < x2, and for x = π
n ,

sin2 π

n
<

π2

n2
= π2 · 1

n2
.

The series
∞∑

n=1

1

n2
is a convergent p-series, so the series

∞∑
n=1

sin2 π

n
also converges by the Comparison Test.
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92.
∞∑

n=0

22n

n!

solution With an = 22n

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = 22(n+1)

(n + 1)! · n!
22n

= 4

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0.

Because ρ < 1, the series converges by the Ratio Test.

In Exercises 93–98, find the interval of convergence of the power series.

93.
∞∑

n=0

2nxn

n!

solution With an = 2nxn

n! ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣2n+1xn+1

(n + 1)! · n!
2nxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x · 2

n

∣∣∣∣ = 0

Then ρ < 1 for all x, so that the radius of convergence is R = ∞, and the series converges for all x.

94.
∞∑

n=0

xn

n + 1

solution With an = xn

n+1 ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ x
n+1

n + 2
· n + 1

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x · n + 1

n + 2

∣∣∣∣ = lim
n→∞

∣∣∣∣x · 1 + 1/n

1 + 2/n

∣∣∣∣ = |x|

Then ρ < 1 when |x| < 1, so the radius of convergence is 1, and the series converges absolutely for |x| < 1, or

−1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=0

1

n + 1
=

∞∑
n=1

1

n
, which is the divergent harmonic series.

For the endpoint x = −1, the series becomes
∞∑

n=0

(−1)n

n + 1
, which converges by the Leibniz Test. The series

∞∑
n=0

xn

n + 1

therefore converges for −1 ≤ x < 1.

95.
∞∑

n=0

n6

n8 + 1
(x − 3)n

solution With an = n6(x−3)n

n8+1
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)6(x − 3)n+1

(n + 1)8 − 1
· n8 + 1

n6(x − 3)n

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣(x − 3) · (n + 1)6(n8 + 1)

n6((n + 1)8 + 1)

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣(x − 3) · n14 + terms of lower degree

n14 + terms of lower degree

∣∣∣∣∣ = |x − 3|

Then ρ < 1 when |x − 3| < 1, so the radius of convergence is 1, and the series converges absolutely for |x − 3| < 1, or

2 < x < 4. For the endpoint x = 4, the series becomes
∞∑

n=0

n6

n8 + 1
, which converges by the Comparison Test comparing

with the convergent p-series
∞∑

n=1

1

n2
. For the endpoint x = 2, the series becomes

∞∑
n=0

n6(−1)n

n8 + 1
, which converges by the

Leibniz Test. The series
∞∑

n=0

n6(x − 3)n

n8 + 1
therefore converges for 2 ≤ x ≤ 4.
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96.
∞∑

n=0

nxn

solution With an = nxn,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)xn+1

nxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x · n + 1

n

∣∣∣∣ = |x|

Then ρ < 1 when |x| < 1, so the radius of convergence is 1, and the series converges for |x| < 1, or −1 < x < 1. For

the endpoint x = 1, the series becomes
∞∑

n=0

n, which diverges by the Divergence Test. For the endpoint x = −1, the

series becomes
∑∞

n=0(−1)nn, which also diverges by the Divergence Test. The series
∞∑

n=0

nxn therefore converges for

−1 < x < 1.

97.
∞∑

n=0

(nx)n

solution With an = nnxn, and assuming x 	= 0,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)n+1xn+1

nnxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x(n + 1) ·
(

n + 1

n

)n∣∣∣∣ = ∞

since
(

n+1
n

)n =
(

1 + 1
n

)n
converges to e and the (n + 1) term diverges to ∞. Thus ρ < 1 only when x = 0, so the

series converges only for x = 0.

98.
∞∑

n=0

(2x − 3)n

n ln n

solution With an = (2x−3)n

n ln n
, and using L’Hôpital’s Rule,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (2x − 3)n+1

(n + 1) ln(n + 1)
· n ln n

(2x − 3)n

∣∣∣∣∣
= lim

n→∞

∣∣∣∣(2x − 3)
n ln n

(n + 1) ln(n + 1)

∣∣∣∣ = lim
n→∞

∣∣∣∣(2x − 3)
1 + ln n

1 + ln(n + 1)

∣∣∣∣
= lim

n→∞

∣∣∣∣(2x − 3)
1/n

1/(n + 1)

∣∣∣∣ = lim
n→∞

∣∣∣∣(2x − 3)
n + 1

n

∣∣∣∣ = |2x − 3|

Then ρ < 1 when |2x − 3| < 1, so the radius of convergence is 1, and the series converges absolutely for |2x − 3| < 1, or

1 < x < 2. For the endpoint x = 2, the series becomes
∞∑

n=0

1

n ln n
, which diverges by the Integral Test. For the endpoint

x = −1, the series becomes
∞∑

n=0

(−1)n

n ln n
, which converges by the Leibniz Test. The series

∞∑
n=0

(2x − 3)n

n ln n
therefore

converges for 1 ≤ x < 2.

99. Expand f (x) = 2

4 − 3x
as a power series centered at c = 0. Determine the values of x for which the series converges.

solution Write

2

4 − 3x
= 1

2

1

1 − 3
4x

.

Substituting 3
4x for x in the Maclaurin series for 1

1−x
, we obtain

1

1 − 3
4x

=
∞∑

n=0

(
3

4

)n

xn.

This series converges for
∣∣∣ 3

4x

∣∣∣ < 1, or |x| < 4
3 . Hence, for |x| < 4

3 ,

2

4 − 3x
= 1

2

∞∑
n=0

(
3

4

)n

xn.
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100. Prove that

∞∑
n=0

ne−nx = e−x

(1 − e−x)2

Hint: Express the left-hand side as the derivative of a geometric series.

solution For x > 0,
∞∑

n=0

e−nx =
∞∑

n=0

(e−x)n is a convergent geometric series with ratio r = e−x ; hence,

∞∑
n=0

e−nx = 1

1 − e−x
.

Differentiating term-by-term then yields

∞∑
n=0

(−ne−nx
) = − e−x

(1 − e−x)2
.

Therefore, for x > 0,

∞∑
n=0

ne−nx = e−x(
1 − e−x

)2
.

101. Let F(x) =
∞∑

k=0

x2k

2k · k! .

(a) Show that F(x) has infinite radius of convergence.
(b) Show that y = F(x) is a solution of

y′′ = xy′ + y, y(0) = 1, y′(0) = 0

(c) Plot the partial sums SN for N = 1, 3, 5, 7 on the same set of axes.

solution

(a) With ak = x2k

2k ·k! , ∣∣∣∣ak+1

ak

∣∣∣∣ = |x|2k+2

2k+1 · (k + 1)! · 2k · k!
|x|2k

= x2

2(k + 1)
,

and

ρ = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = x2 · 0 = 0.

Because ρ < 1 for all x, we conclude that the series converges for all x; that is, R = ∞.
(b) Let

y = F(x) =
∞∑

k=0

x2k

2k · k! .

Then

y′ =
∞∑

k=1

2kx2k−1

2kk! =
∞∑

k=1

x2k−1

2k−1(k − 1)! ,

y′′ =
∞∑

k=1

(2k − 1)x2k−2

2k−1(k − 1)! ,

and

xy′ + y = x

∞∑
k=1

x2k−1

2k−1(k − 1)! +
∞∑

k=0

x2k

2kk! =
∞∑

k=1

x2k

2k−1(k − 1)! + 1 +
∞∑

k=1

x2k

2kk!

= 1 +
∞∑

k=1

(2k + 1)x2k

2kk! =
∞∑

k=0

(2k + 1)x2k

2kk! =
∞∑

k=1

(2k − 1)x2k−2

2k−1(k − 1)! = y′′.
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Moreover,

y(0) = 1 +
∞∑

k=1

02k

2kk! = 1 and y′(0) =
∞∑

k=1

02k−1

2k−1(k − 1)! = 0.

Thus,
∞∑

k=0

x2k

2kk! is the solution to the equation y′′ = xy′ + y satisfying y(0) = 1, y′(0) = 0.

(c) The partial sums S1, S3, S5 and S7 are plotted in the figure below.

y

x
−1−2 1

1

2

3

4

5

6

7

2

102. Find a power series P(x) =
∞∑

n=0

anxn that satisfies the Laguerre differential equation

xy′′ + (1 − x)y′ − y = 0

with initial condition satisfying P(0) = 1.

solution Let

y = P(x) =
∞∑

n=0

anxn.

Then,

y′ =
∞∑

n=1

nanxn−1, y′′ =
∞∑

n=2

n(n − 1)anxn−2,

and

xy′′ + (1 − x)y′ − y =
∞∑

n=2

n(n − 1)anxn−1 +
∞∑

n=1

nanxn−1 −
∞∑

n=1

nanxn −
∞∑

n=0

anxn

=
∞∑

n=1

(n + 1)nan+1xn +
∞∑

n=0

(n + 1)an+1xn −
∞∑

n=1

nanxn −
∞∑

n=0

anxn

= (a1 − a0) +
∞∑

n=1

[
(n + 1)2an+1 − (n + 1)an

]
xn.

In order for this series to be equal to zero, the coefficient of xn must be equal to zero for each n; thus

a1 = a0 and an+1 = an

n + 1
.

Now, y(0) = P(0) = a0, so to satisfy the initial condition P(0) = 1, we must set a0 = 1. Then,

a1 = a0 = 1;

a2 = a1

2
= 1

2
;

a3 = a2

3
= 1

6
= 1

3! ;

a4 = a3

4
= 1

4! ;

and, in general, an = 1
n! . Thus,

P(x) =
∞∑

n=0

xn

n! = ex .
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In Exercises 103–112, find the Taylor series centered at c.

103. f (x) = e4x , c = 0

solution Substituting 4x for x in the Maclaurin series for ex yields

e4x =
∞∑

n=0

(4x)n

n! =
∞∑

n=0

4n

n! xn.

104. f (x) = e2x , c = −1

solution Write:

e2x = e2(x+1)−2 = e−2e2(x+1).

Substituting 2(x + 1) for x in the Maclaurin series for ex yields

e2(x+1) =
∞∑

n=0

(2(x + 1))n

n! =
∞∑

n=0

2n

n! (x + 1)n;

hence,

e2x = e−2
∞∑

n=0

2n(x + 1)n

n! .

105. f (x) = x4, c = 2

solution We have

f ′(x) = 4x3 f ′′(x) = 12x2 f ′′′(x) = 24x f (4)(x) = 24

and all higher derivatives are zero, so that

f (2) = 24 = 16 f ′(2) = 4 · 23 = 32 f ′′(2) = 12 · 22 = 48 f ′′′(2) = 24 · 2 = 48 f (4)(2) = 24

Thus the Taylor series centered at c = 2 is

4∑
n=0

f (n)(2)

n! (x − 2)n = 16 + 32

1! (x − 2) + 48

2! (x − 2)2 + 48

3! (x − 2)3 + 24

4! (x − 2)4

= 16 + 32(x − 2) + 24(x − 2)2 + 8(x − 2)3 + (x − 2)4

106. f (x) = x3 − x, c = −2

solution We have

f ′(x) = 3x2 − 1 f ′′(x) = 6x f ′′′(x) = 6

and all higher derivatives are zero, so that

f (−2) = −8 + 2 = −6 f ′(−2) = 3(−2)2 − 1 = 11 f ′′(−2) = 6(−2) = −12 f ′′′(−2) = 6

Thus the Taylor series centered at c = −2 is

3∑
n=0

f (n)(−2)

n! (x + 2)n = −6 + 11

1! (x + 2) + −12

2! (x + 2)2 + 6

3! (x + 2)3

= −6 + 11(x + 2) − 6(x + 2)2 + (x + 2)3

107. f (x) = sin x, c = π

solution We have

f (4n)(x) = sin x f (4n+1)(x) = cos x f (4n+2)(x) = − sin x f (4n+3)(x) = − cos x

so that

f (4n)(π) = sin π = 0 f (4n+1)(π) = cos π = −1 f (4n+2)(π) = − sin π = 0 f (4n+3)(π) = − cos π = 1
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Then the Taylor series centered at c = π is

∞∑
n=0

f (n)(π)

n! (x − π)n = −1

1! (x − π) + 1

3! (x − π)3 + −1

5! (x − π)5 + 1

7! (x − π)7 − . . .

= −(x − π) + 1

6
(x − π)3 − 1

120
(x − π)5 + 1

5040
(x − π)7 − . . .

108. f (x) = ex−1, c = −1

solution Write

ex−1 = ex+1−1−1 = e−2ex+1.

Substituting x + 1 for x in the Maclaurin series for ex yields

ex+1 =
∞∑

n=0

(x + 1)n

n! ;

hence,

ex−1 = e−2
∞∑

n=0

(x + 1)n

n! =
∞∑

n=0

(x + 1)n

n!e2
.

109. f (x) = 1

1 − 2x
, c = −2

solution Write

1

1 − 2x
= 1

5 − 2(x + 2)
= 1

5

1

1 − 2
5 (x + 2)

.

Substituting 2
5 (x + 2) for x in the Maclaurin series for 1

1−x
yields

1

1 − 2
5 (x + 2)

=
∞∑

n=0

2n

5n
(x + 2)n;

hence,

1

1 − 2x
= 1

5

∞∑
n=0

2n

5n
(x + 2)n =

∞∑
n=0

2n

5n+1
(x + 2)n.

110. f (x) = 1

(1 − 2x)2
, c = −2

solution Note that

d

dx

1

1 − 2x
= 2

1 − 2x

so that we can derive the Taylor series for f (x) by differentiating the Taylor series for 1
1−2x

, computed in the previous
exercise, and dividing by 2. Thus

1

(1 − 2x)2
= 1

2
· d

dx

⎛
⎝ ∞∑

n=0

2n

5n+1
(x + 2)n

⎞
⎠

= 1

2

∞∑
n=1

n2n

5n+1
(x + 2)n−1 = 2

50

∞∑
n=1

n2n−1

5n−1
(x + 2)n−1

= 1

25

∞∑
k=0

(k + 1)2k

5k
(x + 2)k
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111. f (x) = ln
x

2
, c = 2

solution Write

ln
x

2
= ln

(
(x − 2) + 2

2

)
= ln

(
1 + x − 2

2

)
.

Substituting x−2
2 for x in the Maclaurin series for ln(1 + x) yields

ln
x

2
=

∞∑
n=1

(−1)n+1
(

x−2
2

)n

n
=

∞∑
n=1

(−1)n+1(x − 2)n

n · 2n
.

This series is valid for |x − 2| < 2.

112. f (x) = x ln
(

1 + x

2

)
, c = 0

solution Substituting x
2 for x in the Maclaurin series for ln(1 + x) yields

ln
(

1 + x

2

)
=

∞∑
n=1

(−1)n−1 ( x
2

)n
n

=
∞∑

n=1

(−1)n−1xn

n2n
.

Thus,

x ln
(

1 + x

2

)
= x

∞∑
n=1

(−1)n−1xn

n2n
=

∞∑
n=1

(−1)n−1xn+1

n2n
.

In Exercises 113–116, find the first three terms of the Maclaurin series of f (x) and use it to calculate f (3)(0).

113. f (x) = (x2 − x)ex2

solution Substitute x2 for x in the Maclaurin series for ex to get

ex2 = 1 + x2 + 1

2
x4 + 1

6
x6 + . . .

so that the Maclaurin series for f (x) is

(x2 − x)ex2 = x2 + x4 + 1

2
x6 + · · · − x − x3 − 1

2
x5 − · · · = −x + x2 − x3 + x4 + . . .

The coefficient of x3 is

f ′′′(0)

3! = −1

so that f ′′′(0) = −6.

114. f (x) = tan−1(x2 − x)

solution Substitute x2 − x for x in the Maclaurin series for tan−1 x to get

tan−1(x2 − x) = (x2 − x) − 1

3
(x2 − x)3 + · · · = −x + x2 + 1

3
x3 + . . .

The coefficient of x3 is

f ′′′(0)

3! = 1

3

so that f ′′′(0) = 3! 1
3 = 2.

115. f (x) = 1

1 + tan x

solution Substitute − tan x in the Maclaurin series for 1
1−x

to get

1

1 + tan x
= 1 − tan x + (tan x)2 − (tan x)3 + . . .

We have not yet encountered the Maclaurin series for tan x. We need only the terms up through x3, so compute

tan′(x) = sec2 x tan′′(x) = 2(tan x) sec2 x tan′′′(x) = 2(1 + tan2 x) sec2 x + 4(tan2 x) sec2 x
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so that

tan′(0) = 1 tan′′(0) = 0 tan′′′(0) = 2

Then the Maclaurin series for tan x is

tan x = tan 0 + tan′(0)

1! x + tan′′(0)

2! x2 + tan′′′(0)

3! x3 + · · · = x + 1

3
x3 + . . .

Substitute these into the series above to get

1

1 + tan x
= 1 −

(
x + 1

3
x3
)

+
(

x + 1

3
x3
)2

−
(

x + 1

3
x3
)3

+ . . .

= 1 − x − 1

3
x3 + x2 − x3 + higher degree terms

= 1 − x + x2 − 4

3
x3 + higher degree terms

The coefficient of x3 is

f ′′′(0)

3! = −4

3

so that

f ′′′(0) = −6 · 4

3
= −8

116. f (x) = (sin x)
√

1 + x

solution The binomial series for
√

1 + x is

√
1 + x = (1 + x)1/2 =

(
1/2

0

)
+
(

1/2

1

)
x +

(
1/2

2

)
x2 +

(
1/2

3

)
x3 + . . .

= 1 + 1

2
x +

1
2

(
− 1

2

)
2

x2 +
1
2

(
− 1

2

) (
− 3

2

)
3! x3 + . . .

= 1 + 1

2
x − 1

8
x2 + 1

16
x3 + . . .

So, multiply the first few terms of the two Maclaurin series together:

(sin x)
√

1 + x =
(

x − x3

6

)(
1 + 1

2
x − 1

8
x2 + 1

16
x3
)

= x + 1

2
x2 − 1

8
x3 − 1

6
x3 + higher degree terms

= x + 1

2
x2 − 7

24
x3 + higher degree terms

The coefficient of x3 is

f ′′′(0)

3! = − 7

24

so that

f ′′′(0) = −6 · 7

24
= −7

4

117. Calculate
π

2
− π3

233! + π5

255! − π7

277! + · · · .

solution We recognize that

π

2
− π3

233! + π5

255! − π7

277! + · · · =
∞∑

n=0

(−1)n
(π/2)2n+1

(2n + 1)!
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is the Maclaurin series for sin x with x replaced by π/2. Therefore,

π

2
− π3

233! + π5

255! − π7

277! + · · · = sin
π

2
= 1.

118. Find the Maclaurin series of the function F(x) =
∫ x

0

et − 1

t
dt .

solution Subtracting 1 from the Maclaurin series for et yields

et − 1 =
∞∑

n=0

tn

n! − 1 = 1 +
∞∑

n=1

tn

n! − 1 =
∞∑

n=1

tn

n! .

Thus,

et − 1

t
= 1

t

∞∑
n=1

tn

n! =
∞∑

n=1

tn−1

n! .

Finally, integrating term-by-term yields

∫ x

0

et − 1

t
dt =

∫ x

0

∞∑
n=1

tn−1

n! dt =
∞∑

n=1

∫ x

0

tn−1

n! dt =
∞∑

n=1

xn

n! n .



April 4, 2011

11 PARAMETRIC EQUATIONS,
POLAR COORDINATES,
AND CONIC SECTIONS

11.1 Parametric Equations

Preliminary Questions
1. Describe the shape of the curve x = 3 cos t, y = 3 sin t .

solution For all t ,

x2 + y2 = (3 cos t)2 + (3 sin t)2 = 9(cos2 t + sin2 t) = 9 · 1 = 9,

therefore the curve is on the circle x2 + y2 = 9. Also, each point on the circle x2 + y2 = 9 can be represented in the
form (3 cos t, 3 sin t) for some value of t . We conclude that the curve x = 3 cos t , y = 3 sin t is the circle of radius 3
centered at the origin.

2. How does x = 4 + 3 cos t, y = 5 + 3 sin t differ from the curve in the previous question?

solution In this case we have

(x − 4)2 + (y − 5)2 = (3 cos t)2 + (3 sin t)2 = 9(cos2 t + sin2 t) = 9 · 1 = 9

Therefore, the given equations parametrize the circle of radius 3 centered at the point (4, 5).

3. What is the maximum height of a particle whose path has parametric equations x = t9, y = 4 − t2?

solution The particle’s height is y = 4 − t2. To find the maximum height we set the derivative equal to zero and
solve:

dy

dt
= d

dt
(4 − t2) = −2t = 0 or t = 0

The maximum height is y(0) = 4 − 02 = 4.

4. Can the parametric curve (t, sin t) be represented as a graph y = f (x)? What about (sin t, t)?

solution In the parametric curve (t, sin t) we have x = t and y = sin t , therefore, y = sin x. That is, the curve can be
represented as a graph of a function. In the parametric curve (sin t, t) we have x = sin t , y = t , therefore x = sin y. This
equation does not define y as a function of x, therefore the parametric curve (sin t, t) cannot be represented as a graph of
a function y = f (x).

5. Match the derivatives with a verbal description:

(a)
dx

dt
(b)

dy

dt
(c)

dy

dx
(i) Slope of the tangent line to the curve

(ii) Vertical rate of change with respect to time

(iii) Horizontal rate of change with respect to time

solution

(a) The derivative
dx

dt
is the horizontal rate of change with respect to time.

(b) The derivative
dy

dt
is the vertical rate of change with respect to time.

(c) The derivative
dy

dx
is the slope of the tangent line to the curve.

Hence, (a) ↔ (iii), (b) ↔ (ii), (c) ↔ (i)

1382
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Exercises
1. Find the coordinates at times t = 0, 2, 4 of a particle following the path x = 1 + t3, y = 9 − 3t2.

solution Substituting t = 0, t = 2, and t = 4 into x = 1 + t3, y = 9 − 3t2 gives the coordinates of the particle at
these times respectively. That is,

(t = 0) x = 1 + 03 = 1, y = 9 − 3 · 02 = 9 ⇒ (1, 9)

(t = 2) x = 1 + 23 = 9, y = 9 − 3 · 22 = −3 ⇒ (9, −3)

(t = 4) x = 1 + 43 = 65, y = 9 − 3 · 42 = −39 ⇒ (65, −39).

2. Find the coordinates at t = 0, π
4 , π of a particle moving along the path c(t) = (cos 2t, sin2 t).

solution Setting t = 0, t = π
4 , and t = π in c(t) = (cos 2t, sin2 t) we obtain the following coordinates of the particle:

t = 0: (cos 2 · 0, sin2 0) = (1, 0)

t = π
4 : (cos 2π

4 , sin2 π
4 ) = (0, 1

2 )

t = π : (cos 2π, sin2 π) = (1, 0)

3. Show that the path traced by the bullet in Example 3 is a parabola by eliminating the parameter.
solution The path traced by the bullet is given by the following parametric equations:

x = 200t, y = 400t − 16t2

We eliminate the parameter. Since x = 200t , we have t = x

200
. Substituting into the equation for y we obtain:

y = 400t − 16t2 = 400 · x

200
− 16

( x

200

)2 = 2x − x2

2500

The equation y = − x2

2500
+ 2x is the equation of a parabola.

4. Use the table of values to sketch the parametric curve (x(t), y(t)), indicating the direction of motion.

t −3 −2 −1 0 1 2 3

x −15 0 3 0 −3 0 15

y 5 0 −3 −4 −3 0 5

solution We mark the given points on the xy-plane and connect the points corresponding to successive values of t in
the direction of increasing t . We get the following trajectory (there are other correct answers):

5 10 15
x

−5
−2

−4

−10−15

−6

2

6

4

y

t = −3

t = −2 t = 2

t = −1
t = 0

t = 3

t = 1

5. Graph the parametric curves. Include arrows indicating the direction of motion.
(a) (t, t), −∞ < t < ∞ (b) (sin t, sin t), 0 ≤ t ≤ 2π

(c) (et , et ), −∞ < t < ∞ (d) (t3, t3), −1 ≤ t ≤ 1

solution
(a) For the trajectory c(t) = (t, t), −∞ < t < ∞ we have y = x. Also the two coordinates tend to ∞ and −∞ as
t → ∞ and t → −∞ respectively. The graph is shown next:

x

y
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(b) For the curve c(t) = (sin t, sin t), 0 ≤ t ≤ 2π , we have y = x. sin t is increasing for 0 ≤ t ≤ π
2 , decreasing for

π
2 ≤ t ≤ 3π

2 and increasing again for 3π
2 ≤ t ≤ 2π . Hence the particle moves from c(0) = (0, 0) to c(π

2 ) = (1, 1), then

moves back to c( 3π
2 ) = (−1, −1) and then returns to c(2π) = (0, 0). We obtain the following trajectory:

x

y

t =     (1,1)π
2

t = 0
x

y

t =     (1,1)π
2

t =      (−1,−1)3π
2

x

y

t =      (−1,−1)3π
2

0 < t ≤ π
2

π
2 ≤ t ≤ 3π

2
3π
2 ≤ t < 2π

These three parts of the trajectory are shown together in the next figure:

x

y

t =      (−1,−1)3π
2

t =     (1,1)π
2

t = 0
t = 2π

(c) For the trajectory c(t) = (et , et ), −∞ < t < ∞, we have y = x. However since lim
t→−∞ et = 0 and lim

t→∞ et = ∞,

the trajectory is the part of the line y = x, 0 < x.

x

y

(d) For the trajectory c(t) = (t3, t3), −1 ≤ t ≤ 1, we have again y = x. Since the function t3 is increasing the particle
moves in one direction starting at ((−1)3, (−1)3) = (−1, −1) and ending at (13, 13) = (1, 1). The trajectory is shown
next:

x

y

t = 1(1,1)

t = −1 (−1,−1)

6. Give two different parametrizations of the line through (4, 1) with slope 2.

solution The equation of the line through (4, 1) with slope 2 is y − 1 = 2(x − 4) or y = 2x − 7. One parametrization
is obtained by choosing the x coordinate as the parameter. That is, x = t . Hence y = 2t − 7 and we get x = t , y = 2t − 7,
−∞ < t < ∞. Another parametrization is given by x = t

2 , y = t − 7, −∞ < t < ∞.
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In Exercises 7–14, express in the form y = f (x) by eliminating the parameter.

7. x = t + 3, y = 4t

solution We eliminate the parameter. Since x = t + 3, we have t = x − 3. Substituting into y = 4t we obtain

y = 4t = 4(x − 3) ⇒ y = 4x − 12

8. x = t−1, y = t−2

solution From x = t−1, we have t = x−1. Substituting in y = t−2 we obtain

y = t−2 = (x−1)−2 = x2 ⇒ y = x2, x �= 0.

9. x = t , y = tan−1(t3 + et )

solution Replacing t by x in the equation for y we obtain y = tan−1(x3 + ex).

10. x = t2, y = t3 + 1

solution From x = t2 we get t = ±√
x. Substituting into y = t3 + 1 we obtain

y = t3 + 1 = (±√
x)3 + 1 = ±

√
x3 + 1, x ≥ 0.

Since we must have y a function of x, we should probably choose either the positive or negative root.

11. x = e−2t , y = 6e4t

solution We eliminate the parameter. Since x = e−2t , we have −2t = ln x or t = − 1
2 ln x. Substituting in y = 6e4t

we get

y = 6e4t = 6e4·(− 1
2 ln x) = 6e−2 ln x = 6eln x−2 = 6x−2 ⇒ y = 6

x2
, x > 0.

12. x = 1 + t−1, y = t2

solution From x = 1 + t−1, we get t−1 = x − 1 or t = 1
x−1 . We now substitute t = 1

x−1 in y = t2 to obtain

y = t2 =
(

1

x − 1

)2
⇒ y = 1

(x − 1)2
, x �= 1.

13. x = ln t , y = 2 − t

solution Since x = ln t we have t = ex . Substituting in y = 2 − t we obtain y = 2 − ex .

14. x = cos t , y = tan t

solution We use the trigonometric identity sin t = ±
√

1 − cos2 t to write

y = tan t = sin t

cos t
= ±

√
1 − cos2 t

cos t
.

We now express y in terms of x:

y = tan t = ±
√

1 − x2

x
⇒ y = ±

√
1 − x2

x
, x �= 0.

Since we must have y a function of x, we should probably choose either the positive or negative root.

In Exercises 15–18, graph the curve and draw an arrow specifying the direction corresponding to motion.

15. x = 1
2 t , y = 2t2

solution Let c(t) = (x(t), y(t)) = ( 1
2 t, 2t2). Then c(−t) = (−x(t), y(t)) so the curve is symmetric with respect to

the y-axis. Also, the function 1
2 t is increasing. Hence there is only one direction of motion on the curve. The corresponding

function is the parabola y = 2 · (2x)2 = 8x2. We obtain the following trajectory:

x

y

t = 0
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16. x = 2 + 4t , y = 3 + 2t

solution We find the function by eliminating the parameter. Sincex = 2 + 4t we have t = x−2
4 , hencey = 3 + 2( x−2

4 )

or y = x
2 + 2. Also, since 2 + 4t and 3 + 2t are increasing functions, the direction of motion is the direction of increasing

t . We obtain the following curve:

2 4

(2, 3)

(6, 5)

6
x

−2
−2

−4

−4−6

−6

6

4

2

y

t = 1

t = 0

17. x = πt , y = sin t

solution We find the function by eliminating t . Since x = πt , we have t = x
π . Substituting t = x

π into y = sin t we
get y = sin x

π . We obtain the following curve:

x

y

(4π2,0)

(−2π2,0)

18. x = t2, y = t3

solution From x = t2 we have t = ±x1/2. Hence, y = ±x3/2. Since the functions t2 and t3 are increasing,

there is only one direction of motion, which is the direction of increasing t . Notice that for c(t) = (t2, t3) we have
c(−t) = (t2, −t3) = (x(t), −y(t)). Hence the curve is symmetric with respect to the x axis. We obtain the following
curve:

x

y

19. Match the parametrizations (a)–(d) below with their plots in Figure 14, and draw an arrow indicating the direction of
motion.

2π

xx

yy

1555

(II) (III)(I)

x x

1020

−1

5

yy

(IV)

FIGURE 14

(a) c(t) = (sin t, −t) (b) c(t) = (t2 − 9, 8t − t3)

(c) c(t) = (1 − t, t2 − 9) (d) c(t) = (4t + 2, 5 − 3t)

solution

(a) In the curve c(t) = (sin t, −t) the x-coordinate is varying between −1 and 1 so this curve corresponds to plot IV. As
t increases, the y-coordinate y = −t is decreasing so the direction of motion is downward.
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x

y

−1

2π

−2π

1

(IV) c(t) = (sin t, −t)

(b) The curve c(t) = (t2 − 9, −t3 − 8) intersects the x-axis where y = −t3 − 8 = 0, or t = −2. The x-intercept is
(−5, 0). The y-intercepts are obtained where x = t2 − 9 = 0, or t = ±3. The y-intercepts are (0, −35) and (0, 19). As
t increases from −∞ to 0, x and y decrease, and as t increases from 0 to ∞, x increases and y decreases. We obtain the
following trajectory:

x

y

t = 0, (−9,−8) −5

19

(II)

(c) The curve c(t) = (1 − t, t2 − 9) intersects the y-axis where x = 1 − t = 0, or t = 1. The y-intercept is (0, −8). The
x-intercepts are obtained where t2 − 9 = 0 or t = ±3. These are the points (−2, 0) and (4, 0). Setting t = 1 − x we get

y = t2 − 9 = (1 − x)2 − 9 = x2 − 2x − 8.

As t increases the x coordinate decreases and we obtain the following trajectory:

x

y

−2 4 5

10

(III)

(d) The curve c(t) = (4t + 2, 5 − 3t) is a straight line, since eliminating t in x = 4t + 2 and substituting in y = 5 − 3t

gives y = 5 − 3 · x−2
4 = − 3

4x + 13
2 which is the equation of a line. As t increases, the x coordinate x = 4t + 2 increases

and the y-coordinate y = 5 − 3t decreases. We obtain the following trajectory:

x

y

5

5

(I)



April 4, 2011

1388 C H A P T E R 11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

20. A particle follows the trajectory

x(t) = 1

4
t3 + 2t, y(t) = 20t − t2

with t in seconds and distance in centimeters.

(a) What is the particle’s maximum height?

(b) When does the particle hit the ground and how far from the origin does it land?

solution
(a) To find the maximum height y(t), we set the derivative of y(t) equal to zero and solve:

dy

dt
= d

dt
(20t − t2) = 20 − 2t = 0 ⇒ t = 10.

The maximum height is y(10) = 20 · 10 − 102 = 100 cm.

(b) The object hits the ground when its height is zero. That is, when y(t) = 0. Solving for t we get

20t − t2 = t (20 − t) = 0 ⇒ t = 0, t = 20.

t = 0 is the initial time, so the solution is t = 20.At that time, the object’s x coordinate is x(20) = 1
4 · 203 + 2 · 20 = 2040.

Thus, when it hits the ground, the object is 2040 cm away from the origin.

21. Find an interval of t-values such that c(t) = (cos t, sin t) traces the lower half of the unit circle.

solution For t = π , we have c(π) = (−1, 0). As t increases from π to 2π , the x-coordinate of c(t) increases from
−1 to 1, and the y-coordinate decreases from 0 to −1 (at t = 3π/2) and then returns to 0. Thus, for t in [π, 2π ], the
equation traces the lower part of the circle.

22. Find an interval of t-values such that c(t) = (2t + 1, 4t − 5) parametrizes the segment from (0, −7) to (7, 7).

solution Note that 2t + 1 = 0 at t = −1/2, and 2t + 1 = 7 at t = 3. Also, 4t − 5 takes on the values of −7 and 7 at
t = −1/2 and t = 3. Thus, the interval is [−1/2, 3].
In Exercises 23–38, find parametric equations for the given curve.

23. y = 9 − 4x

solution This is a line through P = (0, 9) with slope m = −4. Using the parametric representation of a line, as given
in Example 3, we obtain c(t) = (t, 9 − 4t).

24. y = 8x2 − 3x

solution Letting t = x yields the parametric representation c(t) = (t, 8t2 − 3t).

25. 4x − y2 = 5

solution We define the parameter t = y. Then, x = 5 + y2

4
= 5 + t2

4
, giving us the parametrization c(t) =(5 + t2

4
, t
)

.

26. x2 + y2 = 49

solution The curve x2 + y2 = 49 is a circle of radius 7 centered at the origin. We use the parametric representation
of a circle to obtain the representation c(t) = (7 cos t, 7 sin t).

27. (x + 9)2 + (y − 4)2 = 49

solution This is a circle of radius 7 centered at (−9, 4). Using the parametric representation of a circle we get
c(t) = (−9 + 7 cos t, 4 + 7 sin t).

28.
(x

5

)2 +
( y

12

)2 = 1

solution This is an ellipse centered at the origin with a = 5 and b = 12. Using the parametric representation of an
ellipse we get c(t) = (5 cos t, 12 sin t) for −π ≤ t ≤ π .

29. Line of slope 8 through (−4, 9)

solution Using the parametric representation of a line given in Example 3, we get the parametrization c(t) = (−4 +
t, 9 + 8t).

30. Line through (2, 5) perpendicular to y = 3x

solution The line perpendicular to y = 3x has slope m = − 1
3 . We use the parametric representation of a line given

in Example 3 to obtain the parametrization c(t) = (2 + t, 5 − 1
3 t).



April 4, 2011

S E C T I O N 11.1 Parametric Equations 1389

31. Line through (3, 1) and (−5, 4)

solution We use the two-point parametrization of a line with P = (a, b) = (3, 1) and Q = (c, d) = (−5, 4). Then
c(t) = (3 − 8t, 1 + 3t) for −∞ < t < ∞.

32. Line through
( 1

3 , 1
6

)
and

(− 7
6 , 5

3

)
solution We use the two-point parametrization of a line with P = (a, b) =

(
1
3 , 1

6

)
and Q = (c, d) =

(
− 7

6 , 5
3

)
.

Then

c(t) =
(

1

3
− 3

2
t,

1

6
+ 3

2
t

)

for −∞ < t < ∞.

33. Segment joining (1, 1) and (2, 3)

solution We use the two-point parametrization of a line with P = (a, b) = (1, 1) and Q = (c, d) = (2, 3). Then
c(t) = (1 + t, 1 + 2t); since we want only the segment joining the two points, we want 0 ≤ t ≤ 1.

34. Segment joining (−3, 0) and (0, 4)

solution We use the two-point parametrization of a line with P = (a, b) = (−3, 0) and Q = (c, d) = (0, 4). Then
c(t) = (−3 + 3t, 4t); since we want only the segment joining the two points, we want 0 ≤ t ≤ 1.

35. Circle of radius 4 with center (3, 9)

solution Substituting (a, b) = (3, 9) and R = 4 in the parametric equation of the circle we get c(t) = (3 + 4 cos t, 9 +
4 sin t).

36. Ellipse of Exercise 28, with its center translated to (7, 4)

solution Since the center is translated by (7, 4), so is every point. Thus the original parametrization becomes c(t) =
(7 + 5 cos t, 4 + 12 sin t) for −π ≤ t ≤ π .

37. y = x2, translated so that the minimum occurs at (−4, −8)

solution We may parametrize y = x2 by (t, t2) for −∞ < t < ∞. The minimum of y = x2 occurs at (0, 0),

so the desired curve is translated by (−4, −8) from y = x2. Thus a parametrization of the desired curve is c(t) =
(−4 + t, −8 + t2).

38. y = cos x translated so that a maximum occurs at (3, 5)

solution A maximum value 1 of y = cos x occurs at x = 0. Hence, the curve y − 4 = cos(x − 3), or y =
4 + cos(x − 3) has a maximum at the point (3, 5). We let t = x − 3, then x = t + 3 and y = 4 + cos t . We obtain the
representation c(t) = (t + 3, 4 + cos t).

In Exercises 39–42, find a parametrization c(t) of the curve satisfying the given condition.

39. y = 3x − 4, c(0) = (2, 2)

solution Let x(t) = t + a and y(t) = 3x − 4 = 3(t + a) − 4. We want x(0) = 2, thus we must use a = 2. Our line
is c(t) = (x(t), y(t)) = (t + 2, 3(t + 2) − 4) = (t + 2, 3t + 2).

40. y = 3x − 4, c(3) = (2, 2)

solution Let x(t) = t + a; since x(3) = 2 we have 2 = 3 + a so that a = −1. Then y = 3x − 4 = 3(t − 1) − 4 =
3t − 7, so that the line is c(t) = (t − 1, 3t − 7) for −∞ < t < ∞.

41. y = x2, c(0) = (3, 9)

solution Let x(t) = t + a and y(t) = x2 = (t + a)2. We want x(0) = 3, thus we must use a = 3. Our curve is

c(t) = (x(t), y(t)) = (t + 3, (t + 3)2) = (t + 3, t2 + 6t + 9).

42. x2 + y2 = 4, c(0) = (1,
√

3)

solution This is a circle of radius 2 centered at the origin, so we are looking for a parametrization of that circle that
starts at a different point. Thus instead of the standard parametrization (2 cos θ, 2 sin θ), θ = 0 must correspond to some
other angle ω. We choose the parametrization (2 cos(θ + ω), 2 sin(θ + ω)) and must determine the value of ω. Now,

x(0) = 1, so 1 = 2 cos(0 + ω) = 2 cos ω and ω = cos−1 1

2
= π

3
or

5π

3

Since

y(0) = √
3, we have

√
3 = 2 sin(0 + ω) = 2 sin ω and ω = sin−1

√
3

2
= π

3
or

2π

3

Comparing these results we see that we must have ω = π

3
so that the parametrization is

c(t) =
(

2 cos
(
θ + π

3

)
, 2 sin

(
θ + π

3

))
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43. Describe c(t) = (sec t, tan t) for 0 ≤ t < π
2 in the form y = f (x). Specify the domain of x.

solution The function x = sec t has period 2π and y = tan t has period π . The graphs of these functions in the
interval −π ≤ t ≤ π , are shown below:

p−p

p
2

p
2

−

y

x
p−p p

2
p
2

−

y

x

x = sec t y = tan t

x = sec t ⇒ x2 = sec2 t

y = tan t ⇒ y2 = tan2 t = sin2 t

cos2 t
= 1 − cos2 t

cos2 t
= sec2 t − 1 = x2 − 1

Hence the graph of the curve is the hyperbola x2 − y2 = 1. The function x = sec t is an even function while y = tan t is
odd. Also x has period 2π and y has period π . It follows that the intervals −π ≤ t < −π

2 , −π
2 < t < π

2 and π
2 < t < π

trace the curve exactly once. The corresponding curve is shown next:

y

x

p
2

− −t = p
2

−t =

p
2

− +t =p
2

+t =

t = 0

(−1, 0) (1, 0)

t = −p

c(t) = (sec t, tan t)

44. Find a parametrization of the right branch (x > 0) of the hyperbola(x

a

)2 −
(y

b

)2 = 1

using the functions cosh t and sinh t . How can you parametrize the branch x < 0?

solution We show first that x = cosh t , y = sinh t parametrizes the hyperbola when a = b = 1: then

x2 − y2 = (cosh t)2 − (sinh t)2 = 1.

using the identity cosh2 − sinh2 = 1. Generalize this parametrization to get a parametrization for the general hyperbola
( x
a )2 − (

y
b
)2 = 1:

x = a cosh t, y = b sinh t.

We must of course check that this parametrization indeed parametrizes the curve, i.e. that x = a cosh t and y = b sin t

satisfy the equation ( x
a )2 − (

y
b
)2 = 1:

(x

a

)2 −
(y

b

)2 =
(

a cosh t

a

)2
−
(

b sinh t

b

)2
= (cosh t)2 − (sinh t)2 = 1.

The left branch of the hyperbola is the reflection of the right branch around the line x = 0, so it clearly has the
parametrization

x = −a cosh t, y = b sinh t.

45. The graphs of x(t) and y(t) as functions of t are shown in Figure 15(A). Which of (I)–(III) is the plot of c(t) =
(x(t), y(t))? Explain.

yyyy
x(t)

y(t)
xxxt

(A) (III)(II)(I)

FIGURE 15
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solution As seen in Figure 15(A), the x-coordinate is an increasing function of t , while y(t) is first increasing and
then decreasing. In Figure I, x and y are both increasing or both decreasing (depending on the direction on the curve).
In Figure II, x does not maintain one tendency, rather, it is decreasing and increasing for certain values of t . The plot
c(t) = (x(t), y(t)) is plot III.

46. Which graph, (I) or (II), is the graph of x(t) and which is the graph of y(t) for the parametric curve in Figure 16(A)?

y y

(A)

x

(I)

t

y

(II)

t

FIGURE 16

solution As indicated by Figure 16(A), the y-coordinate is decreasing and then increasing, so plot I is the graph of y.
Figure 16(A) also shows that the x-coordinate is increasing, decreasing and then increasing, so plot II is the graph for x.

47. Sketch c(t) = (t3 − 4t, t2) following the steps in Example 7.

solution We note that x(t) = t3 − 4t is odd and y(t) = t2 is even, hence c(−t) = (x(−t), y(−t)) = (−x(t), y(t)).
It follows that c(−t) is the reflection of c(t) across y-axis. That is, c(−t) and c(t) are symmetric with respect to the y-axis;
thus, it suffices to graph the curve for t ≥ 0. For t = 0, we have c(0) = (0, 0) and the y-coordinate y(t) = t2 tends to ∞
as t → ∞. To analyze the x-coordinate, we graph x(t) = t3 − 4t for t ≥ 0:

x
3 41 2

−4

−2

8

6

4

2

y

x = t3 − 4t

We see that x(t) < 0 and decreasing for 0 < t < 2/
√

3, x(t) < 0 and increasing for 2/
√

3 < t < 2 and x(t) > 0 and
increasing for t > 2. Also x(t) tends to ∞ as t → ∞. Therefore, starting at the origin, the curve first directs to the left of
the y-axis, then at t = 2/

√
3 it turns to the right, always keeping an upward direction. The part of the path for t ≤ 0 is

obtained by reflecting across the y-axis. We also use the points c(0) = (0, 0), c(1) = (−3, 1), c(2) = (0, 4) to obtain the
following graph for c(t):

x

y

t = 0

t = 1

t = 2

(−3, 1)

(0, 4)

y

x

t = 1

t = 0

t = 2

t = −1

t = −2

Graph of c(t) for t ≥ 0. Graph of c(t) for all t .

48. Sketch c(t) = (t2 − 4t, 9 − t2) for −4 ≤ t ≤ 10.

solution The graphs of x(t) = t2 − 4t and y(t) = 9 − t2 for −4 ≤ t ≤ 10 are shown in the following figures:
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42 6 108
x

−2−4

−10

30

20

10

y

−10

−3

10

20

y

x
3 96

x(t) = t2 − 4t y(t) = 9 − t2

The curve starts at c(−4) = (32, −7). For −4 < t < 0, x(t) is decreasing and y(t) is increasing, so the graph turns to the
left and upwards to c(0) = (0, 9). Then for 0 < t < 2, x(t) is decreasing and so is y(t), hence the graph turns to the left
and downwards towards c(2) = (−4, 5).

For 2 < t < 10, x(t) is increasing and y(t) is decreasing, hence the graph turns to the right and downwards, ending at
c(10) = (60, −91). The intercept are the points where t2 − 4t = t (t − 4) = 0 or 9 − t2 = 0, that is t = 0, 4, ±3. These
are the points c(0) = (0, 9), c(4) = (0, −7), c(3) = (−3, 0), c(−3) = (21, 0). These properties lead to the following
path:

x

y

t = 4 t = −4

t = 2, (−4, 5)

t = 3, (−3, 0)

t = 0

t = −3

(21, 0)

(0, −7)

(32, −7)

(0, 9)

In Exercises 49–52, use Eq. (7) to find dy/dx at the given point.

49. (t3, t2 − 1), t = −4

solution By Eq. (7) we have

dy

dx
= y′(t)

x′(t) = (t2 − 1)
′

(t3)
′ = 2t

3t2
= 2

3t

Substituting t = −4 we get

dy

dx
= 2

3t

∣∣∣∣
t=−4

= 2

3 · (−4)
= −1

6
.

50. (2t + 9, 7t − 9), t = 1

solution We find dy
dx

:

dy

dx
= (7t − 9)′

(2t + 9)′ = 7

2
⇒ dy

dx

∣∣∣∣
t=1

= 7

2
.

51. (s−1 − 3s, s3), s = −1

solution Using Eq. (7) we get

dy

dx
= y′(s)

x′(s) = (s3)
′

(s−1 − 3s)
′ = 3s2

−s−2 − 3
= 3s4

−1 − 3s2

Substituting s = −1 we obtain

dy

dx
= 3s4

−1 − 3s2

∣∣∣∣
s=−1

= 3 · (−1)4

−1 − 3 · (−1)2
= −3

4
.



April 4, 2011

S E C T I O N 11.1 Parametric Equations 1393

52. (sin 2θ, cos 3θ), θ = π
6

solution Using Eq. (7) we get

dy

dx
= y′(θ)

x′(θ)
= −3 sin 3θ

2 cos 2θ

Substituting θ = π

6
we get

dy

dx
= −3 sin 3θ

2 cos 2θ

∣∣∣∣
θ=π/6

= −3 sin π
2

2 cos π
3

= −3

2 · 1
2

= −3

In Exercises 53–56, find an equation y = f (x) for the parametric curve and compute dy/dx in two ways: using Eq. (7)
and by differentiating f (x).

53. c(t) = (2t + 1, 1 − 9t)

solution Since x = 2t + 1, we have t = x − 1

2
. Substituting in y = 1 − 9t we have

y = 1 − 9

(
x − 1

2

)
= −9

2
x + 11

2

Differentiating y = −9

2
x + 11

2
gives

dy

dx
= −9

2
. We now find

dy

dx
using Eq. (7):

dy

dx
= y′(t)

x′(t) = (1 − 9t)′
(2t + 1)′ = −9

2

54. c(t) = ( 1
2 t, 1

4 t2 − t
)

solution Since x = 1
2 t we have t = 2x. Substituting in y = 1

4 t2 − t yields

y = 1

4
(2x)2 − 2x = x2 − 2x.

We differentiate y = x2 − 2x:

dy

dx
= 2x − 2

Now, we find dy
dx

using Eq. (7). Thus,

dy

dx
= y′(t)

x′(t) =
(

1
4 t2 − t

)′
(

1
2 t
)′ =

1
2 t − 1

1
2

= t − 2.

Since t = 2x, then this t − 2 is the same as 2x − 2.

55. x = s3, y = s6 + s−3

solution We find y as a function of x:

y = s6 + s−3 =
(
s3
)2 +

(
s3
)−1 = x2 + x−1.

We now differentiate y = x2 + x−1. This gives

dy

dx
= 2x − x−2.

Alternatively, we can use Eq. (7) to obtain the following derivative:

dy

dx
= y′(s)

x′(s) =
(
s6 + s−3

)′
(
s3
)′ = 6s5 − 3s−4

3s2
= 2s3 − s−6.

Hence, since x = s3,

dy

dx
= 2x − x−2.
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56. x = cos θ , y = cos θ + sin2 θ

solution To find y as a function of x, we first use the trigonometric identity sin2θ = 1 − cos2θ to write

y = cos θ + 1 − cos2θ.

We substitute x = cos θ to obtain y = x + 1 − x2. Differentiating this function yields

dy

dx
= 1 − 2x.

Alternatively, we can compute dy
dx

using Eq. (7). That is,

dy

dx
= y′ (θ)

x′ (θ)
=
(

cos θ + sin2θ
)′

(cos θ)′ = − sin θ + 2 sin θ cos θ

− sin θ
= 1 − 2 cos θ.

Hence, since x = cos θ ,

dy

dx
= 1 − 2x.

57. Find the points on the curve c(t) = (3t2 − 2t, t3 − 6t) where the tangent line has slope 3.

solution We solve

dy

dx
= 3t2 − 6

6t − 2
= 3

or 3t2 − 6 = 18t − 6, or t2 − 6t = 0, so the slope is 3 at t = 0, 6 and the points are (0, 0) and (96, 180)

58. Find the equation of the tangent line to the cycloid generated by a circle of radius 4 at t = π
2 .

solution The cycloid generated by a circle of radius 4 can be parametrized by

c(t) = (4t − 4 sin t, 4 − 4 cos t)

Then we compute

dy

dx

∣∣∣∣
t=π/2

= 4 sin t

4 − 4 cos t

∣∣∣∣
t=π/2

= 4

4
= 1

so that the slope of the tangent line is 1 and the equation of the tangent line is

y −
(

4 − 4 cos
π

2

)
= 1 ·

(
x −

(
4 · π

2
− 4 sin

π

2

))
or y = x + 8 − 2π

In Exercises 59–62, let c(t) = (t2 − 9, t2 − 8t) (see Figure 17).

60

40

20

604020
x

y

FIGURE 17 Plot of c(t) = (t2 − 9, t2 − 8t).

59. Draw an arrow indicating the direction of motion, and determine the interval of t-values corresponding to the portion
of the curve in each of the four quadrants.

solution We plot the functions x(t) = t2 − 9 and y(t) = t2 − 8t :

t

x

3−3 t

y

1 2 3 4 5 6 7 8 9−3−2−1

x = t2 − 9 y = t2 − 8t
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We note carefully where each of these graphs are positive or negative, increasing or decreasing. In particular, x(t) is
decreasing for t < 0, increasing for t > 0, positive for |t | > 3, and negative for |t | < 3. Likewise, y(t) is decreasing for
t < 4, increasing for t > 4, positive for t > 8 or t < 0, and negative for 0 < t < 8. We now draw arrows on the path
following the decreasing/increasing behavior of the coordinates as indicated above. We obtain:

x

y

20

t = 0
(−9,0)

t = 8
(55,0)

t = 3
(0,−15)

t = −3 (0,33)

t = 4 (7,−16)

40 60−20

−20

20

40

60

This plot also shows that:

• The graph is in the first quadrant for t < −3 or t > 8.
• The graph is in the second quadrant for −3 < t < 0.
• The graph is in the third quadrant for 0 < t < 3.
• The graph is in the fourth quadrant for 3 < t < 8.

60. Find the equation of the tangent line at t = 4.

solution Using the formula for the slope m of the tangent line we have:

m = dy

dx

∣∣∣∣
t=4

=
(
t2 − 8t

)′
(
t2 − 9

)′
∣∣∣∣
t=4

= 2t − 8

2t
|t=4 = 1 − 4

t
|t=4 = 0.

Since the slope is zero, the tangent line is horizontal. The y-coordinate corresponding to t = 4 is y = 42 − 8 · 4 = −16.
Hence the equation of the tangent line is y = −16.

61. Find the points where the tangent has slope 1
2 .

solution The slope of the tangent at t is

dy

dx
=
(
t2 − 8t

)′
(
t2 − 9

)′ = 2t − 8

2t
= 1 − 4

t

The point where the tangent has slope 1
2 corresponds to the value of t that satisfies

dy

dx
= 1 − 4

t
= 1

2
⇒ 4

t
= 1

2
⇒ t = 8.

We substitute t = 8 in x(t) = t2 − 9 and y(t) = t2 − 8t to obtain the following point:

x(8) = 82 − 9 = 55

y(8) = 82 − 8 · 8 = 0
⇒ (55, 0)

62. Find the points where the tangent is horizontal or vertical.

solution In Exercise 61 we found that the slope of the tangent at t is

dy

dx
= 1 − 4

t
= t − 4

t

The tangent is horizontal where its slope is zero. We set the slope equal to zero and solve for t . This gives

t − 4

t
= 0 ⇒ t = 4.

The corresponding point is

(x(4), y(4)) = (42 − 9, 42 − 8 · 4) = (7, −16).

The tangent is vertical where it has infinite slope; that is, at t = 0. The corresponding point is

(x(0), y(0)) = (02 − 9, 02 − 8 · 0) = (−9, 0).
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63. Let A and B be the points where the ray of angle θ intersects the two concentric circles of radii r < R centered at
the origin (Figure 18). Let P be the point of intersection of the horizontal line through A and the vertical line through B.
Express the coordinates of P as a function of θ and describe the curve traced by P for 0 ≤ θ ≤ 2π .

x

y

B

P

Rr

A

FIGURE 18

solution We use the parametric representation of a circle to determine the coordinates of the points A and B. That is,

A = (r cos θ, r sin θ), B = (R cos θ, R sin θ)

The coordinates of P are therefore

P = (R cos θ, r sin θ)

In order to identify the curve traced by P , we notice that the x and y coordinates of P satisfy x
R

= cos θ and y
r = sin θ .

Hence ( x

R

)2 +
(y

r

)2 = cos2θ + sin2θ = 1.

The equation

( x

R

)2 +
(y

r

)2 = 1

is the equation of ellipse. Hence, the coordinates of P , (R cos θ, r sin θ) describe an ellipse for 0 ≤ θ ≤ 2π .

64. A 10-ft ladder slides down a wall as its bottom B is pulled away from the wall (Figure 19). Using the angle θ as
parameter, find the parametric equations for the path followed by (a) the top of the ladder A, (b) the bottom of the ladder
B, and (c) the point P located 4 ft from the top of the ladder. Show that P describes an ellipse.

y

B

P = (x, y)

6

4

q x

A

FIGURE 19

solution

(a) We define the xy-coordinate system as shown in the figure:

y

B0

10

q x

A
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As the ladder slides down the wall, the x-coordinate of A is always zero and the y-coordinate is y = 10 sin θ . The
parametric equations for the path followed by A are thus

x = 0, y = 10 sin θ, θ is between π
2 and 0.

The path described by A is the segment [0, 10] on the y-axis.

y

0

10

x

(b) As the ladder slides down the wall, the y-coordinate of B is always zero and the x-coordinate is x = 10 cos θ . The
parametric equations for the path followed by B are therefore

x = 10 cos θ, y = 0, θ is between π
2 and 0.

The path is the segment [0, 10] on the x-axis.

y

0 10
x

(c) The x and y coordinates of P are x = 4 cos θ , y = 6 sin θ . The path followed by P has the following parametrization:

c(θ) = (4 cos θ, 6 sin θ), θ is between π
2 and 0.

y

0

6

4

x

x

y

P(x, y)

q

q

As shown in Example 4, the corresponding path is a part of an ellipse. Since θ is varying between π
2 and 0, we obtain the

part of the ellipse in the first quadrant.

y

0 4

6

x
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In Exercises 65–68, refer to the Bézier curve defined by Eqs. (8) and (9).

65. Show that the Bézier curve with control points

P0 = (1, 4), P1 = (3, 12), P2 = (6, 15), P3 = (7, 4)

has parametrization

c(t) = (1 + 6t + 3t2 − 3t3, 4 + 24t − 15t2 − 9t3)

Verify that the slope at t = 0 is equal to the slope of the segment P0P1.

solution For the given Bézier curve we have a0 = 1, a1 = 3, a2 = 6, a3 = 7, and b0 = 4, b1 = 12, b2 = 15, b3 = 4.
Substituting these values in Eq. (8)–(9) and simplifying gives

x(t) = (1 − t)3 + 9t (1 − t)2 + 18t2(1 − t) + 7t3

= 1 − 3t + 3t2 − t3 + 9t (1 − 2t + t2) + 18t2 − 18t3 + 7t3

= 1 − 3t + 3t2 − t3 + 9t − 18t2 + 9t3 + 18t2 − 18t3 + 7t3

= −3t3 + 3t2 + 6t + 1

y(t) = 4(1 − t)3 + 36t (1 − t)2 + 45t2(1 − t) + 4t3

= 4(1 − 3t + 3t2 − t3) + 36t (1 − 2t + t2) + 45t2 − 45t3 + 4t3

= 4 − 12t + 12t2 − 4t3 + 36t − 72t2 + 36t3 + 45t2 − 45t3 + 4t3

= 4 + 24t − 15t2 − 9t3

Then

c(t) = (1 + 6t + 3t2 − 3t3, 4 + 24t − 15t2 − 9t3), 0 ≤ t ≤ 1.

We find the slope at t = 0. Using the formula for slope of the tangent line we get

dy

dx
= (4 + 24t − 15t2 − 9t3)′

(1 + 6t + 3t2 − 3t3)′ = 24 − 30t − 27t2

6 + 6t − 9t2
⇒ dy

dx

∣∣∣∣
t=0

= 24

6
= 4.

The slope of the segment P0P1 is the slope of the line determined by the points P0 = (1, 4) and P1 = (3, 12). That is,
12−4
3−1 = 8

2 = 4. We see that the slope of the tangent line at t = 0 is equal to the slope of the segment P0P1, as expected.

66. Find an equation of the tangent line to the Bézier curve in Exercise 65 at t = 1
3 .

solution We have

dy

dx
= y(t)′

x(t)′ = 24 − 30t − 27t2

66t − 9t2

so that at t = 1
3 ,

dy

dx

∣∣∣∣
t=1/3

= 24 − 30t − 27t2

6 + 6t − 9t2

∣∣∣∣
t=1/3

= 11

7

and

x

(
1

3

)
= 29

9
, y

(
1

3

)
= 10

Thus the tangent line is

y − 10 = 11

7

(
x − 29

9

)
or y = 11

7
x + 311

63

67. Find and plot the Bézier curve c(t) passing through the control points

P0 = (3, 2), P1 = (0, 2), P2 = (5, 4), P3 = (2, 4)

solution Setting a0 = 3, a1 = 0, a2 = 5, a3 = 2, and b0 = 2, b1 = 2, b2 = 4, b3 = 4 into Eq. (8)–(9) and
simplifying gives

x(t) = 3(1 − t)3 + 0 + 15t2(1 − t) + 2t3

= 3(1 − 3t + 3t2 − t3) + 15t2 − 15t3 + 2t3 = 3 − 9t + 24t2 − 16t3
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y(t) = 2(1 − t)3 + 6t (1 − t)2 + 12t2(1 − t) + 4t3

= 2(1 − 3t + 3t2 − t3) + 6t (1 − 2t + t2) + 12t2 − 12t3 + 4t3

= 2 − 6t + 6t2 − 2t3 + 6t − 12t2 + 6t3 + 12t2 − 12t3 + 4t3 = 2 + 6t2 − 4t3

We obtain the following equation

c(t) = (3 − 9t + 24t2 − 16t3, 2 + 6t2 − 4t3), 0 ≤ t ≤ 1.

The graph of the Bézier curve is shown in the following figure:

x

y

1 2 3

1

2

3

4

68. Show that a cubic Bézier curve is tangent to the segment P2P3 at P3.

solution The equations of the cubic Bézier curve are

x(t) = a0(1 − t)3 + 3a1t (1 − t)2 + 3a2t2(1 − t) + a3t3

y(t) = b0(1 − t)3 + 3b1t (1 − t)2 + 3b2t2(1 − t) + b3t3

We use the formula for the slope of the tangent line to find the slope of the tangent line at P3. We obtain

dy

dx
= y′(t)

x′(t) = −3b0(1 − t)2 + 3b1((1 − t)2 − 2t (1 − t)) + 3b2(2t (1 − t) − t2) + 3b3t2

−3a0(1 − t)2 + 3a1((1 − t)2 − 2t (1 − t)) + 3a2(2t (1 − t) − t2) + 3a3t2
(1)

The slope of the tangent line at P3 is obtained by setting t = 1 in (1). That is,

m1 = 0 + 0 − 3b2 + 3b3

0 + 0 − 3a2 + 3a3
= b3 − b2

a3 − a2
(2)

We compute the slope of the segment P2P3 for P2 = (a2, b2) and P3 = (a3, b3). We get

m2 = b3 − b2

a3 − a2

Since the two slopes are equal, we conclude that the tangent line to the curve at the point P3 is the segment P2P3.

69. A bullet fired from a gun follows the trajectory

x = at, y = bt − 16t2 (a, b > 0)

Show that the bullet leaves the gun at an angle θ = tan−1 ( b
a

)
and lands at a distance ab/16 from the origin.

solution The height of the bullet equals the value of the y-coordinate. When the bullet leaves the gun, y(t) =
t (b − 16t) = 0. The solutions to this equation are t = 0 and t = b

16 , with t = 0 corresponding to the moment the bullet
leaves the gun. We find the slope m of the tangent line at t = 0:

dy

dx
= y′(t)

x′(t) = b − 32t

a
⇒ m = b − 32t

a

∣∣∣∣
t=0

= b

a

It follows that tan θ = b
a or θ = tan−1

(
b
a

)
. The bullet lands at t = b

16 . We find the distance of the bullet from the origin

at this time, by substituting t = b
16 in x(t) = at . This gives

x

(
b

16

)
= ab

16
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70. Plot c(t) = (t3 − 4t, t4 − 12t2 + 48) for −3 ≤ t ≤ 3. Find the points where the tangent line is horizontal
or vertical.

solution The graph of c(t) = (t3 − 4t, t4 − 12t2 + 48), −3 ≤ t ≤ 3 is shown in the following figure:

5 10 15
x

−5

20

10

−10−15

60

50

40

30

y

t = 3, (15, 21)t = −3
(−15, 21)

t = 0
(0, 48)

t = −1.15
(3.1, 33.8)

t = 1.15
(−3.1, 33.8)

t = 2.45
(4.9, 12)

t = −2.45
(−4.9, 12)

We find the slope of the tangent line at t :

dy

dx
= y′(t)

x′(x)
= (t4 − 12t2 + 48)

′

(t3 − 4t)
′ = 4t3 − 24t

3t2 − 4
(1)

The tangent line is horizontal where dy
dx

= 0. That is,

4t3 − 24t

3t2 − 4
= 0 ⇒ 4t (t2 − 6) = 0 ⇒ t = 0, t = −√

6, t = √
6.

We find the corresponding points by substituting these values of t in c(t). We obtain:

c(0) = (0, 48), c(−√
6) ≈ (−4.9, 12), c(

√
6) ≈ (4.9, 12).

The tangent line is vertical where the slope in (1) is infinite, that is, where 3t2 − 4 = 0 or t = ± 2√
3

≈ ±1.15. We find

the points by setting t = ± 2√
3

in c(t). We get

c

(
2√
3

)
≈ (−3.1, 33.8), c

(
− 2√

3

)
≈ (3.1, 33.8).

71. Plot the astroid x = cos3 θ , y = sin3 θ and find the equation of the tangent line at θ = π
3 .

solution The graph of the astroid x = cos3 θ , y = sin3 θ is shown in the following figure:

x

y

=     (0, 1)π 
2

   =      (0, −1)3π 
2

   = 0
(1, 0)

   = π
(−1, 0)

The slope of the tangent line at θ = π
3 is

m = dy

dx

∣∣∣∣
θ=π/3

= (sin3 θ)′
(cos3 θ)′

∣∣∣∣
θ=π/3

= 3 sin2 θ cos θ

3 cos2 θ(− sin θ)

∣∣∣∣
θ=π/3

= − sin θ

cos θ

∣∣∣∣
θ=π/3

= − tan θ

∣∣∣∣
π/3

= −√
3

We find the point of tangency: (
x
(π

3

)
, y
(π

3

))
=
(

cos3 π

3
, sin3 π

3

)
=
(

1

8
,

3
√

3

8

)

The equation of the tangent line at θ = π
3 is, thus,

y − 3
√

3

8
= −√

3

(
x − 1

8

)
⇒ y = −√

3x +
√

3

2
72. Find the equation of the tangent line at t = π

4 to the cycloid generated by the unit circle with parametric equation (5).

solution We find the equation of the tangent line at t = π
4 to the cycloid x = t − sin t , y = 1 − cos t . We first find

the derivative dy
dx

:
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dy

dx
= y′(t)

x′(t) = (1 − cos t)′
(t − sin t)′ = sin t

1 − cos t

The slope of the tangent line at t = π
4 is therefore:

m = dy

dx

∣∣∣∣
t=π/4

= sin π
4

1 − cos π
4

=
√

2
2

1 −
√

2
2

= 1√
2 − 1

We find the point of tangency:

(
x
(π

4

)
, y
(π

4

))
=
(π

4
− sin

π

4
, 1 − cos

π

4

)
=
(

π

4
−

√
2

2
, 1 −

√
2

2

)

The equation of the tangent line is, thus,

y −
(

1 −
√

2

2

)
= 1√

2 − 1

(
x −

(
π

4
−

√
2

2

))
⇒ y = 1√

2 − 1
x +

(
2 −

π
4√

2 − 1

)

73. Find the points with horizontal tangent line on the cycloid with parametric equation (5).

solution The parametric equations of the cycloid are

x = t − sin t, y = 1 − cos t

We find the slope of the tangent line at t :

dy

dx
= (1 − cos t)′

(t − sin t)′ = sin t

1 − cos t

The tangent line is horizontal where it has slope zero. That is,

dy

dx
= sin t

1 − cos t
= 0 ⇒ sin t = 0

cos t �= 1
⇒ t = (2k − 1)π, k = 0, ±1, ±2, . . .

We find the coordinates of the points with horizontal tangent line, by substituting t = (2k − 1)π in x(t) and y(t). This
gives

x = (2k − 1)π − sin(2k − 1)π = (2k − 1)π

y = 1 − cos((2k − 1)π) = 1 − (−1) = 2

The required points are

((2k − 1)π, 2), k = 0, ±1, ±2, . . .

74. Property of the Cycloid Prove that the tangent line at a point P on the cycloid always passes through the top point
on the rolling circle as indicated in Figure 20. Assume the generating circle of the cycloid has radius 1.

Tangent line

Cycloid

y

x

FIGURE 20

solution The definition of the cycloid is such that at time t , the top of the circle has coordinates Q = (t, 2) (since at
time t = 2π the circle has rotated exactly once, and its circumference is 2π ). Let L be the line through P and Q. To show
that L is tangent to the cycloid at P it suffices to show that the slope of L equals the slope of the tangent at P . Recall that
the cycloid is parametrized by c(t) = (t − sin t, 1 − cos t). Then the slope of L is

2 − (1 − cos t)

t − (t − sin t)
= 1 + cos t

sin t

and the slope of the tangent line is

y′(t)
x′(t) = (1 − cos t)′

(t − sin t)′ = sin t

1 − cos t
= sin t (1 + cos t)

1 − cos2 t
= sin t (1 + cos t)

sin2 t
= 1 + cos t

sin t

and the two are equal.
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75. A curtate cycloid (Figure 21) is the curve traced by a point at a distance h from the center of a circle of radius R

rolling along the x-axis where h < R. Show that this curve has parametric equations x = Rt − h sin t , y = R − h cos t .

y

h
R

x
4π2π

FIGURE 21 Curtate cycloid.

solution Let P be a point at a distance h from the center C of the circle. Assume that at t = 0, the line of CP is
passing through the origin. When the circle rolls a distance Rt along the x-axis, the length of the arc ŜQ (see figure) is
also Rt and the angle � SCQ has radian measure t . We compute the coordinates x and y of P .

0

CC

R

S

Rt

A
P

h

t

Q

x = Rt − PA = Rt − h sin(π − t) = Rt − h sin t

y = R + AC = R + h cos(π − t) = R − h cos t

We obtain the following parametrization:

x = Rt − h sin t, y = R − h cos t.

76. Use a computer algebra system to explore what happens when h > R in the parametric equations of Exercise
75. Describe the result.

solution Look first at the parametric equations x = −h sin t , y = −h cos t . These describe a circle of radius h. See
for instance the graphs below obtained for h = 3 and h = 5.

2 4 6
x

−2
−2

−4

−4−6

−6

6

4

2

y

c(t) = (−h*sin(t), −h*cos(t)) h = 3, 5

Adding R to the y coordinate to obtain the parametric equations x = −h sin t , y = R − h cos t , yields a circle with its
center moved up by R units:

2 4 6
x

−2
−2

−4

−4−6

−6

10

4

6

8

2

y

c(t) = (−h*sin(t), R−h*cos(t)) R = 1, 5 h = 5
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Now, we add Rt to the x coordinate to obtain the given parametric equation; the curve becomes a spring. The figure below
shows the graphs obtained for R = 1 and various values of h. We see the inner loop formed for h > R.

2 4 6 8 10
x

−8 −6 −4 −2
−2

−4

−10

−6

4

6

8

2

y

77. Show that the line of slope t through (−1, 0) intersects the unit circle in the point with coordinates

x = 1 − t2

t2 + 1
, y = 2t

t2 + 1
10

Conclude that these equations parametrize the unit circle with the point (−1, 0) excluded (Figure 22). Show further that
t = y/(x + 1).

(x, y)

(−1, 0)

Slope t

y

x

FIGURE 22 Unit circle.

solution The equation of the line of slope t through (−1, 0) is y = t (x + 1). The equation of the unit circle is

x2 + y2 = 1. Hence, the line intersects the unit circle at the points (x, y) that satisfy the equations:

y = t (x + 1) (1)

x2 + y2 = 1 (2)

Substituting y from equation (1) into equation (2) and solving for x we obtain

x2 + t2(x + 1)2 = 1

x2 + t2x2 + 2t2x + t2 = 1

(1 + t2)x2 + 2t2x + (t2 − 1) = 0

This gives

x1,2 = −2t2 ±
√

4t4 − 4(t2 + 1)(t2 − 1)

2(1 + t2)
= −2t2 ± 2

2(1 + t2)
= ±1 − t2

1 + t2

So x1 = −1 and x2 = 1 − t2

t2 + 1
. The solution x = −1 corresponds to the point (−1, 0). We are interested in the second

point of intersection that is varying as t varies. Hence the appropriate solution is

x = 1 − t2

t2 + 1

We find the y-coordinate by substituting x in equation (1). This gives

y = t (x + 1) = t

(
1 − t2

t2 + 1
+ 1

)
= t · 1 − t2 + t2 + 1

t2 + 1
= 2t

t2 + 1

We conclude that the line and the unit circle intersect, besides at (−1, 0), at the point with the following coordinates:

x = 1 − t2

t2 + 1
, y = 2t

t2 + 1
(3)
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Since these points determine all the points on the unit circle except for (−1, 0) and no other points, the equations in (3)
parametrize the unit circle with the point (−1, 0) excluded.

We show that t = y

x + 1
. Using (3) we have

y

x + 1
=

2t
t2+1

1−t2

t2+1
+ 1

=
2t

t2+1
1−t2+t2+1

t2+1

=
2t

t2+1
2

t2+1

= 2t

2
= t.

78. The folium of Descartes is the curve with equation x3 + y3 = 3axy, where a �= 0 is a constant (Figure 23).

(a) Show that the line y = tx intersects the folium at the origin and at one other point P for all t �= −1, 0. Express the
coordinates of P in terms of t to obtain a parametrization of the folium. Indicate the direction of the parametrization on
the graph.
(b) Describe the interval of t-values parametrizing the parts of the curve in quadrants I, II, and IV. Note that t = −1 is a
point of discontinuity of the parametrization.
(c) Calculate dy/dx as a function of t and find the points with horizontal or vertical tangent.

2−2

−2

x

2
II I

III IV

y

FIGURE 23 Folium x3 + y3 = 3axy.

solution
(a) We find the points where the line y = tx (t �= −1, 0) and the folium intersect, by solving the following equations:

y = tx (1)

x3 + y3 = 3axy (2)

Substituting y from (1) in (2) and solving for x we get

x3 + t3x3 = 3axtx

(1 + t3)x3 − 3atx2 = 0

x2(x(1 + t3) − 3at) = 0 ⇒ x1 = 0, x2 = 3at

1 + t3

Substituting in (1) we find the corresponding y-coordinates. That is,

y1 = t · 0 = 0, y2 = t · 3at

1 + t3
= 3at2

1 + t3

We conclude that the line y = tx, t �= 0, −1 intersects the folium in a unique point P besides the origin. The coordinates
of P are:

x = 3at

1 + t3
, y = 3at2

1 + t3
, t �= 0, −1

The coordinates of P determine a parametrization for the folium. We add the origin so t = 0 must be included in the
interval of t . We get

c(t) =
(

3at

1 + t3
,

3at2

1 + t3

)
, t �= −1

To indicate the direction on the curve (for a > 0), we first consider the following limits:

lim
t→−1− x(t) = ∞ lim

t→−1− y(t) = −∞

lim
t→−∞ x(t) = lim

t→∞ x(t) = 0 lim
t→−∞ y(t) = lim

t→∞ y(t) = 0

lim
t→−1+ x(t) = −∞ lim

t→−1+ y(t) = ∞

lim
t→0

x(t) = 0 lim
t→0

y(t) = 0



April 4, 2011

S E C T I O N 11.1 Parametric Equations 1405

These limits determine the directions of the two parts of the folium in the second and fourth quadrant. The loop in the
first quadrant, corresponds to the values 0 ≤ t < ∞, and it is directed from c(1) = ( 3a

2 , 3a
2 ) to c(2) = ( 2a

3 , 4a
3 ) where

t = 1 and t = 2 are two chosen values in the interval 0 ≤ t < ∞. The following graph shows the directed folium:

y

x
t = 0

t = ∞
t = −∞

t = −1−

t = −1+

0 ≤ t < ∞
−1< t < 0

−∞ < t < −1

(b) The limits computed in part (a) indicate that the parts of the curve in the second and fourth quadrants correspond
to the values −1 < t < 0 and −∞ < t < −1 respectively. The loop in the first quadrant corresponds to the remaining
interval 0 ≤ t < ∞.
(c) We find the derivative dy

dx
, using the Formula for the Slope of the Tangent Line. We get

dy

dx
= y′(t)

x′(t) =
(

3at2

1+t3

)′
(

3at
1+t3

)′ =
6at (1+t3)−3at2·3t2

(1+t3)
2

3a(1+t3)−3at ·3t2

(1+t3)
2

= 6at − 3at4

3a − 6at3
= t (2 − t3)

1 − 2t3

Horizontal tangent occurs when dy
dx

= 0. That is,

t (2 − t3)

1 − 2t3
= 0 ⇒ t (2 − t3) = 0, 1 − 2t3 �= 0 ⇒ t = 0, t = 3√

2.

The corresponding points are:

c(0) = (x(0), y(0)) = (0, 0)

c
(

3√
2
)

=
(
x
(

3√
2
)

, y
(

3√
2
))

=
(

3a
3√2

1 + 2
,

3a
3√4

1 + 2

)
=
(
a

3√
2, a

3√
4
)

Vertical tangent line occurs when dy
dx

is infinite. That is,

1 − 2t3 = 0 ⇒ t = 1
3√2

The corresponding point is

c

(
1

3√2

)
=
(

x

(
1

3√2

)
, y

(
1

3√2

))
=
⎛
⎝ 3a

3√2

1 + 1
2

,

3a
3√4

1 + 1
2

⎞
⎠ =

(
3√

4a,
3√

2a
)

.

79. Use the results of Exercise 78 to show that the asymptote of the folium is the line x + y = −a. Hint: Show that
lim

t→−1
(x + y) = −a.

solution We must show that as x → ∞ or x → −∞ the graph of the folium is getting arbitrarily close to the line

x + y = −a, and the derivative dy
dx

is approaching the slope −1 of the line.
In Exercise 78 we showed that x → ∞ when t → (−1−) and x → −∞ when t → (−1+). We first show that the graph

is approaching the line x + y = −a as x → ∞ or x → −∞, by showing that lim
t→−1− x + y = lim

t→−1+ x + y = −a.

For x(t) = 3at

1 + t3
, y(t) = 3at2

1 + t3
, a > 0, calculated in Exercise 78, we obtain using L’Hôpital’s Rule:

lim
t→−1−(x + y) = lim

t→−1−
3at + 3at2

1 + t3
= lim

t→−1−
3a + 6at

3t2
= 3a − 6a

3
= −a

lim
t→−1+(x + y) = lim

t→−1+
3at + 3at2

1 + t3
= lim

t→−1+
3a + 6at

3t2
= 3a − 6a

3
= −a

We now show that
dy

dx
is approaching −1 as t → −1− and as t → −1+. We use

dy

dx
= 6at − 3at4

3a − 6at3
computed in Exercise

78 to obtain

lim
t→−1−

dy

dx
= lim

t→−1−
6at − 3at4

3a − 6at3
= −9a

9a
= −1



April 4, 2011

1406 C H A P T E R 11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

lim
t→−1+

dy

dx
= lim

t→−1+
6at − 3at4

3a − 6at3
= −9a

9a
= −1

We conclude that the line x + y = −a is an asymptote of the folium as x → ∞ and as x → −∞.

80. Find a parametrization of x2n+1 + y2n+1 = axnyn, where a and n are constants.

solution Following the method in Exercise 78, we first find the coordinates of the point P where the curve and the
line y = tx intersect. We solve the following equations:

y = tx

x2n+1 + y2n+1 = axnyn

Substituting y = tx in the second equation and solving for x yields

x2n+1 + t2n+1x2n+1 = axn · tnxn

(1 + t2n+1)x2n+1 − atnx2n = 0

x2n((1 + t2n+1)x − atn) = 0 ⇒ x = 0, x = atn

1 + t2n+1

We assume that t �= −1 (so 1 + t2n+1 �= 0) and obtain one solution besides the origin. The corresponding y coordinates
are

y = tx = t · atn

1 + t2n+1
= atn+1

1 + t2n+1

Hence, the points x = atn

1 + t2n+1
, y = atn+1

1 + t2n+1
, t �= −1, are exactly the points on the curve. We obtain the following

parametrization:

x = atn

1 + t2n+1
, y = atn+1

1 + t2n+1
, t �= −1.

81. Second Derivative for a Parametrized Curve Given a parametrized curve c(t) = (x(t), y(t)), show that

d

dt

( dy

dx

)
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)2

Use this to prove the formula

d2y

dx2
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)3
11

solution By the formula for the slope of the tangent line we have

dy

dx
= y′(t)

x′(t)

Differentiating with respect to t , using the Quotient Rule, gives

d

dt

(
dy

dx

)
= d

dt

(
y′(t)
x′(t)

)
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)2

By the Chain Rule we have

d2y

dx2
= d

dx

(
dy

dx

)
= d

dt

(
dy

dx

)
· dt

dx

Substituting into the above equation

(
and using

dt

dx
= 1

dx/dt
= 1

x′(t)

)
gives

d2y

dx2
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)2
· 1

x′(t) = x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3
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82. The second derivative of y = x2 is dy2/d2x = 2. Verify that Eq. (11) applied to c(t) = (t, t2) yields dy2/d2x = 2.
In fact, any parametrization may be used. Check that c(t) = (t3, t6) and c(t) = (tan t, tan2 t) also yield dy2/d2x = 2.

solution For the parametrization c(t) = (t, t2), we have

x′(t) = 1, x′′(t) = 0, y′(t) = 2t, y′′(t) = 2

so that indeed

x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

= 1 · 2 − 2t · 0

13
= 2

For c(t) = (t3, t6), we have

x′(t) = 3t2, x′′(t) = 6t, y′(t) = 6t5, y′′(t) = 30t4

so that again

x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

= 3t2 · 30t4 − 6t5 · 6t

(3t2)3
= 54t6

27t6
= 2

Finally, for c(t) = (tan t, tan2 t),

x′(t) = sec2 t, x′′(t) = 2 tan t sec2 t, y′(t) = 2 tan t sec2 t, y′′(t) = 6 sec4 t − 4 sec2 t

and

x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

= sec2 t (6 sec4 t − 4 sec2 t) − 2 tan t sec2 t (2 tan t sec2 t)

sec6 t

= 6 sec6 t − 4 sec4 t − 4 sec4 t tan2 t

sec6 t
= 6 sec6 t − 4 sec4 t (1 − (1 + sec2 t)))

sec6 t

= 2 sec6 t

sec6 t
= 2

In Exercises 83–86, use Eq. (11) to find d2y/dx2.

83. x = t3 + t2, y = 7t2 − 4, t = 2

solution We find the first and second derivatives of x(t) and y(t):

x′(t) = 3t2 + 2t ⇒ x′(2) = 3 · 22 + 2 · 2 = 16

x′′(t) = 6t + 2 ⇒ x′′(2) = 6 · 2 + 2 = 14

y′(t) = 14t ⇒ y′(2) = 14 · 2 = 28

y′′(t) = 14 ⇒ y′′(2) = 14

Using Eq. (11) we get

d2y

dx2

∣∣∣∣
t=2

= x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

∣∣∣∣
t=2

= 16 · 14 − 28 · 14

163
= −21

512

84. x = s−1 + s, y = 4 − s−2, s = 1

solution Since x′(s) = −s−2 + 1 = 1 − 1

s2
, we have x′(1) = 0. Hence, Eq. (11) cannot be used to compute

d2y

dx2
at

s = 1.

85. x = 8t + 9, y = 1 − 4t , t = −3

solution We compute the first and second derivatives of x(t) and y(t):

x′(t) = 8 ⇒ x′(−3) = 8

x′′(t) = 0 ⇒ x′′(−3) = 0

y′(t) = −4 ⇒ y′(−3) = −4

y′′(t) = 0 ⇒ y′′(−3) = 0
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Using Eq. (11) we get

d2y

dx2

∣∣∣∣
t=−3

= x′(−3)y′′(−3) − y′(−3)x′′(−3)

x′(−3)3
= 8 · 0 − (−4) · 0

83
= 0

86. x = cos θ , y = sin θ , θ = π
4

solution We find the first and second derivatives of x(θ) and y(θ):

x′(θ) = − sin θ ⇒ x′ (π

4

)
= −

√
2

2

x′′(θ) = − cos θ ⇒ x′′ (π

4

)
= −

√
2

2

y′(θ) = cos θ ⇒ y′ (π

4

)
=

√
2

2

y′′(θ) = − sin θ ⇒ y′′ (π

4

)
= −

√
2

2

Using Eq. (11) we get

d2y

dx2

∣∣∣∣
θ= π

4

= x′ (π
4

)
y′′ (π

4

)− y′ (π
4

)
x′′ (π

4

)
(
x′ (π

4

))3 =
(
−

√
2

2

) (
−

√
2

2

)
−

√
2

2 ·
(
−

√
2

2

)
(
−

√
2

2

)3
= −2

√
2

87. Use Eq. (11) to find the t-intervals on which c(t) = (t2, t3 − 4t) is concave up.

solution The curve is concave up where
d2y

dx2
> 0. Thus,

x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

> 0 (1)

We compute the first and second derivatives:

x′(t) = 2t, x′′(t) = 2

y′(t) = 3t2 − 4, y′′(t) = 6t

Substituting in (1) and solving for t gives

12t2 − (6t2 − 8)

8t3
= 6t2 + 8

8t3

Since 6t2 + 8 > 0 for all t , the quotient is positive if 8t3 > 0. We conclude that the curve is concave up for t > 0.

88. Use Eq. (11) to find the t-intervals on which c(t) = (t2, t4 − 4t) is concave up.

solution The curve is concave up where
d2y

dx2
> 0. That is,

x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

> 0 (1)

We compute the first and second derivatives:

x′(t) = 2t, x′′(t) = 2

y′(t) = 4t3 − 4, y′′(t) = 12t2

Substituting in (1) and solving for t gives

24t3 − (8t3 − 8)

8t3
= 16t3 + 8

8t3
= 1 + 1

2t3

This is clearly positive for t > 0. For t < 0, we want 1 + 1

2t3
> 0, which means

1

2t3
> −1, so 2t3 < −1 (by taking the

reciprocal of both sides), so t < − 1
3√2

. Thus, we see that our curve is concave up for t < − 1
3√2

and for t > 0.
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89. Area Under a Parametrized Curve Let c(t) = (x(t), y(t)), where y(t) > 0 and x′(t) > 0 (Figure 24). Show that
the area A under c(t) for t0 ≤ t ≤ t1 is

A =
∫ t1

t0

y(t)x′(t) dt 12

Hint: Because it is increasing, the function x(t) has an inverse t = g(x) and c(t) is the graph of y = y(g(x)). Apply the

change-of-variables formula to A = ∫ x(t1)
x(t0)

y(g(x)) dx.

y
c(t)

x(t1)x(t0)
xx

FIGURE 24

solution Let x0 = x(t0) and x1 = x(t1). We are given that x′(t) > 0, hence x = x(t) is an increasing function of
t , so it has an inverse function t = g(x). The area A is given by

∫ x1
x0

y(g(x)) dx. Recall that y is a function of t and

t = g(x), so the height y at any point x is given by y = y(g(x)). We find the new limits of integration. Since x0 = x(t0)

and x1 = x(t1), the limits for t are t0 and t1, respectively. Also since x′(t) = dx
dt

, we have dx = x′(t)dt . Performing this
substitution gives

A =
∫ x1

x0

y(g(x)) dx =
∫ t1

t0

y(g(x))x′(t) dt.

Since g(x) = t , we have A =
∫ t1

t0

y(t)x′(t) dt .

90. Calculate the area under y = x2 over [0, 1] using Eq. (12) with the parametrizations (t3, t6) and (t2, t4).

solution The area A under y = x2 on [0, 1] is given by the integral

A =
∫ t1

t0

y(t)x′(t) dt

where x(t0) = 0 and x(t1) = 1. We first use the parametrization (t3, t6). We have x(t) = t3, y(t) = t6. Hence,

0 = x(t0) = t3
0 ⇒ t0 = 0

1 = x(t1) = t3
1 ⇒ t1 = 1

Also x′(t) = 3t2. Substituting these values in Eq. (12) we obtain

A =
∫ 1

0
t6 · 3t2 dt =

∫ 1

0
3t8 dt = 3

9
t9
∣∣∣∣1
0

= 3

9
= 1

3

Using the parametrization x(t) = t2, y(t) = t4, we have x′(t) = 2t . We find t0 and t1:

0 = x(t0) = t2
0 ⇒ t0 = 0

1 = x(t1) = t2
1 ⇒ t1 = 1 or t1 = −1.

Equation (12) is valid if x′(t) > 0, that is if t > 0. Hence we choose the positive value, t1 = 1. We now use Eq. (12) to
obtain

A =
∫ 1

0
t4 · 2t dt =

∫ 1

0
2t5 dt = 2

6
t6
∣∣∣∣1
0

= 2

6
= 1

3

Both answers agree, as expected.

91. What does Eq. (12) say if c(t) = (t, f (t))?

solution In the parametrization x(t) = t , y(t) = f (t) we have x′(t) = 1, t0 = x(t0), t1 = x(t1). Hence Eq. (12)
becomes

A =
∫ t1

t0

y(t)x′(t) dt =
∫ x(t1)

x(t0)
f (t) dt

We see that in this parametrization Eq. (12) is the familiar formula for the area under the graph of a positive function.
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92. Sketch the graph of c(t) = (ln t, 2 − t) for 1 ≤ t ≤ 2 and compute the area under the graph using Eq. (12).

solution We use the following graphs of x(t) = ln t and y(t) = 2 − t for 1 ≤ t ≤ 2:

21

1

t

y

21

1

t

y

x(t) = ln t y(t) = 2 − t

We see that for 1 < t < 2, x(t) is positive and increasing and y(t) is positive and decreasing. Also c(1) = (ln 1, 2 − 1) =
(0, 1) and c(2) = (ln 2, 2 − 2) = (ln 2, 0). Additional information is obtained from the derivative

dy

dx
= (2 − t)′

(ln t)′ = − 1

1/t
= −t,

yielding

dy

dx

∣∣∣∣
t=1

− 1 and
dy

dx

∣∣∣∣
t=2

− 2.

We obtain the following graph:

1
t

y

t = 1

t = 2

(0, 1)

(ln 2, 0)

We now use Eq. (12) to compute the area A under the graph. We have x(t) = ln t , x′(t) = 1
t , y(t) = 2 − t , t0 = 1, t1 = 2.

Hence,

A =
∫ t1

t0

y(t)x′(t) dt =
∫ 2

1
(2 − t) · 1

t
dt =

∫ 2

1

(
2

t
− 1

)
dt

= 2 ln t − t

∣∣∣∣2
1

= (2 ln 2 − 2) − (2 ln 1 − 1) = 2 ln 2 − 1 ≈ 0.386

93. Galileo tried unsuccessfully to find the area under a cycloid. Around 1630, Gilles de Roberval proved that the area
under one arch of the cycloid c(t) = (Rt − R sin t, R − R cos t) generated by a circle of radius R is equal to three times
the area of the circle (Figure 25). Verify Roberval’s result using Eq. (12).

x

R

πR 2πR

y

FIGURE 25 The area of one arch of the cycloid equals three times the area of the generating circle.

solution This reduces to

∫ 2π

0
(R − R cos t)(Rt − R sin t)′ dt =

∫ 2π

0
R2(1 − cos t)2 dt = 3πR2.
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Further Insights and Challenges
94. Prove the following generalization of Exercise 93: For all t > 0, the area of the cycloidal sector OPC is equal to
three times the area of the circular segment cut by the chord PC in Figure 26.

R
t

P

O C = (Rt, 0)
x

y

R
t

(B) Circular segment cut

by the chord PC

(A) Cycloidal sector OPC 

P

O C = (Rt, 0)
x

y

FIGURE 26

solution Drop a perpendicular from point P to the x-axis and label the point of intersection T , and denote by D the
center of the circle. Then the area of the cycloidal sector is equal to the area of OPT plus the area of PT C. The latter is

a triangle with height y(t) = R − R cos t and base Rt − (Rt − R sin t) = R sin t , so its area is
1

2
R2 sin t (1 − cos t). The

area of OPT , using Eq. (12), is∫ t

0
y(u)x′(u) du =

∫ t

0
(R − R cos u)(Ru − R sin u)′ du = R2

∫ t

0
(1 − cos u)2 du

= R2
(

3

2
t − 2 sin t + 1

2
sin t cos t

)

so that the total area of the cycloidal sector is

R2
(

3

2
t − 2 sin t + 1

2
sin t cos t

)
+ R2 1

2
sin t (1 − cos t) = 3

(
1

2
R2t − 1

2
R2 sin t

)
= 3 · 1

2
R2(t − sin t)

The area of the circular segment is the area of the circular sector DPC subtended by the angle t less the area of the triangle

DPC. The triangle DPC has height R cos
t

2
and base 2R sin t

2 so that its area is R2 cos
t

2
sin

t

2
= 1

2
R2 sin t , and the

area of the circular sector is πR2 · t

2π
= 1

2
R2t . Thus the area of the circular segment is

1

2
R2(t − sin t)

which is one third the area of the cycloidal sector.

95. Derive the formula for the slope of the tangent line to a parametric curve c(t) = (x(t), y(t)) using a method
different from that presented in the text. Assume that x′(t0) and y′(t0) exist and that x′(t0) �= 0. Show that

lim
h→0

y(t0 + h) − y(t0)

x(t0 + h) − x(t0)
= y′(t0)

x′(t0)

Then explain why this limit is equal to the slope dy/dx. Draw a diagram showing that the ratio in the limit is the slope
of a secant line.

solution Since y′(t0) and x′(t0) exist, we have the following limits:

lim
h→0

y(t0 + h) − y(t0)

h
= y′(t0), lim

h→0

x(t0 + h) − x(t0)

h
= x′(t0) (1)

We use Basic Limit Laws, the limits in (1) and the given data x′(t0) �= 0, to write

lim
h→0

y(t0 + h) − y(t0)

x(t0 + h) − x(t0)
= lim

h→0

y(t0+h)−y(t0)
h

x(t0+h)−x(t0)
h

= limh→0
y(t0+h)−y(t0)

h

limh→0
x(t0+h)−x(t0)

h

= y′(t0)

x′(t0)

Notice that the quotient
y(t0 + h) − y(t0)

x(t0 + h) − x(t0)
is the slope of the secant line determined by the points P = (x(t0), y(t0)) and

Q = (x(t0 + h), y(t0 + h)). Hence, the limit of the quotient as h → 0 is the slope of the tangent line at P , that is the
derivative dy

dx
.
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x

y

x(t0 + h)x(t0)

y(t0)

y(t0, h)

P

Q

96. Verify that the tractrix curve (� > 0)

c(t) =
(

t − � tanh
t

�
, � sech

t

�

)

has the following property: For all t , the segment from c(t) to (t, 0) is tangent to the curve and has length � (Figure 27).

y

t

c(t)

x

FIGURE 27 The tractrix c(t) =
(

t − � tanh
t

�
, � sech

t

�

)
.

solution Let P = c(t) and Q = (t, 0).

y

Q = (t, 0)

P(x(t), y(t))

x

The slope of the segment PQ is

m1 = y(t) − 0

x(t) − t
= � sech

(
t
�

)
−� tanh

(
t
�

) = − 1

sinh
(

t
�

)
We compute the slope of the tangent line at P :

m2 = dy

dx
= y′(t)

x′(t) =
(
� sech

(
t
�

))′(
t − � tanh

(
t
�

))′ = � · 1
�

(− sech
(

t
�

)
tanh

(
t
�

))
1 − � · 1

�
sech2 ( t

�

)
= −− sech

(
t
�

)
tanh

(
t
�

)
1 − sech2 ( t

�

) = − sech
(

t
�

)
tanh

(
t
�

)
tanh2 ( t

�

) = − sech
(

t
�

)
tanh

(
t
�

) = − 1

sinh
(

t
�

)
Since m1 = m2, we conclude that the segment from c(t) to (t, 0) is tangent to the curve.

We now show that |PQ| = �:

|PQ| =
√

(x(t) − t)2 + (y(t) − 0)2 =
√(

−� tanh
t

�

)2
+
(

� sech

(
t

�

))2

=
√

�2
(

tanh2
(

t

�

)
+ sech2

(
t

�

))
= �

√
sech2

(
t

�

)
sinh2

(
t

�

)
+ sech2

(
t

�

)

= � sech

(
t

�

)√
sinh2

(
t

�

)
+ 1 = � sech

(
t

�

)
cosh

(
t

�

)
= � · 1 = �
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97. In Exercise 54 of Section 10.1 (ET Exercise 54 of Section 9.1), we described the tractrix by the differential equation

dy

dx
= − y√

�2 − y2

Show that the curve c(t) identified as the tractrix in Exercise 96 satisfies this differential equation. Note that the derivative
on the left is taken with respect to x, not t .

solution Note that dx/dt = 1 − sech2(t/�) = tanh2(t/�) and dy/dt = − sech(t/�) tanh(t/�). Thus,

dy

dx
= dy/dt

dx/dt
= − sech(t/�)

tanh(t/�)
= −y/�√

1 − y2/�2

Multiplying top and bottom by �/� gives

dy

dx
= −y√

�2 − y2

In Exercises 98 and 99, refer to Figure 28.

98. In the parametrization c(t) = (a cos t, b sin t) of an ellipse, t is not an angular parameter unless a = b (in which
case the ellipse is a circle). However, t can be interpreted in terms of area: Show that if c(t) = (x, y), then t = (2/ab)A,
where A is the area of the shaded region in Figure 28. Hint: Use Eq. (12).

q

y

(x, y)

x

FIGURE 28 The parameter θ on the ellipse
(x

a

)2 +
(y

b

)2 = 1.

solution We compute the area A of the shaded region as the sum of the area S1 of the triangle and the area S2 of the
region under the curve. The area of the triangle is

S1 = xy

2
= (a cos t)(b sin t)

2
= ab sin 2t

4
(1)

y

(x, y)

x
S1

S2

The area S2 under the curve can be computed using Eq. (12). The lower limit of the integration is t0 = 0 (corresponds to
(a, 0)) and the upper limit is t (corresponds to (x(t), y(t))). Also y(t) = b sin t and x′(t) = −a sin t . Since x′(t) < 0 on
the interval 0 < t < π

2 (which represents the ellipse on the first quadrant), we use the positive value a sin t to obtain a
positive value for the area. This gives

S2 =
∫ t

0
b sin u · a sin u du = ab

∫ t

0
sin2u du

= ab

∫ t

0

(
1

2
− 1

2
cos 2u

)
du = ab

[
u

2
− sin 2u

4

] ∣∣∣∣t
0

(2)

= ab

[
t

2
− sin 2t

4
− 0

]
= abt

2
− ab sin 2t

4

Combining (1) and (2) we obtain

A = S1 + S2 = ab sin 2t

4
+ abt

2
− ab sin 2t

4
= abt

2

Hence, t = 2A
ab

.
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99. Show that the parametrization of the ellipse by the angle θ is

x = ab cos θ√
a2 sin2 θ + b2 cos2 θ

y = ab sin θ√
a2 sin2 θ + b2 cos2 θ

solution We consider the ellipse

x2

a2
+ y2

b2
= 1.

For the angle θ we have tan θ = y
x , hence,

y = x tan θ (1)

Substituting in the equation of the ellipse and solving for x we obtain

x2

a2
+ x2tan2θ

b2
= 1

b2x2 + a2x2tan2θ = a2b2

(a2tan2θ + b2)x2 = a2b2

x2 = a2b2

a2tan2θ + b2
= a2b2cos2θ

a2sin2θ + b2cos2θ

We now take the square root. Since the sign of the x-coordinate is the same as the sign of cos θ , we take the positive root,
obtaining

x = ab cos θ√
a2sin2θ + b2cos2θ

(2)

Hence by (1), the y-coordinate is

y = x tan θ = ab cos θ tan θ√
a2sin2θ + b2cos2θ

= ab sin θ√
a2sin2θ + b2cos2θ

(3)

Equalities (2) and (3) give the following parametrization for the ellipse:

c1(θ) =
(

ab cos θ√
a2sin2θ + b2cos2θ

,
ab sin θ√

a2sin2θ + b2cos2θ

)

11.2 Arc Length and Speed

Preliminary Questions
1. What is the definition of arc length?

solution A curve can be approximated by a polygonal path obtained by connecting points

p0 = c(t0), p1 = c(t1), . . . , pN = c(tN )

on the path with segments. One gets an approximation by summing the lengths of the segments. The definition of arc
length is the limit of that approximation when increasing the number of points so that the lengths of the segments approach
zero. In doing so, we obtain the following theorem for the arc length:

S =
∫ b

a

√
x′(t)2 + y′(t)2 dt,

which is the length of the curve c(t) = (x(t), y(t)) for a ≤ t ≤ b.

2. What is the interpretation of
√

x′(t)2 + y′(t)2 for a particle following the trajectory (x(t), y(t))?

solution The expression
√

x′(t)2 + y′(t)2 denotes the speed at time t of a particle following the trajectory (x(t), y(t)).
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3. A particle travels along a path from (0, 0) to (3, 4). What is the displacement? Can the distance traveled be determined
from the information given?

solution The net displacement is the distance between the initial point (0, 0) and the endpoint (3, 4). That is

√
(3 − 0)2 + (4 − 0)2 = √

25 = 5.

The distance traveled can be determined only if the trajectory c(t) = (x(t), y(t)) of the particle is known.

4. A particle traverses the parabola y = x2 with constant speed 3 cm/s. What is the distance traveled during the first
minute? Hint: No computation is necessary.

solution Since the speed is constant, the distance traveled is the following product: L = st = 3 · 60 = 180 cm.

Exercises
In Exercises 1–10, use Eq. (3) to find the length of the path over the given interval.

1. (3t + 1, 9 − 4t), 0 ≤ t ≤ 2

solution Since x = 3t + 1 and y = 9 − 4t we have x′ = 3 and y′ = −4. Hence, the length of the path is

S =
∫ 2

0

√
32 + (−4)2 dt = 5

∫ 2

0
dt = 10.

2. (1 + 2t, 2 + 4t), 1 ≤ t ≤ 4

solution We have x = 1 + 2t and y = 2 + 4t , hence x′ = 2 and y′ = 4. Using the formula for arc length we obtain

S =
∫ 4

1

√
22 + 42 dt =

∫ 4

1

√
20 dt = √

20(4 − 1) = 6
√

5

3. (2t2, 3t2 − 1), 0 ≤ t ≤ 4

solution Since x = 2t2 and y = 3t2 − 1, we have x′ = 4t and y′ = 6t . By the formula for the arc length we get

S =
∫ 4

0

√
x′(t)2 + y′(t)2 dt =

∫ 4

0

√
16t2 + 36t2 dt = √

52
∫ 4

0
t dt = √

52 · t2

2

∣∣∣∣4
0

= 16
√

13

4. (3t, 4t3/2), 0 ≤ t ≤ 1

solution We have x = 3t and y = 4t3/2, hence x′ = 3 and y′ = 6t1/2. Using the formula for the arc length we obtain

S =
∫ 1

0

√
x′(t)2 + y′(t)2 dt =

∫ 1

0

√
32 + (6t1/2

)2
dt =

∫ 1

0

√
9 + 36t dt = 3

∫ 1

0

√
1 + 4t dt

Setting u = 1 + 4t we get

S = 3

4

∫ 5

1

√
u du = 3

4
· 2

3
u3/2

∣∣∣∣5
1

= 1

2
(53/2 − 1) ≈ 5.09

5. (3t2, 4t3), 1 ≤ t ≤ 4

solution We have x = 3t2 and y = 4t3. Hence x′ = 6t and y′ = 12t2. By the formula for the arc length we get

S =
∫ 4

1

√
x′(t)2 + y′(t)2 dt =

∫ 4

1

√
36t2 + 144t4 dt = 6

∫ 4

1

√
1 + 4t2t dt.

Using the substitution u = 1 + 4t2, du = 8t dt we obtain

S = 6

8

∫ 65

5

√
u du = 3

4
· 2

3
u3/2

∣∣∣∣65

5
= 1

2
(653/2 − 53/2) ≈ 256.43



April 4, 2011

1416 C H A P T E R 11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

6. (t3 + 1, t2 − 3), 0 ≤ t ≤ 1

solution We have x = t3 + 1, y = t2 − 3, hence, x′ = 3t2 and y′ = 2t . By the formula for the arc length we get

S =
∫ 1

0

√
x′(t)2 + y′(t)2 dt =

∫ 1

0

√
9t4 + 4t2 dt =

∫ 1

0
t
√

9t2 + 4 dt

We compute the integral using the substitution u = 4 + 9t2. This gives

S = 1

18

∫ 13

4

√
u du = 1

18
· 2

3
u3/2

∣∣∣∣13

4
= 1

27
(133/2 − 43/2) = 1

27
(133/2 − 8) ≈ 1.44.

7. (sin 3t, cos 3t), 0 ≤ t ≤ π

solution We have x = sin 3t , y = cos 3t , hence x′ = 3 cos 3t and y′ = −3 sin 3t . By the formula for the arc length
we obtain:

S =
∫ π

0

√
x′(t)2 + y′(t)2 dt =

∫ π

0

√
9 cos2 3t + 9 sin2 3t dt =

∫ π

0

√
9 dt = 3π

8. (sin θ − θ cos θ, cos θ + θ sin θ), 0 ≤ θ ≤ 2

solution We have x = sin θ − θ cos θ and y = cos θ + θ sin θ . Hence, x′ = cos θ − (cos θ − θ sin θ) = θ sin θ and
y′ = − sin θ + sin θ + θ cos θ = θ cos θ. Using the formula for the arc length we obtain:

S =
∫ 2

0

√
x′(θ)2 + y′(θ)2 dθ =

∫ 2

0

√
(θ sin θ)2 + (θ cos θ)2 dθ

=
∫ 2

0

√
θ2(sin2 θ + cos2 θ) dθ =

∫ 2

0
θ dθ = θ2

2

∣∣∣∣2
0

= 2

In Exercises 9 and 10, use the identity

1 − cos t

2
= sin2 t

2

9. (2 cos t − cos 2t, 2 sin t − sin 2t), 0 ≤ t ≤ π
2

solution We have x = 2 cos t − cos 2t , y = 2 sin t − sin 2t . Thus, x′ = −2 sin t + 2 sin 2t and y′ = 2 cos t − 2 cos 2t .
We get

x′(t)2 + y′(t)2 = (−2 sin t + 2 sin 2t)2 + (2 cos t − 2 cos 2t)2

= 4 sin2 t − 8 sin t sin 2t + 4 sin2 2t + 4 cos2 t − 8 cos t cos 2t + 4 cos2 2t

= 4(sin2 t + cos2 t) + 4(sin2 2t + cos2 2t) − 8(sin t sin 2t + cos t cos 2t)

= 4 + 4 − 8 cos(2t − t) = 8 − 8 cos t = 8(1 − cos t)

We now use the formula for the arc length to obtain

S =
∫ π/2

0

√
x′(t)2 + y′(t)2 =

∫ π/2

0

√
8(1 − cos t) dt =

∫ π/2

0

√
16 sin2 t

2
dt = 4

∫ π/2

0
sin

t

2
dt

= −8 cos
t

2

∣∣∣∣π/2

0
= −8

(
cos

π

4
− cos 0

)
= −8

(√
2

2
− 1

)
≈ 2.34

10. (5(θ − sin θ), 5(1 − cos θ)), 0 ≤ θ ≤ 2π

solution Since x = 5(θ − sin θ) and y = 5(1 − cos θ), we have x′ = 5(1 − cos θ) and y′ = 5 sin θ . Using the formula
for the arc length we obtain:

S =
∫ 2π

0

√
x′(θ)2 + y′(θ)2 dθ =

∫ 2π

0

√
25(1 − cos θ)2 + 25 sin2 θ dθ

= 5
∫ 2π

0

√
1 − 2 cos θ + cos2 θ + sin2 θ dθ = 5

∫ 2π

0

√
2(1 − cos θ) dθ

= 5
∫ 2π

0

√
4 sin2 θ

2
dθ = 10

∫ 2π

0
sin

θ

2
dθ = 20

∫ π

0
sin u du

= 20(− cos u)

∣∣∣∣π
0

= −20(−1 − 1) = 40.
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11. Show that one arch of a cycloid generated by a circle of radius R has length 8R.

solution Recall from earlier that the cycloid generated by a circle of radius R has parametric equations x = Rt −
R sin t , y = R − R cos t . Hence, x′ = R − R cos t , y′ = R sin t . Using the identity sin2 t

2
= 1 − cos t

2
, we get

x′(t)2 + y′(t)2 = R2(1 − cos t)2 + R2 sin2 t = R2(1 − 2 cos t + cos2 t + sin2 t)

= R2(1 − 2 cos t + 1) = 2R2(1 − cos t) = 4R2 sin2 t

2

One arch of the cycloid is traced as t varies from 0 to 2π . Hence, using the formula for the arc length we obtain:

S =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

√
4R2 sin2 t

2
dt = 2R

∫ 2π

0
sin

t

2
dt = 4R

∫ π

0
sin u du

= −4R cos u

∣∣∣∣π
0

= −4R(cos π − cos 0) = 8R

12. Find the length of the spiral c(t) = (t cos t, t sin t) for 0 ≤ t ≤ 2π to three decimal places (Figure 7). Hint: Use the
formula ∫ √

1 + t2 dt = 1

2
t
√

1 + t2 + 1

2
ln
(
t +

√
1 + t2

)

y

x

5

10−10

−10

t = 0

t = 2p

FIGURE 7 The spiral c(t) = (t cos t, t sin t).

solution We use the formula for the arc length:

S =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt (1)

Differentiating x = t cos t and y = t sin t yields

x′(t) = d

dt
(t cos t) = cos t − t sin t

y′(t) = d

dt
(t sin t) = sin t + t cos t

Thus,

√
x′(t)2 + y′(t)2 =

√
(cos t − t sin t)2 + (sin t + t cos t)2

=
√

cos2 t − 2t cos t sin t + t2 sin2 t + sin2 t + 2t sin t cos t + t2 cos2 t

=
√

(cos2 t + sin2 t)(1 + t2) =
√

1 + t2

We substitute into (1) and use the integral given in the hint to obtain the following arc length:

S =
∫ 2π

0

√
1 + t2 dt = 1

2
t
√

1 + t2 + 1

2
ln
(
t +

√
1 + t2

) ∣∣∣∣2π

0

= 1

2
· 2π

√
1 + (2π)2 + 1

2
ln

(
2π +

√
1 + (2π)2

)
−
(

0 + 1

2
ln 1

)

= π
√

1 + 4π2 + 1

2
ln
(

2π +
√

1 + 4π2
)

≈ 21.256
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13. Find the length of the tractrix (see Figure 6)

c(t) = (t − tanh(t), sech(t)), 0 ≤ t ≤ A

solution Since x = t − tanh(t) and y = sech(t) we have x′ = 1 − sech2(t) and y′ = −sech(t) tanh(t). Hence,

x′(t)2 + y′(t)2 = (1 − sech2(t))
2 + sech2(t)tanh2(t)

= 1 − 2 sech2(t) + sech4(t) + sech2(t)tanh2(t)

= 1 − 2 sech2(t) + sech2(t)(sech2(t) + tanh2(t))

= 1 − 2 sech2(t) + sech2(t) = 1 − sech2(t) = tanh2(t)

Hence, using the formula for the arc length we get:

S =
∫ A

0

√
x′(t)2 + y′(t)2 dt =

∫ A

0

√
tanh2(t) dt =

∫ A

0
tanh(t) dt = ln(cosh(t))

∣∣∣∣A
0

= ln(cosh(A)) − ln(cosh(0)) = ln(cosh(A)) − ln 1 = ln(cosh(A))

14. Find a numerical approximation to the length of c(t) = (cos 5t, sin 3t) for 0 ≤ t ≤ 2π (Figure 8).

y

x

1

1

FIGURE 8

solution Since x = cos 5t and y = sin 3t , we have

x′(t) = −5 sin 5t, y′(t) = 3 cos 3t

so that

x′(t)2 + y′(t)2 = 25 sin2 5t + 9 cos2 3t

Then the arc length is

∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

√
25 sin2 5t + 9 cos2 3t dt ≈ 24.60296

In Exercises 15–18, determine the speed s at time t (assume units of meters and seconds).

15. (t3, t2), t = 2

solution We have x(t) = t3, y(t) = t2 hence x′(t) = 3t2, y′(t) = 2t . The speed of the particle at time t is thus,

ds
dt

=
√

x′(t)2 + y′(t)2 =
√

9t4 + 4t2 = t
√

9t2 + 4. At time t = 2 the speed is

ds

dt

∣∣∣∣
t=2

= 2
√

9 · 22 + 4 = 2
√

40 = 4
√

10 ≈ 12.65 m/s.

16. (3 sin 5t, 8 cos 5t), t = π
4

solution We have x = 3 sin 5t , y = 8 cos 5t , hence x′ = 15 cos 5t , y′ = −40 sin 5t . Thus, the speed of the particle
at time t is

ds

dt
=
√

x′(t)2 + y′(t)2 =
√

225 cos2 5t + 1600 sin2 5t

=
√

225(cos2 5t + sin2 5t) + 1375 sin2 5t = 5
√

9 + 55 sin2 5t
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Thus,

ds

dt
= 5
√

9 + 55 sin2 5t .

The speed at time t = π
4 is thus

ds

dt

∣∣∣∣
t=π/4

= 5

√
9 + 55 sin2

(
5 · π

4

) ∼= 30.21 m/s

17. (5t + 1, 4t − 3), t = 9

solution Since x = 5t + 1, y = 4t − 3, we have x′ = 5 and y′ = 4. The speed of the particle at time t is

ds

dt
= √x′(t) + y′(t) =

√
52 + 42 = √

41 ≈ 6.4 m/s.

We conclude that the particle has constant speed of 6.4 m/s.

18. (ln(t2 + 1), t3), t = 1

solution We have x = ln(t2 + 1), y = t3, so x′ = 2t

t2 + 1
and y′ = 3t2. The speed of the particle at time t is thus

ds

dt
=
√

x′(t)2 + y′(t)2 =
√

4t2

(t2 + 1)
2

+ 9t4 = t

√
4

(t2 + 1)
2

+ 9t2.

The speed at time t = 1 is

ds

dt

∣∣∣∣
t=1

=
√

4

22
+ 9 = √

10 ≈ 3.16 m/s.

19. Find the minimum speed of a particle with trajectory c(t) = (t3 − 4t, t2 + 1) for t ≥ 0. Hint: It is easier to find the
minimum of the square of the speed.

solution We first find the speed of the particle. We have x(t) = t3 − 4t , y(t) = t2 + 1, hence x′(t) = 3t2 − 4 and
y′(t) = 2t . The speed is thus

ds

dt
=
√

(3t2 − 4)
2 + (2t)2 =

√
9t4 − 24t2 + 16 + 4t2 =

√
9t4 − 20t2 + 16.

The square root function is an increasing function, hence the minimum speed occurs at the value of t where the function
f (t) = 9t4 − 20t2 + 16 has minimum value. Since lim

t→∞ f (t) = ∞, f has a minimum value on the interval 0 ≤ t < ∞,

and it occurs at a critical point or at the endpoint t = 0. We find the critical point of f on t ≥ 0:

f ′(t) = 36t3 − 40t = 4t (9t2 − 10) = 0 ⇒ t = 0, t =
√

10

9
.

We compute the values of f at these points:

f (0) = 9 · 04 − 20 · 02 + 16 = 16

f

(√
10

9

)
= 9

(√
10

9

)4

− 20

(√
10

9

)2

+ 16 = 44

9
≈ 4.89

We conclude that the minimum value of f on t ≥ 0 is 4.89. The minimum speed is therefore(
ds

dt

)
min

≈ √
4.89 ≈ 2.21.

20. Find the minimum speed of a particle with trajectory c(t) = (t3, t−2) for t ≥ 0.5.

solution We first compute the speed of the particle. Since x(t) = t3 and y(t) = t−2, we have x′(t) = 3t2 and

y′(t) = −2t−3. The speed is

ds

dt
=
√

x′(t)2 + y′(t)2 =
√

9t4 + 4t−6.

The square root function is an increasing function, hence the minimum value of ds
dt

occurs at the point where the function

f (t) = 9t4 + 4t−6 attains its minimum value. We find the critical points of f on the interval t ≥ 0.5:

f ′(t) = 36t3 − 24t−7 = 0
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3t10 − 2 = 0 ⇒ t = 10

√
2

3
≈ 0.96

Since lim
t→∞ f (t) = ∞, the minimum value on 0.5 ≤ t < ∞ exists, and it occurs at the critical point t = 0.96 or at the

endpoint t = 0.5. We compute the values of f at these points:

f (0.96) = 9 · (0.96)4 + 4 · (0.96)−6 = 12.75

f (0.5) = 9(0.5)4 + 4(0.5)−6 = 256.56

We conclude that the minimum value of f on the interval t ≥ 0.5 is 12.75. The minimum speed for t ≥ 0.5 is therefore(
ds

dt

)
min

= √
12.75 ≈ 3.57

21. Find the speed of the cycloid c(t) = (4t − 4 sin t, 4 − 4 cos t) at points where the tangent line is horizontal.

solution We first find the points where the tangent line is horizontal. The slope of the tangent line is the following
quotient:

dy

dx
= dy/dt

dx/dt
= 4 sin t

4 − 4 cos t
= sin t

1 − cos t
.

To find the points where the tangent line is horizontal we solve the following equation for t ≥ 0:

dy

dx
= 0,

sin t

1 − cos t
= 0 ⇒ sin t = 0 and cos t �= 1.

Now, sin t = 0 and t ≥ 0 at the points t = πk, k = 0, 1, 2, . . . . Since cos πk = (−1)k , the points where cos t �= 1 are
t = πk for k odd. The points where the tangent line is horizontal are, therefore:

t = π(2k − 1), k = 1, 2, 3, . . .

The speed at time t is given by the following expression:

ds

dt
=
√

x′(t)2 + y′(t)2 =
√

(4 − 4 cos t)2 + (4 sin t)2

=
√

16 − 32 cos t + 16 cos2 t + 16 sin2 t = √
16 − 32 cos t + 16

= √32(1 − cos t) =
√

32 · 2 sin2 t

2
= 8

∣∣∣∣sin
t

2

∣∣∣∣
That is, the speed of the cycloid at time t is

ds

dt
= 8

∣∣∣∣sin
t

2

∣∣∣∣ .
We now substitute

t = π(2k − 1), k = 1, 2, 3, . . .

to obtain

ds

dt
= 8

∣∣∣∣sin
π(2k − 1)

2

∣∣∣∣ = 8|(−1)k+1| = 8

22. Calculate the arc length integral s(t) for the logarithmic spiral c(t) = (et cos t, et sin t).

solution We have x′(t) = et (cos t − sin t), y′(t) = et (cos t + sin t) so that

x′(t)2 + y′(t)2 = e2t (cos2 t − 2 cos t sin t + sin2 t + cos2 t + 2 cos t sin t + sin2 t) = 2e2t (cos2 t + sin2 t) = 2e2t

so that the arc length integral is

∫ b

a

√
x′(t)2 + y′(t)2 dt = √

2
∫ b

a
et dt

If neither a nor b is ±∞, then this equals
√

2(eb − ea). Note that the origin corresponds to t = −∞.
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In Exercises 23–26, plot the curve and use the Midpoint Rule with N = 10, 20, 30, and 50 to approximate its
length.

23. c(t) = (cos t, esin t ) for 0 ≤ t ≤ 2π

solution The curve of c(t) = (cos t, esin t ) for 0 ≤ t ≤ 2π is shown in the figure below:

y

t = 0, t = 2π, (1, 1)t = π, (−1, 1)

x

t =     (0, e)π 
2

t =      (0,    )3π 
2

1 
e

c(t) = (cos t, esin t ), 0 ≤ t ≤ 2π.

The length of the curve is given by the following integral:

S =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

√
(− sin t)2 + (cos t esin t )

2
dt.

That is, S = ∫ 2π
0

√
sin2 t + cos2 t e2 sin t dt . We approximate the integral using the Mid-Point Rule with N = 10, 20,

30, 50. For f (t) =
√

sin2 t + cos2 t e2 sin t we obtain

(N = 10): �x = 2π

10
= π

5
, ci =

(
i − 1

2

)
· π

5

M10 = π

5

10∑
i=1

f (ci) = 6.903734

(N = 20): �x = 2π

20
= π

10
, ci =

(
i − 1

2

)
· π

10

M20 = π

10

20∑
i=1

f (ci) = 6.915035

(N = 30): �x = 2π

30
= π

15
, ci =

(
i − 1

2

)
· π

15

M30 = π

15

30∑
i=1

f (ci) = 6.914949

(N = 50): �x = 2π

50
= π

25
, ci =

(
i − 1

2

)
· π

25

M50 = π

25

50∑
i=1

f (ci) = 6.914951

24. c(t) = (t − sin 2t, 1 − cos 2t) for 0 ≤ t ≤ 2π

solution The curve is shown in the figure below:

62 4

2

1

x

y

c(t) = (t − sin 2t, 1 − cos 2t), 0 ≤ t ≤ 2π.

The length of the curve is given by the following integral:

S =
∫ 2π

0

√
(1 − 2 cos 2t)2 + (2 sin 2t)2 dt =

∫ 2π

0

√
1 − 4 cos 2t + 4 cos2 2t + 4 sin2 2t dt =

∫ 2π

0

√
5 − 4 cos 2t dt.
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That is,

S =
∫ 2π

0

√
5 − 4 cos 2t dt.

Approximating the length using the Mid-Point Rule with N = 10, 20, 30, 50 for f (t) = √
5 − 4 cos 2t we obtain

(N = 10): �x = 2π

10
= π

5
, ci =

(
i − 1

2

)
· π

5

M10 = π

5

10∑
i=1

f (ci) = 13.384047

(N = 20): �x = 2π

20
= π

10
, ci =

(
i − 1

2

)
· π

10

M20 = π

10

20∑
i=1

f (ci) = 13.365095

(N = 30): �x = 2π

30
= π

15
, ci =

(
i − 1

2

)
· π

15

M30 = π

15

30∑
i=1

f (ci) = 13.364897

(N = 50): �x = 2π

50
= π

25
, ci =

(
i − 1

2

)
· π

25

M50 = π

25

50∑
i=1

f (ci) = 13.364893

25. The ellipse
(x

5

)2 +
(y

3

)2 = 1

solution We use the parametrization given in Example 4, section 12.1, that is, c(t) = (5 cos t, 3 sin t), 0 ≤ t ≤ 2π .
The curve is shown in the figure below:

y

t = 0
t = 2π x

c(t) = (5 cos t, 3 sin t), 0 ≤ t ≤ 2π.

The length of the curve is given by the following integral:

S =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

√
(−5 sin t)2 + (3 cos t)2 dt

=
∫ 2π

0

√
25 sin2 t + 9 cos2 t dt =

∫ 2π

0

√
9(sin2 t + cos2 t) + 16 sin2 t dt =

∫ 2π

0

√
9 + 16 sin2 t dt.

That is,

S =
∫ 2π

0

√
9 + 16 sin2 t dt.

We approximate the integral using the Mid-Point Rule with N = 10, 20, 30, 50, for f (t) =
√

9 + 16 sin2 t . We obtain

(N = 10): �x = 2π

10
= π

5
, ci =

(
i − 1

2

)
· π

5

M10 = π

5

10∑
i=1

f (ci) = 25.528309
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(N = 20): �x = 2π

20
= π

10
, ci =

(
i − 1

2

)
· π

10

M20 = π

10

20∑
i=1

f (ci) = 25.526999

(N = 30): �x = 2π

30
= π

15
, ci =

(
i − 1

2

)
· π

15

M30 = π

15

30∑
i=1

f (ci) = 25.526999

(N = 50): �x = 2π

50
= π

25
, ci =

(
i − 1

2

)
· π

25

M50 = π

25

50∑
i=1

f (ci) = 25.526999

26. x = sin 2t , y = sin 3t for 0 ≤ t ≤ 2π

solution The curve is shown in the figure below:

y

x

c(t) = (sin 2t, sin 3t), 0 ≤ t ≤ 2π.

The length of the curve is given by the following integral:

S =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

√
(2 cos 2t)2 + (3 cos 3t)2 dt =

∫ 2π

0

√
4 cos2 2t + 9 cos2 3t dt.

We approximate the length using the Mid-Point Rule with N = 10, 20, 30, 50 for f (t) =
√

4 cos2 2t + 9 cos2 3t . We
obtain

(N = 10): �x = 2π

10
= π

5
, ci =

(
i − 1

2

)
· π

5

M10 = π

5

10∑
i=1

f (ci) = 15.865169

(N = 20): �x = 2π

20
= π

10
, ci =

(
i − 1

2

)
· π

10

M20 = π

10

20∑
i=1

f (ci) = 15.324697

(N = 30): �x = 2π

30
= π

15
, ci =

(
i − 1

2

)
· π

15

M30 = π

15

30∑
i=1

f (ci) = 15.279322

(N = 50): �x = 2π

50
= π

25
, ci =

(
i − 1

2

)
· π

25

M50 = π

25

50∑
i=1

f (ci) = 15.287976
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27. If you unwind thread from a stationary circular spool, keeping the thread taut at all times, then the endpoint traces a
curve C called the involute of the circle (Figure 9). Observe that PQ has length Rθ . Show that C is parametrized by

c(θ) = (R(cos θ + θ sin θ), R(sin θ − θ cos θ)
)

Then find the length of the involute for 0 ≤ θ ≤ 2π .

P = (x, y)

y

q x

R

Q

FIGURE 9 Involute of a circle.

solution Suppose that the arc Q̂T corresponding to the angle θ is unwound. Then the length of the segment QP

equals the length of this arc. That is, QP = Rθ . With the help of the figure we can see that

x = OA + AB = OA + EP = R cos θ + QP sin θ = R cos θ + Rθ sin θ = R(cos θ + θ sin θ).

Furthermore,

y = QA − QE = R sin θ − QP cos θ = R sin θ − Rθ cos θ = R(sin θ − θ cos θ)

The coordinates of P with respect to the parameter θ form the following parametrization of the curve:

c(θ) = (R(cos θ + θ sin θ), R(sin θ − θ cos θ)), 0 ≤ θ ≤ 2π.

We find the length of the involute for 0 ≤ θ ≤ 2π , using the formula for the arc length:

S =
∫ 2π

0

√
x′(θ)2 + y′(θ)2 dθ.

We compute the integrand:

x′(θ) = d

dθ
(R(cos θ + θ sin θ)) = R(− sin θ + sin θ + θ cos θ) = Rθ cos θ

y′(θ) = d

dθ
(R(sin θ − θ cos θ)) = R(cos θ − (cos θ − θ sin θ)) = Rθ sin θ

√
x′(θ)2 + y′(θ)2 =

√
(Rθ cos θ)2 + (Rθ sin θ)2 =

√
R2θ2(cos2 θ + sin2 θ) =

√
R2θ2 = Rθ

We now compute the arc length:

S =
∫ 2π

0
Rθ dθ = Rθ2

2

∣∣∣∣2π

0
= R · (2π)2

2
= 2π2R.

28. Let a > b and set

k =
√

1 − b2

a2

Use a parametric representation to show that the ellipse
(
x
a

)2 + ( y
b

)2 = 1 has length L = 4aG
(
π
2 , k

)
, where

G(θ, k) =
∫ θ

0

√
1 − k2 sin2 t dt

is the elliptic integral of the second kind.

solution Since the ellipse is symmetric with respect to the x and y axis, its length L is four times the length of the
part of the ellipse which is in the first quadrant. This part is represented by the following parametrization: x(t) = a sin t ,
y(t) = b cos t , 0 ≤ t ≤ π

2 . Using the formula for the arc length we get:

L = 4
∫ π/2

0

√
x′(t)2 + y′(t)2 dt = 4

∫ π/2

0

√
(a cos t)2 + (−b sin t)2 dt

= 4
∫ π/2

0

√
a2 cos2 t + b2 sin2 t dt
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We rewrite the integrand as follows:

L = 4
∫ π/2

0

√
a2 cos2 t + a2 sin2 t + (b2 − a2) sin2 t dt

= 4
∫ π/2

0

√
a2(cos2 t + sin2 t) + (b2 − a2) sin2 t dt

= 4
∫ π/2

0

√
a2 + (b2 − a2) sin2 t dt = 4a

∫ π/2

0

√
a2

a2
+ b2 − a2

a2
sin2 t dt

= 4a

∫ π/2

0

√
1 −

(
1 − b2

a2

)
sin2 t dt = 4a

∫ π/2

0

√
1 − k2 sin2 t dt = 4aG

(π

2
, k
)

where k =
√

1 − b2

a2 .

In Exercises 29–32, use Eq. (4) to compute the surface area of the given surface.

29. The cone generated by revolving c(t) = (t, mt) about the x-axis for 0 ≤ t ≤ A

solution Substituting y(t) = mt , y′(t) = m, x′(t) = 1, a = 0, and b = 0 in the formula for the surface area, we get

S = 2π

∫ A

0
mt
√

1 + m2 dt = 2π
√

1 + m2m

∫ A

0
t dt = 2πm

√
1 + m2 · t2

2

∣∣∣∣A
0

= m
√

1 + m2πA2

30. A sphere of radius R

solution The sphere of radius R is generated by revolving the half circle c(t) = (R cos t, R sin t), 0 ≤ t ≤ π about
the x-axis. We have x(t) = R cos t , x′(t) = −R sin t , y(t) = R sin t , y′(t) = R cos t . Using the formula for the surface
area, we get

S = 2π

∫ π

0
y(t)

√
x′(t)2 + y′(t)2 dt = 2π

∫ π

0
R sin t

√
R2 sin2 t + R2 cos2 t dt

= 2πR2
∫ π

0
sin t dt = −2πR2 cos t

∣∣∣∣π
0

= −2πR2(−1 − 1) = 4πR2

31. The surface generated by revolving one arch of the cycloid c(t) = (t − sin t, 1 − cos t) about the x-axis

solution One arch of the cycloid is traced as t varies from 0 to 2π . Since x(t) = t − sin t and y(t) = 1 − cos t , we

have x′(t) = 1 − cos t and y′(t) = sin t . Hence, using the identity 1 − cos t = 2 sin2 t
2 , we get

x′(t)2 + y′(t)2 = (1 − cos t)2 + sin2 t = 1 − 2 cos t + cos2 t + sin2 t = 2 − 2 cos t = 4 sin2 t

2

By the formula for the surface area we obtain:

S = 2π

∫ 2π

0
y(t)

√
x′(t)2 + y′(t)2 dt = 2π

∫ 2π

0
(1 − cos t) · 2 sin

t

2
dt

= 2π

∫ 2π

0
2 sin2 t

2
· 2 sin

t

2
dt = 8π

∫ 2π

0
sin3 t

2
dt = 16π

∫ π

0
sin3 u du

We use a reduction formula to compute this integral, obtaining

S = 16π

[
1

3
cos3 u − cos u

] ∣∣∣∣π
0

= 16π

[
4

3

]
= 64π

3

32. The surface generated by revolving the astroid c(t) = (cos3 t, sin3 t) about the x-axis for 0 ≤ t ≤ π
2

solution We have x(t) = cos3 t , y(t) = sin3 t , x′(t) = −3 cos2 t sin t , y′(t) = 3 sin2 t cos t . Hence,

x′(t)2 + y′(t)2 = 9 cos4 t sin2 t + 9 sin4 t cos2 t = 9 cos2 t sin2 t (cos2 t + sin2 t) = 9 cos2 t sin2 t

Using the formula for the surface area we get

S = 2π

∫ π/2

0
y(t)

√
x′(t)2 + y′(t)2 dt = 2π

∫ π/2

0
sin3 t · 3 cos t sin t dt = 6π

∫ π/2

0
sin4 t cos t dt

We compute the integral using the substitution u = sin t du = cos t dt . We obtain

S = 6π

∫ 1

0
u4 du = 6π

u5

5

∣∣∣∣1
0

= 6π

5
.
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Further Insights and Challenges
33. Let b(t) be the “Butterfly Curve”:

x(t) = sin t

(
ecos t − 2 cos 4t − sin

(
t

12

)5
)

y(t) = cos t

(
ecos t − 2 cos 4t − sin

(
t

12

)5
)

(a) Use a computer algebra system to plot b(t) and the speed s′(t) for 0 ≤ t ≤ 12π .

(b) Approximate the length b(t) for 0 ≤ t ≤ 10π .

solution

(a) Let f (t) = ecos t − 2 cos 4t − sin
(

t
12

)5, then

x(t) = sin tf (t)

y(t) = cos tf (t)

and so

(x′(t))2 + (y′(t))2 = [sin tf ′(t) + cos tf (t)]2 + [cos tf ′(t) − sin tf (t)]2

Using the identity sin2 t + cos2 t = 1, we get

(x′(t))2 + (y′(t))2 = (f ′(t))2 + (f (t))2.

Thus, s′(t) is the following:√√√√[
ecos t − 2 cos 4t − sin

(
t

12

)5
]2

+
[
− sin tecos t + 8 sin 4t − 5

12

(
t

12

)4
cos

(
t

12

)5
]2

.

The following figures show the curves of b(t) and the speed s′(t) for 0 ≤ t ≤ 10π :

y

x
t = 10p

t = 0

302010

15

20

10

5

x

y

The “Butterfly Curve” b(t), 0 ≤ t ≤ 10π s′(t), 0 ≤ t ≤ 10π

Looking at the graph, we see it would be difficult to compute the length using numeric integration; due to the high
frequency oscillations, very small steps would be needed.

(b) The length of b(t) for 0 ≤ t ≤ 10π is given by the integral: L = ∫ 10π
0 s′(t) dt where s′(t) is given in part (a). We

approximate the length using the Midpoint Rule with N = 30. The numerical methods in Mathematica approximate
the answer by 211.952. Using the Midpoint Rule with N = 50, we get 204.48; with N = 500, we get 211.6; and with
N = 5000, we get 212.09.

34. Let a ≥ b > 0 and set k = 2
√

ab

a − b
. Show that the trochoid

x = at − b sin t, y = a − b cos t, 0 ≤ t ≤ T

has length 2(a − b)G
(
T
2 , k

)
with G(θ, k) as in Exercise 28.

solution We have x′(t) = a − b cos t , y′(t) = b sin t . Hence,

x′(t)2 + y′(t)2 = (a − b cos t)2 + (b sin t)2 = a2 − 2ab cos t + b2 cos2 t + b2 sin2 t

= a2 + b2 − 2ab cos t
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The length of the trochoid for 0 ≤ t ≤ T is

L =
∫ T

0

√
a2 + b2 − 2ab cos t dt

We rewrite the integrand as follows to bring it to the required form. We use the identity 1 − cos t = 2 sin2 t
2 to obtain

L =
∫ T

0

√
(a − b)2 + 2ab − 2ab cos t dt =

∫ T

0

√
(a − b)2 + 2ab(1 − cos t) dt

=
∫ T

0

√
(a − b)2 + 4ab sin2 t

2
dt =

∫ T

0

√
(a − b)2

(
1 + 4ab

(a − b)2
sin2 t

2

)
dt

= (a − b)

∫ T

0

√
1 + k2 sin2 t

2
dt

(where k = 2
√

ab
a−b

).

Substituting u = t
2 , du = 1

2 dt , we get

L = 2(a − b)

∫ T/2

0

√
1 + k2 sin2 u du = 2(a − b)E(T /2, k)

35. A satellite orbiting at a distance R from the center of the earth follows the circular path x = R cos ωt , y = R sin ωt .

(a) Show that the period T (the time of one revolution) is T = 2π/ω.

(b) According to Newton’s laws of motion and gravity,

x′′(t) = −Gme
x

R3
, y′′(t) = −Gme

y

R3

where G is the universal gravitational constant and me is the mass of the earth. Prove that R3/T 2 = Gme/4π2. Thus,
R3/T 2 has the same value for all orbits (a special case of Kepler’s Third Law).

solution

(a) As shown in Example 4, the circular path has constant speed of ds
dt

= ωR. Since the length of one revolution is 2πR,
the period T is

T = 2πR

ωR
= 2π

ω
.

(b) Differentiating x = R cos ωt twice with respect to t gives

x′(t) = −Rω sin ωt

x′′(t) = −Rω2 cos ωt

Substituting x(t) and x′′(t) in the equation x′′(t) = −Gme
x

R3
and simplifying, we obtain

−Rω2 cos ωt = −Gme · R cos ωt

R3

−Rω2 = −Gme

R2
⇒ R3 = Gme

ω2

By part (a), T = 2π

ω
. Hence, ω = 2π

T
. Substituting yields

R3 = Gme

4π2

T 2

= T 2Gme

4π2
⇒ R3

T 2
= Gme

4π2

36. The acceleration due to gravity on the surface of the earth is

g = Gme

R2
e

= 9.8 m/s2, where Re = 6378 km

Use Exercise 35(b) to show that a satellite orbiting at the earth’s surface would have period Te = 2π
√

Re/g ≈ 84.5 min.
Then estimate the distance Rm from the moon to the center of the earth. Assume that the period of the moon (sidereal
month) is Tm ≈ 27.43 days.
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solution By part (b) of Exercise 35, it follows that

R3
e

T 2
e

= Gme

4π2
⇒ T 2

e = 4π2R3
e

Gme
= 4π2Re

Gme

R2
e

= 4π2Re

g

Hence,

Te = 2π

√
Re

g
= 2π

√
6378 · 103

9.8
≈ 5068.8 s ≈ 84.5 min.

In part (b) of Exercise 35 we showed that
R3

T 2
is the same for all orbits. It follows that this quotient is the same for the

satellite orbiting at the earth’s surface and for the moon orbiting around the earth. Thus,

R3
m

T 2
m

= R3
e

T 2
e

⇒ Rm = Re

(
Tm

Te

)2/3
.

Setting Tm = 27.43 · 1440 = 39,499.2 minutes, Te = 84.5 minutes, and Re = 6378 km we get

Rm = 6378

(
39,499.2

84.5

)2/3
≈ 384,154 km.

11.3 Polar Coordinates

Preliminary Questions
1. Points P and Q with the same radial coordinate (choose the correct answer):

(a) Lie on the same circle with the center at the origin.

(b) Lie on the same ray based at the origin.

solution Two points with the same radial coordinate are equidistant from the origin, therefore they lie on the same
circle centered at the origin. The angular coordinate defines a ray based at the origin. Therefore, if the two points have the
same angular coordinate, they lie on the same ray based at the origin.

2. Give two polar representations for the point (x, y) = (0, 1), one with negative r and one with positive r .

solution The point (0, 1) is on the y-axis, distant one unit from the origin, hence the polar representation with positive
r is (r, θ) = (1, π

2

)
. The point (r, θ) = (−1, π

2

)
is the reflection of (r, θ) = (1, π

2

)
through the origin, hence we must

add π to return to the original point.
We obtain the following polar representation of (0, 1) with negative r:

(r, θ) =
(
−1,

π

2
+ π

)
=
(

−1,
3π

2

)
.

3. Describe each of the following curves:

(a) r = 2 (b) r2 = 2 (c) r cos θ = 2

solution

(a) Converting to rectangular coordinates we get√
x2 + y2 = 2 or x2 + y2 = 22.

This is the equation of the circle of radius 2 centered at the origin.

(b) We convert to rectangular coordinates, obtaining x2 + y2 = 2. This is the equation of the circle of radius
√

2, centered
at the origin.

(c) We convert to rectangular coordinates. Since x = r cos θ we obtain the following equation: x = 2. This is the equation
of the vertical line through the point (2, 0).

4. If f (−θ) = f (θ), then the curve r = f (θ) is symmetric with respect to the (choose the correct answer):

(a) x-axis (b) y-axis (c) origin

solution The equality f (−θ) = f (θ) for all θ implies that whenever a point (r, θ) is on the curve, also the point
(r, −θ) is on the curve. Since the point (r, −θ) is the reflection of (r, θ) with respect to the x-axis, we conclude that the
curve is symmetric with respect to the x-axis.
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Exercises
1. Find polar coordinates for each of the seven points plotted in Figure 16.

x

(x, y) = (23, 2) 

y

4

4
A

B

C D

G

E F

FIGURE 16

solution We mark the points as shown in the figure.

x

A
y

F(2  3, 2)

G(2  3, −2)

B
C D

E

Using the data given in the figure for the x and y coordinates and the quadrants in which the point are located, we obtain:

(A), with rectangular coordinates (−3, 4): r =
√

(−3)2 + 32 = √
18

θ = π − π
4 = 3π

4

⇒ (r, θ) =
(

3
√

2, 3π
4

)

x

A
y

3  2
3π 
4

(B), with rectangular coordinates (−3, 0):
r = 3
θ = π

⇒ (r, θ) = (3, π)

x

y

3B

π

(C), with rectangular coordinates (−2, −1):

r =
√

22 + 12 = √
5 ≈ 2.2

θ = tan−1
(−1

−2

)
= tan−1

(
1
2

)
= π + 0.46 ≈ 3.6

⇒ (r, θ) ≈
(√

5, 3.6
)

x

y

C

3.6

2.2
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(D), with rectangular coordinates (−1, −1):
r =

√
12 + 12 = √

2 ≈ 1.4
θ = π + π

4 = 5π
4

⇒ (r, θ) ≈
(√

2, 5π
4

)

x

y

D

5π 
4

1.4

(E), with rectangular coordinates (1, 1):
r =

√
12 + 12 = √

2 ≈ 1.4

θ = tan−1
(

1
1

)
= π

4
⇒ (r, θ) ≈

(√
2, π

4

)

x

y

E π 
41.4

(F), with rectangular coordinates (2
√

3, 2):
r =

√(
2
√

3
)2 + 22 = √

16 = 4

θ = tan−1
(

2
2
√

3

)
= tan−1

(
1√
3

)
= π

6

⇒ (r, θ) = (4, π
6

)

x

y

F(2  3, 2)

π 
6

4

(G), with rectangular coordinates (2
√

3, −2): G is the reflection of F about the x axis, hence the two points have equal
radial coordinates, and the angular coordinate of G is obtained from the angular coordinate of F : θ = 2π − π

6 = 11π
6 .

Hence, the polar coordinates of G are
(

4, 11π
6

)
.

2. Plot the points with polar coordinates:

(a)
(
2, π

6

)
(b)

(
4, 3π

4

)
(c)

(
3, −π

2

)
(d)

(
0, π

6

)
solution We first plot the ray θ = θ0 for the given angle θ0, and then mark the point on this line distanced r = r0
from the origin. We obtain the following points:

y

x

π
6

π
6(2,     )

2

y

x

3π
4(4,     )

3π
44

y

x

3
π
2(3, −    )

π
2

−

y

x
π
6(0,    )

π
6

(a) (b) (c) (d)

R = 0 is the point (0, 0) in rect. coords.

3. Convert from rectangular to polar coordinates.

(a) (1, 0) (b) (3,
√

3) (c) (−2, 2) (d) (−1,
√

3)

solution
(a) The point (1, 0) is on the positive x axis distanced one unit from the origin. Hence, r = 1 and θ = 0. Thus,
(r, θ) = (1, 0).

(b) The point
(

3,
√

3
)

is in the first quadrant so θ = tan−1
(√

3
3

)
= π

6 . Also, r =
√

32 +
(√

3
)2 = √

12. Hence,

(r, θ) =
(√

12, π
6

)
.
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(c) The point (−2, 2) is in the second quadrant. Hence,

θ = tan−1
(

2

−2

)
= tan−1(−1) = π − π

4
= 3π

4
.

Also, r =
√

(−2)2 + 22 = √
8. Hence, (r, θ) =

(√
8, 3π

4

)
.

(d) The point
(
−1,

√
3
)

is in the second quadrant, hence,

θ = tan−1

(√
3

−1

)
= tan−1

(
−√

3
)

= π − π

3
= 2π

3
.

Also, r =
√

(−1)2 +
(√

3
)2 = √

4 = 2. Hence, (r, θ) =
(

2, 2π
3

)
.

4. Convert from rectangular to polar coordinates using a calculator (make sure your choice of θ gives the correct
quadrant).

(a) (2, 3) (b) (4, −7) (c) (−3, −8) (d) (−5, 2)

solution

(a) The point (2, 3) is in the first quadrant, with x = 2 and y = 3. Hence

θ = tan−1
(

3

2

)
≈ 0.98

r =
√

22 + 32 = √
13 ≈ 3.6

⇒ (r, θ) ≈ (3.6, 0.98) .

(b) The point (4, −7) is in the fourth quadrant with x = 4 and y = −7. We have

tan−1
(−7

4

)
≈ −1.05

r =
√

(−7)2 + 42 = √
65 ≈ 8.1

Note that tan−1 an angle less that zero in the fourth quadrant; since we want an angle between 0 and 2π , we add 2π to
get θ ≈ 2π − 1.05 ≈ 5.232. Thus (r, θ) ≈ (8.1, 5.2).

(c) The point (−3, −8) is in the third quadrant, with x = −3 and y = −8. We have

tan−1
(−8

−3

)
= tan−1

(
8

3

)
≈ 1.212

r =
√

(−3)2 + (−8)2 = √
73 ≈ 8.54

Note that tan−1 produced an angle in the first quadrant; we want the third quadrant angle with the same tangent, so we
add π to get θ ≈ π + 1.212 ≈ 4.35. Thus (r, θ) ≈ (8.54, 4.35)

(d) The point (−5, 2) is in the second quadrant, with x = −5 and y = 2. We have

tan−1
(

2

−5

)
≈ −0.38

r =
√

22 + (−5)2 = √
29 ≈ 5.39

Note that the angle is in the fourth quadrant; to get the second quadrant angle with the same tangent and in the range
[0, 2π), we add π to get θ ≈ π − 0.38 ≈ 2.76. Thus (r, θ) ≈ (5.39, 2.76).

5. Convert from polar to rectangular coordinates:

(a)
(
3, π

6

)
(b)

(
6, 3π

4

)
(c)

(
0, π

5

)
(d)

(
5, −π

2

)
solution

(a) Since r = 3 and θ = π
6 , we have:

x = r cos θ = 3 cos
π

6
= 3 ·

√
3

2
≈ 2.6

y = r sin θ = 3 sin
π

6
= 3 · 1

2
= 1.5

⇒ (x, y) ≈ (2.6, 1.5) .
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(b) For
(

6, 3π
4

)
we have r = 6 and θ = 3π

4 . Hence,

x = r cos θ = 6 cos
3π

4
≈ −4.24

y = r sin θ = 6 sin
3π

4
≈ 4.24

⇒ (x, y) ≈ (−4.24, 4.24) .

(c) For
(
0, π

5

)
, we have r = 0, so that the rectangular coordinates are (x, y) = (0, 0).

(d) Since r = 5 and θ = −π
2 we have

x = r cos θ = 5 cos
(
−π

2

)
= 5 · 0 = 0

y = r sin θ = 5 sin
(
−π

2

)
= 5 · (−1) = −5

⇒ (x, y) = (0, −5)

6. Which of the following are possible polar coordinates for the point P with rectangular coordinates (0, −2)?

(a)
(

2,
π

2

)
(b)

(
2,

7π

2

)

(c)
(

−2, −3π

2

)
(d)

(
−2,

7π

2

)

(e)
(
−2, −π

2

)
(f)
(

2, −7π

2

)

solution The point P has distance 2 from the origin and the angle between OP and the positive x-axis in the positive

direction is 3π
2 . Hence, (r, θ) =

(
2, 3π

2

)
is one choice for the polar coordinates for P .

y

x

P

0

3π 
2

The polar coordinates (2, θ) are possible for P if θ − 3π
2 is a multiple of 2π . The polar coordinate (−2, θ) are possible

for P if θ − 3π
2 is an odd multiple of π . These considerations lead to the following conclusions:

(a)
(
2, π

2

)
π
2 − 3π

2 = −π ⇒ (
2, π

2

)
does not represent P.

(b)
(

2, 7π
2

)
7π
2 − 3π

2 = 2π ⇒
(

2, 7π
2

)
represents P.

(c)
(
−2, − 3π

2

)
− 3π

2 − 3π
2 = −3π ⇒

(
−2, − 3π

2

)
represents P.

(d)
(
−2, 7π

2

)
7π
2 − 3π

2 = 2π ⇒
(
−2, 7π

2

)
does not represent P.

(e)
(−2, −π

2

) −π
2 − 3π

2 = −2π ⇒ (−2, −π
2

)
does not represent P.

(f)
(

2, − 7π
2

)
− 7π

2 − 3π
2 = −5π ⇒

(
2, − 7π

2

)
does not represent P.

7. Describe each shaded sector in Figure 17 by inequalities in r and θ .

(A) (B) (C)

x x x

y y y

3 5 3 5 3 5

45°

FIGURE 17

solution
(a) In the sector shown below r is varying between 0 and 3 and θ is varying between π and 2π . Hence the following
inequalities describe the sector:

0 ≤ r ≤ 3

π ≤ θ ≤ 2π
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(b) In the sector shown below r is varying between 0 and 3 and θ is varying between π
4 and π

2 . Hence, the inequalities
for the sector are:

0 ≤ r ≤ 3
π

4
≤ θ ≤ π

2

(c) In the sector shown below r is varying between 3 and 5 and θ is varying between 3π
4 and π . Hence, the inequalities

are:

3 ≤ r ≤ 5

3π

4
≤ θ ≤ π

8. Find the equation in polar coordinates of the line through the origin with slope 1
2 .

solution A line of slope m = 1
2 makes an angle θ0 = tan−1 1

2 ≈ 0.46 with the positive x-axis. The equation of the
line is θ ≈ 0.46, while r is arbitrary.

9. What is the slope of the line θ = 3π
5 ?

solution This line makes an angle θ0 = 3π
5 with the positive x-axis, hence the slope of the line is m = tan 3π

5 ≈ −3.1.

10. Which of r = 2 sec θ and r = 2 csc θ defines a horizontal line?

solution The equation r = 2 csc θ is the polar equation of a horizontal line, as it can be written as r = 2/ sin θ , so
r sin θ = 2, which becomes y = 2. On the other hand, the equation r = 2 sec θ is the polar equation of a vertical line, as
it can be written as r = 2/ cos θ , so r cos θ = 2, which becomes x = 2.

In Exercises 11–16, convert to an equation in rectangular coordinates.

11. r = 7

solution r = 7 describes the points having distance 7 from the origin, that is, the circle with radius 7 centered at the
origin. The equation of the circle in rectangular coordinates is

x2 + y2 = 72 = 49.

12. r = sin θ

solution Multiplying by r and substituting y = r sin θ and r2 = x2 + y2 gives

r2 = r sin θ

x2 + y2 = y

We move the y and then complete the square to obtain

x2 + y2 − y = 0

x2 +
(

y − 1

2

)2
=
(

1

2

)2

Thus, r = sin θ is the equation of a circle of radius 1
2 and center

(
0, 1

2

)
.

13. r = 2 sin θ

solution We multiply the equation by r and substitute r2 = x2 + y2, r sin θ = y. This gives

r2 = 2r sin θ

x2 + y2 = 2y

Moving the 2y and completing the square yield: x2 + y2 − 2y = 0 and x2 + (y − 1)2 = 1. Thus, r = 2 sin θ is the
equation of a circle of radius 1 centered at (0, 1).

14. r = 2 csc θ

solution We multiply the equation by sin θ and substitute y = r sin θ. We get

r sin θ = 2

y = 2

Thus, r = 2 csc θ is the equation of the line y = 2.
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15. r = 1

cos θ − sin θ

solution We multiply the equation by cos θ − sin θ and substitute y = r sin θ , x = r cos θ . This gives

r (cos θ − sin θ) = 1

r cos θ − r sin θ = 1

x − y = 1 ⇒ y = x − 1. Thus,

r = 1

cos θ − sin θ

is the equation of the line y = x − 1.

16. r = 1

2 − cos θ

solution We multiply the equation by 2 − cos θ . Then we substitute x = r cos θ and r =
√

x2 + y2, to obtain

r (2 − cos θ) = 1

2r − r cos θ = 1

2
√

x2 + y2 − x = 1

Moving the x, then squaring and simplifying, we obtain

2
√

x2 + y2 = x + 1

4
(
x2 + y2

)
= x2 + 2x + 1

3x2 − 2x + 4y2 = 1

We complete the square:

3

(
x2 − 2

3
x

)
+ 4y2 = 1

3

(
x − 1

3

)2
+ 4y2 = 4

3(
x − 1

3

)2

4
9

+ y2

1
3

= 1

This is the equation of the ellipse shown in the figure:

x

y

0ππ

π 
2

1.50.5 1

3π 
2

In Exercises 17–20, convert to an equation in polar coordinates.

17. x2 + y2 = 5

solution We make the substitution x2 + y2 = r2 to obtain; r2 = 5 or r = √
5.

18. x = 5

solution Substituting x = r cos θ gives the polar equation r cos θ = 5 or r = 5 sec θ .
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19. y = x2

solution Substituting y = r sin θ and x = r cos θ yields

r sin θ = r2 cos2 θ.

Then, dividing by r cos2 θ we obtain,

sin θ

cos2 θ
= r so r = tan θ sec θ

20. xy = 1

solution We substitute x = r cos θ , y = r sin θ to obtain

(r cos θ) (r sin θ) = 1

r2 cos θ sin θ = 1

Using the identity cos θ sin θ = 1
2 sin 2θ yields

r2 · sin 2θ

2
= 1 ⇒ r2 = 2 csc 2θ.

21. Match each equation with its description.

(a) r = 2 (i) Vertical line
(b) θ = 2 (ii) Horizontal line
(c) r = 2 sec θ (iii) Circle
(d) r = 2 csc θ (iv) Line through origin

solution

(a) r = 2 describes the points 2 units from the origin. Hence, it is the equation of a circle.

(b) θ = 2 describes the points P so that OP makes an angle of θ0 = 2 with the positive x-axis. Hence, it is the equation
of a line through the origin.

(c) This is r cos θ = 2, which is x = 2, a vertical line.

(d) Converting to rectangular coordinates, we get r = 2 csc θ , so r sin θ = 2 and y = 2. This is the equation of a
horizontal line.

22. Find the values of θ in the plot of r = 4 cos θ corresponding to points A, B, C, D in Figure 18. Then indicate the
portion of the graph traced out as θ varies in the following intervals:

(a) 0 ≤ θ ≤ π
2 (b) π

2 ≤ θ ≤ π (c) π ≤ θ ≤ 3π
2

x

y

2

−2

2 4

C A

B

D

FIGURE 18 Plot of r = 4 cos θ .

solution The point A is on the x-axis hence θ = 0. The point B is in the first quadrant with x = y = 2 hence

θ = tan−1
(

2
2

)
= tan−1(1) = π

4 . The point C is at the origin. Thus,

r = 0 ⇒ 4 cos θ = 0 ⇒ θ = π

2
,

3π

2
.

The point D is in the fourth quadrant with x = 2, y = −2, hence

θ = tan−1
(−2

2

)
= tan−1(−1) = 2π − π

4
= 7π

4
.

0 ≤ θ ≤ π
2 represents the first quadrant, hence the points (r, θ) where r = 4 cos θ and 0 ≤ θ ≤ π

2 are the points on the
circle which are in the first quadrant, as shown below:
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x

y

If we insist that r ≥ 0, then since π
2 ≤ θ ≤ π represents the second quadrant and π ≤ θ ≤ 3π

2 represents the third
quadrant, and since the circle r = 4 cos θ has no points in the left xy -plane, then there are no points for (b) and (c).
However, if we allow r < 0 then (b) represents the semi-circle

x

y

and (c) like (a) represent x

y

23. Suppose that P = (x, y) has polar coordinates (r, θ). Find the polar coordinates for the points:

(a) (x, −y) (b) (−x, −y) (c) (−x, y) (d) (y, x)

solution

(a) (x, −y) is the symmetric point of (x, y) with respect to the x-axis, hence the two points have the same radial
coordinate, and the angular coordinate of (x, −y) is 2π − θ . Hence, (x, −y) = (r, 2π − θ).

y

x

2p −q
−q
q

(x, y)

(x, −y)

(b) (−x, −y) is the symmetric point of (x, y) with respect to the origin. Hence, (−x, −y) = (r, θ + π).

y

x

p +q
q

(x, y)

(−x, −y)

(c) (−x, y) is the symmetric point of (x, y) with respect to the y-axis. Hence the two points have the same radial
coordinates and the angular coordinate of (−x, y) is π − θ . Hence, (−x, y) = (r, π − θ).

q−q
p − q

y

x

(x, y)(−x, y)

(d) Let (r1, θ1) denote the polar coordinates of (y, x). Hence,

r1 =
√

y2 + x2 =
√

x2 + y2 = r

tan θ1 = x

y
= 1

y/x
= 1

tan θ
= cot θ = tan

(π

2
− θ
)
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Since the points (x, y) and (y, x) are in the same quadrant, the solution for θ1 is θ1 = π
2 − θ . We obtain the following

polar coordinates: (y, x) = (r, π
2 − θ

)
.

q

−q p
2

− q

y

x

(x, y)

(y, x)

24. Match each equation in rectangular coordinates with its equation in polar coordinates.

(a) x2 + y2 = 4 (i) r2(1 − 2 sin2 θ) = 4
(b) x2 + (y − 1)2 = 1 (ii) r(cos θ + sin θ) = 4
(c) x2 − y2 = 4 (iii) r = 2 sin θ

(d) x + y = 4 (iv) r = 2

solution

(a) Since x2 + y2 = r2, we have r2 = 4 or r = 2.
(b) Using Example 7, the equation of the circle x2 + (y − 1)2 = 1 has polar equation r = 2 sin θ .
(c) Setting x = r cos θ , y = r sin θ in x2 − y2 = 4 gives

x2 − y2 = r2 cos2 θ − r2 sin2 θ = r2
(

cos2 θ − sin2 θ
)

= 4.

We now use the identity cos2 θ − sin2 θ = 1 − 2 sin2 θ to obtain the following equation:

r2
(

1 − 2 sin2 θ
)

= 4.

(d) Setting x = r cos θ and y = r sin θ in x + y = 4 we get:

x + y = 4

r cos θ + r sin θ = 4

so

r (cos θ + sin θ) = 4

25. What are the polar equations of the lines parallel to the line r cos
(
θ − π

3

) = 1?

solution The line r cos
(
θ − π

3

) = 1, or r = sec
(
θ − π

3

)
, is perpendicular to the ray θ = π

3 and at distance d = 1
from the origin. Hence, the lines parallel to this line are also perpendicular to the ray θ = π

3 , so the polar equations of
these lines are r = d sec

(
θ − π

3

)
or r cos

(
θ − π

3

) = d.

26. Show that the circle with center at
( 1

2 , 1
2

)
in Figure 19 has polar equation r = sin θ + cos θ and find the values of θ

between 0 and π corresponding to points A, B, C, and D.

A D

B C
x

y

(   ,    )1
2

1
2

FIGURE 19 Plot of r = sin θ + cos θ .
solution We show that the rectangular equation of r = sin θ + cos θ is(

x − 1

2

)2
+
(

y − 1

2

)2
= 1

2
.

We multiply the polar equation by r and substitute r2 = x2 + y2, r sin θ = y, r cos θ = x. This gives

r = sin θ + cos θ

r2 = r sin θ + r cos θ

x2 + y2 = y + x
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Transferring sides and completing the square yields

x2 − x + y2 − y = 0(
x − 1

2

)2
+
(

y − 1

2

)2
= 1

4
+ 1

4
= 1

2

Clearly point C corresponds to θ = 0 since cos 0 + sin 0 = 1. The circle is traced out counterclockwise as θ increases
to π , so A corresponds to θ = π

2 since again cos π
2 + sin π

2 = 0. Next, D clearly corresponds to θ = π
4 , and

indeed cos π
4 + sin π

4 = √
2, which is the diameter of the circle. Finally, point A corresponds to θ = 3π

4 , since there
cos θ = − sin θ .

27. Sketch the curve r = 1
2 θ (the spiral of Archimedes) for θ between 0 and 2π by plotting the points for θ =

0, π
4 , π

2 , . . . , 2π .

solution We first plot the following points (r, θ) on the spiral:

O = (0, 0) , A =
(π

8
,
π

4

)
, B =

(π

4
,
π

2

)
, C =

(
3π

8
,

3π

4

)
, D =

(π

2
, π
)

,

E =
(

5π

8
,

5π

4

)
, F =

(
3π

4
,

3π

2

)
, G =

(
7π

8
,

7π

4

)
, H = (π, 2π) .

p
4

3p
4

3p
2

5p
4

7p
4

p
2

O

D

E

A

G

C
B

0
2pp

H

F

Since r(0) = 0
2 = 0, the graph begins at the origin and moves toward the points A, B, C, D, E, F, G and H as θ varies

from θ = 0 to the other values stated above. Connecting the points in this direction we obtain the following graph for
0 ≤ θ ≤ 2π :

p
4

3p
4

3p
2

5p
4

7p
4

p
2

O

D

E

A

G

C
B

0
2pp

H

F

28. Sketch r = 3 cos θ − 1 (see Example 8).

solution We first choose some values of θ between 0 and π and mark the corresponding points on the graph. Then
we use symmetry (due to cos (2π − θ) = cos θ ) to plot the other half of the graph by reflecting the first half through the
x-axis. Since r = 3 cos θ − 1 is periodic, the entire curve is obtained as θ varies from 0 to 2π . We start with the values
θ = 0, π

6 , π
3 , π

2 , 2π
3 , 5π

6 , π , and compute the corresponding values of r:

r = 3 cos 0 − 1 = 3 − 1 = 2 ⇒ A = (2, 0)

r = 3 cos
π

6
− 1 = 3

√
3

2
− 1 ≈ 1.6 ⇒ B =

(
1.6,

π

6

)

r = 3 cos
π

3
− 1 = 3

2
− 1 = 0.5 ⇒ C =

(
0.5,

π

3

)
r = 3 cos

π

2
− 1 = 3 · 0 − 1 = −1 ⇒ D =

(
−1,

π

2

)
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r = 3 cos
2π

3
− 1 = −2.5 ⇒ E =

(
−2.5,

2π

3

)

r = 3 cos
5π

6
− 1 = −3.6 ⇒ F =

(
−3.6,

5π

6

)

r = 3 cos π − 1 = −4 ⇒ G = (−4, π)

The graph begins at the point (r, θ) = (2, 0) and moves toward the other points in this order, as θ varies from 0 to π .
Since r is negative for π

2 ≤ θ ≤ π , the curve continues into the fourth quadrant, rather than into the second quadrant. We
obtain the following graph:

0π A

BC

D

E
F

G

π 
3

π 
2

π 
6

2π 
3

5π 
6

Now we have half the curve and we use symmetry to plot the rest. Reflecting the first half through the x axis we obtain
the whole curve:

4
x

y

1

2

A

BC

D

E
F

G

29. Sketch the cardioid curve r = 1 + cos θ .

solution Since cos θ is period with period 2π , the entire curve will be traced out as θ varies from 0 to 2π . Additionally,
since cos(2π − θ) = cos(θ), we can sketch the curve for θ between 0 and π and reflect the result through the x axis to
obtain the whole curve. Use the values θ = 0, π

6 , π
4 , π

3 , π
2 , 2π

3 , 3π
4 , 5π

6 , and π :

θ r point

0 1 + cos 0 = 2 (2, 0)

π
6 1 + cos π

6 = 2+√
3

2

(
2+√

3
2 , π

6

)
π
4 1 + cos π

4 = 2+√
2

2

(
2+√

2
2 , π

4

)
π
3 1 + cos π

3 = 3
2

(
3
2 , π

3

)
π
2 1 + cos π

2 = 1
(
1, π

2

)
2π
3 1 + cos 2π

3 = 1
2

(
1
2 , 2π

3

)
3π
4 1 + cos 3π

4 = 2−√
2

2

(
2−√

2
2 , 3π

4

)
5π
6 1 + cos 5π

6 = 2−√
3

2

(
2−√

3
2 , 5π

6

)
θ = 0 corresponds to the point (2, 0), and the graph moves clockwise as θ increases from 0 to π . Thus the graph is

5π

6

3π

4

2π

3

π

2 π

π

3 π

4
π

6

0

Reflecting through the x axis gives the other half of the curve:
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−1

−1

1

2

y

x

−2

1 2

30. Show that the cardioid of Exercise 29 has equation

(x2 + y2 − x)2 = x2 + y2

in rectangular coordinates.

solution Multiply through by r and substitute for r , r2, and r cos θ to get

r = 1 + cos θ

r2 = r + r cos θ

x2 + y2 =
√

x2 + y2 + x

x2 + y2 − x =
√

x2 + y2

(x2 + y2 − x)2 = x2 + y2

31. Figure 20 displays the graphs of r = sin 2θ in rectangular coordinates and in polar coordinates, where it is a “rose
with four petals.” Identify:

(a) The points in (B) corresponding to points A–I in (A).

(b) The parts of the curve in (B) corresponding to the angle intervals
[
0, π

2

]
,
[
π
2 , π

]
,
[
π, 3π

2

]
, and

[ 3π
2 , 2π

]
.

A C E IG

B F

D H

x

r y

(A) Graph of r as a function
       of θ, where r = sin 2θ

(B) Graph of r = sin 2θ
      in polar coordinates

π π

2
3π 2π

2

θ

FIGURE 20

solution

(a) The graph (A) gives the following polar coordinates of the labeled points:

A: θ = 0, r = 0

B: θ = π

4
, r = sin

2π

4
= 1

C: θ = π

2
, r = 0

D: θ = 3π

4
, r = sin

2 · 3π

4
= −1

E: θ = π, r = 0

F : θ = 5π

4
, r = 1

G: θ = 3π

2
, r = 0
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H : θ = 7π

4
, r = −1

I : θ = 2π, r = 0.

Since the maximal value of |r| is 1, the points with r = 1 or r = −1 are the furthest points from the origin. The corre-
sponding quadrant is determined by the value of θ and the sign of r . If r0 < 0, the point (r0, θ0) is on the ray θ = −θ0.
These considerations lead to the following identification of the points in the xy plane. Notice that A, C, G, E, and I are
the same point.

x

y

π 2π

r = 1 r = −1

B
π 
4

π 
2

5π 
4

r = −1

7π 
4

3π 
4

r = 1

=

==

= π 
4

3π 
4

7π 
4

3π 
2

5π 
4

H

F D

A,C,E,G,I

(b) We use the graph (A) to find the sign of r = sin 2θ : 0 ≤ θ ≤ π
2 ⇒ r ≥ 0 ⇒ (r, θ) is in the first quadrant.

π
2 ≤ θ ≤ π ⇒ r ≤ 0 ⇒ (r, θ) is in the fourth quadrant. π ≤ θ ≤ 3π

2 ⇒ r ≥ 0 ⇒ (r, θ) is in the third quadrant.
3π
2 ≤ θ ≤ 2π ⇒ r ≤ 0 ⇒ (r, θ) is in the second quadrant. That is,

x

y

π ≤    ≤ 3π 
2

≤    ≤ 2π3π 
2

0 ≤    ≤ π 
2

≤    ≤ ππ 
2

32. Sketch the curve r = sin 3θ . First fill in the table of r-values below and plot the corresponding points of the curve.
Notice that the three petals of the curve correspond to the angle intervals

[
0, π

3

]
,
[
π
3 , 2π

3

]
, and

[
π
3 , π

]
. Then plot r = sin 3θ

in rectangular coordinates and label the points on this graph corresponding to (r, θ) in the table.

θ 0 π
12

π
6

π
4

π
3

5π
12 · · · 11π

12 π

r

solution We compute the values of r corresponding to the given values of θ :

θ = 0, r = sin 0 = 0 (A)

θ = π

12
, r = sin

3π

12
≈ 0.71 (B)

θ = π

6
, r = sin

3π

6
= 1 (C)

θ = π

4
, r = sin

3π

4
≈ 0.71 (D)

θ = π

3
, r = sin

3π

3
= 0 (E)

θ = 5π

12
, r = sin

15π

12
≈ −0.71 (F )

θ = π

2
, r = sin

3π

2
= −1 (G)

θ = 7π

12
, r = sin

21π

12
≈ −0.71 (H)

θ = 3π

2
, r = sin

9π

2
= 0 (I )
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θ = 3π

4
, r = sin

9π

4
≈ 0.71 (J )

θ = 5π

6
, r = sin

15π

6
= 1 (K)

θ = 11π

12
, r = sin

33π

12
≈ 0.71 (L)

θ = π, r = sin 3π = 0 (M)

We plot the points on the xy -plane and join them to obtain the following curve:

pp
3

r

q
2p
3

Using the graph of r = sin 3θ we find the sign of r and determine the parts of the graph corresponding to the angle
intervals. We get

p
4

3p
4 p

6

p
12

11p
12

p
3

2p
3

5p
6

5p
12

7p
12

p
2

AM

G

H

E
BL

D

F

I

JK C

0

p
3

0 ≤ q ≤

2p
3

p
3

≤ q ≤

≤ q ≤ p2p
3

p

0 ≤ θ ≤ π
3 ⇒ r ≥ 0 ⇒ (r, θ) in the first quadrant.

r = sin 3θ π
3 ≤ θ ≤ 2π

3 ⇒ r ≤ 0 ⇒ (r, θ) in the third and fourth quadrant.

2π
3 ≤ θ ≤ π ⇒ r ≥ 0 ⇒ (r, θ) in the second quadrant.

33. Plot the cissoid r = 2 sin θ tan θ and show that its equation in rectangular coordinates is

y2 = x3

2 − x

solution Using a CAS we obtain the following curve of the cissoid:

x

y

0ππ

π 
2

31 2

3π 
2

We substitute sin θ = y
r and tan θ = y

x in r = 2 sin θ tan θ to obtain

r = 2
y

r
· y

x
.

Multiplying by rx, setting r2 = x2 + y2 and simplifying, yields

r2x = 2y2

(x2 + y2)x = 2y2
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x3 + y2x = 2y2

y2 (2 − x) = x3

so

y2 = x3

2 − x

34. Prove that r = 2a cos θ is the equation of the circle in Figure 21 using only the fact that a triangle inscribed in a circle
with one side a diameter is a right triangle.

x

y

r

2a0
q

FIGURE 21

solution Since the triangle inscribed in the circle has a diameter as one of its sides, it is a right triangle, so we may
use the definition of cosine for angles in right triangles to write

cos θ = r

2a
⇒ r = 2a cos θ.

35. Show that

r = a cos θ + b sin θ

is the equation of a circle passing through the origin. Express the radius and center (in rectangular coordinates) in terms
of a and b.

solution We multiply the equation by r and then make the substitution x = r cos θ , y = r sin θ , and r2 = x2 + y2.
This gives

r2 = ar cos θ + br sin θ

x2 + y2 = ax + by

Transferring sides and completing the square yields

x2 − ax + y2 − by = 0(
x2 − 2 · a

2
x +

(a

2

)2
)

+
(

y2 − 2 · b

2
y +

(
b

2

)2
)

=
(a

2

)2 +
(

b

2

)2

(
x − a

2

)2 +
(

y − b

2

)2
= a2 + b2

4

This is the equation of the circle with radius
√

a2+b2

2 centered at the point
(

a
2 , b

2

)
. By plugging in x = 0 and y = 0 it is

clear that the circle passes through the origin.

36. Use the previous exercise to write the equation of the circle of radius 5 and center (3, 4) in the form r = a cos θ +
b sin θ .

solution In the previous exercise we showed that r = a cos θ + b sin θ is the equation of the circle with radius
√

a2+b2

2

centered at
(

a
2 , b

2

)
. Thus, we must have

(
a

2
,
b

2

)
= (3, 4) ⇒ a

2
= 3,

b

2
= 4 ⇒ a = 6, b = 8.

The radius of the circle is
√

a2+b2

2 =
√

62+82

2 = 5. Thus, the corresponding equation is r = 6 cos θ + 8 sin θ .
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37. Use the identity cos 2θ = cos2 θ − sin2 θ to find a polar equation of the hyperbola x2 − y2 = 1.

solution We substitute x = r cos θ , y = r sin θ in x2 − y2 = 1 to obtain

r2 cos2 θ − r2 sin2 θ = 1

r2(cos2 θ − sin2 θ) = 1

Using the identity cos 2θ = cos2 θ − sin2 θ we obtain the following equation of the hyperbola:

r2 cos 2θ = 1 or r2 = sec 2θ.

38. Find an equation in rectangular coordinates for the curve r2 = cos 2θ .

solution We first use the identity cos 2θ = cos2 θ − sin2 θ to rewrite the equation of the curve as follows:

r2 = cos2 θ − sin2 θ . Multiplying by r2 and substituting r2 = x2 + y2, r cos θ = x and r sin θ = y, we get

r4 = (r cos θ)2 − (r sin θ)2(x2 + y2)2 = x2 − y2.

Thus, the curve has the equation (x2 + y2)
2 = x2 − y2 in rectangular coordinates.

39. Show that cos 3θ = cos3 θ − 3 cos θ sin2 θ and use this identity to find an equation in rectangular coordinates for the
curve r = cos 3θ .

solution We use the identities cos(α + β) = cos α cos β − sin α sin β, cos 2α = cos2 α − sin2 α, and sin 2α =
2 sin α cos α to write

cos 3θ = cos(2θ + θ) = cos 2θ cos θ − sin 2θ sin θ

= (cos2 θ − sin2 θ) cos θ − 2 sin θ cos θ sin θ

= cos3 θ − sin2 θ cos θ − 2 sin2 θ cos θ

= cos3 θ − 3 sin2 θ cos θ

Using this identity we may rewrite the equation r = cos 3θ as follows:

r = cos3 θ − 3 sin2 θ cos θ (1)

Since x = r cos θ and y = r sin θ , we have cos θ = x
r and sin θ = y

r . Substituting into (1) gives:

r =
(x

r

)3 − 3
(y

r

)2 (x

r

)

r = x3

r3
− 3y2x

r3

We now multiply by r3 and make the substitution r2 = x2 + y2 to obtain the following equation for the curve:

r4 = x3 − 3y2x

(x2 + y2)
2 = x3 − 3y2x

40. Use the addition formula for the cosine to show that the line L with polar equation r cos(θ − α) = d has the equation
in rectangular coordinates (cos α)x + (sin α)y = d. Show that L has slope m = − cot α and y-intercept d/sin α.

solution We use the identity cos (a − b) = cos a cos b + sin a sin b to rewrite the equation r cos (θ − α) = d as fol-
lows:

r (cos θ cos α + sin θ sin α) = d

r cos θ cos α + r sin θ sin α = d

We now substitute r cos θ = x and r sin θ = y to obtain: x cos α + y sin α = d . Dividing by cos α, transferring sides and
simplifying yields

x + y tan α = d

cos α

y tan α = −x + d

cos α

y = − x

tan α
+ d

tan α cos α
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so

y = (− cot α) x + d

sin α

This equation of the line implies that L has slope m = − cot α and y -intercept d
sin α

.

In Exercises 41–44, find an equation in polar coordinates of the line L with the given description.

41. The point on L closest to the origin has polar coordinates
(
2, π

9

)
.

solution In Example 5, it is shown that the polar equation of the line where (r, α) is the point on the line closest to
the origin is r = d sec (θ − α). Setting (d, α) = (2, π

9

)
we obtain the following equation of the line:

r = 2 sec
(
θ − π

9

)
.

42. The point on L closest to the origin has rectangular coordinates (−2, 2).

solution We first convert the rectangular coordinates (−2, 2) to polar coordinates (d, α). This point is in the second
quadrant so π

2 < α < π . Hence,

d =
√

(−2)2 + 22 = √
8 = 2

√
2

α = tan−1
(

2

−2

)
= tan−1(−1) = π − π

4
= 3π

4

⇒ (d, α) =
(

2
√

2,
3π

4

)
.

Substituting d = 2
√

2 and α = 3π
4 in the equation r = d sec (θ − α) gives us

r = 2
√

2 sec

(
θ − 3π

4

)
.

43. L is tangent to the circle r = 2
√

10 at the point with rectangular coordinates (−2, −6).

solution

x

y

(−2, −6)

Since L is tangent to the circle at the point (−2, −6), this is the point on L closest to the center of the circle which is at
the origin. Therefore, we may use the polar coordinates (d, α) of this point in the equation of the line:

r = d sec (θ − α) (1)

We thus must convert the coordinates (−2, −6) to polar coordinates. This point is in the third quadrant so π < α < 3π
2 .

We get

d =
√

(−2)2 + (−6)2 = √
40 = 2

√
10

α = tan−1
(−6

−2

)
= tan−1 3 ≈ π + 1.25 ≈ 4.39

Substituting in (1) yields the following equation of the line:

r = 2
√

10 sec (θ − 4.39) .

44. L has slope 3 and is tangent to the unit circle in the fourth quadrant.

solution We denote the point of tangency by P0 = (1, α) (in polar coordinates).
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a

(1, a)

Since L is the tangent line to the circle at P0, P0 is the point on L closest to the center of the circle at the origin. Thus,
the polar equation of L is

r = sec (θ − α) (1)

We now must find α. Let β be the given angle shown in the figure.

a b
2p − aO B

C = (1, a)

By the given information, tan β = 3. Also, since the point of tangency is in the fourth quadrant, β must be an acute angle.
Hence

tan β = 3, 0 < β <
π

2
⇒ β = 1.25 rad.

Now, since 3π
2 < α < 2π , we have for the triangle OBC

(2π − α) + π

2
+ 1.25 = π ⇒ α = 3π

2
+ 1.25 = 5.96 rad.

Substituting into (1) we obtain the following polar equation of the tangent line:

r = sec (θ − 5.96) .

45. Show that every line that does not pass through the origin has a polar equation of the form

r = b

sin θ − a cos θ

where b �= 0.

solution Write the equation of the line in rectangular coordinates as y = ax + b. Since the line does not pass through
the origin, we have b �= 0. Substitute for y and x to convert to polar coordinates, and simplify:

y = ax + b

r sin θ = ar cos θ + b

r(sin θ − a cos θ) = b

r = b

sin θ − a cos θ

46. By the Law of Cosines, the distance d between two points (Figure 22) with polar coordinates (r, θ) and (r0, θ0) is

d2 = r2 + r2
0 − 2rr0 cos(θ − θ0)

Use this distance formula to show that

r2 − 10r cos
(
θ − π

4

)
= 56

is the equation of the circle of radius 9 whose center has polar coordinates
(
5, π

4

)
.
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x

y

(r0, q0)
r0

r

d

q0
q

(r, q )

FIGURE 22

solution The distance d between a point (r, θ) on the circle and the center (r0, θ0) = (5, π
4

)
is the radius 9. Setting

d = 9, r0 = 5 and θ0 = π
4 in the distance formula we get

d2 = r2 + r2
0 − 2rr0 cos (θ − θ0)

92 = r2 + 52 − 2 · r · 5 cos
(
θ − π

4

)
Transferring sides we get

r2 − 10r cos
(
θ − π

4

)
= 56.

47. For a > 0, a lemniscate curve is the set of points P such that the product of the distances from P to (a, 0) and
(−a, 0) is a2. Show that the equation of the lemniscate is

(x2 + y2)2 = 2a2(x2 − y2)

Then find the equation in polar coordinates. To obtain the simplest form of the equation, use the identity cos 2θ =
cos2 θ − sin2 θ . Plot the lemniscate for a = 2 if you have a computer algebra system.

solution We compute the distances d1 and d2 of P(x, y) from the points (a, 0) and (−a, 0) respectively. We obtain:

d1 =
√

(x − a)2 + (y − 0)2 =
√

(x − a)2 + y2

d2 =
√

(x + a)2 + (y − 0)2 =
√

(x + a)2 + y2

For the points P(x, y) on the lemniscate we have d1d2 = a2. That is,

a2 =
√

(x − a)2 + y2
√

(x + a)2 + y2 =
√[

(x − a)2 + y2
] [

(x + a)2 + y2
]

=
√

(x − a)2(x + a)2 + y2(x − a)2 + y2(x + a)2 + y4

=
√

(x2 − a2)2 + y2
[
(x − a)2 + (x + a)2

]+ y4

=
√

x4 − 2a2x2 + a4 + y2
(
x2 − 2xa + a2 + x2 + 2xa + a2

)+ y4

=
√

x4 − 2a2x2 + a4 + 2y2x2 + 2y2a2 + y4

=
√

x4 + 2x2y2 + y4 + 2a2(y2 − x2) + a4

=
√

(x2 + y2)
2 + 2a2(y2 − x2) + a4.

Squaring both sides and simplifying yields

a4 = (x2 + y2)2 + 2a2(y2 − x2) + a4

0 = (x2 + y2)2 + 2a2(y2 − x2)

so

(x2 + y2)2 = 2a2(x2 − y2)

We now find the equation in polar coordinates. We substitute x = r cos θ , y = r sin θ and x2 + y2 = r2 into the equation
of the lemniscate. This gives

(r2)2 = 2a2(r2 cos2 θ − r2 sin2 θ) = 2a2r2(cos2 θ − sin2 θ) = 2a2r2 cos 2θ

r4 = 2a2r2 cos 2θ
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r = 0 is a solution, hence the origin is on the curve. For r �= 0 we divide the equation by r2 to obtain r2 = 2a2 cos 2θ .
This curve also includes the origin (r = 0 is obtained for θ = π

4 for example), hence this is the polar equation of the

lemniscate. Setting a = 2 we get r2 = 8 cos 2θ .

r2 = 8 cos 2q

3p
2

p
2

p 0

48. Let c be a fixed constant. Explain the relationship between the graphs of:

(a) y = f (x + c) and y = f (x) (rectangular)

(b) r = f (θ + c) and r = f (θ) (polar)

(c) y = f (x) + c and y = f (x) (rectangular)

(d) r = f (θ) + c and r = f (θ) (polar)

solution

(a) For c > 0, y = f (x + c) shifts the graph of y = f (x) by c units to the left. If c < 0, the result is a shift to the right.
It is a horizontal translation.

y

c

x

f (x)f (x + c)

(b) As in part (a), the graph of r = f (θ + c) is a shift of the graph of r = f (θ) by c units in θ . Thus, the graph in polar
coordinates is rotated by angle c as shown in the following figure:

3p
2

p
2

p 0

f (q )

f (q + c)

c

(c) y = f (x) + c shifts the graph vertically upward by c units if c > 0, and downward by (−c) units if c < 0. It is a
vertical translation.

(d) The graph of r = f (θ) + c is a shift of the graph of r = f (θ) by c units in r . In the corresponding graph, in polar
coordinates, each point with f (θ) > 0 moves on the ray connecting it to the origin c units away from the origin if c > 0
and (−c) units toward the origin if c < 0, and vice-versa for f (θ) < 0.
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y

c

x

3p
2

p
2

p 0
1 c

c
c

c

c > 0

49. The Derivative in Polar Coordinates Show that a polar curve r = f (θ) has parametric equations

x = f (θ) cos θ, y = f (θ) sin θ

Then apply Theorem 2 of Section 11.1 to prove

dy

dx
= f (θ) cos θ + f ′(θ) sin θ

−f (θ) sin θ + f ′(θ) cos θ
2

where f ′(θ) = df /dθ .

solution Multiplying both sides of the given equation by cos θ yields r cos θ = f (θ) cos θ ; multiplying both sides
by sin θ yields r sin θ = f (θ) sin θ . The left-hand sides of these two equations are the x and y coordinates in rectangular
coordinates, so for any θ we have x = f (θ) cos θ and y = f (θ) sin θ , showing that the parametric equations are as
claimed. Now, by the formula for the derivative we have

dy

dx
= y′ (θ)

x′ (θ)
(1)

We differentiate the functions x = f (θ) cos θ and y = f (θ) sin θ using the Product Rule for differentiation. This gives

y′ (θ) = f ′ (θ) sin θ + f (θ) cos θ

x′ (θ) = f ′ (θ) cos θ − f (θ) sin θ

Substituting in (1) gives

dy

dx
= f ′ (θ) sin θ + f (θ) cos θ

f ′ (θ) cos θ − f (θ) sin θ
= f (θ) cos θ + f ′ (θ) sin θ

−f (θ) sin θ + f ′ (θ) cos θ
.

50. Use Eq. (2) to find the slope of the tangent line to r = sin θ at θ = π
3 .

solution We have f (θ) = sin θ , f ′(θ) = cos θ and, by Eq. (2), the slope of the tangent line is

dy

dx
= f (θ) cos θ + f ′(θ) sin θ

−f (θ) sin θ + f ′(θ) cos θ
= sin θ cos θ + cos θ sin θ

− sin2 θ + cos2 θ
= sin 2θ

cos 2θ

Evaluating at θ = π
3 gives

dy

dx
= sin 2π

3

cos 2π
3

=
√

32

−1/2
= −√

3

Thus the slope of the tangent line to r = sin θ at θ = π
3 is −√

3.

51. Use Eq. (2) to find the slope of the tangent line to r = θ at θ = π
2 and θ = π .

solution In the given curve we have r = f (θ) = θ . Using Eq. (2) we obtain the following derivative, which is the
slope of the tangent line at (r, θ).

dy

dx
= f (θ) cos θ + f ′ (θ) sin θ

−f (θ) sin θ + f ′ (θ) cos θ
= θ cos θ + 1 · sin θ

−θ sin θ + 1 · cos θ
(1)

The slope, m, of the tangent line at θ = π
2 and θ = π is obtained by substituting these values in (1). We get (θ = π

2 ):

m =
π
2 cos π

2 + sin π
2

−π
2 sin π

2 + cos π
2

=
π
2 · 0 + 1

−π
2 · 1 + 0

= 1

−π
2

= − 2

π
.
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(θ = π):

m = π cos π + sin π

−π sin π + cos π
= −π

−1
= π.

52. Find the equation in rectangular coordinates of the tangent line to r = 4 cos 3θ at θ = π
6 .

solution We have f (θ) = 4 cos 3θ . By Eq. (2),

m = 4 cos 3θ cos θ − 12 sin 3θ sin θ

−4 cos 3θ sin θ − 12 sin 3θ cos θ
.

Setting θ = π
6 yields

m = 4 cos
(
π
2

)
cos
(
π
6

)− 12 sin
(
π
2

)
sin
(
π
6

)
−4 cos

(
π
2

)
sin
(
π
6

)− 12 sin
(
π
2

)
cos
(
π
6

) = −12 sin π
6

−12 cos π
6

= tan
π

6
= 1√

3
.

We identify the point of tangency. For θ = π
6 we have r = 4 cos 3π

6 = 4 cos π
2 = 0. The point of tangency is the origin.

The tangent line is the line through the origin with slope 1√
3

. This is the line y = x√
3

.

53. Find the polar coordinates of the points on the lemniscate r2 = cos 2t in Figure 23 where the tangent line is horizontal.

y

x
−1 1

r2 = cos (2t)

FIGURE 23

solution This curve is defined for −π
2 ≤ 2t ≤ π

2 (where cos 2t ≥ 0), so for −π
4 ≤ t ≤ π

4 . For each θ in that range,

there are two values of r satisfying the equation (±√
cos 2t). By symmetry, we need only calculate the coordinates of the

points corresponding to the positive square root (i.e. to the right of the y axis). Then the equation becomes r = √
cos 2t .

Now, by Eq. (2), with f (t) = √
cos(2t) and f ′(t) = − sin(2t)(cos(2t))−1/2, we have

dy

dx
= f (t) cos t + f ′(t) sin t

−f (t) sin t + f ′(t) cos t
= cos t

√
cos(2t) − sin(2t) sin t (cos(2t))−1/2

− sin t
√

cos(2t) − sin(2t) cos t (cos(2t))−1/2

The tangent line is horizontal when this derivative is zero, which occurs when the numerator of the fraction is zero and the
denominator is not. Multiply top and bottom of the fraction by

√
cos(2t), and use the identities cos 2t = cos2 t − sin2 t ,

sin 2t = 2 sin t cos t to get

− cos t cos 2t − sin t sin 2t

sin t cos 2t + cos t sin 2t
= − cos t (cos2 t − 3 sin2 t)

sin t cos 2t + cos t sin 2t

The numerator is zero when cos t = 0, so when t = π
2 or t = 3π

2 , or when tan t = ± 1√
3

, so when t = ±π
6 or t = ± 5π

6 .

Of these possibilities, only t = ±π
6 lie in the range −π

4 ≤ t ≤ π
4 . Note that the denominator is nonzero for t = ±π

6 , so
these are the two values of t for which the tangent line is horizontal. The corresponding values of r are solutions to

r2 = cos
(

2 · π

6

)
= cos

(π

3

)
= 1

2

r2 = cos

(
2 · −π

6

)
= cos

(
−π

3

)
= 1

2

Finally, the four points are (r, t) =(
1√
2
,
π

6

)
,

(
− 1√

2
,
π

6

)
,

(
1√
2
, −pi

6

)
,

(
− 1√

2
, −π

6

)

If desired, we can change the second and fourth points by adding π to the angle and making r positive, to get(
1√
2
,
π

6

)
,

(
1√
2
,

7π

6

)
,

(
1√
2
, −pi

6

)
,

(
1√
2
,

5π

6

)
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54. Find the polar coordinates of the points on the cardioid r = 1 + cos θ where the tangent line is horizontal (see
Figure 24).

solution Use Eq. (2) with f (θ) = 1 + cos θ and f ′(θ) = − sin θ . Then

dy

dx
= f (θ) cos θ + f ′(θ) sin θ

−f (θ) sin θ + f ′(θ) cos θ
= cos θ + cos2 θ − sin2 θ

− sin θ − cos θ sin θ − sin θ cos θ
= − cos θ + cos 2θ

sin θ + sin 2θ

The tangent line is horizontal when the numerator is zero but the denominator is not. The numerator is zero when
cos θ + cos 2θ = 0. But

cos θ + cos 2θ = cos θ + 2 cos2 θ − 1 =
(

cos θ − 1

2

)
(cos θ + 1)

So for 0 ≤ θ < 2π , the numerator is zero when θ = π and when θ = ±π
3 . For the latter two points, the denominator is

nonzero, so the tangent is horizontal at the points

(r, θ) =
(

3

2
,
π

3

)
,

(
3

2
, −π

3

)
=
(

3

2
,

5π

3

)

When θ = π , both numerator and denominator vanish. However, using L’Hôpital’s Rule, we have

− lim
θ→π

cos θ + cos 2θ

sin θ + sin 2θ
= − lim

θ→π

− sin θ − 2 sin 2θ

cos θ + 2 cos 2θ
= 0

so that the tangent is defined at θ = π , and it is horizontal. Thus the tangent is also horizontal at the point

(r, θ) = (0, π)

55. Use Eq. (2) to show that for r = sin θ + cos θ ,

dy

dx
= cos 2θ + sin 2θ

cos 2θ − sin 2θ

Then calculate the slopes of the tangent lines at points A, B, C in Figure 19.

solution In Exercise 49 we proved that for a polar curve r = f (θ) the following formula holds:

dy

dx
= f (θ) cos θ + f ′ (θ) sin θ

−f (θ) sin θ + f ′ (θ) cos θ
(1)

For the given circle we have r = f (θ) = sin θ + cos θ , hence f ′ (θ) = cos θ − sin θ . Substituting in (1) we have

dy

dx
= (sin θ + cos θ) cos θ + (cos θ − sin θ) sin θ

− (sin θ + cos θ) sin θ + (cos θ − sin θ) cos θ
= sin θ cos θ + cos2 θ + cos θ sin θ − sin2 θ

− sin2 θ − cos θ sin θ + cos2 θ − sin θ cos θ

= cos2 θ − sin2 θ + 2 sin θ cos θ

cos2 θ − sin2 θ − 2 sin θ cos θ

We use the identities cos2 θ − sin2 θ = cos 2θ and 2 sin θ cos θ = sin 2θ to obtain

dy

dx
= cos 2θ + sin 2θ

cos 2θ − sin 2θ
(2)

The derivative dy
dx

is the slope of the tangent line at (r, θ). The slopes of the tangent lines at the points with polar coordinates

A = (1, π
2

)
B =

(
0, 3π

4

)
C = (1, 0) are computed by substituting the values of θ in (2). This gives

dy

dx

∣∣∣∣
A

= cos
(
2 · π

2

)+ sin
(
2 · π

2

)
cos
(
2 · π

2

)− sin
(
2 · π

2

) = cos π + sin π

cos π − sin π
= −1 + 0

−1 − 0
= 1

dy

dx

∣∣∣∣
B

=
cos
(

2 · 3π
4

)
+ sin

(
2 · 3π

4

)
cos
(

2 · 3π
4

)
− sin

(
2 · 3π

4

) = cos 3π
2 + sin 3π

2

cos 3π
2 − sin 3π

2

= 0 − 1

0 + 1
= −1

dy

dx

∣∣∣∣
C

= cos (2 · 0) + sin (2 · 0)

cos (2 · 0) − sin (2 · 0)
= cos 0 + sin 0

cos 0 − sin 0
= 1 + 0

1 − 0
= 1
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Further Insights and Challenges
56. Let f (x) be a periodic function of period 2π—that is, f (x) = f (x + 2π). Explain how this periodicity is
reflected in the graph of:

(a) y = f (x) in rectangular coordinates
(b) r = f (θ) in polar coordinates

solution
(a) The graph of y = f (x) on an interval of length 2π repeats itself on successive intervals of length 2π . For instance:

t

y

2

2

4

6

8

−8

−6

−4

−2
4 6 8 10 12−6 −4 −2−12−10 −8

(b) Shown below is the graph of the function above, this time drawn in polar coordinates. The graphs of the various
branches repeat themselves and are drawn one on the top of the other.

x

y

0ππ

π 
2

62 4 8

3π 
2

57. Use a graphing utility to convince yourself that the polar equations r = f1(θ) = 2 cos θ − 1 and r = f2(θ) =
2 cos θ + 1 have the same graph. Then explain why. Hint: Show that the points (f1(θ + π), θ + π) and (f2(θ), θ)

coincide.

solution The graphs of r = 2 cos θ − 1 and r = 2 cos θ + 1 in the xy -plane coincide as shown in the graph obtained
using a CAS.

x

y

2

−2

2−2

x

y

0ππ

π 
2

31 2

3π 
2

Recall that (r, θ) and (−r, θ + π) represent the same point. Replacing θ by θ + π and r by (−r) in r = 2 cos θ − 1 we
obtain

−r = 2 cos (θ + π) − 1

−r = −2 cos θ − 1

r = 2 cos θ + 1

Thus, the two equations define the same graph. (One could also convert both equations to rectangular coordinates and
note that they come out identical.)
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58. We investigate how the shape of the limaçon curve r = b + cos θ depends on the constant b (see Figure 24).

(a) Argue as in Exercise 57 to show that the constants b and −b yield the same curve.
(b) Plot the limaçon for b = 0, 0.2, 0.5, 0.8, 1 and describe how the curve changes.
(c) Plot the limaçon for b = 1.2, 1.5, 1.8, 2, 2.4 and describe how the curve changes.
(d) Use Eq. (2) to show that

dy

dx
= −

(
b cos θ + cos 2θ

b + 2 cos θ

)
csc θ

(e) Find the points where the tangent line is vertical. Note that there are three cases: 0 ≤ b < 2, b = 1, and b > 2. Do
the plots constructed in (b) and (c) reflect your results?

x

y

x

y

x

y

1 2 33

1

r = 1.5 + cos q r = 2.3 + cos q r = 1 + cos q 

13 2

1

1 2

1

FIGURE 24

solution
(a) If (r, θ) is on the curve r = −b + cos θ , then so is (−r, θ + π) since they represent the same point. Thus

−r = −b + cos(θ + π)

−r = −b − cos θ

r = b + cos θ

Thus the same set of points lie on the graph of both equations, so they define the same curve.
(b)

−0.5

0.5

0

b = 0

y

x
1

−0.5

0.5

0

b = 0.2

y

x
1

−0.5

0.5

b = 0.5

y

x
1

−0.5

0.5

1

1

−1
b = 0.8

y

x

−0.5

0.5

1

1 2

−1

b = 1

y

x

For 0 < b < 1, there is a “loop” inside the curve. For b = 0, the curve is a circle, although actually for 0 ≤ θ ≤ 2π the
circle is traversed twice, so in fact the loop is as large as the circle and overlays it. When b = 1, the loop is pinched to a
point.
(c)

−0.5

0.5

1

1 2

−1

b = 1.2

y

x

−0.5

0.5

1

1.5

1 2

−1

−1.5
b = 1.5

y

x

−0.5

0.5
1

2

1.5

1 2

−1

−2

−1.5

b = 1.8

y

x

−0.5

0.5
1

2

1.5

1 2 3

−1

−2

−1.5

b = 2

y

x

1

2

1 2 3
−1

−2

b = 2.4

y

x

For b between 1 and 2, the pinch at b = 1 smooths out into a concavity in the curve, which decreases in size. By b = 2 it
appears to be gone; further increases in b push the left-hand section of the curve out, making it more convex.
(d) By Eq. (2), with f (θ) = b + cos θ and f ′(θ) = − sin θ , we have (using the double-angle identities for sin and cos)

dy

dx
= f (θ) cos θ + f ′(θ) sin θ

−f (θ) sin θ + f ′(θ) cos θ
= (b + cos θ) cos θ − sin2 θ

−(b + cos θ) sin θ − sin θ cos θ
= b cos θ + cos 2θ

−b sin θ − 2 sin θ cos θ

= − b cos θ + cos 2θ

sin θ(b + 2 cos θ)
= −

(
b cos θ + cos 2θ

b + 2 cos θ

)
csc θ
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(e) From part (d), the tangent line is vertical when either csc θ is undefined or when b + 2 cos θ = 0 (as long as the
numerator b cos θ + cos 2θ �= 0). Consider first the case when csc θ is undefined, so that θ = 0 or θ = π . If θ = 0, the
numerator of the fraction is b + 1 �= 0 and the denominator is b + 2 �= 0, so that the tangent is vertical here.

For any b, the limaçon has a vertical tangent at (b + cos 0, 0) = (b + 1, 0)

If θ = π , the numerator of the fraction is 1 − b and the denominator is b + 2 �= 0. As long as b �= 1, the numerator does
not vanish and we have found a point of vertical tangency. If b = 1, then by L’Hôpital’s Rule,

− lim
θ→π

(
b cos θ + cos 2θ

b + 2 cos θ

)
csc θ = − lim

θ→π

(
b cos θ + cos 2θ

(b + 2 cos θ) sin θ

)
= lim

θ→π

sin t + sin 2t

2 cos2 t − 2 sin2 t + cos t
= 0

so that the tangent is not vertical here. Thus

If b �= 1, the limaçon has a vertical tangent at (b + cos π, π) = (b − 1, π)

Next consider the possibility that b + 2 cos θ = 0; this happens when cos θ = − b
2 . First assume that 0 ≤ b < 2. This

equation holds for two values of θ : cos−1
(
− b

2

)
and − cos−1

(
− b

2

)
. Neither of these angles is 0 or π , so that csc θ is

defined. Additionally, the numerator is

b cos θ + cos 2θ = b cos θ + 2 cos2 θ − 1 = −b2

2
+ 2 · b2

4
− 1 = −1

so that the numerator does not vanish. Thus

For 0 ≤ b < 2, the limaçon has a vertical tangent at

(
b

2
, cos−1

(
−b

2

))
and

(
b

2
, − cos−1

(
−b

2

))

Next assume that b = 2; then cos θ = −1 holds for θ = π ; we have considered that case above. Finally assume that
b > 2; then cos θ = − b

2 has no solutions. Thus, in summary, vertical tangents of the limaçon occur as follows:

0 ≤ b < 2, b �= 1 :
(

b

2
, cos−1

(
−b

2

))
,

(
b

2
, − cos−1

(
−b

2

))
, (b − 1, π), (b + 1, 0)

b = 1 :
(

b

2
, cos−1

(
−b

2

))
,

(
b

2
, − cos−1

(
−b

2

))
, (b + 1, 0)

b ≥ 2 : (b + 1, 0), (b − 1, π)

These do correspond to the figures in parts (b) and (c).

11.4 Area and Arc Length in Polar Coordinates

Preliminary Questions
1. Polar coordinates are suited to finding the area (choose one):

(a) Under a curve between x = a and x = b.

(b) Bounded by a curve and two rays through the origin.

solution Polar coordinates are best suited to finding the area bounded by a curve and two rays through the origin. The
formula for the area in polar coordinates gives the area of this region.

2. Is the formula for area in polar coordinates valid if f (θ) takes negative values?

solution The formula for the area

1

2

∫ β

α
f (θ)2 dθ

always gives the actual (positive) area, even if f (θ) takes on negative values.
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3. The horizontal line y = 1 has polar equation r = csc θ . Which area is represented by the integral
1

2

∫ π/2

π/6
csc2 θ dθ

(Figure 12)?

(a) �ABCD (b) �ABC (c) �ACD

y

xA

D

B

C y = 1
1

3

FIGURE 12

solution This integral represents an area taken from θ = π/6 to θ = π/2, which can only be the triangle �ACD, as
seen in part (c).

Exercises
1. Sketch the area bounded by the circle r = 5 and the rays θ = π

2 and θ = π , and compute its area as an integral in
polar coordinates.

solution The region bounded by the circle r = 5 and the rays θ = π
2 and θ = π is the shaded region in the figure.

The area of the region is given by the following integral:

1

2

∫ π

π/2
r2 dθ = 1

2

∫ π

π/2
52 dθ = 25

2

(
π − π

2

)
= 25π

4

x

y
=

= π

π 
2

2. Sketch the region bounded by the line r = sec θ and the rays θ = 0 and θ = π
3 . Compute its area in two ways: as an

integral in polar coordinates and using geometry.

solution The region bounded by the line r = sec θ and the rays θ = 0 and θ = π
3 is shown here:

x = 1

r = sec q

q  = 0

p
2

p
3

q  =

Using the area in polar coordinates, the area of the region is given by the following integral:

A = 1

2

∫ π/3

0
r2 dθ = 1

2

∫ π/3

0
sec2θ dθ = 1

2
tan θ

∣∣∣∣π/3

0
= 1

2

(
tan

π

3
− tan 0

)
=

√
3

2
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We now compute the area using the formula for the area of a triangle. The equations of the lines θ = π
3 , θ = 0, and

r = sec θ in rectangular coordinates are y = √
3x, y = 0 and x = 1 respectively (see Example 5 in Section 12.3 for

the equation of the line r = sec θ ). Denoting the vertices of the triangle by O, A, B (see figure) we have O = (0, 0),

A =
(

1,
√

3
)

and B = (1, 0). The area of the triangle is thus

A = OB · AB

2
= 1 · √

3

2
=

√
3

2
.

x

A

y

O B

x = 1

y = 0

y = 3x

3. Calculate the area of the circle r = 4 sin θ as an integral in polar coordinates (see Figure 4). Be careful to choose the
correct limits of integration.

solution The equation r = 4 sin θ defines a circle of radius 2 tangent to the x-axis at the origin as shown in the figure:

= π 
2

π 
3

2π 
3

π 
6

5π 
6

x

y

= π = π

The circle is traced as θ varies from 0 to π . We use the area in polar coordinates and the identity

sin2 θ = 1

2
(1 − cos 2θ)

to obtain the following area:

A = 1

2

∫ π

0
r2 dθ = 1

2

∫ π

0
(4 sin θ)2 dθ = 8

∫ π

0
sin2 θ dθ = 4

∫ π

0
(1 − cos 2θ) dθ = 4

[
θ − sin 2θ

2

]π
0

= 4

((
π − sin 2π

2

)
− 0

)
= 4π.

4. Find the area of the shaded triangle in Figure 13 as an integral in polar coordinates. Then find the rectangular
coordinates of P and Q and compute the area via geometry.

P

Q
x

y

r = 4 sec(θ − )π

4

FIGURE 13

solution The boundary of the region is traced as θ varies from 0 to π
2 , so the area is

1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
16 sec2

(
θ − π

4

)
dθ = 8 tan

(
θ − π

4

) ∣∣∣∣π/2

0
= 8(1 + 1) = 16
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5. Find the area of the shaded region in Figure 14. Note that θ varies from 0 to π
2 .

x

y

r = θ2 + 4θ

8

1 2

FIGURE 14

solution Since θ varies from 0 to π
2 , the area is

1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
(θ2 + 4θ)2 dθ = 1

2

∫ π/2

0
θ4 + 8θ3 + 16θ2 dθ

= 1

2

(
1

5
θ5 + 2θ4 + 16

3
θ3
) ∣∣∣∣π/2

0
= π5

320
+ π4

16
+ π2

3

6. Which interval of θ -values corresponds to the the shaded region in Figure 15? Find the area of the region.

3

2

y

x

r = 3 − θ

FIGURE 15

solution We first find the interval of θ . At the origin r = 0, so θ = 3. At the endpoint on the x-axis, θ = 0. Thus, θ

varies from 0 to 3.

30

2

y

x

r = 3 − q

q  = 0
q  = 3

q  = 3

Using the area in polar coordinates we obtain

A = 1

2

∫ 3

0
r2 dθ = 1

2

∫ 3

0
(3 − θ)2 dθ = − (3 − θ)3

6

∣∣∣∣3
0

= 4.5.

7. Find the total area enclosed by the cardioid in Figure 16.

y

x
−1−2

FIGURE 16 The cardioid r = 1 − cos θ .
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solution We graph r = 1 − cos θ in r and θ (cartesian, not polar, this time):

r

1

2

2πππ 
2

3π 
2

We see that as θ varies from 0 to π , the radius r increases from 0 to 2, so we get the upper half of the cardioid (the lower
half is obtained as θ varies from π to 2π and consequently r decreases from 2 to 0). Since the cardioid is symmetric with
respect to the x-axis we may compute the upper area and double the result. Using

cos2 θ = cos 2θ + 1

2

we get

A = 2 · 1

2

∫ π

0
r2 dθ =

∫ π

0
(1 − cos θ)2 dθ =

∫ π

0

(
1 − 2 cos θ + cos2 θ

)
dθ

=
∫ π

0

(
1 − 2 cos θ + cos 2θ + 1

2

)
dθ =

∫ π

0

(
3

2
− 2 cos θ + 1

2
cos 2θ

)
dθ

= 3

2
θ − 2 sin θ + 1

4
sin 2θ

∣∣∣∣π
0

= 3π

2

The total area enclosed by the cardioid is A = 3π
2 .

8. Find the area of the shaded region in Figure 16.

solution The shaded region is traced as θ varies from 0 to π
2 . Using the formula for the area in polar coordinates we

get:

A = 1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
(1 − cos θ)2 dθ = 1

2

∫ π/2

0

(
1 − 2 cos θ + cos2 θ

)
dθ

= 1

2

∫ π/2

0

(
1 − 2 cos θ + cos 2θ + 1

2

)
dθ = 1

2

∫ π/2

0

(
3

2
− 2 cos θ + 1

2
cos 2θ

)
dθ

= 1

2

(
3θ

2
− 2 sin θ + 1

4
sin 2θ

) ∣∣∣∣π/2

0
= 1

2

((
3

2
· π

2
− 2 sin

π

2
+ 1

4
sin π

)
− 0

)

= 1

2

(
3π

4
− 2

)
= 3π

8
− 1 ≈ 0.18

9. Find the area of one leaf of the “four-petaled rose” r = sin 2θ (Figure 17). Then prove that the total area of the rose
is equal to one-half the area of the circumscribed circle.

y

x

r = sin 2θ

FIGURE 17 Four-petaled rose r = sin 2θ .
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solution We consider the graph of r = sin 2θ in cartesian and in polar coordinates:

r

A

1

−1

ππ 
4

π 
2

3π 
4

y

A

x

r = 1, θ = π

4

We see that as θ varies from 0 to π
4 the radius r is increasing from 0 to 1, and when θ varies from π

4 to π
2 , r is decreasing

back to zero. Hence, the leaf in the first quadrant is traced as θ varies from 0 to π
2 . The area of the leaf (the four leaves

have equal areas) is thus

A = 1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
sin2 2θ dθ.

Using the identity

sin2 2θ = 1 − cos 4θ

2

we get

A = 1

2

∫ π/2

0

(
1

2
− cos 4θ

2

)
dθ = 1

2

(
θ

2
− sin 4θ

8

) ∣∣∣∣π/2

0
= 1

2

((
π

4
− sin 2π

8

)
− 0

)
= π

8

The area of one leaf is A = π
8 ≈ 0.39. It follows that the area of the entire rose is π

2 . Since the “radius” of the rose (the
point where θ = π

4 ) is 1, and the circumscribed circle is tangent there, the circumscribed circle has radius 1 and thus area
π . Hence the area of the rose is half that of the circumscribed circle.

10. Find the area enclosed by one loop of the lemniscate with equation r2 = cos 2θ (Figure 18). Choose your limits of
integration carefully.

y

x
−1 1

FIGURE 18 The lemniscate r2 = cos 2θ .

solution We sketch the graph of r2 = cos 2θ in the
(
r2, θ

)
plane; for −π

4 ≤ θ ≤ π
4 :

r2

1

1− π 
4

π 
4

We see that as θ varies from −π
4 to 0, r2 increases from 0 to 1, hence r also increases from 0 to 1. Then, as θ varies from

0 to π
4 , r2, so r decreases from 1 to 0. This gives the right-hand loop of the lemniscate.

y

x

r = 0, r = π
4

r = 0, r = π
4

π

4
θ = 0
r = 1
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Therefore, the area enclosed by the right-hand loop is:

1

2

∫ π/4

−π/4
r2 dθ = 1

2

∫ π/4

−π/4
cos 2θ dθ = 1

2

sin 2θ

2

∣∣∣∣π/4

−π/4
= 1

4

(
sin

π

2
− sin

(
−π

2

))
= 1

2

11. Sketch the spiral r = θ for 0 ≤ θ ≤ 2π and find the area bounded by the curve and the first quadrant.

solution The spiral r = θ for 0 ≤ θ ≤ 2π is shown in the following figure in the xy-plane:

x

y

q = 2p,
r = 2p

q = p,
r = p

q = p /2,
r = p /2

q = 0,
r = 0

The spiral r = θ

We must compute the area of the shaded region. This region is traced as θ varies from 0 to π
2 . Using the formula for the

area in polar coordinates we get

A = 1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
θ2 dθ = 1

2

θ3

3

∣∣∣∣π/2

0
= 1

6

(π

2

)3 = π3

48

12. Find the area of the intersection of the circles r = sin θ and r = cos θ .

solution The region of intersection between the two circles is shown in the following figure:

x

y

r = cos q

r = sin q

1
2

1
2

We first find the value of θ at the point of intersection (besides the origin) of the two circles, by solving the following
equation for 0 ≤ a ≤ π

2 :

sin θ = cos θ

tan θ = 1 ⇒ θ = π

4

We now compute the area as the sum of the two areas A1 and A2, shown in the figure:

r = cos q

r = sin q

A1

A2

1
2

1
2

p
4

q =

p
2

0

Using the formula for the area in polar coordinates we get

A1 = 1

2

∫ π/2

π/4
cos2 θ dθ = 1

2

∫ π/2

π/2

(
1

2
+ 1

2
cos 2θ

)
dθ = 1

4

∫ π/2

π/2
(1 + cos 2θ) dθ

= 1

4

(
θ + sin 2θ

2

) ∣∣∣∣π/2

π/2
= 1

4

((
π

2
+ sin π

2

)
−
(

π

4
+ sin π

2
2

))
= 1

4

(
π

2
− π

4
− 1

2

)
= π

16
− 1

8
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A2 = 1

2

∫ π/4

0
sin2 θ dθ = 1

2

∫ π/4

0

(
1

2
− 1

2
cos 2θ

)
dθ = 1

4

∫ π/4

0
(1 − cos 2θ) dθ

= 1

4

(
θ − sin 2θ

2

) ∣∣∣∣π/4

0
= 1

4

((
π

4
− sin π

2
2

)
− 0

)
= π

16
− 1

8

Notice that A2 = A1 as shown in the figure due to symmetry. The total area enclosed by the two circles is the sum

A = A1 + A2 =
(

π

16
− 1

8

)
+
(

π

16
− 1

8

)
= π

8
− 1

4
≈ 0.14.

13. Find the area of region A in Figure 19.
y

x
−1 41 2

A

r = 4 cos

r = 1

FIGURE 19

solution We first find the values of θ at the points of intersection of the two circles, by solving the following equation
for −π

2 ≤ x ≤ π
2 :

4 cos θ = 1 ⇒ cos θ = 1

4
⇒ θ1 = cos−1

(
1

4

)

y

x

r = 4 cos

= −1.32

= 1.32

r = 1

We now compute the area using the formula for the area between two curves:

A = 1

2

∫ θ1

−θ1

(
(4 cos θ)2 − 12

)
dθ = 1

2

∫ θ1

−θ1

(
16 cos2 θ − 1

)
dθ

Using the identity cos2 θ = cos 2θ+1
2 we get

A = 1

2

∫ θ1

−θ1

(
16 (cos 2θ + 1)

2
− 1

)
dθ = 1

2

∫ θ1

−θ1

(8 cos 2θ + 7) dθ = 1

2
(4 sin 2θ + 7θ)

∣∣∣∣θ1

−θ1

= 4 sin 2θ1 + 7θ1 = 8 sin θ1 cos θ1 + 7θ1 = 8
√

1 − cos2 θ1 cos θ1 + 7θ1

Using the fact that cos θ1 = 1
4 we get

A =
√

15

2
+ 7cos−1

(
1

4

)
≈ 11.163

14. Find the area of the shaded region in Figure 20, enclosed by the circle r = 1
2 and a petal of the curve r = cos 3θ .

Hint: Compute the area of both the petal and the region inside the petal and outside the circle.

y

x

r = cos 3q

r = 1
2

FIGURE 20
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solution We compute the area A of the given region as the difference between the area A1 of the leaf, shown here:

r=

0.5
A1

3p
2

p
2

p 0

The area, A2, of the region inside the leaf and outside the circle, shown here:

r=

0.5
A2

3p
2

p
2

p 0

Computing A1: To determine the limits of integration we use the following graph of r = cos 3θ :

1

−1

r

q

p
2

1
2 p

6

p
9

p
3

p
2

− p
3

− p
6

−

p
9

−

r = cos 3θ

As θ varies from −π
6 to 0, r increases from 0 to 1. Then, as θ varies from 0 to π

6 , r decreases from 1 back to zero. Hence
the leaf is traced as θ varies from −π

6 to π
6 . We use the formula for the area in polar coordinates to obtain

A1 = 1

2

∫ π/6

−π/6
cos2 3θ dθ = 1

2

∫ π/6

−π/6

(
1

2
+ 1

2
cos 6θ

)
dθ = 1

4

∫ π/6

−π/6
(1 + cos 6θ) dθ

= 1

4

(
θ + sin 6θ

6

) ∣∣∣∣π/6

−π/6
= 1

4

((
π

6
+ sin π

6

)
−
(

−π

6
+ sin (−π)

6

))
= 1

4
· 2π

6
= π

12

Computing A2: The two curves intersect at the points where cos 3θ = 1
2 , that is, θ = ±π

9 (see the graph of r = cos 3θ in
the rθ -plane). Using the formula for the area between two curves we get

A2 = 1

2

∫ π/9

−π/9

(
cos2 3θ −

(
1

2

)2
)

dθ = 1

2

∫ π/9

−π/9

(
1

2
+ 1

2
cos 6θ − 1

4

)
dθ

= 1

8

∫ π/9

−π/9
(1 + 2 cos 6θ) dθ = 1

8

(
θ + sin 6θ

3

) ∣∣∣∣π/9

−π/9

= 1

8

⎛
⎝(π

9
+ sin 6π

9
3

)
−
⎛
⎝−π

9
+

sin
(
− 6π

9

)
3

⎞
⎠
⎞
⎠ = 1

4

(
π

9
+

√
3

6

)
= π

36
+

√
3

24

The required area is the difference between A1 and A2, that is,

A = A1 − A2 = π

12
−
(

π

36
+

√
3

24

)
= π

18
−

√
3

24
≈ 0.102.
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15. Find the area of the inner loop of the limaçon with polar equation r = 2 cos θ − 1 (Figure 21).

21

1

−1

y

x

FIGURE 21 The limaçon r = 2 cos θ − 1.

solution We consider the graph of r = 2 cos θ − 1 in cartesian and in polar, for −π
2 ≤ x ≤ π

2 :

r

1

−1

− π 
2

π 
3

π 
3

− π 
2

y

x

− π 
3

π 
3

r = 2 cos θ − 1

As θ varies from −π
3 to 0, r increases from 0 to 1. As θ varies from 0 to π

3 , r decreases from 1 back to 0. Hence, the
inner loop of the limaçon is traced as θ varies from −π

3 to π
3 . The area of the shaded region is thus

A = 1

2

∫ π/3

−π/3
r2 dθ = 1

2

∫ π/3

−π/3
(2 cos θ − 1)2 dθ = 1

2

∫ π/3

−π/3

(
4 cos2 θ − 4 cos θ + 1

)
dθ

= 1

2

∫ π/3

−π/3
(2 (cos 2θ + 1) − 4 cos θ + 1) dθ = 1

2

∫ π/3

−π/3
(2 cos 2θ − 4 cos θ + 3) dθ

= 1

2
(sin 2θ − 4 sin θ + 3θ)

∣∣∣∣π/3

−π/3
= 1

2

((
sin

2π

3
− 4 sin

π

3
+ π

)
−
(

sin

(
−2π

3

)
− 4 sin

(
−π

3

)
− π

))

=
√

3

2
− 4

√
3

2
+ π = π − 3

√
3

2
≈ 0.54

16. Find the area of the shaded region in Figure 21 between the inner and outer loop of the limaçon r = 2 cos θ − 1.

solution The region is shown in the figure below.

1 2 3

1

−1

y

x

We use the following graph.

2

−2

−3

−1

1

r

q

p
3

p−p

p
3

−

Graph of r = 2 cos θ − 1
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As θ varies from π
3 to π , r is negative and |r| increases from 0 to 3. This gives the outer loop of the limaçon which is in

the lower half plane. Similarly, the outer loop which is in the upper half plane is traced for −π ≤ θ ≤ −π
3 .

1 2 3

1

−1

y

x

p
3

≤ q  ≤ p , −3 ≤ r ≤ 0

p
3

q  = , r = 0

p
3

q  = − , r = 0 q  = −p , r = −3

q  = p , r = −3

p
3

≤ q ≤ − , −3 ≤ r ≤ 0−p

Using symmetry with respect to the x-axis, we obtain the following for the area of the outer loop:

A = 2 · 1

2

∫ π

π/3
r2 dθ =

∫ π

π/3
(2 cos θ − 1)2 dθ =

∫ π

π/3

(
4 cos2 θ − 4 cos θ + 1

)
dθ

=
∫ π

π/3
(2 (1 + cos 2θ) − 4 cos θ + 1) dθ =

∫ π

π/3
(2 cos 2θ − 4 cos θ + 3) dθ = sin 2θ − 4 sin θ + 3θ

∣∣∣∣π
π/3

= (sin 2π − 4 sin π + 3π) −
(

sin
2π

3
− 4 sin

π

3
+ π

)
= 3π −

(√
3

2
− 2

√
3 + π

)
= 2π + 3

√
3

2

Finally, to find the area of the region between the inner and outer loop of the limaçon, we subtract the area of the inner
loop, obtained in the previous exercise, from the area of the outer loop:

(
2π + 3

√
3

2

)
−
(

π − 3
√

3

2

)
= π + 3

√
3

17. Find the area of the part of the circle r = sin θ + cos θ in the fourth quadrant (see Exercise 26 in Section 11.3).

solution The value of θ corresponding to the point B is the solution of r = sin θ + cos θ = 0 for −π ≤ θ ≤ π .

y

x
B A C

That is,

sin θ + cos θ = 0 ⇒ sin θ = − cos θ ⇒ tan θ = −1 ⇒ θ = −π

4

At the point C, we have θ = 0. The part of the circle in the fourth quadrant is traced if θ varies between −π
4 and 0. This

leads to the following area:

A = 1

2

∫ 0

−π/4
r2 dθ = 1

2

∫ 0

−π/4
(sin θ + cos θ)2 dθ = 1

2

∫ 0

−π/4

(
sin2 θ + 2 sin θ cos θ + cos2 θ

)
dθ

Using the identities sin2 θ + cos2 θ = 1 and 2 sin θ cos θ = sin 2θ we get:

A = 1

2

∫ 0

−π/4
(1 + sin 2θ) dθ = 1

2

(
θ − cos 2θ

2

) ∣∣∣∣0−π/4

= 1

2

((
0 − 1

2

)
−
(

−π

4
− cos

(−π
2

)
2

))
= 1

2

(
π

4
− 1

2

)
= π

8
− 1

4
≈ 0.14.
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18. Find the area of the region inside the circle r = 2 sin
(
θ + π

4

)
and above the line r = sec

(
θ − π

4

)
.

solution The line r = sec
(
θ − π

4

)
intersects the circle r = 2 sin

(
θ + π

4

)
when θ = 0 and θ = 2π .

1

0.5

−0.5 0.50 1 1.5 2

1.5

2

−0.5

θ = 0

θ =

y

x

π

2

Thus the area of the region inside the circle and above the line is

1

2

∫ π/2

0

((
2 sin

(
θ + π

4

))2 −
(

sec
(
θ − π

4

))2
)

dθ = 1

2

∫ π/2

0
4 sin2

(
θ + π

4

)
− sec2

(
θ − π

4

)
dθ

= 1

2

(
2t − 2 sin

(
t + π

4

)
cos
(
t + π

4

)
− tan

(
t − π

4

)) ∣∣∣∣π/2

0

= 1

2

(
π − 2 sin

(
3π

4

)
cos

(
3π

4

)
− tan

(π

4

)
−
(
−2 sin

(π

4

)
cos
(π

4

)
− tan

(
−π

4

)))

= 1

2
(π + 1 − 1 + 1 − 1) = π

2

19. Find the area between the two curves in Figure 22(A).

y y

x x

r = 2 + cos 2q

r = 2 + sin 2q

r = sin 2q

r = sin 2q

(A) (B)

FIGURE 22

solution We compute the area A between the two curves as the difference between the area A1 of the region enclosed
in the outer curve r = 2 + cos 2θ and the area A2 of the region enclosed in the inner curve r = sin 2θ . That is,

A = A1 − A2.

y

x

A
A2

r = 2 + 2cos

r = sin 

In Exercise 9 we showed that A2 = π
2 , hence,

A = A1 − π

2
(1)

We compute the area A1.

y

x

A1
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Using symmetry, the area is four times the area enclosed in the first quadrant. That is,

A1 = 4 · 1

2

∫ π/2

0
r2 dθ = 2

∫ π/2

0
(2 + cos 2θ)2 dθ = 2

∫ π/2

0

(
4 + 4 cos 2θ + cos2 2θ

)
dθ

Using the identity cos2 2θ = 1
2 cos 4θ + 1

2 we get

A1 = 2
∫ π/2

0

(
4 + 4 cos 2θ + 1

2
cos 4θ + 1

2

)
dθ = 2

∫ π/2

0

(
9

2
+ 1

2
cos 4θ + 4 cos 2θ

)
dθ

= 2

(
9θ

2
+ sin 4θ

8
+ 2 sin 2θ

) ∣∣∣∣π/2

0
= 2

((
9π

4
+ sin 2π

8
+ 2 sin π

)
− 0

)
= 9π

2
(2)

Combining (1) and (2) we obtain

A = 9π

2
− π

2
= 4π.

20. Find the area between the two curves in Figure 22(B).

solution Since

2 + cos 2
(
θ − π

4

)
= 2 + cos

(
2θ − π

2

)
= 2 + cos

(π

2
− 2θ

)
= 2 + sin 2θ

it follows that the curve r = 2 + sin 2θ is obtained by rotating the curve r = 2 + cos θ by π
4 about the origin. Therefore

the area between the curves r = 2 + sin 2θ and r = sin 2θ is the same as the area between the curves r = 2 + cos θ and
r = sin 2θ computed in Exercise 19. That is, A = 4π . (Notice that if the inner curve remains inside the rotated curve, the
area between the curves is not changed).

21. Find the area inside both curves in Figure 23.

y

x

2 + sin 2q

2 + cos 2q

FIGURE 23

solution The area we need to find is the area of the shaded region in the figure.

y

x

A
D

C
B

r = 2 + sin 2

r = 2 + cos 2

We first find the values of θ at the points of intersection A, B, C, and D of the two curves, by solving the following
equation for −π ≤ θ ≤ π :

2 + cos 2θ = 2 + sin 2θ

cos 2θ = sin 2θ

tan 2θ = 1 ⇒ 2θ = π

4
+ πk ⇒ θ = π

8
+ πk

2

The solutions for −π ≤ θ ≤ π are

A: θ = π

8
.

B: θ = −3π

8
.

C: θ = −7π

8
.

D: θ = 5π

8
.
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Using symmetry, we compute the shaded area in the figure below and multiply it by 4:

r = 2 + cos 2

π 0π

π 
8

π 
2

π 
2

5π 
8

A1

−

A = 4 · A1 = 4 · 1

2
·
∫ 5π/8

π/8
(2 + cos 2θ)2 dθ = 2

∫ 5π/8

π/8

(
4 + 4 cos 2θ + cos2 2θ

)
dθ

= 2
∫ 5π/8

π/8

(
4 + 4 cos 2θ + 1 + cos 4θ

2

)
dθ =

∫ 5π/8

π/8
(9 + 8 cos 2θ + cos 4θ) dθ

= 9θ + 4 sin 2θ + sin 4θ

4

∣∣∣∣5π/8

π/8
= 9

(
5π

8
− π

8

)
+ 4

(
sin

5π

4
− sin

π

4

)
+ 1

4

(
sin

5π

2
− sin

π

2

)
= 9π

2
− 4

√
2

22. Find the area of the region that lies inside one but not both of the curves in Figure 23.

solution The area we need to find is the area of the shaded region in the following figure:

A1

y

x

r = 2 + sin 2q

r = 2 + cos 2q

We denote by A1 the area inside both curves. In Exercise 20 we showed that the curve r = 2 + sin 2θ is obtained by
rotating the curve r = cos 2θ by π

4 around the origin. Hence, the areas enclosed in these curves are equal. We denote it
by A2. It follows that the area A that we need to find is

A = 2A2 − 2A1 = 2 (A2 − A1) (1)

In Exercise 20 we found that A2 = 9π
2 , and in Exercise 21 we showed that A1 = 9π

2 − 4
√

2. Substituting in (1) we obtain

A = 2

(
9π

2
−
(

9π

2
− 4

√
2

))
= 8

√
2 ≈ 11.3.

23. Calculate the total length of the circle r = 4 sin θ as an integral in polar coordinates.

solution We use the formula for the arc length:

S =
∫ β

α

√
f (θ)2 + f ′(θ)2 dθ (1)

In this case, f (θ) = 4 sin θ and f ′(θ) = 4 cos θ , hence√
f (θ)2 + f ′(θ)2 =

√
(4 sin θ)2 + (4 cos θ)2 = √

16 = 4

The circle is traced as θ is varied from 0 to π . Substituting α = 0, β = π in (1) yields S = ∫ π
0 4 dθ = 4π .

2

y

x

The circle r = 4 sin θ
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24. Sketch the segment r = sec θ for 0 ≤ θ ≤ A. Then compute its length in two ways: as an integral in polar coordinates
and using trigonometry.

solution The line r = sec θ has the rectangular equation x = 1. The segment AB for 0 ≤ θ ≤ A is shown in the
figure.

1

sec A

A

y

x
D

C

Using trigonometry, the length of the segment AB is

L = AB = 0B tan A = 1 · tan A = tan A

Alternatively, we use the integral in polar coordinates with f (θ) = sec(θ) and f ′(θ) = tan θ sec θ . This gives

L =
∫ A

0

√
(sec θ)2 + (tan θ sec θ)2 dθ =

∫ A

0

√
1 + tan2θ sec θ dθ =

∫ A

0
sec2θ dθ = tan θ

∣∣∣∣A
0

= tan A.

The two answers agree, as expected.

In Exercises 25–30, compute the length of the polar curve.

25. The length of r = θ2 for 0 ≤ θ ≤ π

solution We use the formula for the arc length. In this case f (θ) = θ2, f ′(θ) = 2θ , so we obtain

S =
∫ π

0

√(
θ2
)2 + (2θ)2 dθ =

∫ π

0

√
θ4 + 4θ2 dθ =

∫ π

0
θ
√

θ2 + 4 dθ

We compute the integral using the substitution u = θ2 + 4, du = 2θ dθ . This gives

S = 1

2

∫ π2+4

4

√
u du = 1

2
· 2

3
u3/2

∣∣∣∣π
2+4

4
= 1

3

((
π2 + 4

)3/2 − 43/2
)

= 1

3

((
π2 + 4

)3/2 − 8

)
≈ 14.55

26. The spiral r = θ for 0 ≤ θ ≤ A

solution We use the formula for the arc length. In this case f (θ) = θ , f ′(θ) = 1. Using integration formulas we get:

S =
∫ A

0

√
θ2 + 12 dθ =

∫ A

0

√
θ2 + 1 dθ = θ

2

√
θ2 + 1 + 1

2
ln |θ +

√
θ2 + 1|

∣∣∣∣A
0

= A

2

√
A2 + 1 + 1

2
ln |A +

√
A2 + 1|

y

x

The spiral r = θ

27. The equiangular spiral r = eθ for 0 ≤ θ ≤ 2π

solution Since f (θ) = eθ , by the formula for the arc length we have:

L =
∫ 2π

0

√
f ′(θ)2 + f (θ) dθ +

∫ 2π

0

√(
eθ
)2 + (eθ

)2
dθ =

∫ 2π

0

√
2e2θ dθ

= √
2
∫ 2π

0
eθ dθ = √

2eθ

∣∣∣∣2π

0
= √

2
(
e2π − e0

)
= √

2
(
e2π − 1

)
≈ 755.9



April 4, 2011

S E C T I O N 11.4 Area and Arc Length in Polar Coordinates 1469

28. The inner loop of r = 2 cos θ − 1 in Figure 21

solution In Exercise 15 it is shown that the inner loop of the limaçon r = 2 cos θ − 1 is traced as θ varies from −π
3

to π
3 . Also,

f (θ) = 2 cos θ − 1 and f ′ (θ) = −2 sin θ.

Using the integral for the arc length we obtain

L =
∫ π/3

−π/3

√
f (θ)2 + f ′(θ)2 dθ =

∫ π/3

−π/3

√
(2 cos θ − 1)2 + (−2 sin θ)2 dθ

=
∫ π/3

−π/3

√
4 cos2 θ − 4 cos θ + 1 + 4 sin2 θ dθ =

∫ π/3

−π/3

√
5 − 4 cos θ dθ

29. The cardioid r = 1 − cos θ in Figure 16

solution In the equation of the cardioid, f (θ) = 1 − cos θ . Using the formula for arc length in polar coordinates we
have:

L =
∫ β

α

√
f (θ)2 + f ′(θ)2 dθ (1)

We compute the integrand:

√
f (θ)2 + f ′ (θ)2 =

√
(1 − cos θ)2 + (sin θ)2 =

√
1 − 2 cos θ + cos2 θ + sin2 θ = √2 (1 − cos θ)

We identify the interval of θ . Since −1 ≤ cos θ ≤ 1, every 0 ≤ θ ≤ 2π corresponds to a nonnegative value of r . Hence,
θ varies from 0 to 2π . By (1) we obtain

L =
∫ 2π

0

√
2(1 − cos θ) dθ

Now, 1 − cos θ = 2 sin2(θ/2), and on the interval 0 ≤ θ ≤ π , sin(θ/2) is nonnegative, so that
√

2(1 − cos θ) =√
4 sin2(θ/2) = 2 sin(θ/2) there. The graph is symmetric, so it suffices to compute the integral for 0 ≤ θ ≤ π , and we

have

L = 2
∫ π

0

√
2(1 − cos θ) dθ = 2

∫ π

0
2 sin(θ/2) dθ = 8 sin

θ

2

∣∣∣∣π
0

= 8

30. r = cos2 θ

solution Since cos θ = cos (−θ) and cos2 (π − θ) = cos2 θ the curve is symmetric with respect to the x and y-axis.
Therefore, we may compute the length as four times the length of the part of the curve in the first quadrant. We use the
formula for the arc length in polar coordinates. In this case, f (θ) = cos2 θ, f ′(θ) = 2 cos θ (− sin θ), so we obtain

√
f (θ)2 + f ′(θ)2 =

√
cos4 θ + 4 cos2 θ sin2 θ = cos θ

√
cos2 θ+4 sin2θ

= cos θ

√
cos2 θ + sin2 θ + 3 sin2 θ = cos θ

√
1 + 3 sin2 θ

Thus,

L =
∫ π/2

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ π/2

0
cos θ

√
1 + 3 sin2 θ dθ.

We compute the integral using the substitution u = √
3 sin θ we get

L = 1√
3

∫ √
3

0

√
1 + u2 du = 1√

3

(
u

2

√
1 + u2 + 1

2
ln |u +

√
1 + u2|

) ∣∣∣∣
√

3

0

= 1√
3

(√
3

2

√
1 + 3 + 1

2
ln
(√

3 + √
1 + 3

)
− 0

)
= 1 + 1

2
√

3
ln
(

2 + √
3
)
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y

x

Graph of r = cos2 θ

Thus the total length equals 4L = 4 + 2√
3

ln
(

2 + √
3
)

≈ 5.52.

In Exercises 31 and 32, express the length of the curve as an integral but do not evaluate it.

31. r = (2 − cos θ)−1, 0 ≤ θ ≤ 2π

solution We have f (θ) = (2 − cos θ)−1, f ′(θ) = −(2 − cos θ)−2 sin θ , hence,

√
f 2(θ) + f ′(θ)2 =

√
(2 − cos θ)−2 + (2 − cos θ)−4 sin2 θ =

√
(2 − cos θ)−4

(
(2 − cos θ)2 + sin2 θ

)

= (2 − cos θ)−2
√

4 − 4 cos θ + cos2 θ + sin2 θ = (2 − cos θ)−2 √
5 − 4 cos θ

Using the integral for the arc length we get

L =
∫ 2π

0

√
5 − 4 cos θ(2 − cos θ)−2 dθ.

32. r = sin3 t , 0 ≤ θ ≤ 2π

solution We have f (t) = sin3 t , f ′(t) = 3 sin2 t cos t , so that

√
f (t)2 + f ′(t)2 =

√
sin6 t + 9 sin4 t cos2 t = sin2 t

√
sin2 t + 9 cos2 t

= sin2 t

√
sin2 t + cos2 t + 8 cos2 t = sin2 t

√
1 + 8 cos2 t

Using the formula for arc length integral we get

L =
∫ 2π

0
sin2 t

√
1 + 8 cos2 t dt

In Exercises 33–36, use a computer algebra system to calculate the total length to two decimal places.

33. The three-petal rose r = cos 3θ in Figure 20

solution We have f (θ) = cos 3θ , f ′(θ) = −3 sin 3θ , so that

√
f (θ)2 + f ′(θ)2 =

√
cos2 3θ + 9 sin2 3θ =

√
cos2 3θ + sin2 3θ + 8 sin2 3θ =

√
1 + 8 sin2 3θ

Note that the curve is traversed completely for 0 ≤ θ ≤ π . Using the arc length formula and evaluating with Maple gives

L =
∫ π

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ π

0

√
1 + 8 sin2 3θ dθ ≈ 6.682446608

34. The curve r = 2 + sin 2θ in Figure 23

solution We have f (θ) = 2 + sin 2θ , f ′(θ) = 2 cos 2θ , so that

√
f (θ)2 + f ′(θ)2 =

√
(2 + sin 2θ)2 + 4 cos2 2θ =

√
4 + 4 sin 2θ + sin2 2θ + 4 cos2 2θ

=
√

4 + 4 sin 2θ + sin2 2θ + cos2 2θ + 3 cos2 2θ

=
√

5 + 4 sin 2θ + 3 cos2 2θ

The curve is traversed completely for 0 ≤ θ ≤ 2π . Using the arc length formula and evaluating with Maple gives

L =
∫ 2π

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ 2π

0

√
f (θ)2 + f ′(θ)2 dθ ≈ 15.40375907
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35. The curve r = θ sin θ in Figure 24 for 0 ≤ θ ≤ 4π

y

x
5 5

5

10

FIGURE 24 r = θ sin θ for 0 ≤ θ ≤ 4π .

solution We have f (θ) = θ sin θ , f ′(θ) = sin θ + θ cos θ , so that

√
f (θ)2 + f ′(θ)2 =

√
θ2 sin2 θ + (sin θ + θ cos θ)2 =

√
θ2 sin2 θ + sin2 θ + 2θ sin θ cos θ + θ2 cos2 θ

=
√

θ2 + sin2 θ + θ sin 2θ

using the identities sin2 θ + cos2 θ = 1 and 2 sin θ cos θ = sin 2θ . Thus by the arc length formula and evaluating with
Maple, we have

L =
∫ 4π

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ 4π

0

√
θ2 + sin2 θ + θ sin 2θ dθ ≈ 79.56423976

36. r = √
θ , 0 ≤ θ ≤ 4π

solution We have f (θ) = √
θ , f ′(θ) = 1

2 θ−1/2, so that

√
f (θ)2 + f ′(θ)2 =

√
θ + 1

4θ

so that by the arc length formula, evaluating with Maple, we have

L =
∫ 4π

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ 4π

0

√
θ + 1

4θ
dθ ≈ 30.50125041

Further Insights and Challenges
37. Suppose that the polar coordinates of a moving particle at time t are (r(t), θ(t)). Prove that the particle’s speed is

equal to
√

(dr/dt)2 + r2(dθ/dt)2.

solution The speed of the particle in rectangular coordinates is:

ds

dt
=
√

x′(t)2 + y′(t)2 (1)

We need to express the speed in polar coordinates. The x and y coordinates of the moving particles as functions of t are

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t)

We differentiate x(t) and y(t), using the Product Rule for differentiation. We obtain (omitting the independent variable t)

x′ = r ′ cos θ − r (sin θ) θ ′

y′ = r ′ sin θ − r (cos θ) θ ′

Hence,

x′2 + y′2 = (r ′ cos θ − rθ ′ sin θ
)2 + (r ′ sin θ + rθ ′ cos θ

)2
= r ′2 cos2 θ − 2r ′rθ ′ cos θ sin θ + r2θ ′2 sin2 θ + r ′2 sin2 θ + 2r ′rθ ′ sin2 θ cos θ + r2θ ′2 cos2 θ

= r ′2 (cos2 θ + sin2 θ
)

+ r2θ ′2 (sin2 θ + cos2 θ
)

= r ′2 + r2θ ′2 (2)
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Substituting (2) into (1) we get

ds

dt
=
√

r ′2 + r2θ ′2 =
√(

dr

dt

)2
+ r2

(
dθ

dt

)2

38. Compute the speed at time t = 1 of a particle whose polar coordinates at time t are r = t , θ = t (use Exercise
37). What would the speed be if the particle’s rectangular coordinates were x = t , y = t? Why is the speed increasing in
one case and constant in the other?

solution By Exercise 37 the speed of the particle is

ds

dt
=
√(

dr

dt

)2
+ r2

(
dθ

dt

)2
(1)

In this case r = t and θ = t so dr
dt

= 1 and dθ
dt

= 1. Substituting into (1) gives the following function of the speed:

ds

dt
=
√

1 + r(t)2

The speed expressed in rectangular coordinates is

ds

dt
=
√

x′(t)2 + y′(t)2

If x = t and y = t , then x′(t) = 1 and y′(t) = 1. So the speed of the particle at time t is

ds

dt
=
√

12 + 12 = √
2

On the curve x = t , y = t the particle travels the same distance �t
√

2 for all time intervals �t , hence, it has a constant
speed. However, on the spiral r = t , θ = t the particle travels greater distances for time intervals (t, t + �t) as t increases,
hence the speed is an increasing function of t .

Δt
Δt

Δt

x

y y

x
t

t

t + Δt

t + Δt

Δt

Δt

2Δt

x = t , y = t r = t , θ = t

11.5 Conic Sections

Preliminary Questions
1. Which of the following equations defines an ellipse? Which does not define a conic section?

(a) 4x2 − 9y2 = 12 (b) −4x + 9y2 = 0

(c) 4y2 + 9x2 = 12 (d) 4x3 + 9y3 = 12

solution

(a) This is the equation of the hyperbola
(

x√
3

)2 −
(

y
2√
3

)2

= 1, which is a conic section.

(b) The equation −4x + 9y2 = 0 can be rewritten as x = 9
4y2, which defines a parabola. This is a conic section.

(c) The equation 4y2 + 9x2 = 12 can be rewritten in the form
(

y√
3

)2 +
(

x
2√
3

)2

= 1, hence it is the equation of an

ellipse, which is a conic section.

(d) This is not the equation of a conic section, since it is not an equation of degree two in x and y.
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2. For which conic sections do the vertices lie between the foci?

solution If the vertices lie between the foci, the conic section is a hyperbola.

y

x
Vertex

Vertex

Vertex

Vertex FocusFocus

F1 F2

Vertex VertexFocus Focus
x

y

F2 F1

ellipse: foci between vertices hyperbola: vertices between foci

3. What are the foci of (x

a

)2 +
(y

b

)2 = 1 if a < b?

solution If a < b the foci of the ellipse
(
x
a

)2 + ( y
b

)2 = 1 are at the points (0, c) and (0, −c) on the y-axis, where

c =
√

b2 − a2.

F1 = (0, c)

F2 = (0, −c)

y

x

b

a

(
x
a

)2 + ( y
b

)2 = 1; a < b

4. What is the geometric interpretation of b/a in the equation of a hyperbola in standard position?

solution The vertices, i.e., the points where the focal axis intersects the hyperbola, are at the points (a, 0) and (−a, 0).

The values ± b
a are the slopes of the two asymptotes of the hyperbola.

x

y
y = − x

(−a, 0) (a, 0)

b
a

y = x

b

−b

b
a

Hyperbola in standard position

Exercises
In Exercises 1–6, find the vertices and foci of the conic section.

1.
(x

9

)2 +
(y

4

)2 = 1

solution This is an ellipse in standard position with a = 9 and b = 4. Hence, c =
√

92 − 42 = √
65 ≈ 8.06. The foci

are at F1 = (−8.06, 0) and F2 = (8.06, 0), and the vertices are (9, 0) , (−9, 0), (0, 4) , (0, −4).

2.
x2

9
+ y2

4
= 1

solution Writing the equation in the from
(
x
3

)2 + ( y2 )2 = 1 we get an ellipse with a = 3 and b = 2. Hence

c =
√

32 − 22 = √
5 ≈ 2.24. The foci are at F1 = (−2.24, 0) and F2 = (2.24, 0) and the vertices are (3, 0), (−3, 0),

(0, 2), (0, −2).
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3.
(x

4

)2 −
(y

9

)2 = 1

solution This is a hyperbola in standard position with a = 4 and b = 9. Hence, c =
√

a2 + b2 = √
97 ≈ 9.85. The

foci are at (±√
97, 0) and the vertices are (±2, 0).

4.
x2

4
− y2

9
= 36

solution Putting this equation in standard form gives

( x

12

)2 −
( y

18

)2 = 1

so this is a hyperbola in standard position with a = 12 and b = 18. Thus

c =
√

a2 + b2 = 6
√

13 ≈ 21.633

The foci are at (±6
√

13, 0) and the vertices are at (±12, 0).

5.
(

x − 3

7

)2
−
(

y + 1

4

)2
= 1

solution We first consider the hyperbola
(
x
7

)2 − ( y4 )2 = 1. For this hyperbola, a = 7, b = 4 and c =
√

72 + 42 ≈
8.06. Hence, the foci are at (8.06, 0) and (−8.06, 0) and the vertices are at (7, 0) and (−7, 0). Since the given hyperbola

is obtained by translating the center of the hyperbola
(
x
7

)2 − ( y
4

)2 = 1 to the point (3, −1), the foci are at F1 =
(8.06 + 3, 0 − 1) = (11.06, −1) and F2 = (−8.06 + 3, 0 − 1) = (−5.06, −1) and the vertices are A = (7 + 3, 0 − 1) =
(10, −1) and A′ = (−7 + 3, 0 − 1) = (−4, −1).

6.
(

x − 3

4

)2
+
(

y + 1

7

)2
= 1

solution We first consider the ellipse
(
x
4

)2 + ( y7 )2 = 1. Hence, a = 4 and b = 7 so a < b and the focal axis is

vertical. c =
√

72 − 42 ≈ 5.74 hence the foci are at (0, 5.74) and (0, −5.74). The vertices are (4, 0), (−4, 0), (0, 7),
(0, −7). When we translate the ellipse so that its center is (3, −1), the points above are translated so that the new vertices
are (4 + 3, 0 − 1) = (7, −1), (−4 + 3, 0 − 1) = (−1, −1), (0 + 3, 7 − 1) = (3, 6) and (0 + 3, −7 − 1) = (3, −8). The
new foci are at (3, 4.74) and (3, −6.74).

In Exercises 7–10, find the equation of the ellipse obtained by translating (as indicated) the ellipse

(
x − 8

6

)2
+
(

y + 4

3

)2
= 1

7. Translated with center at the origin

solution Recall that the equation

(x − h)2

a2
+ (y − k)2

b2
= 1

describes an ellipse with center (h, k). Thus, for our ellipse to be located at the origin, it must have equation

x2

62
+ y2

32
= 1

8. Translated with center at (−2, −12)

solution Recall that the equation

(x − h)2

a2
+ (y − k)2

b2
= 1

describes an ellipse with center (h, k). Thus, for our ellipse to have center (−2, −12), it must have equation

(x + 2)2

62
+ (y + 12)2

32
= 1
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9. Translated to the right six units

solution Recall that the equation

(x − h)2

a2
+ (y − k)2

b2
= 1

describes an ellipse with center (h, k). The original ellipse has center at (8, −4), so we want an ellipse with center (14, −4).
Thus its equation is

(x − 14)2

62
+ (y + 4)2

32
= 1

10. Translated down four units

solution Recall that the equation

(x − h)2

a2
+ (y − k)2

b2
= 1

describes an ellipse with center (h, k). The original ellipse has center at (8, −4), so we want an ellipse with center (8, −8).
Thus its equation is

(x − 8)2

62
+ (y + 8)2

32
= 1

In Exercises 11–14, find the equation of the given ellipse.

11. Vertices (±5, 0) and (0, ±7)

solution Since both sets of vertices are symmetric around the origin, the center of the ellipse is at (0, 0). We have
a = 5 and b = 7, so the equation of the ellipse is

(x

5

)2 +
(y

7

)2 = 1

12. Foci (±6, 0) and focal vertices (±10, 0)

solution The equation is
(
x
a

)2 + ( y
b

)2 = 1 with a = 10. The foci are (±c, 0) with c = 6, so we use the relation

c =
√

a2 − b2 to find b:

b2 = a2 − c2 = 102 − 62 = 64 ⇒ b = 8

Therefore the equation of the ellipse is

( x

10

)2 +
(y

8

)2 = 1.

13. Foci (0, ±10) and eccentricity e = 3
5

solution Since the foci are on the y axis, this ellipse has a vertical major axis with center (0, 0), so its equation is

(x

b

)2 +
(y

a

)2 = 1

We have a = c
e = 10

3/5 = 50
3 and

b =
√

a2 − c2 =
√

2500

9
− 100 = 1

3

√
2500 − 900 = 40

3

Thus the equation of the ellipse is (
x

40/3

)2
+
(

y

50/3

)2
= 1

14. Vertices (4, 0), (28, 0) and eccentricity e = 2
3

solution This ellipse has a horizontal major axis with center midway between the vertices, at (16, 0). Thus if the

center were at (0, 0), the ellipse would have vertices (±12, 0), so that a = 12 and c = ae = 12 · 2
3 = 8. Then

b =
√

a2 − c2 =
√

122 − 82 = √
80 = 4

√
5
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Finally, translating the center to (16, 0), the equation of the ellipse is(
(x − 16)

12

)2
+
(

y

4
√

5

)2
= 1

In Exercises 15–20, find the equation of the given hyperbola.

15. Vertices (±3, 0) and foci (±5, 0)

solution The equation is
(
x
a

)2 − ( y
b

)2 = 1. The vertices are (±a, 0) with a = 3 and the foci (±c, 0) with c = 5. We

use the relation c =
√

a2 + b2 to find b:

b =
√

c2 − a2 =
√

52 − 32 = √
16 = 4

Therefore, the equation of the hyperbola is (x

3

)2 −
(y

4

)2 = 1.

16. Vertices (±3, 0) and asymptotes y = ± 1
2x

solution The equation is
(
x
a

)2 − ( y
b

)2 = 1. The vertices are (±a, 0) with a = 3 and the asymptotes are y = ± b
a x

with b
a = 1

2 . Hence, b = a
2 = 3

2 so the equation of the hyperbola is

(x

3

)2 −
(

y

3/2

)2
= 1

17. Foci (±4, 0) and eccentricity e = 2

solution We have c = 4 and e = 2; from c = ae we get a = 2, and then

b =
√

c2 − a2 =
√

42 − 22 = 2
√

3

The hyperbola has center at (0, 0) and horizontal axis, so its equation is

(x

2

)2 −
(

y

2
√

3

)2
= 1

18. Vertices (0, ±6) and eccentricity e = 3

solution The hyperbola has a vertical focal axis and center at (0, 0), so has equation

(y

b

)2 −
(x

a

)2 = 1

b = 6 and e = 3 implies, since be = c, that c = 18, and

a =
√

c2 − b2 =
√

182 − 62 = √
288 = 12

√
2

Thus the equation of the hyperbola is

(y

6

)2 −
(

x

12
√

2

)2
= 1

19. Vertices (−3, 0), (7, 0) and eccentricity e = 3

solution The center is at −3+7
2 = 2 with a horizontal focal axis, so the equation is

(
x − 2

a

)2
−
(y

b

)2 = 1.

Then a = 7 − 2 = 5, and c = ae = 5 · 3 = 15. Finally,

b =
√

c2 − a2 =
√

152 − 52 = 10
√

2

so that the equation of the hyperbola is (
x − 2

5

)2
−
(

y

10
√

2

)2
= 1
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20. Vertices (0, −6), (0, 4) and foci (0, −9), (0, 7)

solution The center of the hyperbola is at −6+4
2 = −1 along the y axis; we write the equation as

(
y + 1

b

)2
−
(x

a

)2 = 1

b = 5 since it is the distance from the given vertex to the center, and c = 8 since it is the distance from the foci to the
center. Then

a =
√

c2 − b2 = √
64 − 25 = √

39

so that the equation of the hyperbola is

(
y + 1

5

)2
−
(

x√
39

)2
= 1

In Exercises 21–28, find the equation of the parabola with the given properties.

21. Vertex (0, 0), focus
( 1

12 , 0
)

solution Since the focus is on the x-axis rather than the y-axis, and the vertex is (0, 0), the equation is x = 1
4c

y2.

The focus is (0, c) with c = 1
12 , so the equation is

x = 1

4 · 1
12

y2 = 3y2

22. Vertex (0, 0), focus (0, 2)

solution The vertex is at (0, 0), so the equation is y = 1
4c

x2 = 1
8x2.

23. Vertex (0, 0), directrix y = −5

solution The equation is y = 1
4c

x2. The directrix is y = −c with c = 5, hence y = 1
20x2.

24. Vertex (3, 4), directrix y = −2

solution If the graph were translated to the origin, the vertex would be (0, 0) and the directrix would be translated

down 4 units so would be y = −6. Then c = 6 so the equation is y = 1
4c

x2 = 1
24x2. Translating back to (3, 4) gives

y = 1

24
(x − 3)2 + 4

25. Focus (0, 4), directrix y = −4

solution The focus is (0, c) with c = 4 and the directrix is y = −c with c = 4, hence the equation of the parabola is

y = 1

4c
x2 = x2

16
.

26. Focus (0, −4), directrix y = 4

solution The focus is at (0, c) with c = −4 and the directrix is y = −c with c = −4, hence the equation y = x2

4c
of

the parabola becomes y = − x2

16 . Since c < 0, the parabola is open downward.

27. Focus (2, 0), directrix x = −2

solution The focus is on the x-axis rather than on the y-axis and the directrix is a vertical line rather than horizontal
as in the parabola in standard position. Therefore, the equation of the parabola is obtained by interchanging x and y in

y = 1
4c

x2. Also, by the given information c = 2. Hence, x = 1
4c

y2 = 1
4·2y2 or x = y2

8 .

28. Focus (−2, 0), vertex (2, 0)

solution The vertex is always midway between the focus and the directrix, so the directrix must be the vertical line
x = 6, and c = −2 − 2 = −4. Since the directrix is a vertical line, the parabola is obtained by interchanging x and y in
the equation for a parabola in standard position. Finally, c = −2 − 2 = −4 is the distance from the vertex to the focus,
so the equation is

x − 2 = 1

4c
y2 = − 1

16
y2, so x = 2 − 1

16
y2



April 4, 2011

1478 C H A P T E R 11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

In Exercises 29–38, find the vertices, foci, center (if an ellipse or a hyperbola), and asymptotes (if a hyperbola).

29. x2 + 4y2 = 16

solution We first divide the equation by 16 to convert it to the equation in standard form:

x2

16
+ 4y2

16
= 1 ⇒ x2

16
+ y2

4
= 1 ⇒

(x

4

)2 +
(y

2

)2 = 1

For this ellipse, a = 4 and b = 2 hence c =
√

42 − 22 = √
12 ≈ 3.5. Since a > b we have:

• The vertices are at (±4, 0), (0, ±2).
• The foci are F1 = (−3.5, 0) and F2 = (3.5, 0).
• The focal axis is the x-axis and the conjugate axis is the y-axis.
• The ellipse is centered at the origin.

30. 4x2 + y2 = 16

solution We divide the equation by 16 to rewrite it in the standard form:

4x2

16
+ y2

16
= 1 ⇒ x2

4
+ y2

16
= 1 ⇒

(x

2

)2 +
(y

4

)2 = 1

This is the equation of an ellipse with a = 2, b = 4. Since a < b the focal axis is the y-axis. Also, c =
√

42 − 22 =√
12 ≈ 3.5. We get:

• The vertices are at (±2, 0), (0, ±4).
• The foci are (0, ±3.5).
• The focal axis is the y-axis and the conjugate axis is the x-axis.
• The center is at the origin.

31.
(

x − 3

4

)2
−
(

y + 5

7

)2
= 1

solution For this hyperbola a = 4 and b = 7 so c =
√

42 + 72 = √
65 ≈ 8.06. For the standard hyperbola(

x
4

)2 − ( y7 )2 = 1, we have

• The vertices are A = (4, 0) and A′ = (−4, 0).
• The foci are F = (

√
65, 0) and F ′ = (−√

65, 0).
• The focal axis is the x-axis y = 0, and the conjugate axis is the y-axis x = 0.
• The center is at the midpoint of FF ′; that is, at the origin.
• The asymptotes y = ± b

a x are y = ± 7
4x.

The given hyperbola is a translation of the standard hyperbola, 3 units to the right and 5 units downward. Hence the
following holds:

• The vertices are at A = (7, −5) and A′ = (−1, −5).
• The foci are at F = (3 + √

65, −5) and F ′ = (3 − √
65, −5).

• The focal axis is y = −5 and the conjugate axis is x = 3.
• The center is at (3, −5).
• The asymptotes are y + 5 = ± 7

4 (x − 3).

32. 3x2 − 27y2 = 12

solution We first rewrite the equation in the standard form:

3x2

12
− 27y2

12
= 1 ⇒ x2

4
− y2

4
9

= 1 ⇒
(x

2

)2 −
(

y

2
3

)2

= 1

This is the equation of an hyperbola in standard position. We have a = 2, b = 2
3 and c =

√
22 +

(
2
3

)2 ≈ 2.1. Hence:

• The vertices are (±2, 0).
• The foci are (±2.1, 0).
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• The focal axis is the x-axis and the conjugate axis is the y-axis.
• The center is at the origin.
• The asymptotes are y = ± b

a x, that is, y = ± 1
3x.

33. 4x2 − 3y2 + 8x + 30y = 215

solution Since there is no cross term, we complete the square of the terms involving x and y separately:

4x2 − 3y2 + 8x + 30y = 4
(
x2 + 2x

)
− 3

(
y2 − 10y

)
= 4(x + 1)2 − 4 − 3(y − 5)2 + 75 = 215

Hence,

4(x + 1)2 − 3(y − 5)2 = 144

4(x + 1)2

144
− 3(y − 5)2

144
= 1

(
x + 1

6

)2
−
(

y − 5√
48

)2
= 1

This is the equation of the hyperbola obtained by translating the hyperbola
(
x
6

)2 −
(

y√
48

)2 = 1 one unit to the left and

five units upwards. Since a = 6, b = √
48, we have c = √

36 + 48 = √
84 ∼ 9.2. We obtain the following table:

Standard position Translated hyperbola

vertices (6, 0), (−6, 0) (5, 5), (−7, 5)

foci (±9.2, 0) (8.2, 5), (−10.2, 5)

focal axis The x-axis y = 5

conjugate axis The y-axis x = −1

center The origin (−1, 5)

asymptotes y = ±1.15x y = −1.15x + 3.85
y = 1.15x + 6.15

34. y = 4x2

solution This is the parabola in standard position y = 1
4c

x2 with c = 1
16 . The vertex of the parabola is at the origin,

the focus is F =
(

0, 1
16

)
and the axis is the y-axis.

35. y = 4(x − 4)2

solution By Exercise 34, the parabola y = 4x2 has the vertex at the origin, the focus at
(

0, 1
16

)
and its axis is the

y-axis. Our parabola is a translation of the standard parabola four units to the right. Hence its vertex is at (4, 0), the focus

is at
(

4, 1
16

)
and its axis is the vertical line x = 4.

36. 8y2 + 6x2 − 36x − 64y + 134 = 0

solution We first identify the conic section. Since there is no cross term, we complete the square of the terms involving
x and y terms separately:

8y2 + 6x2 − 36x − 64y + 134 = 6
(
x2 − 6x

)
+ 8

(
y2 − 8y

)
+ 134

= 6(x − 3)2 − 54 + 8(y − 4)2 − 128 + 134

= 6(x − 3)2 + 8(y − 4)2 − 48

We obtain the following equation:

6(x − 3)2 + 8(y − 4)2 − 48 = 0

3(x − 3)2 + 4(y − 4)2 = 24(
x − 3√

8

)2
+
(

y − 4√
6

)2
= 1

We identify the conic as a translation of the ellipse
(

x√
8

)2 +
(

y√
6

)2 = 1, so that the center is at c = (3, 4). Since a = √
8,

b = √
6 and a > b the foci of the standard ellipse are

(
−√

2, 0
)

and
(√

2, 0
)

for
√

2 = c =
√

a2 − b2. Hence the foci
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of the translated ellipse are
(

3 − √
2, 4
)

and
(

3 + √
2, 4
)

. The vertices
(
±√

8, 0
)

and
(

0, ±√
6
)

of the standard ellipse

are translated to the points
(

3 ± √
8, 4
)

and
(

3, 4 ± √
6
)

. The focal axis is the line y = 4, and the conjugate axis is the

line x = 3.

37. 4x2 + 25y2 − 8x − 10y = 20

solution Since there are no cross terms this conic section is obtained by translating a conic section in standard position.
To identify the conic section we complete the square of the terms involving x and y separately:

4x2 + 25y2 − 8x − 10y = 4
(
x2 − 2x

)
+ 25

(
y2 − 2

5
y

)

= 4(x − 1)2 − 4 + 25

(
y − 1

5

)2
− 1

= 4(x − 1)2 + 25

(
y − 1

5

)2
− 5 = 20

Hence,

4(x − 1)2 + 25

(
y − 1

5

)2
= 25

4

25
(x − 1)2 +

(
y − 1

5

)2
= 1

(
x − 1

5
2

)2

+
(

y − 1

5

)2
= 1

This is the equation of the ellipse obtained by translating the ellipse in standard position

(
x
5
2

)2
+ y2 = 1 one unit to the

right and 1
5 unit upward. Since a = 5

2 , b = 1 we have c =
√(

5
2

)2 − 1 ≈ 2.3, so we obtain the following table:

Standard position Translated ellipse

Vertices
(
± 5

2 , 0
)

, (0, ±1)
(

1 ± 5
2 , 1

5

)
,
(

1, 1
5 ± 1

)
Foci (−2.3, 0) , (2.3, 0)

(
−1.3, 1

5

)
,
(

3.3, 1
5

)
Focal axis The x-axis y = 1

5

Conjugate axis The y-axis x = 1

Center The origin
(

1, 1
5

)
38. 16x2 + 25y2 − 64x − 200y + 64 = 0

solution There is no cross term in this equation, so the conic section is obtained by translating a conic section in
standard position. Complete the square in each variable:

−64 = 16x2 + 25y2 − 64x − 200y = 16x2 − 64x + 64 + 25y2 − 200y + 400 − 64 − 400

= 16(x2 − 4x + 4) + 25(y2 − 8y + 16) − 464 = 16(x − 2)2 + 25(y − 4)2 − 464

Collecting constants gives

16(x − 2)2 + 25(y − 4)2 = 400

and dividing through by 400 gives an ellipse whose equation in standard form is so that the curve is an ellipse whose
equation in standard form is

(
x − 2

5

)2
+
(

y − 4

4

)2
= 1

Thus the center of the ellipse is (2, 4). The focal axis is y = 4, because a = 5 and b = 4 imply that the focal axis is

horizontal. Thus the conjugate axis is x = 2. c =
√

a2 − b2 = √
25 − 16 = 3. Thus

• The vertices are (2 ± 5, 4) and (2, 4 ± 4), so are (−3, 4), (7, 4), (2, 0), and (2, 8).
• The foci are (2 ± 3, 4) so are (5, 4) and (−1, 4).
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In Exercises 39–42, use the Discriminant Test to determine the type of the conic section (in each case, the equation is
nondegenerate). Plot the curve if you have a computer algebra system.

39. 4x2 + 5xy + 7y2 = 24

solution Here, D = 25 − 4 · 4 · 7 = −87, so the conic section is an ellipse.

40. x2 − 2xy + y2 + 24x − 8 = 0

solution Here, D = 4 − 4 · 1 · 1 = 0, giving us a parabola.

41. 2x2 − 8xy + 3y2 − 4 = 0

solution Here, D = 64 − 4 · 2 · 3 = 40, giving us a hyperbola.

42. 2x2 − 3xy + 5y2 − 4 = 0

solution Here, D = 9 − 4 · 2 · (5) = −31, giving us an ellipse or a circle. Since the coefficients of x2 and y2 are
different, the curve is an ellipse.

43. Show that the “conic” x2 + 3y2 − 6x + 12y + 23 = 0 has no points.

solution Complete the square in each variable separately:

−23 = x2 − 6x + 3y2 + 12y = (x2 − 6x + 9) + (3y2 + 12y + 12) − 9 − 12 = (x − 3)2 + 3(y + 2)2 − 21

Collecting constants and reversing sides gives

(x − 3)2 + 3(y + 2)2 = −2

which has no solutions since the left-hand side is a sum of two squares so is always nonnegative.

44. For which values of a does the conic 3x2 + 2y2 − 16y + 12x = a have at least one point?

solution Complete the square in each variable:

a = 3x2 + 2y2 − 16y + 12x = 3x2 + 12x + 12 + 2y2 − 16y + 32 − 12 − 32 = 3(x + 2)2 + 2(x − 4)2 − 44

so that, collecting constants,

3(x + 2)2 + 2(x − 4)2 = a + 44

The left-hand side is a sum of two squares, so is always nonnegative, so in order for the conic (ellipse) to have at least
one point, we must have a + 44 ≥ 0, or a ≥ −44.

45. Show that
b

a
=
√

1 − e2 for a standard ellipse of eccentricity e.

solution By the definition of eccentricity:

e = c

a
(1)

For the ellipse in standard position, c =
√

a2 − b2. Substituting into (1) and simplifying yields

e =
√

a2 − b2

a
=
√

a2 − b2

a2
=
√

1 −
(

b

a

)2

We square the two sides and solve for b
a :

e2 = 1 −
(

b

a

)2
⇒
(

b

a

)2
= 1 − e2 ⇒ b

a
=
√

1 − e2

46. Show that the eccentricity of a hyperbola in standard position is e =
√

1 + m2, where ±m are the slopes of the
asymptotes.

solution By the definition of eccentricity, we have:

e = c

a
(1)

For the hyperbola in standard position, c =
√

a2 + b2, by substituting in (1) we get

e =
√

a2 + b2

a
=
√

a2 + b2

a2
=
√

1 +
(

b

a

)2
(2)

The slopes of the asymptotes are ± b
a . Setting m = b

a we get

e =
√

1 + m2
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47. Explain why the dots in Figure 23 lie on a parabola. Where are the focus and directrix located?

y = −c

y = c
y = 2c
y = 3c

y

x

FIGURE 23

solution All the circles are centered at (0, c) and the kth circle has radius kc. Hence the indicated point Pk on the kth
circle has a distance kc from the point F = (0, c). The point Pk also has distance kc from the line y = −c. That is, the
indicated point on each circle is equidistant from the point F = (0, c) and the line y = −c, hence it lies on the parabola
with focus at F = (0, c) and directrix y = −c.

y = −c

(0, c) 2c

2c

3c

3c P2

P3

P1

y

x

48. Find the equation of the ellipse consisting of points P such that PF1 + PF2 = 12, where F1 = (4, 0) and
F2 = (−2, 0).

solution This is a translation one unit to the right of an ellipse in standard position with foci F1 = (3, 0) and
F2 = (−3, 0); points P on this ellipse therefore also satisfy the equation PF1 + PF2 = 12. But PF1 + PF2 = 2a

so that a = 6; since (3, 0) is a focus, c = 3, so that b =
√

a2 − c2 = √
36 − 9 = 3

√
3. The equation of the ellipse in

standard position is therefore

x2

36
+ y2

27
= 1

so that the equation of the desired ellipse is

(x − 1)2

36
+ y2

27
= 1

49. A latus rectum of a conic section is a chord through a focus parallel to the directrix. Find the area bounded by the
parabola y = x2/(4c) and its latus rectum (refer to Figure 8).

solution The directrix is y = −c, and the focus is (0, c). The chord through the focus parallel to y = −c is clearly

y = c; this line intersects the parabola when c = x2/(4c) or 4c2 = x2, so when x = ±2c. The desired area is then

∫ 2c

−2c
c − 1

4c
x2 dx =

(
c x − 1

12c
x3
) ∣∣∣∣2c

−2c

= 2c2 − 8c3

12c
−
(

−2c2 − (−2c)3

12c

)
= 4c2 − 4

3
c2 = 8

3
c2

50. Show that the tangent line at a point P = (x0, y0) on the hyperbola
(x

a

)2 −
(y

b

)2 = 1 has equation

Ax − By = 1

where A = x0

a2
and B = y0

b2
.

solution The equation of the tangent line is

y − y0 = m (x − x0) ; m = dy

dx

∣∣∣∣
x=x0,y=y0

(1)
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To find the slope m we first implicitly differentiate the equation of the hyperbola with respect to x, which gives

2
(x

a

)
· 1

a
− 2

(y

b

)
· 1

b
y′ = 0

x

a2
= y

b2
y′ ⇒ y′ = b2

a2

(
x

y

)

We substitute x = x0, y = y0 to obtain the following slope of the tangent line:

m = b2

a2

x0

y0
= x0

a2
· b2

y0
= A · 1

B
= A

B
(2)

Substituting (2) in (1) gives

y − y0 = A

B
(x − x0)

By − By0 = Ax − Ax0 ⇒ Ax − By = Ax0 − By0 (3)

Now,

Ax0 − By0 = x0

a2
x0 − y0

b2
y0 = x2

0

a2
− y2

0

b2

and the point (x0, y0) lies on the hyperbola so

x2
0

a2
− y2

0

b2
= 1,

therefore Ax0 − By0 = 1. Substituting in (3) we obtain Ax − By = 1.

In Exercises 51–54, find the polar equation of the conic with the given eccentricity and directrix, and focus at the origin.

51. e = 1
2 , x = 3

solution Substituting e = 1
2 and d = 3 in the polar equation of a conic section we obtain

r = ed

1 + e cos θ
=

1
2 · 3

1 + 1
2 cos θ

= 3

2 + cos θ
⇒ r = 3

2 + cos θ

52. e = 1
2 , x = −3

solution We use the polar equation of a conic section with e = 1
2 and d = −3 to obtain

r = ed

1 + e cos θ
=

1
2 · (−3)

1 + 1
2 cos θ

= −3

2 + cos θ
⇒ r = −3

2 + cos θ

53. e = 1, x = 4

solution We substitute e = 1 and d = 4 in the polar equation of a conic section to obtain

r = ed

1 + e cos θ
= 1 · 4

1 + 1 · cos θ
= 4

1 + cos θ
⇒ r = 4

1 + cos θ

54. e = 3
2 , x = −4

solution Substituting e = 3
2 and d = −4 in the polar equation of the conic section gives

r = ed

1 + e cos θ
=

3
2 · (−4)

1 + 3
2 cos θ

= −12

2 + 3 cos θ
⇒ r = −12

2 + 3 cos θ

In Exercises 55–58, identify the type of conic, the eccentricity, and the equation of the directrix.

55. r = 8

1 + 4 cos θ

solution Matching with the polar equation r = ed
1+e cos θ

we get ed = 8 and e = 4 yielding d = 2. Since e > 1, the
conic section is a hyperbola, having eccentricity e = 4 and directrix x = 2 (referring to the focus-directrix definition (11)).
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56. r = 8

4 + cos θ

solution To identify the values of e and d we first rewrite the equation in the form r = ed
1+e cos θ

:

r = 8

4 + cos θ
= 2

1 + 1
4 cos θ

Thus, ed = 2 and e = 1
4 , yielding d = 8. Since e < 1, the conic is an ellipse, having eccentricity e = 1

4 and directrix
x = 8.

57. r = 8

4 + 3 cos θ

solution We first rewrite the equation in the form r = ed
1+e cos θ

, obtaining

r = 2

1 + 3
4 cos θ

Hence, ed = 2 and e = 3
4 yielding d = 8

3 . Since e < 1, the conic section is an ellipse, having eccentricity e = 3
4 and

directrix x = 8
3 .

58. r = 12

4 + 3 cos θ

solution We rewrite the equation in the form of the polar equation r = ed
1+e cos θ

:

r = 12

4 + 3 cos θ
= 3

1 + 3
4 cos θ

Hence, ed = 3 and e = 3
4 which implies d = 4. Since e < 1, the conic section is an ellipse having eccentricity e = 3

4 and
directrix x = 4.

59. Find a polar equation for the hyperbola with focus at the origin, directrix x = −2, and eccentricity e = 1.2.

solution We substitute d = −2 and e = 1.2 in the polar equation r = ed
1+e cos θ

and use Exercise 40 to obtain

r = 1.2 · (−2)

1 + 1.2 cos θ
= −2.4

1 + 1.2 cos θ
= −12

5 + 6 cos θ
= 12

5 − 6 cos θ

60. Let C be the ellipse r = de/(1 + e cos θ), where e < 1. Show that the x-coordinates of the points in Figure 24 are as
follows:

Point A C F2 A′

x-coordinate
de

e + 1
− de2

1 − e2
− 2de2

1 − e2
− de

1 − e

F2

y

x
(0, 0) ACA'

FIGURE 24

solution To find the x coordinate of A we substitute θ = 0 in the polar equation r = de
1+e cos θ

. This gives

xA = r cos 0 = r = de

1 + e cos 0
= de

1 + e
(1)

The point A′ corresponds to θ = π , so

xA′ = r cos π = −r = − de

1 + e cos π
= − de

1 − e
(2)
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The center C is the midpoint of A′A. From (1) and (2) we obtain

xC = xA + xA′
2

= 1

2

(
de

1 + e
− de

1 − e

)
= de(1 − e) − de(1 + e)

2(1 + e)(1 − e)
= −de2

1 − e2
(3)

Finally, one focus is at the origin; the center C is the midpoint of F1F2. Thus

xC = xF1 + xF2

2
= 0 + xF2

2
= xF2

2
⇒ xF2 = 2xC

Using (3), we obtain

xF2 = −2de2

1 − e2

61. Find an equation in rectangular coordinates of the conic

r = 16

5 + 3 cos θ

Hint: Use the results of Exercise 60.

solution Put this equation in the form of the referenced exercise:

16

5 + 3 cos θ
=

16
5

1 + 3
5 cos θ

=
16
3 · 3

5

1 + 3
5 cos θ

so that e = 3
5 and d = 16

3 . Then the center of the ellipse has x-coordinate

− de2

1 − e2
= −

16
3 · 9

25

1 − 9
25

= −16

3
· 9

25
· 25

16
= −3

and y-coordinate 0, and A′ has x-coordinate

− de

1 − e
= −

16
3 · 3

5

1 − 3
5

= −16

3
· 3

5
· 5

2
= −8

and y-coordinate 0, so a = −3 − (−8) = 5, and the equation is

(
x + 3

5

)2
+
(y

b

)2 = 1

To find b, set θ = π
2 ; then r = 16

5 . But the point corresponding to θ = π
2 lies on the y-axis, so has coordinates

(
0, 16

5

)
.

This point is on the ellipse, so that

(
0 + 3

5

)2
+
(

16
5
b

)2

= 1 ⇒ 256

25 · b2
= 16

25
⇒ 256

b2
= 16 ⇒ b = 4

and the equation is

(
x + 3

5

)2
+
(y

4

)2 = 1

62. Let e > 1. Show that the vertices of the hyperbola r = de

1 + e cos θ
have x-coordinates

ed

e + 1
and

ed

e − 1
.

solution Since the focus is at the origin and the hyperbola is to the right (see figure), the two vertices have positive x

coordinates. The corresponding values of θ at the vertices are θ = 0 and θ = π . Hence, since e > 1 we obtain

xA = |r(0)| =
∣∣∣∣ de

1 + e cos 0

∣∣∣∣ = de

1 + e

xA′ = |r (π)| =
∣∣∣∣ de

1 + e cos π

∣∣∣∣ =
∣∣∣∣ de

1 − e

∣∣∣∣ = de

e − 1
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63. Kepler’s First Law states that planetary orbits are ellipses with the sun at one focus. The orbit of Pluto has eccentricity
e ≈ 0.25. Its perihelion (closest distance to the sun) is approximately 2.7 billion miles. Find the aphelion (farthest
distance from the sun).

solution We define an xy-coordinate system so that the orbit is an ellipse in standard position, as shown in the figure.

y

x
Sun

F1(c, 0)

A(a, 0)A' (−a, 0)

The aphelion is the length of A′F1, that is a + c. By the given data, we have

0.25 = e = c

a
⇒ c = 0.25a

a − c = 2.7 ⇒ c = a − 2.7

Equating the two expressions for c we get

0.25a = a − 2.7

0.75a = 2.7 ⇒ a = 2.7

0.75
= 3.6, c = 3.6 − 2.7 = 0.9

The aphelion is thus

A′F0 = a + c = 3.6 + 0.9 = 4.5 billion miles.

64. Kepler’s Third Law states that the ratio T/a3/2 is equal to a constant C for all planetary orbits around the sun, where
T is the period (time for a complete orbit) and a is the semimajor axis.

(a) Compute C in units of days and kilometers, given that the semimajor axis of the earth’s orbit is 150 × 106 km.
(b) Compute the period of Saturn’s orbit, given that its semimajor axis is approximately 1.43 × 109 km.
(c) Saturn’s orbit has eccentricity e = 0.056. Find the perihelion and aphelion of Saturn (see Exercise 63).

solution

(a) By Kepler’s Law, T
a3/2 = C. For the earth’s orbit a = 150 × 106 km and T = 365 days. Hence,

C = T

a3/2
= 365

(150 × 106)
3/2

= 365

1837.12 × 109
= 1.987 · 10−10 days/km

(b) By Kepler’s Third Law and using the constant C computed in part (a) we get

T

a3/2
= C

T

(1.43 × 109)
3/2

= 1.987 × 10−10

T = (1.987 × 10−10)(1.43 × 109)
3/2 = 10,745 days.

(c) We define the xy-coordinate system so that the orbit is in standard position (see figure). (The sun is at one focus.)

y

x
F1(c, 0)

Sun
(−a, 0)

A'
(a, 0)
A

The perihelion is a − c and the aphelion is a + c. By the given information a = 1.43 × 109 km and e = 0.056. Hence

e = c

a
⇒ 0.056 = c

1.43 × 109
⇒ c = 0.08 × 109 km

We obtain the following solutions:

perihelion = a − c = 1.43 × 109 − 0.08 × 109 = 1.35 × 109 km

aphelion = a + c = 1.43 × 109 + 0.08 × 109 = 1.51 × 109 km
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Further Insights and Challenges
65. Verify Theorem 2.

solution Let F1 = (c, 0) and F2 = (−c, 0) and let P (x, y) be an arbitrary point on the hyperbola. Then for some
constant a,

PF1 − PF2 = ±2a

y

x
F2 = (−c, 0) F1 = (c, 0)

P = (x, y)

Using the distance formula we write this as√
(x − c)2 + y2 −

√
(x + c)2 + y2 = ±2a.

Moving the second term to the right and squaring both sides gives√
(x − c)2 + y2 =

√
(x + c)2 + y2 ± 2a

(x − c)2 + y2 = (x + c)2 + y2 ± 4a

√
(x + c)2 + y2 + 4a2

(x − c)2 − (x + c)2 − 4a2 = ±4a

√
(x + c)2 + y2

xc + a2 = ±a

√
(x + c)2 + y2

We square and simplify to obtain

x2c2 + 2xca2 + a4 = a2
(
(x + c)2 + y2

)
= a2x2 + 2a2xc + a2c2 + a2y2(

c2 − a2
)

x2 − a2y2 = a2
(
c2 − a2

)
x2

a2
− y2

c2 − a2
= 1

For b =
√

c2 − a2 (or c =
√

a2 + b2) we get

x2

a2
− y2

b2
= 1 ⇒

(x

a

)2 −
(y

b

)2 = 1.

66. Verify Theorem 5 in the case 0 < e < 1. Hint: Repeat the proof of Theorem 5, but set c = d/(e−2 − 1).

solution We follow closely the proof of Theorem 5 in the book, which covered the case e > 1. This time, for
0 < e < 1, we prove that PF = ePD defines an ellipse. We choose our coordinate axes so that the focus F lies on
the x-axis with coordinates F = (c, 0) and so that the directrix is vertical, lying to the right of F at a distance d from
F . As suggested by the hint, we set c = d

e−2−1
, but since we are working towards an ellipse, we will also need to let

b =
√

a2 − c2 as opposed to the
√

c2 − a2 from the original proof of Theorem 5. Here’s the complete list of definitions:

c = d

e−2 − 1
, a = c

e
, b =

√
a2 − c2

The directrix is the line

x = c + d = c + c(e−2 − 1) = ce−2 = a

e

Now, the equation

PF = e · PD
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for the points P = (x, y), F = (c, 0), and D = (a/e, y) becomes

√
(x − c)2 + y2 = e ·

√
(x − (a/e))2

Returning to the proof of Theorem 5, we see that this is the same equation that appears in the middle of the proof of the
Theorem. As seen there, this equation can be transformed into

x2

a2
− y2

a2(e2 − 1)
= 1

and this is equivalent to

x2

a2
+ y2

a2(1 − e2)
= 1

Since a2(1 − e2) = a2 − a2e2 = a2 − c2 = b2, then we obtain the equation of the ellipse

x2

a2
+ y2

b2
= 1

67. Verify that if e > 1, then Eq. (11) defines a hyperbola of eccentricity e, with its focus at the origin and directrix at
x = d.

solution The points P = (r, θ) on the hyperbola satisfy PF = ePD, e > 1. Referring to the figure we see that

PF = r, PD = d − r cos θ (1)

Hence

r = e(d − r cos θ)

r = ed − er cos θ

r(1 + e cos θ) = ed ⇒ r = ed

1 + e cos θ

F

r P

q
D

y

x

x = d

D

d − rcos q
rcos q

Remark: Equality (1) holds also for θ > π
2 . For example, in the following figure, we have

PD = d + r cos (π − θ) = d − r cos θ

y

x

P

r

dr cos (p − q )

q

x = d

D
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Reflective Property of the Ellipse In Exercises 68–70, we prove that the focal radii at a point on an ellipse make equal
angles with the tangent line L. Let P = (x0, y0) be a point on the ellipse in Figure 25 with foci F1 = (−c, 0) and
F2 = (c, 0), and eccentricity e = c/a.

R2 = (  2,    2)

R1 = (  1,    1)

1
2

y

x

P = (x0, y0)

F1 = (−c, 0) F2 = (c, 0)

L

FIGURE 25 The ellipse
(x

a

)2 +
(y

b

)2 = 1.

68. Show that the equation of the tangent line at P is Ax + By = 1, where A = x0

a2
and B = y0

b2
.

solution The equation of the tangent line is

y − y0 = m (x − x0) ; m = dy

dx

∣∣∣∣
x=x0,y=y0

(1)

To find the slope m we implicitly differentiate the equation of the ellipse x2

a2 + y2

b2 = 1 with respect to x. We get

2x

a2
+ 2yy′

b2
= 0 ⇒ yy′

b2
= − x

a2
⇒ y′ = −b2

a2

(
x

y

)

We substitute x = x0, y = y0 to obtain the following slope of the tangent line:

m = −b2

a2

x0

y0
= − x0

a2
· b2

y0
= −A

B

Substituting in (1) and simplifying gives

y − y0 = −A

B
(x − x0)

By − By0 = −Ax + Ax0

Ax + By = Ax0 + By0

Now,

Ax0 + By0 = x2
0

a2
+ y2

0

b2
,

so we get Ax + By = 1.

69. Points R1 and R2 in Figure 25 are defined so that F1R1 and F2R2 are perpendicular to the tangent line.
(a) Show, with A and B as in Exercise 68, that

α1 + c

β1
= α2 − c

β2
= A

B

(b) Use (a) and the distance formula to show that

F1R1

F2R2
= β1

β2

(c) Use (a) and the equation of the tangent line in Exercise 68 to show that

β1 = B(1 + Ac)

A2 + B2
, β2 = B(1 − Ac)

A2 + B2

solution
(a) Since R1 = (α1, β1) and R2 = (α2, β2) lie on the tangent line at P , that is on the line Ax + By = 1, we have

Aα1 + Bβ1 = 1 and Aα2 + Bβ2 = 1

The slope of the line R1F1 is β1
α1+c and it is perpendicular to the tangent line having slope −A

B
. Similarly, the slope of

the line R2F2 is β2
α2−c and it is also perpendicular to the tangent line. Hence,

α1 + c

β1
= A

B
and

α2 − c

β2
= A

B
.
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(b) Using the distance formula, we have

R1F1
2 = (α1 + c)2 + β2

1

Thus,

R1F1
2 = β2

1

((
α1 + c

β1

)2
+ 1

)
(1)

By part (a), α1+c
β1

= A
B

. Substituting in (1) gives

R1F1
2 = β2

1

(
A2

B2
+ 1

)
(2)

Likewise,

R2F2
2 = (α2 − c)2 + β2

2 = β2
2

((
α2 − c

β2

)2
+ 1

)
(3)

but since α2−c
β2

= A
B

, substituting in (3) gives

R2F2
2 = β2

2

(
A2

B2
+ 1

)
. (4)

Dividing, we find that

R1F1
2

R2F2
2

= β2
1

β2
2

so
R1F1

R2F2
= β1

β2
,

as desired.

(c) In part (a) we showed that ⎧⎪⎨
⎪⎩

Aα1 + Bβ1 = 1

β1

α1 + c
= B

A

Eliminating α1 and solving for β1 gives

β1 = B(1 + Ac)

A2 + B2
. (5)

Similarly, we have ⎧⎪⎨
⎪⎩

Aα2 + Bβ2 = 1

β2

α2 − c
= B

A

Eliminating α2 and solving for β2 yields

β2 = B (1 − Ac)

A2 + B2
(6)

70. (a) Prove that PF1 = a + x0e and PF2 = a − x0e. Hint: Show that PF1
2 − PF2

2 = 4x0c. Then use the defining
property PF1 + PF2 = 2a and the relation e = c/a.

(b) Verify that
F1R1

PF1
= F2R2

PF2
.

(c) Show that sin θ1 = sin θ2. Conclude that θ1 = θ2.

solution
(a) Using the distance formula we have

PF1
2 = (x0 + c)2 + y2; PF2

2 = (x0 − c)2 + y2

Hence,

PF1
2 − PF2

2 = (x0 + c)2 + y2 − (x0 − c)2 − y2
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= (x0 + c)2 − (x0 − c)2

= x0
2 + 2x0c + c2 − x0

2 + 2x0c − c2 = 4x0c

That is, PF1
2 − PF2

2 = 4x0c. Now use the identity u2 − v2 = (u − v) (u + v) to write this as(
PF1 − PF2

) (
PF1 + PF2

) = 4x0c (1)

Since P lies on the ellipse
(
x
a

)2 + ( y
b

)2 = 1 we have

PF1 + PF2 = 2a (2)

Substituting in (1) gives (
PF1 − PF2

) · 2a = 4x0c

We divide by a and use the eccentricity e = c
a to obtain

PF1 − PF2 = 2x0e

Solve this equation together with equation (2) to see that

PF1 = a + x0e, PF2 = a − x0e

(b) Substituting the expression for β1 from Eq. (5) in Exercise 69 into Eq. (2) in Exercise 69 yields

R1F1
2 = B2(1 + Ac)2

(A2 + B2)2

(
A2

B2
+ 1

)
= B2(1 + Ac)2(A2 + B2)

(A2 + B2)2B2
= (1 + Ac)2

A2 + B2

and similarly, substituting the expression for β2 from Eq. (6) in Exercise 69 into Eq. (4) in Exercise 69 yields

R2F2
2 = B2(1 − Ac)2

(A2 + B2)2

(
A2

B2
+ 1

)
= B2(1 − Ac)2(A2 + B2)

(A2 + B2)2B2
= (1 − Ac)2

A2 + B2

Taking square roots and dividing these two formulas gives

R1F1

R2F2
=

1+Ac√
A2+B2

1−Ac√
A2+B2

= 1 + Ac

1 − Ac

Substitute c = ea and A = x0
a2 (from Exercise 68) to get

R1F1

R2F2
=

1 + x0ea

a2

1 − x0ea

a2

= 1 + x0e
a

1 − x0e
a

= a + x0e

a − x0e

But part (a) showed that PF1 = a + x0e and PF2 = a − x0e, so that

R1F1

R2F2
= PF1

PF2
⇒ R1F1

PF1
= R2F2

PF2

(c) Since R1F1
PF1

= sin θ1 and R2F2
PF2

= sin θ2, we get sin θ1 = sin θ2, which implies that θ1 = θ2 since the two angles are

acute.

71. Here is another proof of the Reflective Property.

(a) Figure 25 suggests that L is the unique line that intersects the ellipse only in the point P . Assuming this, prove that
QF1 + QF2 > PF1 + PF2 for all points Q on the tangent line other than P .

(b) Use the Principle of Least Distance (Example 6 in Section 4.7) to prove that θ1 = θ2.

solution

(a) Consider a point Q �= P on the line L (see figure). Since L intersects the ellipse in only one point, the remainder of
the line lies outside the ellipse, so that QR does not have zero length, and F2QR is a triangle. Thus

QF1 + QF2 = QR + RF1 + QF2 = RF1 + (QR + QF2) > RF1 + RF2

since the sum of lengths of two sides of a triangle exceeds the length of the third side. But since point R lies on the ellipse,
RF2 + RF2 = PF1 + PF2, and we are done.
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y

Q
R

P

x
F1 F2

(b) Consider a beam of light traveling from F1 to F2 by reflection off of the line L. By the principle of least distance,
the light takes the shortest path, which by part (a) is the path through P . By Example 6 in Section 4.7, this shortest path
has the property that the angle of incidence (θ1) is equal to the angle of reflection (θ2).

72. Show that the length QR in Figure 26 is independent of the point P .

y

x

P = (a, ca2)R

Q

y = cx2

FIGURE 26

solution We find the slope m of the tangent line at P =
(
a, ca2

)
:

m = (cx2)
′
∣∣∣∣
x=a

= 2cx

∣∣∣∣
x=a

= 2ca

The slope of the perpendicular line PQ is, thus, − 1
2ca

, and the equation of this line is

y − ca2 = − 1

2ca
(x − a) ⇒ y = − x

2ac
+ ca2 + 1

2c

The y-intercept of the line PQ is y = ca2 + 1
2c

. We now find the length QR, by computing the distance between the

points Q(0, ca2 + 1
2c

) and P(0, ca2). This gives

QR = ca2 + 1

2c
− ca2 = 1

2c

Indeed, the length QR is independent of a, i.e. it is independent of the point P .

73. Show that y = x2/4c is the equation of a parabola with directrix y = −c, focus (0, c), and the vertex at the origin,
as stated in Theorem 3.

solution The points P = (x, y) on the parabola are equidistant from F = (0, c) and the line y = −c.

y

x

y = −c

P(x, y)

F(0, c)

That is, by the distance formula, we have

PF = PD√
x2 + (y − c)2 = |y + c|

Squaring and simplifying yields

x2 + (y − c)2 = (y + c)2

x2 + y2 − 2yc + c2 = y2 + 2yc + c2

x2 − 2yc = 2yc
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x2 = 4yc ⇒ y = x2

4c

Thus, we showed that the points that are equidistant from the focus F = (0, c) and the directrix y = −c satisfy the

equation y = x2

4c
.

74. Consider two ellipses in standard position:

E1 :
(

x

a1

)2
+
(

y

b1

)2
= 1

E2 :
(

x

a2

)2
+
(

y

b2

)2
= 1

We say that E1 is similar to E2 under scaling if there exists a factor r > 0 such that for all (x, y) on E1, the point (rx, ry)

lies on E2. Show that E1 and E2 are similar under scaling if and only if they have the same eccentricity. Show that any
two circles are similar under scaling.

solution If E1 and E2 are similar under scaling, then since (a1, 0) and (0, b1) are points on the first ellipse, the

scaled points (ra1, 0) and (0, rb1) must be on the second ellipse. This implies that (ra1/a2)2 + (0/b2)2 = 1 and that
(0/a1)2 + (rb1/b2)2 = 1, which means that ra1 ± a2 and rb1 = ±b2. But, since r, a1, and a2 are all positive, then this
implies that a2 = ra1 and b2 = rb1, and so

c2 =
√

a2
2 − b2

2 = r

√
a2

1 − b2
1 = rc1.

Thus,

e2 = c2

a2
= r1c1

r1a1
= c1

a1
= e1

and so the two ellipses have the same eccentricity. On the other hand, if the two ellipses have the same eccentricity, then√√√√1 − b2
2

a2
2

= c2

a2
= e2 = e1 = c1

a1
=
√√√√1 − b2

1

a2
1

which implies √√√√1 − b2
2

a2
2

=
√√√√1 − b2

1

a2
1

and this implies that b2/a2 = ±b1/a1 and so b2/a2 = b1/a1 (recall that all constants are positive). Define r = b2/b1.
Then, b2 = rb1, but since b2/a2 = b1/a1 we get that a2 = ra1 as well. Thus, for the point (x, y) on the first ellipse, we
have that (

x

a1

)2
+
(

y

b1

)2
= 1

If we put the scaled point (rx, ry) into the second ellipse, we get

(
rx

a2

)2
+
(

ry

b2

)2
=
(

rx

ra1

)2
+
(

ry

rb1

)2
=
(

x

a1

)2
+
(

y

b1

)2
= 1

which implies that E2 is a scaled version of E1. Since all circles have eccentricity 0, then they are all similar under scaling.

75. Derive Eqs. (13) and (14) in the text as follows. Write the coordinates of P with respect to the rotated axes
in Figure 21 in polar form x′ = r cos α, y′ = r sin α. Explain why P has polar coordinates (r, α + θ) with respect to the
standard x and y-axes and derive Eqs. (13) and (14) using the addition formulas for cosine and sine.

solution If the polar coordinates of P with respect to the rotated axes are (r, α), then the line from the origin to P

has length r and makes an angle of α with the rotated x-axis (the x′-axis). Since the x′-axis makes an angle of θ with the
x-axis, it follows that the line from the origin to P makes an angle of α + θ with the x-axis, so that the polar coordinates
of P with respect to the standard axes are (r, α + θ). Write (x′, y′) for the rectangular coordinates of P with respect to
the rotated axes and (x, y) for the rectangular coordinates of P with respect to the standard axes. Then

x = r cos(α + θ) = (r cos α) cos θ − (r sin α) sin θ = x′ cos θ − y′ sin θ

y = r sin(α + θ) = r sin α cos θ + r cos α sin θ = (r cos α) sin θ + (r sin α) cos θ = x′ sin θ + y′ cos θ
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76. If we rewrite the general equation of degree 2 (Eq. 12) in terms of variables x′ and y′ that are related to x and y by
Eqs. (13) and (14), we obtain a new equation of degree 2 in x′ and y′ of the same form but with different coefficients:

a′x2 + b′xy + c′y2 + d ′x + e′y + f ′ = 0

(a) Show that b′ = b cos 2θ + (c − a) sin 2θ .
(b) Show that if b �= 0, then we obtain b′ = 0 for

θ = 1

2
cot−1 a − c

b

This proves that it is always possible to eliminate the cross term bxy by rotating the axes through a suitable angle.

solution

(a) If we plug in x = x′ cos θ − y′ sin θ and y = x′ sin θ + y′ cos θ into the equation ax2 + bxy + cy2 + dx + ey + f =
0, we will get a very ugly mess. Fortunately, we only care about the x′y′ term, so we really only need to look at the
ax2 + bxy + cy2 part of the formula. In fact, we only need to pull out those terms which have an x′y′ in them. Thus

ax2 becomes a(x′ cos θ − y′ sin θ)2 = −2ax′y′ cos θ sin θ + . . .

bxy becomes b(x′ cos θ − y′ sin θ)(x′ sin θ + y′ cos θ) = bx′y′(cos2 θ − sin2 θ) + . . .

cy2 becomes c(x′ sin θ + y′ cos θ)2 = 2cx′y′ cos θ sin θ + . . .

so that

ax2 + bxy + cy2 = ((c − a)2 sin θ cos θ + b(cos2 θ − sin2 θ))x′y′ + · · · = ((c − a) sin 2θ + b cos 2θ)x′y′ + . . .

and thus b′, the coefficient of x′y′, is b cos 2θ + (c − a) sin 2θ , as desired.
(b) Setting b′ = 0, we get 0 = b cos 2θ + (c − a) sin 2θ , so b cos 2θ = (a − c) sin 2θ , so cot 2θ = a−c

b
, giving us

2θ = cot−1 a−c
b

, and thus θ = 1
2 cot−1 a−c

b
.

CHAPTER REVIEW EXERCISES

1. Which of the following curves pass through the point (1, 4)?

(a) c(t) = (t2, t + 3) (b) c(t) = (t2, t − 3)

(c) c(t) = (t2, 3 − t) (d) c(t) = (t − 3, t2)

solution To check whether it passes through the point (1, 4), we solve the equations c(t) = (1, 4) for the given curves.

(a) Comparing the second coordinate of the curve and the point yields:

t + 3 = 4

t = 1

We substitute t = 1 in the first coordinate, to obtain

t2 = 12 = 1

Hence the curve passes through (1, 4).
(b) Comparing the second coordinate of the curve and the point yields:

t − 3 = 4

t = 7

We substitute t = 7 in the first coordinate to obtain

t2 = 72 = 49 �= 1

Hence the curve does not pass through (1, 4).
(c) Comparing the second coordinate of the curve and the point yields

3 − t = 4

t = −1

We substitute t = −1 in the first coordinate, to obtain

t2 = (−1)2 = 1

Hence the curve passes through (1, 4).



April 4, 2011

Chapter Review Exercises 1495

(d) Comparing the first coordinate of the curve and the point yields

t − 3 = 1

t = 4

We substitute t = 4 in the second coordinate, to obtain:

t2 = 42 = 16 �= 4

Hence the curve does not pass through (1, 4).

2. Find parametric equations for the line through P = (2, 5) perpendicular to the line y = 4x − 3.

solution The line perpendicular to y = 4x − 3 at P = (2, 5) is the line of slope − 1
4 passing through P . This line has

the equation

y − 5 = −1

4
(x − 2)

A bit of calculation shows that the parametric equations of the line are

c(t) =
(

2 + t, 5 − 1

4
t

)

or

x = 2 + t

y = 5 − 1

4
t

3. Find parametric equations for the circle of radius 2 with center (1, 1). Use the equations to find the points of intersection
of the circle with the x- and y-axes.

solution Using the standard technique for parametric equations of curves, we obtain

c(t) = (1 + 2 cos t, 1 + 2 sin t)

We compare the x coordinate of c(t) to 0:

1 + 2 cos t = 0

cos t = −1

2

t = ±2π

3

Substituting in the y coordinate yields

1 + 2 sin

(
±2π

3

)
= 1 ± 2

√
3

2
= 1 ± √

3

Hence, the intersection points with the y-axis are (0, 1 ± √
3). We compare the y coordinate of c(t) to 0:

1 + 2 sin t = 0

sin t = −1

2

t = −π

6
or

7

6
π

Substituting in the x coordinates yields

1 + 2 cos
(
−π

6

)
= 1 + 2

√
3

2
= 1 + √

3

1 + 2 cos

(
7

6
π

)
= 1 − 2 cos

(π

6

)
= 1 − 2

√
3

2
= 1 − √

3

Hence, the intersection points with the x-axis are (1 ± √
3, 0).
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4. Find a parametrization c(t) of the line y = 5 − 2x such that c(0) = (2, 1).

solution The line is passing through P = (0, 5) with slope −2, hence (by one of the examples in section 12.1) it has
the parametrization

c(t) = (t, 5 − 2t)

This parametrization does not satisfy c(0) = (2, 1). We replace the parameter t by a parameter s, so that t = s + β, to
obtain another parametrization for the line:

c∗(s) = (s + β, 5 − 2(s + β)) = (s + β, 5 − 2β − 2s) (1)

We require that c∗(0) = (2, 1). That is,

c∗(0) = (β, 5 − 2β) = (2, 1)

or

β = 2

5 − 2β = 1
⇒ β = 2

Substituting in (1) gives the parametrization

c∗(s) = (s + 2, 1 − 2s)

5. Find a parametrization c(θ) of the unit circle such that c(0) = (−1, 0).

solution The unit circle has the parametrization

c(t) = (cos t, sin t)

This parametrization does not satisfy c(0) = (−1, 0). We replace the parameter t by a parameter θ so that t = θ + α, to
obtain another parametrization for the circle:

c∗(θ) = (cos(θ + α), sin(θ + α)) (1)

We need that c∗(0) = (1, 0), that is,

c∗(0) = (cos α, sin α) = (−1, 0)

Hence

cos α = −1

sin α = 0
⇒ α = π

Substituting in (1) we obtain the following parametrization:

c∗(θ) = (cos(θ + π), sin(θ + π))

6. Find a path c(t) that traces the parabolic arc y = x2 from (0, 0) to (3, 9) for 0 ≤ t ≤ 1.

solution The second coordinates of the points on the parabolic arc are the square of the first coordinates. Therefore
the points on the arc have the form:

c(t) = (αt, α2t2) (1)

We need that c(1) = (3, 9). That is,

c(1) = (α, α2) = (3, 9) ⇒ α = 3

Substituting in (1) gives the following parametrization:

c(t) = (3t, 9t2)

7. Find a path c(t) that traces the line y = 2x + 1 from (1, 3) to (3, 7) for 0 ≤ t ≤ 1.

solution Solution 1: By one of the examples in section 12.1, the line through P = (1, 3) with slope 2 has the
parametrization

c(t) = (1 + t, 3 + 2t)
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But this parametrization does not satisfy c(1) = (3, 7). We replace the parameter t by a parameter s so that t = αs + β.
We get

c∗(s) = (1 + αs + β, 3 + 2(αs + β)) = (αs + β + 1, 2αs + 2β + 3)

We need that c∗(0) = (1, 3) and c∗(1) = (3, 7). Hence,

c∗(0) = (1 + β, 3 + 2β) = (1, 3)

c∗(1) = (α + β + 1, 2α + 2β + 3) = (3, 7)

We obtain the equations

1 + β = 1

3 + 2β = 3

α + β + 1 = 3

2α + 2β + 3 = 7

⇒ β = 0, α = 2

Substituting in (1) gives

c∗(s) = (2s + 1, 4s + 3)

Solution 2: The segment from (1, 3) to (3, 7) has the following vector parametrization:

(1 − t) 〈1, 3〉 + t 〈3, 7〉 = 〈1 − t + 3t, 3(1 − t) + 7t〉 = 〈1 + 2t, 3 + 4t〉
The parametrization is thus

c(t) = (1 + 2t, 3 + 4t)

8. Sketch the graph c(t) = (1 + cos t, sin 2t) for 0 ≤ t ≤ 2π and draw arrows specifying the direction of motion.

solution From x = 1 + cos t we have x − 1 = cos t . We substitute this in the y coordinate to obtain

y = sin 2t = 2 sin t cos t = ±2
√

sin2 t cos t = ±2
√

1 − cos2 t cos t = ±2
√

1 − (x − 1)2(x − 1)

We can see that the graph is symmetric with respect to the x-axis, hence we plot the function y = 2
√

1 − (x − 1)2(x − 1)

and reflect it with respect to the x-axis. When t = 0 we have c(0) = (2, 0). when t increases near 0, cos t is decreasing
and sin 2t is increasing, hence the general direction at the point (2, 0) is upwards and left. As t approaches π/2, the
x-coordinate decreases to 1 and the y-coordinate to 0. Likewise, as t moves from π/2 to π , the x-coordinate moves to 0
while the y-coordinate falls to −1 and then rises to 0. The resulting graph is seen here in the corresponding figure.

x

y

1

−1

21

Plot of Exercise 8

In Exercises 9–12, express the parametric curve in the form y = f (x).

9. c(t) = (4t − 3, 10 − t)

solution We use the given equation to express t in terms of x.

x = 4t − 3

4t = x + 3

t = x + 3

4

Substituting in the equation of y yields

y = 10 − t = 10 − x + 3

4
= −x

4
+ 37

4
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That is,

y = −x

4
+ 37

4

10. c(t) = (t3 + 1, t2 − 4)

solution The parametric equations are x = t3 + 1 and y = t2 − 4. We express t in terms of x:

x = t3 + 1

t3 = x − 1

t = (x − 1)1/3

Substituting in the equation of y yields

y = t2 − 4 = (x − 1)2/3 − 4

That is,

y = (x − 1)2/3 − 4

11. c(t) =
(

3 − 2

t
, t3 + 1

t

)

solution We use the given equation to express t in terms of x:

x = 3 − 2

t

2

t
= 3 − x

t = 2

3 − x

Substituting in the equation of y yields

y =
(

2

3 − x

)3
+ 1

2/(3 − x)
= 8

(3 − x)3
+ 3 − x

2

12. x = tan t , y = sec t

solution We use the trigonometric identity

1 + tan2 t = sec2 t

Substituting the parametric equations x = tan t and y = sec t we obtain

1 + x2 = y2 or y = ±
√

x2 + 1

In Exercises 13–16, calculate dy/dx at the point indicated.

13. c(t) = (t3 + t, t2 − 1), t = 3

solution The parametric equations are x = t3 + t and y = t2 − 1. We use the theorem on the slope of the tangent

line to find dy
dx

:

dy

dx
=

dy
dt
dx
dt

= 2t

3t2 + 1

We now substitute t = 3 to obtain

dy

dx

∣∣∣∣
t=3

= 2 · 3

3 · 32 + 1
= 3

14
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14. c(θ) = (tan2 θ, cos θ), θ = π
4

solution The parametric equations are x = tan2θ , y = cos θ . We use the theorem on the slope of the tangent line to

find dy
dx

:

dy

dx
=

dy
dθ
dx
dθ

= − sin θ

2 tan θ sec2 θ
= − cos3 θ

2

We now substitute θ = π
4 to obtain

dy

dx

∣∣∣∣
θ=π/4

= − cos3 π
4

2
= − 1

4
√

2

15. c(t) = (et − 1, sin t), t = 20

solution We use the theorem for the slope of the tangent line to find dy
dx

:

dy

dx
=

dy
dt
dx
dt

= (sin t)′
(et − 1)′ = cos t

et

We now substitute t = 20:

dy

dx

∣∣∣∣
t=0

= cos 20

e20

16. c(t) = (ln t, 3t2 − t), P = (0, 2)

solution The parametric equations are x = ln t , y = 3t2 − t . We use the theorem for the slope of the tangent line to

find dy
dx

:

dy

dx
=

dy
dt
dx
dt

= 6t − 1
1
t

= 6t2 − t (1)

We now must identify the value of t corresponding to the point P = (0, 2) on the curve. We solve the following equations:

ln t = 0

3t2 − t = 2
⇒ t = 1

Substituting t = 1 in (1) we obtain

dy

dx

∣∣∣∣
P

= 6 · 12 − 1 = 5

17. Find the point on the cycloid c(t) = (t − sin t, 1 − cos t) where the tangent line has slope 1
2 .

solution Since x = t − sin t and y = 1 − cos t , the theorem on the slope of the tangent line gives

dy

dx
=

dy
dt
dx
dt

= sin t

1 − cos t

The points where the tangent line has slope 1
2 are those where dy

dx
= 1

2 . We solve for t :

dy

dx
= 1

2

sin t

1 − cos t
= 1

2
(1)

2 sin t = 1 − cos t

We let u = sin t . Then cos t = ±
√

1 − sin2t = ±
√

1 − u2. Hence

2u = 1 ±
√

1 − u2

We transfer sides and square to obtain

±
√

1 − u2 = 2u − 1
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1 − u2 = 4u2 − 4u + 1

5u2 − 4u = u(5u − 4) = 0

u = 0, u = 4

5

We find t by the relation u = sin t :

u = 0: sin t = 0 ⇒ t = 0, t = π

u = 4

5
: sin t = 4

5
⇒ t ≈ 0.93, t ≈ 2.21

These correspond to the points (0, 1), (π, 2), (0.13, 0.40), and (1.41, 1.60), respectively, for 0 < t < 2π .

18. Find the points on (t + sin t, t − 2 sin t) where the tangent is vertical or horizontal.

solution We use the theorem for the slope of the tangent line to find dy
dx

:

dy

dx
=

dy
dt
dx
dt

= 1 − 2 cos t

1 + cos t

We find the values of t for which the denominator is zero. We ignore the numerator, since when 1 + cos t = 0, 1 − 2 cos t =
3 �= 0.

1 + cos t = 0

cos t = −1

t = π + 2πk where k ∈ Z

We now find the values of t for which the numerator is 0:

1 − 2 cos t = 0

1 = 2 cos t

1

2
= cos t

t = ±π

3
+ 2πk where k ∈ Z

Note that the denominator is not zero at these points. Thus, we have vertical tangents at t = π + 2πk and horizontal
tangents at t = ±π/3 + 2πk.

19. Find the equation of the Bézier curve with control points

P0 = (−1, −1), P1 = (−1, 1), P2 = (1, 1), P3(1, −1)

solution We substitute the given points in the appropriate formulas in the text to find the parametric equations of the
Bézier curve. We obtain

x(t) = −(1 − t)3 − 3t (1 − t)2 + t2(1 − t) + t3

= −(1 − 3t + 3t2 − t3) − (3t − 6t2 + 3t3) + (t2 − t3) + t3

= (−2t3 + 4t2 − 1)

y(t) = −(1 − t)3 + 3t (1 − t)2 + t2(1 − t) − t3

= −(1 − 3t + 3t2 − t3) + (3t − 6t2 + 3t3) + (t2 − t3) − t3

= (2t3 − 8t2 + 6t − 1)

20. Find the speed at t = π
4 of a particle whose position at time t seconds is c(t) = (sin 4t, cos 3t).

solution We use the parametric definition to find the speed. We obtain

ds

dt
=
√

((sin 4t)′)2 + ((cos 3t)′)2 =
√

(4 cos 4t)2 + (−3 sin 3t)2 =
√

16 cos2 4t + 9 sin2 3t

At time t = π
4 the speed is

ds

dt

∣∣∣∣
t=π/4

=
√

16 cos2 π + 9 sin2 3π

4
=
√

16 + 9 · 1

2
= √

20.5 ≈ 4.53
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21. Find the speed (as a function of t) of a particle whose position at time t seconds is c(t) = (sin t + t, cos t + t). What
is the particle’s maximal speed?

solution We use the parametric definition to find the speed. We obtain

ds

dt
=
√

((sin t + t)′)2 + ((cos t + t)′)2 =
√

(cos t + 1)2 + (1 − sin t)2

=
√

cos2 t + 2 cos t + 1 + 1 − 2 sin t + sin2 t = √3 + 2(cos t − sin t)

We now differentiate the speed function to find its maximum:

d2s

dt2
=
(√

3 + 2(cos t − sin t)
)′ = − sin t − cos t√

3 + 2(cos t − sin t)

We equate the derivative to zero, to obtain the maximum point:

d2s

dt2
= 0

− sin t − cos t√
3 + 2(cos t − sin t)

= 0

− sin t − cos t = 0

− sin t = cos t

sin(−t) = cos(−t)

−t = π

4
+ πk

t = −π

4
+ πk

Substituting t in the function of speed we obtain the value of the maximal speed:

√
3 + 2

(
cos −π

4
− sin −π

4

)
=
√√√√3 + 2

(√
2

2
−
(

−
√

2

2

))
=
√

3 + 2
√

2

22. Find the length of (3et − 3, 4et + 7) for 0 ≤ t ≤ 1.

solution We use the formula for arc length, to obtain

s =
∫ 1

0

√
((3et − 3)′)2 + ((4et + 7)′)2 dt =

∫ 1

0

√
(3et )2 + (4et )2 dt

=
∫ 1

0

√
9e2t + 16e2t dt =

∫ 1

0

√
25e2t dt =

∫ 1

0
5et dt = 5et

∣∣∣∣1
0

= 5(e − 1)

In Exercises 23 and 24, let c(t) = (e−t cos t, e−t sin t).

23. Show that c(t) for 0 ≤ t < ∞ has finite length and calculate its value.

solution We use the formula for arc length, to obtain:

s =
∫ ∞

0

√
((e−t cos t)′)2 + ((e−t sin t)′)2dt

=
∫ ∞

0

√
(−e−t cos t − e−t sin t)2 + (−e−t sin t + e−t cos t)2dt

=
∫ ∞

0

√
e−2t (cos t + sin t)2 + e−2t (cos t − sin t)2dt

=
∫ ∞

0
e−t

√
cos2 t + 2 sin t cos t + sin2 t + cos2 t − 2 sin t cos t + sin2 tdt

=
∫ ∞

0
e−t

√
2dt = √

2(−e−t )

∣∣∣∣∞
0

= −√
2

(
lim

t→∞ e−t − e0
)

= −√
2(0 − 1) = √

2
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24. Find the first positive value of t0 such that the tangent line to c(t0) is vertical, and calculate the speed at t = t0.

solution The curve has a vertical tangent where lim
t→t0

∣∣ dy
dx

∣∣ = ∞. We first find dy
dx

using the theorem for the slope of

a tangent line:

dy

dx
=

dy
dt
dx
dt

= (e−t sin t)′
(e−t cos t)′ = −e−t sin t + e−t cos t

−e−t cos t − e−t sin t

= − cos t − sin t

cos t + sin t
= sin t − cos t

sin t + cos t

We now search for t0 such that lim
t→t0

∣∣ dy
dx

∣∣ = ∞. In our case, this happens when the denominator is 0, but the numerator

is not, thus:

sin t0 + cos t0 = 0

cos t0 = − sin t0

cos −t0 = sin −t0

−t0 = π

4
− π

t0 = 3

4
π

We now use the formula for the speed, to find the speed at t0.

ds

dt
=
√

((e−t sin t)′)2 + ((e−t cos t)′)2

=
√

(−e−t cos t − e−t sin t)2 + (−e−t sin t + e−t cos t)2

=
√

e−2t (cos t + sin t)2 + e−2t (cos t − sin t)2

= e−t

√
cos2 t + 2 sin t cos t + sin2 t + cos2 t − 2 sin t cos t + sin2 t = e−t

√
2

Next we substitute t = 3
4π , to obtain

e−t0
√

2 = e−3π/4
√

2

25. Plot c(t) = (sin 2t, 2 cos t) for 0 ≤ t ≤ π . Express the length of the curve as a definite integral, and
approximate it using a computer algebra system.

solution We use a CAS to plot the curve. The resulting graph is shown here.

x

y

2

1

−2

−1

−2 −1 21

Plot of the curve (sin 2t, 2 cos t)

To calculate the arc length we use the formula for the arc length to obtain

s =
∫ π

0

√
(2 cos 2t)2 + (−2 sin t)2 dt = 2

∫ π

0

√
cos2 2t + sin2 t dt

We use a CAS to obtain s = 6.0972.
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26. Convert the points (x, y) = (1, −3), (3, −1) from rectangular to polar coordinates.

solution We convert the given points from cartesian coordinates to polar coordinates. For the first point we have

r =
√

x2 + y2 =
√

12 + (−3)2 = √
10

θ = arctan
y

x
= arctan −3 = 5.034

For the second point we have

r =
√

x2 + y2 =
√

32 + (−1)2 = √
10

θ = arctan
y

x
= arctan

−1

3
= −0.321, 5.961

27. Convert the points (r, θ) = (1, π
6

)
,
(
3, 5π

4

)
from polar to rectangular coordinates.

solution We convert the points from polar coordinates to cartesian coordinates. For the first point we have

x = r cos θ = 1 · cos
π

6
=

√
3

2

y = r sin θ = 1 · sin
π

6
= 1

2

For the second point we have

x = r cos θ = 3 cos
5π

4
= −3

√
2

2

y = r sin θ = 3 sin
5π

4
= −3

√
2

2

28. Write (x + y)2 = xy + 6 as an equation in polar coordinates.

solution We use the formula for converting from cartesian coordinates to polar coordinates to substitute r and θ for
x and y:

(x + y)2 = xy + 6

x2 + 2xy + y2 = xy + 6

x2 + y2 = −xy + 6

r2 = −(r cos θ)(r sin θ) + 6

r2 = −r2 cos θ sin θ + 6

r2(1 + sin θ cos θ) = 6

r2 = 6

1 + sin θ cos θ

r2 = 6

1 + sin 2θ
2

r2 = 12

2 + sin 2θ

29. Write r = 2 cos θ

cos θ − sin θ
as an equation in rectangular coordinates.

solution We use the formula for converting from polar coordinates to cartesian coordinates to substitute x and y for
r and θ :

r = 2 cos θ

cos θ − sin θ√
x2 + y2 = 2r cos θ

r cos θ − r sin θ√
x2 + y2 = 2x

x − y
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30. Show that r = 4

7 cos θ − sin θ
is the polar equation of a line.

solution We use the formula for converting from polar coordinates to cartesian coordinates to substitute x and y for
r and θ :

r = 4

7 cos θ − sin θ

1 = 4

7r cos θ − r sin θ

1 = 4

7x − y

7x − y = 4

y = 7x − 4

We obtained a linear function. Since the original equation in polar coordinates represents the same curve, it represents a
straight line as well.

31. Convert the equation

9(x2 + y2) = (x2 + y2 − 2y)2

to polar coordinates, and plot it with a graphing utility.

solution We use the formula for converting from cartesian coordinates to polar coordinates to substitute r and θ for
x and y:

9(x2 + y2) = (x2 + y2 − 2y)2

9r2 = (r2 − 2r sin θ)2

3r = r2 − 2r sin θ

3 = r − 2 sin θ

r = 3 + 2 sin θ

The plot of r = 3 + 2 sin θ is shown here:

r = 3 + 2sin

5

40 31−4 2−1−2−3
−2

4

3

2

1

0

−1

Plot of r = 3 + 2 sin θ

32. Calculate the area of the circle r = 3 sin θ bounded by the rays θ = π
3 and θ = 2π

3 .

solution We use the formula for area in polar coordinates to obtain

A = 1

2

∫ 2π/3

π/3
(3 sin θ)2 dθ = 9

2

∫ 2π/3

π/3
sin2 θ dθ = 9

4

∫ 2π/3

π/3
(1 − cos 2θ) dθ = 9

4

(
θ − sin 2θ

2

∣∣∣∣2π/3

π/3

)

= 9

4

(
π

3
− 1

2

(
sin

4π

3
− sin

2π

3

))
= 9

4

(
π

3
− 1

2

(
−

√
3

2
−

√
3

2

))
= 9

4

(
π

3
+

√
3

2

)
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33. Calculate the area of one petal of r = sin 4θ (see Figure 1).

y

x

n = 2 (4 petals)

y

x

n = 4 (8 petals)

y

x

n = 6 (12 petals)

FIGURE 1 Plot of r = sin(nθ).

solution We use a CAS to generate the plot, as shown here.

r = 4sin

−0.8 −0.4

1
0.8
0.6
0.4
0.2

0
−0.2
−0.4
−0.6
−0.8

−1
10 0.80.4−1

Plot of r = sin 4θ

We can see that one leaf lies between the rays θ = 0 and θ = θ

4
. We now use the formula for area in polar coordinates to

obtain

A = 1

2

∫ π/4

0
sin2 4θ dθ = 1

4

∫ π/4

0
(1 − cos 8θ) dθ = 1

4

(
θ − sin 8θ

8

∣∣∣∣π/4

0

)

= π

16
− 1

32
(sin 2π − sin 0) = π

16

34. The equation r = sin(nθ), where n ≥ 2 is even, is a “rose” of 2n petals (Figure 1). Compute the total area of the
flower, and show that it does not depend on n.

solution We calculate the total area of the flower, that is, the area between the rays θ = 0 and θ = 2π , using the
formula for area in polar coordinates:

A = 1

2

∫ 2π

0
sin2 2nθ dθ = 1

4

∫ 2π

0
(1 − cos 4nθ) dθ = 1

4

(
θ − sin 4nθ

4n

∣∣∣∣2π

0

)

= π

2
− 1

16n
(sin 8nπ − sin 0) = π

2

Since the area is
π

2
for every n ∈ Z, the area is independent of n.

35. Calculate the total area enclosed by the curve r2 = cos θesin θ (Figure 2).

y

x

1

1−1

FIGURE 2 Graph of r2 = cos θesin θ .

solution Note that this is defined only for θ between −π/2 and π/2. We use the formula for area in polar coordinates
to obtain:

A = 1

2

∫ π/2

−π/2
r2 dθ = 1

2

∫ π/2

−π/2
cos θesin θ dθ
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We evaluate the integral by making the substitution x = sin θ dx = cos θ dθ :

A = 1

2

∫ π/2

−π/2
cos θesin θ dθ = 1

2
ex

∣∣∣∣1−1
= 1

2

(
e − e−1

)

36. Find the shaded area in Figure 3.

y

r = 1 + cos 2q

x

1

−1

21−2 −1

FIGURE 3

solution We first find the points of intersection between the unit circle and the function.

1 = 1 + cos 2θ

cos 2θ = 0

2θ = π

2
+ πn

θ = π

4
+ π

2
n

We now find the area of the shaded figure in the first quadrant. This has two parts. The first, from 0 to π/4, is just an octant
of the unit circle, and thus has area π/8. The second, from π/4 to π/2, is found as follows:

A = 1

2

∫ π/2

π/4
(1 + cos 2θ)2 dθ = 1

2

∫ π/2

π/4
1 + 2 cos 2θ + cos2 2θ dθ = 1

2

∫ π/2

π/4

3

2
+ 2 cos 2θ + 1

2
cos 4θ dθ

= 1

2

(
3θ

2
+ sin 2θ + 1

8
sin 4θ

) ∣∣∣∣π/2

π/4
= 1

2

(
3π

8
− 1

)

The total area in the first quadrant is thus 5π
16 − 1

2 ; multiply by 2 to get the total area of 5π
8 − 1.

37. Find the area enclosed by the cardioid r = a(1 + cos θ), where a > 0.

solution The graph of r = a (1 + cos θ) in the rθ -plane for 0 ≤ θ ≤ 2π and the cardioid in the xy-plane are shown
in the following figures:

r

a

2a

2πππ 
2

3π 
2

y

x
θ = 0
r = 2a

θ = , r = a
3π

2

θ = , r = a
π

2

θ = π, r = 0

r = a (1 + cos θ) The cardioid r = a (1 + cos θ), a > 0

As θ varies from 0 to π the radius r decreases from 2a to 0, and this gives the upper part of the cardioid.
The lower part is traced as θ varies from π to 2π and consequently r increases from 0 back to 2a. We compute

the area enclosed by the upper part of the cardioid and the x-axis, using the following integral (we use the identity
cos2 θ = 1

2 + 1
2 cos 2θ ):

1

2

∫ π

0
r2 dθ = 1

2

∫ π

0
a2(1 + cos θ)2 dθ = a2

2

∫ π

0

(
1 + 2 cos θ + cos2 θ

)
dθ

= a2

2

∫ π

0

(
1 + 2 cos θ + 1

2
+ 1

2
cos 2θ

)
dθ = a2

2

∫ π

0

(
3

2
+ 2 cos θ + 1

2
cos 2θ

)
dθ

= a2

2

[
3θ

2
+ 2 sin θ + 1

4
sin 2θ

] ∣∣∣∣π
0

= a2

2

[
3π

2
+ 2 sin π + 1

4
sin 2π − 0

]
= 3πa2

4
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Using symmetry, the total area A enclosed by the cardioid is

A = 2 · 3πa2

4
= 3πa2

2

38. Calculate the length of the curve with polar equation r = θ in Figure 4.

y
r = q

x

2

FIGURE 4

solution The interval of θ values is 0 ≤ θ ≤ π . We use the formula for the arc length in polar coordinates, with
r = f (θ) = θ . We get

S =
∫ π

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ π

0

√
θ2 + (θ ′)2 dθ =

∫ π

0

√
θ2 + 1 dθ

= θ

2

√
θ2 + 1 + 1

2
ln
∣∣∣θ +

√
θ2 + 1

∣∣∣ ∣∣∣∣π
θ=0

= π

2

√
π2 + 1 + 1

2
ln
(
π +

√
π2 + 1

)

39. Figure 5 shows the graph of r = e0.5θ sin θ for 0 ≤ θ ≤ 2π . Use a computer algebra system to approximate
the difference in length between the outer and inner loops.

y

x

5

10

3−6

FIGURE 5

solution We note that the inner loop is the curve for θ ∈ [0, π ], and the outer loop is the curve for θ ∈ [π, 2π ]. We
express the length of these loops using the formula for the arc length. The length of the inner loop is

s1 =
∫ π

0

√
(e0.5θ sin θ)2 + ((e0.5θ sin θ)′)2dθ =

∫ π

0

√
eθ sin2 θ +

(
e0.5θ sin θ

2
+ e0.5θ cos θ

)2

dθ

and the length of the outer loop is

s2 =
∫ 2π

π

√
eθ sin2 θ +

(
e0.5θ sin θ

2
+ e0.5θ cos θ

)2

dθ

We now use the CAS to calculate the arc length of each of the loops. We obtain that the length of the inner loop is 7.5087
and the length of the outer loop is 36.121, hence the outer one is 4.81 times longer than the inner one.

40. Show that r = f1(θ) and r = f2(θ) define the same curves in polar coordinates if f1(θ) = −f2(θ + π).
Use this to show that the following define the same conic section:

r = de

1 − e cos θ
, r = −de

1 + e cos θ

solution Suppose (r, θ) lies on the curve r = f2(θ). Since (r, θ) and (−r, θ + π) define the same point in polar
coordinates, we have −r = f2(θ + π) = −f1(θ), so that r = f1(θ), Thus (r, θ) lies on f1 as well. Conversely,
suppose (r, θ) lies on r = f1(θ). Since (r, θ) and (−r, θ − π) define the same point in polar coordinates, we have
−r = f1(θ − π) = −f2(θ − π + π) = −f2(θ) so that r = f2(θ) and (r, θ) lies on f2 as well. Thus the two equations
define exactly the same set of points.

Now set

f1(θ) = de

1 − e cos θ
f2(θ) = − de

1 + e cos θ
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and consider the polar equations r = f1(θ) and r = f2(θ). We have

−f2(θ + π) = − −de

1 + e cos(θ + π)
= de

1 − e cos θ
= f1(θ)

so that by the above, the two equations define the same conic section.

In Exercises 41–44, identify the conic section. Find the vertices and foci.

41.
(x

3

)2 +
(y

2

)2 = 1

solution This is an ellipse in standard position. Its foci are (±
√

32 − 22, 0) = (±√
5, 0) and its vertices are

(±3, 0), (0, ±2).

42. x2 − 2y2 = 4

solution We divide the equation by 4 to obtain

(x

2

)2 −
(

y√
2

)2
= 1

This is a hyperbola in standard position, its foci are

(
±
√

22 + √
2

2
, 0

)
= (±√

6, 0), and its vertices are (±2, 0).

43.
(
2x + 1

2y
)2 = 4 − (x − y)2

solution We simplify the equation:

(
2x + 1

2
y

)2
= 4 − (x − y)2

4x2 + 2xy + 1

4
y2 = 4 − x2 + 2xy − y2

5x2 + 5

4
y2 = 4

5x2

4
+ 5y2

16
= 1

⎛
⎝ x

2√
5

⎞
⎠

2

+
⎛
⎝ y

4√
5

⎞
⎠

2

= 1

This is an ellipse in standard position, with foci

(
0, ±

√(
4√
5

)2 −
(

2√
5

)2
)

=
(

0, ±
√

12
5

)
and vertices

(
± 2√

5
, 0
)

,(
0, ± 4√

5

)
.

44. (y − 3)2 = 2x2 − 1

solution We simplify the equation:

(y − 3)2 = 2x2 − 1

2x2 − (y − 3)2 = 1⎛
⎝ x

1√
2

⎞
⎠

2

− (y − 3)2 = 1

This is a hyperbola shifted 3 units on the y-axis. Therefore, its foci are

(
±
√(

1√
2

)2 + 1, 3

)
=
(

±
√

3
2 , 3

)
and its

vertices are
(
± 1√

2
, 3
)

.

In Exercises 45–50, find the equation of the conic section indicated.

45. Ellipse with vertices (±8, 0) and foci (±√
3, 0)

solution Since the foci of the desired ellipse are on the x-axis, we conclude that a > b. We are given that the points

(±8, 0) are vertices of the ellipse, and since they are on the x-axis, a = 8. We are given that the foci are (±√
3, 0) and

we have shown that a > b, hence we have that
√

a2 − b2 = √
3. Solving for b yields
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√
a2 − b2 = √

3

a2 − b2 = 3

82 − b2 = 3

b2 = 61

b = √
61

Next we use a and b to construct the equation of the ellipse:

(x

8

)2 +
(

y√
61

)2
= 1.

46. Ellipse with foci (±8, 0), eccentricity 1
8

solution If the foci are on the x-axis, then a > b, and c =
√

a2 − b2. We are given that e = 1
8 , and c = 8. Substituting

and solving for a and b yields

e = c

a

c =
√

a2 − b2

1

8
= 8

a

64 = a

8 =
√

642 − b2

64 = 642 − b2

b2 = 64 · 63

b = 8
√

63

We use a and b to construct the equation of the ellipse:

( x

64

)2 +
(

y

8
√

63

)2
= 1.

47. Hyperbola with vertices (±8, 0), asymptotes y = ± 3
4x

solution Since the asymptotes of the hyperbola are y = ± 3
4x, and the equation of the asymptotes for a general

hyperbola in standard position is y = ± b
a x, we conclude that b

a = 3
4 . We are given that the vertices are (±8, 0), thus

a = 8. We substitute and solve for b:

b

a
= 3

4

b

8
= 3

4

b = 6

Next we use a and b to construct the equation of the hyperbola:

(x

8

)2 −
(y

6

)2 = 1.

48. Hyperbola with foci (2, 0) and (10, 0), eccentricity e = 4

solution Since the foci lie on the x axis, the x is the focal axis. The center of the hyperbola is midway between the

foci, so lies at (6, 0), and c = 4. Then c = ae gives a = 1; then b =
√

c2 − a2 = √
15, so that the equation of the

hyperbola is

(x − 6)2 −
(

y√
15

)2
= 1
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49. Parabola with focus (8, 0), directrix x = −8

solution This is similar to the usual equation of a parabola, but we must use y as x, and x as y, to obtain

x = 1

32
y2.

50. Parabola with vertex (4, −1), directrix x = 15

solution The directrix is a vertical line and the vertex is (4, −1), so the equation is of the form

x − 4 = 1

4c
(y + 1)2

The directrix is to the right of the vertex; the distance from the directrix to the vertex is −11, so c = −11 and the equation
is

x = 4 − 1

44
(y + 1)2

51. Find the asymptotes of the hyperbola 3x2 + 6x − y2 − 10y = 1.

solution We complete the squares and simplify:

3x2 + 6x − y2 − 10y = 1

3(x2 + 2x) − (y2 + 10y) = 1

3(x2 + 2x + 1 − 1) − (y2 + 10y + 25 − 25) = 1

3(x + 1)2 − 3 − (y + 5)2 + 25 = 1

3(x + 1)2 − (y + 5)2 = −21(
y + 5√

21

)2
−
(

x + 1√
7

)2
= 1

We obtained a hyperbola with focal axis that is parallel to the y-axis, and is shifted −5 units on the y-axis, and −1 units
in the x-axis. Therefore, the asymptotes are

x + 1 = ±
√

7√
21

(y + 5) or y + 5 = ±√
3(x + 1).

52. Show that the “conic section” with equation x2 − 4x + y2 + 5 = 0 has no points.

solution We complete the squares in the given equation:

x2 − 4x + 4y2 + 5 = 0

x2 − 4x + 4 − 4 + 4y2 + 5 = 0

(x − 2)2 + 4y2 = −1

Since (x − 2)2 ≥ 0 and y2 ≥ 0, there is no point satisfying the equation, hence it cannot represent a conic section.

53. Show that the relation dy
dx

= (e2 − 1) x
y holds on a standard ellipse or hyperbola of eccentricity e.

solution We differentiate the equations of the standard ellipse and the hyperbola with respect to x:

Ellipse: Hyperbola:

x2

a2
+ y2

b2
= 1

2x

a2
+ 2y

b2

dy

dx
= 0

dy

dx
= −b2

a2

x

y

x2

a2
− y2

b2
= 1

2x

a2
− 2y

b2

dy

dx
= 0

dy

dx
= b2

a2

x

y

The eccentricity of the ellipse is e =
√

a2−b2

a , hence e2a2 = a2 − b2 or e2 = 1 − b2

a2 yielding b2

a2 = 1 − e2.
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The eccentricity of the hyperbola is e =
√

a2+b2

a , hence e2a2 = a2 + b2 or e2 = 1 + b2

a2 , giving b2

a2 = e2 − 1.

Combining with the expressions for dy
dx

we get:

Ellipse: Hyperbola:

dy

dx
= −(1 − e2)

x

y
= (e2 − 1)

x

y

dy

dx
= (e2 − 1)

x

y

We, thus, proved that the relation dy
dx

= (e2 − 1) x
y holds on a standard ellipse or hyperbola of eccentricity e.

54. The orbit of Jupiter is an ellipse with the sun at a focus. Find the eccentricity of the orbit if the perihelion (closest
distance to the sun) equals 740 × 106 km and the aphelion (farthest distance from the sun) equals 816 × 106 km.

solution For the sake of simplicity, we treat all numbers in units of 106 km. By Kepler’s First Law we conclude that
the sun is at one of the foci of the ellipse. Therefore, the closest and farthest points to the sun are vertices. Moreover, they
are the vertices on the x-axis, hence we conclude that the distance between the two vertices is

2a = 740 + 816 = 1556

Since the distance between each focus and the vertex that is closest to it is the same distance, and since a = 778, we
conclude that the distance between the foci is

c = a − 740 = 38

We substitute this in the formula for the eccentricity to obtain:

e = c

a
= 0.0488.

55. Refer to Figure 25 in Section 11.5. Prove that the product of the perpendicular distances F1R1 and F2R2 from the
foci to a tangent line of an ellipse is equal to the square b2 of the semiminor axes.

solution We first consider the ellipse in standard position:

x2

a2
+ y2

b2
= 1

The equation of the tangent line at P = (x0, y0) is

x0x

a2
+ y0y

b2
= 1

or

b2x0x + a2y0y − a2b2 = 0

The distances of the foci F1 = (c, 0) and F2 = (−c, 0) from the tangent line are

F1R1 = |b2x0c − a2b2|√
b4x2

0 + a4y2
0

; F2R2 = |b2x0c + a2b2|√
b4x2

0 + a4y2
0

We compute the product of the distances:

F1R1 · F2R2 =
∣∣∣∣∣∣
(
b2x0c − a2b2

) (
b2x0c + a2b2

)
b4x2

0 + a4y2
0

∣∣∣∣∣∣ =
∣∣∣∣∣b

4x2
0c2 − a4b4

b4x2
0 + a4y2

0

∣∣∣∣∣ (1)

The point P = (x0, y0) lies on the ellipse, hence:

x2
0

a2
+ y2

0

b2
= 1 ⇒ a4y2

0 = a4b2 − a2b2x2
0

We substitute in (1) to obtain (notice that b2 − a2 = −c2)

F1R1 · F2R2 = |b4x2
0c2 − a4b4|

|b4x2
0 + a4b2 − a2b2x2

0 | = |b4x2
0c2 − a4b4|

|b2(b2 − a2)x2
0 + a4b2|

= |b4x2
0c2 − a4b4|

| − b2x2
0c2 + a4b2| = |b2(x2

0c2 − a4)|
| − (x2

0c2 − a4)| = | − b2| = b2

The product F1R1 · F2R2 remains unchanged if we translate the standard ellipse.
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12.1 Vectors in the Plane (LT Section 13.1)

Preliminary Questions
1. Answer true or false. Every nonzero vector is:

(a) Equivalent to a vector based at the origin.

(b) Equivalent to a unit vector based at the origin.

(c) Parallel to a vector based at the origin.

(d) Parallel to a unit vector based at the origin.

solution

(a) This statement is true. Translating the vector so that it is based on the origin, we get an equivalent vector based at the
origin.

(b) Equivalent vectors have equal lengths, hence vectors that are not unit vectors, are not equivalent to a unit vector.

(c) This statement is true. A vector based at the origin such that the line through this vector is parallel to the line through
the given vector, is parallel to the given vector.

(d) Since parallel vectors do not necessarily have equal lengths, the statement is true by the same reasoning as in (c).

2. What is the length of −3a if ‖a‖ = 5?

solution Using properties of the length we get

‖−3a‖ = |−3|‖a‖ = 3‖a‖ = 3 · 5 = 15

3. Suppose that v has components 〈3, 1〉. How, if at all, do the components change if you translate v horizontally two
units to the left?

solution Translating v = 〈3, 1〉 yields an equivalent vector, hence the components are not changed.

4. What are the components of the zero vector based at P = (3, 5)?

solution The components of the zero vector are always 〈0, 0〉, no matter where it is based.

5. True or false?

(a) The vectors v and −2v are parallel.

(b) The vectors v and −2v point in the same direction.

solution

(a) The lines through v and −2v are parallel, therefore these vectors are parallel.

(b) The vector −2v is a scalar multiple of v, where the scalar is negative. Therefore −2v points in the opposite direction
as v.

6. Explain the commutativity of vector addition in terms of the Parallelogram Law.

solution To determine the vector v + w, we translate w to the equivalent vector w′ whose tail coincides with the head
of v. The vector v + w is the vector pointing from the tail of v to the head of w′.

v v'

w'

w

v +
 w

w + v

To determine the vector w + v, we translate v to the equivalent vector v′ whose tail coincides with the head of w. Then
w + v is the vector pointing from the tail of w to the head of v′. In either case, the resulting vector is the vector with the
tail at the basepoint of v and w, and head at the opposite vertex of the parallelogram. Therefore v + w = w + v.

312
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Exercises
1. Sketch the vectors v1, v2, v3, v4 with tail P and head Q, and compute their lengths. Are any two of these vectors

equivalent?

v1 v2 v3 v4

P (2, 4) (−1, 3) (−1, 3) (4, 1)

Q (4, 4) (1, 3) (2, 4) (6, 3)

solution Using the definitions we obtain the following answers:

v1 = −→
PQ = 〈4 − 2, 4 − 4〉 = 〈2, 0〉

‖v1‖ =
√

22 + 02 = 2
y

x

QP
v1

v2 = 〈1 − (−1), 3 − 3〉 = 〈2, 0〉
‖v2‖ =

√
22 + 02 = 2

y

x

QP
v2

v3 = 〈2 − (−1), 4 − 3〉 = 〈3, 1〉
‖v3‖ =

√
32 + 12 = √

10
y

x

Q

P v3

v4 = 〈6 − 4, 3 − 1〉 = 〈2, 2〉
‖v4‖ =

√
22 + 22 = √

8 = 2
√

2
y

x

Q

P v4

v1 and v2 are parallel and have the same length, hence they are equivalent.

2. Sketch the vector b = 〈3, 4〉 based at P = (−2, −1).

solution The vector b = 〈3, 4〉 based at P has terminal point Q, located 3 units to the right and 4 units up from P .
Therefore Q = (−2 + 3, −1 + 4) = (1, 3). The vector equivalent to b is PQ shown in the figure.

y

x

Q = (1, 3)

P = (−2, −1)

3. What is the terminal point of the vector a = 〈1, 3〉 based at P = (2, 2)? Sketch a and the vector a0 based at the origin
and equivalent to a.

solution The terminal point Q of the vector a is located 1 unit to the right and 3 units up from P = (2, 2). Therefore,
Q = (2 + 1, 2 + 3) = (3, 5). The vector a0 equivalent to a based at the origin is shown in the figure, along with the
vector a.
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y

x

P

Q

0

a0

a

4. Let v = −→
PQ, where P = (1, 1) and Q = (2, 2). What is the head of the vector v′ equivalent to v based at (2, 4)?

What is the head of the vector v0 equivalent to v based at the origin? Sketch v, v0, and v′.
solution We first find the components of v:

v = −→
PQ = 〈1, 1〉

Since v′ is equivalent to v, the two vectors have the same components, hence the head of v′ is located one unit to the right
and one unit up from (2, 4). This is the point (3, 5). The head of v0 is located one unit to the right and one unit up from
the origin; that is, the head is at the point (1, 1).

y

x
(0, 0)

(2, 4)

(3, 5)

v0

v1

v

Q

P

In Exercises 5–8, find the components of
−→
PQ.

5. P = (3, 2), Q = (2, 7)

solution Using the definition of the components of a vector we have
−→
PQ = 〈2 − 3, 7 − 2〉 = 〈−1, 5〉.

6. P = (1, −4), Q = (3, 5)

solution The components of
−→
PQ are

−→
PQ = 〈3 − 1, 5 − (−4)〉 = 〈2, 9〉.

7. P = (3, 5), Q = (1, −4)

solution By the definition of the components of a vector, we obtain
−→
PQ = 〈1 − 3, −4 − 5〉 = 〈−2, −9〉.

8. P = (0, 2), Q = (5, 0)

solution The components of the vector
−→
PQ are

−→
PQ = 〈5 − 0, 0 − 2〉 = 〈5, −2〉.

In Exercises 9–14, calculate.

9. 〈2, 1〉 + 〈3, 4〉
solution Using vector algebra we have 〈2, 1〉 + 〈3, 4〉 = 〈2 + 3, 1 + 4〉 = 〈5, 5〉.
10. 〈−4, 6〉 − 〈3,−2〉
solution 〈−4, 6〉 − 〈3, −2〉 = 〈−4 − 3, 6 − (−2)〉 = 〈−7, 8〉
11. 5 〈6, 2〉
solution 5〈6, 2〉 = 〈5 · 6, 5 · 2〉 = 〈30, 10〉
12. 4(〈1, 1〉 + 〈3, 2〉)
solution Using vector algebra we obtain

4 (〈1, 1〉 + 〈3, 2〉) = 4〈1 + 3, 1 + 2〉 = 4〈4, 3〉 = 〈4 · 4, 4 · 3〉 = 〈16, 12〉

13.
〈
− 1

2 , 5
3

〉
+
〈
3, 10

3

〉

solution The vector sum is

〈
−1

2
,

5

3

〉
+
〈
3,

10

3

〉
=
〈
−1

2
+ 3,

5

3
+ 10

3

〉
=
〈

5

2
, 5

〉
.
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14. 〈ln 2, e〉 + 〈ln 3, π〉
solution The vector sum is 〈ln 2, e〉 + 〈ln 3, π〉 = 〈ln 2 + ln 3, e + π〉 = 〈ln 6, e + π〉.
15. Which of the vectors (A)–(C) in Figure 21 is equivalent to v − w?

w

v

(A) (B) (C)

FIGURE 21

solution The vector −w has the same length as w but points in the opposite direction. The sum v + (−w), which is
the difference v − w, is obtained by the parallelogram law. This vector is the vector shown in (b).

w

vv − w

−w

−w

16. Sketch v + w and v − w for the vectors in Figure 22.

v
w

FIGURE 22

solution The vector v + w is obtained by the parallelogram law:

w
v + w

v
w

Since v − w = v + (−w), we first sketch the vector −w, which has the same length as w but points to the opposite
direction. Then we add −w to v using the parallelogram law. This gives:

v − w

−w

−w

v
w

17. Sketch 2v, −w, v + w, and 2v − w for the vectors in Figure 23.

2 4 61 3 5

1

2

3

4

5

x

y

v = 〈2, 3〉

w = 〈1, 4〉

FIGURE 23

solution The scalar multiple 2v points in the same direction as v and its length is twice the length of v. It is the vector
2v = 〈4, 6〉.

2 4 61 3 5

2v

1

2

3

4

5

x

y

2 4 61 3 5

v
1

2

3

4

5

x

y

−w has the same length as w but points to the opposite direction. It is the vector −w = 〈−4, −1〉.
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y

x
w

−w

The vector sum v + w is the vector:

v + w = 〈2, 3〉 + 〈4, 1〉 = 〈6, 4〉.
This vector is shown in the following figure:

y

x
w

v

v + w

The vector 2v − w is

2v − w = 2〈2, 3〉 − 〈4, 1〉 = 〈4, 6〉 − 〈4, 1〉 = 〈0, 5〉
It is shown next:

2v − w

y

x

18. Sketch v = 〈1, 3〉, w = 〈2, −2〉, v + w, v − w.

solution We compute the sum v + w and the difference v − w and then sketch the vectors. This gives:

v + w = 〈1, 3〉 + 〈2, −2〉 = 〈1 + 2, 3 − 2〉 = 〈3, 1〉
v − w = 〈1, 3〉 − 〈2, −2〉 = 〈1 − 2, 3 + 2〉 = 〈−1, 5〉

y

x

v − w

v

w

v + w

19. Sketch v = 〈0, 2〉, w = 〈−2, 4〉, 3v + w, 2v − 2w.

solution We compute the vectors and then sketch them:

3v + w = 3〈0, 2〉 + 〈−2, 4〉 = 〈0, 6〉 + 〈−2, 4〉 = 〈−2, 10〉
2v − 2w = 2〈0, 2〉 − 2〈−2, 4〉 = 〈0, 4〉 − 〈−4, 8〉 = 〈4, −4〉
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y

x

w

v

3v + w

2v − 2w

20. Sketch v = 〈−2, 1〉, w = 〈2, 2〉, v + 2w, v − 2w.

solution We compute the linear combinations v + 2w and v − 2w and then sketch the vectors:

v + 2w = 〈−2, 1〉 + 2〈2, 2〉 = 〈−2, 1〉 + 〈4, 4〉 = 〈2, 5〉
v − 2w = 〈−2, 1〉 − 2〈2, 2〉 = 〈−2, 1〉 − 〈4, 4〉 = 〈−6, −3〉

y

x

v − 2w

v
w

v + 2w

21. Sketch the vector v such that v + v1 + v2 = 0 for v1 and v2 in Figure 24(A).

1−3

1

3

x

y

v1

v2

(A)

x

y

v3

v1

v4 v2

(B)

FIGURE 24

solution Since v + v1 + v2 = 0, we have that v = −v1 − v2, and since v1 = 〈1, 3〉 and v2 = 〈−3, 1〉, then
v = −v1 − v2 = 〈2, −4〉, as seen in this picture.

1 2

3

1

−4

−3

y

x

v

v1

v2

22. Sketch the vector sum v = v1 + v2 + v3 + v4 in Figure 24(B).

solution If we place the vectors v1, v2, v3, v4 tip to tail, as shown in the following figure, it is easy to sketch in the
sum v1 + v2 + v3 + v4, as shown.

x

y

v1 + v2 + v3 + v4

v4

v1

v2

v3
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23. Let v = −→
PQ, where P = (−2, 5), Q = (1, −2). Which of the following vectors with the given tails and heads are

equivalent to v?

(a) (−3, 3), (0, 4) (b) (0, 0), (3, −7)

(c) (−1, 2), (2, −5) (d) (4, −5), (1, 4)

solution Two vectors are equivalent if they have the same components. We thus compute the vectors and check
whether this condition is satisfied.

v = −→
PQ = 〈1 − (−2), −2 − 5〉 = 〈3, −7〉

(a) 〈0 − (−3), 4 − 3〉 = 〈3, 1〉 (b) 〈3 − 0, −7 − 0〉 = 〈3, −7〉
(c) 〈2 − (−1), −5 − 2〉 = 〈3, −7〉 (d) 〈1 − 4, 4 − (−5)〉 = 〈−3, 9〉
We see that the vectors in (b) and (c) are equivalent to v.

24. Which of the following vectors are parallel to v = 〈6, 9〉 and which point in the same direction?

(a) 〈12, 18〉 (b) 〈3, 2〉 (c) 〈2, 3〉
(d) 〈−6, −9〉 (e) 〈−24, −27〉 (f) 〈−24, −36〉
solution Two vectors are parallel if they are scalar multiples of each other. The vectors point in the same direction if
the multiplying scalar is positive. We use this to obtain the following conclusions:

(a) 〈12, 18〉 = 2〈6, 9〉 = 2v ⇒ both vectors point in the same direction.

(b) 〈3, 2〉 is not a scalar multiple of v, hence the vectors are not parallel.

(c) 〈2, 3〉 = 1
3 〈6, 9〉 = 1

3 v ⇒ both vectors point in the same direction.

(d) 〈−6, −9〉 = −〈6, 9〉 = −v ⇒ parallel to v and points in the opposite direction.

(e) 〈−24, −27〉 is not a scalar multiple of v, hence the vectors are not parallel.

(f) 〈−24, −36〉 = −4〈6, 9〉 = −4v ⇒ parallel to v and points in the opposite direction.

In Exercises 25–28, sketch the vectors
−→
AB and

−→
PQ, and determine whether they are equivalent.

25. A = (1, 1), B = (3, 7), P = (4, −1), Q = (6, 5)

solution We compute the vectors and check whether they have the same components:

−→
AB = 〈3 − 1, 7 − 1〉 = 〈2, 6〉
−→
PQ = 〈6 − 4, 5 − (−1)〉 = 〈2, 6〉

⇒ The vectors are equivalent.

26. A = (1, 4), B = (−6, 3), P = (1, 4), Q = (6, 3)

solution We compute
−→
AB and

−→
PQ and see if they have the same components:

−→
AB = 〈−6 − 1, 3 − 4〉 = 〈−7, −1〉
−→
PQ = 〈6 − 1, 3 − 4〉 = 〈5, −1〉

⇒ The vectors are not equivalent.

y

x

(−6, 3) (6, 3)
(1, 4)

A, P
QB

27. A = (−3, 2), B = (0, 0), P = (0, 0), Q = (3, −2)

solution We compute the vectors
−→
AB and

−→
PQ :

−→
AB = 〈0 − (−3), 0 − 2〉 = 〈3, −2〉
−→
PQ = 〈3 − 0, −2 − 0〉 = 〈3, −2〉

⇒ The vectors are equivalent.

28. A = (5, 8), B = (1, 8), P = (1, 8), Q = (−3, 8)

solution Computing
−→
AB and

−→
PQ gives:

−→
AB = 〈1 − 5, 8 − 8〉 = 〈−4, 0〉
−→
PQ = 〈−3 − 1, 8 − 8〉 = 〈−4, 0〉

⇒ The vectors are equivalent.
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y

x

(5, 8)(1, 8)(−3, 8)

Q B, P A

In Exercises 29–32, are
−→
AB and

−→
PQ parallel? And if so, do they point in the same direction?

29. A = (1, 1), B = (3, 4), P = (1, 1), Q = (7, 10)

solution We compute the vectors
−→
AB and

−→
PQ:

−→
AB = 〈3 − 1, 4 − 1〉 = 〈2, 3〉
−→
PQ = 〈7 − 1, 10 − 1〉 = 〈6, 9〉

Since
−→
AB = 1

3 〈6, 9〉, the vectors are parallel and point in the same direction.

30. A = (−3, 2), B = (0, 0), P = (0, 0), Q = (3, 2)

solution We compute the two vectors:

−→
AB = 〈0 − (−3), 0 − 2〉 = 〈3, −2〉
−→
PQ = 〈3 − 0, 2 − 0〉 = 〈3, 2〉

The vectors are not scalar multiples of each other, hence they are not parallel.

31. A = (2, 2), B = (−6, 3), P = (9, 5), Q = (17, 4)

solution We compute the vectors
−→
AB and

−→
PQ:

−→
AB = 〈−6 − 2, 3 − 2〉 = 〈−8, 1〉
−→
PQ = 〈17 − 9, 4 − 5〉 = 〈8, −1〉

Since
−→
AB = −−→

PQ, the vectors are parallel and point in opposite directions.

32. A = (5, 8), B = (2, 2), P = (2, 2), Q = (−3, 8)

solution Computing
−→
AB and

−→
PQ gives:

−→
AB = 〈2 − 5, 2 − 8〉 = 〈−3 − 6〉
−→
PQ = 〈−3 − 2, 8 − 2〉 = 〈−5, 6〉

The vectors are not scalar multiples of each other, hence they are not parallel.

In Exercises 33–36, let R = (−2, 7). Calculate the following.

33. The length of
−→
OR

solution Since
−→
OR = 〈−2, 7〉, the length of the vector is ‖−→

OR‖ =
√

(−2)2 + 72 = √
53.

34. The components of u = −→
PR, where P = (1, 2)

solution We compute the components of the vector to obtain:

u = −→
PR = 〈−2 − 1, 7 − 2〉 = 〈−3, 5〉

35. The point P such that
−→
PR has components 〈−2, 7〉

solution Denoting P = (x0, y0) we have:

−→
PR = 〈−2 − x0, 7 − y0〉 = 〈−2, 7〉

Equating corresponding components yields:

− 2 − x0 = −2

7 − y0 = 7
⇒ x0 = 0, y0 = 0 ⇒ P = (0, 0)
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36. The point Q such that
−→
RQ has components 〈8, −3〉

solution We denote Q = (x0, y0) and have:

−→
RQ = 〈x0 − (−2), y0 − 7〉 = 〈x0 + 2, y0 − 7〉 = 〈8, −3〉

Equating the corresponding components of the two vectors yields:

x0 + 2 = 8

y0 − 7 = −3
⇒ x0 = 6, y0 = 4 ⇒ Q = (6, 4)

In Exercises 37–42, find the given vector.

37. Unit vector ev where v = 〈3, 4〉
solution The unit vector ev is the following vector:

ev = 1

‖v‖v

We find the length of v = 〈3, 4〉:

‖v‖ =
√

32 + 42 = √
25 = 5

Thus

ev = 1

5
〈3, 4〉 =

〈
3

5
,

4

5

〉
.

38. Unit vector ew where w = 〈24, 7〉
solution The unit vector ew is the following vector:

ew = 1

‖w‖w

We find the length of w = 〈24, 7〉:

‖w‖ =
√

242 + 72 = √
625 = 25

Thus

ew = 1

25
〈24, 7〉 =

〈
24

25
,

7

25

〉
.

39. Vector of length 4 in the direction of u = 〈−1, −1〉
solution Since ‖u‖ =

√
(−1)2 + (−1)2 = √

2, the unit vector in the direction of u is eu =
〈
− 1√

2
, − 1√

2

〉
. We

multiply eu by 4 to obtain the desired vector:

4eu = 4

〈
− 1√

2
, − 1√

2

〉
=
〈
−2

√
2, −2

√
2
〉

40. Unit vector in the direction opposite to v = 〈−2, 4〉
solution We first compute the unit vector ev in the direction of v and then multiply by −1 to obtain a unit vector in
the opposite direction. This gives:

ev = 1

‖v‖v = 1√
(−2)2 + 42

〈−2, 4〉 = 1√
20

〈−2, 4〉 =
〈
− 2

2
√

5
,

4

2
√

5

〉
=
〈
− 1√

5
,

2√
5

〉

The desired vector is thus

−ev = −
〈
− 1√

5
,

2√
5

〉
=
〈

1√
5
, − 2√

5

〉
.

41. Unit vector e making an angle of 4π
7 with the x-axis

solution The unit vector e is the following vector:

e =
〈
cos

4π

7
, sin

4π

7

〉
= 〈−0.22, 0.97〉.
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42. Vector v of length 2 making an angle of 30◦ with the x-axis

solution The desired vector is

v = 2〈cos 30◦, sin 30◦〉 = 2

〈√
3

2
,

1

2

〉
=
〈√

3, 1
〉
.

43. Find all scalars λ such that λ 〈2, 3〉 has length 1.

solution We have:

‖λ〈2, 3〉‖ = |λ|‖〈2, 3〉‖ = |λ|
√

22 + 32 = |λ|√13

The scalar λ must satisfy

|λ|√13 = 1

|λ| = 1√
13

⇒ λ1 = 1√
13

, λ2 = − 1√
13

44. Find a vector v satisfying 3v + 〈5, 20〉 = 〈11, 17〉.
solution Write v = 〈x, y〉 to get the equation 3 〈x, y〉 + 〈5, 20〉 = 〈11, 17〉, which gives us 3x + 5 = 11 (and thus
x = 2) and also 3y + 20 = 17 (and so y = −1). Thus, v = 〈2, −1〉.
45. What are the coordinates of the point P in the parallelogram in Figure 25(A)?

x

y

x

y

(2, 2)

(A)

P

(5, 4)

(7, 8)

(2, 3)

(−3, 2)
(a, 1)

(−1, b)

(B)

FIGURE 25

solution We denote by A, B, C the points in the figure.

x

y

C (7, 8)

P (x0, y0)

B (5, 4)

A (2, 2)

Let P = (x0, y0). We compute the following vectors:

−→
PC = 〈7 − x0, 8 − y0〉
−→
AB = 〈5 − 2, 4 − 2〉 = 〈3, 2〉

The vectors
−→
PC and

−→
AB are equivalent, hence they have the same components. That is:

7 − x0 = 3

8 − y0 = 2
⇒ x0 = 4, y0 = 6 ⇒ P = (4, 6)

46. What are the coordinates a and b in the parallelogram in Figure 25(B)?

solution We denote the points in the figure by A, B, C and D.

x

y

C (2, 3)

A (−3, 2)
D (a, 1)

B (−1, b)
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We compute the following vectors:

−→
AB = 〈−1 − (−3), b − 2〉 = 〈2, b − 2〉
−→
DC = 〈2 − a, 3 − 1〉 = 〈2 − a, 2〉

Since
−→
AB = −→

DC, the two vectors have the same components. That is,

2 = 2 − a

b − 2 = 2
⇒ a = 0

b = 4

47. Let v = −→
AB and w = −→

AC, where A, B, C are three distinct points in the plane. Match (a)–(d) with (i)–(iv). (Hint:
Draw a picture.)

(a) −w (b) −v (c) w − v (d) v − w

(i)
−→
CB (ii)

−→
CA (iii)

−→
BC (iv)

−→
BA

solution

(a) −w has the same length as w and points in the opposite direction. Hence: −w = −→
CA.

C

A

−w

(b) −v has the same length as v and points in the opposite direction. Hence: −v = −→
BA.

B

A

−v

(c) By the parallelogram law we have:

−→
BC = −→

BA + −→
AC = −v + w = w − v

That is,

w − v = −→
BC

−v

w

−v + w = BC

A

B

C

→

(d) By the parallelogram law we have:

−→
CB = −→

CA + −→
AB = −w + v = v − w

That is,

v − w = −→
CB.

−w

v −w + v = CB

A

B

C

→

48. Find the components and length of the following vectors:

(a) 4i + 3j (b) 2i − 3j (c) i + j (d) i − 3j

solution
(a) Since i = 〈1, 0〉 and j = 〈0, 1〉, using vector algebra we have:

4i + 3j = 4〈1, 0〉 + 3〈0, 1〉 = 〈4, 0〉 + 〈0, 3〉 = 〈4 + 0, 0 + 3〉 = 〈4, 3〉
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The length of the vector is:

‖4i + 3j‖ =
√

42 + 32 = 5

(b) We use vector algebra and the definition of the standard basis vector to compute the components of the vector 2i − 3j:

2i − 3j = 2〈1, 0〉 − 3〈0, 1〉 = 〈2, 0〉 − 〈0, 3〉 = 〈2 − 0, 0 − 3〉 = 〈2, −3〉
The length of this vector is:

‖2i − 3j‖ =
√

22 + (−3)2 = √
13

(c) We find the components of the vector i + j:

i + j = 〈1, 0〉 + 〈0, 1〉 = 〈1 + 0, 0 + 1〉 = 〈1, 1〉
The length of this vector is:

‖i + j‖ =
√

12 + 12 = √
2

(d) We find the components of the vector i − 3j, using vector algebra:

i − 3j = 〈1, 0〉 − 3〈0, 1〉 = 〈1, 0〉 − 〈0, 3〉 = 〈1 − 0, 0 − 3〉 = 〈1, −3〉
The length of this vector is

‖i − 3j‖ =
√

12 + (−3)2 = √
10

In Exercises 49–52, calculate the linear combination.

49. 3j + (9i + 4j)

solution We have:

3j + (9i + 4j) = 3 〈0, 1〉 + 9 〈1, 0〉 + 4 〈0, 1〉 = 〈9, 7〉

50. − 3
2 i + 5

( 1
2 j − 1

2 i
)

solution We have:

−3

2
i + 5

(1

2
j − 1

2
i
) = −3

2
〈1, 0〉 + 5

(1

2
〈0, 1〉 − 1

2
〈1, 0〉 ) =

〈
−4,

5

2

〉

51. (3i + j) − 6j + 2(j − 4i)

solution We have:

(3i + j) − 6j + 2(j − 4i) = (〈3, 0〉 + 〈0, 1〉) − 〈0, 6〉 + 2(〈0, 1〉 − 〈4, 0〉) = 〈−5, −3〉

52. 3(3i − 4j) + 5(i + 4j)

solution We have:

3(3i − 4j) + 5(i + 4j) = 3(〈3, 0〉 − 〈0, 4〉) + 5(〈1, 0〉 + 〈0, 4〉) = 〈14, 8〉

53. For each of the position vectors u with endpoints A, B, and C in Figure 26, indicate with a diagram the multiples rv
and sw such that u = rv + sw. A sample is shown for u = −−→

OQ.

y

x

C

A

Q

B

w

v

sw

rv

FIGURE 26
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solution See the following three figures:

y

x

A

w

v

sw

rv

y

x

w

v
B

sw
rv

y

x

w

vsw

rv

C

54. Sketch the parallelogram spanned by v = 〈1, 4〉 and w = 〈5, 2〉. Add the vector u = 〈2, 3〉 to the sketch and express
u as a linear combination of v and w.

solution We have

u = 〈2, 3〉 = rv + sw = r〈1, 4〉 + s〈5, 2〉
which becomes the two equations

2 = r + 5s

3 = 4r + 2s

Solving the first equation for r gives

r = 2 − 5s

and substituting that into the first equation gives

3 = 4(2 − 5s) + 2s = 8 − 18s

So 18s = 5, so s = 5/18, and thus r = 11/18. In other words,

u = 〈2, 3〉 = 11

18
〈1, 4〉 + 5

18
〈5, 2〉

as seen in this picture:

y

x

v
u

w

In Exercises 55 and 56, express u as a linear combination u = rv + sw. Then sketch u, v, w, and the parallelogram
formed by rv and sw.

55. u = 〈3, −1〉; v = 〈2, 1〉, w = 〈1, 3〉
solution We have

u = 〈3, −1〉 = rv + sw = r〈2, 1〉 + s〈1, 3〉
which becomes the two equations

3 = 2r + s

−1 = r + 3s

Solving the second equation for r gives r = −1 − 3s, and substituting that into the first equation gives 3 = 2(−1 − 3s) +
s = −2 − 6s + s, so 5 = −5s, so s = −1, and thus r = 2. In other words,

u = 〈3, −1〉 = 2〈2, 1〉 − 1〈1, 3〉
as seen in this sketch:
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y

x

v

u

w

56. u = 〈6, −2〉; v = 〈1, 1〉, w = 〈1, −1〉
solution We have

u = 〈6, −2〉 = rv + sw = r〈1, 1〉 + s〈1, −1〉
which becomes the two equations

6 = r + s

−2 = r − s

Adding gives 4 = 2r , so r = 2 and thus s = 4. In other words,

u = 〈6, −2〉 = 2〈1, 1〉 + 4〈1, −1〉
as seen in this sketch:

y

x

w

v

u

57. Calculate the magnitude of the force on cables 1 and 2 in Figure 27.

65° 25°

Cable 1 Cable 2

50 lbs

FIGURE 27

solution The three forces acting on the point P are:

• The force F of magnitude 50 lb that acts vertically downward.
• The forces F1 and F2 that act through cables 1 and 2 respectively.

y

x
25°

115°F1

F

F2

P

Since the point P is not in motion we have

F1 + F2 + F = 0 (1)

We compute the forces. Letting ‖F1‖ = f1 and ‖F2‖ = f2 we have:

F1 = f1〈cos 115◦, sin 115◦〉 = f1〈−0.423, 0.906〉
F2 = f2〈cos 25◦, sin 25◦〉 = f2〈0.906, 0.423〉
F = 〈0, −50〉
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Substituting the forces in (1) gives

f1〈−0.423, 0.906〉 + f2〈0.906, 0.423〉 + 〈0, −50〉 = 〈0, 0〉
〈−0.423f1 + 0.906f2, 0.906f1 + 0.423f2 − 50〉 = 〈0, 0〉

We equate corresponding components and get

−0.423f1 + 0.906f2 = 0

0.906f1 + 0.423f2 − 50 = 0

By the first equation, f2 = 0.467f1. Substituting in the second equation and solving for f1 yields

0.906f1 + 0.423 · 0.467f1 − 50 = 0

1.104f1 = 50 ⇒ f1 = 45.29, f2 = 0.467f1 = 21.15

We conclude that the magnitude of the force on cable 1 is f1 = 45.29 lb and the magnitude of the force on cable 2 is
f2 = 21.15 lb.

58. Determine the magnitude of the forces F1 and F2 in Figure 28, assuming that there is no net force on the object.

30˚45˚

20 lbsF2

F1

FIGURE 28

solution We denote ‖F1‖ = f1 and ‖F2‖ = f2. It is convenient (but not necessary) to redraw the vectors as being
centered at the object, giving us the following figure.

x
210°

−45°

20
F2

F3

F1

Since there is no net force on the object, we have

F1 + F2 + F3 = 0 (1)

We find the forces:

F1 = f1〈0, 1〉 = 〈0, f1〉

F2 = f2〈cos(−45◦), sin(−45◦)〉 = f2

〈√
2

2
, −

√
2

2

〉
= 〈0.707f2, −0.707f2〉

F3 = 20〈cos 210◦, sin 210◦〉 = 〈−17.32, −10〉
We substitute the forces in (1):

〈0, f1〉 + 〈0.707f2, −0.707f2〉 + 〈−17.32, −10〉 = 〈0, 0〉
〈0.707f2 − 17.32, f1 − 0.707f2 − 10〉 = 〈0, 0〉

Equating corresponding components we obtain

0.707f2 − 17.32 = 0

f1 − 0.707f2 − 10 = 0

The first equation gives f2 = 24.5. Substituting in the second equation and solving for f1 gives

f1 − 0.707 · 24.5 − 10 = 0 ⇒ f1 = 27.32

The magnitude of the forces F1 and F2 are f1 = 27.32 lb and f2 = 24.5 lb respectively.

59. A plane flying due east at 200 km/h encounters a 40-km/h wind blowing in the north-east direction. The resultant
velocity of the plane is the vector sum v = v1 + v2, where v1 is the velocity vector of the plane and v2 is the velocity
vector of the wind (Figure 29). The angle between v1 and v2 is π

4 . Determine the resultant speed of the plane (the length
of the vector v).
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40 kkkkmkmmm/hm/hm/hm/hm/h/h/hhhh40 km/h

hh/hm/hm/hm/hkm/h200 km/h200 km/h200 km/h200 km/h200 km/200 km/200 km200 km200 k200 k200 k00

vvvvvv22222

vvvvvvvvvvvvv11111

vvvvvv

FIGURE 29

solution The resultant speed of the plane is the length of the sum vector v = v1 + v2. We place the xy-coordinate
system as shown in the figure, and compute the components of the vectors v1 and v2. This gives

v1 = 〈v1, 0〉

v2 =
〈
v2 cos

π

4
, v2 sin

π

4

〉
=
〈
v2 ·

√
2

2
, v2 ·

√
2

2

〉

y

xv1

v2

v1

v2

π
4

We now compute the sum v = v1 + v2:

v = 〈v1, 0〉 +
〈√

2v2

2
,

√
2v2

2

〉
=
〈√

2

2
v2 + v1,

√
2

2
v2

〉

The resultant speed is the length of v, that is,

v = ‖v‖ =
√√√√(√

2v2

2

)2

+
(

v1 +
√

2v2

2

)2

=
√

v2
2
2

+ v2
1 + 2 ·

√
2

2
v2v1 + v2

2
2

=
√

v2
1 + v2

2 + √
2v1v2

Finally, we substitute the given information v1 = 200 and v2 = 40 in the equation above, to obtain

v =
√

2002 + 402 + √
2 · 200 · 40 ≈ 230 km/hr

Further Insights and Challenges
In Exercises 60–62, refer to Figure 30, which shows a robotic arm consisting of two segments of lengths L1 and L2.

x

y

q1

q1

q2
PL1

L2

r

FIGURE 30

60. Find the components of the vector r = −→
OP in terms of θ1 and θ2.

solution We denote by A the point in the figure.

x

y

q1
q2

90° − q2

q2 − 90°
90° − q1

O

P

A
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By the parallelogram law we have

r = −→
OA + −→

AP (1)

We find the vectors
−→
OA and

−→
AP :

• The vector
−→
OA has length L1 and it makes an angle of 90◦ − θ1 with the x-axis.

• The vector
−→
AP has length L2 and it makes an angle of −(90◦ − θ2) = θ2 − 90◦ with the x-axis.

Hence,

−→
OA = L1

〈
cos(90◦ − θ1), sin(90◦ − θ1)

〉 = L1〈sin θ1, cos θ1〉 = 〈L1 sin θ1, L1 cos θ1〉
−→
AP = L2

〈
cos(θ2 − 90◦), sin(θ2 − 90◦)

〉 = L2〈sin θ2, − cos θ2〉 = 〈L2 sin θ2, −L2 cos θ2〉
Substituting into (1) we obtain

r = 〈L1 sin θ1, L1 cos θ1〉 + 〈L2 sin θ2 − L2 cos θ2〉
r = 〈L1 sin θ1 + L2 sin θ2, L1 cos θ1 − L2cos θ2〉

Thus, the x component of r is L1 sin θ1 + L2 sin θ2 and the y component is L1 cos θ1 − L2 cos θ2.

61. Let L1 = 5 and L2 = 3. Find r for θ1 = π
3 , θ2 = π

4 .

solution In Exercise 60 we showed that

r = 〈L1 sin θ1 + L2 sin θ2, L1 cos θ1 − L2cos θ2〉
Substituting the given information we obtain

r =
〈
5 sin

π

3
+ 3 sin

π

4
, 5 cos

π

3
− 3 cos

π

4

〉
=
〈

5
√

3

2
+ 3

√
2

2
,

5

2
− 3

√
2

2

〉
≈ 〈6.45, 0.38〉

62. Let L1 = 5 and L2 = 3. Show that the set of points reachable by the robotic arm with θ1 = θ2 is an ellipse.

solution Substituting L1 = 5, L2 = 3, and θ1 = θ2 = θ in the formula for r obtained in Exercise 60 we get

r = 〈L1 sin θ1 + L2 sin θ2, L1 cos θ1 − L2 cos θ2〉
= 〈5 sin θ + 3 sin θ, 5 cos θ − 3 cos θ〉 = 〈8 sin θ, 2 cos θ〉

Thus, the x and y components of r are

x = 8 sin θ, y = 2 cos θ

so x
8 = sin θ , y

2 = cos θ . Using the identity sin2θ + cos2θ = 1 we get

(x

8

)2 +
(y

2

)2 = 1,

which is the formula of an ellipse.

63. Use vectors to prove that the diagonals AC and BD of a parallelogram bisect each other (Figure 31). Hint: Observe
that the midpoint of BD is the terminal point of w + 1

2 (v − w).

(v + w)

(v − w)

v

w

A
B

D
C

1
2

1
2

FIGURE 31

solution We denote by O the midpoint of BD. Hence,

−−→
DO = 1

2
−→
DB
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v

v

w
w

A
B

D
C

O

Using the Parallelogram Law we have

−→
AO = −→

AD + −−→
DO = −→

AD + 1

2
−→
DB

Since
−→
AD = w and

−→
DB = v − w we get

−→
AO = w + 1

2
(v − w) = w + v

2
(1)

On the other hand,
−→
AC = −→

AD + −→
DC = w + v, hence the midpoint O ′ of the diagonal AC is the terminal point of w+v

2 .
That is,

−−→
AO ′ = w + v

2
(2)

v

v

w

A
B

D
C

O'

We combine (1) and (2) to conclude that O and O ′ are the same point. That is, the diagonal AC and BD bisect each other.

64. Use vectors to prove that the segments joining the midpoints of opposite sides of a quadrilateral bisect each other
(Figure 32). Hint: Show that the midpoints of these segments are the terminal points of

1

4
(2u + v + z) and

1

4
(2v + w + u)

v

z w

u

FIGURE 32

solution We denote by A, B, C, D the corresponding points in the figure and by E, F , G, H the midpoints of the
sides AB, BC, CD and AD, respectively. Also, O is the midpoint of FH and O ′ is the midpoint of EG.

A
D

O

H

F

C

B

z

v

w

u

G

E

We must show that O and O ′ are the same point. Using the Parallelogram Law we have

−→
AO = −→

AH + −−→
HO = 1

2
v + 1

2
−−→
HF

−−→
HF = −→

HA + −→
AB + −→

BF = −1

2
v + u + 1

2
z



April 13, 2011

330 C H A P T E R 12 VECTOR GEOMETRY (LT CHAPTER 13)

Hence,

−→
AO = 1

2
v + 1

2

(
−1

2
v + u + 1

2
z
)

= 1

4
v + 1

2
u + 1

4
z = 1

4
(2u + v + z) (1)

A

G

D

O ′

H

E

F

C

B

z

v

w

u

Similarly,

−−→
AO ′ = −→

AD + −→
DG + −−→

GO ′ = v + 1

2
w + 1

2
−→
GE

−→
GE = −→

GD + −→
DA + −→

AE = −1

2
w − v + 1

2
u

Hence,

−−→
AO ′ = v + 1

2
w + 1

2

(
−1

2
w − v + 1

2
u
)

= 1

2
v + 1

4
w + 1

4
u = 1

4
(2v + w + u) (2)

To show that
−→
AO = −−→

AO ′ we must express z in terms of u, v and w. We have

v + w − z − u = 0 ⇒ z = v + w − u

Substituting into (1) we get

−→
AO = 1

4
(2u + v + (v + w − u)) = 1

4
(2v + w + u) (3)

By (2) and (3) we conclude that
−→
AO = −−→

AO ′. It means that the points O and O ′ are the same point, in other words, the
segment FH and EG bisect each other.

65. Prove that two vectors v = 〈a, b〉 and w = 〈c, d〉 are perpendicular if and only if

ac + bd = 0

solution Suppose that the vectors v and w make angles θ1 and θ2, which are not π
2 or 3π

2 , respectively, with the
positive x-axis. Then their components satisfy

a = ‖v‖ cos θ1

b = ‖v‖ sin θ1
⇒ b

a
= sin θ1

cos θ1
= tan θ1

c = ‖w‖ cos θ2

d = ‖w‖ sin θ2
⇒ d

c
= sin θ2

cos θ2
= tan θ2

y

x

v

w
q1

q2

That is, the vectors v and w are on the lines with slopes b
a and d

c , respectively. The lines are perpendicular if and only if
their slopes satisfy

b

a
· d

c
= −1 ⇒ bd = −ac ⇒ ac + bd = 0

We now consider the case where one of the vectors, say v, is perpendicular to the x-axis. In this case a = 0, and the
vectors are perpendicular if and only if w is parallel to the x-axis, that is, d = 0. So ac + bd = 0 · c + b · 0 = 0.
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12.2 Vectors in Three Dimensions (LT Section 13.2)

Preliminary Questions
1. What is the terminal point of the vector v = 〈3, 2, 1〉 based at the point P = (1, 1, 1)?

solution We denote the terminal point by Q = (a, b, c). Then by the definition of components of a vector, we have

〈3, 2, 1〉 = 〈a − 1, b − 1, c − 1〉
Equivalent vectors have equal components respectively, thus,

3 = a − 1 a = 4

2 = b − 1 ⇒ b = 3

1 = c − 1 c = 2

The terminal point of v is thus Q = (4, 3, 2).

2. What are the components of the vector v = 〈3, 2, 1〉 based at the point P = (1, 1, 1)?

solution The component of v = 〈3, 2, 1〉 are 〈3, 2, 1〉 regardless of the base point. The component of v and the base
point P = (1, 1, 1) determine the head Q = (a, b, c) of the vector, as found in the previous exercise.

3. If v = −3w, then (choose the correct answer):

(a) v and w are parallel.

(b) v and w point in the same direction.

solution The vectors v and w lie on parallel lines, hence these vectors are parallel. Since v is a scalar multiple of w
by a negative scalar, v and w point in opposite directions. Thus, (a) is correct and (b) is not.

4. Which of the following is a direction vector for the line through P = (3, 2, 1) and Q = (1, 1, 1)?

(a) 〈3, 2, 1〉 (b) 〈1, 1, 1〉 (c) 〈2, 1, 0〉
solution Any vector that is parallel to the vector

−→
PQ is a direction vector for the line through P and Q. We compute

the vector
−→
PQ:

−→
PQ = 〈1 − 3, 1 − 2, 1 − 1〉 = 〈−2, −1, 0〉.

The vectors 〈3, 2, 1〉 and 〈1, 1, 1〉 are not constant multiples of
−→
PQ, hence they are not parallel to

−→
PQ. However 〈2, 1, 0〉 =

−1〈−2, −1, 0〉 = −−→
PQ, hence the vector 〈2, 1, 0〉 is parallel to

−→
PQ. Therefore, the vector 〈2, 1, 0〉 is a direction vector

for the line through P and Q.

5. How many different direction vectors does a line have?

solution All the vectors that are parallel to a line are also direction vectors for that line. Therefore, there are infinitely
many direction vectors for a line.

6. True or false? If v is a direction vector for a line L, then −v is also a direction vector for L.

solution True. Every vector that is parallel to v is a direction vector for the line L. Since −v is parallel to v, it is also
a direction vector for L.

Exercises
1. Sketch the vector v = 〈1, 3, 2〉 and compute its length.

solution The vector v = 〈1, 3, 2〉 is shown in the following figure:

1 3

2

yx

z

v = 〈1, 3, 2〉

The length of v is

‖v‖ =
√

12 + 32 + 22 = √
14
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2. Let v = −−−→
P0Q0, where P0 = (1, −2, 5) and Q0 = (0, 1, −4). Which of the following vectors (with tail P and head

Q) are equivalent to v?

v1 v2 v3 v4

P (1, 2, 4) (1, 5, 4) (0, 0, 0) (2, 4, 5)

Q (0, 5, −5) (0, −8, 13) (−1, 3, −9) (1, 7, 4)

solution We compute the vectors v, v1, v2, v3 and v4:

v = −−−→
P0Q0 = 〈0 − 1, 1 − (−2), −4 − 5〉 = 〈−1, 3, −9〉

v1 = 〈0 − 1, 5 − 2, −5 − 4〉 = 〈−1, 3, −9〉
v2 = 〈0 − 1, −8 − 5, 13 − 4〉 = 〈−1, −13, 9〉
v3 = 〈−1 − 0, 3 − 0, −9 − 0〉 = 〈−1, 3, −9〉
v4 = 〈1 − 2, 7 − 4, 4 − 5〉 = 〈−1, 3, −1〉

The vectors v1 and v3 are equivalent to v.

3. Sketch the vector v = 〈1, 1, 0〉 based at P = (0, 1, 1). Describe this vector in the form
−→
PQ for some point Q, and

sketch the vector v0 based at the origin equivalent to v.

solution The vector v = 〈1, 1, 0〉 based at P = (0, 1, 1) is shown in the figure:

v

v0
yx

Q = (1, 2, 1)

P = (0, 1, 1)

z

The head Q of the vector v = −→
PQ is at the point Q = (0 + 1, 1 + 1, 1 + 0) = (1, 2, 1).

v y
x S = (1, 1, 0)

O

z

The vector v0 based at the origin and equivalent to v is

v0 = 〈1, 1, 0〉 = −→
OS, where S = (1, 1, 0).

4. Determine whether the coordinate systems (A)–(C) in Figure 17 satisfy the right-hand rule.

(A) (B) (C)

y

x

y

x

z

z

x

y

z

FIGURE 17

solution The coordinate systems (A) and (C) satisfy the right-hand rule, since when the right hand is positioned so that
the fingers curl from the positive x-axis toward the positive y-axis, the thumb points in the positive z-direction. Similarly,
system (B) does not satisfy the right-hand rule.

In Exercises 5–8, find the components of the vector
−→
PQ.

5. P = (1, 0, 1), Q = (2, 1, 0)

solution By the definition of the vector components we have

−→
PQ = 〈2 − 1, 1 − 0, 0 − 1〉 = 〈1, 1, −1〉



April 13, 2011

S E C T I O N 12.2 Vectors in Three Dimensions (LT SECTION 13.2) 333

6. P = (−3, −4, 2), Q = (1, −4, 3)

solution The components of the vector
−→
PQ are

−→
PQ = 〈1 − (−3), −4 − (−4), 3 − 2〉 = 〈4, 0, 1〉

7. P = (4, 6, 0), Q = (− 1
2 , 9

2 , 1
)

solution Using the definition of vector components we have

−→
PQ =

〈
−1

2
− 4,

9

2
− 6, 1 − 0

〉
=
〈
−9

2
, −3

2
, 1

〉

8. P = (− 1
2 , 9

2 , 1
)
, Q = (4, 6, 0)

solution The components of the vector with the head at Q = (4, 6, 0) and tail at P = (− 1
2 , 9

2 , 1
)

are

−→
PQ =

〈
4 −

(
−1

2

)
, 6 − 9

2
, 0 − 1

〉
=
〈

9

2
,

3

2
, −1

〉
.

In Exercises 9–12, let R = (1, 4, 3).

9. Calculate the length of
−→
OR.

solution The length of
−→
OR is the distance from R = (1, 4, 3) to the origin. That is,

‖−→
OR‖ =

√
(1 − 0)2 + (4 − 0)2 + (3 − 0)2 = √

26 ≈ 5.1.

10. Find the point Q such that v = −→
RQ has components 〈4, 1, 1〉, and sketch v.

solution Denoting Q = (x0, y0, z0) we have

−→
RQ = 〈x0 − 1, y0 − 4, z0 − 3〉 = 〈4, 1, 1〉

Equating corresponding components, we get

x0 − 1 = 4

y0 − 4 = 1

z0 − 3 = 1

⇒ x0 = 5, y0 = 5, z0 = 4

The point Q is, thus, Q = (5, 5, 4).

y

v

z

x

Q = (5, 5, 4)R = (1, 4, 3)

(0, 0, 4)

(0, 0, 3)

(0, 0, 0)

(5, 0, 0)

11. Find the point P such that w = −→
PR has components 〈3, −2, 3〉, and sketch w.

solution Denoting P = (x0, y0, z0) we get

−→
PR = 〈1 − x0, 4 − y0, 3 − z0〉 = 〈3, −2, 3〉

Equating corresponding components gives

1 − x0 = 3

4 − y0 = −2

3 − z0 = 3

⇒ x0 = −2, y0 = 6, z0 = 0

The point P is, thus, P = (−2, 6, 0).
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w

z

x

yP = (−2, 6, 0)

R = (1, 4, 3)

(0, 0, 3)

(−2, 0, 0)

(0, 6, 0)

12. Find the components of u = −→
PR, where P = (1, 2, 2).

solution The components of u = −→
PR where P = (1, 2, 2) and R = (1, 4, 3) are

u = −→
PR = 〈1 − 1, 4 − 2, 3 − 2〉 = 〈0, 2, 1〉

13. Let v = 〈4, 8, 12〉. Which of the following vectors is parallel to v? Which point in the same direction?

(a) 〈2, 4, 6〉 (b) 〈−1, −2, 3〉
(c) 〈−7, −14, −21〉 (d) 〈6, 10, 14〉
solution A vector is parallel to v if it is a scalar multiple of v. It points in the same direction if the multiplying scalar
is positive. Using these properties we obtain the following answer:

(a) 〈2, 4, 6〉 = 1
2 v ⇒ The vectors are parallel and point in the same direction.

(b) 〈−1, −2, 3〉 is not a scalar multiple of v, hence these vectors are not parallel.
(c) 〈−7, −14, −21〉 = − 7

4 v ⇒ The vectors are parallel but point in opposite directions.
(d) 〈6, 10, 14〉 is not a constant multiple of v, hence these vectors are not parallel.

In Exercises 14–17, determine whether
−→
AB is equivalent to

−→
PQ.

14.
A = (1, 1, 1) B = (3, 3, 3)

P = (1, 4, 5) Q = (3, 6, 7)

solution Two vectors are equivalent if one is a translation of the other, that is, if they have the same components. We

compute
−→
AB and

−→
PQ:

−→
AB = 〈3 − 1, 3 − 1, 3 − 1〉 = 〈2, 2, 2〉
−→
PQ = 〈3 − 1, 6 − 4, 7 − 5〉 = 〈2, 2, 2〉

⇒ The vectors are equivalent.

15.
A = (1, 4, 1) B = (−2, 2, 0)

P = (2, 5, 7) Q = (−3, 2, 1)

solution We compute the two vectors:

−→
AB = 〈−2 − 1, 2 − 4, 0 − 1〉 = 〈−3, −2, −1〉
−→
PQ = 〈−3 − 2, 2 − 5, 1 − 7〉 = 〈−5, −3, −6〉

The components of
−→
AB and

−→
PQ are not equal, hence they are not a translate of each other, that is, the vectors are not

equivalent.

16.
A = (0, 0, 0) B = (−4, 2, 3)

P = (4, −2, −3) Q = (0, 0, 0)

solution We compute
−→
AB and

−→
PQ:

−→
AB = 〈−4 − 0, 2 − 0, 3 − 0〉 = 〈−4, 2, 3〉
−→
PQ = 〈0 − 4, 0 − (−2), 0 − (−3)〉 = 〈−4, 2, 3〉

⇒ The vectors are equivalent.

17.
A = (1, 1, 0) B = (3, 3, 5)

P = (2, −9, 7) Q = (4, −7, 13)

solution The vectors
−→
AB and

−→
PQ are the following vectors:

−→
AB = 〈3 − 1, 3 − 1, 5 − 0〉 = 〈2, 2, 5〉
−→
PQ = 〈4 − 2, −7 − (−9), 13 − 7〉 = 〈2, 2, 6〉

The z-coordinates of the vectors are not equal, hence the vectors are not equivalent.
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In Exercises 18–23, calculate the linear combinations.

18. 5 〈2, 2, −3〉 + 3 〈1, 7, 2〉
solution Using vector algebra we get

5〈2, 2, −3〉 + 3〈1, 7, 2〉 = 〈10, 10, −15〉 + 〈3, 21, 6〉 = 〈13, 31, −9〉.

19. −2 〈8, 11, 3〉 + 4 〈2, 1, 1〉
solution Using the operations of vector addition and scalar multiplication we have

−2〈8, 11, 3〉 + 4〈2, 1, 1〉 = 〈−16, −22, −6〉 + 〈8, 4, 4〉 = 〈−8, −18, −2〉.

20. 6(4j + 2k) − 3(2i + 7k)

solution Using vector algebra, we have

6(4j + 2k) − 3(2i + 7k) = (24j + 12k) − (6i + 21k) = −6i + 24j − 9k.

21. 1
2 〈4, −2, 8〉 − 1

3 〈12, 3, 3〉
solution Using the operations on vectors we have

1

2
〈4, −2, 8〉 − 1

3
〈12, 3, 3〉 = 〈2, −1, 4〉 − 〈4, 1, 1〉 = 〈−2, −2, 3〉.

22. 5(i + 2j) − 3(2j + k) + 7(2k − i)

solution Using the operations on vectors we have

5(i + 2j) − 3(2j + k) + 7(2k − i) = 5i + 10j − 6j − 3k + 14k − 7i = −2i + 4j + 11k.

23. 4 〈6, −1, 1〉 − 2 〈1, 0, −1〉 + 3 〈−2, 1, 1〉
solution Using the operations of vector addition and scalar multiplication we have

4 〈6, −1, 1〉 − 2 〈1, 0, −1〉 + 3 〈−2, 1, 1〉 = 〈24, −4, 4〉 + 〈−2, 0, 2〉 + 〈−6, 3, 3〉
= 〈16, −1, 9〉 .

In Exercises 24–27, find the given vector.

24. ev, where v = 〈1, 1, 2〉
solution ev is the vector

ev = 1

‖v‖v

We find the length of v:

‖v‖ =
√

12 + 12 + 22 = √
6

Hence,

ev = 1√
6
〈1, 1, 2〉 =

〈
1√
6
,

1√
6
,

2√
6

〉

25. ew, where w = 〈4, −2, −1〉
solution We first find the length of w:

‖w‖ =
√

42 + (−2)2 + 12 = √
21

Hence,

ew = 1

‖w‖w =
〈

4√
21

,
−2√

21
,

−1√
21

〉
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26. Unit vector in the direction of u = 〈1, 0, 7〉
solution A unit vector in the direction of u = 〈1, 0, 7〉 is the vector

eu = 1

‖u‖u

We compute the length of u:

‖u‖ =
√

12 + 02 + 72 = √
50 = 5

√
2

Hence,

eu = 1

5
√

2
〈1, 0, 7〉 =

〈
1

5
√

2
, 0,

7

5
√

2

〉

27. Unit vector in the direction opposite to v = 〈−4, 4, 2〉
solution A unit vector in the direction opposite to v = 〈−4, 4, 2〉 is the following vector:

−ev = − 1

‖v‖v

We compute the length of v:

‖v‖ =
√

(−4)2 + 42 + 22 = 6

The desired vector is, thus,

−ev = −1

6
〈−4, 4, 2〉 =

〈−4

−6
,

4

−6
,

2

−6

〉
=
〈

2

3
, −2

3
, −1

3

〉

28. Sketch the following vectors, and find their components and lengths.

(a) 4i + 3j − 2k (b) i + j + k
(c) 4j + 3k (d) 12i + 8j − k

solution By the definition of the standard basis vectors in R3 and the definition of vector length, we obtain the
following answers:

(a) 4i + 3j − 2k = 〈4, 3, −2〉
‖4i + 3j − 2k‖ =

√
42 + 32 + (−2)2 = √

29

z

y

x

4i + 3j − 2k

(b) i + j + k = 〈1, 1, 1〉
‖i + j + k‖ =

√
12 + 12 + 12 = √

3

z

y

x

i + j + k

(c) 4j + 3k = 〈0, 4, 3〉
‖4j + 3k‖ =

√
02 + 42 + 32 = 5
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z

y

x

4j + 3k

(d) 12i + 8j − k = 〈12, 8, −1〉
‖12i + 8j − k‖ =

√
122 + 82 + (−1)2 = √

209

z

x

y
−1 8

12

12i + 8j − 1k

In Exercises 29–36, find a vector parametrization for the line with the given description.

29. Passes through P = (1, 2, −8), direction vector v = 〈2, 1, 3〉
solution The vector parametrization for the line is

r(t) = −→
OP + tv

Inserting the given data we get

r(t) = 〈1, 2, −8〉 + t〈2, 1, 3〉 = 〈1 + 2t, 2 + t, −8 + 3t〉
30. Passes through P = (4, 0, 8), direction vector v = 〈1, 0, 1〉
solution A vector parametrization of the line is

r(t) = −→
OP + tv = 〈4, 0, 8〉 + t〈1, 0, 1〉 = 〈4 + t, 0, 8 + t〉

31. Passes through P = (4, 0, 8), direction vector v = 7i + 4k

solution Since v = 7i + 4k = 〈7, 0, 4〉 we obtain the following parametrization:

r(t) = −→
OP + tv = 〈4, 0, 8〉 + t〈7, 0, 4〉 = 〈4 + 7t, 0, 8 + 4t〉

32. Passes through O, direction vector v = 〈3, −1,−4〉
solution Since v = 〈3, −1, −4〉 and P = O, we obtain the following parametrization:

r(t) = −→
OP + tv = 〈0, 0, 0〉 + t〈3, −1, −4〉 = 〈3t, −t, −4t〉

33. Passes through (1, 1, 1) and (3, −5, 2)

solution We use the equation of the line through two points P and Q:

r(t) = (1 − t)
−→
OP + t

−−→
OQ

Since
−→
OP = 〈1, 1, 1〉 and

−−→
OQ = 〈3, −5, 2〉 we obtain

r(t) = (1 − t)〈1, 1, 1〉 + t〈3, −5, 2〉 = 〈1 − t, 1 − t, 1 − t〉 + 〈3t, −5t, 2t〉 = 〈1 + 2t, 1 − 6t, 1 + t〉
34. Passes through (−2, 0, −2) and (4, 3, 7)

solution Using the equation of the line through two points P and Q, with
−→
OP = 〈−2, 0,−2〉 and

−−→
OQ = 〈4, 3, 7〉

we obtain

r(t) = (1 − t)
−→
OP + t

−−→
OQ = (1 − t)〈−2, 0, −2〉 + t〈4, 3, 7〉

= 〈−2(1 − t), 0, −2(1 − t)〉 + 〈4t, 3t, 7t〉 = 〈−2 + 6t, 3t, −2 + 9t〉
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35. Passes through O and (4, 1, 1)

solution By the equation of the line through two points we get

r(t) = (1 − t)〈0, 0, 0〉 + t〈4, 1, 1〉 = 〈0, 0, 0〉 + 〈4t, t, t〉 = 〈4t, t, t〉
36. Passes through (1, 1, 1) parallel to the line through (2, 0, −1) and (4, 1, 3)

solution The direction vector is v = 〈4 − 2, 1 − 0, 3 − (−1)〉 = 〈2, 1, 4〉. Hence, using the equation of a line we
obtain

r(t) = 〈1, 1, 1〉 + t〈2, 1, 4〉 = 〈1 + 2t, 1 + t, 1 + 4t〉

In Exercises 37–40, find parametric equations for the lines with the given description.

37. Perpendicular to the xy-plane, passes through the origin

solution A direction vector for the line is a vector parallel to the z-axis, for instance, we may choose v = 〈0, 0, 1〉.
The line passes through the origin (0, 0, 0), hence we obtain the following parametrization:

r(t) = 〈0, 0, 0〉 + t〈0, 0, 1〉 = 〈0, 0, t〉
or x = 0, y = 0, z = t .

38. Perpendicular to the yz-plane, passes through (0, 0, 2)

solution The direction vector is parallel to the x-axis. We may choose v = 〈1, 0, 0〉. Also
−−→
OP0 = 〈0, 0, 2〉 so we

obtain

r(t) = −−→
OP0 + tv = 〈0, 0, 2〉 + t〈1, 0, 0〉 = 〈t, 0, 2〉

or x = t , y = 0, z = 2.

39. Parallel to the line through (1, 1, 0) and (0, −1, −2), passes through (0, 0, 4)

solution The direction vector is v = 〈0 − 1, −1 − 1, −2 − 0〉 = 〈−1, −2, −2〉. Hence, using the equation of a line
we obtain

r(t) = 〈0, 0, 4〉 + t〈−1, −2, −2〉 = 〈−t, −2t, 4 − 2t〉
40. Passes through (1, −1, 0) and (0, −1, 2)

solution Using the equation of the line through two points P and Q, with
−→
OP = 〈1, −1, 0〉 and

−−→
OQ = 〈0, −1, 2〉

we obtain

r(t) = (1 − t)
−→
OP + t

−−→
OQ = (1 − t)〈1, −1, 0〉 + t〈0, −1, 2〉

= 〈(1 − t), −(1 − t), 0〉 + 〈0, −t, 2t〉 = 〈1 − t, −1, 2t〉
41. Which of the following is a parametrization of the line through P = (4, 9, 8) perpendicular to the xz-plane (Figure
18)?
(a) r(t) = 〈4, 9, 8〉 + t 〈1, 0, 1〉 (b) r(t) = 〈4, 9, 8〉 + t 〈0, 0, 1〉
(c) r(t) = 〈4, 9, 8〉 + t 〈0, 1, 0〉 (d) r(t) = 〈4, 9, 8〉 + t 〈1, 1, 0〉

y

P = (4, 9, 8)

z

x

FIGURE 18

solution Since the direction vector must be perpendicular to the xz-plane, then the direction vector for the line must
be parallel to j, which is only satisfied by solution (c).

42. Find a parametrization of the line through P = (4, 9, 8) perpendicular to the yz-plane.

solution The direction vector is parallel to the x-axis. We may choose v = 〈1, 0, 0〉. Also
−→
OP = 〈4, 9, 8〉 so we

obtain

r(t) = −→
OP + tv = 〈4, 9, 8〉 + t〈1, 0, 0〉 = 〈4 + t, 9, 8〉

or x = 4 + t , y = 9, z = 8.
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In Exercises 43–46, let P = (2, 1, −1) and Q = (4, 7, 7). Find the coordinates of each of the following.

43. The midpoint of PQ

solution We first parametrize the line through P = (2, 1, −1) and Q = (4, 7, 7):

r(t) = (1 − t)〈2, 1, −1〉 + t〈4, 7, 7〉 = 〈2 + 2t, 1 + 6t, −1 + 8t〉
The midpoint of PQ occurs at t = 1

2 , that is,

midpoint = r
(

1

2

)
=
〈
2 + 2 · 1

2
, 1 + 6 · 1

2
, −1 + 8 · 1

2

〉
= 〈3, 4, 3〉

The midpoint of PQ is the terminal point of the vector r(t), that is, (3, 4, 3). (One could also use the midpoint formula
to arrive at the same solution.)

44. The point on PQ lying two-thirds of the way from P to Q

solution We first parametrize the line through P = (2, 1, −1) and Q = (4, 7, 7):

r(t) = (1 − t)〈2, 1, −1〉 + t〈4, 7, 7〉 = 〈2 + 2t, 1 + 6t, −1 + 8t〉
The point on PQ lying two-thirds of the way from P to Q is at t = 2

3 . That is,

r
(

2

3

)
=
〈
2 + 2 · 2

3
, 1 + 6 · 2

3
, −1 + 8 · 2

3

〉
=
〈

10

3
, 5,

13

3

〉

P
t = 0

Q 
t = 1

The desired point is the head of the vector r( 2
3 ) which is

〈
10
3 , 5, 13

3

〉
.

45. The point R such that Q is the midpoint of PR

solution We denote R = (x0, y0, z0). By the formula for the midpoint of a segment we have

〈4, 7, 7〉 =
〈

2 + x0

2
,

1 + y0

2
,
−1 + z0

2

〉

Equating corresponding components we get

4 = 2 + x0

2

7 = 1 + y0

2

7 = −1 + z0

2

⇒ x0 = 6, y0 = 13, z0 = 15 ⇒ R = (6, 13, 15)

46. The two points on the line through PQ whose distance from P is twice its distance from Q

solution In Exercise 44 we showed that the parametric equation of the line through P and Q is

r(t) = 〈2 + 2t, 1 + 6t, −1 + 8t〉 (1)

Hence an arbitrary point R on the line is R = (2 + 2t, 1 + 6t, −1 + 8t). We must find the points R on the line satisfying

‖−→PR‖ = 2‖−→QR‖ (2)

We compute the lengths of the vectors:

‖−→PR‖ = ‖〈2t, 6t, 8t〉‖ = |t |
√

22 + 62 + 82 = √
104|t |

‖−→QR‖ = ‖〈−2 + 2t, −6 + 6t, −8 + 8t〉‖ = ‖(−1 + t)〈2, 6, 8〉‖
= |−1 + t |

√
22 + 62 + 82 = |−1 + t |√104

Substituting in (2) and solving for t gives
√

104|t | = 2
√

104|−1 + t | and so |t | = 2|t − 1|. Thus, either t = 2(t − 1)

(and so t = 2) or t = −2(t − 1) (and so t = 2
3 ). We now compute r(t) for these values of t . Using (1) we get

r(2) = 〈2 + 2 · 2, 1 + 6 · 2, −1 + 8 · 2〉 = 〈6, 13, 15〉

r
(

2

3

)
=
〈
2 + 2 · 2

3
, 1 + 6 · 2

3
, −1 + 8 · 2

3

〉
=
〈

10

3
, 5,

13

3

〉

The desired points are the terminal points on these vectors. That is, (6, 13, 15) and
(

10
3 , 5, 13

3

)
.
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47. Show that r1(t) and r2(t) define the same line, where

r1(t) = 〈3, −1, 4〉 + t 〈8, 12, −6〉
r2(t) = 〈11, 11, −2〉 + t 〈4, 6, −3〉

Hint: Show that r2 passes through (3, −1, 4) and that the direction vectors for r1 and r2 are parallel.

solution We observe first that the direction vectors of r1(t) and r2(t) are multiples of each other:

〈8, 12, −6〉 = 2 〈4, 6, −3〉

Therefore r1(t) and r2(t) are parallel. To show they coincide, it suffices to prove that they share a point in common, so
we verify that r1(0) = 〈3, −1, 4〉 lies on r2(t) by solving for t :

〈3, −1, 4〉 = 〈11, 11, −2〉 + t 〈4, 6, −3〉
〈3, −1, 4〉 − 〈11, 11, −2〉 = t 〈4, 6, −3〉

〈−8, −12, 6〉 = t 〈4, 6, −3〉

This equation is satisfied for t = −2, so r1 and r2 coincide.

48. Show that r1(t) and r2(t) define the same line, where

r1(t) = t 〈2, 1, 3〉 , r2(t) = 〈−6, −3, −9〉 + t 〈8, 4, 12〉

solution Note that r1(−3) = r2(0) and r1(0) = r2(3/4). Since both lines go through these two distinct points, then
they must be the same line. (One could also solve this problem by showing that they share a point and have parallel
direction vectors.)

49. Find two different vector parametrizations of the line through P = (5, 5, 2) with direction vector v = 〈0, −2, 1〉.
solution Two different parameterizations are

r1(t) = 〈5, 5, 2〉 + t 〈0, −2, 1〉
r2(t) = 〈5, 5, 2〉 + t 〈0, −20, 10〉

50. Find the point of intersection of the lines r(t) = 〈1, 0, 0〉 + t 〈−3, 1, 0〉 and s(t) = 〈0, 1, 1〉 + t 〈2, 0, 1〉.
solution The two lines intersect if there exist parameter values t1 and t2 such that

〈1, 0, 0〉 + t1〈−3, 1, 0〉 = 〈0, 1, 1〉 + t2〈2, 0, 1〉
〈1, 0, 0〉 + 〈−3t1, t1, 0〉 = 〈0, 1, 1〉 + 〈2t2, 0, t2〉

〈1 − 3t1, t1, 0〉 = 〈2t2, 1, 1 + t2〉

We obtain the following equations for the components of the two vectors:

1 − 3t1 = 2t2 (1)

t1 = 1 (2)

0 = 1 + t2 (3)

The third equation yields t2 = −1 and the second yields t1 = 1. We now must check whether these values satisfy the first
equation:

1 − 3t1 = 1 − 3 = −2

2t2 = 2 · (−1) = −2
⇒ 1 − 3t1 = 2t2 for t1 = 1, t2 = −1

Therefore, t1 = 1 and t2 = −1 are solutions of the equations in (1)–(3). To find the point of intersection of the given lines
we first set one of the solutions t1 or t2 in the equation of corresponding line. Setting t1 = 1 in 〈1, 0, 0〉 + t〈−3, 1, 0〉
yields

〈1, 0, 0〉 + 1 · 〈−3, 1, 0〉 = 〈−2, 1, 0〉

The head (−2, 1, 0) is the required point.
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51. Show that the lines r1(t) = 〈−1, 2, 2〉 + t 〈4, −2, 1〉 and r2(t) = 〈0, 1, 1〉 + t 〈2, 0, 1〉 do not intersect.

solution The two lines intersect if there exist parameter values t1 and t2 such that

〈−1, 2, 2〉 + t1〈4, −2, 1〉 = 〈0, 1, 1〉 + t2〈2, 0, 1〉
〈−1 + 4t1, 2 − 2t1, 2 + t1〉 = 〈2t2, 1, 1 + t2〉

Equating corresponding components yields

−1 + 4t1 = 2t2

2 − 2t1 = 1

2 + t1 = 1 + t2

The second equation implies t1 = 1
2 . Substituting into the first and third equations we get

−1 + 4 · 1

2
= 2t2 ⇒ t2 = 1

2

2 + 1

2
= 1 + t2 ⇒ t2 = 3

2

We conclude that the equations do not have solutions, which means that the two lines do not intersect.

52. Determine whether the lines r1(t) = 〈2, 1, 1〉 + t 〈−4, 0, 1〉 and r2(s) = 〈−4, 1, 5〉 + s 〈2, 1, −2〉 intersect, and if
so, find the point of intersection.

solution The lines intersect if there exist parameter values t and s such that

〈2, 1, 1〉 + t〈−4, 0, 1〉 = 〈−4, 1, 5〉 + s〈2, 1, −2〉
〈2 − 4t, 1, 1 + t〉 = 〈−4 + 2s, 1 + s, 5 − 2s〉

We equate corresponding components to obtain

2 − 4t = −4 + 2s

1 = 1 + s

1 + t = 5 − 2s

The second equation implies s = 0. Substituting in the first and third equations we get

2 − 4t = −4 + 2 · 0 ⇒ t = 3

2

1 + t = 5 − 2 · 0 ⇒ t = 4

We conclude that the equations do not have solutions, that is, the lines do not intersect.

53. Determine whether the lines r1(t) = 〈0, 1, 1〉 + t 〈1, 1, 2〉 and r2(s) = 〈2, 0, 3〉 + s 〈1, 4, 4〉 intersect, and if so, find
the point of intersection.

solution The lines intersect if there exist parameter values t and s such that

〈0, 1, 1〉 + t〈1, 1, 2〉 = 〈2, 0, 3〉 + s〈1, 4, 4〉
〈t, 1 + t, 1 + 2t〉 = 〈2 + s, 4s, 3 + 4s〉 (1)

Equating corresponding components we get

t = 2 + s

1 + t = 4s

1 + 2t = 3 + 4s

Substituting t from the first equation into the second equation we get

1 + 2 + s = 4s

3s = 3
⇒ s = 1, t = 2 + s = 3

We now check whether s = 1, t = 3 satisfy the third equation:

1 + 2 · 3 = 3 + 4 · 1

7 = 7
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We conclude that s = 1, t = 3 is the solution of (1), hence the two lines intersect. To find the point of intersection we
substitute s = 1 in the right-hand side of (1) to obtain

〈2 + 1, 4 · 1, 3 + 4 · 1〉 = 〈3, 4, 7〉
The point of intersection is the terminal point of this vector, that is, (3, 4, 7).

54. Find the intersection of the lines r1(t) = 〈−1, 1〉 + t 〈2, 4〉 and r2(s) = 〈2, 1〉 + s 〈−1, 6〉 in R2.

solution We must find the parameter values t and s such that

〈−1, 1〉 + t〈2, 4〉 = 〈2, 1〉 + s〈−1, 6〉
〈−1 + 2t, 1 + 4t〉 = 〈2 − s, 1 + 6s〉 (1)

Equating corresponding components we get

−1 + 2t = 2 − s

1 + 4t = 1 + 6s

The first equation implies s = 3 − 2t . We substitute in the second equation:

1 + 4t = 1 + 6(3 − 2t)

1 + 4t = 19 − 12t

16t = 18

⇒ t = 9

8
, s = 3 − 2 · 9

8
= 3

4

To find the point of intersection we substitute s = 3
4 in the right-hand side of (1). This gives〈

2 − 3

4
, 1 + 6 · 3

4

〉
=
〈

5

4
,

11

2

〉
.

The point of intersection is the terminal point of this vector which is
( 5

4 , 11
2

)
.

55. Find the components of the vector v whose tail and head are the midpoints of segments AC and BC in Figure 19.

B = (1, 1, 0)

C = (0, 1, 1)
A = (1, 0, 1)

y

x

z

FIGURE 19

solution We denote by P and Q the midpoints of the segments AC and BC respectively. Thus,

v = −→
PQ (1)

y
x

A = (1, 0, 1) C = (0, 1, 1)

B = (1, 1, 0)

P

Q

z

We use the formula for the midpoint of a segment to find the coordinates of the points P and Q. This gives

P =
(

1 + 0

2
,

0 + 1

2
,

1 + 1

2

)
=
(

1

2
,

1

2
, 1

)

Q =
(

1 + 0

2
,

1 + 1

2
,

0 + 1

2

)
=
(

1

2
, 1,

1

2

)

Substituting in (1) yields the following vector:

v = −→
PQ =

〈
1

2
− 1

2
, 1 − 1

2
,

1

2
− 1

〉
=
〈
0,

1

2
, −1

2

〉
.
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56. Find the components of the vector w whose tail is C and head is the midpoint of AB in Figure 19.

solution We denote the midpoint of AB by M = (a, b, c). To find the coordinates of M we first parametrize the line
through A = (1, 0, 1) and B = (1, 1, 0):

r(t) = (1 − t)〈1, 0, 1〉 + t〈1, 1, 0〉 = 〈1 − t, 0, 1 − t〉 + 〈t, t, 0〉 = 〈1, t, 1 − t〉
The midpoint of AB occurs at t = 1

2 , hence the vector OM is 〈1, 1
2 , 1

2 〉.

B = (1, 1, 0)

C = (0, 1, 1)
A = (1, 0, 1)

y

x

z

The point M is the terminal point of OM , that is, M =
(

1, 1
2 , 1

2

)
. We now find the vector w = CM:

w =
〈
1 − 0,

1

2
− 1,

1

2
− 1

〉
=
〈
1, −1

2
, −1

2

〉
.

Further Insights and Challenges
In Exercises 57–63, we consider the equations of a line in symmetric form, when a �= 0, b �= 0, c �= 0.

x − x0

a
= y − y0

b
= z − z0

c
12

57. Let L be the line through P0 = (x0, y0, c0) with direction vector v = 〈a, b, c〉. Show that L is defined by the
symmetric Eq. (12). Hint: Use the vector parametrization to show that every point on L satisfies Eq. (12).

solution L is given by vector parametrization

r(t) = 〈x0, y0, z0〉 + t 〈a, b, c〉
which gives us the equations

x = x0 + at

y = y0 + bt

z = z0 + ct.

Solving for t gives

t = x − x0

a

t = y − y0

b

t = z − z0

c

Setting each equation equal to the other gives Eq. (12).

58. Find the symmetric equations of the line through P0 = (−2, 3, 3) with direction vector v = 〈2, 4, 3〉.
solution Using (x0, y0, z0) = (−2, 3, 3) and 〈a, b, c〉 = 〈2, 4, 3〉 in Eq. (12) gives

x + 2

2
= y − 3

4
= z − 3

3

59. Find the symmetric equations of the line through P = (1, 1, 2) and Q = (−2, 4, 0).

solution This line has direction vector
−→
PQ = 〈−3, 3, −2〉. Using (x0, y0, z0) = P = (1, 1, 2) and 〈a, b, c〉 = −→

PQ =
〈−3, 3, −2〉 in Eq. (12) gives

x − 1

−3
= y − 1

3
= z − 2

−2
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60. Find the symmetric equations of the line

x = 3 + 2t, y = 4 − 9t, z = 12t

solution If we solve each equation fot t , we get:

t = x − 3

2
, t = 4 − y

9
, t = z

12

When we set these equations equal to each other, we get:

x − 3

2
= 4 − y

9
= z

12

61. Find a vector parametrization for the line

x − 5

9
= y + 3

7
= z − 10

solution Using (x0, y0, z0) = (5, −3, 10) and 〈a, b, c〉 = 〈9, 7, 1〉 gives

r(t) = 〈5, −3, 10〉 + t 〈9, 7, 1〉

v

w

4

21

3

u

62. Find a vector parametrization for the line
x

2
= y

7
= z

8
.

solution If we let t equal these three terms, as follows:

t = x

2
= y

7
= z

8

then we can break it up into three equations:

t = x

2
, t = y

7
, t = z

8

and solving for x, y, and z gives us:

x = 2t, y = 7t, z = 8t

and writing this in vector form gives us

r(t) = t 〈2, 7, 8〉

63. Show that the line in the plane through (x0, y0) of slope m has symmetric equations

x − x0 = y − y0

m

solution The line through (x0, y0) of slope m has equation y − y0 = m(x − x0), which becomes x − x0 = 1
m(y − y0),

which becomes

x − x0

1
= y − y0

m

64. A median of a triangle is a segment joining a vertex to the midpoint of the opposite side. Referring to Figure 20(A),
prove that three medians of triangle ABC intersect at the terminal point P of the vector 1

3 (u + v + w). The point P is

the centroid of the triangle. Hint: Show, by parametrizing the segment AA′, that P lies two-thirds of the way from A to
A′. It will follow similarly that P lies on the other two medians.
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(B)(A)

A'

B' C'

C

A

B

O

O

u

w

v

v

w
u

P

FIGURE 20

solution We denote the vertices of the triangle by A, B, C as shown in Figure 20(A). Hence,

−−→
OA′ = −→

OB + −−→
BA′ = w + 1

2
(u − w) = 1

2
(u + w)

−→
OA = v

Thus, the line through the points A and A′ has the parametrization

tv + (1 − t)
u + w

2
(1)

Similarly, the line through B and B ′ has the parametrization

tw + (1 − t)
v + u

2
(2)

And the line through C and C′ has the parametrization

tu + (1 − t)
v + w

2
(3)

Now, setting t = 1
3 in (1), (2) and (3) yields 1

3 (u + v + w). We conclude that the terminal point of this vector lies on each
one of the lines, hence it is their point of intersection.

65. A median of a tetrahedron is a segment joining a vertex to the centroid of the opposite face. The tetrahedron in Figure
20(B) has vertices at the origin and at the terminal points of vectors u, v, and w. Show that the medians intersect at the
terminal point of 1

4 (u + v + w).

solution We first find vectors from the origin to the centroids of the four faces (labelled 1,2,3,4 after their opposite
vertices, also labelled 1,2,3,4). Now, by the previous problem (Exercise 64), a vector from the origin (vertex 1) to the
centroid of the opposite face (face 1) is 1

3 (u + v + w). As for face 2, a vector from vertex 2 to the centroid of face 2 is
1
3 (−u + (v − u) + (w − u)), but since vertex 2 is at the head of vector u, then a vector from the origin to the centroid of

face 2 is u + 1
3 (−u + (v − u) + (w − u)) = 1

3 (v + w). Similarly, a vector from the origin to the centroid of face 3 is

v + 1
3 (−v + (u − v) + (w − v)) = 1

3 (u + w), and from the origin to the centroid of face 4 is 1
3 (u + v).

We now find the paramentric equations of four lines �1, . . . , �4, each from vertex i to the centroid of the (opposite)
face i.

�1(t) = t0 + (1 − t)
1

3
(u + v + w)

�2(t) = tu + (1 − t)
1

3
(v + w)

�3(t) = tv + (1 − t)
1

3
(u + w)

�4(t) = tw + (1 − t)
1

3
(u + v)

By substituting t = 1/4 into each line, we find that they all intersect in the same point:

�1(1/4) = 1/40 + (1 − 1/4)
1

3
(u + v + w) = 1/4(u + v + w)

�2(1/4) = 1/4u + (1 − 1/4)
1

3
(v + w) = 1/4(u + v + w)

�3(1/4) = 1/4v + (1 − 1/4)
1

3
(u + w) = 1/4(u + v + w)
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�4(1/4) = 1/4w + (1 − 1/4)
1

3
(u + v) = 1/4(u + v + w)

We conclude that all four lines intersect at the terminal point of the vector 1/4(u + v + w), as desired.

12.3 Dot Product and the Angle between Two Vectors (LT Section 13.3)

Preliminary Questions
1. Is the dot product of two vectors a scalar or a vector?

solution The dot product of two vectors is the sum of products of scalars, hence it is a scalar.

2. What can you say about the angle between a and b if a · b < 0?

solution Since the cosine of the angle between a and b satisfies cos θ = a·b
‖a‖‖b‖ , also cos θ < 0. By definition

0 ≤ θ ≤ π , but since cos θ < 0 then θ is in (π/2, π]. In other words, the angle between a and b is obtuse.

3. Which property of dot products allows us to conclude that if v is orthogonal to both u and w, then v is orthogonal to
u + w?

solution One property is that two vectors are orthogonal if and only if the dot product of the two vectors is zero. The
second property is the Distributive Law. Since v is orthogonal to u and w, we have v · u = 0 and v · w = 0. Therefore,

v · (u + w) = v · u + v · w = 0 + 0 = 0

We conclude that v is orthogonal to u + w.

4. Which is the projection of v along v: (a) v or (b) ev?

solution The projection of v along itself is v, since

v|| =
(v · v

v · v

)
v = v

Also, the projection of v along ev is the same answer, v, because

v|| =
(

v · ev

ev · ev

)
ev = ‖v‖ev = v

5. Let u|| be the projection of u along v. Which of the following is the projection u along the vector 2v and which is the
projection of 2u along v?

(a) 1
2 u|| (b) u|| (c) 2u||

solution Since u|| is the projection of u along v, we have,

u|| =
(u · v

v · v

)
v

The projection of u along the vector 2v is(
u · 2v
2v · 2v

)
2v =

(
2u · v
4v · v

)
2v =

(
4u · v
4v · v

)
v =

(u · v
v · v

)
v = u||

That is, u|| is the projection of u along 2v, so our answer is (b) for the first part. Notice that the projection of u along
v is the projection of u along the unit vector ev, hence it depends on the direction of v rather than on the length of v.
Therefore, the projection of u along v and along 2v is the same vector.

On the other hand, the projection of 2u along v is as follows:(
2u · v
v · v

)
v = 2

(u · v
v · v

)
v = 2u||

giving us answer (c) for the second part.

6. Which of the following is equal to cos θ , where θ is the angle between u and v?

(a) u · v (b) u · ev (c) eu · ev

solution By the Theorems on the Dot Product and the Angle Between Vectors, we have

cos θ = u · v
‖u‖‖v‖ = u

‖u‖ · v
‖v‖ = eu · ev

The correct answer is (c).
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Exercises
In Exercises 1–12, compute the dot product.

1. 〈1, 2, 1〉 · 〈4, 3, 5〉
solution Using the definition of the dot product we obtain

〈1, 2, 1〉 · 〈4, 3, 5〉 = 1 · 4 + 2 · 3 + 1 · 5 = 15

2. 〈3, −2, 2〉 · 〈1, 0, 1〉
solution By the definition of the dot product we have

〈3, −2, 2〉 · 〈1, 0, 1〉 = 3 · 1 + (−2) · 0 + 2 · 1 = 5

3. 〈0, 1, 0〉 · 〈7, 41, −3〉
solution The dot product is

〈0, 1, 0〉 · 〈7, 41, −3〉 = 0 · 7 + 1 · 41 + 0 · (−3) = 41

4. 〈1, 1, 1〉 · 〈6, 4, 2〉
solution We multiply corresponding components and add to obtain

〈1, 1, 1〉 · 〈6, 4, 2〉 = 1 · 6 + 1 · 4 + 1 · 2 = 12

5. 〈3, 1〉 · 〈4, −7〉
solution The dot product of the two vectors is the following scalar:

〈3, 1〉 · 〈4, −7〉 = 3 · 4 + 1 · (−7) = 5

6.
〈 1
6 , 1

2

〉 · 〈3, 1
2

〉
solution The dot product is 〈

1

6
,

1

2

〉
·
〈
3,

1

2

〉
= 1

6
· 3 + 1

2
· 1

2
= 1

2
+ 1

4
= 3

4

7. k · j

solution By the orthogonality of j and k, we have k · j = 0

8. k · k

solution Since k has length 1, we have k · k = 1

9. (i + j) · (j + k)

solution By the distributive law and the orthogonality of i, j and k we have

(i + j) · (j + k) = i · j + i · k + j · j + j · k = 0 + 0 + 1 + 0 = 1

10. (3j + 2k) · (i − 4k)

solution By the distributive law and the orthogonality of i, j and k we have

(3j + 2k) · (i − 4k) = 3j · i − 12j · k + 2k · i − 8k · k = 0 − 0 + 0 − 8‖k‖2 = −8 · 12 = −8

11. (i + j + k) · (3i + 2j − 5k)

solution We use properties of the dot product to obtain

(i + j + k) · (3i + 2j − 5k) = 3i · i + 2i · j − 5i · k + 3j · i + 2j · j − 5j · k + 3k · i + 2k · j − 5k · k

= 3‖i‖2 + 2‖j‖2 − 5‖k‖2 = 3 · 1 + 2 · 1 − 5 · 1 = 0

12. (−k) · (i − 2j + 7k)

solution Using the distributive law we have

(−k) · (i − 2j + 7k) = −k · i + 2k · j − 7k · k = 0 + 0 − 7‖k‖2 = −7 · 12 = −7
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In Exercises 13–18, determine whether the two vectors are orthogonal and, if not, whether the angle between them is
acute or obtuse.

13. 〈1, 1, 1〉, 〈1, −2, −2〉

solution We compute the dot product of the two vectors:

〈1, 1, 1〉 · 〈1, −2, −2〉 = 1 · 1 + 1 · (−2) + 1 · (−2) = −3

Since the dot product is negative, the angle between the vectors is obtuse.

14. 〈0, 2, 4〉, 〈−5, 0, 0〉

solution Computing the dot product gives

〈0, 2, 4〉 · 〈−5, 0, 0〉 = 0 · (−5) + 2 · 0 + 4 · 0 = 0

The dot product is zero, hence the vectors are orthogonal.

15. 〈1, 2, 1〉, 〈7, −3, −1〉

solution We compute the dot product:

〈1, 2, 1〉 · 〈7, −3, −1〉 = 1 · 7 + 2 · (−3) + 1 · (−1) = 0

The dot product is zero, hence the vectors are orthogonal.

16. 〈0, 2, 4〉, 〈3, 1, 0〉

solution We find the dot product of the two vectors:

〈0, 2, 4〉 · 〈3, 1, 0〉 = 0 · 3 + 2 · 1 + 4 · 0 = 2

The dot product is positive, hence the angle between the vectors is acute.

17.
〈 12

5 , − 4
5

〉
,
〈 1
2 , − 7

4

〉
solution We find the dot product of the two vectors:

〈
12

5
, −4

5

〉
·
〈

1

2
, −7

4

〉
= 12

5
· 1

2
+
(

−4

5

)
·
(

−7

4

)
= 12

10
+ 28

20
= 13

5

The dot product is positive, hence the angle between the vectors is acute.

18. 〈12, 6〉, 〈2, −4〉

solution Since 〈12, 6〉 · 〈2, −4〉 = 12 · 2 + 6 · (−4) = 0, the vectors are orthogonal.

In Exercises 19–22, find the cosine of the angle between the vectors.

19. 〈0, 3, 1〉, 〈4, 0, 0〉

solution Since 〈0, 3, 1〉 · 〈4, 0, 0〉 = 0 · 4 + 3 · 0 + 1 · 0 = 0, the vectors are orthogonal, that is, the angle between
them is θ = 90◦ and cos θ = 0.

20. 〈1, 1, 1〉, 〈2, −1, 2〉

solution We write v = 〈1, 1, 1〉 and w = 〈2, −1, 2〉 and use the formula for the cosine of the angle between u and v:

cos θ = v · w
‖v‖‖w‖
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We compute the values in this formula:

‖v‖ =
√

12 + 12 + 12 = √
3

‖w‖ =
√

22 + (−1)2 + 22 = 3

v · w = 〈1, 1, 1〉 · 〈2, −1, 2〉 = 1 · 2 + 1 · (−1) + 1 · 2 = 3

Hence,

cos θ = 3

3
√

3
= 1√

3
.

21. i + j, j + 2k

solution We use the formula for the cosine of the angle between two vectors. Let v = i + j and w = j + 2k. We
compute the following values:

‖v‖ = ‖i + j‖ =
√

12 + 12 = √
2

‖w‖ = ‖j + 2k‖ =
√

12 + 22 = √
5

v · w = (i + j) · (j + 2k) = i · j + 2i · k + j · j + 2j · k = ‖j‖2 = 1

Hence,

cos θ = v · w
‖v‖‖w‖ = 1√

2
√

5
= 1√

10
.

22. 3i + k, i + j + k

solution We write v = 3i + k, w = i + j + k. To use the formula for the cosine of the angle θ between two vectors
we need to compute the following values:

‖v‖ =
√

32 + 12 = √
10

‖w‖ =
√

12 + 12 + 12 = √
3

v · w = (3i + k) · (i + j + k) = (3i + 0j + k) · (i + j + k) = 3 · 1 + 0 · 1 + 1 · 1 = 4

Hence,

cos θ = v · w
‖v‖‖w‖ = 4√

10
√

3
= 4√

30

In Exercises 23–28, find the angle between the vectors. Use a calculator if necessary.

23.
〈
2,

√
2
〉
,
〈
1 + √

2, 1 − √
2
〉

solution We write v =
〈
2,

√
2
〉

and w =
〈
2,

√
2
〉
. To use the formula for the cosine of the angle θ between two vectors

we need to compute the following values:

‖v‖ = √
4 + 2 = √

6

‖w‖ =
√

(1 + √
2)2 + (1 − √

2)2 = √
6

v · w = 2 + 2
√

2 + √
2 − 2 = 3

√
2

Hence,

cos θ = v · w
‖v‖‖w‖ = 3

√
2√

6
√

6
=

√
2

2

and so,

θ = cos−1
√

2

2
= π/4
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24.
〈
5,

√
3
〉
,
〈√

3, 2
〉

solution We denote v =
〈
5,

√
3
〉

and w =
〈√

3, 2
〉
. To use the formula for the cosine of the angle θ between two

vectors we need to compute the following values:

‖v‖ = √
25 + 3 = √

28

‖w‖ = √
3 + 4 = √

7

v · w = 5 · √
3 + √

3 · 2 = 7
√

3

Hence,

cos θ = v · w
‖v‖‖w‖ = 7

√
3√

28
√

7
=

√
3

2

and so,

θ = cos−1
√

3

2
= π/6

25. 〈1, 1, 1〉, 〈1, 0, 1〉
solution We denote v = 〈1, 1, 1〉 and w = 〈1, 0, 1〉. To use the formula for the cosine of the angle θ between two
vectors we need to compute the following values:

‖v‖ =
√

12 + 12 + 12 = √
3

‖w‖ =
√

12 + 02 + 12 = √
2

v · w = 1 + 0 + 1 = 2

Hence,

cos θ = v · w
‖v‖‖w‖ = 2√

3
√

2
=

√
6

3

and so,

θ = cos−1
√

6

3
≈ 0.615

26. 〈3, 1, 1〉, 〈2, −4, 2〉
solution We denote v = 〈3, 1, 1〉 and w = 〈2, −4, 2〉. To use the formula for the cosine of the angle θ between two
vectors we need to compute the following values:

‖v‖ =
√

32 + 12 + 12 = √
11

‖w‖ =
√

22 + (−4)2 + 22 = √
24

v · w = 6 − 4 + 2 = 4

Hence,

cos θ = v · w
‖v‖‖w‖ = 4√

11
√

24
= 2√

66

and so,

θ = cos−1 2√
66

≈ 1.322

27. 〈0, 1, 1〉, 〈1, −1, 0〉
solution We denote v = 〈0, 1, 1〉 and w = 〈1, −1, 0〉. To use the formula for the cosine of the angle θ between two
vectors we need to compute the following values:

‖v‖ =
√

02 + 12 + 12 = √
2

‖w‖ =
√

12 + (−1)2 + 02 = √
2

v · w = 0 + (−1) + 0 = −1
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Hence,

cos θ = v · w
‖v‖‖w‖ = −1√

2
√

2
= −1

2

and so,

θ = cos−1 −1

2
= 2π

3

28. 〈1, 1, −1〉, 〈1, −2, −1〉
solution Since 〈1, 1, −1〉 · 〈1, −2, −1〉 = 1 − 2 + 1 = 0, then the two vectors are orthogonal. Thus, the angle
between them is π/2.

29. Find all values of b for which the vectors are orthogonal.

(a) 〈b, 3, 2〉, 〈1, b, 1〉 (b) 〈4, −2, 7〉, 〈
b2, b, 0

〉
solution

(a) The vectors are orthogonal if and only if the scalar product is zero. That is,

〈b, 3, 2〉 · 〈1, b, 1〉 = 0

b · 1 + 3 · b + 2 · 1 = 0

4b + 2 = 0 ⇒ b = −1

2

(b) We set the scalar product of the two vectors equal to zero and solve for b. This gives

〈4, −2, 7〉 · 〈b2, b, 0〉 = 0

4b2 − 2b + 7 · 0 = 0

2b(2b − 1) = 0 ⇒ b = 0 or b = 1

2

30. Find a vector that is orthogonal to 〈−1, 2, 2〉.
solution We must find a vector v = 〈a, b, c〉 such that

〈a, b, c〉 · 〈−1, 2, 2〉 = 0

−a + 2b + 2c = 0

We choose c = 1, b = 1, hence a = 4. The vector v = 〈4, 1, 1〉 is orthogonal to 〈−1, 2, 2〉.
31. Find two vectors that are not multiples of each other and are both orthogonal to 〈2, 0, −3〉.
solution We denote by 〈a, b, c〉, a vector orthogonal to 〈2, 0, −3〉. Hence,

〈a, b, c〉 · 〈2, 0, −3〉 = 0

2a + 0 − 3c = 0

2a − 3c = 0 ⇒ a = 3

2
c

Thus, the vectors orthogonal to 〈2, 0, −3〉 are of the form〈
3

2
c, b, c

〉
.

We may find two such vectors by setting c = 0, b = 1 and c = 2, b = 2. We obtain

v1 = 〈0, 1, 0〉, v2 = 〈3, 2, 2〉.

32. Find a vector that is orthogonal to v = 〈1, 2, 1〉 but not to w = 〈1, 0, −1〉.
solution We want a vector 〈a, b, c〉 such that 〈a, b, c〉 · 〈1, 2, 1〉 = 0 but 〈a, b, c〉 · 〈1, 0, −1〉 �= 0. While we could
set up some equations, it’s easy to note that if we let 〈a, b, c〉 = w = 〈1, 0, −1〉, then both conditions are satisfied.

33. Find v · e where ‖v‖ = 3, e is a unit vector, and the angle between e and v is 2π
3 .

solution Since v · e = ‖v‖‖e‖ cos 2π/3, and ‖v‖ = 3 and ‖e‖ = 1, we have v · e = 3 · 1 · (−1/2) = −3/2.
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34. Assume that v lies in the yz-plane. Which of the following dot products is equal to zero for all choices of v?

(a) v · 〈0, 2, 1〉 (b) v · k
(c) v · 〈−3, 0, 0〉 (d) v · j

solution Since v lies in the yz-plane, then it must be of the form v = 〈0, v2, v3〉. The only dot product which is always
equal to zero is (c), since v · 〈−3, 0, 0〉 = 0.

In Exercises 35–38, simplify the expression.

35. (v − w) · v + v · w

solution By properties of the dot product we obtain

(v − w) · v + v · w = v · v − w · v + v · w = ‖v‖2 − v · w + v · w = ‖v‖2

36. (v + w) · (v + w) − 2v · w

solution Using properties of the dot product we obtain

(v + w) · (v + w) − 2v · w = v · (v + w) + w · (v + w) − 2v · w = v · v + v · w + w · v + w · w − 2v · w

= ‖v‖2 + v · w + v · w + ‖w‖2 − 2v · w = ‖v‖2 + ‖w‖2

37. (v + w) · v − (v + w) · w

solution We use properties of the dot product to write

(v + w) · v − (v + w) · w = v · v + w · v − v · w − w · w

= ‖v‖2 + w · v − w · v − ‖w‖2 = ‖v‖2 − ‖w‖2

38. (v + w) · v − (v − w) · w

solution By properties of the dot product we get

(v + w) · v − (v − w) · w = (v + w) · v − w · (v − w)

= v · v + w · v − w · v + w · w

= v · v + w · w = ‖v‖2 + ‖w‖2

In Exercises 39–42, use the properties of the dot product to evaluate the expression, assuming that u · v = 2, ‖u‖ = 1,
and ‖v‖ = 3.

39. u · (4v)

solution Using properties of the dot product we get

u · (4v) = 4(u · v) = 4 · 2 = 8.

40. (u + v) · v

solution Using the distributive law and the dot product relation with length we obtain

(u + v) · v = u · v + v · v = u · v + ‖v‖2 = 2 + 32 = 11.

41. 2u · (3u − v)

solution By properties of the dot product we obtain

2u · (3u − v) = (2u) · (3u) − (2u) · v = 6(u · u) − 2(u · v)

= 6‖u‖2 − 2(u · v) = 6 · 12 − 2 · 2 = 2

42. (u + v) · (u − v)

solution We use the distributive law, commutativity and the relation with length to write

(u + v) · (u − v) = u · (u − v) + v · (u − v) = ‖u‖2 − u · v + u · v − ‖v‖2

= ‖u‖2 − ‖v‖2 = 12 − 32 = −8

43. Find the angle between v and w if v · w = −‖v‖ ‖w‖.

solution Using the formula for dot product, and the given equation v · w = −‖v‖ ‖w‖, we get:

‖v‖ ‖w‖ cos θ = −‖v‖ ‖w‖,
which implies cos θ = −1, and so the angle between the two vectors is θ = π .
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44. Find the angle between v and w if v · w = 1
2‖v‖ ‖w‖.

solution Using the formula for dot product, and the given equation v · w = 1
2‖v‖ ‖w‖, we get:

‖v‖ ‖w‖ cos θ = 1

2
‖v‖ ‖w‖,

which implies cos θ = 1
2 , and so the angle between the two vectors is θ = π/3.

45. Assume that ‖v‖ = 3, ‖w‖ = 5 and that the angle between v and w is θ = π
3 .

(a) Use the relation ‖v + w‖2 = (v + w) · (v + w) to show that ‖v + w‖2 = 32 + 52 + 2v · w.

(b) Find ‖v + w‖.

solution For part (a), we use the distributive property to get:

‖v + w‖2 = (v + w) · (v + w)

= v · v + v · w + w · v + w · w

= ‖v‖2 + 2v · w + ‖w‖2

= 32 + 52 + 2v · w

For part (b), we use the definition of dot product on the previous equation to get:

‖v + w‖2 = 32 + 52 + 2v · w

= 34 + 2 · 3 · 5 · cos π/3

= 34 + 15 = 49

Thus, ‖v + w‖ = √
49 = 7.

46. Assume that ‖v‖ = 2, ‖w‖ = 3, and the angle between v and w is 120◦. Determine:

(a) v · w (b) ‖2v + w‖ (c) ‖2v − 3w‖
solution

(a) We use the relation between the dot product and the angle between two vectors to write

v · w = ‖v‖‖w‖ cos θ = 2 · 3 cos 120◦ = 6 ·
(

−1

2

)
= −3

(b) By the relation of the dot product with length and by properties of the dot product we have

‖2v + w‖2 = (2v + w) · (2v + w) = 4v · v + 2v · w + 2w · v + w · w

= 4‖v‖2 + 4v · w + ‖w‖2

We now substitute v · w = −3 from part (a) and the given information, obtaining

‖2v + w‖2 = 4 · 22 + 4(−3) + 32 = 13 ⇒ ‖2v + w‖ = √
13 ≈ 3.61

(c) We express the length in terms of a dot product and use properties of the dot product. This gives

‖2v − 3w‖2 = (2v − 3w) · (2v − 3w) = 4v · v − 6v · w − 6w · v + 9w · w

= 4‖v‖2 − 12v · w + 9‖w‖2

Substituting v · w = −3 from part (a) and the given values yields

‖2v − 3w‖2 = 4 · 22 − 12(−3) + 9 · 32 = 133 ⇒ ‖2v − 3w‖ = √
133 ≈ 11.53

47. Show that if e and f are unit vectors such that ‖e + f‖ = 3
2 , then ‖e − f‖ =

√
7

2 . Hint: Show that e · f = 1
8 .

solution We use the relation of the dot product with length and properties of the dot product to write

9/4 = ‖e + f‖2 = (e + f) · (e + f) = e · e + e · f + f · e + f · f

= ‖e‖2 + 2e · f + ‖f‖2 = 12 + 2e · f + 12 = 2 + 2e · f

We now find e · f :

9/4 = 2 + 2e · f ⇒ e · f = 1/8
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Hence, using the same method as above, we have:

‖e − f‖2 = (e − f) · (e − f) = e · e − e · f − f · e + f · f

= ‖e‖2 − 2e · f + ‖f‖2 = 12 − 2e · f + 12 = 2 − 2e · f = 2 − 2/8 = 7/4.

Taking square roots, we get:

‖e − f‖ =
√

7

2

48. Find ‖2e − 3f‖ assuming that e and f are unit vectors such that ‖e + f‖ = √
3/2.

solution We use the relation of the dot product with length and properties of the dot product to write

3/2 = ‖e + f‖2 = (e + f) · (e + f) = e · e + e · f + f · e + f · f

= ‖e‖2 + 2e · f + ‖f‖2 = 12 + 2e · f + 12 = 2 + 2e · f

We now find e · f :

3/2 = 2 + 2e · f ⇒ e · f = −1/4

Hence, using the same method as above, we have:

‖2e − 3f‖2 = (2e − 3f) · (2e − 3f)

= ‖2e‖2 − 2 · 2e · 3f + ‖3f‖2 = 22 − 12e · f + 32 = 13 + 3 = 16.

Taking square roots, we get:

‖2e − 3f‖ = 4

49. Find the angle θ in the triangle in Figure 12.

x

y

(0, 10)

(10, 8)

(3, 2)

FIGURE 12

solution We denote by u and v the vectors in the figure.

x

y

(0, 10)

(10, 8)

(3, 2)

v

u

Hence,

cos θ = v · u
‖v‖‖u‖ (1)

We find the vectors v and u, and then compute their length and the dot product v · u. This gives

v = 〈0 − 10, 10 − 8〉 = 〈−10, 2〉
u = 〈3 − 10, 2 − 8〉 = 〈−7, −6〉

‖v‖ =
√

(−10)2+22 = √
104

‖u‖ =
√

(−7)2 + (−6)2 = √
85

v · u = 〈−10, 2〉 · 〈−7, −6〉 = (−10) · (−7) + 2 · (−6) = 58
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Substituting these values in (1) yields

cos θ = 58√
104

√
85

≈ 0.617

Hence the angle of the triangle is 51.91◦.

50. Find all three angles in the triangle in Figure 13.

x

y
(2, 7)

(6, 3)

(0, 0)

FIGURE 13

solution We denote by u, v and w the vectors and by θ1, θ2, and θ3 the angles shown in the figure. We compute the
vectors:

u = 〈2, 7〉
v = 〈6, 3〉
w = 〈6 − 2, 3 − 7〉 = 〈4, −4〉

x

y
(2, 7)

(6, 3)

(0, 0)

w

u

vq1

q2

q3

Since the angles are acute the cosines are positive, so we have

cos θ1 = |u · v|
‖u‖‖v‖ ,

cos θ2 = |v · w|
‖v‖‖w‖ ,

cos θ3 = 180 − (θ1 + θ2) (1)

We compute the lengths and the dot products in (1):

u · v = 〈2, 7〉 · 〈6, 3〉 = 2 · 6 + 7 · 3 = 33

v · w = 〈6, 3〉 · 〈4, −4〉 = 6 · 4 + 3 · (−4) = 12

‖u‖ =
√

22 + 72 = √
53

‖v‖ =
√

62 + 32 = √
45

‖w‖ =
√

42 + (−4)2 = √
32

Substituting in (1) and solving for acute angles yields

cos θ1 = 33√
53

√
45

≈ 0.676 ⇒ θ1 ≈ 47.47◦

cos θ2 = 12√
45

√
32

≈ 0.316 ⇒ θ2 ≈ 71.58◦

The sum of the angles in a triangle is 180◦, hence

θ3 = 180◦ − (47.47 + 71.58) ≈ 60.95◦.
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In Exercises 51–58, find the projection of u along v.

51. u = 〈2, 5〉, v = 〈1, 1〉
solution We first compute the following dot products:

u · v = 〈2, 5〉 · 〈1, 1〉 = 7

v · v = ‖v‖2 = 12 + 12 = 2

The projection of u along v is the following vector:

u|| =
(u · v

v · v

)
v = 7

2
v =

〈
7

2
,

7

2

〉

52. u = 〈2, −3〉, v = 〈1, 2〉
solution We first compute the following dot products:

u · v = 〈2, −3〉 · 〈1, 2〉 = −4

v · v = ‖v‖2 = 12 + 22 = 5

The projection of u along v is the following vector:

u|| =
(u · v

v · v

)
v = −4

5
v =

〈−4

5
,
−8

5

〉

53. u = 〈−1, 2, 0〉, v = 〈2, 0, 1〉
solution The projection of u along v is the following vector:

u|| =
(u · v

v · v

)
v

We compute the values in this expression:

u · v = 〈−1, 2, 0〉 · 〈2, 0, 1〉 = −1 · 2 + 2 · 0 + 0 · 1 = −2

v · v = ‖v‖2 = 22 + 02 + 12 = 5

Hence,

u|| = −2

5
〈2, 0, 1〉 =

〈
−4

5
, 0, −2

5

〉
.

54. u = 〈1, 1, 1〉, v = 〈1, 1, 0〉
solution We first compute the following dot products:

u · v = 〈1, 1, 1〉 · 〈1, 1, 0〉 = 1 · 1 + 1 · 1 + 1 · 0 = 2

v · v = ‖v‖2 = 12 + 12 + 02 = 2

The projection of u along v is the following vector:

u|| =
(u · v

v · v

)
v = 2

2
v = v = 〈1, 1, 0〉

55. u = 5i + 7j − 4k, v = k

solution The projection of u along v is the following vector:

u|| =
(u · v

v · v

)
v

We compute the dot products:

u · v = (5i + 7j − 4k) · k = −4k · k = −4

v · v = ‖v‖2 = ‖k‖2 = 1

Hence,

u|| = −4

1
k = −4k
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56. u = i + 29k, v = j

solution Since u · v = (i + 29k) · j = i · j + 29k · j = 0, u is orthogonal to v, the projection of u along v is the zero
vector

u|| = 0

57. u = 〈a, b, c〉, v = i

solution The component of u along v is a, since

u · ev = (ai + bj + ck) · i = a

Therefore, the projection of u along v is the vector

u|| = (u · ev)ev = ai

58. u = 〈a, a, b〉, v = i − j

solution We compute the following dot product:

u · v = (ai + aj + bk) · (i − j) = (ai + aj + bk) · (i − j + 0k) = a · 1 + a · (−1) + b · 0 = 0

The dot product is zero, hence the vectors u and v are orthogonal, and the projection of u along v is the zero vector:

u|| = 0

In Exercises 59 and 60, compute the component of u along v.

59. u = 〈3, 2, 1〉, v = 〈1, 0, 1〉
solution We first compute the following dot products:

u · v = 〈3, 2, 1〉 · 〈1, 0, 1〉 = 4

v · v = ‖v‖2 = 12 + 12 = 2

The component of u along v is the length of the projection of u along v

∥∥∥(u · v
v · v

)
v
∥∥∥ = 4

2
‖v‖ = 2‖v‖ = 2

√
2

60. u = 〈3, 0, 9〉, v = 〈1, 2, 2〉
solution We first compute the following dot products:

u · v = 〈3, 0, 9〉 · 〈1, 2, 2〉 = 21

v · v = ‖v‖2 = 12 + 22 + 22 = 9

The component of u along v is the length of the projection of u along v

∥∥∥(u · v
v · v

)
v
∥∥∥ = 21

9
‖v‖ = 7

3
· 3 = 7

61. Find the length of OP in Figure 14.

x

y

u = 〈3, 5〉

v = 〈8, 2〉
u⊥

P

O

FIGURE 14
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solution This is just the component of u = 〈3, 5〉 along v = 〈8, 2〉. We first compute the following dot products:

u · v = 〈3, 5〉 · 〈8, 2〉 = 34

v · v = ‖v‖2 = 82 + 22 = 68

The component of u along v is the length of the projection of u along v

∥∥∥(u · v
v · v

)
v
∥∥∥ = 34

68
‖v‖ = 34

68

√
68

62. Find ‖u⊥‖ in Figure 14.

solution From the previous problem (see solution above) we know that the component of u along v is 1/2, and thus
the projection is u‖ = 〈4, 1〉. Using the standard formula for u⊥, we obtain

u⊥ = u − u‖ = 〈3, 5〉 − 〈4, 1〉 = 〈−1, 4〉

In Exercises 63–68, find the decomposition a = a|| + a⊥ with respect to b.

63. a = 〈1, 0〉, b = 〈1, 1〉
solution

Step 1. We compute a · b and b · b

a · b = 〈1, 0〉 · 〈1, 1〉 = 1 · 1 + 0 · 1 = 1

b · b = ‖b‖2 = 12 + 12 = 2

Step 2. We find the projection of a along b:

a|| =
(

a · b
b · b

)
b = 1

2
〈1, 1〉 =

〈
1

2
,

1

2

〉

Step 3. We find the orthogonal part as the difference:

a⊥ = a − a|| = 〈1, 0〉 −
〈

1

2
,

1

2

〉
=
〈

1

2
, −1

2

〉

Hence,

a = a|| + a⊥ =
〈

1

2
,

1

2

〉
+
〈

1

2
, −1

2

〉
.

64. a = 〈2, −3〉, b = 〈5, 0〉
solution We first compute a · b and b · b to find the projection of a along b:

a · b = 〈2, −3〉 · 〈5, 0〉 = 10

b · b = ‖b‖2 = 52 + 02 = 25

Hence,

a|| =
(

a · b
b · b

)
b = 10

25
〈5, 0〉 = 〈2, 0〉

We now find the vector a⊥ orthogonal to b by computing the difference:

a − a|| = 〈2, −3〉 − 〈2, 0〉 = 〈0, −3〉
Thus, we have

a = a|| + a⊥ = 〈2, 0〉 + 〈0, −3〉
65. a = 〈4, −1, 0〉, b = 〈0, 1, 1〉
solution We first compute a · b and b · b to find the projection of a along b:

a · b = 〈4, −1, 0〉 · 〈0, 1, 1〉 = 4 · 0 + (−1) · 1 + 0 · 1 = −1

b · b = ‖b‖2 = 02 + 12 + 12 = 2
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Hence,

a|| =
(

a · b
b · b

)
b = −1

2
〈0, 1, 1〉 =

〈
0, −1

2
, −1

2

〉

We now find the vector a⊥ orthogonal to b by computing the difference:

a − a|| = 〈4, −1, 0〉 −
〈
0, −1

2
, −1

2

〉
=
〈
4, −1

2
,

1

2

〉

Thus, we have

a = a|| + a⊥ =
〈
0, −1

2
, −1

2

〉
+
〈
4, −1

2
,

1

2

〉

66. a = 〈4, −1, 5〉, b = 〈2, 1, 1〉
solution We first compute a · b and b · b to find the projection of a along b:

a · b = 〈4, −1, 5〉 · 〈2, 1, 1〉 = 12

b · b = ‖b‖2 = 22 + 12 + 12 = 6

Hence,

a|| =
(

a · b
b · b

)
b = 2〈2, 1, 1〉 = 〈4, 2, 2〉

We now find the vector a⊥ orthogonal to b by computing the difference:

a − a|| = 〈4, −1, 5〉 − 〈4, 2, 2〉 = 〈0, −3, 3〉
Thus, we have

a = a|| + a⊥ = 〈4, 2, 2〉 + 〈0, −3, 3〉

67. a = 〈x, y〉, b = 〈1, −1〉
solution We first compute a · b and b · b to find the projection of a along b:

a · b = 〈x, y〉 · 〈1, −1〉 = x − y

b · b = ‖b‖2 = 12 + (−1)2 = 2

Hence,

a|| =
(

a · b
b · b

)
b = x − y

2
〈1, −1〉 =

〈
x − y

2
,
y − x

2

〉

We now find the vector a⊥ orthogonal to b by computing the difference:

a − a|| = 〈x, y〉 −
〈
x − y

2
,
y − x

2

〉
=
〈
x + y

2
,
x + y

2

〉

Thus, we have

a = a|| + a⊥ =
〈
x − y

2
,
y − x

2

〉
+
〈
x + y

2
,
x + y

2

〉

68. a = 〈x, y, z〉, b = 〈1, 1, 1〉
solution We first compute a · b and b · b to find the projection of a along b:

a · b = 〈x, y, z〉 · 〈1, 1, 1〉 = x + y + z

b · b = ‖b‖2 = 12 + 12 + 12 = 3

Hence,

a|| =
(

a · b
b · b

)
b = x + y + z

3
〈1, 1, 1〉 =

〈
x + y + z

3
,
x + y + z

3
,
x + y + z

3

〉
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We now find the vector a⊥ orthogonal to b by computing the difference:

a − a|| = 〈x, y, z〉 −
〈
x + y + z

3
,
x + y + z

3
,
x + y + z

3

〉
=
〈

2x − y − z

3
,
−x + 2y − z

3
,
−x − y + 2z

3

〉

Thus, we have

a = a|| + a⊥ =
〈
x + y + z

3
,
x + y + z

3
,
x + y + z

3

〉
+
〈

2x − y − z

3
,
−x + 2y − z

3
,
−x − y + 2z

3

〉

69. Let eθ = 〈cos θ, sin θ〉. Show that eθ · eψ = cos(θ − ψ) for any two angles θ and ψ .

solution First, eθ is a unit vector since by a trigonometric identity we have

‖eθ‖ =
√

cos2 θ + sin2 θ = √
1 = 1

The cosine of the angle α between eθ and the vector i in the direction of the positive x-axis is

cos α = eθ · i
‖eθ‖ · ‖i‖ = eθ · i = ((cos θ)i + (sin θ)j) · i = cos θ

The solution of cos α = cos θ for angles between 0 and π is α = θ . That is, the vector eθ makes an angle θ with the
x-axis. We now use the trigonometric identity

cos θ cos ψ + sin θ sin ψ = cos(θ − ψ)

to obtain the following equality:

eθ · eψ = 〈cos θ, sin θ〉 · 〈cos ψ, sin ψ〉 = cos θ cos ψ + sin θ sin ψ = cos(θ − ψ)

70. Let v and w be vectors in the plane.

(a) Use Theorem 2 to explain why the dot product v · w does not change if both v and w are rotated by the same angle θ .

(b) Sketch the vectors e1 = 〈1, 0〉 and e2 =
〈√

2
2 ,

√
2

2

〉
, and determine the vectors e′

1, e′
2 obtained by rotating e1, e2

through an angle π
4 . Verify that e1 · e2 = e′

1 · e′
2.

solution
(a) By Theorem 2,

v · w = ‖v‖‖w‖ cos α

where α is the angle between v and w. Since rotation by an angle θ does not change the angle between the vectors, nor
the norms of the vectors, the dot product v · w remains unchanged.

y

x
e1 = 〈1, 0〉

e2 = 〈     ,      〉2
2

2
2

(b) Notice from the picture that if we rotate e1 by π/4, we get e2, and when we rotate e2 by the same amount we get

a unit vector along the y axis. Thus, e′
1 =

〈√
2

2 ,

√
2

2

〉
and e′

2 = 〈0, 1〉. Note that e1 · e2 = 1 ·
√

2
2 + 0 ·

√
2

2 =
√

2
2 and

e′
1 · e′

2 = 0 ·
√

2
2 + 1 ·

√
2

2 =
√

2
2 . Thus, e1 · e2 = e′

1 · e′
2.

In Exercises 71–74, refer to Figure 15.

A = (0, 0, 1)

C = (1, 1, 0)

D = (0, 1, 0)
B = (1, 0, 0)

O

FIGURE 15 Unit cube in R3.
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71. Find the angle between AB and AC.

solution The cosine of the angle α between the vectors
−→
AB and

−→
AC is

cos α =
−→
AB · −→

AC

‖−→AB‖‖−→AC‖
(1)

A = (0, 0, 1)

C = (1, 1, 0)

O

D = (0, 1, 0)

B = (1, 0, 0)

α

We compute the vectors
−→
AB and

−→
AC and then calculate their dot product and lengths. We get

−→
AB = 〈1 − 0, 0 − 0, 0 − 1〉 = 〈1, 0, −1〉
−→
AC = 〈1 − 0, 1 − 0, 0 − 1〉 = 〈1, 1, −1〉

−→
AB · −→

AC = 〈1, 0, −1〉 · 〈1, 1, −1〉 = 1 · 1 + 0 · 1 + (−1) · (−1) = 2

‖−→AB‖ =
√

12 + 02 + (−1)2 = √
2

‖−→AC‖ =
√

12 + 12 + (−1)2 = √
3

Substituting in (1) and solving for 0 ≤ α ≤ 90◦ gives

cos α = 2√
2 · √

3
≈ 0.816 ⇒ α ≈ 35.31◦.

72. Find the angle between AB and AD.

solution The cosine of the angle β between the vectors
−→
AB and

−→
AD is

cos β =
−→
AB · −→

AD

‖−→AB‖‖−→AD‖
(1)

A = (0, 0, 1)

C = (1, 1, 0)

D = (0, 1, 0)
B = (1, 0, 0)

b

O

We compute the vectors
−→
AB and

−→
AD and then calculate their dot product and lengths. This gives

−→
AB = 〈1 − 0, 0 − 0, 0 − 1〉 = 〈1, 0, −1〉
−→
AD = 〈0 − 0, 1 − 0, 0 − 1〉 = 〈0, 1, −1〉

−→
AB · −→

AD = 〈1, 0, −1〉 · 〈0, 1, −1〉 = 1 · 0 + 0 · 1 + (−1) · (−1) = 1

‖−→AB‖ =
√

12 + 02 + (−1)2 = √
2

‖−→AD‖ =
√

02 + 12 + (−1)2 = √
2

Substituting in (1) and solving for 0 ≤ β ≤ 90◦ gives

cos β = 1√
2 · √

2
= 1

2
⇒ β = 60◦.

It’s interesting to note that we could have done this problem in a much simpler way. The triangle ABD is equilateral since
each side is the diagonal of a unit square. Hence, all interior angles of the triangle are 60 degrees!
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73. Calculate the projection of
−→
AC along

−→
AD.

solution DC is perpendicular to the face OAD of the cube. Hence, it is orthogonal to the segment AD on this face.

Therefore, the projection of the vector
−→
AC along

−→
AD is the vector

−→
AD itself.

74. Calculate the projection of
−→
AD along

−→
AB.

solution The projection of
−→
AD along

−→
AB is the following vector:

−→
AD‖ =

(−→
AD · −→

AB
−→
AB · −→

AB

)
−→
AB (1)

We compute the vectors
−→
AB and

−→
AD and then calculate the dot product appearing in (1). We obtain

−→
AB = 〈1 − 0, 0 − 0, 0 − 1〉 = 〈1, 0, −1〉
−→
AD = 〈0 − 0, 1 − 0, 0 − 1〉 = 〈0, 1, −1〉

−→
AB · −→

AD = 〈1, 0, −1〉 · 〈0, 1, −1〉 = 1 · 0 + 0 · 1 + (−1) · (−1) = 1

−→
AB · −→

AB = ‖−→AB‖2 = 12 + 02 + (−1)2 = 2

Substituting in (1) gives

−→
AD‖ = 1

2
〈1, 0, −1〉 =

〈
1

2
, 0, −1

2

〉
.

75. Let v and w be nonzero vectors and set u = ev + ew. Use the dot product to show that the angle between u
and v is equal to the angle between u and w. Explain this result geometrically with a diagram.

solution We denote by α the angle between u and v and by β the angle between u and w. Since ev and ew are vectors
in the directions of v and w respectively, α is the angle between u and ev and β is the angle between u and ew. The cosines
of these angles are thus

cos α = u · ev

‖u‖‖ev‖ = u · ev

‖u‖ ; cos β = u · ew

‖u‖‖ew‖ = u · ew

‖u‖

To show that cos α = cos β (which implies that α = β) we must show that

u · ev = u · ew.

We compute the two dot products:

u · ev = (ev + ew) · ev = ev · ev + ew · ev = 1 + ew · ev

u · ew = (ev + ew) · ew = ev · ew + ew · ew = ev · ew + 1

We see that u · ev = u · ew. We conclude that cos α = cos β, hence α = β. Geometrically, u is a diagonal in the rhombus
OABC (see figure), hence it bisects the angle �AOC of the rhombus.

C

A
B 

O

u

v

w

ev

ew
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76. Let v, w, and a be nonzero vectors such that v · a = w · a. Is it true that v = w? Either prove this or give a
counterexample.

solution The equality v · a = w · a is equivalent to the following equality:

v · a = w · a

v · a − w · a = 0

(v − w) · a = 0

That is, v − w is orthogonal to a rather than v = w. Consider the following counterexample:

a = 〈1, 0, 1〉; v = 〈3, 1, 1〉; w = 〈4, 1, 0〉
Obviously, v �= w, but v · a = w · a since

v · a = 〈3, 1, 1〉 · 〈1, 0, 1〉 = 3 · 1 + 1 · 0 + 1 · 1 = 4

w · a = 〈4, 1, 0〉 · 〈1, 0, 1〉 = 4 · 1 + 1 · 0 + 0 · 1 = 4

77. Calculate the force (in newtons) required to push a 40-kg wagon up a 10◦ incline (Figure 16).

10°

40 kg

FIGURE 16

solution Gravity exerts a force Fg of magnitude 40g newtons where g = 9.8. The magnitude of the force required to
push the wagon equals the component of the force Fg along the ramp. Resolving Fg into a sum Fg = F|| + F⊥, where
F|| is the force along the ramp and F⊥ is the force orthogonal to the ramp, we need to find the magnitude of F||. The angle
between Fg and the ramp is 90◦ − 10◦ = 80◦. Hence,

F|| = ‖Fg‖ cos 80◦ = 40 · 9.8 · cos 80◦ ≈ 68.07 N.

10°
80°

F^

F||

Fg

Therefore the minimum force required to push the wagon is 68.07 N. (Actually, this is the force required to keep the
wagon from sliding down the hill; any slight amount greater than this force will serve to push it up the hill.)

78. A force F is applied to each of two ropes (of negligible weight) attached to opposite ends of a 40-kg wagon and
making an angle of 35◦ with the horizontal (Figure 17). What is the maximum magnitude of F (in newtons) that can be
applied without lifting the wagon off the ground?

40 kg

FF

35° 35°

FIGURE 17

solution With two ropes at either end, both at the same angle with the horizontal and both with the same force, pulling
on the 40-kg wagon, each rope will need to lift 20 kg. Let’s look at the situation on the right-hand side of the wagon. We
resolve the force F on the right-hand rope into a sum F = F|| + F⊥ where F|| is the horizontal force and F⊥ is the force
orthogonal to the ground. The wagon will not be lifted off the ground if the magnitude of F⊥, that is the component of
F along the direction orthogonal to the ground, is equal to (but not more than) the magnitude of the force due to gravity
from 20 kg (remember, each rope needs to only lift half of the wagon, and remember also that the acceleration due to
gravity is 9.8 meters per second squared). That is,

20(9.8) = ‖F⊥‖ (1)

The angle between F and a vector orthogonal to the ground is 90◦ − 35◦ = 55◦, hence, 20(9.8) = 196 = ‖F‖ cos 55◦
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35°
55°

F

Fg

F⊥

F||

This gives us

196 = ‖F‖ cos 55◦ ⇒ ‖F‖ = 196

cos 55◦ ≈ 341 Newtons

The maximum force that can be applied is of magnitude 341 newtons on each rope.

79. A light beam travels along the ray determined by a unit vector L, strikes a flat surface at point P , and is reflected
along the ray determined by a unit vector R, where θ1 = θ2 (Figure 18). Show that if N is the unit vector orthogonal to
the surface, then

R = 2(L · N)N − L

R

N

L

Incoming light Reflected light

2
1

P

FIGURE 18

solution We denote by W a unit vector orthogonal to N in the direction shown in the figure, and let θ1 = θ2 = θ .

R

W

N
L

Incoming light Reflected light

We resolve the unit vectors R and L into a sum of forces along N and W. This gives

R = cos(90 − θ)W + cos θN = sin θW + cos θN

L = − cos(90 − θ)W + cos θN = − sin θW + cos θN (1)

W

N

Now, since

L · N = ‖L‖‖N‖ cos θ = 1 · 1 cos θ = cos θ

W

N

L

q
90 + q

W

N

R

q

90 − q

we have by (1):

2(L · N)N − L = (2 cos θ)N − L = (2 cos θ)N − ((− sin θ)W + (cos θ)N)

= (2 cos θ)N + (sin θ)W − (cos θ)N = (sin θ)W + (cos θ)N = R
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80. Let P and Q be antipodal (opposite) points on a sphere of radius r centered at the origin and let R be a third point
on the sphere (Figure 19). Prove that PR and QR are orthogonal.

P
O

R

Q

FIGURE 19

solution We denote the vectors
−→
OP and

−→
OR by

v = −→
OP, w = −→

OR

v
w

P
O

R

Q

Thus,

−→
PR = −→

PO + −→
OR = −v + w

−→
RQ = −→

RO + −−→
OQ = −w − v

We now show that
−→
PR · −→

RQ = 0:

−→
PR · −→

RQ = (−v + w) · (−w − v) = (v − w) · (v + w)

= v · v + v · w − w · v − w · w = ‖v‖2 − ‖w‖2

The lengths ‖v‖ and ‖w‖ equal the radius r of the sphere, hence,

−→
PR · −→

RQ = ‖v‖2 − ‖w‖2 = r2 − r2 = 0

The dot product of
−→
PR and

−→
RQ is zero, therefore the two vectors are orthogonal.

81. Prove that ‖v + w‖2 − ‖v − w‖2 = 4v · w.

solution We compute the following values:

‖v + w‖2 = (v + w) · (v + w) = v · v + v · w + w · v + w · w = ‖v‖2 + 2v · w + ‖w‖2

‖v − w‖2 = (v − w) · (v − w) = v · v − v · w − w · v − w · w = ‖v‖2 − 2v · w + ‖w‖2

Hence,

‖v + w‖2 − ‖v − w‖2 = (‖v‖2 + 2v · w + ‖w‖2) − (‖v‖2 − 2v · w + ‖w‖2) = 4v · w

82. Use Exercise 81 to show that v and w are orthogonal if and only if ‖v − w‖ = ‖v + w‖.

solution In Exercise 81 we showed that

‖v + w‖2 − ‖v − w‖2 = 4v · w

The vectors v · w are orthogonal if and only if v · w = 0. That is, if and only if

‖v + w‖2 − ‖v − w‖2 = 0

or

‖v + w‖ = ‖v − w‖.
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83. Show that the two diagonals of a parallelogram are perpendicular if and only if its sides have equal length. Hint: Use
Exercise 82 to show that v − w and v + w are orthogonal if and only if ‖v‖ = ‖w‖.

solution We denote the vectors
−→
AB and

−→
AD by

w = −→
AB, v = −→

AD.

Then,

−→
AC = w + v,

−→
BD = −w + v.

w

v

v + w
−w + v

A

B C

D

The diagonals are perpendicular if and only if the vectors v + w and v − w are orthogonal. By Exercise 82 these vectors
are orthogonal if and only if the norms of the sum (v + w) + (v − w) = 2v and the difference (v + w) − (v − w) = 2w
are equal, that is,

‖2v‖ = ‖2w‖
2‖v‖ = 2‖w‖ ⇒ ‖v‖ = ‖w‖

84. Verify the Distributive Law:

u · (v + w) = u · v + u · w

solution We denote the components of the vectors u, v, and w by

u = 〈a1, a2, a3〉; v = 〈b1, b2, b3〉; w = 〈c1, c2, c3〉

We compute the left-hand side:

u · (v + w) = 〈a1, a2, a3〉 (〈b1, b2, b3〉 + 〈c1, c2, c3〉)
= 〈a1, a2, a3〉 · 〈b1 + c1, b2 + c2, b3 + c3〉
= 〈a1(b1 + c1), a2(b2 + c2), a3(b3 + c3)〉

Using the distributive law for scalars and the definitions of vector sum and the dot product we get

u · (v + w) = 〈a1b1 + a1c1, a2b2 + a2c2, a3b3 + a3c3〉
= 〈a1b1, a2b2, a3b3〉 + 〈a1c1, a2c2, a3c3〉
= 〈a1, a2, a3〉 · 〈b1, b2, b3〉 + 〈a1, a2, a3〉 · 〈c1, c2, c3〉
= u · v + u · w

85. Verify that (λv) · w = λ(v · w) for any scalar λ.

solution We denote the components of the vectors v and w by

v = 〈a1, a2, a3〉 w = 〈b1, b2, b3〉

Thus,

(λv) · w = (λ〈a1, a2, a3〉) · 〈b1, b2, b3〉 = 〈λa1, λa2, λa3〉 · 〈b1, b2, b3〉
= λa1b1 + λa2b2 + λa3b3

Recalling that λ, ai , and bi are scalars and using the definitions of scalar multiples of vectors and the dot product, we get

(λv) · w = λ(a1b1 + a2b2 + a3b3) = λ (〈a1, a2, a3〉 · 〈b1, b2, b3〉) = λ(v · w)
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Further Insights and Challenges
86. Prove the Law of Cosines, c2 = a2 + b2 − 2ab cos θ , by referring to Figure 20. Hint: Consider the right triangle
�PQR.

Q
P

R

a
a sin

b

c

b − a cos

FIGURE 20

solution We denote the vertices of the triangle by S, Q, and R. Since
−→
RQ = −→

RS + −→
SQ, we have

c2 = ‖−→RQ‖2 = −→
RQ · −→

RQ =
(−→
RS + −→

SQ
)

·
(−→
RS + −→

SQ
)

= −→
RS · −→

RS + −→
RS · −→

SQ + −→
SQ · −→

RS + −→
SQ · −→

SQ

= ‖−→RS‖2 + 2
−→
RS · −→

SQ + ‖−→SQ‖2

c2 = a2 + 2
−→
RS · −→

SQ + b2 (1)

QS
P

R

a

b

c

We find the dot product
−→
RS · −→

SQ. The angle between the vectors
−→
RS and

−→
SQ is θ , hence,

−→
SR · −→

SQ = ‖−→SR‖ · ‖−→SQ‖ cos θ = ab cos θ.

Therefore,

−→
RS · −→

SQ = −−→
SR · −→

SQ = −ab cos θ (2)

Substituting (2) in (1) yields

c2 = a2 − 2ab cos θ + b2 = a2 + b2 − 2ab cos θ.

(Note that we did not need to use the point P .)

87. In this exercise, we prove the Cauchy–Schwarz inequality: If v and w are any two vectors, then

|v · w| ≤ ‖v‖ ‖w‖ 6

(a) Let f (x) = ‖xv + w‖2 for x a scalar. Show that f (x) = ax2 + bx + c, where a = ‖v‖2, b = 2v · w, and c = ‖w‖2.

(b) Conclude that b2 − 4ac ≤ 0. Hint: Observe that f (x) ≥ 0 for all x.

solution

(a) We express the norm as a dot product and compute it:

f (x) = ‖xv + w‖2 = (xv + w) · (xv + w)

= x2v · v + xv·w + xw · v + w · w = ‖v‖2x2 + 2(v · w)x + ‖w‖2

Hence, f (x) = ax2 + bx + c, where a = ‖v‖2, b = 2v · w, and c = ‖w‖2.

(b) If f has distinct real roots x1 and x2, then f (x) is negative for x between x1 and x2, but this is impossible since f is
the square of a length.
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y

xx1 x2

f (x) = ax2 + bx + c, a > 0

Using properties of quadratic functions, it follows that f has a nonpositive discriminant. That is, b2 − 4ac ≤ 0. Substituting
the values for a, b, and c, we get

4(v · w)2 − 4‖v‖2‖w‖2 ≤ 0

(v · w)2 ≤ ‖v‖2‖w‖2

Taking the square root of both sides we obtain

|v · w| ≤ ‖v‖‖w‖

88. Use (6) to prove the Triangle Inequality

‖v + w‖ ≤ ‖v‖ + ‖w‖
Hint: First use the Triangle Inequality for numbers to prove

|(v + w) · (v + w)| ≤ |(v + w) · v| + |(v + w) · w|
solution Using the relation between the length and dot product we have

‖v + w‖2 = (v + w) · (v + w) = v · v + v · w + w · v + w · w

= ‖v‖2 + 2v · w + ‖w‖2 (1)

Obviously, v · w ≤ |v · w|. Also, by the Cauchy–Schwarz inequality |v · w| ≤ ‖v‖‖w‖. Therefore, v · w ≤ ‖v‖‖w‖, and
combining this with (1) we get

‖v+w‖2 = ‖v‖2 + 2v · w + ‖w‖2 ≤ ‖v‖2 + 2‖v‖‖w‖ + ‖w‖2 = (‖v‖ + ‖w‖)2

That is,

‖v+w‖2 ≤ (‖v‖ + ‖w‖)2

Taking the square roots of both sides and recalling that the length is nonnegative, we get

‖v+w‖ ≤ ‖v‖ + ‖w‖

89. This exercise gives another proof of the relation between the dot product and the angle θ between two vectors
v = 〈a1, b1〉 and w = 〈a2, b2〉 in the plane. Observe that v = ‖v‖ 〈cos θ1, sin θ1〉 and w = ‖w‖ 〈cos θ2, sin θ2〉, with θ1
and θ2 as in Figure 21. Then use the addition formula for the cosine to show that

v · w = ‖v‖ ‖w‖ cos θ

= 2 1−

2
1

w w

v v

x

y

x

y

x

y
a2

b2

b1

a1

FIGURE 21

solution Using the trigonometric function for angles in right triangles, we have

a2 = ‖v‖ sin θ1, a1 = ‖v‖ cos θ1

b2 = ‖w‖ sin θ2, b1 = ‖w‖ cos θ2
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Hence, using the given identity we obtain

v · w = 〈a1, a2〉 · 〈b1, b2〉 = a1b1 + a2b2 = ‖v‖ cos θ1‖w‖ cos θ2 + ‖v‖ sin θ1‖w‖ sin θ2

= ‖v‖‖w‖(cos θ1 cos θ2 + sin θ1 sin θ2) = ‖v‖‖w‖ cos(θ1 − θ2)

That is,

v · w = ‖v‖‖w‖ cos(θ)

90. Let v = 〈x, y〉 and

vθ = 〈x cos θ + y sin θ, −x sin θ + y cos θ〉
Prove that the angle between v and vθ is θ .

solution The dot product of the vectors v and vθ is

v · vθ = 〈x, y〉 · 〈x cos θ + y sin θ, −x sin θ + y cos θ〉
= x(x cos θ + y sin θ) + y(−x sin θ + y cos θ)

= x2 cos θ + xy sin θ − xy sin θ + y2 cos θ

= (x2 + y2) cos θ

That is,

v · vθ = (x2 + y2) cos θ (1)

On the other hand, if α denotes the angle between v and vθ , we have

v · vθ = ‖v‖‖vθ‖ cos α (2)

We compute the lengths. Using the identities cos2 θ + sin2 θ = 1 and 2 sin θ cos θ = sin 2θ , we obtain

‖v‖ = √〈x, y〉 =
√

x2 + y2

‖vθ‖ =
√

(x cos θ + y sin θ)2 + (−x sin θ + y cos θ)2

=
√

x2 cos2 θ + xy sin 2θ + y2 sin2 θ + x2 sin2 θ − xy sin 2θ + y2 cos2 θ

=
√

x2(cos2 θ + sin2 θ) + y2(sin2 θ + cos2 θ) =
√

x2 · 1 + y2 · 1 =
√

x2 + y2

Substituting the lengths in (2) yields

v · vθ =
√

x2 + y2 ·
√

x2 + y2 cos α = (x2 + y2) cos α (3)

We now equate (1) and (3) to obtain

(x2 + y2) cos θ = (x2 + y2) cos α

cos θ = cos α

The solution for angles between 0◦ and 180◦ is α = 0. That is, the angle between v and vθ is θ .

91. Let v be a nonzero vector. The angles α, β, γ between v and the unit vectors i, j, k are called the direction angles of
v (Figure 22). The cosines of these angles are called the direction cosines of v. Prove that

cos2 α + cos2 β + cos2 γ = 1

y

v

x

z

FIGURE 22 Direction angles of v.
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solution We use the relation between the dot product and the angle between two vectors to write

cos α = v · i
‖v‖‖i‖ = v · i

‖v‖

cos β = v · j
‖v‖‖j‖ = v · j

‖v‖ (1)

cos γ = v · k
‖v‖‖k‖ = v · k

‖v‖
We compute the values involved in (1). Letting v = 〈v1, v2, v3〉 we get

v · i = 〈v1, v2, v3〉 · 〈1, 0, 0〉 = v1

v · j = 〈v1, v2, v3〉 · 〈0, 1, 0〉 = v2

v · k = 〈v1, v2, v3〉 · 〈0, 0, 1〉 = v3

‖v‖ =
√

v2
1 + v2

2 + v2
3 (2)

We now substitute (2) into (1) to obtain

cos α = v1

‖v‖ , cos β = v2

‖v‖ , cos γ = v3

‖v‖
Finally, we compute the sum of squares of the direction cosines:

cos2 α + cos2 β + cos2 γ =
(

v1

‖v‖
)2

+
(

v2

‖v‖
)2

+
(

v3

‖v‖
)2

= 1

‖v‖2
(v2

1 + v2
2 + v2

3) = 1

‖v‖2
· ‖v‖2 = 1

92. Find the direction cosines of v = 〈3, 6, −2〉.
solution Let α, β, γ denote the angles between v and the unit vectors i, j, k respectively. We need to compute
cos α, cos β, and cos γ . Using the formula for the angle between two vectors and the lengths ‖i‖ = ‖j‖ = ‖k‖ = 1,
‖v‖ =

√
32 + 62 + (−2)2 = 7 we get

cos α = v · i
‖v‖‖i‖ = (3i + 6j − 2k) · i

7
= 3

7

cos β = v · j
‖v‖‖j‖ = (3i + 6j − 2k) · j

7
= 6

7

cos γ = v · k
‖v‖‖k‖ = (3i + 6j − 2k) · k

7
= −2

7

93. The set of all points X = (x, y, z) equidistant from two points P , Q in R3 is a plane (Figure 23). Show that X lies
on this plane if

−→
PQ · −→

OX = 1

2

(
‖−−→OQ‖2 − ‖−→

OP ‖2
)

7

Hint: If R is the midpoint of PQ, then X is equidistant from P and Q if and only if
−→
XR is orthogonal to

−→
PQ.

y

x

z

P

X

R

Q

FIGURE 23

solution Let R be the midpoint of the segment PQ. The points X = (x, y, z) that are equidistant from P and Q are

the points for which the vector
−→
XR is orthogonal to

−→
PQ. That is,

−→
XR · −→

PQ = 0 (1)
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Since
−→
XR = −→

XO + −→
OR we have by (1):

O =
(−→
XO + −→

OR
)

· −→
PQ = −→

XO · −→
PQ + −→

OR · −→
PQ = −−→

OX · −→
PQ + −→

OR · −→
PQ

Transferring sides we get

−→
OX · −→

PQ = −→
OR · −→

PQ (2)

We now write
−→
PQ = −→

PO + −−→
OQ on the right-hand-side of (2), and

−→
OR =

−→
OP + −−→

OQ

2
. We get

−→
OX · −→

PQ = 1

2

(−→
OP + −−→

OQ
)

·
(−→
PO + −−→

OQ
)

= 1

2

(−→
OP + −−→

OQ
)

·
(−−→
OQ − −→

OP
)

= 1

2

(−→
OP · −−→

OQ − −→
OP · −→

OP + −−→
OQ · −−→

OQ − −−→
OQ · −→

OP
)

= 1

2

(
‖−−→OQ‖2 − ‖−→

OP ‖2
)

Thus, we showed that the vector equation of the plane is

−→
OX · −→

PQ = 1

2

(
‖−−→OQ‖2 − ‖−→

OP ‖2
)

.

94. Sketch the plane consisting of all points X = (x, y, z) equidistant from the points P = (0, 1, 0) and Q = (0, 0, 1).
Use Eq. (7) to show that X lies on this plane if and only if y = z.

solution As seen in the solution to Problem 93, the point X = (x, y, z) lies on the plane iff Eq. (7) holds. Using this
equation with X = (x, y, z), P = (0, 1, 0), and Q = (0, 0, 1) gives

〈x, y, z〉 · 〈0, −1, 1〉 = 1

2
(12 − 12) = 0

This gives us 0x − 1y + 1z = 0, which gives us y = z, as desired.

95. Use Eq. (7) to find the equation of the plane consisting of all points X = (x, y, z) equidistant from P = (2, 1, 1) and
Q = (1, 0, 2).

solution Using Eq. (7) with X = (x, y, z), P = (2, 1, 1), and Q = (1, 0, 2) gives

〈x, y, z〉 · 〈−1, −1, 1〉 = 1

2

(
(
√

5)2 − (
√

6)2
)

= −1

2

This gives us −1x − 1y + 1z = − 1
2 , which leads to 2x + 2y − 2z = 1.

12.4 The Cross Product (LT Section 13.4)

Preliminary Questions

1. What is the (1, 3) minor of the matrix

∣∣∣∣∣∣
3 4 2

−5 −1 1
4 0 3

∣∣∣∣∣∣?
solution The (1, 3) minor is obtained by crossing out the first row and third column of the matrix. That is,∣∣∣∣∣∣

3 4 2
−5 −1 1
4 0 3

∣∣∣∣∣∣ ⇒
∣∣∣∣ −5 −1

4 0

∣∣∣∣
2. The angle between two unit vectors e and f is π

6 . What is the length of e × f?

solution We use the Formula for the Length of the Cross Product:

‖e × f‖ = ‖e‖‖f‖ sin θ

Since e and f are unit vectors, ‖e‖ = ‖f‖ = 1. Also θ = π
6 , therefore,

‖e × f‖ = 1 · 1 · sin
π

6
= 1

2

The length of e × f is 1
2 .



April 13, 2011

372 C H A P T E R 12 VECTOR GEOMETRY (LT CHAPTER 13)

3. What is u × w, assuming that w × u = 〈2, 2, 1〉?
solution By anti-commutativity of the cross product, we have

u × w = −w × u = −〈2, 2, 1〉 = 〈−2, −2, −1〉

4. Find the cross product without using the formula:

(a) 〈4, 8, 2〉 × 〈4, 8, 2〉 (b) 〈4, 8, 2〉 × 〈2, 4, 1〉
solution By properties of the cross product, the cross product of parallel vectors is the zero vector. In particular, the
cross product of a vector with itself is the zero vector. Since 〈4, 8, 2〉 = 2〈2, 4, 1〉, the vectors 〈4, 8, 2〉 and 〈2, 4, 1〉 are
parallel. We conclude that

〈4, 8, 2〉 × 〈4, 8, 2〉 = 0 and 〈4, 8, 2〉 × 〈2, 4, 1〉 = 0.

5. What are i × j and i × k?

solution The cross product i × j and i × k are determined by the right-hand rule. We can also use the following figure
to determine these cross-products:

j

i

k

We get

i × j = k and i × k = −j

6. When is the cross product v × w equal to zero?

solution The cross product v × w is equal to zero if one of the vectors v or w (or both) is the zero vector, or if v and
w are parallel vectors.

Exercises
In Exercises 1–4, calculate the 2 × 2 determinant.

1.

∣∣∣∣ 1 2
4 3

∣∣∣∣
solution Using the definition of 2 × 2 determinant we get

∣∣∣∣ 1 2
4 3

∣∣∣∣ = 1 · 3 − 2 · 4 = −5

2.

∣∣∣∣∣
2
3

1
6

−5 2

∣∣∣∣∣
solution Using the definition we get

∣∣∣∣ 2
3

1
6−5 2

∣∣∣∣ = 2

3
· 2 − 1

6
· (−5) = 4

3
+ 5

6
= 13

6

3.

∣∣∣∣ −6 9
1 1

∣∣∣∣
solution We evaluate the determinant to obtain

∣∣∣∣ −6 9
1 1

∣∣∣∣ = −6 · 1 − 9 · 1 = −15
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4.

∣∣∣∣ 9 25
5 14

∣∣∣∣
solution The value of the 2 × 2 determinant is

∣∣∣∣ 9 25
5 14

∣∣∣∣ = 9 · 14 − 5 · 25 = 1

In Exercises 5–8, calculate the 3 × 3 determinant.

5.

∣∣∣∣∣∣
1 2 1
4 −3 0
1 0 1

∣∣∣∣∣∣
solution Using the definition of 3 × 3 determinant we obtain

∣∣∣∣∣∣
1 2 1
4 −3 0
1 0 1

∣∣∣∣∣∣ = 1

∣∣∣∣ −3 0
0 1

∣∣∣∣− 2

∣∣∣∣ 4 0
1 1

∣∣∣∣+ 1

∣∣∣∣ 4 −3
1 0

∣∣∣∣
= 1 · (−3 · 1 − 0 · 0) − 2 · (4 · 1 − 0 · 1) + 1 · (4 · 0 − (−3) · 1)

= −3 − 8 + 3 = −8

6.

∣∣∣∣∣∣
1 0 1

−2 0 3
1 3 −1

∣∣∣∣∣∣
solution We evaluate the 3 × 3 determinant to obtain

∣∣∣∣∣∣
1 0 1

−2 0 3
1 3 −1

∣∣∣∣∣∣ = 1

∣∣∣∣ 0 3
3 −1

∣∣∣∣− 0

∣∣∣∣ −2 3
1 −1

∣∣∣∣+ 1

∣∣∣∣ −2 0
1 3

∣∣∣∣
= 1 · (0 · (−1) − 3 · 3) − 0 + 1 · (−2 · 3 − 0 · 1)

= −9 − 6 = −15

7.

∣∣∣∣∣∣
1 2 3
2 4 6

−3 −4 2

∣∣∣∣∣∣
solution We have

∣∣∣∣∣∣
1 2 3
2 4 6

−3 −4 2

∣∣∣∣∣∣ = 1

∣∣∣∣ 4 6
−4 2

∣∣∣∣− 2

∣∣∣∣ 2 6
−3 2

∣∣∣∣+ 3

∣∣∣∣ 2 4
−3 −4

∣∣∣∣
= 1(4 · 2 − 6 · (−4)) − 2(2 · 2 − 6 · (−3)) + 3(2 · (−4) − 4 · (−3))

= 32 − 44 + 12 = 0

8.

∣∣∣∣∣∣
1 0 0
0 0 −1
0 1 0

∣∣∣∣∣∣
solution We have

∣∣∣∣∣∣
1 0 0
0 0 −1
0 1 0

∣∣∣∣∣∣ = 1

∣∣∣∣ 0 −1
1 0

∣∣∣∣− 0

∣∣∣∣ 0 −1
0 0

∣∣∣∣+ 0

∣∣∣∣ 0 0
0 1

∣∣∣∣
= 1(0 · 0 − 1 · (−1))

= 1
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In Exercises 9–12, calculate v × w.

9. v = 〈1, 2, 1〉, w = 〈3, 1, 1〉
solution Using the definition of the cross product we get

v × w =
∣∣∣∣∣∣

i j k
1 2 1
3 1 1

∣∣∣∣∣∣ =
∣∣∣∣ 2 1

1 1

∣∣∣∣ i −
∣∣∣∣ 1 1

3 1

∣∣∣∣ j +
∣∣∣∣ 1 2

3 1

∣∣∣∣k
= (2 − 1)i − (1 − 3)j + (1 − 6)k = i + 2j − 5k

10. v = 〈2, 0, 0〉, w = 〈−1, 0, 1〉
solution By the definition of the cross product we have

v × w =
∣∣∣∣∣∣

i j k
2 0 0

−1 0 1

∣∣∣∣∣∣ =
∣∣∣∣ 0 0

0 1

∣∣∣∣ i −
∣∣∣∣ 2 0

−1 1

∣∣∣∣ j +
∣∣∣∣ 2 0

−1 0

∣∣∣∣k
= (0 − 0) i − (2 − 0) j + (0 − 0) k = −2j

11. v = 〈 23 , 1, 1
2

〉
, w = 〈4, −6, 3〉

solution We have

v × w =
∣∣∣∣∣∣

i j k
2
3 1 1

2
4 −6 3

∣∣∣∣∣∣ =
∣∣∣∣ 1 1

2−6 3

∣∣∣∣ i −
∣∣∣∣ 2

3
1
2

4 3

∣∣∣∣ j +
∣∣∣∣ 2

3 1
4 −6

∣∣∣∣k
= (3 + 3) i − (2 − 2) j + (−4 − 4) k = 6i − 8k

12. v = 〈1, 1, 0〉, w = 〈0, 1, 1〉
solution The cross product v × w is the following vector:

v × w =
∣∣∣∣∣∣

i j k
1 1 0
0 1 1

∣∣∣∣∣∣ =
∣∣∣∣ 1 0

1 1

∣∣∣∣ i −
∣∣∣∣ 1 0

0 1

∣∣∣∣ j +
∣∣∣∣ 1 1

0 1

∣∣∣∣k
= (1 − 0) i − (1 − 0) j + (1 − 0) k = i − j + k

In Exercises 13–16, use the relations in Eq. (5) to calculate the cross product.

13. (i + j) × k

solution We use basic properties of the cross product to obtain

(i + j) × k = i × k + j × k = −j + i

j

i

k

i × k = −j

j × k = i

14. ( j − k) × ( j + k)

solution Using properties of the cross product we get

(j − k) × (j + k) = (j − k) × j + (j − k) × k = j × j − k × j + j × k − k × k

= 0 + i + i − 0 = 2i
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15. (i − 3j + 2k) × ( j − k)

solution Using the distributive law we obtain

(i − 3j + 2k) × (j − k) = (i − 3j + 2k) × j − (i − 3j + 2k) × (k)

= i × j + 2k × j − i × k − (−3j) × k

= i + j + k

16. (2i − 3j + 4k) × (i + j − 7k)

solution We use the distributive law to obtain

(2i − 3j + 4k) × (i + j − 7k) = (2i − 3j + 4k) × i + (2i − 3j + 4k) × j + (2i − 3j + 4k) × (−7k)

= 2i × i − 3j × i + 4k × i + 2i × j − 3j × j + 4k × j − 14i × k

+ 21j × k − 28k × k

= 0 + 3i × j − 4i × k + 2i × j − 0 − 4j × k − 14i × k + 21j × k − 0

= 5i × j − 18i × k + 17j × k = 5k + 18j + 17i

= 17i + 18j + 5k

In Exercises 17–22, calculate the cross product assuming that

u × v = 〈1, 1, 0〉 , u × w = 〈0, 3, 1〉 , v × w = 〈2, −1, 1〉

17. v × u

solution Using the properties of the cross product we obtain

v × u = −u × v = 〈−1, −1, 0〉

18. v × (u + v)

solution Using the properties of the cross product we obtain

v × u + v × v = −u × v + 0 = 〈−1, −1, 0〉

19. w × (u + v)

solution Using the properties of the cross product we obtain

w × (u + v) = w × u + w × v = −u × w − v × w = 〈−2, −2, −2〉 .

20. (3u + 4w) × w

solution Using the properties of the cross product we obtain

(3u + 4w) × w = 3u × w + 4w × w = 〈0, 9, 3〉

21. (u − 2v) × (u + 2v)

solution Using the properties of the cross product we obtain

(u − 2v) × (u + 2v) = (u − 2v) × u + (u − 2v) × 2v = u × u − 2v × u + u × 2v − 4v × v

= 0 + 2u × v + 2u × v − 0 = 0 + 4u × v = 〈4, 4, 0〉
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22. (v + w) × (3u + 2v)

solution Using the properties of the cross product we obtain

(v + w) × (3u + 2v) = v × 3u + w × 3u + v × 2v + w × 2v

= −3u × v − 3u × w + 0 − 2v × w = 〈−7, −10, −5〉

23. Let v = 〈a, b, c〉. Calculate v × i, v × j, and v × k.

solution We write v = ai + bj + ck and use the distributive law:

v × i = (ai + bj + ck) × i = ai × i + bj × i + ck × i = a · 0 − bk + cj = −bk + cj = 〈0, c, −b〉
v × j = (ai + bj + ck) × j = ai × j + bj × j + ck × j = ak + b0 − ci = ak − ci = 〈−c, 0, a〉

v × k = (ai + bj + ck) × k = ai × k + bj × k + ck × k = −aj + bi + c0 = −aj + bi = 〈b, −a, 0〉

j

i

k

24. Find v × w, where v and w are vectors of length 3 in the xz-plane, oriented as in Figure 15, and θ = π
6 .

y

x

z

FIGURE 15

solution Recall that ‖v × w‖ = ‖v‖‖w‖ sin θ , and since the vectors v, w have length 3 and since the angle θ is π/6,

we get that the cross product v × w has length 3 · 3 · 1
2 which is 9

2 . By the Right-Hand Rule, v × w must point along the

negative y-axis. Thus, v × w = 〈0, − 9
2 , 0〉.

In Exercises 25 and 26, refer to Figure 16.

v

−u

u

w

FIGURE 16

25. Which of u and −u is equal to v × w?

solution The direction of v × w is determined by the right-hand rule, that is, our thumb points in the direction of
v × w when the fingers of our right hand curl from v to w. Therefore v × w equals −u rather than u.

26. Which of the following form a right-handed system?

(a) {v, w, u} (b) {w, v, u} (c) {v, u, w}
(d) {u, v, w} (e) {w, v, −u} (f) {v, −u, w}
solution Applying the right-hand rule (and assuming that u, v, and w are all mutually perpendicular), we see that only
(b) and (c) form a right-handed system.
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27. Let v = 〈3, 0, 0〉 and w = 〈0, 1, −1〉. Determine u = v × w using the geometric properties of the cross product
rather than the formula.

solution The cross product u = v × w is orthogonal to v.

y
x

v
w

z

u = v × w

Since v lies along the x-axis, u lies in the yz-plane, therefore u = 〈0, b, c〉. u is also orthogonal to w, so u · w = 0.
This gives u · w = 〈0, b, c〉 · 〈0, 1, −1〉 = b − c = 0 ⇒ b = c. Thus, u = 〈0, b, b〉. By the right-hand rule, u points
to the positive z-direction so b > 0. We compute the length of u. Since v · w = 〈3, 0, 0〉 · 〈0, 1, −1〉 = 0, v and w are
orthogonal. Hence,

‖v × w‖ = ‖v‖‖w‖ sin
π

2
= ‖v‖‖w‖ = 3 · √

2.

Also since b > 0, we have

‖u‖ = ‖〈0, b, b〉‖ =
√

2b2 = b
√

2

Equating the lengths gives

b
√

2 = 3
√

2 ⇒ b = 3.

We conclude that u = v × w = 〈0, 3, 3〉.
28. What are the possible angles θ between two unit vectors e and f if ‖e × f‖ = 1

2 ?

solution Using the length of the cross product we have

1

2
= ‖e × f‖ = ‖e‖‖f‖ sin θ = 1 · 1 sin θ.

That is, sin θ = 1
2 . The solution for 0 ≤ θ ≤ π are θ1 = π

6 and θ2 = π − π
6 = 5π

6 . We conclude that the possible angles

between e and f are π
6 or 5π

6 .

29. Show that if v and w lie in the yz-plane, then v × w is a multiple of i.

solution v × w is orthogonal to v and w. Since v and w lie in the yz-plane, v × w must lie along the x axis which is
perpendicular to yz-plane. That is, v × w is a scalar multiple of the unit vector i.

30. Find the two unit vectors orthogonal to both a = 〈3, 1, 1〉 and b = 〈−1, 2, 1〉.
solution The cross product a × b is orthogonal to a and b, therefore the desired vectors u1 and u2 are the unit vectors
in the direction of a × b and −a × b respectively. That is,

u1 = a × b
‖a × b‖ , u2 = − a × b

‖a × b‖ (1)

We compute the cross product vector a × b and its length:

a × b =
∣∣∣∣∣∣

i j k
3 1 1

−1 2 1

∣∣∣∣∣∣ =
∣∣∣∣ 1 1

2 1

∣∣∣∣ i −
∣∣∣∣ 3 1

−1 1

∣∣∣∣ j +
∣∣∣∣ 3 1

−1 2

∣∣∣∣k
= (1 − 2)i − (3 + 1)j + (6 + 1)k = −i − 4j + 7k = 〈−1, −4, 7〉

‖a × b‖ =
√

(−1)2 + (−4)2 + 72 = √
66

Substituting into (1) we get

u1 =
〈
− 1√

66
, − 4√

66
,

7√
66

〉
, u2 =

〈
1√
66

,
4√
66

, − 7√
66

〉
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31. Let e and e′ be unit vectors in R3 such that e ⊥ e′. Use the geometric properties of the cross product to compute
e × (e′ × e).

solution Let u = e × (e′ × e
)

and v = e′ × e. The vector v is orthogonal to e′ and e, hence v is orthogonal to the
plane π defined by e′ and e. Now u is orthogonal to v, hence u lies in the plane π orthogonal to v. u is orthogonal to e,
which is in this plane, hence u is a multiple of e′:

u = λe′ (1)

v

ee'

The right-hand rule implies that u is in the direction of e′, hence λ > 0. To find λ, we compute the length of u:

‖v‖ = ‖e′ × e‖ = ‖e′‖‖e‖ sin
π

2
= 1 · 1 · 1 = 1

‖u‖ = ‖e × v‖ = ‖e‖‖v‖ sin
π

2
= 1 · 1 · 1 = 1 (2)

Combining (1), (2), and λ > 0 we conclude that

u = e × (e′ × e
) = e′.

32. Calculate the force F on an electron (charge q = −1.6 × 10−19 C) moving with velocity 105 m/s in the direction i
in a uniform magnetic field B, where B = 0.0004i + 0.0001j teslas (see Example 5).

solution The force F on an electron moving at velocity v in a uniform magnetic field B is

F = q(v × B) where q = −1.6 · 10−19 coulombs.

In our example, v = 105i and B = 0.0004i + 0.0001j, hence,

F = q105i × (0.0004i + 0.0001j) = 10qi × (4i + j) = 10q (4i × i + i × j)

= 10q (0 + k) = 10qk = (−1.6 · 10−18)k

33. An electron moving with velocity v in the plane experiences a force F = q(v × B), where q is the charge on the
electron and B is a uniform magnetic field pointing directly out of the page. Which of the two vectors F1 or F2 in Figure
17 represents the force on the electron? Remember that q is negative.

v F2

F1

B

FIGURE 17 The magnetic field vector B points directly out of the page.

solution Since the magnetic field B points directly out of the page (toward us), the right-hand rule implies that the
cross product v × B is in the direction of F2 (see figure).

v F2

F1

B

I

II

Since F = q (v × B) and q < 0, the force F on the electron is represented by the opposite vector F1.
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34. Calculate the scalar triple product u · (v × w), where u = 〈1, 1, 0〉, v = 〈3, −2, 2〉, and w = 〈4, −1, 2〉.
solution The scalar triple product is the following 3 × 3 determinant:

u · (v × w) =
∣∣∣∣∣∣

1 1 0
3 −2 2
4 −1 2

∣∣∣∣∣∣ = 1

∣∣∣∣ −2 2
−1 2

∣∣∣∣− 1

∣∣∣∣ 3 2
4 2

∣∣∣∣+ 0

∣∣∣∣ 3 −2
4 −1

∣∣∣∣
= 1 · (−4 + 2) − 1 · (6 − 8) + 0 = −2 + 2 = 0

35. Verify identity (10) for vectors v = 〈3, −2, 2〉 and w = 〈4, −1, 2〉.
solution We compute the cross product v × w:

v × w =
∣∣∣∣∣∣

i j k
3 −2 2
4 −1 2

∣∣∣∣∣∣ =
∣∣∣∣ −2 2

−1 2

∣∣∣∣ i −
∣∣∣∣ 3 2

4 2

∣∣∣∣ j +
∣∣∣∣ 3 −2

4 −1

∣∣∣∣k
= (−4 + 2)i − (6 − 8)j + (−3 + 8)k = −2i + 2j + 5k = 〈−2, 2, 5〉

We now find the dot product v · w:

v · w = 〈3, −2, 2〉 · 〈4, −1, 2〉 = 3 · 4 + (−2) · (−1) + 2 · 2 = 18

Finally we compute the squares of the lengths of v, w and v × w:

‖v‖2 = 32 + (−2)2 + 22 = 17

‖w‖2 = 42 + (−1)2 + 22 = 21

‖v × w‖2 = (−2)2 + 22 + 52 = 33

We now verify the equality:

‖v‖2‖w‖2 − (v · w)2 = 17 · 21 − 182 = 33 = ‖v × w‖2

36. Find the volume of the parallelepiped spanned by u, v, and w in Figure 18.

y

x

z

u = 〈1, 0, 4〉
w = 〈−4, 2, 6〉

v = 〈1, 3, 1〉

FIGURE 18

solution Using u = 〈1, 0, 4〉, v = 〈1, 3, 1〉 and w = 〈−4, 2, 6〉, the scalar triple product is the following 3 × 3
determinant:

u · (v × w) =
∣∣∣∣∣∣

1 0 4
1 3 1

−4 2 6

∣∣∣∣∣∣ = 1 · (18 − 2) − 0 + 4(2 + 12) = 16 + 56 = 72

37. Find the area of the parallelogram spanned by v and w in Figure 18.

solution The area of the parallelogram equals the length of the cross product of the two vectors v = 〈1, 3, 1〉 and
w = 〈−4, 2, 6〉. We calculate the cross product as follows:

v × w =
∣∣∣∣∣∣

i j k
1 3 1

−4 2 6

∣∣∣∣∣∣ = (18 − 2)i − (6 + 4)j + (2 + 12)k = 16i − 10j + 14k

The length of this vector 16i − 10j + 14k is
√

162 + 102 + 142 = 2
√

138. Thus, the area of the parallelogram is 2
√

138.
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38. Calculate the volume of the parallelepiped spanned by

u = 〈2, 2, 1〉 , v = 〈1, 0, 3〉 , w = 〈0, −4, 0〉
solution Using u = 〈2, 2, 1〉, v = 〈1, 0, 3〉, and w = 〈0, −4, 0〉, the volume is given by the following scalar triple
product:

u · (v × w) =
∣∣∣∣∣∣

2 2 1
1 0 3
0 −4 0

∣∣∣∣∣∣ = 2(0 + 12) − 2(0 − 0) + 1(−4 − 0) = 24 − 4 = 20.

39. Sketch and compute the volume of the parallelepiped spanned by

u = 〈1, 0, 0〉 , v = 〈0, 2, 0〉 , w = 〈1, 1, 2〉
solution Using u = 〈1, 0, 0〉, v = 〈0, 2, 0〉, and w = 〈1, 1, 2〉, the volume is given by the following scalar triple
product:

u · (v × w) =
∣∣∣∣∣∣

1 0 0
0 2 0
1 1 2

∣∣∣∣∣∣ = 1(4 − 0) − 0 + 0 = 4.

u
v

w

y

x

z

40. Sketch the parallelogram spanned by u = 〈1, 1, 1〉 and v = 〈0, 0, 4〉, and compute its area.

solution The parallelogram spanned by u = 〈1, 1, 1〉 and v = 〈0, 0, 4〉 is shown in the figure.

y

x

z

v

u

5

4

3

2

1

1
1

We find its area A using the formula for the area of a parallelogram:

A = ‖u × v‖
We first find the cross product vector u × v:

u × v = (i + j + k) × 4k = 4i × k + 4j × k + 4k × k = −4j + 4i + 0 = 4i − 4j = 4〈1, −1, 0〉
Hence,

A = ‖4〈1, −1, 0〉‖ = 4‖〈1, −1, 0〉‖ = 4
√

12 + (−1)2 + 02 = 4
√

2

41. Calculate the area of the parallelogram spanned by u = 〈1, 0, 3〉 and v = 〈2, 1, 1〉.
solution The area of the parallelogram is the length of the vector u × v. We first compute this vector:

u × v =
∣∣∣∣∣∣

i j k
1 0 3
2 1 1

∣∣∣∣∣∣ =
∣∣∣∣ 0 3

1 1

∣∣∣∣ i −
∣∣∣∣ 1 3

2 1

∣∣∣∣ j +
∣∣∣∣ 1 0

2 1

∣∣∣∣k = −3i − (1 − 6)j + k = −3i + 5j + k
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The area A is the length

A = ‖u × v‖ =
√

(−3)2 + 52 + 12 = √
35 ≈ 5.92.

42. Find the area of the parallelogram determined by the vectors 〈a, 0, 0〉 and 〈0, b, c〉.
solution The area A is the length of the cross product of the two vectors. We first compute the cross product:

〈a, 0, 0〉 × 〈0, b, c〉 = ai × (bj + ck) = abi × j + aci × k = abk − acj = 〈0, −ac, ab〉

j

i

k

The area of the parallelogram is therefore

A = ‖〈0, −ac, ab〉‖ =
√

02 + (−ac)2 + (ab)2 =
√

a2c2 + a2b2 = |a|
√

b2 + c2

43. Sketch the triangle with vertices at the origin O, P = (3, 3, 0), and Q = (0, 3, 3), and compute its area using cross
products.

solution The triangle OPQ is shown in the following figure.

y
x

O

Q = (0, 3, 3)

P = (3, 3, 0)

z

The area S of the triangle is half of the area of the parallelogram determined by the vectors
−→
OP = 〈3, 3, 0〉 and−−→

OQ = 〈0, 3, 3〉. Thus,

S = 1

2
‖−→
OP × −−→

OQ‖ (1)

We compute the cross product:

−→
OP × −−→

OQ =
∣∣∣∣∣∣

i j k
3 3 0
0 3 3

∣∣∣∣∣∣ =
∣∣∣∣ 3 0

3 3

∣∣∣∣ i −
∣∣∣∣ 3 0

0 3

∣∣∣∣ j +
∣∣∣∣ 3 3

0 3

∣∣∣∣k
= 9i − 9j + 9k = 9〈1, −1, 1〉

Substituting into (1) gives

S = 1

2
‖9〈1, −1, 1〉‖ = 9

2
‖〈1, −1, 1〉‖ = 9

2

√
12 + (−1)2 + 12 = 9

√
3

2
≈ 7.8

The area of the triangle is S = 9
√

3
2 ≈ 7.8.

44. Use the cross product to find the area of the triangle with vertices P = (1, 1, 5), Q = (3, 4, 3), and R = (1, 5, 7)

(Figure 19).

y

P

Q

R

x

z

FIGURE 19
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solution The area S of the triangle is half of the area of the parallelogram spanned by
−→
PQ and

−→
PR. We use the formula

for the area of a parallelogram via cross product to write

S = 1

2
‖−→
PQ × −→

PR‖

We compute the vectors
−→
PQ and

−→
PR :

−→
PQ = 〈3 − 1, 4 − 1, 3 − 5〉 = 〈2, 3, −2〉
−→
PR = 〈1 − 1, 5 − 1, 7 − 5〉 = 〈0, 4, 2〉

We now find the cross product
−→
PQ × −→

PR by computing the following determinant:

−→
PQ × −→

PR =
∣∣∣∣∣∣

i j k
2 3 −2
0 4 2

∣∣∣∣∣∣ =
∣∣∣∣ 3 −2

4 2

∣∣∣∣ i −
∣∣∣∣ 2 −2

0 2

∣∣∣∣ j +
∣∣∣∣ 2 3

0 4

∣∣∣∣k = 14i − 4j + 8k

Thus, we get

S = 1

2
‖14i − 4j + 8k‖ = 1

2

√
142 + (−4)2 + 82 = 1

2
· 2

√
69 = √

69 ≈ 8.3

In Exercises 45–47, verify the identity using the formula for the cross product.

45. v × w = −w × v

solution Let v = 〈a, b, c〉 and w = 〈d, e, f 〉. By the definition of the cross product we have

v × w =
∣∣∣∣∣∣

i j k
a b c

d e f

∣∣∣∣∣∣ =
∣∣∣∣ b c

e f

∣∣∣∣ i −
∣∣∣∣ a c

d f

∣∣∣∣ j +
∣∣∣∣ a b

d e

∣∣∣∣k = (bf − ec)i − (af − dc)j + (ae − db)k

We also have

−w × v =
∣∣∣∣∣∣

i j k
−d −e −f

a b c

∣∣∣∣∣∣ = (−ec + bf )i − (−dc + af )j + (−db + ea)k

Thus, v × w = −w × v, as desired.

46. (λv) × w = λ(v × w) (λ a scalar)

solution Let v = 〈a1, a2, a3〉 and w = 〈b1, b2, b3〉. We compute (λv) × w:

(λv) × w = 〈λa1, λa2, λa3〉 × 〈b1, b2, b3〉 =
∣∣∣∣∣∣

i j k
λa1 λa2 λa3
b1 b2 b3

∣∣∣∣∣∣
=
∣∣∣∣ λa2 λa3

b2 b3

∣∣∣∣ i −
∣∣∣∣ λa1 λa3

b1 b3

∣∣∣∣ j +
∣∣∣∣ λa1 λa2

b1 b2

∣∣∣∣k
= (λa2b3 − λa3b2) i − (λa1b3 − λa3b1) j + (λa1b2 − λa2b1) k

= λ (a2b3 − a3b2) i − λ (a1b3 − a3b1) j + λ (a1b2 − a2b1) k

= λ ((a2b3 − a3b2) i − (a1b3 − a3b1) j + (a1b2 − a2b1) k)

We compute λ (v × w):

λ (v × w) = λ

∣∣∣∣∣∣
i j k

a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ = λ ((a2b3 − a3b2) i − (a1b3 − a3b1) j + (a1b2 − a2b1) k)

The two vectors are equal.

47. (u + v) × w = u × w + v × w

solution We let u = 〈a1, a2, a3〉, v = 〈b1, b2, b3〉 and w = 〈c1, c2, c3〉. Computing the left-hand side gives

(u + v) × w = 〈a1 + b1, a2 + b2, a3 + b3〉 × 〈c1, c2, c3〉 =
∣∣∣∣∣∣

i j k
a1 + b1 a2 + b2 a3 + b3

c1 c2 c3

∣∣∣∣∣∣
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=
∣∣∣∣ a2 + b2 a3 + b3

c2 c3

∣∣∣∣ i −
∣∣∣∣ a1 + b1 a3 + b3

c1 c3

∣∣∣∣ j +
∣∣∣∣ a1 + b1 a2 + b2

c1 c2

∣∣∣∣k
= (c3(a2 + b2) − c2(a3 + b3)) i − (c3 (a1 + b1) − c1 (a3 + b3)) j + (c2(a1 + b1) − c1(a2 + b2)) k

We now compute the right-hand-side of the equality:

u × w + v × w =
∣∣∣∣∣∣

i j k
a1 a2 a3
c1 c2 c3

∣∣∣∣∣∣+
∣∣∣∣∣∣

i j k
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
=
∣∣∣∣ a2 a3

c2 c3

∣∣∣∣ i −
∣∣∣∣ a1 a3

c1 c3

∣∣∣∣ j +
∣∣∣∣ a1 a2

c1 c2

∣∣∣∣k +
∣∣∣∣ b2 b3

c2 c3

∣∣∣∣ i −
∣∣∣∣ b1 b3

c1 c3

∣∣∣∣ j +
∣∣∣∣ b1 b2

c1 c2

∣∣∣∣k
= (a2c3 − a3c2)i − (a1c3 − a3c1)j + (a1c2 − a2c1)k

+ (b2c3 − b3c2)i − (b1c3 − b3c1)j + (b1c2 − b2c1)k

= (a2c3 − a3c2 + b2c3 − b3c2)i − (a1c3 − a3c1 + b1c3 − b3c1)j + (a1c2 − a2c1 + b1c2 − b2c1)k

= (c3(a2 + b2) − c2(a3 + b3)) i − (c3(a1 + b1) − c1(a3 + b3)) j + (c2(a1 + b1) − c1(a2 + b2)) k

The results are the same. Hence,

(u + v) × w = u × w + v × w.

48. Use the geometric description in Theorem 1 to prove Theorem 2 (iii): v × w = 0 if and only if w = λv for some
scalar λ or v = 0.

solution v × w = 0 if and only if ‖v × w‖ = 0, that is, using Theorem 2 (b), if and only if

‖v‖‖w‖ sin θ = 0

where θ is the angle between v and w. This equality holds only if at least one of the vectors v or w is the zero vector or
sin θ = 0. The solutions of sin θ = 0 for angles between 0 and 180◦ are θ = 0 and θ = 180◦, that is, v and w are parallel
vectors. To summarize, we conclude that v × w = 0 if and only if v = 0 or w = 0 or w = λv. This can be written as

v = 0 or w = λv.

49. Verify the relations (5).

solution We must verify the following relations:

i × j = k, j × k = i, k × i = j, i × i = j × j = k × k = 0

We compute the cross products using the definition of the cross product. This gives

i × j =
∣∣∣∣∣∣

i j k
1 0 0
0 1 0

∣∣∣∣∣∣ =
∣∣∣∣ 0 0

1 0

∣∣∣∣ i −
∣∣∣∣ 1 0

0 0

∣∣∣∣ j +
∣∣∣∣ 1 0

0 1

∣∣∣∣k = k

j × k =
∣∣∣∣∣∣

i j k
0 1 0
0 0 1

∣∣∣∣∣∣ =
∣∣∣∣ 1 0

0 1

∣∣∣∣ i −
∣∣∣∣ 0 0

0 1

∣∣∣∣ j +
∣∣∣∣ 0 1

0 0

∣∣∣∣k = i

k × i =
∣∣∣∣∣∣

i j k
0 0 1
1 0 0

∣∣∣∣∣∣ =
∣∣∣∣ 0 1

0 0

∣∣∣∣ i −
∣∣∣∣ 0 1

1 0

∣∣∣∣ j +
∣∣∣∣ 0 0

1 0

∣∣∣∣k = j

i × i =
∣∣∣∣∣∣

i j k
1 0 0
1 0 0

∣∣∣∣∣∣ =
∣∣∣∣ 0 0

0 0

∣∣∣∣ i −
∣∣∣∣ 1 0

1 0

∣∣∣∣ j +
∣∣∣∣ 1 0

1 0

∣∣∣∣k = 0

j × j =
∣∣∣∣∣∣

i j k
0 1 0
0 1 0

∣∣∣∣∣∣ =
∣∣∣∣ 1 0

1 0

∣∣∣∣ i −
∣∣∣∣ 0 0

0 0

∣∣∣∣ j +
∣∣∣∣ 0 1

0 1

∣∣∣∣k = 0

k × k =
∣∣∣∣∣∣

i j k
0 0 1
0 0 1

∣∣∣∣∣∣ =
∣∣∣∣ 0 1

0 1

∣∣∣∣ i −
∣∣∣∣ 0 1

0 1

∣∣∣∣ j +
∣∣∣∣ 0 0

0 0

∣∣∣∣k = 0
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50. Show that

(i × j) × j �= i × (j × j)

Conclude that the Associative Law does not hold for cross products.

solution Using the cross products of the unit vectors i, j, and k, we obtain

(i × j) × j = k × j = −i

i × (j × j) = i × 0 = 0

j

i

k

Since (i × j) × j �= i × (j × j) the associative law does not hold for cross products.

51. The components of the cross product have a geometric interpretation. Show that the absolute value of the k-component
of v × w is equal to the area of the parallelogram spanned by the projections v0 and w0 onto the xy-plane (Figure 20).

y

x v0

v
w

w0

z

FIGURE 20

solution Let v = 〈a1, a2, a3〉 and w = 〈b1, b2, b3〉, hence, v0 = 〈a1, a2, 0〉 and w0 = 〈b1, b2, 0〉. The area S of the
parallelogram spanned by v0 and w0 is the following value:

S = ‖v0 × w0‖ (1)

We compute the cross product:

v0 × w0 =
∣∣∣∣∣∣

i j k
a1 a2 0
b1 b2 0

∣∣∣∣∣∣ =
∣∣∣∣ a2 0

b2 0

∣∣∣∣ i −
∣∣∣∣ a1 0

b1 0

∣∣∣∣ j +
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣k
= 0i − 0j + (a1b2 − a2b1)k = 〈0, 0, a1b2 − a2b1〉

Using (1) we have

S =
√

02 + 02 + (a1b2 − a2b1)2 = |a1b2 − a2b1| (2)

We now compute v × w:

v × w =
∣∣∣∣∣∣

i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ =
∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ i −
∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ j +
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣k
The k-component of v × w is, thus, ∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ = a1b2 − a2b1 (3)

By (2) and (3) we obtain the desired result.

52. Formulate and prove analogs of the result in Exercise 51 for the i- and j-components of v × w.

solution The analogs for the i and j components of v × w are the following statements:

(a) The area of the parallelogram spanned by the projections v′ and w′ of vectors v, w onto the xz-plane is equal to the
absolute value of the j-component of v × w.
(b) The area of the parallelogram spanned by the projections v′ and w′ of vectors v, w onto the yz-plane is equal to the
absolute value of the i-component of v × w.
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(c) If v = 〈a1, a2, a3〉 and w = 〈b1, b2, b3〉 then v′ = 〈a1, 0, a3〉 and w′ = 〈b1, 0, b3〉. The area S of the parallelogram
spanned by v′ and w′ is

S = ‖v′ × w′‖ (1)

We compute the cross product:

v′ × w′ =
∣∣∣∣∣∣

i j k
a1 0 a3
b1 0 b3

∣∣∣∣∣∣ =
∣∣∣∣ 0 a3

0 b3

∣∣∣∣ i −
∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ j +
∣∣∣∣ a1 0

b1 0

∣∣∣∣k
= 0i − (a1b3 − a3b1)j + 0k = −(a1b3 − a3b1)j

Combining with (1) we get

S = ‖ − (a1b3 − a3b1)j‖ = |a1b3 − a3b1| (2)

We now find the cross product v × w:

v × w =
∣∣∣∣∣∣

i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ =
∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ i −
∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ j +
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣k
The j-component of the cross product is

−
∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ = −(a1b3 − a3b1) (3)

By (2) and (3) we obtain the desired result.

Proof of (b). In this case, v′ = 〈0, a2, a3〉 and w′ = 〈0, b2, b3〉. The area S of the parallelogram spanned by v′ and w′ is

S = ‖v′ × w′‖ (4)

We compute the cross product:

v′ × w′ =
∣∣∣∣∣∣

i j k
0 a2 a3
0 b2 b3

∣∣∣∣∣∣ =
∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ i −
∣∣∣∣ 0 a3

0 b3

∣∣∣∣ j +
∣∣∣∣ 0 a2

0 b2

∣∣∣∣k = (a2b3 − a3b2)i

Hence, by (4) we get

S = ‖ (a2b3 − a3b2) i‖ = |a2b3 − a3b2|‖i‖ = |a2b3 − a3b2| (5)

We now identify the i component of v × w as seen in the proof of part (a):∣∣∣∣ a2 a3
b2 b3

∣∣∣∣ = a2b3 − a3b2 (6)

By (5) and (6) we obtain the desired result.

53. Show that three points P, Q, R are collinear (lie on a line) if and only if
−→
PQ × −→

PR = 0.

solution The points P , Q, and R lie on one line if and only if the vectors
−→
PQ and

−→
PR are parallel. By basic properties

of the cross product this is equivalent to
−→
PQ × −→

PR = 0.

R

P

Q

54. Use the result of Exercise 53 to determine whether the points P , Q, and R are collinear, and if not, find a vector
normal to the plane containing them.

(a) P = (2, 1, 0), Q = (1, 5, 2), R = (−1, 13, 6)

(b) P = (2, 1, 0), Q = (−3, 21, 10), R = (5, −2, 9)

(c) P = (1, 1, 0), Q = (1, −2, −1), R = (3, 2, −4)
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solution
(a) Let P = (2, 1, 0), Q = (1, 5, 2), R = (−1, 13, 6). By the result of Exercise 53, the points are collinear if and only

if
−→
PQ × −→

PR = 0. We compute these vectors:

−→
PQ = 〈1 − 2, 5 − 1, 2 − 0〉 = 〈−1, 4, 2〉 = −i + 4j + 2k
−→
PR = 〈−1 − 2, 13 − 1, 6 − 0〉 = 〈−3, 12, 6〉 = −3i + 12j + 6k

The cross product of these vectors is

−→
PQ × −→

PR =
∣∣∣∣∣∣

i j k
−1 4 2
−3 12 6

∣∣∣∣∣∣ =
∣∣∣∣ 4 2

12 6

∣∣∣∣ i −
∣∣∣∣ −1 2

−3 6

∣∣∣∣ j +
∣∣∣∣ −1 4

−3 12

∣∣∣∣k
= (24 − 24)i − (−6 + 6)j + (−12 + 12)k = 0

The cross product is the zero vector, hence the points P , Q, R are collinear.

(b) Let P = (2, 1, 0), Q = (−3, 21, 10), R = (5, −2, 9). To check if
−→
PQ × −→

PR = 0 we first compute these vectors:

−→
PQ = 〈−3 − 2, 21 − 1, 10 − 0〉 = 〈−5, 20, 10〉 = −5i + 20j + 10k
−→
PR = 〈5 − 2, −2 − 1, 9 − 0〉 = 〈3, −3, 9〉 = 3i − 3j + 9k

We find the cross product:

−→
PQ × −→

PR =
∣∣∣∣∣∣

i j k
−5 20 10

3 −3 9

∣∣∣∣∣∣ =
∣∣∣∣ 20 10

−3 9

∣∣∣∣ i −
∣∣∣∣ −5 10

3 9

∣∣∣∣ j +
∣∣∣∣ −5 20

3 −3

∣∣∣∣k
= (180 + 30)i − (−45 − 30)j + (15 − 60)k = 210i + 75j − 45k �= 0

The cross product is not the zero vector, hence the points P , Q and R are not collinear.

(c) Let P = (1, 1, 0), Q = (1, −2, −1), R = (3, 2, −4). These points are not collinear if
−→
PQ × −→

PR �= 0. We find
−→
PQ

and
−→
PR:

−→
PQ = 〈1 − 1, −2 − 1, −1 − 0〉 = 〈0, −3, −1〉 = −3j − k
−→
PR = 〈3 − 1, 2 − 1, −4 − 0〉 = 〈2, 1, −4〉 = 2i + j − 4k

Thus,

−→
PQ × −→

PR =
∣∣∣∣∣∣

i j k
0 −3 −1
2 1 −4

∣∣∣∣∣∣ =
∣∣∣∣ −3 −1

1 −4

∣∣∣∣ i −
∣∣∣∣ 0 −1

2 −4

∣∣∣∣ j +
∣∣∣∣ 0 −3

2 1

∣∣∣∣k
= (12 + 1)i − (0 + 2)j + (0 + 6)k = 13i − 2j + 6k

Since
−→
PQ × −→

PR �= 0, the points P , Q, R are not collinear, rather, there is exactly one plane containing them. A vector

normal to this plane is orthogonal to
−→
PQ and

−→
PR. The cross product

−→
PQ × −→

PR = 13i − 2j + 6k is such a vector.

55. Solve the equation 〈1, 1, 1〉 × X = 〈1, −1, 0〉, where X = 〈x, y, z〉. Note: There are infinitely many solutions.

solution Let X = 〈a, b, c〉. We compute the cross product:

〈1, 1, 1〉 × 〈a, b, c〉 =
∣∣∣∣∣∣

i j k
1 1 1
a b c

∣∣∣∣∣∣ =
∣∣∣∣ 1 1

b c

∣∣∣∣ i −
∣∣∣∣ 1 1

a c

∣∣∣∣ j +
∣∣∣∣ 1 1

a b

∣∣∣∣k
= (c − b)i−(c − a)j + (b − a)k = 〈c − b, a − c, b − a〉

The equation for X is, thus,

〈c − b, a − c, b − a〉 = 〈1, −1, 0〉
Equating corresponding components we get

c − b = 1

a − c = −1

b − a = 0

The third equation implies a = b. Substituting in the first and second equations gives

c − a = 1

a − c = −1
⇒ c = a + 1
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The solution is thus, b = a, c = a + 1. The corresponding solutions X are

X = 〈a, b, c〉 = 〈a, a, a + 1〉
One possible solution is obtained for a = 0, that is, X = 〈0, 0, 1〉.
56. Explain geometrically why 〈1, 1, 1〉 × X = 〈1, 0, 0〉 has no solution, where X = 〈x, y, z〉.
solution The cross product vector 〈1, 0, 0〉 must be orthogonal to the vector 〈1, 1, 1〉. This condition is not satisfied
since

〈1, 1, 1〉 · 〈1, 0, 0〉 = 1 · 1 + 1 · 0 + 1 · 0 = 1 �= 0

Therefore, there is no vector X that satisfies the equation.

57. Let X = 〈x, y, z〉. Show that i × X = v has a solution if and only if v is contained in the yz-plane (the
i-component is zero).

solution The cross product vector i × X = v must be orthogonal to the vector i = 〈1, 0, 0〉. This condition is true if
and only if 〈1, 0, 0〉 · v = 0, which is true if and only if the i-component of v is zero (that is, v is in the yz-plane).

58. Suppose that vectors u, v, and w are mutually orthogonal—that is, u ⊥ v, u ⊥ w, and v ⊥ w. Prove that
(u × v) × w = 0 and u × (v × w) = 0.

solution The cross product u × v is orthogonal to u and v, hence it is parallel to w. The cross product of parallel
vectors is the zero vector, hence (u × v) × w = 0. Similarly, the cross product v × w is orthogonal to v and w, hence it
is parallel to u. Since the cross product of parallel vectors is the zero vector, we conclude that u × (v × w) = 0.

In Exercises 59–62: The torque about the origin O due to a force F acting on an object with position vector r is the vector
quantity τ = r × F. If several forces Fj act at positions rj , then the net torque (units: N-m or lb-ft) is the sum

τ =
∑

rj × Fj

Torque measures how much the force causes the object to rotate. By Newton’s Laws, τ is equal to the rate of change of
angular momentum.

59. Calculate the torque τ about O acting at the point P on the mechanical arm in Figure 21(A), assuming that a 25-N
force acts as indicated. Ignore the weight of the arm itself.

O

y

10 m

F = 25 N

P

125°

x

(A) (B)

O

y

10 m

F = 25 N

P

125°

x

Fg

FIGURE 21

solution We denote by O and P the points shown in the figure and compute the position vector r = −→
OP and the

force vector F.

O

y

10 m

F = 25 N

P

125°

x

Denoting by θ the angle between the arm and the x-axis we have

r = −→
OP = 10 (cos θ i + sin θ j)

The angle between the force vector F and the x-axis is
(
θ + 125◦), hence,

F = 25
(
cos
(
θ + 125◦) i + sin

(
θ + 125◦) j

)
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The torque τ about O acting at the point P is the cross product τ = r × F. We compute it using the cross products of the
unit vectors i and j:

τ = r × F = 10 (cos θ i + sin θ j) × 25
(
cos
(
θ + 125◦) i + sin

(
θ + 125◦) j

)
= 250 (cos θ i + sin θ j) × (cos

(
θ + 125◦) i + sin

(
θ + 125◦) j

)
= 250

(
cos θ sin

(
θ + 125◦)k + sin θ cos

(
θ + 125◦) (−k)

)
= 250

(
sin
(
θ + 125◦) cos θ − sin θ cos

(
θ + 125◦))k

We now use the identity sin α cos β − sin β cos α = sin(α − β) to obtain

τ = 250 sin
(
θ + 125◦ − θ

)
k = 250 sin 125◦k ≈ 204.79k

60. Calculate the net torque about O at P , assuming that a 30-kg mass is attached at P [Figure 21(B)]. The force Fg due
to gravity on a mass m has magnitude 9.8m m/s2 in the downward direction.

solution We denote by τ1 and τ2 the torques due to the forces F and Fg respectively. Let θ denote the angle between

the arm and the x-axis, and r = −→
OP the position vector. The net torque about O at P is

τ = r × F + r × Fg = τ1 + τ2 (1)

O

y

10 m

F = 25 N

P

125°

x

Fg

In Exercise 59 we found that

τ1 = 204.79k (2)

We compute the torque τ2:

τ2 = r × Fg = 10 (cos θ i + sin θ j) × 9.8 · 30 (−j)

= 2940 (cos θ i + sin θ j) × (−j) (3)

= 2940 cos θ (−k) = −2940 cos θk

Combining (1), (2), and (3) we obtain

τ = 204.79k − 2940 cos θk = (204.79 − 2940 cos θ)k

61. Let τ be the net torque about O acting on the robotic arm of Figure 22. Assume that the two segments of the arms
have mass m1 and m2 (in kg) and that a weight of m3 kg is located at the endpoint P . In calculating the torque, we may
assume that the entire mass of each arm segment lies at the midpoint of the arm (its center of mass). Show that the position
vectors of the masses m1, m2, and m3 are

r1 = 1

2
L1(sin θ1i + cos θ1j)

r2 = L1(sin θ1i + cos θ1j) + 1

2
L2(sin θ2i − cos θ2j)

r3 = L1(sin θ1i + cos θ1j) + L2(sin θ2i − cos θ2j)

Then show that

τ = −g

(
L1

(
1

2
m1 + m2 + m3

)
sin θ1 + L2

(
1

2
m2 + m3

)
sin θ2

)
k

where g = 9.8m/s2. To simplify the computation, note that all three gravitational forces act in the −j direction, so the
j-components of the position vectors ri do not contribute to the torque.

x

y

1

1

2
PL1

m1

m2

L2

m3

FIGURE 22
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solution We denote by O, P , and Q the points shown in the figure.

x

y

1

1

2
P

O

Q

L1

m1

m2

L2

m3

The coordinates of O and Q are

O = (0, 0), Q = (L1 sin θ1, L1 cos θ1)

The midpoint of the segment OQ is, thus,(
0 + L1 sin θ1

2
,

0 + L1 cos θ1

2

)
=
(

L1 sin θ1

2
,
L1 cos θ1

2

)

Since the mass m1 is assumed to lie at the midpoint of the arm, the position vector of m1 is

r1 = L1

2
(sin θ1i + cos θ1j) (1)

We now find the position vector r2 of m2. We have (see figure)

x

y

O

P

Q

M

q1
q 2

L2 
2

−(90 − q 2)

r2

r2 = −−→
OQ + −−→

QM (2)

−−→
OQ = L1 sin θ1i + L1 cos θ1j = L1 (sin θ1i + cos θ1j) (3)

The vector
−−→
QM makes an angle of − (90◦ − θ2

)
with the x axis and has length L2

2 , hence,

−−→
QM = L2

2

(
cos
(− (90◦ − θ2

))
i + sin

(− (90◦ − θ2
))

j
) = L2

2
(sin θ2i − cos θ2j) (4)

Combining (2), (3) and (4) we get

r2 = L1 (sin θ1i + cos θ1j) + L2

2
(sin θ2i − cos θ2j) (5)

Finally, we find the position vector r3:

r3 = −−→
OQ + −→

QP = −−→
OQ + 2

−−→
QM

x

y

O

P

Q

M

r3

Substituting (3) and (4) we get

r3 = L1 (sin θ1i + cos θ1j) + L2 (sin θ2i − cos θ2j) (6)

The net torque is the following vector:

τ = r1 × (−m1gj) + r2 × (−m2gj) + r3 × (−m3gj)
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In computing the cross products, the j components of r1, r2 and r3 do not contribute to the torque since j × j = 0. We
thus consider only the i components of r1, r2 and r3 in (1), (5) and (6). This gives

τ = L1

2
sin θ1i × (−m1gj) +

(
L1 sin θ1 + L2

2
sin θ2

)
i × (−m2gj) + (L1 sin θ1 + L2 sin θ2) i × (−m3gj)

= −L1m1g sin θ1

2
k −

(
L1m2g sin θ1 + L2m2g

2
sin θ2

)
k − (L1m3g sin θ1 + L2m3g sin θ2) k

= −g

(
L1

(
1

2
m1 + m2 + m3

)
sin θ1 + L2

(
1

2
m2 + m3

)
sin θ2

)
k

62. Continuing with Exercise 61, suppose that L1 = 3 m, L2 = 2 m, m1 = 15 kg, m2 = 20 kg, and m3 = 18 kg. If
the angles θ1, θ2 are equal (say, to θ ), what is the maximum allowable value of θ if we assume that the robotic arm can
sustain a maximum torque of 1200 N-m?

solution Setting the given values L1 = 3, L2 = 2, m1 = 15, m2 = 20, m3 = 18, and θ1 = θ2 = θ in the formula
for τ obtained in Exercise 61 we get

τ = −g

(
3

(
15

2
+ 20 + 18

)
sin θ + 2

(
20

2
+ 18

)
sin θ

)
k = −1886.5 sin θk

Thus,

‖τ‖ = 1886.5 sin θ

Since the maximum torque sustained by the robotic arm is 1200 ft-lbs, we have

1886.5 sin θ ≤ 1200

sin θ ≤ 1200

1886.5
≈ 0.636

The solution for acute angles is

θ ≤ 39.5◦

The maximum allowable value of θ is θ = 39.5◦.

Further Insights and Challenges
63. Show that 3 × 3 determinants can be computed using the diagonal rule: Repeat the first two columns of the matrix
and form the products of the numbers along the six diagonals indicated. Then add the products for the diagonals that slant
from left to right and subtract the products for the diagonals that slant from right to left.

det(A) =

∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

− − −

∣∣∣∣∣∣∣∣
a11 a12
a21 a22
a31 a32
+ + +

= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33

solution Using the definition of 3 × 3 determinants given in Eq. (2) we get

det(A) = a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣
Using the definition of 2 × 2 determinants given in Eq. (1) we get

det(A) = a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31

= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33

64. Use the diagonal rule to calculate

∣∣∣∣∣∣
2 4 3
0 1 −7

−1 5 3

∣∣∣∣∣∣.
solution We form the following matrix:

2 4 3
0 1 −7

−1 5 3

∣∣∣∣∣∣
2 4
0 1

−1 5
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We now form the diagonals which slant from left to right and the diagonals which slant from right to left and assign
corresponding sign to each diagonal:

2
0

−1
− − − + + +

4
1
5

3
−7

3

2
0

−1

4
1
5

We add the products for the diagonals with a positive sign and subtract the products for the diagonals with a negative
sign. This gives∣∣∣∣∣∣

2 4 3
0 1 −7

−1 5 3

∣∣∣∣∣∣ = 2 · 1 · 3 + 4 · (−7) · (−1) + 3 · 0 · 5 − 3 · 1 · (−1) − 2 · (−7) · 5 − 4 · 0 · 3 = 107

65. Prove that v × w = v × u if and only if u = w + λv for some scalar λ. Assume that v �= 0.

solution Transferring sides and using the distributive law and the property of parallel vectors, we obtain the following
equivalent equalities:

v × w = v × u

0 = v × u − v × w

0 = v × (u − w)

This holds if and only if there exists a scalar λ such that

u − w = λv

u = w + λv

66. Use Eq. (10) to prove the Cauchy–Schwarz inequality:

|v · w| ≤ ‖v‖ ‖w‖
Show that equality holds if and only if w is a multiple of v or at least one of v and w is zero.

solution Transferring sides in Eq. (10) we get

(v · w)2 = ‖v‖2‖w‖2 − ‖v × w‖2 (1)

Since ‖v × w‖2 ≥ 0, we have

(v · w)2 ≤ ‖v‖2‖w‖2

Taking the square root of both sides gives

|v · w| ≤ ‖v‖‖w‖
Equality |v · w| = ‖v‖‖w‖ holds if and only if (v · w)2 = ‖v‖2‖w‖2, that is by (1), if and only if ‖v × w‖ = 0, or
v × w = 0. This is equivalent to w = λv for some scalar λ, or v = 0 (Theorem 3 (c)).

67. Show that if u, v, and w are nonzero vectors and (u × v) × w = 0, then either (i) u and v are parallel, or (ii) w is
orthogonal to u and v.

solution By the theorem on basic properties of the cross product, part (c), it follows that (u × v) × w = 0 if and only
if

• u × v = 0 or
• w = λ (u × v)

We consider the two possibilities.

1. u × v = 0 is equivalent to u and v being parallel vectors or one of them being the zero vector.

2. The cross product u × v is orthogonal to u and v, hence w = λ (u × v) implies that w is also orthogonal to u and v
(for λ �= 0) or w = 0 (for λ = 0).

Conclusions: (u × v) × w = 0 implies that either u and v are parallel, or w is orthogonal to u and v, or one of the vectors
u, v, w is the zero vector.

68. Suppose that u, v, w are nonzero and

(u × v) × w = u × (v × w) = 0

Show that u, v, and w are either mutually parallel or mutually perpendicular. Hint: Use Exercise 67.
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solution First notice that since u × (v × w) = 0, also,

(v × w) × u = −u × (v × w) = 0

Using Exercise 67 for nonzero vectors, we obtain

(u × v) × w = 0 ⇒ u ‖ v or (w ⊥ u and w ⊥ v) (1)

(v × w) × u = 0 ⇒ w ‖ v or (u ⊥ v and u ⊥ w) (2)

We consider each of the two possibilities in (1):

Case 1: u ‖ v In this case, u is not orthogonal to v. Hence, by (2), w ‖ v must hold. Thus, the vectors u, v and w are
parallel.

Case 2: w ⊥ u and w ⊥ v In this case, w and v are not parallel. Hence, by (2), u ⊥ v and u ⊥ w must hold. Thus, the
vectors u, v and w are mutually perpendicular.

Conclusion: If (u × v) × w = 0 and u × (v × w) = 0 for nonzero vectors u, v, w then these vectors are parallel or
mutually perpendicular.

69. Let a, b, c be nonzero vectors, and set

v = a × (b × c), w = (a · c)b − (a · b)c

(a) Prove that

(i) v lies in the plane spanned by b and c.

(ii) v is orthogonal to a.

(b) Prove that w also satisfies (i) and (ii). Conclude that v and w are parallel.

(c) Show algebraically that v = w (Figure 23).

a × (b

a

b × c

FIGURE 23

solution
(a) Since v is the cross product of a and another vector (b × c), then v is orthogonal to a. Furthermore, v is orthogonal
to (b × c), so it is orthogonal to the normal vector to the plane containing b and c, so v must be in that plane.

(b) w · a = ((a · c)b − (a · b)c) · a = (a · c)(b · a) − (a · b)(c · a) = 0 (since a · c = c · a and b · a = a · b). Thus, w is
orthogonal to a. Also, w is a multiple of b and c, so w must be in the plane containing b and c.

Now, if a is perpendicular to the plane spanned by b and c, then a is parallel to b × c and so a × (b × c) = 0, which
means v = 0, but also a · b = a · c = 0 which means w = 0. Thus, v and w are parallel (in fact, equal).

Now, if a is not perpendicular to the plane spanned by b and c, then the set of vectors on that plane that are also
perpendicular to a form a line, and thus all such vectors are parallel. We conclude that v and w, being on that plane and
perpendicular to a, are parallel.

(c) On the one hand,

v = a × (b × c) = 〈a1, a2, a3〉 ×
∣∣∣∣∣∣

i j k
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
=
∣∣∣∣∣∣

i j k
a1 a2 a3

(b2c3 − b3c2) (b3c1 − b1c3) (b1c2 − b2c1)

∣∣∣∣∣∣
= 〈a2(b1c2 − b2c1) − a3(b3c1 − b1c3), a3(b2c3 − b3c2) − a1(b1c2 − b2c1),

a1(b3c1 − b1c3) − a2(b2c3 − b3c2)
〉

but on the other hand,

w = (a · c)b − (a · b)c

= (a1c1 + a2c2 + a3c3)〈b1, b2, b3〉 − (a1b1 + a2b2 + a3b3)〈c1, c2, c3〉
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= 〈a2c2b1 + a3c3b1 − a2b2c1 − a3b3c1, a1c1b2 + a3c3b2 − a1b1c2 − a3b3c2,

a1c1b3 + a2c2b3 − a1b1c3 − a2b2c3
〉

= 〈a2(b1c2 − b2c1) − a3(b3c1 − b1c3), a3(b2c3 − b3c2) − a1(b1c2 − b2c1),

a1(b3c1 − b1c3) − a2(b2c3 − b3c2)
〉

which is the same as v.

70. Use Exercise 69 to prove the identity

(a × b) × c − a × (b × c) = (a · b)c − (b · c)a

solution We have

(a × b) × c − a × (b × c) = −c × (a × b) − a × (b × c)

= − [(c · b)a − (c · a)b] − [(a · c)b − (a · b)c]

= −(c · b)a + (a · b)c = (a · b)c − (b · c)a

as desired.

71. Show that if a, b are nonzero vectors such that a ⊥ b, then there exists a vector X such that

a × X = b 13

Hint: Show that if X is orthogonal to b and is not a multiple of a, then a × X is a multiple of b.

solution We define the following vectors:

X = b × a

‖a‖2
, c = X × a (1)

We show that c = b. Since X is orthogonal to a and b, X is orthogonal to the plane of a and b. But c is orthogonal to X,
hence c is contained in the plane of a and b, that is, a, b and c are in the same plane. Now the vectors a, b and c are in
one plane, and the vectors c and b are orthogonal to a.

It follows that c and b are parallel. (2)

We now show that ‖c‖ = ‖b‖. We use the cross-product identity to obtain

‖c‖2 = ‖X × a‖2 = ‖X‖2‖a‖2 − (X · a)2

X is orthogonal to a, hence X · a = 0, and we obtain

‖c‖2 = ‖X‖2‖a‖2 =
∥∥∥∥b × a

‖a‖2

∥∥∥∥2
‖a‖2 = 1

‖a‖4
‖b × a‖2‖a‖2 = 1

‖a‖2
‖b × a‖2

By the given data, a and b are orthogonal vectors, so,

‖c‖2 = 1

‖a‖2

(
‖b‖2‖a‖2

)
= ‖b‖2 ⇒ ‖c‖ = ‖b‖ (3)

By (2) and (3) it follows that c = b or c = −b. We thus proved that the vector X = b × a

‖a‖2
satisfies X × a = b or

X × a = −b. If X × a = −b, then (−X) × a = b. Hence, there exists a vector X such that X × a = b.

72. Show that if a, b are nonzero vectors such that a ⊥ b, then the set of all solutions of Eq. (13) is a line with a as
direction vector. Hint: Let X0 be any solution (which exists by Exercise 71), and show that every other solution is of the
form X0 + λa for some scalar λ.

solution By Exercise 71 there exists a solution X0 of the equation X × a = b. Let X be any solution of this equation.
Thus,

X0 × a = b

X × a = b

We subtract the first equation from the second and use the distributive law to obtain

X × a − X0 × a = b − b = 0

(X − X0) × a = 0 ⇒ a × (X − X0) = 0
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We now use the basic properties of the cross product to conclude that there exists a scalar λ such that

X − x0 = λa or X = x0 + λa

This is a parametric equation of the line through x0 with a as a direction vector.

73. Assume that v and w lie in the first quadrant in R2 as in Figure 24. Use geometry to prove that the area of the

parallelogram is equal to det

(
v
w

)
.

(a + c, b + d)
c a

ca

v

w

b

d

b

d

y

FIGURE 24

solution We denote the components of u and v by

u = 〈c, d〉
v = 〈a, b〉

We also denote by O, A, B, C, D, E, F , G, H , K the points shown in the figure.

(a + c, b + d)
c a

ca

v

R

b

d

b

d

CD
E

F

O
A

B

HK

G

Since OGCK is a parallelogram, it follows by geometrical properties that the triangles OFG and KHC and also the
triangles DGC and AKO are congruent. It also follows that the rectangles EFDG and ABHK have equal areas. We
use the following notation:

A: The area of the parallelogram

S: The area of the rectangle OBCE

S1: The area of the rectangle EFDG

S2: The area of the triangle OFG

S3: The area of the triangle DGC

Hence,

A = S − 2(S1 + S2 + S3) (1)

Using the formulas for the areas of rectangles and triangles we have (see figure)

S = OB · OE = (a + c)(d + b)

S1 = bc, S2 = cd

2
, S3 = ab

2

Substituting into (1) we get

A = (a + c)(d + b) − 2

(
bc + cd

2
+ ab

2

)

= ad + ab + cd + cb − 2bc − cd − ab (2)

= ad − bc
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On the other hand,

det

(
v
w

)
=
∣∣∣∣ a b

c d

∣∣∣∣ = ad − bc (3)

By (2) and (3) we obtain the desired result.

74. Consider the tetrahedron spanned by vectors a, b, and c as in Figure 25(A). Let A, B, C be the faces containing the
origin O, and let D be the fourth face opposite O. For each face F , let vF be the vector normal to the face, pointing
outside the tetrahedron, of magnitude equal to twice the area of F . Prove the relations

vA + vB + vC = a × b + b × c + c × a

vA + vB + vC + vD = 0

Hint: Show that vD = (c − b) × (b − a).

y

x

z

(A) (B)

a a

b

c
c

O O

vD

b

vD

FIGURE 25 The vector vD is perpendicular to the face.

solution We first show that vD = (c − a) × (b − a).

a

b

c

O

C

A

B

vD

Since vD is normal to the face D, it is orthogonal to the vectors c − a and b − a, hence it is parallel to the cross product
of these two vectors. In other words, there exists a scalar λ > 0 such that (using the right-hand rule)

vD = λ (c − a) × (b − a)

The area of the face D is half of the area of the parallelogram spanned by c − a and b − a. The area of the parallelogram
is ‖(c − a) × (b − a)‖. Hence,

‖vD‖ = ‖ (c − a) × (b − a) ‖
Combining the above equations we have

vD = (c − a) × (b − a)

Now, since vA is normal to the face A, it is orthogonal to the vectors a and c, therefore it is parallel to c × a. The area of
the face A is 1

2‖c × a‖, which is also half the length of vA. Hence, using the right-hand rule we get

vA = c × a

Similarly, we have

vB = a × b, vC = b × c

Combining gives us

vA + vB + vC = (c × a + a × b + b × c) = (a × b + b × c + c × a)

We evaluate vD using the distributive law:

vD = (c − a) × (b − a) = (c × b − a × b − c × a + a × a) = −b × c − a × b − c × a

Hence,

vA + vB + vC + vD = (a × b + b × c + c × a − b × c − a × b − c × a) = 0
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75. In the notation of Exercise 74, suppose that a, b, c are mutually perpendicular as in Figure 25(B). Let SF be the area
of face F . Prove the following three-dimensional version of the Pythagorean Theorem:

S2
A + S2

B + S2
C = S2

D

solution Since ‖vD‖ = SD then using Exercise 74 we obtain

S2
D = ‖vD‖2 = vD · vD = (vA + vB + vC) · (vA + vB + vC)

= vA · vA + vA · vB + vA · vC + vB · vA + vB · vB + vB · vC + vC · vA + vC · vB + vC · vC

= ‖vA‖2 + ‖vB‖2 + ‖vC‖2 + 2 (vA · vB + vA · vC + vB · vC) (1)

Now, the normals vA, vB , and vC to the coordinate planes are mutually orthogonal, hence,

vA · vB = vA · vC = vB · vC = 0 (2)

Combining (1) and (2) and using the relations ‖vF ‖ = SF we obtain

S2
D = S2

A + S2
B + S2

C

12.5 Planes in Three-Space (LT Section 13.5)

Preliminary Questions
1. What is the equation of the plane parallel to 3x + 4y − z = 5 passing through the origin?

solution The two planes are parallel, therefore the vector n = 〈3, 4, −1〉 that is normal to the given plane is also normal
to the plane we need to find. This plane is passing through the origin, hence we may substitute 〈x0, y0, z0〉 = 〈0, 0, 0〉 in
the vector form of the equation of the plane. This gives

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈3, 4, −1〉 · 〈x, y, z〉 = 〈3, 4, −1〉 · 〈0, 0, 0〉 = 0

or in scalar form

3x + 4y − z = 0

2. The vector k is normal to which of the following planes?

(a) x = 1 (b) y = 1 (c) z = 1

solution The planes x = 1, y = 1, and z = 1 are orthogonal to the x, y, and z-axes respectively. Since the plane
z = 1 is orthogonal to the z-axis, the vector k is normal to this plane.

3. Which of the following planes is not parallel to the plane x + y + z = 1?

(a) 2x + 2y + 2z = 1 (b) x + y + z = 3
(c) x − y + z = 0

solution The two planes are parallel if vectors that are normal to the planes are parallel. The vector n = 〈1, 1, 1〉 is
normal to the plane x + y + z = 1. We identify the following normals:

• v = 〈2, 2, 2〉 is normal to plane (a)
• u = 〈1, 1, 1〉 is normal to plane (b)
• w = 〈1, −1, 1〉 is normal to plane (c)

The vectors v and u are parallel to n, whereas w is not. (These vectors are not constant multiples of each other). Therefore,
only plane (c) is not parallel to the plane x + y + z = 1.

4. To which coordinate plane is the plane y = 1 parallel?

solution The plane y = 1 is parallel to the xz-plane.

y

x

z

1
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5. Which of the following planes contains the z-axis?

(a) z = 1 (b) x + y = 1 (c) x + y = 0

solution The points on the z-axis are the points with zero x and y coordinates. A plane contains the z-axis if and only
if the points (0, 0, c) satisfy the equation of the plane for all values of c.

(a) Plane (a) does not contain the z-axis, rather it is orthogonal to this axis. Only the point (0, 0, 1) is on the plane.
(b) x = 0 and y = 0 do not satisfy the equation of the plane, since 0 + 0 �= 1. Therefore the plane does not contain the
z-axis.
(c) The plane x + y = 0 contains the z-axis since x = 0 and y = 0 satisfy the equation of the plane.

6. Suppose that a plane P with normal vector n and a line L with direction vector v both pass through the origin and
that n · v = 0. Which of the following statements is correct?

(a) L is contained in P .
(b) L is orthogonal to P .

solution The direction vector of the line L is orthogonal to the vector n that is normal to the plane. Therefore, L is
either parallel or contained in the plane. Since the origin is common to L and P , the line is contained in the plane. That
is, statement (a) is correct.

P

O
v

n

Exercises
In Exercises 1–8, write the equation of the plane with normal vector n passing through the given point in each of the three
forms (one vector form and two scalar forms).

1. n = 〈1, 3, 2〉, (4, −1, 1)

solution The vector equation is

〈1, 3, 2〉 · 〈x, y, z〉 = 〈1, 3, 2〉 · 〈4, −1, 1〉 = 4 − 3 + 2 = 3

To obtain the scalar forms we compute the dot product on the left-hand side of the previous equation:

x + 3y + 2z = 3

or in the other scalar form:

(x − 4) + 3(y + 1) + 2(z − 1) + 4 − 3 + 2 = 3

(x − 4) + 3(y + 1) + 2(z − 1) = 0

2. n = 〈−1, 2, 1〉, (3, 1, 9)

solution The vector equation is

〈−1, 2, 1〉 · 〈x, y, z〉 = 〈−1, 2, 1〉 · 〈3, 1, 9〉 = −3 + 2 + 9 = 8

To obtain the scalar form we compute the dot product on the left-hand side above:

−x + 2y + z = 8

or in the other scalar form:

−(x − 3) + 2(y − 1) + (z − 9) = 8 + 3 − 2 − 9 = 0

−(x − 3) + 2(y − 1) + (z − 9) = 0

3. n = 〈−1, 2, 1〉, (4, 1, 5)

solution The vector form is

〈−1, 2, 1〉 · 〈x, y, z〉 = 〈−1, 2, 1〉 · 〈4, 1, 5〉 = −4 + 2 + 5 = 3

To obtain the scalar form we compute the dot product above:

−x + 2y + z = 3
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or in the other scalar form:

−(x − 4) + 2(y − 1) + (z − 5) = 3 + 4 − 2 − 5 = 0

−(x − 4) + 2(y − 1) + (z − 5) = 0

4. n = 〈2, −4, 1〉, ( 1
3 , 2

3 , 1
)

solution The vector form is

〈2, −4, 1〉 · 〈x, y, z〉 = 〈2, −4, 1〉 ·
〈

1

3
,

2

3
, 1

〉
= 2

3
− 8

3
+ 1 = −1

We find the scalar form by computing the dot product above:

2x − 4y + z = −1

or in the form:

2

(
x − 1

3

)
− 4

(
y − 2

3

)
+ (z − 1) = −1 − 2

3
+ 8

3
− 1 = 0

2

(
x − 1

3

)
− 4

(
y − 2

3

)
+ (z − 1) = 0

5. n = i, (3, 1, −9)

solution We find the vector form of the equation of the plane. We write the vector n = i as n = 〈1, 0, 0〉 and obtain

〈1, 0, 0〉 · 〈x, y, z〉 = 〈1, 0, 0〉 · 〈3, 1, −9〉 = 3 + 0 + 0 = 3

Computing the dot product above gives the scalar form:

x + 0 + 0 = 3

x = 3

Or in the other scalar form:

(x − 3) + 0 · (y − 1) + 0 · (z + 9) = 3 − 3 = 0

6. n = j,
(−5, 1

2 , 1
2

)
solution Writing n = j in the form n = 〈0, 1, 0〉 we obtain the following vector form of the equation of the plane:

〈0, 1, 0〉 · 〈x, y, z〉 = 〈0, 1, 0〉 ·
〈
−5,

1

2
,

1

2

〉
= 0 + 1

2
+ 0 = 1

2

We compute the dot product to obtain the scalar form:

0x + 1y + 0z = 1

2

y = 1

2

or in the other scalar form:

0(x + 5) +
(

y − 1

2

)
+ 0

(
z − 1

2

)
= 0

7. n = k, (6, 7, 2)

solution We write the normal n = k in the form n = 〈0, 0, 1〉 and obtain the following vector form of the equation
of the plane:

〈0, 0, 1〉 · 〈x, y, z〉 = 〈0, 0, 1〉 · 〈6, 7, 2〉 = 0 + 0 + 2 = 2

We compute the dot product to obtain the scalar form:

0x + 0y + 1z = 2

z = 2

or in the other scalar form:

0(x − 6) + 0(y − 7) + 1(z − 2) = 0
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8. n = i − k, (4, 2, −8)

solution We write the normal n = i − k in the form n = 〈1, 0, −1〉 and obtain the following vector form of the
equation of the plane:

〈1, 0, −1〉 · 〈x, y, z〉 = 〈1, 0, −1〉 · 〈4, 2, −8〉 = 4 + 0 + 8 = 12

To find the scalar form we compute the dot product:

x − z = 12

or the other scalar form:

(x − 4) + 0(y − 2) − (z + 8) = 12 − 4 − 8 = 0

9. Write down the equation of any plane through the origin.

solution We can use any equation ax + by + cz = d which contains the point (x, y, z) = (0, 0, 0). One solution
(and there are many) is x + y + z = 0.

10. Write down the equations of any two distinct planes with normal vector n = 〈3, 2, 1〉 that do not pass through the
origin.

solution The equation of a plane with normal vector n = 〈3, 2, 1〉 is 〈3, 2, 1〉 · 〈x, y, z〉 = d, or in other words,
3x + 2y + z = d . Since we do not want the planes to pass through the origin, we want values of d such that (x, y, z) =
(0, 0, 0) is not on the plane. This will hold for any d �= 0, so two possible solutions (and there are many) are 3x + 2y + z = 1
and 3x + 2y + z = 2.

11. Which of the following statements are true of a plane that is parallel to the yz-plane?

(a) n = 〈0, 0, 1〉 is a normal vector.

(b) n = 〈1, 0, 0〉 is a normal vector.

(c) The equation has the form ay + bz = d

(d) The equation has the form x = d

solution

(a) For n = 〈0, 0, 1〉 a normal vector, the plane would be parallel to the xy-plane, not the yz-plane. This statement is
false.

(b) For n = 〈1, 0, 0〉 a normal vector, the plane would be parallel to the yz-plane. This statement is true.

(c) For the equation ay + bz = d, this plane intersects the yz-plane at y = 0, z = d/b or y = d/a, z = 0 depending on
whether a or b is non-zero, but it is not equal to the yz-plane (which has equation x = d) Thus, it is not parallel to the
yz-plane This statement is false.

(d) For the equation of the form x = d, this has 〈1, 0, 0〉 as a normal vector and is parallel to the yz-plane. This statement
is true.

12. Find a normal vector n and an equation for the planes in Figures 7(A)–(C).

y

x

(A) (B) (C)

y

x

y

x

z

4

−3

z z

π

4

FIGURE 7

solution

(a) This plane has normal vector pointing straight up, so n = 〈0, 0, 1〉, and it contains the point (0, 0, 4), so it has equation
0(x − 0) + 0(y − 0) + 1(z − 4) = 0, which becomes z = 4.

(b) This plane has normal vector pointing along the x-axis, so n = 〈1, 0, 0〉, and it contains the point (−3, 0, 0), so it has
equation 1(x − −3) + 0(y − 0) + 0(z − 0) = 0, which becomes x = −3.

(c) This plane has normal vector pointing along the line y = x, so n = 〈1, 1, 0〉, and it contains the point (0, 0, 0), so it
has equation 1(x − 0) + 1(y − 0) + 0(z − 0) = 0, which becomes x + y = 0.
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In Exercises 13–16, find a vector normal to the plane with the given equation.

13. 9x − 4y − 11z = 2

solution Using the scalar form of the equation of the plane, a vector normal to the plane is the coefficients vector:

n = 〈9, −4, −11〉

14. x − z = 0

solution We write the equation in vector form 〈1, 0, −1〉 · 〈x, y, z〉 = 0 and identify n = 〈1, 0, −1〉 as a vector normal
to the plane.

15. 3(x − 4) − 8(y − 1) + 11z = 0

solution Using the scalar form of the equation of the plane, 3x − 8y + 11z = 4 a vector normal to the plane is the
coefficients vector:

n = 〈3, −8, 11〉

16. x = 1

solution The equation in vector form is

〈1, 0, 0〉 · 〈x, y, z〉 = 1

Therefore, the vector n = 〈1, 0, 0〉 is normal to the plane.

In Exercises 17–20, find an equation of the plane passing through the three points given.

17. P = (2, −1, 4), Q = (1, 1, 1), R = (3, 1, −2)

solution We go through the steps below:

Step 1. Find the normal vector n. The vectors a = −→
PQ and b = −→

PR lie on the plane, hence the cross product n = a × b
is normal to the plane. We compute the cross product:

a = −→
PQ = 〈1 − 2, 1 − (−1), 1 − 4〉 = 〈−1, 2, −3〉

b = −→
PR = 〈3 − 2, 1 − (−1), −2 − 4〉 = 〈1, 2, −6〉

n = a × b =
∣∣∣∣∣∣

i j k
−1 2 −3
1 2 −6

∣∣∣∣∣∣ =
∣∣∣∣ 2 −3

2 −6

∣∣∣∣ i −
∣∣∣∣ −1 −3

1 −6

∣∣∣∣ j +
∣∣∣∣ −1 2

1 2

∣∣∣∣k
= −6i − 9j − 4k = 〈−6, −9, −4〉

Step 2. Choose a point on the plane. We choose any one of the three points on the plane, for instance Q = (1, 1, 1).
Using the vector form of the equation of the plane we get

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈−6, −9, −4〉 · 〈x, y, z〉 = 〈−6, −9, −4〉 · 〈1, 1, 1〉

Computing the dot products we obtain the following equation:

−6x − 9y − 4z = −6 − 9 − 4 = −19

6x + 9y + 4z = 19

18. P = (5, 1, 1), Q = (1, 1, 2), R = (2, 1, 1)

solution Note that these three points all have a y-value of 1. So, consider the equation y = 1; it is the equation of
a plane, and all three points P, Q, R satisfy the equation y = 1, so all three points P, Q, R are on this plane, so we are
done! (We could also solve this problem using the traditional method of finding a normal vector, etc., and we will get the
same answer of y = 1.)

19. P = (1, 0, 0), Q = (0, 1, 1), R = (2, 0, 1)

solution We use the vector form of the equation of the plane:

n · 〈x, y, z〉 = d (1)

To find the normal vector to the plane, n, we first compute the vectors
−→
PQ and

−→
PR that lie in the plane, and then find the

cross product of these vectors. This gives
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−→
PQ = 〈0, 1, 1〉 − 〈1, 0, 0〉 = 〈−1, 1, 1〉
−→
PR = 〈2, 0, 1〉 − 〈1, 0, 0〉 = 〈1, 0, 1〉

n = −→
PQ × −→

PR =
∣∣∣∣∣∣

i j k
−1 1 1

1 0 1

∣∣∣∣∣∣ =
∣∣∣∣ 1 1

0 1

∣∣∣∣ i −
∣∣∣∣ −1 1

1 1

∣∣∣∣ j +
∣∣∣∣ −1 1

1 0

∣∣∣∣k
= i + 2j − k = 〈1, 2, −1〉 (2)

We now choose any one of the three points in the plane, say P = (1, 0, 0), and compute d:

d = n · −→
OP = 〈1, 2, −1〉 · 〈1, 0, 0〉 = 1 · 1 + 2 · 0 + (−1) · 0 = 1 (3)

Finally we substitute (2) and (3) into (1) to obtain the following equation of the plane:

〈1, 2, −1〉 · 〈x, y, z〉 = 1

x + 2y − z = 1

20. P = (2, 0, 0), Q = (0, 4, 0), R = (0, 0, 2)

solution We go through the following steps:

Step 1. Find a normal vector n. The normal vector n must be orthogonal to the vectors a = −→
PQ and b = −→

PR in the
plane, hence we may choose n as the cross product n = a × b. We compute n:

a = −→
PQ = 〈0 − 2, 4 − 0, 0 − 0〉 = 〈−2, 4, 0〉

b = −→
PR = 〈0 − 2, 0 − 0, 2 − 0〉 = 〈−2, 0, 2〉

n = a × b =
∣∣∣∣∣∣

i j k
−2 4 0
−2 0 2

∣∣∣∣∣∣ =
∣∣∣∣ 4 0

0 2

∣∣∣∣ i −
∣∣∣∣ −2 0

−2 2

∣∣∣∣ j +
∣∣∣∣ −2 4

−2 0

∣∣∣∣k
= 8i + 4j + 8k = 〈8, 4, 8〉

Step 2. Choose a point on the plane. We choose a point on the plane, for instance (x0, y0, z0) = (2, 0, 0). Using the
vector form of the equation we get

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈8, 4, 8〉 · 〈x, y, z〉 = 〈8, 4, 8〉 · 〈2, 0, 0〉

We compute the dot products:

8x + 4y + 8z = 16 + 0 + 0 = 16

2x + y + 2z = 4

In Exercises 21–28, find the equation of the plane with the given description.

21. Passes through O and is parallel to 4x − 9y + z = 3

solution The vector n = 〈4, −9, 1〉 is normal to the plane 4x − 9y + z = 3, and so is also normal to the parallel
plane. Setting n = 〈4, −9, 1〉 and (x0, y0, z0) = (0, 0, 0) in the vector equation of the plane yields

〈4, −9, 1〉 · 〈x, y, z〉 = 〈4, −9, 1〉 · 〈0, 0, 0〉 = 0

4x − 9y + z = 0

22. Passes through (4, 1, 9) and is parallel to x + y + z = 3

solution We write the equation of the plane x + y + z = 3 in vector form:

〈1, 1, 1〉 · 〈x, y, z〉 = 3

We identify n = 〈1, 1, 1〉 as a vector normal to the plane. This vector is also normal to the parallel plane. We substitute
n = 〈1, 1, 1〉 and (x0, y0, z0) = (4, 1, 9) in the vector equation of the plane to obtain

〈1, 1, 1〉 · 〈x, y, z〉 = 〈1, 1, 1〉 · 〈4, 1, 9〉
x + y + z = 4 + 1 + 9 = 14

x + y + z = 14
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23. Passes through (4, 1, 9) and is parallel to x = 3

solution The vector form of the plane x = 3 is

〈1, 0, 0〉 · 〈x, y, z〉 = 3

Hence, n = 〈1, 0, 0〉 is normal to this plane. This vector is also normal to the parallel plane. Setting (x0, y0, z0) = (4, 1, 9)

and n = 〈1, 0, 0〉 in the vector equation of the plane yields

〈1, 0, 0〉 · 〈x, y, z〉 = 〈1, 0, 0〉 · 〈4, 1, 9〉 = 4 + 0 + 0 = 4

or

x + 0 + 0 = 4 ⇒ x = 4

24. Passes through P = (3, 5, −9) and is parallel to the xz-plane

solution The xz-plane is the plane y = 0, which has normal vector n = 〈0, 1, 0〉. Using this in the scalar equation of
the plane gives us:

0(x − 3) + 1(y − 5) + 0(z − −9) = 0 ⇒ y = 5

25. Passes through (−2, −3, 5) and has normal vector i + k

solution We substitute n = 〈1, 0, 1〉 and (x0, y0, z0) = (−2, −3, 5) in the vector equation of the plane to obtain

〈1, 0, 1〉 · 〈x, y, z〉 = 〈1, 0, 1〉 · 〈−2, −3, 5〉
or

x + 0 + z = −2 + 0 + 5 = 3

x + z = 3

26. Contains the lines r1(t) = 〈t, 2t, 3t〉 and r2(t) = 〈3t, t, 8t〉
solution Since the plane contains the lines �1 (t) = 〈t, 2t, 3t〉 and �2 (t) = 〈3t, t, 8t〉, the direction vectors v1 =
〈1, 2, 3〉 and v2 = 〈3, 1, 8〉 of the lines lie in the plane. Therefore the cross product n = v1 × v2 is normal to the plane.
We compute the cross product:

n = 〈1, 2, 3〉 × 〈3, 1, 8〉 =
∣∣∣∣∣∣

i j k
1 2 3
3 1 8

∣∣∣∣∣∣ =
∣∣∣∣ 2 3

1 8

∣∣∣∣ i −
∣∣∣∣ 1 3

3 8

∣∣∣∣ j +
∣∣∣∣ 1 2

3 1

∣∣∣∣k
= 13i + j − 5k = 〈13, 1, −5〉

We now must choose a point on the plane. Since the line �1 (t) = 〈t, 2t, 3t〉 is contained in the plane, all of its points are
on the plane. We choose the point corresponding to t = 1, that is,

〈x0, y0, z0〉 = 〈1, 2 · 1, 3 · 1〉 = 〈1, 2, 3〉
We now use the vector equation of the plane to determine the equation of the desired plane:

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈13, 1, −5〉 · 〈x, y, z〉 = 〈13, 1, −5〉 · 〈1, 2, 3〉

13x + y − 5z = 13 + 2 − 15 = 0

13x + y − 5z = 0

27. Contains the lines r1(t) = 〈2, 1, 0〉 + 〈t, 2t, 3t〉 and r2(t) = 〈2, 1, 0〉 + 〈3t, t, 8t〉
solution Since the plane contains the lines r1(t) and r2(t), the direction vectors v1 = 〈1, 2, 3〉 and v2 = 〈3, 1, 8〉 of
the lines lie in the plane. Therefore the cross product n = v1 × v2 is normal to the plane. We compute the cross product:

n = 〈1, 2, 3〉 × 〈3, 1, 8〉 =
∣∣∣∣∣∣

i j k
1 2 3
3 1 8

∣∣∣∣∣∣ =
∣∣∣∣ 2 3

1 8

∣∣∣∣ i −
∣∣∣∣ 1 3

3 8

∣∣∣∣ j +
∣∣∣∣ 1 2

3 1

∣∣∣∣k
= 13i + j − 5k = 〈13, 1, −5〉
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We now must choose a point on the plane. Since the line r1 (t) = 〈2 + t, 1 + 2t, 3t〉 is contained in the plane, all of its
points are on the plane. We choose the point corresponding to t = 0, that is,

〈x0, y0, z0〉 = 〈2, 1, 0〉
We now use the vector equation of the plane to determine the equation of the desired plane:

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈13, 1, −5〉 · 〈x, y, z〉 = 〈13, 1, −5〉 · 〈2, 1, 0〉

13x + y − 5z = 26 + 1 + 0 = 27

13x + y − 5z = 27

28. Contains P = (−1, 0, 1) and r(t) = 〈t + 1, 2t, 3t − 1〉
solution Since the line � (t) = 〈t + 1, 2t, 3t − 1〉 is contained in the plane, its direction vector v = 〈1, 2, 3〉 lies in
the plane. To find a second vector on the plane we first choose a point on the line, say, the point corresponding to t = 0.
That is,

Q = (0 + 1, 2 · 0, 0 − 1) = (1, 0, −1)

Now, since the points P = (−1, 0, 1) and Q = (1, 0, −1) are on the plane, the vector u = −→
PQ lies on the plane. We find

it here:

u = −→
PQ = 〈1 − (−1), 0 − 0, −1 − 1〉 = 〈2, 0, −2〉

We now compute a vector normal to the plane, by finding the cross product n = v × u:

n = v × u =
∣∣∣∣∣∣

i j k
1 2 3
2 0 −2

∣∣∣∣∣∣ =
∣∣∣∣ 2 3

0 −2

∣∣∣∣ i −
∣∣∣∣ 1 3

2 −2

∣∣∣∣ j +
∣∣∣∣ 1 2

2 0

∣∣∣∣k
= −4i + 8j − 4k = 〈−4, 8 − 4〉

Finally we substitute n = 〈−4, 8, −4〉 and the given point P = (x0, y0, z0) = (−1, 0, 1) in the vector equation of the
plane to obtain

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈−4, 8, −4〉 · 〈x, y, z〉 = 〈−4, 8, −4〉 · 〈−1, 0, 1〉

or

−4x + 8y − 4z = 4 + 0 − 4 = 0

x − 2y + z = 0

29. Are the planes 1
2x + 2x − y = 5 and 3x + 12x − 6y = 1 parallel?

solution The planes 2 1
2x − y = 5 and 15x − 6y = 1, are parallel if and only if the vectors n1 = 〈

2 1
2 , −1, 0

〉
and

n2 = 〈15, −6, 0〉 normal to the planes are parallel. Since n2 = 6n1 the planes are parallel.

30. Let a, b, c be constants. Which two of the following equations define the plane passing through (a, 0, 0), (0, b, 0),
(0, 0, c)?

(a) ax + by + cz = 1 (b) bcx + acy + abz = abc

(c) bx + cy + az = 1 (d)
x

a
+ y

b
+ z

c
= 1

solution
(a) Substituting x = a, y = 0, z = 0 in the left-hand side of the equation of the plane ax + by + cz = 1 gives

a · a + b · 0 + c · 0 = a2

If a �= ±1, the point (a, 0, 0) does not lie on the plane.
(b) Substituting x = a, y = z = 0 in the left-hand side of the equation bcx + acy + abz = abc gives

bca + ac · 0 + ab · 0 = bca

Thus, the point (a, 0, 0) is on the plane. Similarly we check the other two points (0, b, 0) and (0, 0, c):

bc · 0 + acb + ab · 0 = acb

bc · 0 + ac · 0 + abc = abc

We conclude that the three points are on the plane.



April 13, 2011

404 C H A P T E R 12 VECTOR GEOMETRY (LT CHAPTER 13)

(c) We substitute x = a, y = 0, z = 0 in the left-hand side of the equation of the plane bx + cy + az = 1:

ba + c · 0 + a · 0 = ab

If ab �= 1, the point (a, 0, 0) is not on the plane.

(d) We substitute coordinates of the points in the left-hand side of the equation of the plane x
a + y

b
+ z

c = 1:

(a, 0, 0): a

a
+ 0

b
+ 0

c
= 1

(0, b, 0): 0

a
+ b

b
+ 0

c
= 1

(0, 0, c): 0

a
+ 0

b
+ c

c
= 1

We conclude that the three points are on the plane.

31. Find an equation of the plane P in Figure 8.

3
2

5

y

x

z

FIGURE 8

solution We must find the equation of the plane passing though the points P = (3, 0, 0), Q = (0, 2, 0), and R =
(0, 0, 5).

2 3

5

y

x

z

We use the following steps:

Step 1. Find a normal vector n. The vectors a = −→
PQ and b = −→

PR lie in the plane, hence the cross product n = a × b is
normal to the plane. We compute the cross product:

a = −→
PQ = 〈0 − 3, 2 − 0, 0 − 0〉 = 〈−3, 2, 0〉

b = −→
PR = 〈0 − 3, 0 − 0, 5 − 0〉 = 〈−3, 0, 5〉

n = a × b =
∣∣∣∣∣∣

i j k
−3 2 0
−3 0 5

∣∣∣∣∣∣ =
∣∣∣∣ 2 0

0 5

∣∣∣∣ i −
∣∣∣∣ −3 0

−3 5

∣∣∣∣ j +
∣∣∣∣ −3 2

−3 0

∣∣∣∣k
= 10i + 15j + 6k = 〈10, 15, 6〉

Step 2. Choose a point on the plane. We choose one of the points on the plane, say P = (3, 0, 0). Substituting n =
〈10, 15, 6〉 and (x0, y0, z0) = (3, 0, 0) in the vector form of the equation of the plane gives

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈10, 15, 6〉 · 〈x, y, z〉 = 〈10, 15, 6〉 · 〈3, 0, 0〉
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Computing the dot products we get the following scalar form of the equation of the plane:

10x + 15y + 6z = 10 · 3 + 0 + 0 = 30

10x + 15y + 6z = 30

32. Verify that the plane x − y + 5z = 10 and the line r(t) = 〈1, 0, 1〉 + t 〈−2, 1, 1〉 intersect at P = (−3, 2, 3).

solution We verify that the point P = (−3, 2, 3) is contained in both the plane and the line. Substituting the coordinates
of P in the equation of the plane gives

−3 − 2 + 5 · 3 = 10 ⇒ P is on the plane.

The parametric equations of the line are

x = 1 − 2t, y = t, z = 1 + t

We verify that there exists a value of t such that

x = 1 − 2t = −3

y = t = 2

z = 1 + t = 3

t = 2 satisfies the three equations, hence the point P = (−3, 2, 3) is on the line. Since P is on the plane and also on the
line, the plane and the line intersect at this point. (Notice that we haven’t proved that P is the only intersection point.)

In Exercises 33–36, find the intersection of the line and the plane.

33. x + y + z = 14, r(t) = 〈1, 1, 0〉 + t 〈0, 2, 4〉
solution The line has parametric equations

x = 1, y = 1 + 2t, z = 4t

To find a value of t for which (x, y, z) lies on the plane, we substitute the parametric equations in the equation of the
plane and solve for t :

x + y + z = 14

1 + (1 + 2t) + 4t = 14

6t = 12 ⇒ t = 2

The point P of intersection has coordinates

x = 1, y = 1 + 2 · 2 = 5, z = 4 · 2 = 8

That is, P = (1, 5, 8).

34. 2x + y = 3, r(t) = 〈2, −1, −1〉 + t 〈1, 2, −4〉
solution The parametric equations of the line are

x = 2 + t, y = −1 + 2t, z = −1 − 4t (1)

We substitute the parametric equations in the equation of the plane and solve for t , to find the value of t for which (x, y, z)

lies on the plane. We obtain

2x + y = 3

2(2 + t) + (−1 + 2t) = 3

4 + 2t − 1 + 2t = 3

4t = 0 ⇒ t = 0

We find the coordinates of the point P of intersection by substituting t = 0 in the parametric equations (1). We obtain

x = 2 + 0 = 2, y = −1 + 2 · 0 = −1, z = −1 − 4 · 0 = −1

That is,

P = (2, −1, −1).



April 13, 2011

406 C H A P T E R 12 VECTOR GEOMETRY (LT CHAPTER 13)

35. z = 12, r(t) = t 〈−6, 9, 36〉
solution The parametric equations of the line are

x = −6t, y = 9t, z = 36t (1)

We substitute the parametric equations in the equation of the plane and solve for t :

z = 12

36t = 12 ⇒ t = 1

3

The value of the parameter at the point of intersection is t = 1
3 . Substituting into (1) gives the coordinates of the point P

of intersection:

x = −6 · 1

3
= −2, y = 9 · 1

3
= 3, z = 36 · 1

3
= 12

That is,

P = (−2, 3, 12) .

36. x − z = 6, r(t) = 〈1, 0, −1〉 + t 〈4, 9, 2〉
solution The parametric equations of the line are

x = 1 + 4t, y = 9t, z = −1 + 2t (1)

We substitute the parametric equations in the equation of the plane and solve for t :

x − z = 6

1 + 4t − (−1 + 2t) = 6

1 + 4t + 1 − 2t = 6

2t = 4 ⇒ t = 2

The value of the parameter at the point P of intersection is t = 2. We find the coordinates of P by substituting t = 2 in
(1). This gives

x = 1 + 4 · 2 = 9, y = 9 · 2 = 18, z = −1 + 2 · 2 = 3

That is,

P = (9, 18, 3) .

In Exercises 37–42, find the trace of the plane in the given coordinate plane.

37. 3x − 9y + 4z = 5, yz

solution The yz-plane has the equation x = 0, hence the intersection of the plane with the yz-plane must satisfy both
x = 0 and the equation of the plane 3x − 9y + 4z = 5. That is, this is the set of all points (0, y, z) in the yz-plane such
that −9y + 4z = 5.

38. 3x − 9y + 4z = 5, xz

solution The trace of the plane in the xz coordinate plane is obtained by substituting y = 0 in the equation of the
plane 3x − 9y + 4z = 5. This gives the line 3x + 4z = 5 in the xz-plane.

39. 3x + 4z = −2, xy

solution The trace of the plane 3x + 4z = −2 in the xy coordinate plane is the set of all points that satisfy the equation
of the plane and the equation z = 0 of the xy coordinate plane. Thus, we substitute z = 0 in 3x + 4z = −2 to obtain the
line 3x = −2 or x = − 2

3 in the xy-plane.

40. 3x + 4z = −2, xz

solution The xz-plane has equation y = 0, hence the intersection of the plane 3x + 4z = −2 with the xz-plane is the
set of all points (x, 0, z) such that 3x + 4z = −2. This is a line in the xz-plane.

41. −x + y = 4, xz

solution The trace of the plane −x + y = 4 on the xz-plane is the set of all points that satisfy both the equation of
the given plane and the equation y = 0 of the xz-plane. That is, the set of all points (x, 0, z) such that −x + 0 = 4, or
x = −4. This is a vertical line in the xz-plane.

42. −x + y = 4, yz

solution The trace of the plane −x + y = 4 on the yz-plane is the set of all points that satisfy both the equation of
the plane and the equation x = 0 of the yz-plane. That is, the set of all points (0, y, z) such that −0 + y = 4, or y = 4.
This is a vertical line in the yz-plane.
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43. Does the plane x = 5 have a trace in the yz-plane? Explain.

solution The yz-plane has the equation x = 0, hence the x-coordinates of the points in this plane are zero, whereas
the x-coordinates of the points in the plane x = 5 are 5. Thus, the two planes have no common points.

44. Give equations for two distinct planes whose trace in the xy-plane has equation 4x + 3y = 8.

solution The xy-plane has the equation z = 0, hence the trace of a plane ax + by + cz = 0 in the xy-plane is obtained
by substituting z = 0 in the equation of the plane. Therefore, the following two planes have trace 4x + 3y = 8 in the
xy-plane:

4x + 3y + z = 8; 4x + 3y − 5z = 8

45. Give equations for two distinct planes whose trace in the yz-plane has equation y = 4z.

solution The yz-plane has the equation x = 0, hence the trace of a plane ax + by + cz = 0 in the yz-plane is
obtained by substituting x = 0 in the equation of the plane. Therefore, the following two planes have trace y = 4z (that
is, y − 4z = 0) in the yz-plane:

x + y − 4z = 0; 2x + y − 4z = 0

46. Find parametric equations for the line through P0 = (3, −1, 1) perpendicular to the plane 3x + 5y − 7z = 29.

solution We need to find a direction vector for the line. Since the line is perpendicular to the plane 3x + 5y − 7z = 29,
it is parallel to the vector n = 〈3, 5, −7〉 normal to the plane. Hence, n is a direction vector for the line. The vector
parametrization of the line is, thus,

r(t) = 〈3, −1, 1〉 + t〈3, 5, −7〉
This yields the parametric equations

x = 3 + 3t, y = −1 + 5t, z = 1 − 7t

47. Find all planes in R3 whose intersection with the xz-plane is the line with equation 3x + 2z = 5.

solution The intersection of the plane ax + by + cz = d with the xz-plane is obtained by substituting y = 0 in the
equation of the plane. This gives the following line in the xz-plane:

ax + cz = d

This is the equation of the line 3x + 2z = 5 if and only if for some λ �= 0,

a = 3λ, c = 2λ, d = 5λ

Notice that b can have any value. The planes are thus

(3λ)x + by + (2λ)z = 5λ, λ �= 0.

48. Find all planes in R3 whose intersection with the xy-plane is the line r(t) = t 〈2, 1, 0〉.
solution The intersection of the plane ax + by + cz = d with the xy-plane is obtained by substituting z = 0 in the
equation of the plane. This gives the line ax + by = d, in the xy-plane. We find the equation of the line l (t) = t〈2, 1, 0〉.
On this line we have

x = 2t

y = t
⇒ y = 1

2
x ⇒ x − 2y = 0

We thus must have d = 0 and b
a = −2, a �= 0. That is, d = 0, b = −2a, a �= 0. Notice that c can have any value. Hence,

the planes are

ax − 2ay + cz = 0, a �= 0

In Exercises 49–54, compute the angle between the two planes, defined as the angle θ (between 0 and π ) between their
normal vectors (Figure 9).

L

n2

n1

n1

FIGURE 9 By definition, the angle between two planes is the angle between their normal vectors.
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49. Planes with normals n1 = 〈1, 0, 1〉, n2 = 〈−1, 1, 1〉
solution Using the formula for the angle between two vectors we get

cos θ = n1 · n2

‖n1‖‖n2‖ = 〈1, 0, 1〉 · 〈−1, 1, 1〉
‖〈1, 0, 1〉‖‖〈−1, 1, 1〉‖ = −1 + 0 + 1√

12 + 0 + 12
√

(−1)2 + 12 + 12
= 0

The solution for 0 ≤ θ < π is θ = π
2 .

50. Planes with normals n1 = 〈1, 2, 1〉, n2 = 〈4, 1, 3〉
solution By the formula for the angle between two vectors we get

cos θ = n1 · n2

‖n1‖‖n2‖ = 〈1, 2, 1〉 · 〈4, 1, 3〉
‖〈1, 2, 1〉‖‖〈4, 1, 3〉‖ = 4 + 2 + 3√

12 + 22 + 12
√

42 + 12 + 32
= 9√

6
√

26
≈ 0.72

The solution for 0 ≤ θ < π is θ = 0.766 rad or θ = 43.9◦.

51. 2x + 3y + 7z = 2 and 4x − 2y + 2z = 4

solution The planes 2x + 3y + 7z = 2 and 4x − 2y + 2z = 4 have the normals n1 = 〈2, 3, 7〉 and n2 = 〈4, −2, 2〉
respectively. The cosine of the angle between n1 and n2 is

cos θ = n1 · n2

‖n1‖‖n2‖ = 〈2, 3, 7〉 · 〈4, −2, 2〉
‖〈2, 3, 7〉‖‖〈4, −2, 2〉‖ = 8 − 6 + 14√

22 + 32 + 72
√

42 + (−2)2 + 22
= 16√

62
√

24
≈ 0.415

The solution for 0 ≤ θ < π is θ = 1.143 rad or θ = 65.49◦.

52. x − 3y + z = 3 and 2x − 3z = 4

solution The planes x − 3y + z = 3 and 2x − 3z = 4 have the normals n1 = 〈1, −3, 1〉 and n2 = 〈2, 0, −3〉
respectively. We use the formula for the angle between two vectors:

cos θ = n1 · n2

‖n1‖‖n2‖ = 〈1, −3, 1〉 · 〈2, 0, −3〉
‖〈1, −3, 1〉‖‖〈2, 0, −3〉‖ = 2 + 0 − 3√

12 + (−3)2 + 12
√

22 + 0 + (−3)2
= −1√

11
√

13
≈ −0.084

The solution for 0 ≤ θ < π is θ = 1.655 rad or θ = 94.80◦.

53. 3(x − 1) − 5y + 2(z − 12) = 0 and the plane with normal n = 〈1, 0, 1〉
solution The plane 3(x − 1) − 5y + 2(z − 12) = 0 has the normal n1 = 〈3, −5, 2〉, and our second plane has given
normal n2 = 〈1, 0, 1〉. We use the formula for the angle between two vectors:

cos θ = n1 · n2

‖n1‖‖n2‖ = 〈3, −5, 2〉 · 〈1, 0, 1〉
‖〈3, −5, 2〉‖‖〈1, 0, 1〉‖ = 3 + 0 + 2√

32 + (−5)2 + 22
√

12 + 0 + 12
= 5√

38
√

2
≈ 0.5735

The solution for 0 ≤ θ < π is θ = 0.96 rad or θ = 55◦.

54. The plane through (1, 0, 0), (0, 1, 0), and (0, 0, 1) and the yz-plane

solution We first must find normal vectors to the planes. The yz-plane has the equation x = 0, or in vector form
〈1, 0, 0〉 · 〈x, y, z〉 = 0, hence n1 = 〈1, 0, 0〉 is normal to the plane. We denote the points P = (1, 0, 0), Q = (0, 1, 0)

and R = (0, 0, 1) hence the vector n2 = −→
PQ × −→

PR is normal to the plane. We find it here:

−→
PQ = 〈0 − 1, 1 − 0, 0 − 0〉 = 〈−1, 1, 0〉
−→
PR = 〈0 − 1, 0 − 0, 1 − 0〉 = 〈−1, 0, 1〉

n2 = −→
PQ × −→

PR =
∣∣∣∣∣∣

i j k
−1 1 0
−1 0 1

∣∣∣∣∣∣ =
∣∣∣∣ 1 0

0 1

∣∣∣∣ i −
∣∣∣∣ −1 0

−1 1

∣∣∣∣ j +
∣∣∣∣ −1 1

−1 0

∣∣∣∣k = i + j + k = 〈1, 1, 1〉

Using the formula for the angle between two vectors we have

cos θ = n1 · n2

‖n1‖‖n2‖ = 〈1, 0, 0〉 · 〈1, 1, 1〉
‖〈1, 0, 0〉‖‖〈1, 1, 1〉‖ = 1√

3

The solution for 0 ≤ θ < π is θ = 0.955 rad or θ = 54.74◦.
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55. Find an equation of a plane making an angle of π
2 with the plane 3x + y − 4z = 2.

solution The angle θ between two planes (chosen so that 0 ≤ θ < π ) is defined as the angle between their normal
vectors. The following vector is normal to the plane 3x + y − 4z = 2:

n1 = 〈3, 1, −4〉
Let n · 〈x, y, z〉 = d denote the equation of a plane making an angle of π

2 with the given plane, where n = 〈a, b, c〉. Since
the two planes are perpendicular, the dot product of their normal vectors is zero. That is,

n · n1 = 〈a, b, c〉 · 〈3, 1, −4〉 = 3a + b − 4c = 0 ⇒ b = −3a + 4c

Thus, the required planes (there is more than one plane) have the following normal vector:

n = 〈a, −3a + 4c, c〉
We obtain the following equation:

n · 〈x, y, c〉 = d

〈a, −3a + 4c, c〉 · 〈x, y, z〉 = d

ax + (4c − 3a)y + cz = d

Every choice of the values of a, c and d yields a plane with the desired property. For example, we set a = c = d = 1 to
obtain

x + y + z = 1

56. Let P1 and P2 be planes with normal vectors n1 and n2. Assume that the planes are not parallel, and let L
be their intersection (a line). Show that n1 × n2 is a direction vector for L.

solution A vector which is normal to a plane, is orthogonal to all the vectors in the plane. Since the line L is on both
the planes P1 and P2, the normal n1 to the plane P1 is orthogonal to the direction vector of L and the normal n2 to the
plane P2 is also orthogonal to this vector. That is, the line L is orthogonal to both n1 and n2. The cross product n1 × n2
is also orthogonal to n1 and n2, hence it is parallel to L. In other words n1 × n2 is a direction vector of L.

57. Find a plane that is perpendicular to the two planes x + y = 3 and x + 2y − z = 4.

solution The vector forms of the equations of the planes are 〈1, 1, 0〉 · 〈x, y, z〉 = 3 and 〈1, 2, −1〉 · 〈x, y, z〉 = 4,
hence the vectors n1 = 〈1, 1, 0〉 and n2 = 〈1, 2, −1〉 are normal to the planes. We denote the equation of the planes which
are perpendicular to the two planes by

ax + by + cz = d (1)

Then, the normal n = 〈a, b, c〉 to the planes is orthogonal to the normals n1 and n2 of the given planes. Therefore,
n · n1 = 0 and n · n2 = 0 which gives us

〈a, b, c〉 · 〈1, 1, 0〉 = 0, 〈a, b, c〉 · 〈1, 2, −1〉 = 0

We obtain the following equations: {
a + b = 0
a + 2b − c = 0

The first equation implies that b = −a. Substituting in the second equation we get a − 2a − c = 0, or c = −a. Substituting
b = −a and c = −a in (1) gives (for a �= 0):

ax − ay − az = d ⇒ x − y − z = d

a

d
a is an arbitrary constant which we denote by f . The planes which are perpendicular to the given planes are, therefore,

x − y − z = f

58. Let L be the intersection of the planes x + y + z = 1 and x + 2y + 3z = 1. Use Exercise 56 to find a direction
vector for L. Then find a point P on L by inspection, and write down the parametric equations for L.

solution We identify n1 = 〈1, 1, 1〉 and n2 = 〈1, 2, 3〉 as normals to the planes x + y + z = 1 and x + 2y + 3z = 1
respectively. By Exercise 56, the cross product v = n1 × n2 is a direction vector of L. We find it here:

v = n1 × n2 =
∣∣∣∣∣∣

i j k
1 1 1
1 2 3

∣∣∣∣∣∣ =
∣∣∣∣ 1 1

2 3

∣∣∣∣ i −
∣∣∣∣ 1 1

1 3

∣∣∣∣ j +
∣∣∣∣ 1 1

1 2

∣∣∣∣k = i − 2j + k = 〈1, −2, 1〉
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We observe that x = 1, y = 0, z = 0 satisfy the equations of the two planes, hence the point P = (1, 0, 0) is on the line
L. The vector parametrization of L is, thus,

r (t) = 〈1, 0, 0〉 + t〈1, −2, 1〉
This yields the parametric equations

x = 1 + t, y = −2t, z = t.

59. Let L denote the intersection of the planes x − y − z = 1 and 2x + 3y + z = 2. Find parametric equations for the
line L. Hint: To find a point on L, substitute an arbitrary value for z (say, z = 2) and then solve the resulting pair of
equations for x and y.

solution We use Exercise 56 to find a direction vector for the line of intersection L of the planes x − y − z = 1 and
2x + 3y + z = 2. We identify the normals n1 = 〈1, −1, −1〉 and n2 = 〈2, 3, 1〉 to the two planes respectively. Hence, a
direction vector for L is the cross product v = n1 × n2. We find it here:

v = n1 × n2 =
∣∣∣∣∣∣

i j k
1 −1 −1
2 3 1

∣∣∣∣∣∣ = 2i − 3j + 5k = 〈2, −3, 5〉

We now need to find a point on L. We choose z = 2, substitute in the equations of the planes and solve the resulting
equations for x and y. This gives

x − y − 2 = 1

2x + 3y + 2 = 2
or

x − y = 3

2x + 3y = 0

The 1st equation implies that y = x − 3. Substituting in the 2nd equation and solving for x gives

2x + 3(x − 3) = 0

5x = 9 ⇒ x = 9

5
, y = 9

5
− 3 = −6

5

We conclude that the point
( 9

5 , − 6
5 , 2
)

is on L. We now use the vector parametrization of a line to obtain the following
parametrization for L:

r(t) =
〈

9

5
, −6

5
, 2

〉
+ t〈2, −3, 5〉

This yields the parametric equations

x = 9

5
+ 2t, y = −6

5
− 3t, z = 2 + 5t

60. Find parametric equations for the intersection of the planes 2x + y − 3z = 0 and x + y = 1.

solution We use Exercise 56 to determine a direction vector v for the line of intersection L of the two planes. The
planes 2x + y − 3z = 0 and x + y = 1 have normals n1 = 〈2, 1, −3〉 and n2 = 〈1, 1, 0〉 respectively, hence the cross
product v = n1 × n2 is parallel to the line L. We find it here:

v = n1 × n2 =
∣∣∣∣∣∣

i j k
2 1 −3
1 1 0

∣∣∣∣∣∣ =
∣∣∣∣ 1 −3

1 0

∣∣∣∣ i −
∣∣∣∣ 2 −3

1 0

∣∣∣∣ j +
∣∣∣∣ 2 1

1 1

∣∣∣∣k
= 3i − 3j + k = 〈3, −3, 1〉

We now must find a point P0 on L. We substitute an arbitrary value for z, say z = 0, in the equations of the planes
2x + y − 3z = 0 and x + y = 1 and solve the resulting equations for x and y. This gives

2x + y = 0

x + y = 1
⇒ x = −1, y = 2

Thus, the point P0 = (−1, 2, 0) is on the line L. We now use the vector parametrization of the line to obtain the following
parametrization of L:

r(t) = 〈−1, 2, 0〉 + t〈3, −3, 1〉
The parametric equation are thus,

x = −1 + 3t, y = 2 − 3t, z = t
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61. Two vectors v and w, each of length 12, lie in the plane x + 2y − 2z = 0. The angle between v and w is π/6. This
information determines v × w up to a sign ±1. What are the two possible values of v × w?

solution The length of v × w is ‖v‖‖w‖ sin θ , but since both vectors have length 12 and since the angle between them
is π/6, then the length of v × w is 12 · 12 · 1/2 = 72. The direction of v × w is perpendicular to the plane containing them,
which is the plane x + 2y − 2z = 0, which has normal vector n = 〈1, 2, −2〉. Since v × w must have length 72 and must

be parallel to 〈1, 2, −2〉, then it must be ±72 times the unit vector 〈1, 2, −2〉 /

√
12 + 22 + (−2)2 = 〈1/3, 2/3, −2/3〉.

Thus,

v × w = ±72 · 〈1/3, 2/3, −2/3〉 = ±24 · 〈1, 2, −2〉
62. The plane

x

2
+ y

4
+ z

3
= 1

intersects the x-, y-, and z-axes in points P , Q, and R. Find the area of the triangle �PQR.

solution The points of intersection are found by setting two of the three variables in x
2 + y

4 + z
3 = 1 equal to zero at

a time. We get the following:

P = (2, 0, 0), Q = (0, 4, 0), R = (0, 0, 3)

and so we can find the two vectors that span the triangle:

−→
PQ = 4j − 2i,

−→
PR = 3k − 2i

We have
−→
PQ × −→

PR = (4j − 2i) × (3k − 2i)

= 12j × k − 8j × i − 6i × k + 4i × i

= 12i + 8k + 6j

The area of the triangle is

1

2
‖−→
PQ × −→

PR‖ = 1

2

√
144 + 36 + 64 = 1

2

√
244 = √

61

63. In this exercise, we show that the orthogonal distance D from the plane P with equation ax + by + cz = d

to the origin O is equal to (Figure 10)

D = |d|√
a2 + b2 + c2

Let n = 〈a, b, c〉, and let P be the point where the line through n intersects P . By definition, the orthogonal distance
from P to O is the distance from P to O.

(a) Show that P is the terminal point of v =
(

d

n · n

)
n.

(b) Show that the distance from P to O is D.

n · 〈x, y, z〉 = d

y

x

O

D

z

P

n

FIGURE 10

solution Let v be the vector v =
(

d

n · n

)
n. Then v is parallel to n and the two vectors are on the same ray.

(a) First we must show that the terminal point of v lies on the plane ax + by + cz = d. Since the terminal point of v is
the point (

d

n · n

)
(a, b, c) =

(
da

a2 + b2 + c2
,

db

a2 + b2 + c2
,

dc

a2 + b2 + c2

)
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then we need only show that this point satisfies ax + by + cz = d. Plugging in, we find:

ax + by + cz = a · da

a2 + b2 + c2
+ b · db

a2 + b2 + c2
+ c · dc

a2 + b2 + c2
= a2d + b2d + c2d

a2 + b2 + c2
= d

(b) We now show that the distance from P to O is D. This distance is just the length of the vector v, which is:

‖v‖ =
( |d|

n · n

)
‖n‖ = |d|

‖n‖ = |d|√
a2 + b2 + c2

as desired.

64. Use Exercise 63 to compute the orthogonal distance from the plane x + 2y + 3z = 5 to the origin.

solution Using the formula

D = |d|√
a2 + b2 + c2

and since our line is x + 2y + 3z = 5, we have a = 1, b = 2, c = 3, d = 5, and so we calculate

D = |5|√
12 + 22 + 32

= 5√
14

≈ 1.3363

Further Insights and Challenges
In Exercises 65 and 66, let P be a plane with equation

ax + by + cz = d

and normal vector n = 〈a, b, c〉. For any point Q, there is a unique point P on P that is closest to Q, and is such that
PQ is orthogonal to P (Figure 11).

n

P y
Q

x

O

z

FIGURE 11

65. Show that the point P on P closest to Q is determined by the equation

−→
OP = −−→

OQ +
(

d − −−→
OQ · n

n · n

)
n 7

solution Since
−→
PQ is orthogonal to the plane P , it is parallel to the vector n = 〈a, b, c〉 which is normal to the plane.

Hence,

−→
PQ = λn (1)

Q

O
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Since
−→
OP + −→

PQ = −−→
OQ, we have

−→
PQ = −−→

OQ − −→
OP . Thus, by (1) we get

−−→
OQ − −→

OP = λn ⇒ −→
OP = −−→

OQ − λn (2)

The point P is on the plane, hence
−→
OP satisfies the vector form of the equation of the plane, that is,

n · −→
OP = d (3)

Substituting (2) into (3) and solving for λ yields

n ·
(−−→
OQ − λn

)
= d

n · −−→
OQ − λn · n = d

λn · n = n · −−→
OQ − d ⇒ λ = n · −−→

OQ − d

n · n
(4)

Finally, we combine (2) and (4) to obtain

−→
OP = −−→

OQ +
(

d − n · −−→
OQ

n · n

)
n

66. By definition, the distance from a point Q = (x1, y1, z1) to the plane P is ‖QP ‖ where P is the point on P that is
closest to Q. Prove:

Distance from Q to P = |ax1 + by1 + cz1 − d|
‖n‖ 8

solution The distance l from Q to P is the length of the vector
−→
PQ, that is,

� = ‖−→
PQ‖ = ‖−−→OQ − −→

OP ‖ (1)

By Eq. (7) in Exercise 65,

−→
OP − −−→

OQ =
(

d − −−→
OQ · n

‖n‖2

)
n

Combining with (1) and noticing that n
‖n‖ is a unit vector, we have

� = ‖
(

d − −−→
OQ · n

‖n‖2

)
n‖ = |d − −−→

OQ · n|
‖n‖ · ‖ n

‖n‖‖ = |d − −−→
OQ · n|
‖n‖ (2)

We compute the numerator in (2):

|d − −−→
OQ · n| = |d − 〈x1, y1, z1〉 · 〈a, b, c〉| = |d − (ax1 + by1 + cz1) | = |ax1 + by1 + cz1 − d|

Substituting into (2) we obtain the following distance:

� = |ax1 + by1 + cz1 − d|
‖n‖

67. Use Eq. (7) to find the point P nearest to Q = (2, 1, 2) on the plane x + y + z = 1.

solution We identify n = 〈1, 1, 1〉 as a vector normal to the plane. By Eq. (7) the nearest point P to Q is determined
by

−→
OP = −−→

OQ +
(

d − −−→
OQ · n

n · n

)
n

We substitute n = 〈1, 1, 1〉, −−→
OQ = 〈2, 1, 2〉 and d = 1 in this equation to obtain

−→
OP = 〈2, 1, 2〉 + 1 − 〈2, 1, 2〉 · 〈1, 1, 1〉

〈1, 1, 1〉 · 〈1, 1, 1〉 〈1, 1, 1〉 = 〈2, 1, 2〉 + 1 − (2 + 1 + 2)

1 + 1 + 1
〈1, 1, 1〉

= 〈2, 1, 2〉 − 4

3
〈1, 1, 1〉 =

〈
2

3
, −1

3
,

2

3

〉

The terminal point P =
(

2
3 , − 1

3 , 2
3

)
of

−→
OP is the nearest point to Q = (2, 1, 2) on the plane.
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68. Find the point P nearest to Q = (−1, 3, −1) on the plane

x − 4z = 2

solution By Exercise 65, the nearest point P to Q on the plane ax + by + cz = d is determined by the equation

−→
OP = −−→

OQ +
(

d − −−→
OQ · n

n · n

)
n

We identify n = 〈1, 0, −4〉 as a vector normal to the plane x − 4z = 2. We also substitute d = 2 and
−−→
OQ = 〈−1, 3, −1〉

to obtain

−→
OP = 〈−1, 3, −1〉 + 2 − 〈−1, 3, −1〉 · 〈1, 0, −4〉

〈1, 0, −4〉 · 〈1, 0, −4〉 〈1, 0, −4〉

= 〈−1, 3, −1〉 + 2 − (−1 + 0 + 4)

1 + 0 + 16
〈1, 0, −4〉

= 〈−1, 3, −1〉 − 1

17
〈1, 0, −4〉 =

〈
−18

17
, 3, −13

17

〉

The desired point P is the terminal point of
−→
OP , that is, P = (− 18

17 , 3, − 13
17

)
.

69. Use Eq. (8) to find the distance from Q = (1, 1, 1) to the plane 2x + y + 5z = 2.

solution By Eq. (8), the distance from Q = 〈x1, y1, z1〉 to the plane ax + by + cz = d is

� = |ax1 + by1 + cz1 − d|
‖n‖ (1)

We identify the vector n = 〈2, 1, 5〉 as a normal to the plane 2x + y + 5z = 2. Also a = 2, b = 1, c = 5, d = 2, and
(x1, y1, z1) = (1, 1, 1). Substituting in (1) above we get

� = |2 · 1 + 1 · 1 + 5 · 1 − 2|
‖〈2, 1, 5〉‖ = 6√

22 + 12 + 52
= 6√

30
≈ 1.095

70. Find the distance from Q = (1, 2, 2) to the plane n · 〈x, y, z〉 = 3, where n = 〈 35 , 4
5 , 0
〉
.

solution We write the equation of the plane in scalar form:

〈
3

5
,

4

5
, 0

〉
· 〈x, y, z〉 = 3

3

5
x + 4

5
y + 0 = 3

3

5
x + 4

5
y = 3

We use Eq. (8) in for the distance � from Q = (x1, y1, z1) to the plane ax + by + cz = d:

� = |ax1 + by1 + cz1 − d|
‖n‖ (1)

In our example, a = 3
5 , b = 4

5 , c = 0, d = 3. Also (x1, y1, z1) = (1, 2, 2) and n = 〈 3
5 , 4

5 , 0
〉
. Substituting these values

in the formula (1) for the distance �, we get

� =
∣∣ 3

5 · 1 + 4
5 · 2 + 0 − 3

∣∣√( 3
5

)2 + ( 4
5

)2 + 02
=

4
5
1

= 4

5

We found that the distance from Q = (1, 2, 2) to the given plane is � = 4
5 .
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71. What is the distance from Q = (a, b, c) to the plane x = 0? Visualize your answer geometrically and explain without
computation. Then verify that Eq. (8) yields the same answer.

solution The plane x = 0 is the yz-coordinate plane. The nearest point to Q on the plane is the projection of Q on
the plane, which is the point Q′ = (0, b, c).

z

a y
x

b

b, c)

(a, b, c)

Hence, the distance from Q to the plane is the length of the vector
−−→
Q′Q = 〈a, 0, 0〉 which is |a|. We now verify that Eq. (8)

gives the same answer. The plane x = 0 has the vector parametrization 〈1, 0, 0〉 · 〈x, y, z〉 = 0, hence n = 〈1, 0, 0〉. The
coefficients of the plane x = 0 are A = 1, B = C = D = 0. Also (x1, y1, z1) = (a, b, c). Substituting this value in
Eq. (8) we get

|Ax1 + By1 + Cz1 − D|
‖n‖ = |1 · a + 0 + 0 − 0|

‖〈1, 0, 0〉‖ = |a|√
12 + 02 + 02

= |a|

The two answers agree, as expected.

72. The equation of a plane n · 〈x, y, z〉 = d is said to be in normal form if n is a unit vector. Show that in this case, |d|
is the distance from the plane to the origin. Write the equation of the plane 4x − 2y + 4z = 24 in normal form.

solution By Exercise 65 the point Q nearest to the origin on the plane n · 〈x, y, z〉 = d is the terminal point of the
vector

v =
(

d

‖n‖2

)
n

If the equation of the plane is in normal form, n is a unit vector, hence ‖n‖ = 1. Therefore Q is the terminal point of the
vector

v = dn

The distance from the plane to the origin is the length of v, that is,

‖v‖ = ‖dn‖ = |d|‖n‖ = |d| · 1 = |d|.
The plane 4x − 2x + 4z = 24 can be written

4x − 2x + 4z√
42 + (−2)2 + 42

= 24√
42 + (−2)2 + 42

or

1

6
〈4, −2, 4〉 · 〈x, y, z〉 = 4

or 〈
2

3
, −1

3
,

2

3

〉
· 〈x, y, z〉 = 4, in normal form.

12.6 A Survey of Quadric Surfaces (LT Section 13.6)

Preliminary Questions
1. True or false? All traces of an ellipsoid are ellipses.

solution This statement is true, mostly. All traces of an ellipsoid
(
x
a

)2 + ( y
b

)2 + ( zc )2 = 1 are ellipses, except for
the traces obtained by intersecting the ellipsoid with the planes x = ±a, y = ±b and z = ±c. These traces reduce to the
single points (±a, 0, 0), (0, ±b, 0) and (0, 0, ±c) respectively.

2. True or false? All traces of a hyperboloid are hyperbolas.

solution The statement is false. For a hyperbola in the standard orientation, the horizontal traces are ellipses (or
perhaps empty for a hyperbola of two sheets), and the vertical traces are hyperbolas.
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3. Which quadric surfaces have both hyperbolas and parabolas as traces?

solution The hyperbolic paraboloid z = ( xa )2 − ( y
b

)2 has vertical trace curves which are parabolas. If we set x = x0
or y = y0 we get

z =
(x0

a

)2 −
(y

b

)2 ⇒ z = −
(y

b

)2 + C

z =
(x

a

)2 −
(y0

b

)2 ⇒ z =
(x

a

)2 + C

The hyperbolic paraboloid has vertical traces which are hyperbolas, since for z = z0, (z0 > 0), we get

z0 =
(x

a

)2 −
(y

b

)2

4. Is there any quadric surface whose traces are all parabolas?

solution There is no quadric surface whose traces are all parabolas.

5. A surface is called bounded if there exists M > 0 such that every point on the surface lies at a distance of at most
M from the origin. Which of the quadric surfaces are bounded?

solution The only quadric surface that is bounded is the ellipsoid

(x

a

)2 +
(y

b

)2 +
( z

c

)2 = 1.

All other quadric surfaces are not bounded, since at least one of the coordinates can increase or decrease without bound.

6. What is the definition of a parabolic cylinder?

solution A parabolic cylinder consists of all vertical lines passing through a parabola C in the xy-plane.

Exercises
In Exercises 1–6, state whether the given equation defines an ellipsoid or hyperboloid, and if a hyperboloid, whether it is
of one or two sheets.

1.
(x

2

)2 +
(y

3

)2 +
( z

5

)2 = 1

solution This equation is the equation of an ellipsoid.

2.
(x

5

)2 +
(y

5

)2 −
( z

7

)2 = 1

solution The given equation defines a hyperboloid of one sheet.

3. x2 + 3y2 + 9z2 = 1

solution We rewrite the equation as follows:

x2 +
⎛
⎝ y

1√
3

⎞
⎠

2

+
(

z

1
3

)2

= 1

This equation defines an ellipsoid.

4. −
(x

2

)2 −
(y

3

)2 +
( z

5

)2 = 1

solution This is the equation of a hyperboloid of two sheets.

5. x2 − 3y2 + 9z2 = 1

solution We rewrite the equation in the form

x2 −
⎛
⎝ y

1√
3

⎞
⎠

2

+
(

z

1
3

)2

= 1

This is the equation of a hyperboloid of one sheet.

6. x2 − 3y2 − 9z2 = 1

solution Rewriting the equation in the form

x2 −
⎛
⎝ y

1√
3

⎞
⎠

2

−
(

z

1
3

)2

= 1

we identify it as the equation of a hyperboloid of two sheets.
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In Exercises 7–12, state whether the given equation defines an elliptic paraboloid, a hyperbolic paraboloid, or an elliptic
cone.

7. z =
(x

4

)2 +
(y

3

)2

solution This equation defines an elliptic paraboloid.

8. z2 =
(x

4

)2 +
(y

3

)2

solution This is the equation of an elliptic cone.

9. z =
(x

9

)2 −
( y

12

)2

solution This equation defines a hyperbolic paraboloid.

10. 4z = 9x2 + 5y2

solution The equation can be rewritten as

z =
(

x

2
3

)2

+
⎛
⎝ y

2√
5

⎞
⎠

2

hence it defines an elliptic paraboloid.

11. 3x2 − 7y2 = z

solution Rewriting the equation as

z =
⎛
⎝ x

1√
3

⎞
⎠

2

−
⎛
⎝ y

1√
7

⎞
⎠

2

we identify it as the equation of a hyperbolic paraboloid.

12. 3x2 + 7y2 = 14z2

solution We rewrite the equations as follows:

3x2 + 7y2 = 14z2

3x2 = −7y2 + 14z2

⎛
⎝ x

1√
3

⎞
⎠

2

= −
⎛
⎝ y

1√
7

⎞
⎠

2

+
⎛
⎝ z

1√
14

⎞
⎠

2

We identify it as the equation of an elliptic cone.

In Exercises 13–20, state the type of the quadric surface and describe the trace obtained by intersecting with the given
plane.

13. x2 +
(y

4

)2 + z2 = 1, y = 0

solution The equation x2 + ( y4 )2 + z2 = 1 defines an ellipsoid. The xz-trace is obtained by substituting y = 0 in the

equation of the ellipsoid. This gives the equation x2 + z2 = 1 which defines a circle in the xz-plane.

14. x2 +
(y

4

)2 + z2 = 1, y = 5

solution This equation defines an ellipsoid. Substituting y = 5 gives

x2 +
(

5

4

)2
+ z2 = 1

x2 + z2 = −
(

3

4

)2

Since x2 + y2 ≥ 0 for all x and z, the trace is an empty set.
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15. x2 +
(y

4

)2 + z2 = 1, z = 1

4

solution The quadric surface is an ellipsoid, since its equation has the form
(
x
a

)2 + ( y
b

)2 + ( zc )2 = 1 for a = 1,

b = 4, c = 1. To find the trace obtained by intersecting the ellipsoid with the plane z = 1
4 , we set z = 1

4 in the equation
of the ellipsoid. This gives

lx2 +
(y

4

)2 +
(

1

4

)2
= 1

x2 + y2

16
= 15

16

To get the standard form we divide by 15
16 to obtain

x2

15
16

+ y2

16·15
16

= 1 ⇒
⎛
⎝ x√

15
4

⎞
⎠

2

+
(

y√
15

)2
= 1 (1)

We conclude that the trace is an ellipse on the xy-plane, whose equation is given in (1).

16.
(x

2

)2 +
(y

5

)2 − 5z2 = 1, x = 0

solution The equation can be rewritten as

(x

2

)2 +
(y

5

)2 −
⎛
⎝ z

1√
5

⎞
⎠

2

= 1

hence it defines a hyperboloid of one sheet. The yz-trace is obtained by substituting x = 0 in the equation of the
hyperboloid. This gives

(
0

2

)2
+
(y

5

)2 − 5z2 = 1 ⇒
(y

5

)2 −
⎛
⎝ z

1√
5

⎞
⎠

2

= 1.

This is the equation of a hyperbola in the yz-plane.

17.
(x

3

)2 +
(y

5

)2 − 5z2 = 1, y = 1

solution Rewriting the equation in the form

(x

3

)2 +
(y

5

)2 −
⎛
⎝ z

1√
5

⎞
⎠

2

= 1

we identify it as the equation of a hyperboloid of one sheet. Substituting y = 1 we get

x2

9
+ 1

25
− 5z2 = 1

x2

9
− 5z2 = 24

25

25

24 · 9
x2 − 25 · 5

24
z2 = 1

⎛
⎝ x

6
√

6
5

⎞
⎠

2

−
⎛
⎜⎝ z

2
5

√
6
5

⎞
⎟⎠

2

= 1

Thus, the trace on the plane y = 1 is a hyperbola.

18. 4x2 +
(y

3

)2 − 2z2 = −1, z = 1

solution We rewrite the equation as follows:

(
x

1
2

)2

+
(y

3

)2 −
⎛
⎝ z

1√
2

⎞
⎠

2

= 1
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This equation defines a hyperboloid of one sheet. To find the trace of the hyperboloid on the plane z = 1, we substitute
z = 1 in the equation. This gives

4x2 +
(y

3

)2 − 2 · 12 = 1

4x2 + y2

9
= 3

4

3
x2 + y2

27
= 1 ⇒

⎛
⎝ x√

3
2

⎞
⎠

2

+
(

y

3 · √
3

)2
= 1

The trace is an ellipse on the plane z = 1.

19. y = 3x2, z = 27

solution This equation defines a parabolic cylinder, consisting of all vertical lines passing through the parabola

y = 3x2 in the xy-plane. Hence, the trace of the cylinder on the plane z = 27 is the parabola y = 3x2 on this plane, that
is, the following set: {

(x, y, z) : y = 3x2, z = 27
}
.

20. y = 3x2, y = 27

solution The equation y = 3x2 defines a parabolic cylinder consisting of all vertical lines passing through the parabola

y = 3x2 in the xy-plane. To find the trace on the plane y = 27, we substitute y = 27 in the equation of the cylinder:

27 = 3x2

9 = x2 ⇒ x = 3, x = −3

Therefore, the trace is the two vertical lines through the points (−3, 27) and (3, 27) in the xy-plane.

z

y

x

10

0
5

35

21. Match each of the ellipsoids in Figure 12 with the correct equation:
(a) x2 + 4y2 + 4z2 = 16 (b) 4x2 + y2 + 4z2 = 16

(c) 4x2 + 4y2 + z2 = 16

y y y

x x x

z z z

(A) (B) (C)

FIGURE 12

solution
(a) We rewrite the equation in the form (x

4

)2 +
(y

2

)2 +
( z

2

)2 = 1

The ellipsoid intersects thex,y, and z axes at the points (±4, 0, 0), (0, ±2, 0), and (0, 0, ±2), hence (B) is the corresponding
figure.
(b) We rewrite the equation in the form (x

2

)2 +
(y

4

)2 +
( z

2

)2 = 1

The x, y, and z intercepts are (±2, 0, 0), (0, ±4, 0), and (0, 0, ±2) respectively, hence (C) is the correct figure.
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(c) We write the equation in the form

(x

2

)2 +
(y

2

)2 +
( z

4

)2 = 1

The x, y, and z intercepts are (±2, 0, 0), (0, ±2, 0), and (0, 0, ±4) respectively, hence the corresponding figure is (A).

22. Describe the surface that is obtained when, in the equation ±8x2 ± 3y2 ± z2 = 1, we choose (a) all plus signs, (b) one
minus sign, and (c) two minus signs.

solution

(a) Choosing all plus signs in the given equation yields 8x2 + 3y2 + z2 = 1, or

(
x√
1/8

)2
+
(

y√
1/3

)2
+ z2 = 1

which is the equation of an ellipsoid.

(b) Choosing one minus sign gives the equation of a hyperboloid of one sheet.

(c) Choosing two minus signs gives the equation of a hyperboloid of two sheets.

23. What is the equation of the surface obtained when the elliptic paraboloid z =
(x

2

)2 +
(y

4

)2
is rotated about the

x-axis by 90◦? Refer to Figure 13.

zz

y

y

xx

FIGURE 13

solution The axis of symmetry of the resulting surface is the y-axis rather than the z-axis. Interchanging y and z in
the given equation gives the following equation of the rotated paraboloid:

y =
(x

2

)2 +
( z

4

)2

24. Describe the intersection of the horizontal plane z = h and the hyperboloid −x2 − 4y2 + 4z2 = 1. For which values
of h is the intersection empty?

solution To find the intersection of the horizontal plane z = h and the hyperboloid, we substitute z = h in this
equation. This gives

−x2 − 4y2 + 4h2 = 1

4h2 − 1 = x2 + 4y2

So, for 4h2 − 1 > 0, this is an ellipse, and for 4h2 − 1 = 0 this is a point, but for 4h2 − 1 < 0 there is no intersection.
Solving that last equation for h, we get 4h2 < 1, so h2 < 1/4, so |h| < 1/2 (also written as −1/2 < h < 1/2). Thus, for
|h| < 1/2 there is no intersection, and for |h| = 1/2 the intersection is a point, and for |h| > 1/2 the intersection is an
ellipse.

In Exercises 25–30, sketch the given surface.

25. x2 + y2 − z2 = 1

solution This equation defines a hyperboloid of one sheet. The trace on the plane z = z0 is the circle x2 + y2 = 1 + z2
0.

The trace on the plane y = y0 is the hyperbola x2 − z2 = 1 − y2
0 and the trace on the plane x = x0 is the hyperbola

y2 − z2 = 1 − x2
0 . We obtain the following surface:
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z

y

x

Graph of x2 + y2 − z2 = 1

26.
(x

4

)2 +
(y

8

)2 +
( z

12

)2 = 1

solution This equation defines and ellipsoid with x, y and z intercepts at the points (±4, 0, 0), (0, ±8, 0) and
(0, 0, ±12). All the traces of the ellipsoid are ellipses. The surface is shown next:

z

y
x

000000000

−1222222

11212121212121212121212121212121212121212

−−−−−−−−−−−−−−−−−888888888888888

8888888888

−−−−−−−−−−−−444444444444

44444444444444

27. z =
(x

4

)2 +
(y

8

)2

solution This equation defines an elliptic paraboloid, as shown in the following figure:

z

y

x

28. z =
(x

4

)2 −
(y

8

)2

solution The hyperbolic paraboloid defined by this equation is shown in the following figure:

−1

4

−4

z

y

x
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29. z2 =
(x

4

)2 +
(y

8

)2

solution This equation defines the following elliptic cone:

4

1

8

z

y

x

30. z = −x2

solution This is the equation of a parabolic cylinder with base C, where C is the parabola z = −x2 in the xz-plane.
The graph of the cylinder is shown next:

z y

x

−100

−10

−1010

1010

Graph of the parabolic cylinder z = −x2

31. Find the equation of the ellipsoid passing through the points marked in Figure 14(A).

z

y

x

(A)

6

4

−4

2

−2

−6

z

y

x

(B)

4

−4

2

−2

FIGURE 14

solution The equation of an ellipsoid is

(x

a

)2 +
(y

b

)2 +
( z

c

)2 = 1 (1)

The x, y and z intercepts are (±a, 0, 0), (0, ±b, 0) and (0, 0, ±c) respectively. The x, y and z intercepts of the desired
ellipsoid are (±2, 0, 0), (0, ±4, 0) and (0, 0, ±6) respectively, hence a = 2, b = 4 and c = 6. Substituting into (1) we
get

(x

2

)2 +
(y

4

)2 +
( z

6

)2 = 1.

32. Find the equation of the elliptic cylinder passing through the points marked in Figure 14(B).

solution The equation of the elliptic cylinder in the xyz-coordinate system is

(x

a

)2 +
(y

b

)2 = 1 (1)

The x and y intercepts are (±a, 0) and (0, ±b) respectively. The x and y intercepts of the desired cylinder are (±2, 0)

and (0, ±4) respectively, hence a = 2 and b = 4. Substituting into (1) we obtain the following equation:

(x

2

)2 +
(y

4

)2 = 1.
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33. Find the equation of the hyperboloid shown in Figure 15(A).

z

y

x

(A)

6

12
8

4

6

5
9

8

z

y

x

(B)

FIGURE 15

solution The hyperboloid in the figure is of one sheet and the intersections with the planes z = z0 are ellipses. Hence,
the equation of the hyperboloid has the form

(x

a

)2 +
(y

b

)2 −
( z

c

)2 = 1 (1)

Substituting z = 0 we get

(x

a

)2 +
(y

b

)2 = 1

By the given information this ellipse has x and y intercepts at the points (±4, 0) and (0, ±6) hence a = 4, b = 6.
Substituting in (1) we get

(x

4

)2 +
(y

6

)2 −
( z

c

)2 = 1 (2)

Substituting z = 9 we get

x2

16
+ y2

36
− 92

c2
= 1

x2

16
+ y2

36
= 1 + 81

c2
= c2 + 81

c2

c2x2

16(81 + c2)
+ c2y2

36(81 + c2)
= 1

(
x

4
c

√
81 + c2

)2

+
(

y

6
c

√
81 + c2

)2

= 1

By the given information the following must hold:

4

c

√
81 + c2 = 8

6

c

√
81 + c2 = 12

⇒
√

81 + c2

c
= 2 ⇒ 81 + c2 = 4c2 ⇒ 3c2 = 81

Thus, c = 3
√

3, and by substituting in (2) we obtain the following equation:

(x

4

)2 +
(y

6

)2 −
(

z

3
√

3

)2
= 1

34. Find the equation of the quadric surface shown in Figure 15(B).

solution The quadratic surface in the figure is an elliptic cone. The horizontal trace curves are ellipses, hence the
equation of the cone has the form

(x

a

)2 +
(y

b

)2 =
( z

c

)2
(1)

The trace on the plane z = 5 is the ellipse
(
x
6

)2 + ( y8 )2 = 1. Substituting z = 5 in (1) gives

(x

a

)2 +
(y

b

)2 =
(

5

c

)2
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(
x

5a/c

)2
+
(

y

5b/c

)2
= 1

Thus, the following equalities must hold:

5a

c
= 6 ⇒ a = 6c

5

5b

c
= 8 ⇒ b = 8c

5

Substituting in (1) gives

(
x

6c/5

)2
+
(

y

8c/5

)2
=
( z

c

)2

1

c2

(
x

6/5

)2
+ 1

c2

(
y

8/5

)2
= 1

c2
z2

(
x

6/5

)2
+
(

y

8/5

)2
= z2

(x

6

)2 +
(y

8

)2 =
( z

5

)2

35. Determine the vertical traces of elliptic and parabolic cylinders in standard form.

solution The vertical traces of elliptic or parabolic cylinders are one or two vertical lines, or an empty set.

36. What is the equation of a hyperboloid of one or two sheets in standard form if every horizontal trace is a circle?

solution The equation of a hyperboloid (of one sheet) is

(x

a

)2 +
(y

b

)2 −
( z

c

)2 = 1

or (x

a

)2 +
(y

b

)2 = 1 +
( z

c

)2

The horizontal traces are obtained by setting z = z0, that is,

(x

a

)2 +
(y

b

)2 = 1 +
(z0

c

)2 = constant

This equation defines a circle when a = b. Thus, the corresponding hyperboloid is

(x

a

)2 +
(y

a

)2 −
( z

c

)2 = 1

37. Let C be an ellipse in a horizonal plane lying above the xy-plane. Which type of quadric surface is made up of all
lines passing through the origin and a point on C?

solution The quadric surface is the upper part of an elliptic cone.

z

y

x

38. The eccentricity of a conic section is defined in Section 11.5. Show that the horizontal traces of the ellipsoid

(x

a

)2 +
(y

b

)2 +
( z

c

)2 = 1

are ellipses of the same eccentricity (apart from the traces at height h = ±c, which reduce to a single point). Find the
eccentricity.
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solution The intersection of the ellipsoid with the horizonal plane z = h for |h| < c is obtained by substituting z = h

in the equation of the ellipsoid . This gives

(x

a

)2 +
(y

b

)2 +
(

h

c

)2
= 1

(x

a

)2 +
(y

b

)2 = 1 −
(

h

c

)2
= c2 − h2

c2

(
x

a
c

√
c2 − h2

)2

+
(

y

b
c

√
c2 − h2

)2

= 1

This is the equation of an ellipse in the plane z = h. Assume a < b. The eccentricity of the ellipse is

e =

√[
a
c

√
c2 − h2

]2 −
[

b
c

√
c2 − h2

]2

a
c

√
c2 − h2

=
√

a2

c2 (c2 − h2) − b2

c2 (c2 − h2)

a
c

√
c2 − h2

=
√

(c2−h2)

c2 (a2 − b2)

a
c

√
c2 − h2

=
√

c2−h2

c

√
a2 − b2

√
c2−h2

c a

=
√

a2 − b2

a
=
√

1 −
(

b

a

)2

Since the eccentricity is independent of h, all the horizontal traces are ellipses with the same eccentricity e =
√

1 − ( a
b

)2.

If a > b, we obtain (in a similar manner) e =
√

1 −
(

b
a

)2
, again independent of h.

Further Insights and Challenges
39. Let S be the hyperboloid x2 + y2 = z2 + 1 and let P = (α, β, 0) be a point on S in the (x, y)-plane. Show that there
are precisely two lines through P entirely contained in S (Figure 16). Hint: Consider the line r(t) = 〈α + at, β + bt, t〉
through P . Show that r(t) is contained in S if (a, b) is one of the two points on the unit circle obtained by rotating (α, β)

through ±π
2 . This proves that a hyperboloid of one sheet is a doubly ruled surface, which means that it can be swept

out by moving a line in space in two different ways.

FIGURE 16

solution The parametric equations of the lines through P = (α, β, 0) have the form

x = α + ks, y = β + �s, z = ms

Setting the parameter t = ms and replacing k
m and �

m by a and b, respectively, we obtain the following (normalized) form

x = α + at, y = β + bt, z = t

The line is entirely contained in S if and only if for all values of the parameter t , the following equality holds:

(α + at)2 + (β + bt)2 = t2 + 1

That is, for all t ,

α2 + 2αat + a2t2 + β2 + 2βbt + b2t2 = t2 + 1

(a2 + b2 − 1)t2 + 2(αa + βb)t + (α2 + β2 − 1) = 0

This equality holds for all t if and only if all the coefficients are zero. That is, if and only if⎧⎨
⎩

a2 + b2 − 1 = 0
αa + βb = 0
α2 + β2 − 1 = 0
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The first and the third equations imply that (a, b) and (α, β) are points on the unit circle x2 + y2 = 1. The second equation
implies that the vector u = 〈a, b〉 is orthogonal to the vector v = 〈α, β〉 (since u · v = aα + bβ = 0).

Conclusions: There are precisely two lines through P entirely contained in S. For the direction vectors (a, b, 1) of
these lines, (a, b) is obtained by rotating (α, β) through ±π

2 about the origin.

In Exercises 40 and 41, let C be a curve in R3 not passing through the origin. The cone on C is the surface consisting of
all lines passing through the origin and a point on C [Figure 17(A)].

Cone on ellipse C Cone on parabola C
(half of cone shown)

O

C

C

z

y

x

y

x

z

O

c

c

FIGURE 17

40. Show that the elliptic cone
( z

c

)2 =
(x

a

)2 +
(y

b

)2
is, in fact, a cone on the ellipse C consisting of all points (x, y, c)

such that
(x

a

)2 +
(y

b

)2 = 1.

solution

Step 1. We verify that the lines OP where P is a point (α, β, c) such that
(
α
a

)2 + (β
b

)2 = 1 are contained in the elliptic

cone
(
x
a

)2 + ( y
b

)2 = ( zc )2. The parametric equations of the line OP are

x = tα, y = tβ, z = tc

Substituting in the left hand side of the equation of the cone
(
x
a

)2 + ( y
b

)2 = ( zc )2 gives

(x

a

)2 +
(y

b

)2 =
(

tα

a

)2
+
(

tβ

b

)2
= t2

((α

a

)2 +
(

β

b

)2
)

= t2 · 1 =
(

tc

c

)2
=
( z

c

)2

Therefore, the line OP is contained in the elliptic cone.

Step 2. We show that every point (x0, y0, z0) on the elliptic cone is contained in a certain line OP where P is a point on

C. Since (x0, y0, z0) is on the cone, we have
( x0

a

)2 + ( y0
b

)2 = ( z0
c

)2, hence,

(
x0

a
z0
c

)2

+
(

y0

b
z0
c

)2

= 1

or (
x0

c
z0

a

)2

+
(

y0
c
z0

b

)2

= 1 (1)

We define P as the point P =
(

x0c
z0

,
y0c
z0

, c
)

. By (1) P is on the ellipse C. We show that (x0, y0, z0) lies on the line

through the origin and P . The parametric equations of this line are

x = t
x0c

z0
, y = t

y0c

z0
, z = tc

Now, (x0, y0, z0) corresponds to the parameter t = z0
c . This proves that any point P = (x0, y0, z0) on the cone is included

in a certain line through the origin and a point on C. By virtue of step 1 and step 2, we conclude that the cone on the ellipse
C is equal to the elliptic cone.

41. Let a and c be nonzero constants and let C be the parabola at height c consisting of all points (x, ax2, c) [Figure
17(B)]. Let S be the cone consisting of all lines passing through the origin and a point on C. This exercise shows that S
is also an elliptic cone.

(a) Show that S has equation yz = acx2.
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(b) Show that under the change of variables y = u + v and z = u − v, this equation becomes acx2 = u2 − v2 or
u2 = acx2 + v2 (the equation of an elliptic cone in the variables x, v, u).

solution A point P on the parabola C has the form P =
(
x0, ax2

0 , c
)

, hence the parametric equations of the line

through the origin and P are

x = tx0, y = tax2
0 , z = tc

To find a direct relation between xy and z we notice that

yz = tax2
0ct = ac(tx0)2 = acx2

Now, defining new variables z = u − v and y = u + v. This equation becomes

(u + v)(u − v) = acx2

u2 − v2 = acx2 ⇒ u2 = acx2 + v2

This is the equation of an elliptic cone in the variables x, v, u. We, thus, showed that the cone on the parabola C is
transformed to an elliptic cone by the transformation (change of variables) y = u + v, z = u − v, x = x.

12.7 Cylindrical and Spherical Coordinates (LT Section 13.7)

Preliminary Questions
1. Describe the surfaces r = R in cylindrical coordinates and ρ = R in spherical coordinates.

solution The surface r = R consists of all points located at a distance R from the z-axis. This surface is the cylinder
of radius R whose axis is the z-axis. The surface ρ = R consists of all points located at a distance R from the origin. This
is the sphere of radius R centered at the origin.

2. Which statement about cylindrical coordinates is correct?

(a) If θ = 0, then P lies on the z-axis.

(b) If θ = 0, then P lies in the xz-plane.

solution The equation θ = 0 defines the half-plane of all points that project onto the ray θ = 0, that is, onto the
nonnegative x-axis. This half plane is part of the (x, z)-plane, therefore if θ = 0, then P lies in the (x, z)-plane.

z

y

x

The half-plane q = 0

For instance, the point P = (1, 0, 1) satisfies θ = 0, but it does not lie on the z-axis. We conclude that statement (b) is
correct and statement (a) is false.

3. Which statement about spherical coordinates is correct?

(a) If φ = 0, then P lies on the z-axis.

(b) If φ = 0, then P lies in the xy-plane.

solution The equation φ = 0 describes the nonnegative z-axis. Therefore, if φ = 0, P lies on the z-axis as stated in
(a). Statement (b) is false, since the point (0, 0, 1) satisfies φ = 0, but it does not lie in the (x, y)-plane.

4. The level surface φ = φ0 in spherical coordinates, usually a cone, reduces to a half-line for two values of φ0. Which
two values?

solution For φ0 = 0, the level surface φ = 0 is the upper part of the z-axis. For φ0 = π , the level surface φ = π is
the lower part of the z-axis. These are the two values of φ0 where the level surface φ = φ0 reduces to a half-line.

5. For which value of φ0 is φ = φ0 a plane? Which plane?

solution For φ0 = π
2 , the level surface φ = π

2 is the xy-plane.
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z

y

P

P

x

π
2

π
2

Exercises
In Exercises 1–4, convert from cylindrical to rectangular coordinates.

1. (4, π, 4)

solution By the given data r = 4, θ = π and z = 4. Hence,

x = r cos θ = 4 cos π = 4 · (−1) = −4

y = r sin θ = 4 sin π = 4 · 0

z = 4

⇒ (x, y, z) = (−4, 0, 4)

2.
(

2,
π

3
, −8

)
solution We are given that (r, θ, z) = (2, π

3 , −8
)
. Hence,

x = r cos θ = 2 cos
π

3
= 2 · 1

2
= 1

y = r sin θ = 2 sin
π

3
= 2

√
3

2
= √

3

z = −8

⇒ (x, y, z) =
(

1,
√

3, −8
)

3.
(

0,
π

5
,

1

2

)
solution We have r = 0, θ = π

5 , z = 1
2 . Thus,

x = r cos θ = 0 · cos
π

5
= 0

y = r sin θ = 0 · sin
π

5
= 0

z = 1

2

⇒ (x, y, z) =
(

0, 0,
1

2

)

4.
(

1,
π

2
, −2

)
solution Conversion to rectangular coordinates gives

x = r cos θ = 1 · cos
π

2
= 1 · 0 = 0

y = r sin θ = 1 · sin
π

2
= 1 · 1 = 1

z = −2

⇒ (x, y, z) = (0, 1, −2)

In Exercises 5–10, convert from rectangular to cylindrical coordinates.

5. (1, −1, 1)

solution We are given that x = 1, y = −1, z = 1. We find r:

r =
√

x2 + y2 =
√

12 + (−1)2 = √
2

Next we find θ . The point (x, y) = (1, −1) lies in the fourth quadrant, hence,

tan θ = y

x
= −1

1
= −1,

3π

2
≤ θ ≤ 2π ⇒ θ = 7π

4
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We conclude that the cylindrical coordinates of the point are

(r, θ, z) =
(√

2,
7π

4
, 1

)
.

6. (2, 2, 1)

solution We are given that (x, y, z) = (2, 2, 1). We first find r:

r =
√

x2 + y2 =
√

22 + 22 = √
8 = 2

√
2

Next we find θ . The point (x, y) = (2, 2) lies in the first quadrant hence 0 ≤ θ ≤ π
2 . Therefore,

tan θ = y

x
= 2

2
= 1, 0 ≤ θ ≤ π

2
⇒ θ = π

4

The cylindrical coordinates of the point are

(r, θ, z) =
(

2
√

2,
π

4
, 1
)

.

7. (1,
√

3, 7)

solution We have x = 1, y = √
3, z = 7. We first find r:

r =
√

x2 + y2 =
√

12 +
(√

3
)2 = 2

Since the point (x, y) =
(

1,
√

3
)

lies in the first quadrant, 0 ≤ θ ≤ π
2 . Hence,

tan θ = y

x
=

√
3

1
= √

3, 0 ≤ θ ≤ π

2
⇒ θ = π

3

The cylindrical coordinates are thus

(r, θ, z) =
(

2,
π

3
, 7
)

.

8.

(
3

2
,

3
√

3

2
, 9

)

solution We are given that (x, y, z) =
(

3
2 , 3

√
3

2 , 9
)

. Hence,

r =
√

x2 + y2 =
√√√√(3

2

)2
+
(

3
√

3

2

)2

=
√

9

4
+ 27

4
=
√

36

4
= 3

Since the point (x, y) =
(

3
2 , 3

√
3

2

)
is in the first quadrant, 0 ≤ θ ≤ π

2 . Therefore,

tan θ = y

x
= 3

√
3/2

3/2
= √

3, 0 ≤ θ ≤ π

2
⇒ θ = π

3

The cylindrical coordinates are thus

(r, θ, z) =
(

3,
π

3
, 9
)

.

9.
(

5√
2
,

5√
2
, 2

)
solution We have x = 5√

2
, y = 5√

2
, z = 2. We find r:

r =
√

x2 + y2 =
√(

5√
2

)2
+
(

5√
2

)2
= √

25 = 5

Since the point (x, y) =
(

5√
2
, 5√

2

)
is in the first quadrant, 0 ≤ θ ≤ π

2 , therefore,

tan θ = y

x
= 5/

√
2

5/
√

2
= 1, 0 ≤ θ ≤ π

2
⇒ θ = π

4

The corresponding cylindrical coordinates are

(r, θ, z) =
(

5,
π

4
, 2
)

.
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10. (3, 3
√

3, 2)

solution We have x = 3, y = 3
√

3, and z = 2, hence,

r =
√

x2 + y2 =
√

32 +
(

3
√

3
)2 = √

36 = 6

The point (x, y) = (3, 3
√

3
)

is in the first quadrant hence 0 ≤ θ ≤ π
2 . Therefore,

tan θ = y

x
= 3

√
3

3
= √

3, 0 ≤ θ ≤ π

2
⇒ θ = π

3

The cylindrical coordinates of the given point are

(r, θ, z) =
(

6,
π

3
, 2
)

.

In Exercises 11–16, describe the set in cylindrical coordinates.

11. x2 + y2 ≤ 1

solution The inequality describes a solid cylinder of radius 1 centered on the z-axis. Since x2 + y2 = r2, this

inequality can be written as r2 ≤ 1.

12. x2 + y2 + z2 ≤ 1

solution Since x2 + y2 = r2, this inequality can be written as

r2 + z2 ≤ 1 or r2 ≤ 1 − z2

13. y2 + z2 ≤ 4, x = 0

solution The projection of the points in this set onto the xy-plane are points on the y axis, thus θ = π
2 or θ = 3π

2 .

Therefore, y = r sin π
2 = r · 1 = r or y = r sin

(
3π
2

)
= −r . In both cases, y2 = r2, thus the inequality y2 + z2 ≤ 4

becomes r2 + z2 ≤ 4. In cylindrical coordinates, we obtain the following inequality

r2 + z2 ≤ 4, θ = π

2
or θ = 3π

2

14. x2 + y2 + z2 = 4, x ≥ 0, y ≥ 0, z ≥ 0

solution We express z in terms of x and y. Since z ≥ 0 we get

x2 + y2 + z2 = 4 ⇒ z2 = 4 − (x2 + y2) ⇒ z =
√

4 − (x2 + y2) (1)

The cylindrical coordinates are (r, θ, z) where x2 + y2 = r2. Substituting into (1) gives

z =
√

4 − r2 (2)

2
2

2

z

y

x

We find the interval for θ . The given set is the part of the sphere x2 + y2 + z2 = 4 in the first octant.

Hence, the angle θ is changing between 0 and
π

2
. (3)

We combine (2) and (3) to obtain the following representation:

z =
√

4 − r2, 0 ≤ θ ≤ π

2
.

15. x2 + y2 ≤ 9, x ≥ y

solution The equation x2 + y2 ≤ 9 in cylindrical coordinates becomes r2 ≤ 9, which becomes r ≤ 3. However, we
also have the restriction that x ≥ y. This means that the projection of our set onto the xy plane is below and to the right
of the line y = x. In other words, our θ is restricted to −3π/4 ≤ θ ≤ π/4. In conclusion, the answer is:

r ≤ 3, −3π/4 ≤ θ ≤ π/4
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16. y2 + z2 ≤ 9, x ≥ y

solution The region x ≥ y in the xy-plane is determined by the inequalities 5π
4 ≤ θ ≤ 2π , 0 ≤ θ ≤ π

4 (and the

origin). Since y = r sin θ , the region y2 + z2 ≤ 9 can be written as

r2 sin2 θ + z2 ≤ 9

π
4

5π
4

−3

−3

3

3

z

y

x

We obtain the following description in cylindrical coordinates:

r2 sin2 θ + z2 ≤ 9, 0 ≤ θ ≤ π

4
or

5π

4
≤ θ ≤ 2π.

In Exercises 17–24, sketch the set (described in cylindrical coordinates).

17. r = 4

solution The surface r = 4 consists of all points located at a distance 4 from the z-axis. It is a cylinder of radius 4
whose axis is the z-axis. The cylinder is shown in the following figure:

−4

−4

4
4

z

y

x

18. θ = π

3

solution The equation θ = π
3 defines the half plane of all points that project onto the ray θ = π

3 in the xy-plane. This
half plane is shown in the following figure:

z

y

x

−4

−4

−4

4

0

4

4

19. z = −2

solution z = −2 is the horizontal plane at height −2, shown in the following figure:

−2

z

y

x
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20. r = 2, z = 3

solution This is a circle of radius 2, parallel to the xy-plane but on the plane z = 3, as seen in the following figure:

x

y

z

1

2

3

21. 1 ≤ r ≤ 3, 0 ≤ z ≤ 4

solution The region 1 ≤ r ≤ 3, 0 ≤ z ≤ 4 is shown in the following figure:

z

y

x

−4

44

22. 1 ≤ r ≤ 3, 0 ≤ θ ≤ π

2
, 0 ≤ z ≤ 4

solution The inequality 1 ≤ r ≤ 3 implies that the projection of the region on the xy-plane is contained in a ring

1 ≤
√

x2 + y2 ≤ 3. The inequality 0 ≤ θ ≤ π
2 restricts the ring to the first quadrant and 0 ≤ z ≤ 4 determines the

height. We obtain the following region:

z

y

x

−4

−4

−−4

44

4

23. z2 + r2 ≤ 4

solution The region z2 + r2 ≤ 4 is shown in the following figure:

2

2

2

−2

−2

−2

z

y

x

In rectangular coordinates the inequality is z2 +
(
x2 + y2

)
≤ 4, or x2 + y2 + z2 ≤ 4, which is a ball of radius 2.
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24. r ≤ 3, π ≤ θ ≤ 3π

2
, z = 4

solution The region r ≤ 3, π ≤ θ ≤ 3π
2 , z = 4 is shown in the following figure:

−3

z

y

x

4

−3

In Exercises 25–30, find an equation of the form r = f (θ, z) in cylindrical coordinates for the following surfaces.

25. z = x + y

solution We substitute x = r cos θ , y = r sin θ to obtain the following equation in cylindrical coordinates:

z = r cos θ + r sin θ

z = r(cos θ + sin θ)
⇒ r = z

cos θ + sin θ
.

26. x2 + y2 + z2 = 4

solution Since x2 + y2 = r2, we get

r2 + z2 = 4

r2 = 4 − z2 ⇒ r =
√

4 − z2

.

27.
x2

yz
= 1

solution We rewrite the equation in the form

x
y
x z

= 1

Substituting x = r cos θ and y
x = tan θ we get

r cos θ

(tan θ) z
= 1

r = z tan θ

cos θ

28. x2 − y2 = 4

solution We substitute x = r cos θ , y = r sin θ and use the trigonometric identity cos2 θ − sin2 θ = cos 2θ . This
gives

r2 cos2 θ − r2 sin2 θ = 4

r2
(

cos2 θ − sin2 θ
)

= 4

r2 cos 2θ = 4 ⇒ r = 2√
cos 2θ

29. x2 + y2 = 4

solution Since x2 + y2 = r2, the equation in cylindrical coordinates is, r2 = 4 or r = 2.

30. z = 3xy

solution We substitute x = r cos θ , y = r sin θ and use the trigonometric identity sin θ cos θ = 1
2 sin 2θ . This gives

z = 3 (r cos θ) (r sin θ) = 3r2 cos θ sin θ = 3

2
r2 sin 2θ

Thus,

r2 = 2z

3 sin 2θ
⇒ r =

√
2z

3 sin 2θ
.
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In Exercises 31–36, convert from spherical to rectangular coordinates.

31.
(

3, 0,
π

2

)
solution We are given that ρ = 3, θ = 0, φ = π

2 . Using the relations between spherical and rectangular coordinates
we have

x = ρ sin φ cos θ = 3 sin
π

2
cos 0 = 3 · 1 · 1 = 3

y = ρ sin φ sin θ = 3 sin
π

2
sin 0 = 3 · 1 · 0 = 0

z = ρ cos φ = 3 cos
π

2
= 3 · 0 = 0

⇒ (x, y, z) = (3, 0, 0)

32.
(

2,
π

4
,
π

3

)
solution We are given that ρ = 2, θ = π

4 , φ = π
3 . The relations between the spherical and the rectangular coordinates

imply

x = ρ sin φ cos θ = 2 sin
π

3
cos

π

4
= 2 ·

√
3

2
·
√

2

2
=

√
6

2

y = ρ sin φ sin θ = 2 sin
π

3
sin

π

4
= 2 ·

√
3

2
·
√

2

2
=

√
6

2

z = ρ cos φ = 2 cos
π

3
= 2 · 1

2
= 1

⇒ (x, y, z) =
(√

6

2
,

√
6

2
, 1

)

33. (3, π, 0)

solution We have ρ = 3, θ = π , φ = 0. Hence,

x = ρ sin φ cos θ = 3 sin 0 cos π = 0

y = ρ sin φ sin θ = 3 sin 0 sin π = 0

z = ρ cos φ = 3 cos 0 = 3

⇒ (x, y, z) = (0, 0, 3)

34.
(

5,
3π

4
,
π

4

)

solution We have ρ = 5, θ = 3π
4 , φ = π

4 . Using the relations between spherical and rectangular coordinates we
have

x = ρ sin φ cos θ = 5 sin
π

4
cos

3π

4
= 5 ·

√
2

2
·
(

−
√

2

2

)
= −2.5

y = ρ sin φ sin θ = 5 sin
π

4
sin

3π

4
= 5 ·

√
2

2
·
√

2

2
= 2.5

z = ρ cos φ = 5 cos
π

4
= 5 ·

√
2

2
= 2.5

√
2

⇒ (x, y, z) =
(
−2.5, 2.5, 2.5

√
2
)

35.
(

6,
π

6
,

5π

6

)

solution Since ρ = 6, θ = π
6 , and φ = 5π

6 we get

x = ρ sin φ cos θ = 6 sin
5π

6
cos

π

6
= 6 · 1

2
·
√

3

2
= 3

√
3

2

y = ρ sin φ sin θ = 6 sin
5π

6
sin

π

6
= 6 · 1

2
· 1

2
= 3

2

z = ρ cos φ = 6 cos
5π

6
= 6 ·

(
−

√
3

2

)
= −3

√
3

⇒ (x, y, z) =
(

3
√

3

2
,

3

2
, −3

√
3

)
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36. (0.5, 3.7, 2)

solution Using the relations between the spherical and the rectangular coordinates with ρ = 0.5, θ = 3.7, and φ = 2,
we obtain

x = ρ sin φ cos θ = 0.5 sin 2 cos 3.7 = −0.386

y = ρ sin φ sin θ = 0.5 sin 2 sin 3.7 = −0.241

z = ρ cos φ = 0.5 cos 2 = −0.208

⇒ (x, y, z) = (−0.386, −0.241, −0.208)

In Exercises 37–42, convert from rectangular to spherical coordinates.

37. (
√

3, 0, 1)

solution By the given data x = √
3, y = 0, and z = 1. We find the radial coordinate:

ρ =
√

x2 + y2 + z2 =
√(√

3
)2 + 02 + 12 = 2

The angular coordinate θ satisfies

tan θ = y

x
= 0√

3
= 0 ⇒ θ = 0 or θ = π

Since the point (x, y) =
(√

3, 0
)

lies in the first quadrant, the correct choice is θ = 0. The angle of declination φ satisfies

cos φ = z

ρ
= 1

2
, 0 ≤ φ ≤ π ⇒ φ = π

3

The spherical coordinates of the given points are thus

(ρ, θ, φ) =
(

2, 0,
π

3

)

38.

(√
3

2
,

3

2
, 1

)

solution We have x =
√

3
2 , y = 3

2 , and z = 1. The radial coordinate is

ρ =
√

x2 + y
2 + z2 =

√√√√(√
3

2

)2

+
(

3

2

)2
+ 12 = 2

The angular coordinate θ satisfies

tan θ = y

x
= 3/2√

3/2
= √

3 ⇒ θ = π

3
or θ = 4π

3

Since the point (x, y) =
(√

3
2 , 3

2

)
is in the first quadrant, the correct choice is θ = π

3 . The angle of declination φ satisfies

cos φ = z

ρ
= 1

2
, 0 ≤ φ ≤ π ⇒ φ = π

3

The spherical coordinates are thus

(ρ, θ, φ) =
(

2,
π

3
,
π

3

)
39. (1, 1, 1)

solution We have x = y = z = 1. The radial coordinate is

ρ =
√

x2 + y2 + z2 =
√

12 + 12 + 12 = √
3

The angular coordinate θ is determined by tan θ = y
x = 1

1 = 1 and by the quadrant of the point (x, y) = (1, 1), that is,
θ = π

4 . The angle of declination φ satisfies

cos φ = z

ρ
= 1√

3
, 0 ≤ φ ≤ π ⇒ φ = 0.955

The spherical coordinates are thus (√
3,

π

4
, 0.955

)
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40. (1, −1, 1)

solution We have x = 1, y = −1, and z = 1. The radial coordinate is

ρ =
√

12 + (−1)2 + 12 = √
3

The angular coordinate θ satisfies

tan θ = y

x
= −1

1
= −1 ⇒ θ = 3π

4
or θ = 7π

4

Since (x, y) = (1, −1) is in the fourth quadrant, the angle is θ = 7π
4 . The angle of declination satisfies

cos φ = z

ρ
= 1√

3
, 0 ≤ φ ≤ π ⇒ φ = 0.955

We conclude that

(ρ, θ, φ) =
(√

3,
7π

4
, 0.955

)
.

41.

(
1

2
,

√
3

2
,
√

3

)

solution We have x = 1
2 , y =

√
3

2 , and z = √
3. Thus

ρ =
√

x2 + y2 + z2 =
√√√√(1

2

)2
+
(√

3

2

)2

+
(√

3
)2 = 2

The angular coordinate θ satisfies 0 ≤ θ ≤ π
2 , since the point (x, y) =

(
1
2 ,

√
3

2

)
is in the first quadrant. Also tan θ =

y
x =

√
3/2

1/2 = √
3, hence the angle is θ = π

3 . The angle of declination φ satisfies

cos φ = z

ρ
=

√
3

2
, 0 ≤ φ ≤ π ⇒ φ = π

6

We conclude that

(ρ, θ, φ) =
(

2,
π

3
,
π

6

)

42.

(√
2

2
,

√
2

2
,
√

3

)

solution We are given that x = y =
√

2
2 and z = √

3. Hence,

ρ =
√

x2 + y2 + z2 =
√√√√(√

2

2

)2

+
(√

2

2

)2

+
(√

3
)2 = 2

The angle θ satisfies 0 ≤ θ ≤ π
2 since (x, y) =

(√
2

2 ,

√
2

2

)
is in the first quadrant. Also tan θ = y

x = 1, hence θ = π
4 .

The angle of declination satisfies

cos φ = z

ρ
=

√
3

2
, 0 ≤ φ ≤ π ⇒ φ = π

6

We conclude that

(ρ, θ, φ) =
(

2,
π

4
,
π

6

)
.

In Exercises 43 and 44, convert from cylindrical to spherical coordinates.

43. (2, 0, 2)

solution We are given that r = 2, θ = 0, z = 2. Using the conversion formulas, we have

ρ =
√

x2 + y2 + z2 =
√

r2 + z2 =
√

22 + 22 = 2
√

2

θ = θ = 0

φ = cos−1(z/ρ) = cos−1(2/(2
√

2)) = π/4
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44. (3, π,
√

3)

solution We are given that r = 3, θ = π, z = √
3. Using the conversion formulas, we have

ρ =
√

x2 + y2 + z2 =
√

r2 + z2 =
√

32 + 3 = 2
√

3

θ = θ = π

φ = cos−1(z/ρ) = cos−1(
√

3/(2
√

3)) = π/3

In Exercises 45 and 46, convert from spherical to cylindrical coordinates.

45.
(
4, 0, π

4

)
solution We are given that ρ = 4, θ = 0, and φ = π/4. To find r , we use the formulas x = r cos θ and x =
ρ cos θ sin φ to get r cos θ = ρ cos θ sin φ, and so

r = ρ sin φ = 4 sin π/4 = 2
√

2

Clearly θ = 0, and as for z,

z = ρ cos φ = 4 cos π/4 = 2
√

2

So, in cylindrical coordinates, our point is (2
√

2, 0, 2
√

2)

46.
(
2, π

3 , π
6

)
solution We are given that ρ = 2, θ = π/3, and φ = π/6. To find r , we use the formulas x = r cos θ and
x = ρ cos θ sin φ to get r cos θ = ρ cos θ sin φ, and so

r = ρ sin φ = 2 sin π/6 = 1

Clearly θ = π/3, and as for z,

z = ρ cos φ = 2 cos π/6 = √
3

So, in cylindrical coordinates, our point is (1, π/3,
√

3)

In Exercises 47–52, describe the given set in spherical coordinates.

47. x2 + y2 + z2 ≤ 1

solution Substituting ρ2 = x2 + y2 + z2 we obtain ρ2 ≤ 1 or 0 ≤ ρ ≤ 1.

48. x2 + y2 + z2 = 1, z ≥ 0

solution Since ρ2 = x2 + y2 + z2 the equation becomes ρ2 = 1 or ρ = 1. The inequality z ≥ 0 implies that
cos φ = z

ρ ≥ 0. Also 0 ≤ φ ≤ π by definition, hence 0 ≤ φ ≤ π
2 . The spherical description of the set is thus

ρ = 1, 0 ≤ φ ≤ π

2
.

49. x2 + y2 + z2 = 1, x ≥ 0, y ≥ 0, z ≥ 0

solution By ρ2 = x2 + y2 + z2, we get ρ2 = 1 or ρ = 1. The inequalities x ≥ 0, y ≥ 0 determine the first quadrant,
which is also determined by 0 ≤ θ ≤ π

2 . Finally, z ≥ 0 gives cos φ = z
ρ ≥ 0. Also 0 ≤ φ ≤ π , hence 0 ≤ φ ≤ π

2 . We
obtain the following description:

ρ = 1, 0 ≤ θ ≤ π

2
, 0 ≤ φ ≤ π

2

50. x2 + y2 + z2 ≤ 1, x = y, x ≥ 0, y ≥ 0

solution Substituting x2 + y2 + z2 = ρ2 yields ρ2 ≤ 1 or 0 ≤ ρ ≤ 1. The inequalities x ≥ 0, y ≥ 0 determine the
first quadrant which is also determined by

0 ≤ θ ≤ π

2
(1)

The line y = x is determined by θ = π
4 or θ = 5π

4 (and the origin). Combining with (1) we get θ = π
4 . We conclude

that the description of the given set in spherical coordinates is{
(ρ, θ, φ) : 0 ≤ ρ ≤ 1, θ = π

4

}

51. y2 + z2 ≤ 4, x = 0

solution We substitute y = ρ sin θ sin φ and z = ρ cos φ in the given inequality. This gives

4 ≥ ρ2 sin2 θ sin2 φ + ρ2 cos2 φ (1)
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The equality x = 0 determines that θ = π
2 or θ = 3π

2 (and the origin). In both cases, sin2 θ = 1. Hence by (1) we get

ρ2 sin2 φ + ρ2 cos2 φ ≤ 4

ρ2(1) ≤ 4

ρ ≤ 2

We obtain the following description: {
(ρ, θ, φ) : 0 ≤ ρ ≤ 2, θ = π

2
or θ = 3π

2

}

52. x2 + y2 = 3z2

solution We substitute the spherical coordinates x = ρ sin φ cos θ , y = ρ sin φ sin θ , z = ρ cos φ in the given
equation, and simplify. This gives

ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ = 3ρ2 cos2 φ

ρ2 sin2 φ
(

cos2 θ + sin2 θ
)

= 3ρ2 cos2 φ

ρ2 sin2 φ · 1 = 3ρ2 cos2 φ

One solution is ρ = 0 (the origin). For ρ �= 0 we divide both sides by ρ to obtain

sin2 φ = 3 cos2 φ. (1)

When cos φ = 0, sin φ �= 0. Hence the points where cos φ = 0 are not solutions. We, thus, can divide the two sides by
cos2 φ to obtain

sin2 φ

cos2 φ
= 3 ⇒ tan φ = √

3 or tan φ = −√
3.

The solutions for 0 ≤ φ ≤ π are

φ = π

3
and φ = 2π

3
. (2)

By (1) and (2) we obtain the following representation in spherical coordinates:

φ = π

3
or φ = 2π

3
. (3)

Notice that by (3) we see that the set is the surface obtained while rotating a line that makes an angle of π
3 with the positive

z-axis, about the z-axis. In other words, a double cone.

π
3

π
3

2π
32π

3 y

x

z

In Exercises 53–60, sketch the set of points (described in spherical coordinates).

53. ρ = 4

solution ρ = 4 describes the sphere of radius 4. This is shown in the following figure:

z

y

x
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54. φ = π

4
solution The level surface φ = π

4 is the right-circular cone consisting of points P such that OP makes an angle π
4

with the z-axis, as shown in the following figure:

z

y

x

−3

−3

3
0

3

3

55. ρ = 2, θ = π

4
solution The equation ρ = 2 is a sphere of radius 2, and the equation θ = π

4 is the vertical plane y = x. These two
surfaces intersect in a (vertical) circle of radius 2, as seen here.

x

y

z

56. ρ = 2, φ = π

4
solution The equation ρ = 2 is a sphere of radius 2, and the equation φ = π

4 is a right circular cone. These two

surfaces intersect in a (horizontal) circle of height
√

2 and radius
√

2, as seen here.

2

x

y

z

2

φ = π

4

57. ρ = 2, 0 ≤ φ ≤ π

2
solution The set

ρ = 2, 0 ≤ φ ≤ π

2

is shown in the following figure:

2

2
2

−2

−2

z

y

x

It is the upper half of the sphere with radius 2.
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58. θ = π

2
, φ = π

4
, ρ ≥ 1

solution The set

θ = π

2
, φ = π

4
, ρ ≥ 1

is the line z = y in the first quadrant of the yz-plane that is outside the circle y2 + z2 = 1. This set is shown in the
following figure:

z

x

y

1
1

59. ρ ≤ 2, 0 ≤ θ ≤ π

2
,

π

2
≤ φ ≤ π

solution This set is the part of the ball of radius 2 which is below the first quadrant of the xy-plane, as shown in the
following figure:

2
2

−2

z

y

x

60. ρ = 1,
π

3
≤ φ ≤ 2π

3

solution This set is the part of the unit sphere consisting of all the points P such that OP makes an angle π
3 ≤ φ ≤ 2π

3
with the z-axis. This set is shown in the following figure:

yx

z

In Exercises 61–66, find an equation of the form ρ = f (θ, φ) in spherical coordinates for the following surfaces.

61. z = 2

solution Since z = ρ cos φ, we have ρ cos φ = 2, or ρ = 2
cos φ .

62. z2 = 3(x2 + y2)

solution We use the formulas for x, y and z in terms of ρ, θ and φ. This gives

ρ2 cos2 φ = 3
(
ρ2 cos2 θ sin2 φ + ρ2 sin2 θ sin2 φ

) = 3ρ2 sin2 φ
(
cos2 θ+ sin2θ

) = 3ρ2 sin2 φ

That is,

ρ2 cos2 φ = 3ρ2 sin2 φ

which gives either ρ = 0, or gives the following:

cos2 φ = 3 sin2 φ

tan2 φ = 1

3
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tan φ = ± 1√
3

φ = π

6
or

5π

6

Thus, the equation is {ρ = 0 or φ = π/6 or φ = 5π/6}.
63. x = z2

solution Substituting x = ρ cos θ sin φ and z = ρ cos φ we obtain

ρ cos θ sin φ = ρ2 cos2 φ

cos θ sin φ = ρ cos2 φ

ρ = cos θ sin φ

cos2 φ
= cos θ tan φ

cos φ

64. z = x2 + y2

solution Using the formulas for x, y and z in terms of ρ, θ and φ gives

ρ cos φ = ρ2 cos2 θ sin2 φ + ρ2 sin2 θ sin2 φ = ρ2 sin2 φ
(
cos2 θ + sin2 θ

) = ρ2 sin2 φ

That is,

ρ cos φ = ρ2 sin2 φ

cos φ = ρ sin2 φ

ρ = cos φ

sin2 φ
= cot φ

sin φ

65. x2 − y2 = 4

solution We substitute x = ρ cos θ sin φ and y = ρ sin θ sin φ to obtain

4 = ρ2 cos2 θ sin2 φ − ρ2 sin2 θ sin2 φ = ρ2 sin2 φ
(
cos2 θ − sin2 θ

)
Using the identity cos2 θ − sin2 θ = cos 2θ we get

4 = ρ2 sin2 φ cos 2θ

ρ2 = 4

sin2 φ cos 2θ

We take the square root of both sides. Since 0 < φ < π we have sin φ > 0, hence,

ρ = 2

sin φ
√

cos 2θ

66. xy = z

solution We substitute the formulas for x, y, and z in terms of ρ, θ , and φ. This gives

(
ρ cos θ sin φ

)(
ρ sin θ sin φ

) = ρ cos φ

Simplifying and using the identity sin α cos α = 1
2 sin 2α yields

ρ cos φ = ρ2(cos θ sin θ
)(

sin2 φ
) = 1

2
ρ2 sin 2θ sin2 φ

Thus

2 cos φ = ρ sin 2θ sin2 φ

ρ = 2 cos φ

sin 2θ sin2 φ
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67. Which of (a)–(c) is the equation of the cylinder of radius R in spherical coordinates? Refer to Figure 15.

(a) Rρ = sin φ (b) ρ sin φ = R (c) ρ = R sin φ

R

r
f

q

z

y

x

FIGURE 15

solution The equation of the cylinder of radius R in rectangular coordinates is x2 + y2 = R2 (z is unlimited).
Substituting the formulas for x and y in terms of ρ, θ and φ yields

R2 = ρ2 cos2 θ sin2 φ + ρ2 sin2 θ sin2 φ = ρ2 sin2 φ
(
cos2 θ + sin2 θ

) = ρ2 sin2 φ

Hence,

R2 = ρ2 sin2 φ

We take the square root of both sides. Since 0 ≤ φ ≤ π , we have sin φ ≥ 0, therefore,

R = ρ sin φ

Equation (b) is the correct answer.

68. Let P1 = (1, −√
3, 5) and P2 = (−1,

√
3, 5) in rectangular coordinates. In which quadrants do the projections of

P1 and P2 onto the xy-plane lie? Find the polar angle θ of each point.

solution The projections of P1 = (
1, −√

3, 5
)

and P2 = (−1,
√

3, 5
)

on the xy-plane are the points (x, y) =(
1, −√

3
)

and (x, y) = (−1,
√

3
)

respectively. These points lie in the fourth and the second quadrant respectively. We

find the polar angle θ of P1. In the fourth quadrant, 3π
2 ≤ θ ≤ 2π . Also tan θ = y

x = −√
3. Hence θ = 5π

3 . To find
the polar angle θ of P2, we notice that in the second quadrant (where the projection of P2 on the xy-plane lies) we have
π
2 ≤ θ ≤ π . Also tan θ = y

x =
√

3
−1 = −√

3, hence θ = 2π
3 .

69. Find the spherical angles (θ, φ) for Helsinki, Finland (60.1◦ N, 25.0◦ E) and Sao Paulo, Brazil (23.52◦ S, 46.52◦ W).

solution For Helsinki, θ is 25◦ and φ is 90 − 60.1 = 29.9◦.
For Sao Paulo, θ is 360 − 46.52 = 313.48◦ and φ is 90 + 23.52 = 113.52◦.

70. Find the longitude and latitude for the points on the globe with angular coordinates (θ, φ) = (π/8, 7π/12) and (4, 2).

solution For (θ, φ) = (π/8, 7π/12) = (22.5◦, 105◦), we have latitude 105◦ − 90◦ = 15◦ south and longitude 22.5◦
east.

For (θ, φ) = (4, 2) = (229.18◦, 114.59◦), we have latitude 114.59◦ − 90◦ = 24.59◦ south and longitude 360◦ −
229.18◦ = 130.82◦ west.

71. Consider a rectangular coordinate system with origin at the center of the earth, z-axis through the North Pole, and
x-axis through the prime meridian. Find the rectangular coordinates of Sydney, Australia (34◦ S, 151◦ E), and Bogotá,
Colombia (4◦ 32′ N, 74◦ 15′ W). A minute is 1/60◦. Assume that the earth is a sphere of radius R = 6370 km.

solution We first find the angle (θ, φ) for the two towns. For Sydney θ = 151◦, since its longitude lies to the east of
Greenwich, that is, in the positive θ direction. Sydney’s latitude is south of the equator, hence φ = 90 + 34 = 124◦.

For Bogota, we have θ = 360◦ − 74◦15′ = 285◦45′, since 74◦15′W refers to 74◦15′ in the negative θ direction. The
latitude is north of the equator hence φ = 90◦ − 4◦32′ = 85◦28′.

We now use the formulas of x,y and z in terms of ρ, θ , φ to find the rectangular coordinates of the two towns. (Notice
that 285◦45′ = 285.75◦ and 85◦28′ = 85.47◦).
Sydney:

x = ρ cos θ sin φ = 6370 cos 151◦ sin 124◦ = −4618.8

y = ρ sin θ sin φ = 6370 sin 151◦ sin 124◦ = 2560

z = ρ cos φ = 6370 cos 124◦ = −3562.1
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Bogota:

x = ρ cos θ sin φ = 6370 cos 285.75◦ sin 85.47◦ = 1723.7

y = ρ sin θ sin φ = 6370 sin 285.75◦ sin 85.47◦ = −6111.7

z = ρ cos φ = 6370 cos 85.47◦ = 503.1

72. Find the equation in rectangular coordinates of the quadric surface consisting of the two cones φ = π
4 and φ = 3π

4 .

solution By z
ρ = cos φ, we have

z2 = ρ2 cos2 φ (1)

Since φ = π
4 or φ = 3π

4 , we have cos φ = 1√
2

or cos φ = − 1√
2

, therefore, cos2 φ = 1
2 . Substituting in (1) gives

z2 = ρ2

2
(2)

Since ρ2 = x2 + y2 + z2, we get z2 = 1
2 (x2 + y2 + z2), which becomes 1

2 (z2) = 1
2 (x2 + y2), which becomes

z2 = x2 + y2

Notice that φ = π
4 and φ = 3π

4 imply that z can have both positive and negative values.

73. Find an equation of the form z = f (r, θ) in cylindrical coordinates for z2 = x2 − y2.

solution In cylindrical coordinates, x = r cos θ and y = r sin θ . Hence,

z2 = x2 − y2 = r2 cos2 θ − r2 sin2 θ

We use the identity cos2 θ − sin2 θ = cos 2θ to obtain

z2 = r2 cos 2θ ⇒ z = ±r
√

cos 2θ

74. Show that ρ = 2 cos φ is the equation of a sphere with its center on the z-axis. Find its radius and center.

solution Multiplying the equation by ρ we get

ρ2 = 2ρ cos φ

We now substitute ρ2 = x2 + y2 + z2 and ρ cos φ = z to obtain

x2 + y2 + z2 = 2z

Transferring sides and completing the square gives

x2 + y2 + z2 − 2z = 0

x2 + y2 + (z − 1)2 = 1

This is the rectangular equation of the sphere of radius 1, centered at the point (0, 0, 1) on the z-axis.

75. Explain the following statement: If the equation of a surface in cylindrical or spherical coordinates does not
involve the coordinate θ , then the surface is rotationally symmetric with respect to the z-axis.

solution Since the equation of the surface does not involve the coordinate θ , then for every point P on the surface
(P = (ρ0, θ0, φ0) in spherical coordinates or P = (r0, θ0, z0) in cylindrical coordinates) so also all the points (ρ0, θ, φ0)

or (r0, θ, z0) are on the surface. That is, all the points obtained by rotating P around the z-axis are on the surface. Hence,
the surface is rotationally symmetric with respect to the z-axis.

76. Plot the surface ρ = 1 − cos φ. Then plot the trace of S in the xz-plane and explain why S is obtained by
rotating this trace.

solution The surface ρ = 1 − cos φ and its trace in the xz-plane are shown in the following figures:

z

y

x
−2

−1

1

z

y

x

The trace of S in the xz-plane The surface S : ρ = 1 − cos φ
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Since the equation of the surface does not involve the coordinate θ , we conclude by Exercise 67 that the surface is
rotationally symmetric with respect to the z-axis. Therefore, the points on the surface are obtained by rotating its trace in
the xz-plane (or its trace in any other vertical plane) about the z-axis.

77. Find equations r = g(θ, z) (cylindrical) and ρ = f (θ, φ) (spherical) for the hyperboloid x2 + y2 = z2 + 1
(Figure 16). Do there exist points on the hyperboloid with φ = 0 or π? Which values of φ occur for points on the
hyperboloid?

y

z

x

FIGURE 16 The hyperboloid x2 + y2 = z2 + 1.

solution For the cylindrical coordinates (r, θ, z) we have x2 + y2 = r2. Substituting into the equation x2 + y2 =
z2 + 1 gives

r2 = z2 + 1 ⇒ r =
√

z2 + 1

For the spherical coordinates (ρ, θ, φ) we have x = ρ sin φ cos θ , y = ρ sin φ sin θ and z = ρ cos φ. We substitute into
the equation of the hyperboloid x2 + y2 = z2 + 1 and simplify to obtain

ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ = ρ2 cos2 φ + 1

ρ2 sin2 φ
(
cos2 θ + sin2 θ

) = ρ2 cos2 φ + 1

ρ2(sin2 φ − cos2 φ
) = 1

Using the trigonometric identity cos 2φ = cos2 φ − sin2 φ we get

ρ2 · (− cos 2φ
) = 1 ⇒ ρ =

√
− 1

cos 2φ

For φ = 0 and φ = π we have cos 2 · 0 = 1 and cos 2π = 1. In both cases − 1
cos 2φ

= −1 < 0, hence there is no real

value of ρ satisfying ρ =
√

− 1
cos 2φ

. We conclude that there are no points on the hyperboloid with φ = 0 or π .

To obtain a real ρ such that ρ =
√

− 1
cos 2φ

, we must have − 1
cos 2φ

> 0. That is, cos 2φ < 0 (and of course 0 ≤ φ ≤ π ).

The corresponding values of φ are

π

2
< 2φ ≤ 3π

2
⇒ π

4
< φ ≤ 3π

4

Further Insights and Challenges
In Exercises 78–82, a great circle on a sphere S with center O is a circle obtained by intersecting S with a plane that
passes through O (Figure 17). If P and Q are not antipodal (on opposite sides), there is a unique great circle through P

and Q on S (intersect S with the plane through O, P , and Q). The geodesic distance from P to Q is defined as the length
of the smaller of the two circular arcs of this great circle.

Great circle
through P and Q

Smaller circle

FIGURE 17
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78. Show that the geodesic distance from P to Q is equal to Rψ , where ψ is the central angle between P and Q (the

angle between the vectors v = −→
OP and u = −−→

OQ).

solution We place the xy-coordinate system in the plane of the great circle determined by P and Q, so that O is the

origin and the positive x-axis is in the direction of
−→
OP .

The parametric equation of the circle with the angular coordinate θ as the parameter is x = R cos θ , y = R sin θ . Also,
P corresponds to θ = 0 and Q corresponds to θ = ψ . By the formula for the arc length we have

−→
PQ =

∫ ψ

0

√
x′(θ)2 + y′(θ)2dθ =

∫ ψ

0

√
(−R sin θ)2 + (R cos θ)2dθ

=
∫ ψ

0

√
R2
(

sin2 θ + cos2 θ
)
dθ = R

∫ ψ

0
1 · dθ = Rθ |ψ0 = Rψ

.

79. Show that the geodesic distance from Q = (a, b, c) to the North Pole P = (0, 0, R) is equal to R cos−1
( c

R

)
.

solution Let ψ be the central angle between P and Q, that is, the angle between the vectors v = −→
OP and u = −−→

OQ.
By Exercise 78 the geodesic distance from P to Q is Rψ . We find ψ . By the formula for the cosine of the angle between
two vectors, we have

cos ψ = u · v
‖u‖‖v‖ (1)

We compute the values in this quotient:

u · v = 〈0, 0, R〉 · 〈a, b, c〉 = 0 + 0 + Rc = Rc

‖v‖ = ‖−→
OP ‖= R

‖u‖ = ‖−−→OQ‖=
√

a2 + b2 + c2 = R

Substituting in (1) we get

cos ψ = Rc

R2
= c

R
⇒ ψ = cos−1

( c

R

)
The geodesic distance from Q to P is thus

Rψ = R cos−1
( c

R

)

80. The coordinates of Los Angeles are 34◦ N and 118◦ W. Find the geodesic distance from the North Pole to Los Angeles,
assuming that the earth is a sphere of radius R = 6370 km.

solution We denote by C the z-coordinate of the point Q on the surface of the earth where Los Angeles is located.
Then by the previous exercise, the geodesic distance from Q to the north pole is

R cos−1
(

C

R

)
(1)

To find C, we first must find the angles (θ, φ) for Los Angeles. The angle 118◦W refers to 118◦ in the negative θ direction,
hence θ = 360◦ − 118◦ = 242◦. The latitude is north hence φ = 90◦ − 34◦ = 56◦. The z coordinate of Q is thus

C = R cos φ = R cos 56◦ = 0.56R

Substituting in (1) we obtain the following geodesic distance (in this formula the angle is measured in radians):

R cos−1
(

C

R

)
= 6370 cos−1

(
0.56R

R

)
= 6370 cos−1(0.56) = 6225.9km

81. Show that the central angle ψ between points P and Q on a sphere (of any radius) with angular coordinates (θ, φ)

and (θ ′, φ′) is equal to

ψ = cos−1(sin φ sin φ′ cos(θ − θ ′) + cos φ cos φ′)
Hint: Compute the dot product of

−→
OP and

−−→
OQ. Check this formula by computing the geodesic distance between the

North and South Poles.
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solution We denote the vectors u = −→
OP and v = −−→

OQ. By the formula for the angle between two vectors we have

ψ = cos−1
(

u · v
‖u‖‖v‖

)

Denoting by R the radius of the sphere, we have ‖u‖ = ‖v‖ = R, hence,

ψ = cos−1
(

u · v

R2

)
(1)

The rectangular coordinates of u and v are

u v

x = R sin φ cos θ x′ = R sin φ′ cos θ ′
y = R sin φ sin θ y′ = R sin φ′ sin θ ′
z = R cos φ z′ = R cos φ′

Hence,

u · v = R2 sin φ cos θ sin φ′ cos θ ′ + R2 sin φ sin θ sin φ′ sin θ ′ + R2 cos φ cos φ′

= R2 [sin φ sin φ′ (cos θ cos θ ′ + sin θ sin θ ′)+ cos φ cos φ′]
We use the identity cos (α − β) = cos α cos β + sin α sin β to obtain

u · v = R2 (sin φ sin φ′ cos
(
θ − θ ′)+ cos φ cos φ′)

Substituting in (1) we obtain

ψ = cos−1 (sin φ sin φ′ cos
(
θ − θ ′)+ cos φ cos φ′) (2)

We now check this formula in the case where P and Q are the north and south poles respectively. In this case θ = θ ′ = 0,
φ = 0, φ′ = π . Substituting in (2) gives

ψ = cos−1 (sin 0 sin π cos 0 + cos 0 cos π) = cos−1(−1) = π

Using Exercise 78, the geodesic distance between the two poles is Rψ = Rπ , in accordance with the formula for the
length of a semicircle.

82. Use Exercise 81 to find the geodesic distance between Los Angeles (34◦ N, 118◦ W) and Bombay (19◦ N, 72.8◦ E).

solution By Exercise 80 the angles (θ, φ) for Los Angeles are (θ, φ) = (
242◦, 56◦). The angles (θ, φ) for Bombay

are

θ ′ = 72.8◦

φ′ = 90◦ − 19◦ = 71◦

By Exercise 81, the central angle ψ between the two towns is

ψ = cos−1 (sin φ sin φ′ cos
(
θ − θ ′)+ cos φ cos φ′)

Substituting the angles gives

ψ = cos−1 (sin 56◦ sin 71◦ cos
(
242◦ − 72.8◦)+ cos 56◦ cos 71◦)

= cos−1 (−0.77 + 0.18) = cos−1 (−0.59)

The solution for 0 ≤ ψ ≤ 180 is ψ = 126.2◦ = 2.2 rad. Using Exercise 78 with R = 6370 km we conclude that the
geodesic distance between the two towns is

Rψ = 6370 · 2.2 = 14,014 km.

CHAPTER REVIEW EXERCISES

In Exercises 1–6, let v = 〈−2, 5〉 and w = 〈3, −2〉.

1. Calculate 5w − 3v and 5v − 3w.

solution We use the definition of basic vector operations to compute the two linear combinations:

5w − 3v = 5〈3, −2〉 − 3〈−2, 5〉 = 〈15, −10〉 + 〈6, −15〉 = 〈21, −25〉
5v − 3w = 5〈−2, 5〉 − 3〈3, −2〉 = 〈−10, 25〉 + 〈−9, 6〉 = 〈−19, 31〉
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2. Sketch v, w, and 2v − 3w.

solution We have,

2v − 3w = 2〈−2, 5〉 − 3〈3, −2〉 = 〈−4, 10〉 + 〈−9, 6〉 = 〈−13, 16〉
The vectors v, w and 2v − 3w are shown in the figure below:

y

x

2v

v
−3w

2v − 3w

w

3. Find the unit vector in the direction of v.

solution The unit vector in the direction of v is

ev = 1

‖v‖v

We compute the length of v:

‖v‖ =
√

(−2)2 + 52 = √
29

Hence,

ev = v
‖v‖ = 〈−2, 5〉√

29
=
〈 −2√

29
,

5√
29

〉
.

4. Find the length of v + w.

solution We first compute the sum v + w:

v + w = 〈−2, 5〉 + 〈3, −2〉 = 〈−2 + 3, 5 − 2〉 = 〈1, 3〉
Using the definition of the length of a vector we obtain

‖v + w‖ = ‖〈1, 3〉‖ =
√

12 + 32 = √
10.

5. Express i as a linear combination rv + sw.

solution We use basic properties of vector algebra to write

i = rv + sw (1)

〈1, 0〉 = r〈−2, 5〉 + s〈3, −2〉 = 〈−2r + 3s, 5r − 2s〉
The vector are equivalent, hence,

1 = −2r + 3s

0 = 5r − 2s

The second equation implies that s = 5
2 r . We substitute in the first equation and solve for r:

1 = −2r + 3 · 5

2
r

1 = 11

2
r

r = 2

11
⇒ s = 5

2
· 2

11
= 5

11

Substituting in (1) we obtain

i = 2

11
v + 5

11
w.
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6. Find a scalar α such that ‖v + αw‖ = 6.

solution We compute the vector v + αw:

v + αw = 〈−2, 5〉 + α〈3, −2〉 = 〈−2 + 3α, 5 − 2α〉
The length of v + αw is

‖v + αw‖ =
√

(−2 + 3α)2 + (5 − 2α)2 =
√

4 − 12α + 9α2 + 25 − 20α + 4α2

=
√

13α2 − 32α + 29

We obtain the following equation: √
13α2 − 32α + 29 = 6

Solving for α yields

13α2 − 32α + 29 = 36

13α2 − 32α − 7 = 0

α1,2 = 32 ±
√

322 − 4 · 13 · (−7)

26
= 16 ± √

347

13

The two solutions are thus

α = 16 ± √
347

13
.

7. If P = (1, 4) and Q = (−3, 5), what are the components of
−→
PQ? What is the length of

−→
PQ?

solution By the Definition of Components of a Vector we have

−→
PQ = 〈−3 − 1, 5 − 4〉 = 〈−4, 1〉

The length of
−→
PQ is

∥∥−→
PQ

∥∥ =
√

(−4)2 + 12 = √
17.

8. Let A = (2, −1), B = (1, 4), and P = (2, 3). Find the point Q such that
−→
PQ is equivalent to

−→
AB. Sketch

−→
PQ and−→

AB.

solution The vectors
−→
AB and

−→
PQ are equivalent, therefore they have the same components. We denote the point Q

by Q = (a, b), and compute the vectors
−→
AB and

−→
PQ. We get

−→
AB = 〈1 − 2, 4 − (−1)〉 = 〈−1, 5〉
−→
PQ = 〈a − 2, b − 3〉

Therefore

−1 = a − 2 and 5 = b − 3

or

a = 1 and b = 8

Hence the point Q is Q = (1, 8). The equivalent vectors
−→
AB = −→

PQ = 〈−1, 5〉 are shown in the figure:

y

x

5

−1

〈−1 , 5〉
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9. Find the vector with length 3 making an angle of 7π
4 with the positive x-axis.

solution We denote the vector by v = 〈a, b〉. v makes an angle θ = 7π
4 with the x-axis, and its length is 3, hence,

a = ‖v‖ cos θ = 3 cos
7π

4
= 3√

2

b = ‖v‖ sin θ = 3 sin
7π

4
= − 3√

2

That is,

v = 〈a, b〉 =
〈

3√
2
, − 3√

2

〉
.

10. Calculate 3 (i − 2j) − 6 (i + 6j).

solution Using basic properties of vector algebra we have

3(i − 2j) − 6(i + 6j) = 3i − 6j − 6i − 36j = −3i − 42j

11. Find the value of β for which w = 〈−2, β〉 is parallel to v = 〈4, −3〉.
solution If v = 〈4, −3〉 and w = 〈−2, β〉 are parallel, there exists a scalar λ such that w = λv. That is,

〈−2, β〉 = λ〈4, −3〉 = 〈4λ, −3λ〉
yielding

−2 = 4λ and β = −3λ

These equations imply that λ = − 1
2 and λ = −β

3 . Equating the two expressions for λ gives

−1

2
= −β

3
or β = 3

2
.

12. Let P = (1, 4, −3).

(a) Find the point Q such that
−→
PQ is equivalent to 〈3, −1, 5〉.

(b) Find a unit vector e equivalent to
−→
PQ.

solution

(a) Let Q = (a, b, c). Since the vectors
−→
PQ and 〈3, −1, 5〉 are equivalent they have the same components. That is,

−→
PQ = 〈a − 1, b − 4, c − (−3)〉 = 〈3, −1, 5〉

Hence,

a − 1 = 3 a = 4

b − 4 = −1 ⇒ b = 3

c + 3 = 5 c = 2

The point Q is thus Q = (4, 3, 2).

(b) The unit vector e is obtained by dividing
−→
PQ by its length:

e =
−→
PQ∥∥∥−→
PQ

∥∥∥ = 〈3, −1, 5〉√
32 + (−1)2 + 52

=
〈

3√
35

, − 1√
35

,
5√
35

〉

Notice that the opposite vector −e is also a solution.

13. Let w = 〈2, −2, 1〉 and v = 〈4, 5, −4〉. Solve for u if v + 5u = 3w − u.

solution Using vector algebra we have

v + 5u = 3w − u

6u = 3w − v

u = 1

2
w − 1

6
v =

〈
1, −1,

1

2

〉
−
〈

4

6
,

5

6
, −4

6

〉
=
〈

1

3
, −11

6
,

7

6

〉
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14. Let v = 3i − j + 4k. Find the length of v and the vector 2v + 3 (4i − k).

solution We first compute the length of the vector v:

‖v‖ = ‖3i − j + 4k‖ =
√

32 + (−1)2 + 42 = √
26

We find the vector 2v + 3 (4i − k) using properties of vector algebra:

2v + 3(4i−k) = 2(3i − j + 4k) + 3(4i − k) = 6i − 2j + 8k + 12i − 3k

= 18i − 2j + 5k

15. Find a parametrization r1(t) of the line passing through (1, 4, 5) and (−2, 3, −1). Then find a parametrization r2(t)

of the line parallel to r1 passing through (1, 0, 0).

solution Since the points P = (−2, 3, −1) and Q = (1, 4, 5) are on the line l1, the vector
−→
PQ is a direction vector

for the line. We find this vector:

−→
PQ = 〈1 − (−2), 4 − 3, 5 − (−1)〉 = 〈3, 1, 6〉

Substituting v = 〈3, 1, 6〉 and P0 = 〈1, 4, 5〉 in the vector parametrization of the line we obtain the following equation
for l1:

r1(t) = −−→
OP0 + tv

r1(t) = 〈1, 4, 5〉 + t〈3, 1, 6〉 = 〈1 + 3t, 4 + t, 5 + 6t〉

The line l2 is parallel to l1, hence
−→
PQ = 〈3, 1, 6〉 is also a direction vector for l2. Substituting v = 〈3, 1, 6〉 and

P0 = (1, 0, 0) in the vector parametrization of the line we obtain the following equation for l2:

r2(t) = −−→
OP0 + tv

r2(t) = 〈1, 0, 0〉 + t〈3, 1, 6〉 = 〈1 + 3t, t, 6t〉

16. Let r1(t) = v1 + tw1 and r2(t) = v2 + tw2 be parametrizations of lines L1 and L2. For each statement (a)–(e),
provide a proof if the statement is true and a counterexample if it is false.

(a) If L1 = L2, then v1 = v2 and w1 = w2.

(b) If L1 = L2 and v1 = v2, then w1 = w2.

(c) If L1 = L2 and w1 = w2, then v1 = v2.

(d) If L1 is parallel to L2, then w1 = w2.

(e) If L1 is parallel to L2, then w1 = λw2 for some scalar λ.

solution

(a) This statement is false. Consider the following lines:

L1: r1(t) = 〈1, 0, 1〉 + t〈1, 1, 1〉
L2: r2(t) = 〈3, 2, 3〉 + t〈2, 2, 2〉

The line L1 passes through the points P = (1, 0, 1) (for t = 0) and Q = (2, 1, 2) (for t = 1). The line L2 passes through
P and Q as well (for t = −1 and t = − 1

2 respectively). Therefore, L1 = L2. However, v1 = 〈1, 0, 1〉, v2 = 〈3, 2, 3〉,
w1 = 〈1, 1, 1〉, w2 = 〈2, 2, 2〉 hence v1 �= v2 and w1 �= w2.

(b) This statement is false. Consider the following lines:

L1: r1(t) = 〈0, 1, 0〉 + t〈1, 1, 1〉
L2: r2(t) = 〈0, 1, 0〉 + t〈2, 2, 2〉

The line L1 passes through the points P = (0, 1, 0) (for t = 0) and Q = (1, 2, 1) (for t = 1). The line L2 passes through
P and Q as well (for t = 0 and t = 1

2 ). Therefore, L1 = L2. Also v1 = v2, but w1 �= w2.

(c) This statement is false. Consider the following lines:

L1: r1(t) = 〈1, 0, 1〉 + t〈1, 1, 1〉
L2: r2(t) = 〈2, 1, 2〉 + t〈1, 1, 1〉
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The line L1 passes through P = (1, 0, 1) and Q = (2, 1, 2) (for t = 1). The line L2 passes through P = (1, 0, 1) (for
t = −1) and Q = (2, 1, 2) (for t = 0). Therefore, L1 = L2. Also, w1 = w2 but v1 �= v2.

(d) This statement is false. Consider the following lines:

L1: r1(t) = 〈1, 1, 1〉 + t〈1, 0, 1〉
L2: r2(t) = t〈2, 0, 2〉

We have w1 = 〈1, 0, 1〉 and w2 = 〈2, 0, 2〉 therefore w2 = 2w1. We conclude that w1 and w2 are parallel vectors, hence
the lines L1 and L2 are parallel although w1 �= w2.

(e) This statement is correct. If L1 and L2 are parallel lines, the direction vectors w1 and w2 of these lines are parallel,
hence they are scalar multiples of one another.

17. Find a and b such that the lines r1 = 〈1, 2, 1〉 + t〈1, −1, 1〉 and r2 = 〈3, −1, 1〉 + t〈a, b, −2〉 are parallel.

solution The lines are parallel if and only if the direction vectors v1 = 〈1, −1, 1〉 and v2 = 〈a, b, −2〉 are parallel.
That is, if and only if there exists a scalar λ such that:

v2 = λv1

〈a, b, −2〉 = λ〈1, −1, 1〉 = 〈λ, −λ, λ〉
We obtain the following equations:

a = λ

b = −λ ⇒ a = −2, b = 2

−2 = λ

18. Find a such that the lines r1 = 〈1, 2, 1〉 + t〈1, −1, 1〉 and r2 = 〈3, −1, 1〉 + t〈a, 4, −2〉 intersect.

solution If the lines intersect, there exists a point that lies on both lines. That is, there are unique values of t and s

such that:

〈1, 2, 1〉 + t〈1, −1, 1〉 = 〈3, −1, 1〉 + s〈a, 4, −2〉
or

〈1 + t, 2 − t, 1 + t〉 = 〈3 + as, −1 + 4s, 1 − 2s〉
yielding the following equations:

1 + t = 3 + as t = 2 + as

2 − t = −1 + 4s ⇒ t = 3 − 4s

1 + t = 1 − 2s t = −2s

Equating the expressions for t gives the following equations:

2 + as = −2s

3 − 4s = −2s
⇒ (a + 2)s = −2

2s = 3
⇒ s = 3

2

Substituting s = 3
2 in the first equation we obtain:

(a + 2) · 3

2
= −2 ⇒ a = −10

3
.

19. Sketch the vector sum v = v1 − v2 + v3 for the vectors in Figure 1(A).

(A)

x

y

v1

v2

v3

(B)

x

y

v1

v2

v3

FIGURE 1
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solution Using the Parallelogram Law we obtain the vector sum shown in the figure.

x

y

v1

v1 − v2 + v3

−v2

v2

v3

v'3

v1 − v2

We first add v1 and −v2, then we add v3 to v1 − v2.

20. Sketch the sums v1 + v2 + v3, v1 + 2v2, and v2 − v3 for the vectors in Figure 1(B).

solution We use the definition of scalar multiple of a vector and the Parallelogram Law to sketch the vectors.

y

x

v1 + v2 + v3

v1 + v2

v1

v2

v3

y

x

v2 − v3

v3

v2

y

x

v1 + 2v2

2v2

v1

v2

To form v2 − v3, we draw the vector pointing from v3 to v2 and translate it back to the basepoint.

In Exercises 21–26, let v = 〈1, 3, −2〉 and w = 〈2, −1, 4〉.
21. Compute v · w.

solution Using the definition of the dot product we have

v · w = 〈1, 3, −2〉 · 〈2, −1, 4〉 = 1 · 2 + 3 · (−1) + (−2) · 4 = 2 − 3 − 8 = −9

22. Compute the angle between v and w.

solution The cosine of the angle θ between v and w is

cos θ = v · w
‖v‖‖w‖ (1)

We compute the lengths of the vectors:

‖v‖ = ‖〈1, 3, −2〉‖ =
√

12 + 32 + (−2)2 = √
14

‖w‖ = ‖〈2, −1, 4〉‖ =
√

22 + (−1)2 + 42 = √
21

In the previous exercise we found that v · w = −9. Substituting these values in (1) gives

cos θ = −9√
14 · √

21
= −9

7
√

6
≈ −0.5249
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The solution for 0 ≤ θ ≤ π is

θ = 2.123 rad.

23. Compute v × w.

solution We use the definition of the cross product as a “determinant”:

v × w =
∣∣∣∣∣∣

i j k
1 3 −2
2 −1 4

∣∣∣∣∣∣ =
∣∣∣∣ 3 −2

−1 4

∣∣∣∣ i −
∣∣∣∣ 1 −2

2 4

∣∣∣∣ j +
∣∣∣∣ 1 3

2 −1

∣∣∣∣k
= (12 − 2)i − (4 + 4)j + (−1 − 6)k = 10i − 8j − 7k = 〈10, −8, −7〉

24. Find the area of the parallelogram spanned by v and w.

solution The parallelogram spanned by v and w has area ‖v × w‖. In the previous exercise, we found that v × w =
〈10, −8, −7〉. Therefore the area A of the parallelogram is

A = ‖v × w‖ = ‖〈10, −8, −7〉‖ =
√

102 + (−8)2 + (−7)2 = √
213 ≈ 14.59

25. Find the volume of the parallelepiped spanned by v, w, and u = 〈1, 2, 6〉.
solution The volume V of the parallelepiped spanned by v, w and u is the following determinant:

V =
∣∣∣∣∣∣det

⎛
⎝ v

w
u

⎞
⎠
∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 3 −2
2 −1 4
1 2 6

∣∣∣∣∣∣ =
∣∣∣∣1 ·
∣∣∣∣ −1 4

2 6

∣∣∣∣− 3

∣∣∣∣ 2 4
1 6

∣∣∣∣− 2

∣∣∣∣ 2 −1
1 2

∣∣∣∣
∣∣∣∣

= |1 · (−6 − 8) − 3(12 − 4) − 2(4 + 1)| = 48

26. Find all the vectors orthogonal to both v and w.

solution A vector u = 〈a, b, c〉 is orthogonal to v and to w if the dot products u · v and u · w are zero. That is,

u · v = 0 and u · w = 0.

We compute the dot products:

u · v = 〈a, b, c〉 · 〈1, 3, −2〉 = a + 3b − 2c

u · w = 〈a, b, c〉 · 〈2, −1, 4〉 = 2a − b + 4c

We obtain the following equations:

a + 3b − 2c = 0

2a − b + 4c = 0

The first equation implies a = 2c − 3b. Substituting in the second equation and solving for b in terms of c gives

2(2c − 3b) − b + 4c = 0

4c − 6b − b + 4c = 0

8c − 7b = 0 ⇒ b = 8

7
c

We find a in terms of c, using the relation a = 2c − 3b:

a = 2c − 3 · 8

7
c = 2c − 24

7
c = −10

7
c.

The solutions are, thus,

u = 〈a, b, c〉 =
〈
−10

7
c,

8

7
c, c

〉
= − c

7
〈10, −8, −7〉

We conclude that the vectors orthogonal to v and w are all the vectors parallel to 〈10, −8, −7〉.



April 13, 2011

454 C H A P T E R 12 VECTOR GEOMETRY (LT CHAPTER 13)

27. Use vectors to prove that the line connecting the midpoints of two sides of a triangle is parallel to the third side.

solution Let E and F be the midpoints of sides AC and BC in a triangle ABC (see figure).

C

F

A E

B

We must show that

−→
EF ‖ −→

AB

Using the Parallelogram Law we have

−→
EF = −→

EA + −→
AB + −→

BF (1)

By the definition of the points E and F ,

−→
EA = 1

2
−→
CA; −→

BF = 1

2
−→
BC

We substitute (1) to obtain

−→
EF = 1

2
−→
CA + −→

AB + 1

2
−→
BC = −→

AB + 1

2

(−→
CA + −→

BC
)

= −→
AB + 1

2

(−→
BC + −→

CA
) = −→

AB + 1

2
−→
BA = −→

AB − 1

2
−→
AB = 1

2
−→
AB

Therefore,
−→
EF is a constant multiple of

−→
AB, which implies that

−→
EF and

−→
AB are parallel vectors.

28. Let v = 〈1, −1, 3〉 and w = 〈4, −2, 1〉.
(a) Find the decomposition v = v‖ + v⊥ with respect to w.

(b) Find the decomposition w = w‖ + w⊥ with respect to v.

solution
(a) Step 1. Compute v · w and w · w. We have the following dot products:

v · w = 〈1, −1, 3〉 · 〈4, −2, 1〉 = 4 + 2 + 3 = 9

w · w = 〈4, −2, 1〉 · 〈4, −2, 1〉 = 16 + 4 + 1 = 21

Step 2. Use the formula for v‖. We use the following formula:

v‖ = projw (v) =
( v · w

w · w

)
w

Substituting the dot products from the previous step, we get:

v‖ = 9

21
〈4, −2, 1〉 =

〈
12

7
, −6

7
,

3

7

〉

Step 3. Identifying v⊥. The orthogonal part is the following difference:

v⊥ = v − v‖ = 〈1, −1, 3〉 −
〈

12

7
, −6

7
,

3

7

〉
=
〈
−5

7
, −1

7
,

18

7

〉

The resulting decomposition is:

v = 〈1, −1, 3〉 =
〈

12

7
, −6

7
,

3

7

〉
︸ ︷︷ ︸

projection along w

+
〈
−5

7
, −1

7
,

18

7

〉
︸ ︷︷ ︸
orthogonal to w

(b) Step 1. Compute w · v and v · v. In part (a) we found that w · v = v · w = 9. We compute the dot product v · v:

v · v = 〈1, −1, 3〉 · 〈1, −1, 3〉 = 1 + 1 + 9 = 11
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Step 2. Use the formula for w‖. We use the following formula:

w‖ = projv (w) =
(w · v

v · v

)
v.

Substituting the dot products from the previous step, we get:

w‖ = 9

11
〈1, −1, 3〉 =

〈
9

11
, − 9

11
,

27

11

〉
.

Step 3. Identifying w⊥. The orthogonal part is the following difference:

w⊥ = w − w‖ = 〈4, −2, 1〉 −
〈

9

11
, − 9

11
,

27

11

〉
=
〈

35

11
, −13

11
, −16

11

〉

We obtain the following decomposition:

w = 〈4, −2, 1〉 =
〈

9

11
, − 9

11
,

27

11

〉
︸ ︷︷ ︸
projection along v

+
〈

35

11
, −13

11
, −16

11

〉
︸ ︷︷ ︸

orthogonalto v

29. Calculate the component of v = 〈− 2, 1
2 , 3
〉

along w = 〈1, 2, 2〉.
solution We first compute the following dot products:

v · w = 〈−2,
1

2
, 3〉 · 〈1, 2, 2〉 = 5

w · w = ‖w‖2 = 12 + 22 + 22 = 9

The component of v along w is the following number:

∥∥∥( v · w
w · w

)
w
∥∥∥ = 5

9
‖w‖ = 5

9
· 3 = 5

3

30. Calculate the magnitude of the forces on the two ropes in Figure 2.

Rope 1 Rope 2

A B

P

10 kg

30° 45°

FIGURE 2

solution Gravity exerts a force Fg of magnitude 10g = 98 newtons. Since the sum of F1 and F2 balance the force of
gravity, we have

F1 + F2 + Fg = 0 (1)

We resolve F1, F2, and Fg into a sum of a force along the ground and a force orthogonal to the ground.

Fg i

j

P
30° 45°

F2

F1

(F1)|| (F2)||

(F1)̂
(F2)̂

F1

This gives

(F1)‖ = −(‖F1‖ cos 30◦)i, (F1)⊥ = (‖F1‖ cos 60◦)j
(F2)‖ = (‖F2‖ cos 45◦)i, (F2)⊥ = (‖F2‖ cos 45◦)j
(Fg)‖ = 0, (Fg)⊥ = −10gj ≈ −98j
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Substituting these forces in (1) gives(
−‖F1‖√3

2
i + ‖F1‖

2
j

)
+
(

‖F2‖√2

2
i + ‖F2‖√2

2
j

)
− 98j = 0

1

2

(√
2‖F2‖ − √

3‖F1‖
)

i + 1

2

(
‖F1‖ + √

2‖F2‖ − 196
)

j = 0

We now equate each component to zero, to obtain
√

2‖F2‖ − √
3‖F1‖

2
= 0

‖F1‖ + √
2‖F2‖

2
− 98 = 0

⇒
‖F1‖ ≈ 71.7

‖F2‖ ≈ 87.8

We conclude that

F1 = (−71.7 cos 30◦)i + (71.7 cos 60◦)j = −62.1i + 35.9j

F2 = (87.8 cos 45◦)i + (87.8 cos 45◦)j = 62.1i + 62.1j

(As in the statement of the problems, all units are in Newtons.)

31. A 50-kg wagon is pulled to the right by a force F1 making an angle of 30◦ with the ground. At the same time the
wagon is pulled to the left by a horizontal force F2.

(a) Find the magnitude of F1 in terms of the magnitude of F2 if the wagon does not move.

(b) What is the maximal magnitude of F1 that can be applied to the wagon without lifting it?

solution

(a) By Newton’s Law, at equilibrium, the total force acting on the wagon is zero.

F2

F1

W

N

30°

F^

F||

We resolve the force F1 into its components:

F1 = F‖ + F⊥

where F‖ is the horizontal component and F⊥ is the vertical component. Since the wagon does not move, the magnitude
of F‖ must be equal to the magnitude of F2. That is,

‖F‖‖ = ‖F1‖ cos 30◦ = ‖F2‖
The above equation gives:

‖F1‖
√

3

2
= ‖F2‖ ⇒ ‖F1‖ = 2‖F2‖√

3

(b) The maximum magnitude of force F1 that can be applied to the wagon without lifting the wagon is found by comparing
the vertical forces:

‖F1‖ sin 30◦ = 9.8 · 50

‖F1‖ · 1

2
= 9.8 · 50 ⇒ ‖F1‖ = 9.8 · 100 = 980 N

32. Let v, w, and u be the vectors in R3. Which of the following is a scalar?

(a) v × (u + w)

(b) (u + w) · (v × w)

(c) (u × w) + (w − v)

solution

(a) The cross product of the two vectors v and u + w is a vector.

(b) The dot product of the two vectors u + w and v × w is a scalar.
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(c) The cross product u × w is a vector, therefore the sum of this vector and the vector w − v is again a vector.

In Exercises 33–36, let v = 〈1, 2, 4〉, u = 〈6, −1, 2〉, and w = 〈1, 0, −3〉. Calculate the given quantity.

33. v × w

solution We use the definition of the cross product as a determinant to compute v × w:

v × w =
∣∣∣∣∣∣

i j k
1 2 4
1 0 −3

∣∣∣∣∣∣ =
∣∣∣∣ 2 4

0 −3

∣∣∣∣ i −
∣∣∣∣ 1 4

1 −3

∣∣∣∣ j +
∣∣∣∣ 1 2

1 0

∣∣∣∣k
= (−6 − 0)i − (−3 − 4)j + (0 − 2)k = −6i + 7j − 2k = 〈−6, 7, −2〉

34. w × u

solution We compute the cross product as the following determinant:

w × u =
∣∣∣∣∣∣

i j k
1 0 −3
6 −1 2

∣∣∣∣∣∣ =
∣∣∣∣ 0 −3

−1 2

∣∣∣∣ i −
∣∣∣∣ 1 −3

6 2

∣∣∣∣ j +
∣∣∣∣ 1 0

6 −1

∣∣∣∣k
= (0 − 3)i − (2 − (−18))j + (−1 − 0)k = −3i − 20j − k = 〈−3, −20, −1〉

35. det

⎛
⎝ u

v
w

⎞
⎠

solution We compute the determinant:

det

⎛
⎝ u

v
w

⎞
⎠ =

∣∣∣∣∣∣
6 −1 2
1 2 4
1 0 −3

∣∣∣∣∣∣ = 6 ·
∣∣∣∣ 2 4

0 −3

∣∣∣∣+ 1 ·
∣∣∣∣ 1 4

1 −3

∣∣∣∣+ 2

∣∣∣∣ 1 2
1 0

∣∣∣∣
= 6 · (−6 − 0) + 1 · (−3 − 4) + 2 · (0 − 2) = −47

36. v · (u × w)

solution We use the anticommutativity of the cross product and the cross product computed in a previous exercise to
write:

u × w = −w × u = −〈−3, −20, −1〉 = 〈3, 20, 1〉
We now compute the dot product:

v · (u × w) = 〈1, 2, 4〉 · 〈3, 20, 1〉 = 1 · 3 + 2 · 20 + 4 · 1 = 47

37. Use the cross product to find the area of the triangle whose vertices are (1, 3, −1), (2, −1, 3), and (4, 1, 1).

solution Let A = (1, 3, −1), B = (2, −1, 3) and C = (4, 1, 1).

y

x

z

A = (1, 3, −1)

B = (2, −1, 3)

C = (4, 1, 1)

The area S of the triangle ABC is half the area of the parallelogram spanned by
−→
AB and

−→
AC. Using the Formula for the

Area of the Parallelogram, we conclude that the area of the triangle is:

S = 1

2

∥∥∥−→AB × −→
AC

∥∥∥ (1)

We first compute the vectors
−→
AB and

−→
AC:

−→
AB = 〈2 − 1, −1 − 3, 3 − (−1)〉 = 〈1, −4, 4〉
−→
AC = 〈4 − 1, 1 − 3, 1 − (−1)〉 = 〈3, −2, 2〉
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We compute the cross product of the two vectors:

−→
AB × −→

AC =
∣∣∣∣∣∣

i j k
1 −4 4
3 −2 2

∣∣∣∣∣∣ =
∣∣∣∣ −4 4

−2 2

∣∣∣∣ i −
∣∣∣∣ 1 4

3 2

∣∣∣∣ j +
∣∣∣∣ 1 −4

3 −2

∣∣∣∣k
= (−8 − (−8))i − (2 − 12)j + (−2 − (−12))k

= 10j + 10k = 〈0, 10, 10〉 = 10〈0, 1, 1〉

The length of
−→
AB × −→

AC is, thus:

∥∥−→AB × −→
AC
∥∥ = ‖10〈0, 1, 1〉‖ = 10‖〈0, 1, 1〉‖ = 10

√
02 + 12 + 12 = 10

√
2

Substituting in (1) gives the following area:

S = 1

2
· 10

√
2 = 5

√
2.

38. Calculate ‖v × w‖ if ‖v‖ = 2, v · w = 3, and the angle between v and w is π
6 .

solution Using the definition of the cross product we have:

‖v × w‖ = ‖v‖‖w‖ sin θ.

We substitute the given information, obtaining:

‖v × w‖ = 2‖w‖ sin
π

6
= 2‖w‖ · 1

2
= ‖w‖ (1)

We now must find the length of w. By the Formula for the Cosine of the Angle between Two Vectors we have:

cos θ = v · w
‖v‖‖w‖ .

Substituting the known values and solving for ‖w‖ gives:

cos
π

6
= 3

2‖w‖ ⇒ ‖w‖ = 3

2 cos
π

6

= 3

2 ·
√

3

2

= √
3 (2)

Combining (1) and (2) gives the following length:

‖v × w‖ = ‖w‖ = √
3.

39. Show that if the vectors v, w are orthogonal, then ‖v + w‖2 = ‖v‖2 + ‖w‖2.

solution The vectors v and w are orthogonal, hence:

v · w = 0 (1)

Using the relation of the dot product with length and properties of the dot product we obtain:

‖v + w‖2 = (v + w) · (v + w) = v · (v + w) + w · (v + w)

= v · v + v · w + w · v + w · w = ‖v‖2 + 2v · w + ‖w‖2 (2)

Combining (1) and (2) we get:

‖v + w‖2 = ‖v‖2 + ‖w‖2.

40. Find the angle between v and w if ‖v + w‖ = ‖v‖ = ‖w‖.

solution The cosine of the angle θ between v and w is given by:

cos θ = v · w
‖v‖‖w‖ (1)

We denote by r the value ‖v + w‖ = ‖v‖ = ‖w‖ = r . To find v · w in terms of r , we evaluate ‖v + w‖. Using properties
of the dot product we obtain:

‖v + w‖2 = (v + w) · (v + w) = v · (v + w) + w · (v + w)

= v · v + v · w + w · v + w · w = ‖v‖2 + 2v · w + ‖w‖2
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That is,

r2 = r2 + 2v · w + r2

−r2 = 2v · w ⇒ v · w = − r2

2

We now substitute ‖v‖ = ‖w‖ = r and v · w = − r2

2 in (1) to obtain:

cos θ = − r2

2
r · r

= −1

2

The solution for 0 ≤ θ ≤ π is θ = 2π
3 . That is, the angle between v and w is 2π

3 rad.

41. Find ‖e − 4f‖, assuming that e and f are unit vectors such that ‖e + f‖ = √
3.

solution We use the relation of the dot product with length and properties of the dot product to write

3 = ‖e + f‖2 = (e + f) · (e + f) = e · e + e · f + f · e + f · f

= ‖e‖2 + 2e · f + ‖f‖2 = 12 + 2e · f + 12 = 2 + 2e · f

We now find e · f :

3 = 2 + 2e · f ⇒ e · f = 1/2

Hence, using the same method as above, we have:

‖e − 4f‖2 = (e − 4f) · (e − 4f)

= ‖e‖2 − 2 · e · 4f + ‖4f‖2 = 12 − 8e · f + 42 = 17 − 4 = 13

Taking square roots, we get:

‖e − 4f‖ = √
13

42. Find the area of the parallelogram spanned by vectors v and w such that ‖v‖ = ‖w‖ = 2 and v · w = 1.

solution The area of the parallelogram is ‖v × w‖ which equals ‖v‖‖w‖ sin θ , for θ the angle between the two vectors.
Since

v · w = ‖v‖‖w‖ cos θ = 2 · 2 · cos θ = 1,

then cos θ = 1/4 and so sin θ =
√

1 − cos2 θ = √
15/16 = √

15/4. Thus, the area is ‖v‖‖w‖ sin θ = 2 · 2 · √
15/4 =√

15

43. Show that the equation 〈1, 2, 3〉 × v = 〈−1, 2, a〉 has no solution for a �= −1.

solution By properties of the cross product, the vector 〈−1, 2, a〉 is orthogonal to 〈1, 2, 3〉, hence the dot product of
these vectors is zero. That is:

〈−1, 2, a〉 · 〈1, 2, 3〉 = 0

We compute the dot product and solve for a:

−1 + 4 + 3a = 0

3a = −3 ⇒ a = −1

We conclude that if the given equation is solvable, then a = −1.

44. Prove with a diagram the following: If e is a unit vector orthogonal to v, then e × (v × e) = (e × v) × e = v.

solution The vectors w = v × e and e × w are determined by the right-hand rule, as shown in the figure:

w = v × e

e

v

w

e × w

e

Similarly for the vectors w1 = e × v and w1 × e:
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v w1 × e

e

w1

e

w1

In each case, we see that the resulting vector is the vector v.

45. Use the identity

u × (v × w) = (u · w) v − (u · v) w

to prove that

u × (v × w) + v × (w × u) + w × (u × v) = 0

solution The given identity implies that:

u × (v × w) = (u · w) v − (u · v) w

v × (w × u) = (v · u) w − (v · w) u

w × (u × v) = (w · v) u − (w · u) v

Adding the three equations and using the commutativity of the dot product we find that:

u × (v × w) + v × (w × u) + w × (u × v)

= (u · w − w · u) v + (v · u − u · v) w + (w · v − v · w) u = 0

46. Find an equation of the plane through (1, −3, 5) with normal vector n = 〈2, 1, −4〉.
solution Using the scalar form of the equation of the plane we have,

2x + y − 4z = d = 〈2, 1, −4〉 · 〈1, −3, 5〉

We compute the dot product:

d = 〈2, 1, −4〉 · 〈1, −3, 5〉 = 2 − 3 − 20 = −21

Therefore, the equation of the plane is,

2x + y − 4z = −21.

47. Write the equation of the plane P with vector equation

〈1, 4, −3〉 · 〈x, y, z〉 = 7

in the form

a (x − x0) + b (y − y0) + c (z − z0) = 0

Hint: You must find a point P = (x0, y0, z0) on P .

solution We identify the vector n = 〈a, b, c〉 = 〈1, 4, −3〉 that is normal to the plane, hence we may choose,

a = 1, b = 4, c = −3.

We now must find a point in the plane. The point (x0, y0, z0) = (0, 1, −1), for instance, satisfies the equation of the plane,
therefore the equation may be written in the form:

1(x − 0) + 4(y − 1) − 3(z − (−1)) = 0

or

(x − 0) + 4(y − 1) − 3(z + 1) = 0
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48. Find all the planes parallel to the plane passing through the points (1, 2, 3), (1, 2, 7), and (1, 1, −3).

solution Since the points A = (1, 2, 3), B = (1, 2, 7), C = (1, 1, −3) lie in the plane, the vectors
−→
AB and

−→
AC are

in the plane. We find these vectors:

−→
AB = 〈1 − 1, 2 − 2, 7 − 3〉 = 〈0, 0, 4〉
−→
AC = 〈1 − 1, 1 − 2, −3 − 3〉 = 〈0, −1, −6〉

The cross product n = −→
AB × −→

AC is normal to the plane, therefore it is also normal to all the planes that are parallel to
this plane. We could compute this cross product, but let’s try a slightly more clever approach. Note that the three points
A, B, C all satisfy x = 1. Thus, the vertical plane x = 1 contains these three points; the planes parallel to x = 1 are the
planes x = d for d �= 1.

49. Find the plane through P = (4, −1, 9) containing the line r(t) = 〈1, 4, −3〉 + t〈2, 1, 1〉.
solution Since the plane contains the line, the direction vector of the line, v = 〈2, 1, 1〉, is in the plane. To find another
vector in the plane, we use the points A = (1, 4, −3) and B = (4, −1, 9) that lie in the plane, and compute the vector

u = −→
AB:

u = −→
AB = 〈4 − 1, −1 − 4, 9 − (−3)〉 = 〈3, −5, 12〉

We now compute the cross product n = v × u that is normal to the plane:

n = v × u =
∣∣∣∣∣∣

i j k
2 1 1
3 −5 12

∣∣∣∣∣∣ =
∣∣∣∣ 1 1

−5 12

∣∣∣∣ i −
∣∣∣∣ 2 1

3 12

∣∣∣∣ j +
∣∣∣∣ 2 1

3 −5

∣∣∣∣k
= (12 + 5)i − (24 − 3)j + (−10 − 3)k = 17i − 21j − 13k = 〈17, −21, −13〉

Finally, we use the vector form of the equation of the plane with n = 〈17, −21, −13〉 and P0 = (4, −1, 9) to obtain the
following equation:

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈17, −21, −13〉 · 〈x, y, z〉 = 〈17, −21, −13〉 · 〈4, −1, 9〉

17x − 21y − 13z = 17 · 4 + 21 − 13 · 9 = −28

The equation of the plane is, thus,

17x − 21y − 13z = −28.

50. Find the intersection of the line r(t) = 〈3t + 2, 1, −7t〉 and the plane 2x − 3y + z = 5.

solution The line has the parametric equations

x = 3t + 2, y = 1, z = −7t

We want to find the value of t for which the point (x, y, z) lies on the plane. We substitute the parametric equations in the
equation of the plane and solve for t :

2(3t + 2) − 3 · 1 + (−7t) = 5

6t + 4 − 3 − 7t = 5

−t = 4 ⇒ t = −4

The point P of intersection of the line and the plane has the coordinates:

x = 3 · (−4) + 2 = −10, y = 1, z = −7 · (−4) = 28

and thus,

P = (−10, 1, 28) .

51. Find the trace of the plane 3x − 2y + 5z = 4 in the xy-plane.

solution The xy-plane has equation z = 0, therefore the intersection of the plane 3x − 2y + 5z = 4 with the xy-plane
must satisfy both z = 0 and the equation of the plane. Therefore the trace has the following equation:

3x − 2y + 5 · 0 = 4 ⇒ 3x − 2y = 4

We conclude that the trace of the plane in the xy-plane is the line 3x − 2y = 4 in the xy-plane.
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52. Find the intersection of the planes x + y + z = 1 and 3x − 2y + z = 5.

solution The line of intersection of the planes x + y + z = 1 and 3x − 2y + z = 5 consists of all points that satisfy
the equations of the two planes. Therefore, we must solve the following equations:

x + y + z = 1

3x − 2y + z = 5

The first equation implies y = 1 − x − z. Substituting in the second equation and solving for x in terms of z, gives:

3x − 2(1 − x − z) + z = 5

3x − 2 + 2x + 2z + z = 5

5x + 3z = 7 ⇒ x = 7

5
− 3

5
z

We find y in terms of z using the relation y = 1 − x − z:

y = 1 −
(

7

5
− 3

5
z

)
− z = −2

5
− 2

5
z

Therefore the solution is:

x = 7

5
− 3

5
z, y = −2

5
− 2

5
z, z = z

We find the vector form of the equation of the line of intersection, using z = t as the parameter. This gives:

r(t) =
〈

7

5
− 3

5
t, −2

5
− 2

5
t, t

〉
=
〈

7

5
, −2

5
, 0

〉
+ t

〈
−3

5
, −2

5
, 1

〉

In Exercises 53–58, determine the type of the quadric surface.

53.
(x

3

)2 +
(y

4

)2 + 2z2 = 1

solution Writing the equation in the form:

(x

3

)2 +
(y

4

)2 +
⎛
⎝ z

1√
2

⎞
⎠

2

= 1

we identify the quadric surface as an ellipsoid.

54.
(x

3

)2 −
(y

4

)2 + 2z2 = 1

solution Writing the equation in the form:

(x

3

)2 −
(y

4

)2 +
⎛
⎝ z

1√
2

⎞
⎠

2

= 1

we identify the quadric surface as an hyperboloid of one sheet.

55.
(x

3

)2 +
(y

4

)2 − 2z = 0

solution We rewrite this equation as:

2z =
(x

3

)2 +
(y

4

)2

or

z =
(

x

3
√

2

)2
+
(

y

4
√

2

)2

This is the equation of an elliptic paraboloid.
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56.
(x

3

)2 −
(y

4

)2 − 2z = 0

solution We rewrite this equation in the form:

2z =
(x

3

)2 −
(y

4

)2

or

z =
(

x

3
√

2

)2
−
(

y

4
√

2

)2

This is the equation of a hyperbolic paraboloid.

57.
(x

3

)2 −
(y

4

)2 − 2z2 = 0

solution This equation may be rewritten in the form

(x

3

)2 −
(y

4

)2 =
⎛
⎝ z

1√
2

⎞
⎠

2

we identify the quadric surface as an elliptic cone.

58.
(x

3

)2 −
(y

4

)2 − 2z2 = 1

solution We rewrite the equation in the form

(x

3

)2 −
(y

4

)2 −
⎛
⎝ z

1√
2

⎞
⎠

2

= 1

The corresponding quadric surface is a hyperboloid of two sheets.

59. Determine the type of the quadric surface ax2 + by2 − z2 = 1 if:

(a) a < 0, b < 0

(b) a > 0, b > 0

(c) a > 0, b < 0

solution

(a) If a < 0, b < 0 then for all x, y and z we have ax2 + by2 − z2 < 0, hence there are no points that satisfy
ax2 + by2 − z2 = 1. Therefore it is the empty set.

(b) For a > 0 and b > 0 we rewrite the equation as

⎛
⎝ x

1√
a

⎞
⎠

2

+
⎛
⎝ y

1√
b

⎞
⎠

2

− z2 = 1

which is the equation of a hyperboloid of one sheet.

(c) For a > 0, b < 0 we rewrite the equation in the form

⎛
⎝ x

1√
a

⎞
⎠

2

−
⎛
⎝ y

1√|b|

⎞
⎠

2

− z2 = 1

which is the equation of a hyperboloid of two sheets.

60. Describe the traces of the surface (x

2

)2 − y2 +
( z

2

)2 = 1

in the three coordinate planes.

solution The xy-trace is obtained by setting z = 0 in the equation
(
x
2

)2 − y2 + ( z
2

)2 = 1 of the surface. This gives

(x

2

)2 − y2 = 1
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Therefore, the xy-trace is a hyperbola in the xy-plane. To find the xz-trace we set y = 0 in the equation of the surface,
obtaining

(x

2

)2 +
( z

2

)2 = 1

The xz-trace is a circle in the xz-plane. The yz-trace is obtained by setting x = 0. This gives

( z

2

)2 − y2 = 1

which is a hyperbola in the yz-plane.

61. Convert (x, y, z) = (3, 4, −1) from rectangular to cylindrical and spherical coordinates.

solution In cylindrical coordinates (r, θ, z) we have

r =
√

x2 + y2, tan θ = y

x

Therefore, r =
√

32 + 42 = 5 and tan θ = 4
3 . The projection of the point (3, 4, −1) onto the xy-plane is the point (3, 4),

in the first quadrant. Therefore, the corresponding value of θ is tan−1 4
3 ≈ 0.93 rad. The cylindrical coordinates are, thus,

(r, θ, z) =
(

5, tan−1 4

3
, −1

)

The spherical coordinates (ρ, θ, φ) satisfy

ρ =
√

x2 + y2 + z2, tan θ = y

x
, cos φ = z

ρ

Therefore,

ρ =
√

32 + 42 + (−1)2 = √
26

tan θ = 4

3

cos φ = −1√
26

The angle θ is the same as in the cylindrical coordinates, that is, θ = tan−1 4
3 . The angle φ is the solution of cos φ = −1√

26

that satisfies 0 ≤ φ ≤ π , that is, φ = cos1
( −1√

26

)
≈ 1.77 rad. The spherical coordinates are, thus,

(ρ, θ, φ) =
(√

26, tan−1 4

3
, cos−1

( −1√
26

))
.

62. Convert (r, θ, z) = (3, π
6 , 4

)
from cylindrical to spherical coordinates.

solution By the given information, r = 3, θ = π
6 and z = 4. We must determine the spherical coordinates (ρ, θ, φ).

The angle θ is the same as in cylindrical coordinates. To find ρ we use the relation ρ =
√

x2 + y2 + z2 =
√

r2 + z2.
This gives

ρ =
√

r2 + z2 =
√

32 + 42 = 5

The angle φ satisfies cos φ = z
ρ = 4

5 = 0.8 and 0 ≤ φ ≤ π . Therefore, φ = cos−10.8. In spherical coordinates, we
obtain the following description:

(ρ, θ, φ) =
(

5,
π

6
, cos−10.8

)
.

63. Convert the point (ρ, θ, φ) = (3, π
6 , π

3

)
from spherical to cylindrical coordinates.

solution By the given information, ρ = 3, θ = π
6 , and φ = π

3 . We must determine the cylindrical coordinates
(r, θ, z). The angle θ is the same as in spherical coordinates. We find z using the relation cos φ = z

ρ , or z = ρ cos φ. We
obtain

z = ρ cos φ = 3 cos
π

3
= 3 · 1

2
= 3

2
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We find r using the relation ρ2 = x2 + y2 + z2 = r2 + z2, or r =
√

ρ2 − z2, we get

r =
√

32 −
(

3

2

)2
=
√

27

4
= 3

√
3

2

Hence, in cylindrical coordinates we obtain the following description:

(r, θ, z) =
(

3
√

3

2
,
π

6
,

3

2

)
.

64. Describe the set of all points P = (x, y, z) satisfying x2 + y2 ≤ 4 in both cylindrical and spherical coordinates.

solution In cylindrical coordinates we have x2 + y2 = r2, hence the inequality x2 + y2 ≤ 4 becomes

r2 ≤ 4

or

r ≤ 2 and 0 ≤ θ ≤ 2π.

That is,

{(r, θ, z) : r ≤ 2, 0 ≤ θ ≤ 2π}
This is a solid cylinder of radius 2. In spherical coordinates we have x2 + y2 + z2 = ρ2 and z = ρ cos φ. Therefore,

x2 + y2 = ρ2 − z2 = ρ2 − ρ2 cos2 φ = ρ2
(

1 − cos2 φ
)

= ρ2 sin2 φ

The inequality x2 + y2 ≤ 4 in spherical coordinates is, thus,

ρ2 sin2 φ ≤ 4 (1)

Notice that since 0 ≤ φ ≤ π , we have sin φ ≥ 0. Also ρ ≥ 0, therefore ρ sin φ ≥ 0, hence inequality (1) is equivalent to

ρ sin φ ≤ 2

We obtain the following description in spherical coordinates:

{(ρ, θ, φ) : ρ sin φ ≤ 2, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π}

65. Sketch the graph of the cylindrical equation z = 2r cos θ and write the equation in rectangular coordinates.

solution To obtain the equation in rectangular coordinates, we substitute x = r cos θ in the equation z = 2r cos θ :

z = 2r cos θ = 2x ⇒ z = 2x

This is the equation of a plane normal to the xz-plane, whose intersection with the xz-plane is the line z = 2x. The graph
of the plane is shown in the following figure (the same plane drawn twice, using the cylindrical coordinates’ equation and
using the rectangular coordinates’ equation):

4

2

2

2

−4

y

x

z

4

2

2

2

−4

y

x

z

66. Write the surface x2 + y2 − z2 = 2 (x + y) as an equation r = f (θ, z) in cylindrical coordinates.

solution In cylindrical coordinates, we have

r2 = x2 + y2, x = r cos θ, y = r sin θ



April 13, 2011

466 C H A P T E R 12 VECTOR GEOMETRY (LT CHAPTER 13)

Substituting in the equation of the surface x2 + y2 − z2 = 2(x + y) gives:

r2 − z2 = 2(r cos θ + r sin θ)

r2 = z2 + 2r(cos θ + sin θ)

r2 − 2r(cos θ + sin θ) − z2 = 0

We solve the quadratic equation for r:

r = (cos θ + sin θ) ±
√

(cos θ + sin θ)2 + z2

= (cos θ + sin θ) ±
√

cos2 θ + 2 cos θ sin θ + sin2 θ + z2

We use the identities cos2θ + sin2θ = 1 and 2 cos θ sin θ = sin 2θ to obtain the following function:

r = cos θ + sin θ ±
√

1 + sin 2θ + z2

67. Show that the cylindrical equation

r2(1 − 2 sin2 θ) + z2 = 1

is a hyperboloid of one sheet.

solution We rewrite the equation in the form

r2 − 2(r sin θ)2 + z2 = 1

To write this equation in rectangular coordinates, we substitute r2 = x2 + y2 and r sin θ = y. This gives

x2 + y2 − 2y2 + z2 = 1

x2 − y2 + z2 = 1

We now can identify the surface as a hyperboloid of one sheet.

68. Sketch the graph of the spherical equation ρ = 2 cos θ sin φ and write the equation in rectangular coordinates.

solution We multiply the equation by ρ and then substitute x = ρ cos θ sin φ. This gives

ρ2 = 2ρ cos θ sin φ = 2x

We now substitute ρ2 = x2 + y2 + z2 to obtain the following equation in terms of x, y, and z only:

x2 + y2 + z2 = 2x

To identify the surface, we transfer sides and complete the square in x. This gives

x2 − 2x + y2 + z2 = 0

(x − 1)2 − 1 + y2 + z2 = 0

(x − 1)2 + y2 + z2 = 1

The surface is the sphere of radius 1 centered at (1, 0, 0). This sphere is shown next:

z

xy

00
−−

1

−1

1

(x − 1)2 + y2 + z2 = 1

69. Describe how the surface with spherical equation

ρ2(1 + A cos2 φ) = 1

depends on the constant A.
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solution To identify the surface we convert the equation to rectangular coordinates. We write

ρ2 + Aρ2 cos2 φ = 1

To obtain the following equation in terms of x, y, z only, we substitute ρ2 = x2 + y2 + z2 and ρ cos φ = z:

x2 + y2 + z2 + Az2 = 1

x2 + y2 + (1 + A)z2 = 1 (1)

Case 1: A < −1. Then A + 1 < 0 and the equation can be rewritten in the form

x2 + y2 −
(

z

|1 + A|−1/2

)2
= 1

The corresponding surface is a hyperboloid of one sheet.
Case 2: A = −1. Equation (1) becomes:

x2 + y2 = 1

In R3, this equation describes a cylinder with the z-axis as its central axis.
Case 3: A > −1. Then equation (1) can be rewritten as

x2 + y2 +
(

z

(1 + A)−1/2

)2
= 1

Then if A = 0 the equation x2 + y2 + z2 = 1 describes the unit sphere in R3. Otherwise, the surface is an ellipsoid.

70. Show that the spherical equation cot φ = 2 cos θ + sin θ defines a plane through the origin (with the origin excluded).
Find a normal vector to this plane.

solution We multiply the equation by ρ sin φ, to obtain

ρ sin φ cot φ = 2ρ sin φ cos θ + ρ sin φ sin θ

ρ cos φ = 2ρ sin φ cos θ + ρ sin φ sin θ

We now convert to cartesian coordinates using the transition formula. We obtain

z = 2x + y

2x + y − z = 0

This is a standard representation of a plane and n = 〈2, 1, −1〉 is orthogonal to this plane.

71. Let c be a scalar, let a and b be vectors, and let X = 〈x, y, z〉. Show that the equation (X − a) · (X − b) = c2 defines

a sphere with center m = 1
2 (a + b) and radius R, where R2 = c2 + ∥∥ 1

2 (a − b)
∥∥2.

solution We evaluate the following length:

‖x − m‖2 =
∥∥∥∥x − 1

2
(a + b)

∥∥∥∥2
=
(

(x − a) + 1

2
(a − b)

)
·
(

(x − b) − 1

2
(a − b)

)

= (x − a) · (x − b) − 1

2
(x − a) · (a − b) + 1

2
(a − b) · (x − b) − 1

4
(a − b) · (a − b)

= (x − a) · (x − b) + 1

2
(a − b) · (x − b − x + a) − 1

4
(a − b) · (a − b)

= (x − a) · (x − b) + 1

2
(a − b) · (a − b) − 1

4
(a − b) · (a − b)

= (x − a) · (x − b) + 1

4
(a − b) · (a − b)

= (x − a) · (x − b) +
∥∥∥∥1

2
(a − b)

∥∥∥∥2

Since R2 = c2 + ‖ 1
2 (a − b) ‖2

we get

‖x − m‖2 = (x − a) · (x − b) + R2 − c2

We conclude that if (x − a) (x − b) = c2 then ‖x − m‖2 = R2. That is, the equation (x − a) (x − b) = c2 defines a
sphere with center m and radius R.
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VECTOR-VALUED
FUNCTIONS

13.1 Vector-Valued Functions (LT Section 14.1)

Preliminary Questions
1. Which one of the following does not parametrize a line?

(a) r1(t) = 〈8 − t, 2t, 3t〉
(b) r2(t) = t3i − 7t3j + t3k
(c) r3(t) = 〈

8 − 4t3, 2 + 5t2, 9t3〉
solution
(a) This is a parametrization of the line passing through the point (8, 0, 0) in the direction parallel to the vector 〈−1, 2, 3〉,
since:

〈8 − t, 2t, 3t〉 = 〈8, 0, 0〉 + t 〈−1, 2, 3〉
(b) Using the parameter s = t3 we get:〈

t3, −7t3, t3〉 = 〈s, −7s, s〉 = s 〈1, −7, 1〉
This is a parametrization of the line through the origin, with the direction vector v = 〈−1, 7, 1〉.
(c) The parametrization

〈
8 − 4t3, 2 + 5t2, 9t3〉 does not parametrize a line. In particular, the points (8, 2, 0) (at t = 0),

(4, 7, 9) (at t = 1), and (−24, 22, 72) (at t = 2) are not collinear.

2. What is the projection of r(t) = t i + t4j + etk onto the xz-plane?

solution The projection of the path onto the xz-plane is the curve traced by t i + etk = 〈
t, 0, et

〉
. This is the curve

z = ex in the xz-plane.

3. Which projection of 〈cos t, cos 2t, sin t〉 is a circle?

solution The parametric equations are

x = cos t, y = cos 2t, z = sin t

The projection onto the xz-plane is 〈cos t, 0, sin t〉. Since x2 + z2 = cos2 t + sin2 t = 1, the projection is a circle in the
xz-plane. The projection onto the xy-plane is traced by the curve 〈cos t, cos 2t, 0〉. Therefore, x = cos t and y = cos 2t .
We express y in terms of x:

y = cos 2t = 2 cos2 t − 1 = 2x2 − 1

The projection onto the xy-plane is a parabola. The projection onto the yz-plane is the curve 〈0, cos 2t, sin t〉. Hence
y = cos 2t and z = sin t . We find y as a function of z:

y = cos 2t = 1 − 2 sin2 t = 1 − 2z2

The projection onto the yz-plane is again a parabola.

4. What is the center of the circle with parametrization

r(t) = (−2 + cos t)i + 2j + (3 − sin t)k?

solution The parametric equations are

x = −2 + cos t, y = 2, z = 3 − sin t

Therefore, the curve is contained in the plane y = 2, and the following holds:

(x + 2)2 + (z − 3)2 = cos2 t + sin2 t = 1

We conclude that the curve r(t) is the circle of radius 1 in the plane y = 2 centered at the point (−2, 2, 3).

468
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5. How do the paths r1(t) = 〈cos t, sin t〉 and r2(t) = 〈sin t, cos t〉 around the unit circle differ?

solution The two paths describe the unit circle. However, as t increases from 0 to 2π , the point on the path sin t i + cos tj
moves in a clockwise direction, whereas the point on the path cos t i + sin tj moves in a counterclockwise direction.

6. Which three of the following vector-valued functions parametrize the same space curve?

(a) (−2 + cos t)i + 9j + (3 − sin t)k (b) (2 + cos t)i − 9j + (−3 − sin t)k

(c) (−2 + cos 3t)i + 9j + (3 − sin 3t)k (d) (−2 − cos t)i + 9j + (3 + sin t)k

(e) (2 + cos t)i + 9j + (3 + sin t)k

solution All the curves except for (b) lie in the vertical plane y = 9. We identify each one of the curves (a), (c), (d)
and (e).

(a) The parametric equations are:

x = −2 + cos t, y = 9, z = 3 − sin t

Hence,

(x + 2)2 + (z − 3)2 = (cos t)2 + (− sin t)2 = 1

This is the circle of radius 1 in the plane y = 9, centered at (−2, 9, 3).

(c) The parametric equations are:

x = −2 + cos 3t, y = 9, z = 3 − sin 3t

Hence,

(x + 2)2 + (z − 3)2 = (cos 3t)2 + (− sin 3t)2 = 1

This is the circle of radius 1 in the plane y = 9, centered at (−2, 9, 3).

(d) In this curve we have:

x = −2 − cos t, y = 9, z = 3 + sin t

Hence,

(x + 2)2 + (z − 3)2 = (− cos t)2 + (sin t)2 = 1

Again, the circle of radius 1 in the plane y = 9, centered at (−2, 9, 3).

(e) In this parametrization we have:

x = 2 + cos t, y = 9, z = 3 + sin t

Hence,

(x − 2)2 + (z − 3)2 = (cos t)2 + (sin t)2 = 1

This is the circle of radius 1 in the plane y = 9, centered at (2, 9, 3).

We conclude that (a), (c) and (d) parametrize the same circle whereas (b) and (e) are different curves.

Exercises
1. What is the domain of r(t) = et i + 1

t
j + (t + 1)−3k?

solution r(t) is defined for t �= 0 and t �= −1, hence the domain of r(t) is:

D = {t ∈ R : t �= 0, t �= −1}

2. What is the domain of r(s) = es i + √
sj + cos sk?

solution r(s) is defined for s ≥ 0, hence the domain of r(s) is:

D = {s ∈ R : s ≥ 0} .



April 19, 2011

470 C H A P T E R 13 CALCULUS OF VECTOR-VALUED FUNCTIONS (LT CHAPTER 14)

3. Evaluate r(2) and r(−1) for r(t) =
〈
sin π

2 t, t2, (t2 + 1)−1
〉
.

solution Since r(t) =
〈
sin π

2 t, t2, (t2 + 1)−1
〉
, then

r(2) =
〈
sin π, 4, 5−1

〉
=

〈
0, 4,

1

5

〉

and

r(−1) =
〈
sin

−π

2
, 1, 2−1

〉
=

〈
−1, 1,

1

2

〉

4. Does either of P = (4, 11, 20) or Q = (−1, 6, 16) lie on the path r(t) = 〈
1 + t, 2 + t2, t4〉?

solution The point P = (4, 11, 20) lies on the path r(t) = 〈
1 + t, 2 + t2, t4〉 if there exists a value of t such that−→

OP = r(t). That is, 〈
4, 11, 20

〉 = 〈
1 + t, 2 + t2, t4〉

Equating like components we get:

1 + t = 4

2 + t2 = 11

t4 = 20

The first equation implies that t = 3, but this value does not satisfy the third equation. We conclude that P does not lie
on the path. The point Q = (−1, 6, 16) lies on the path if there exists a value of t such that:

〈−1, 6, 16〉 = 〈
1 + t, 2 + t2, t4〉

or equivalently:

1 + t = −1

2 + t2 = 6

t4 = 16

These equations have the solution t = −2, hence Q = (−1, 6, 16) lies on the path.

5. Find a vector parametrization of the line through P = (3, −5, 7) in the direction v = 〈3, 0, 1〉.
solution We use the vector parametrization of the line to obtain:

r(t) = −→
OP + tv = 〈3, −5, 7〉 + t 〈3, 0, 1〉 = 〈3 + 3t, −5, 7 + t〉

or in the form:

r(t) = (3 + 3t)i − 5j + (7 + t)k, −∞ < t < ∞

6. Find a direction vector for the line with parametrization r(t) = (4 − t)i + (2 + 5t)j + 1
2 tk.

solution We rewrite the vector r(t) in the following form:

r(t) =
〈
4 − t, 2 + 5t,

1

2
t

〉
= 〈4, 2, 0〉 + t

〈
−1, 5,

1

2

〉

We identify v =
〈
−1, 5, 1

2

〉
as a direction vector for the line.

7. Match the space curves in Figure 8 with their projections onto the xy-plane in Figure 9.

y

x

z

y

x

z

y

x

z

(A) (B) (C)

FIGURE 8
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(i)

x

y

(ii)

x

y

(iii)

x

y

FIGURE 9

solution The projection of curve (C) onto the xy-plane is neither a segment nor a periodic wave. Hence, the correct
projection is (iii), rather than the two other graphs. The projection of curve (A) onto the xy-plane is a vertical line, hence
the corresponding projection is (ii). The projection of curve (B) onto the xy-plane is a periodic wave as illustrated in (i).

8. Match the space curves in Figure 8 with the following vector-valued functions:

(a) r1(t) = 〈cos 2t, cos t, sin t〉
(b) r2(t) = 〈t, cos 2t, sin 2t〉
(c) r3(t) = 〈1, t, t〉
solution

(a) This function traces the curve 〈cos 2t, cos t〉 on the xy-plane. Using the identity cos 2t = 2 cos2 t − 1, we have
x = 2y2 − 1. This equation corresponds to Figure 9(iii) which is the projection of curve (C), onto the xy-plane.

(b) The projection of this curve onto the xy-plane is traced by 〈t, cos 2t〉 which is a wave moving in the x-direction as
in Figure 9(i). By Exercise 7 it corresponds to curve (B).

(c) The projection of this curve onto the xy-plane is traced by 〈1, t〉 which is a vertical line in the xy-plane, as in Figure
9(ii). By Exercise 7 it corresponds to curve (A).

9. Match the vector-valued functions (a)–(f) with the space curves (i)–(vi) in Figure 10.

(a) r(t) = 〈
t + 15, e0.08t cos t, e0.08t sin t

〉
(b) r(t) = 〈

cos t, sin t, sin 12t
〉

(c) r(t) =
〈
t, t,

25t

1 + t2

〉
(d) r(t) = 〈

cos3 t, sin3 t, sin 2t
〉

(e) r(t) = 〈
t, t2, 2t

〉
(f) r(t) = 〈

cos t, sin t, cos t sin 12t
〉

y

(i) (ii) (iii)

(iv) (v) (vi)

x

z

y

x

z

y

x

z

y

y

x

x

z

z

y

x

z

FIGURE 10

solution

(a) (v) (b) (i) (c) (ii)

(d) (vi) (e) (iv) (f) (iii)

10. Which of the following curves have the same projection onto the xy-plane?

(a) r1(t) = 〈
t, t2, et

〉
(b) r2(t) = 〈

et , t2, t
〉

(c) r3(t) = 〈
t, t2, cos t

〉
solution The projection onto the xy-plane is obtained by setting the z-component equal to zero. The curves

〈
t, t2, et

〉
and

〈
t, t2, cos t

〉
have the same projection onto the xy-plane, traced by

〈
t, t2, 0

〉
.
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11. Match the space curves (A)–(C) in Figure 11 with their projections (i)–(iii) onto the xy-plane.

y

y

x
x

(A) (B) (C)

(i) (iii)(ii)

z

y

x

z

y

x

z

z

y

x

z

y

x

z

FIGURE 11

solution Observing the curves and the projections onto the xy-plane we conclude that: Projection (i) corresponds to
curve (C); Projection (ii) corresponds to curve (A); Projection (iii) corresponds to curve (B).

12. Describe the projections of the circle r(t) = 〈sin t, 0, 4 + cos t〉 onto the coordinate planes.

solution The projection onto the xy-plane is traced by 〈sin t, 0, 0〉, which is the segment [−1, 1] on the x-axis (since
−1 ≤ sin t ≤ 1). The given circle is contained in the xz-plane, hence the projection on the xz-plane is the circle itself.
We identify this circle. Since x = sin t and z = 4 + cos t , we have:

x2 + (z − 4)2 = sin2 t + cos2 t = 1

This is the circle of radius 1 centered at (0, 0, 4). The projection onto the yz-plane is traced by 〈0, 0, 4 + cos t〉, which is
the segment [3, 5] on the z-axis (since 3 = 4 − 1 ≤ 4 + cos t ≤ 4 + 1 = 5).

In Exercises 13–16, the function r(t) traces a circle. Determine the radius, center, and plane containing the circle.

13. r(t) = (9 cos t)i + (9 sin t)j

solution Since x(t) = 9 cos t , y(t) = 9 sin t we have:

x2 + y2 = 81 cos2 t + 81 sin2 t = 81(cos2 t + sin2 t) = 81

This is the equation of a circle with radius 9 centered at the origin. The circle lies in the xy-plane.

14. r(t) = 7i + (12 cos t)j + (12 sin t)k

solution We have:

x(t) = 7, y(t) = 12 cos t, z(t) = 12 sin t

Hence,

y(t)2 + z(t)2 = 144 cos2 t + 144 sin2 t = 144
(
cos2 t + sin2 t

) = 144

This is the equation of a circle in the vertical plane x = 7. The circle is centered at the point (7, 0, 0) and its radius is√
144 = 12.

15. r(t) = 〈sin t, 0, 4 + cos t〉
solution x(t) = sin t , z(t) = 4 + cos t , hence:

x2 + (z − 4)2 = sin2 t + cos2 t = 1

y = 0 is the equation of the xz-plane. We conclude that the function traces the circle of radius 1, centered at the point
(0, 0, 4), and contained in the xz-plane.
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16. r(t) = 〈6 + 3 sin t, 9, 4 + 3 cos t〉
solution Since y(t) = 9 the curve is contained in the vertical plane y = 9. By the given equations, x(t) = 6 + 3 sin t

and z = 4 + 3 cos t , hence:

(
x − 6

3

)2
+

(
z − 4

3

)2
= sin2 t + cos2 t = 1

We conclude that the function traces a circle in the vertical plane y = 9, centered at the point (6, 9, 4) and with radius 3.

17. Let C be the curve r(t) = 〈t cos t, t sin t, t〉.
(a) Show that C lies on the cone x2 + y2 = z2.

(b) Sketch the cone and make a rough sketch of C on the cone.

solution x = t cos t , y = t sin t and z = t , hence:

x2 + y2 = t2 cos2 t + t2 sin2 t = t2(cos2 t + sin2 t
) = t2 = z2.

x2 + y2 = z2 is the equation of a circular cone, hence the curve lies on a circular cone. As the height z = t increases
linearly with time, the x and y coordinates trace out points on the circles of increasing radius. We obtain the following
curve:

x

y

z

r(t) = 〈t cos t, t sin t, t〉

18. Use a computer algebra system to plot the projections onto the xy- and xz-planes of the curve r(t) =
〈t cos t, t sin t, t〉 in Exercise 17.

solution The projection of the curve onto the xy-plane is traced by the function 〈t cos t, t sin t, 0〉. The curve is the
following spiral:

20
x

−20

−20

−15

−5

5

10

15

y

The projection of the curve onto the xz-plane is traced by 〈t cos t, 0, t〉, which is a wave with increasing amplitude moving
in the z direction as shown in the following figure:

2015105
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In Exercises 19 and 20, let

r(t) = 〈sin t, cos t, sin t cos 2t〉
as shown in Figure 12.

y

x

z

y

x

z

FIGURE 12

19. Find the points where r(t) intersects the xy-plane.

solution The curve intersects the xy-plane at the points where z = 0. That is, sin t cos 2t = 0 and so either sin t = 0
or cos 2t = 0. The solutions are, thus:

t = πk or t = π

4
+ πk

2
, k = 0, ±1, ±2, . . .

The values t = πk yield the points: (sin πk, cos πk, 0) =
(

0, (−1)k, 0
)

. The values t = π
4 + πk

2 yield the points:

k = 0 :
(

sin
π

4
, cos

π

4
, 0

)
=

(
1√
2
,

1√
2
, 0

)

k = 1 :
(

sin
3π

4
, cos

3π

4
, 0

)
=

(
1√
2
, − 1√

2
, 0

)

k = 2 :
(

sin
5π

4
, cos

5π

4
, 0

)
=

(
− 1√

2
, − 1√

2
, 0

)

k = 3 :
(

sin
7π

4
, cos

7π

4
, 0

)
=

(
− 1√

2
,

1√
2
, 0

)

(Other values of k do not provide new points). We conclude that the curve intersects the xy-plane at the following points:

(0, 1, 0), (0, −1, 0),
(

1√
2
, 1√

2
, 0

)
,
(

1√
2
, − 1√

2
, 0

)
,
(
− 1√

2
, − 1√

2
, 0

)
,
(
− 1√

2
, 1√

2
, 0

)
20. Show that the projection of r(t) onto the xz-plane is the curve

z = x − 2x3 for − 1 ≤ x ≤ 1

solution The xz-plane projection indicates that y = 0. We are given x = sin t , so −1 ≤ x ≤ 1 and note that from

trigonometry, cos 2t = 1 − 2 sin2 t . Thus

z = sin t cos 2t = sin t (1 − 2 sin2 t) = x(1 − 2x2) = x − 2x3, −1 ≤ x ≤ 1

21. Parametrize the intersection of the surfaces

y2 − z2 = x − 2, y2 + z2 = 9

using t = y as the parameter (two vector functions are needed as in Example 3).

solution We solve for z and x in terms of y. From the equation y2 + z2 = 9 we have z2 = 9 − y2 or z = ±
√

9 − y2.
From the second equation we have:

x = y2 − z2 + 2 = y2 − (
9 − y2) + 2 = 2y2 − 7

Taking t = y as a parameter, we have z = ±
√

9 − t2, x = 2t2 − 7, yielding the following vector parametrization:

r(t) =
〈
2t2 − 7, t, ±

√
9 − t2

〉
, for − 3 ≤ t ≤ 3.
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22. Find a parametrization of the curve in Exercise 21 using trigonometric functions.

solution The curve in Exercise 21 is the intersection of the surfaces y2 − z2 = x − 2, y2 + z2 = 9. The circle

y2 + z2 = 9 is parametrized by y = 3 cos t , z = 3 sin t . Substituting in the first equation and using the identity
cos2 t − sin2 t = cos 2t , gives:

x = 2 + y2 − z2 = 2 + (3 cos t)2 − (3 sin t)2 = 2 + 9
(
cos2 t − sin2 t

) = 2 + 9 cos 2t

We obtain the following trigonometric parametrization:

r(t) = 〈2 + 9 cos 2t, 3 cos t, 3 sin t〉

23. Viviani’s Curve C is the intersection of the surfaces (Figure 13)

x2 + y2 = z2, y = z2

(a) Parametrize each of the two parts of C corresponding to x ≥ 0 and x ≤ 0, taking t = z as parameter.
(b) Describe the projection of C onto the xy-plane.
(c) Show that C lies on the sphere of radius 1 with center (0, 1, 0). This curve looks like a figure eight lying on a sphere
[Figure 13(B)].

y

y = z2
Viviani's curve

(A) (B)  Viviani’s curve viewed
          from the negative y-axis.

x

x2 + y2 = z2

z

FIGURE 13 Viviani’s curve is the intersection of the surfaces x2 + y2 = z2 and y = z2.

solution
(a) We must solve for y and x in terms of z (which is a parameter). We get:

y = z2

x2 = z2 − y2 ⇒ x = ±
√

z2 − y2 = ±
√

z2 − z4

Here, the ± from x = ±
√

z2 − z4 represents the two parts of the parametrization: + for x ≥ 0, and − for x ≤ 0.
Substituting the parameter z = t we get:

y = t2, x = ±
√

t2 − t4 = ±t
√

1 − t2.

We obtain the following parametrization:

r(t) =
〈
±t

√
1 − t2, t2, t

〉
for − 1 ≤ t ≤ 1 (1)

(b) The projection of the curve onto the xy-plane is the curve on the xy-plane obtained by setting the z-coordinate of
r(t) equal to zero. We obtain the following curve:〈

±t
√

1 − t2, t2, 0
〉
, −1 ≤ t ≤ 1

We also note that since x = ±t
√

1 − t2, then x2 = t2(1 − t2), but also y = t2, so that gives us the equation x2 = y(1 − y)

for the projection onto the xy plane. We rewrite this as follows.

x2 = y(1 − y) ⇒ x2 + y2 − y = 0

x2 + y2 − y + 1/4 = 1/4

x2 + (y − 1/2)2 = (1/2)2

We can now identify this projection as a circle in the xy plane, with radius 1/2, centered at the xy point (0, 1/2).
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(c) The equation of the sphere of radius 1 with center (0, 1, 0) is:

x2 + (y − 1)2 + z2 = 1 (2)

To show that C lies on this sphere, we show that the coordinates of the points on C (given in (1)) satisfy the equation of
the sphere. Substituting the coordinates from (1) into the left side of (2) gives:

x2 + (y − 1)2 + z2 =
(
±t

√
1 − t2

)2 + (t2 − 1)2 + t2 = t2(1 − t2) + (t2 − 1)2 + t2

= (t2 − 1)(t2 − 1 − t2) + t2 = 1

We conclude that the curve C lies on the sphere of radius 1 with center (0, 1, 0).

24. Show that any point on x2 + y2 = z2 can be written in the form (z cos θ, z sin θ, z) for some θ . Use this to find a
parametrization of Viviani’s curve (Exercise 23) with θ as parameter.

solution We first verify that x = z cos θ , y = z sin θ , and z = z satisfy the equation of the surface:

x2 + y2 = z2 cos2 θ + z2 sin2 θ = z2
(

cos2 θ + sin2 θ
)

= z2

We now show that if (x, y, z) satisfies x2 + y2 = z2, then there exists a value of θ such that x = z cos θ , y = z sin θ .
Since x2 + y2 = z2, we have |x| ≤ |z| and |y| ≤ |z|. If z = 0, then also x = y = 0 and any value of θ is adequate. If
z �= 0 then ‖ x

z ‖ ≤ 1 and ‖ y
z ‖ ≤ 1, hence there exists θ0 such that x

z = cos θ0. Hence,

y

z
= ±

√
z2 − x2

z2
= ±

√
1 −

(
x

z

)2
= ±

√
1 − cos2 θ0 = ± sin θ0

If x
z and y

z are both positive, we choose θ0 such that 0 < θ0 < π
2 . If x

z > 0 and y
z < 0 we choose θ0 such that

3π
2 < θ0 < 2π . If x

z < 0 and y
z < 0 we choose θ0 such that π < θ0 < 3π

2 , and if x
z < 0 and y

z > 0 we choose θ0 such
that π

2 < θ0 < π . In either case we can represent the points on the surface as required. Viviani’s curve is the intersection

of the surfaces x2 + y2 = z2 and x = z2. The points on these surfaces are of the form:

x2 + y2 = z2: (z cos θ, z sin θ, z)

x = z2: (z2, y, z)
(1)

The points (x, y, z) on the intersection curve must satisfy the following equations:{
z2 = z cos θ

y = z sin θ

The first equation implies that z = 0 or z = cos θ . The second equation implies that y = 0 or y = cos θ sin θ = 1
2 sin 2θ .

The x coordinate is obtained by substituting z = cos θ in x = z cos θ (or in x = z2). That is, x = cos2 θ . We obtain the
following vector parametrization of the curve:

r(t) =
〈
cos2 θ,

1

2
sin 2θ, cos θ

〉

25. Use sine and cosine to parametrize the intersection of the cylinders x2 + y2 = 1 and x2 + z2 = 1 (use two
vector-valued functions). Then describe the projections of this curve onto the three coordinate planes.

solution The circle x2 + z2 = 1 in the xz-plane is parametrized by x = cos t , z = sin t , and the circle x2 + y2 = 1
in the xy-plane is parametrized by x = cos s, y = sin s. Hence, the points on the cylinders can be written in the form:

x2 + z2 = 1: 〈cos t, y, sin t〉 , 0 ≤ t ≤ 2π

x2 + y2 = 1: 〈cos s, sin s, z〉 , 0 ≤ t ≤ 2π

The points (x, y, z) on the intersection of the two cylinders must satisfy the following equations:

cos t = cos s

y = sin s

z = sin t

The first equation implies that s = ±t + 2πk. Substituting in the second equation gives y = sin (±t + 2πk) = sin (±t) =
± sin t . Hence, x = cos t , y = ± sin t , z = sin t . We obtain the following vector parametrization of the intersection:

r(t) = 〈cos t, ± sin t, sin t〉
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The projection of the curve on the xy-plane is traced by 〈cos t, ± sin t, 0〉 which is the unit circle in this plane. The
projection of the curve on the xz-plane is traced by 〈cos t, 0, sin t〉 which is the unit circle in the xz-plane. The projection
of the curve on the yz-plane is traced by 〈0, ± sin t, sin t〉 which is the two segments z = y and z = −y for −1 ≤ y ≤ 1.

26. Use hyperbolic functions to parametrize the intersection of the surfaces x2 − y2 = 4 and z = xy.

solution x = 2 cosh t and y = 2 sinh t satisfy the equation of the (hyperbolic) cylinder since:

x2 − y2 = 4cosh2t − 4sinh2t = 4(cosh2t − sinh2t) = 4 · 1 = 4

To find a parametrization of the curve of intersection, we substitute x = 2 cosh t , y = 2 sinh t in the equation of the
surface z = xy and solve for z. This gives z = 4 cosh t sinh t . We obtain the following parametrization of the curve of
intersection (valid for all values of t):

r(t) = 〈2 cosh t, 2 sinh t, 4 sinh t cosh t〉 .

27. Use sine and cosine to parametrize the intersection of the surfaces x2 + y2 = 1 and z = 4x2 (Figure 14).

y

x

z

FIGURE 14 Intersection of the surfaces x2 + y2 = 1 and z = 4x2.

solution The points on the cylinder x2 + y2 = 1 and on the parabolic cylinder z = 4x2 can be written in the form:

x2 + y2 = 1: 〈cos t, sin t, z〉
z = 4x2:

〈
x, y, 4x2

〉
The points (x, y, z) on the intersection curve must satisfy the following equations:

x = cos t

y = sin t

z = 4x2
⇒ x = cos t, y = sin t, z = 4 cos2 t

We obtain the vector parametrization:

r(t) = 〈
cos t, sin t, 4 cos2 t

〉
, 0 ≤ t ≤ 2π

Using the CAS we obtain the following curve:

z

–2
x

y

1–1

2

4

2
1–1

r(t) = 〈
cos t, sin t, 4 cos2 t

〉
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In Exercises 28–30, two paths r1(t) and r2(t) intersect if there is a point P lying on both curves. We say that r1(t) and
r2(t) collide if r1(t0) = r2(t0) at some time t0.

28. Which of the following statements are true?

(a) If r1 and r2 intersect, then they collide.
(b) If r1 and r2 collide, then they intersect.
(c) Intersection depends only on the underlying curves traced by r1 and r2, but collision depends on the actual parametriza-
tions.

solution
(a) This statement is wrong. r1(t) and r2(t) may intersect but the point of intersection may correspond to different values
of the parameters in the two curves, as illustrated in the following example:

r1(t) = 〈cos t, sin t〉 (the unit circle)

r2(s) = 〈s, 1〉 (the horizontal line y = 1)

x

(0, 1)

y

The point of intersection (0, 1) corresponds to t = π
2 and s = 0.

(b) This statement is true. If r1(t0) = r2(t0), then the head of the vector r1(t0) (or r2(t0)) is a point of intersection of
the two curves.
(c) The statement is true. Intersection is a geometric property of the curves and it is independent of the parametrization
we choose for the curves. Collision depends on the actual parametrization. Notice that if we parametrize the line y = 1
in the example given in part (a) by r3(s) = 〈

s − π
2 , 1

〉
, then r1

(
π
2

) = r3
(
π
2

)
hence the two paths collide.

29. Determine whether r1 and r2 collide or intersect:

r1(t) = 〈
t2 + 3, t + 1, 6t−1〉

r2(t) = 〈
4t, 2t − 2, t2 − 7

〉

solution To determine if the paths collide, we must examine whether the following equations have a solution:

⎧⎪⎨
⎪⎩

t2 + 3 = 4t

t + 1 = 2t − 2
6

t
= t2 − 7

We simplify to obtain:

t2 − 4t + 3 = (t − 3)(t − 1) = 0

t = 3

t3 − 7t − 6 = 0

The solution of the second equation is t = 3. This is also a solution of the first and the third equations. It follows that
r1(3) = r2(3) so the curves collide. The curves also intersect at the point where they collide. We now check if there are
other points of intersection by solving the following equation:

r1(t) = r2(s)〈
t2 + 3, t + 1,

6

t

〉
= 〈

4s, 2s − 2, s2 − 7
〉

Equating coordinates we get: ⎧⎪⎨
⎪⎩

t2 + 3 = 4s

t + 1 = 2s − 2
6

t
= s2 − 7
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By the second equation, t = 2s − 3. Substituting into the first equation yields:

(2s − 3)2 + 3 = 4s

4s2 − 12s + 9 + 3 = 4s

s2 − 4s + 3 = 0 ⇒ s1 = 1, s2 = 3

Substituting s1 = 1 and s2 = 3 into the second equation gives:

t1 + 1 = 2 · 1 − 2 ⇒ t1 = −1

t2 + 1 = 2 · 3 − 2 ⇒ t2 = 3

The solutions of the first two equations are:

t1 = −1, s1 = 1; t2 = 3, s2 = 3

We check if these solutions satisfy the third equation:

6

t1
= 6

−1
= −6, s2

1 − 7 = 12 − 7 = −6 ⇒ 6

t1
= s2

1 − 7

6

t2
= 6

3
= 2, s2

2 − 7 = 32 − 7 = 2 ⇒ 6

t2
= s2

2 − 7

We conclude that the paths intersect at the endpoints of the vectors r1(−1) and r1(3) (or equivalently r2(1) and r2(3)).
That is, at the points (4, 0, −6) and (12, 4, 2).

30. Determine whether r1 and r2 collide or intersect:

r1(t) = 〈
t, t2, t3〉, r2(t) = 〈

4t + 6, 4t2, 7 − t
〉

solution The two paths collide if there exists a value of t such that:〈
t, t2, t3〉 = 〈

4t + 6, 4t2, 7 − t
〉

Equating corresponding components we obtain the following equations:

t = 4t + 6

t2 = 4t2

t3 = 7 − t

The second equation implies that t = 0, but this value does not satisfy the other equations. Therefore, the equations have
no solution, which means that the paths do not collide. The two paths intersect if there exist values of t and s such that:〈

t, t2, t3〉 = 〈
4s + 6, 4s2, 7 − s

〉
Or equivalently:

t = 4s + 6

t2 = 4s2 (1)

t3 = 7 − s

The second equation implies that t1 = 2s or t2 = −2s. Substituting t1 = 2s and t2 = −2s in the first equation gives:

t1 = 2s : 2s = 4s + 6 ⇒ 2s = −6 ⇒ s1 = −3

t2 = −2s : −2s = 4s + 6 ⇒ 6s = −6 ⇒ s2 = −1

The solutions of the first two equations are thus

(t1, s1) = (−6, −3); (t2, s2) = (2, −1)

(t1, s1) does not satisfy the third equation whereas (t2, s2) does. We conclude that the equations in (1) have a solution
t = 2, s = −1, hence the two paths intersect.

In Exercises 31–40, find a parametrization of the curve.

31. The vertical line passing through the point (3, 2, 0)

solution The points of the vertical line passing through the point (3, 2, 0) can be written as (3, 2, z). Using z = t as
parameter we get the following parametrization:

r(t) = 〈3, 2, t〉 , −∞ < t < ∞



April 19, 2011

480 C H A P T E R 13 CALCULUS OF VECTOR-VALUED FUNCTIONS (LT CHAPTER 14)

32. The line passing through (1, 0, 4) and (4, 1, 2)

solution We use the vector parametrization of the line passing through the point (x0, y0, z0) = (1, 0, 4) in the direction
of v = 〈4 − 1, 1 − 0, 2 − 4〉 = 〈3, 1, −2〉. We obtain:

r(t) = 〈1, 0, 4〉 + t 〈3, 1, −2〉 = 〈1 + 3t, t, 4 − 2t〉

33. The line through the origin whose projection on the xy-plane is a line of slope 3 and whose projection on the yz-plane
is a line of slope 5 (i.e., �z/�y = 5)

solution We denote by (x, y, z) the points on the line. The projection of the line on the xy-plane is the line through
the origin having slope 3, that is the line y = 3x in the xy-plane. The projection of the line on the yz-plane is the line
through the origin with slope 5, that is the line z = 5y. Thus, the points on the desired line satisfy the following equalities:

y = 3x

z = 5y
⇒ y = 3x, z = 5 · 3x = 15x

We conclude that the points on the line are all the points in the form (x, 3x, 15x). Using x = t as parameter we obtain
the following parametrization:

r(t) = 〈t, 3t, 15t〉 , −∞ < t < ∞.

34. The horizontal circle of radius 1 with center (2, −1, 4)

solution The projection of the circle on the xy-plane is the circle of radius 1 centered at the point (2, −1). This circle
has the parametrization:

x = 2 + cos t, y = −1 + sin t

Since the circle is contained in the horizontal plane z = 4, the z-coordinates of the points on the circle is z = 4. We obtain
the following parametrization:

r(t) = 〈2 + cos t, −1 + sin t, 4〉 , 0 ≤ t ≤ 2π.

35. The circle of radius 2 with center (1, 2, 5) in a plane parallel to the yz-plane

solution The circle is parallel to the yz-plane and centered at (1, 2, 5), hence the x-coordinates of the points on the
circle are x = 1. The projection of the circle on the yz-plane is a circle of radius 2 centered at (2, 5). This circle is
parametrized by:

y = 2 + 2 cos t, z = 5 + 2 sin t

We conclude that the points on the required circle can be written as (1, 2 + 2 cos t, 5 + 2 sin t). This gives the following
parametrization:

r(t) = 〈1, 2 + 2 cos t, 5 + 2 sin t〉 , 0 ≤ t ≤ 2π.

36. The ellipse
(x

2

)2 +
(y

3

)2 = 1 in the xy-plane, translated to have center (9, −4, 0)

solution We first parametrize the ellipse
(
x
2

)2 + ( y
3

)2 = 1 by:

x = 2 cos t, y = 3 sin t, 0 ≤ t ≤ 2π; or r1(t) = 〈2 cos t, 3 sin t〉 , 0 ≤ t ≤ 2π

We verify that the above is a parametrization of the ellipse by showing that x = 2 cos t , y = 3 sin t satisfy the equation
of the ellipse:

(x

2

)2 +
(y

3

)2 =
(

2 cos t

2

)2
+

(
3 sin t

3

)2
= cos2 t + sin2 t = 1

We now translate the ellipse so that it remains in the xy-plane, with a center at (9, −4, 0). This is done by translating
along the vector 〈9, −4, 0〉, considering the ellipse as a curve in R3. We get:

r(t) = 〈2 cos t, 3 sin t, 0〉 + 〈9, −4, 0〉 = 〈9 + 2 cos t, −4 + 3 sin t, 0〉
which holds for 0 ≤ t ≤ 2π.

37. The intersection of the plane y = 1
2 with the sphere x2 + y2 + z2 = 1

solution Substituting y = 1
2 in the equation of the sphere gives:

x2 +
(

1

2

)2
+ z2 = 1 ⇒ x2 + z2 = 3

4
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This circle in the horizontal plane y = 1
2 has the parametrization x =

√
3

2 cos t , z =
√

3
2 sin t . Therefore, the points on

the intersection of the plane y = 1
2 and the sphere x2 + y2 + z2 = 1, can be written in the form

(√
3

2 cos t, 1
2 ,

√
3

2 sin t
)

,

yielding the following parametrization:

r(t) =
〈√

3

2
cos t,

1

2
,

√
3

2
sin t

〉
, 0 ≤ t ≤ 2π.

38. The intersection of the surfaces

z = x2 − y2 and z = x2 + xy − 1

solution We solve for x and z in terms of y. Equating the two equations and solving for x gives:

x2 − y2 = x2 + xy − 1

−y2 = xy − 1

xy = 1 − y2

Notice that on the intersection curve, y �= 0 (since y = 0 gives z = x2 and z = x2 − 1, which are not equal for any z).
Dividing by y we get:

x = 1 − y2

y
= −y + 1

y

We now substitute x in terms of y in the equation z = x2 − y2, to obtain:

z =
(

1 − y2

y

)2

− y2 = (1 − y2)
2 − y4

y2
= 1 − 2y2

y2
= −2 + 1

y2

Therefore the points of the intersection can be written in the form
(
−y + 1

y , y, −2 + 1
y2

)
. Choosing y = t as parameter

we get the following parametrization:

r(t) =
〈
−t + 1

t
, t, −2 + 1

t2

〉
.

39. The ellipse
(x

2

)2 +
( z

3

)2 = 1 in the xz-plane, translated to have center (3, 1, 5) [Figure 15(A)]

(A)

3

1

(B)

y

x

zz

y

x
3

1

FIGURE 15 The ellipses described in Exercises 39 and 40.

solution The translated ellipse is in the vertical plane y = 1, hence the y-coordinate of the points on this ellipse is
y = 1. The x and z coordinates satisfy the equation of the ellipse:(

x − 3

2

)2
+

(
z − 5

3

)2
= 1.

This ellipse is parametrized by the following equations:

x = 3 + 2 cos t, z = 5 + 3 sin t.

Therefore, the points on the translated ellipse can be written as (3 + 2 cos t, 1, 5 + 3 sin t). This gives the following
parametrization:

r(t) = 〈3 + 2 cos t, 1, 5 + 3 sin t〉 , 0 ≤ t ≤ 2π.
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40. The ellipse
(y

2

)2 +
( z

3

)2 = 1, translated to have center (3, 1, 5) [Figure 15(B)]

solution The translated ellipse is contained in the plane x = 3, hence the x-coordinate of the points on the ellipse is
x = 3. The y and z coordinates satisfy the equation of the ellipse:

(
y − 1

2

)2
+

(
z − 5

3

)2
= 1

This ellipse is parametrized by the equations:

y = 1 + 2 cos t, z = 5 + 3 sin t

We conclude that the points on the translated ellipse can be written as (3, 1 + 2 cos t, 5 + 3 sin t), which gives the following
parametrization:

r(t) = 〈3, 1 + 2 cos t, 5 + 3 sin t〉 , 0 ≤ t ≤ 2π.

Further Insights and Challenges
41. Sketch the curve parametrized by r(t) = 〈|t | + t, |t | − t〉.
solution We have:

|t | + t =
{

0 t ≤ 0

2t t > 0
; |t | − t =

{
2t t ≤ 0

0 t > 0

As t increases from −∞ to 0, the x-coordinate is zero and the y-coordinate is positive and decreasing to zero. As t

increases from 0 to +∞, the y-coordinate is zero and the x-coordinate is positive and increasing to +∞. We obtain the
following curve:

x

y

r(t) = 〈|t | + t, |t | − t〉

42. Find the maximum height above the xy-plane of a point on r(t) = 〈
et , sin t, t (4 − t)

〉
.

solution The height of a point is the value of the z-coordinate of the point. Therefore we need to maximize the function
z = t (4 − t). z(t) is a quadratic function having the roots t = 0 and t = 4, hence the maximum value is obtained at the
midpoint of the interval 0 ≤ t ≤ 4, that is at t = 2. The corresponding value of z is:

z max = z(2) = 2 (4 − 2) = 4

The point of maximum height is, thus,

(e2, sin 2, 4) ≈ (7.39, 0.91, 4)

43. Let C be the curve obtained by intersecting a cylinder of radius r and a plane. Insert two spheres of radius
r into the cylinder above and below the plane, and let F1 and F2 be the points where the plane is tangent to the spheres
[Figure 16(A)]. Let K be the vertical distance between the equators of the two spheres. Rediscover Archimedes’s proof
that C is an ellipse by showing that every point P on C satisfies

PF1 + PF2 = K 2

Hint: If two lines through a point P are tangent to a sphere and intersect the sphere at Q1 and Q2 as in Figure 16(B), then
the segments PQ1 and PQ2 have equal length. Use this to show that PF1 = PR1 and PF2 = PR2.
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(A)

R2

(B)

Q1
Q2

F2

F1P

P

K

R1

FIGURE 16

solution To show that C is an ellipse, we show that every point P on C satisfies:

F1P + F2P = K

We denote the points of intersection of the vertical line through P with the equators of the two spheres by R1 and R2 (see
figure).

R2

F2

F1P
K

R1

We denote by O1 and O2 the centers of the spheres.

F1

O1

P

r

Since F1 is the tangency point, the radius O1F1 is perpendicular to the plane of the curve C, and therefore it is orthogonal
to the segment PF1 on this plane. Hence, �O1F1P is a right triangle and by Pythagoras’ Theorem we have:

O1F1
2 + PF1

2 = O1P
2

r2 + PF1
2 = O1P

2 ⇒ PF1 =
√

O1P
2 − r2 (1)

R1

O1

P

r

�O1R1P is also a right triangle, hence by Pythagoras’ Theorem we have:

O1R1
2 + R1P

2 = O1P
2
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r2 + R1P
2 = O1P

2 ⇒ PR1 =
√

O1P
2 − r2 (2)

Combining (1) and (2) we get:

PF1 = PR1 (3)

Similarly we have:

PF2 = PR2 (4)

We now combine (3), (4) and the equality PR1 + PR2 = K to obtain:

F1P + F2P = PR1 + PR2 = K

Thus, the sum of the distances of the points P on C to the two fixed points F1 and F2 is a constant K > 0, hence C is an
ellipse.

44. Assume that the cylinder in Figure 16 has equation x2 + y2 = r2 and the plane has equation z = ax + by. Find a
vector parametrization r(t) of the curve of intersection using the trigonometric functions cos t and sin t .

solution Since x2 + y2 = r2, it is convenient to make x = r cos t and y = r sin t with 0 ≤ t ≤ 2π . Then the curve
of intersection using these trigonometric functions will be z = ar cos t + br sin t and one vector parameterization for this
curve is

r(t) = 〈r cos t, r sin t, ar cos t + br sin t〉 , 0 ≤ t ≤ 2π.

45. Now reprove the result of Exercise 43 using vector geometry.Assume that the cylinder has equationx2 + y2 =
r2 and the plane has equation z = ax + by.

(a) Show that the upper and lower spheres in Figure 16 have centers

C1 =
(

0, 0, r
√

a2 + b2 + 1
)

C2 =
(

0, 0, −r
√

a2 + b2 + 1
)

(b) Show that the points where the plane is tangent to the sphere are

F1 = r√
a2 + b2 + 1

(
a, b, a2 + b2)

F2 = −r√
a2 + b2 + 1

(
a, b, a2 + b2)

Hint: Show that C1F1 and C2F2 have length r and are orthogonal to the plane.
(c) Verify, with the aid of a computer algebra system, that Eq. (2) holds with

K = 2r
√

a2 + b2 + 1

To simplify the algebra, observe that since a and b are arbitrary, it suffices to verify Eq. (2) for the point P = (r, 0, ar).

solution
(a) and (b) Since F1 is the tangency point of the sphere and the plane, the radius to F1 is orthogonal to the plane. Therefore
to show that the center of the sphere is at C1 and the tangency point is the given point we must show that:

‖−−−→
C1F1‖ = r (1)

−−−→
C1F1 is orthogonal to the plane. (2)

We compute the vector
−−−→
C1F1:

−−−→
C1F1 =

〈
ra√

a2 + b2 + 1
,

rb√
a2 + b2 + 1

,
r(a2 + b2)√
a2 + b2 + 1

− r
√

a2 + b2 + 1

〉
= r√

a2 + b2 + 1
〈a, b, −1〉

Hence,

‖−−−→
C1F1‖ = r√

a2 + b2 + 1
‖ 〈a, b, −1〉 ‖ = r√

a2 + b2 + 1

√
a2 + b2 + (−1)2 = r

We, thus, proved that (1) is satisfied. To show (2) we must show that
−−−→
C1F1 is parallel to the normal vector 〈a, b, −1〉 to

the plane z = ax + by (i.e., ax + by − z = 0). The two vectors are parallel since by (1)
−−−→
C1F1 is a constant multiple of

〈a, b, −1〉. In a similar manner one can show (1) and (2) for the vector
−−−→
C2F2.
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(c) This is an extremely challenging problem. As suggested in the book, we use P = (r, 0, ar), and we also use the
expressions for F1 and F2 as given above. This gives us:

PF1 =
√(

1 + 2 a2 + b2 − 2 a
√

1 + a2 + b2
)

r2

PF2 =
√(

1 + 2 a2 + b2 + 2 a
√

1 + a2 + b2
)

r2

Their sum is not very inspiring:

PF1 + PF2 =
√(

1 + 2 a2 + b2 − 2 a
√

1 + a2 + b2
)

r2 +
√(

1 + 2 a2 + b2 + 2 a
√

1 + a2 + b2
)

r2

Let us look, instead, at (PF1 + PF2)2, and show that this is equal to K2. Since everything is positive, this will imply
that PF1 + PF2 = K , as desired.

(PF1 + PF2)2 = 2 r2 + 4 a2 r2 + 2 b2 r2 + 2
√

r4 + 2b2r4 + b4r4

= 2 r2 + 4 a2 r2 + 2 b2 r2 + 2 (1 + b2)r2 = 4r2(1 + a2 + b2) = K2

13.2 Calculus of Vector-Valued Functions (LT Section 14.2)

Preliminary Questions
1. State the three forms of the Product Rule for vector-valued functions.

solution The Product Rule for scalar multiple f (t) of a vector-valued function r(t) states that:

d

dt
f (t)r(t) = f (t)r′(t) + f ′(t)r(t)

The Product Rule for dot products states that:

d

dt
r1(t) · r2(t) = r1(t) · r′

2(t) + r′
1(t) · r2(t)

Finally, the Product Rule for cross product is

d

dt
r1(t) × r2(t) = r1(t) × r′

2(t) + r′
1(t) × r2(t).

In Questions 2–6, indicate whether the statement is true or false, and if it is false, provide a correct statement.

2. The derivative of a vector-valued function is defined as the limit of the difference quotient, just as in the scalar-valued
case.

solution The statement is true. The derivative of a vector-valued function r(t) is defined a limit of the difference
quotient:

r′(t) = lim
t→0

r (t + h) − r(t)
h

in the same way as in the scalar-valued case.

3. There are two Chain Rules for vector-valued functions: one for the composite of two vector-valued functions and one
for the composite of a vector-valued and a scalar-valued function.

solution This statement is false. A vector-valued function r(t) is a function whose domain is a set of real numbers
and whose range consists of position vectors. Therefore, if r1(t) and r2(t) are vector-valued functions, the composition
“(r1 · r2)(t) = r1(r2(t))” has no meaning since r2(t) is a vector and not a real number. However, for a scalar-valued
function f (t), the composition r(f (t)) has a meaning, and there is a Chain Rule for differentiability of this vector-valued
function.

4. The terms “velocity vector” and “tangent vector” for a path r(t) mean one and the same thing.

solution This statement is true.

5. The derivative of a vector-valued function is the slope of the tangent line, just as in the scalar case.

solution The statement is false. The derivative of a vector-valued function is again a vector-valued function, hence
it cannot be the slope of the tangent line (which is a scalar). However, the derivative, r′(t0) is the direction vector of the
tangent line to the curve traced by r(t), at r(t0).
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6. The derivative of the cross product is the cross product of the derivatives.

solution The statement is false, since usually,

d

dt
r1(t) × r2(t) �= r′

1(t) × r′
2(t)

The correct statement is the Product Rule for Cross Products. That is,

d

dt
r1(t) × r2(t) = r1(t) × r′

2(t) + r′
1(t) × r2(t)

7. State whether the following derivatives of vector-valued functions r1(t) and r2(t) are scalars or vectors:

(a)
d

dt
r1(t) (b)

d

dt

(
r1(t) · r2(t)

)
(c)

d

dt

(
r1(t) × r2(t)

)
solution (a) vector, (b) scalar, (c) vector.

Exercises
In Exercises 1–6, evaluate the limit.

1. lim
t→3

〈
t2, 4t,

1

t

〉

solution By the theorem on vector-valued limits we have:

lim
t→3

〈
t2, 4t,

1

t

〉
=

〈
lim
t→3

t2, lim
t→3

4t, lim
t→3

1

t

〉
=

〈
9, 12,

1

3

〉
.

2. lim
t→π

sin 2t i + cos tj + tan 4tk

solution We compute the limit of each component. That is:

lim
t→π

(sin 2t i + cos tj + tan 4tk) =
(

lim
t→π

sin 2t

)
i +

(
lim
t→π

cos t

)
j +

(
lim
t→π

tan 4t

)
k

= (sin 2π) i + (cos π) j + (tan 4π) k = −j.

3. lim
t→0

e2t i + ln(t + 1)j + 4k

solution Computing the limit of each component, we obtain:

lim
t→0

(
e2t i + ln (t + 1) j + 4k

)
=

(
lim
t→0

e2t

)
i +

(
lim
t→0

ln(t + 1)

)
j +

(
lim
t→0

4

)
k = e0i + (ln 1)j + 4k = i + 4k

4. lim
t→0

〈
1

t + 1
,
et − 1

t
, 4t

〉

solution We use the theorem on vector-valued limits and L’Hôpital’s rule to write:

lim
t→0

〈
1

t + 1
,
et − 1

t
, 4t

〉
=

〈
lim
t→0

1

t + 1
, lim
t→0

et − 1

t
, lim
t→0

4t

〉
=

〈
1, lim

t→0

et

1
, 0

〉
= 〈1, 1, 0〉 .

5. Evaluate lim
h→0

r(t + h) − r(t)
h

for r(t) =
〈
t−1, sin t, 4

〉
.

solution This limit is the derivative dr
dt

. Using componentwise differentiation yields:

lim
h→0

r (t + h) − r(t)
h

= dr
dt

=
〈

d

dt

(
t−1

)
,

d

dt
(sin t) ,

d

dt
(4)

〉
=

〈
− 1

t2
, cos t, 0

〉
.
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6. Evaluate lim
t→0

r(t)
t

for r(t) = 〈sin t, 1 − cos t, −2t〉.

solution Since r(0) = 〈sin 0, 1 − cos 0, −2 · 0〉 = 〈0, 0, 0〉 we may think of the limit lim
t→0

r(t)
t as a derivative and

compute it using componentwise differentiation. That is,

lim
t→0

r(t)
t

= lim
t→0

r(t) − r(0)

t
= lim

h→0

r (0 + h) − r(0)

h
= dr

dt

∣∣∣∣
t=0

=
〈

d

dt
(sin t) ,

d

dt
(1 − cos t) ,

d

dt
(−2t)

〉 ∣∣∣∣
t=0

= 〈cos t, sin t, −2〉
∣∣∣∣
t=0

= 〈cos 0, sin 0, −2〉 = 〈1, 0, −2〉

In Exercises 7–12, compute the derivative.

7. r(t) = 〈
t, t2, t3〉

solution Using componentwise differentiation we get:

dr
dt

=
〈

d

dt
(t),

d

dt
(t2),

d

dt
(t3)

〉
=

〈
1, 2t, 3t2

〉

8. r(t) = 〈
7 − t, 4

√
t, 8

〉
solution Using componentwise differentiation we get:

dr
dt

=
〈

d

dt
(7 − t),

d

dt
(4

√
t),

d

dt
(8)

〉
=

〈
−1, 2t−1/2, 0

〉
=

〈
−1,

2√
t
, 0

〉

9. r(s) = 〈
e3s , e−s , s4〉

solution Using componentwise differentiation we get:

dr
ds

=
〈

d

ds
(e3s ),

d

ds
(e−s ),

d

ds
(s4)

〉
=

〈
3e3s , −e−s , 4s3

〉

10. b(t) =
〈
e3t−4, e6−t , (t + 1)−1

〉
solution Using componentwise differentiation we get:

db
dt

=
〈

d

dt
(e3t−4),

d

dt
(e6−t ),

d

dt
((t + 1)−1)

〉
=

〈
3e3t−4, −e6−t ,

−1

(t + 1)2

〉

11. c(t) = t−1i − e2tk

solution Using componentwise differentiation we get:

c′(t) = (
t−1)′i − (

e2t
)′

k = −t−2i − 2e2tk

12. a(θ) = (cos 3θ)i + (sin2 θ)j + (tan θ)k

solution Using componentwise differentiation we get:

a′(θ) = −3 sin 3θ i + 2 sin θ cos θ j + sec2 θk

13. Calculate r′(t) and r′′(t) for r(t) = 〈
t, t2, t3〉.

solution We perform the differentiation componentwise to obtain:

r′(t) = 〈
(t)′, (t2)

′
, (t3)

′〉 = 〈
1, 2t, 3t2〉

We now differentiate the derivative vector to find the second derivative:

r′′(t) = d

dt

〈
1, 2t, 3t2〉 = 〈0, 2, 6t〉 .
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14. Sketch the curve r(t) = 〈
1 − t2, t

〉
for −1 ≤ t ≤ 1. Compute the tangent vector at t = 1 and add it to the sketch.

solution We find that

r′(t) = d

dt

〈
1 − t2, t

〉 = 〈−2t, 1〉

and so at t = 1, we have

r′(1) = 〈−2, 1〉
To graph r(t), we note that it satisfies x = 1 − y2. The sketch is shown here, along with the tangent vector at t = 1.

x

y

t = 0

t = 1

t = −1

r'(1) = 〈−2, 1〉

15. Sketch the curve r1(t) = 〈
t, t2〉 together with its tangent vector at t = 1. Then do the same for r2(t) = 〈

t3, t6〉.
solution Note that r1

′(t) = 〈1, 2t〉 and so r1
′(1) = 〈1, 2〉. The graph of r1(t) satisfies y = x2. Likewise, r2

′(t) =〈
3t2, 6t5〉 and so r2

′(1) = 〈3, 6〉. The graph of r2(t) also satisfies y = x2. Both graphs and tangent vectors are given here.

2

r2(t)
1

r1(t)

16. Sketch the cycloid r(t) = 〈
t − sin t, 1 − cos t

〉
together with its tangent vectors at t = π

3 and 3π
4 .

solution The tangent vector r′(t) is the following vector:

r′(t) = d

dt
〈t − sin t, 1 − cos t〉 = 〈1 − cos t, sin t〉

Substituting the given values gives the following vectors:

r′ (π

3

)
=

〈
1 − cos

π

3
, sin

π

3

〉
=

〈
1

2
,

√
3

2

〉

r′
(

3π

4

)
=

〈
1 − cos

3π

4
, sin

3π

4

〉
=

〈
1 +

√
2

2
,

√
2

2

〉

The cycloid r(t) = 〈t − sin t, 1 − cos t〉 and the two tangent vectors are shown in the following figure:

t = 0

y = 2

t = 2p
x

y

1
2

3
2〈  ,     〉

t = p
3

t = 3p
4

2
2

2
2〈1 +      ,     〉

In Exercises 17–20, evaluate the derivative by using the appropriate Product Rule, where

r1(t) = 〈
t2, t3, t

〉
, r2(t) = 〈

e3t , e2t , et
〉

17.
d

dt

(
r1(t) · r2(t)

)
solution

d

dt
(r1(t) · r2(t)) = r1(t) · r′

2(t) + r′
1(t) · r2(t)
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=
〈
t2, t3, t

〉
·
〈
3e3t , 2e2t , et

〉
+

〈
2t, 3t2, 1

〉
·
〈
e3t , e2t , et

〉
= 3t2e3t + 2t3e2t + tet + 2te3t + 3t2e2t + et

= (3t2 + 2t)e3t + (2t3 + 3t2)e2t + (t + 1)et

18.
d

dt

(
t4r1(t)

)
solution

d

dt
(t4r1(t)) = t4r′

1(t) + d

dt
(t4)r1(t)

= t4
〈
2t, 3t2, 1

〉
+ (4t3)

〈
t2, t3, t

〉
=

〈
2t5, 3t6, t4

〉
+

〈
4t5, 4t6, 4t4

〉
=

〈
6t5, 7t6, 5t4

〉

19.
d

dt

(
r1(t) × r2(t)

)
solution

d

dt
(r1(t) × r2(t)) = r1(t) × r′

2(t) + r′
1(t) × r2(t)

=
〈
t2, t3, t

〉
×

〈
3e3t , 2e2t , et

〉
+

〈
2t, 3t2, 1

〉
×

〈
e3t , e2t , et

〉

=
∣∣∣∣∣∣

i j k
t2 t3 t

3e3t 2e2t et

∣∣∣∣∣∣ +
∣∣∣∣∣∣

i j k
2t 3t2 1
e3t e2t et

∣∣∣∣∣∣
= (t3et − 2te2t )i + (3te3t − t2et )j + (2t2e2t − 3t3e3t )k

+ (3t2et − e2t )i + (e3t − 2tet )j + (2te2t − 3t2e3t )k

= [(t3 + 3t2)et − (2t + 1)e2t ]i + [(3t + 1)e3t − (t2 + 2t)et ]j
+ [(2t2 + 2t)e2t − (3t3 + 3t2)e3t ]k

20.
d

dt

(
r(t) · r1(t)

)∣∣∣
t=2

, assuming that

r(2) = 〈2, 1, 0〉 , r′(2) = 〈1, 4, 3〉
solution

d

dt
(r(t)·)r1(t))

∣∣∣∣
t=2

= r(t) · r′
1(t)

∣∣∣∣
t=2

+ r′(t) · r′
1(t)

∣∣∣∣
t=2

= r(t) ·
〈
2t, 3t2, 1

〉 ∣∣∣∣
t=2

+ r′(t) ·
〈
t2, t3, t

〉 ∣∣∣∣
t=2

= r(2) · 〈4, 12, 1〉 + r′(2) · 〈4, 8, 2〉
= 〈2, 1, 0〉 · 〈4, 12, 1〉 + 〈1, 4, 3〉 · 〈4, 8, 2〉
= (8 + 12 + 0) + (4 + 32 + 6) = 62

In Exercises 21 and 22, let

r1(t) = 〈
t2, 1, 2t

〉
, r2(t) = 〈

1, 2, et
〉

21. Compute
d

dt
r1(t) · r2(t)

∣∣∣
t=1

in two ways:

(a) Calculate r1(t) · r2(t) and differentiate.
(b) Use the Product Rule.

solution
(a) First we will calculate r1(t) · r2(t):

r1(t) · r2(t) =
〈
t2, 1, 2t

〉
· 〈1, 2, et

〉
= t2 + 2 + 2tet
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And then differentiating we get:

d

dt
(r1(t) · r2(t)) = d

dt
(t2 + 2 + 2tet ) = 2t + 2tet + 2et

d

dt
(r1(t) · r2(t))

∣∣∣∣
t=1

= 2 + 2e + 2e = 2 + 4e

(b) First we differentiate:

r1(t) =
〈
t2, 1, 2t

〉
, r′

1(t) = 〈2t, 0, 2〉

r2(t) = 〈
1, 2, et

〉
, r′

2(t) = 〈
0, 0, et

〉
Using the Product Rule we see:

d

dt
(r1(t) · r2(t)) = r1(t) · r′

2(t) + r′
1(t) · r2(t)

=
〈
t2, 1, 2t

〉
· 〈0, 0, et

〉 + 〈2t, 0, 2〉 · 〈1, 2, et
〉

= 2tet + 2t + 2et

d

dt
(r1(t) · r2(t))

∣∣∣∣
t=1

= 2e + 2 + 2e = 2 + 4e

22. Compute
d

dt
r1(t) × r2(t)

∣∣∣
t=1

in two ways:

(a) Calculate r1(t) × r2(t) and differentiate.

(b) Use the Product Rule.

solution

(a) First we will calculate r1(t) × r2(t):

r1(t) × r2(t) =
∣∣∣∣∣∣

i j k
t2 1 2t

1 2 et

∣∣∣∣∣∣ = (et − 4t)i + (2t − t2et )j + (2t2 − 1)k

And then differentiating we get:

d

dt
(r1(t) × r2(t))

∣∣∣∣
t=1

= d

dt
((et − 4t)i + (2t − t2et )j + (2t2 − 1)k)

∣∣∣
t=1

= (et − 4)i + (2 − t2et − 2tet )j + (4t)k
∣∣∣
t=1

= (e − 4)i + (2 − 3e)j + 4k

(b) First we differentiate:

r1(t) =
〈
t2, 1, 2t

〉
⇒ r1(1) = 〈1, 1, 2〉

r′
1(1) = 〈2t, 0, 2〉

∣∣∣
t=1

= 〈2, 0, 2〉

r2(t) = 〈
1, 2, et

〉 ⇒ r2(1) = 〈1, 2, e〉
r′

2 = 〈
0, 0, et

〉 ∣∣∣
t=1

= 〈0, 0, e〉

Using the Product Rule we see:

d

dt
(r1(1) × r2(1)) = r1(1) × r′

2(1) + r′
1(1) × r2(1)

=
∣∣∣∣∣∣
i j k
1 1 2
0 0 e

∣∣∣∣∣∣ +
∣∣∣∣∣∣
i j k
2 0 2
1 2 e

∣∣∣∣∣∣
= [ei − ej + 0k] + [−4i + (2 − 2e)j + 4k]
= (e − 4)i + (2 − e − 2e)j + 4k = (e − 4)i + (2 − 3e)j + 4k
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In Exercises 23–26, evaluate
d

dt
r(g(t)) using the Chain Rule.

23. r(t) = 〈
t2, 1 − t

〉
, g(t) = et

solution We first differentiate the two functions:

r′(t) = d

dt

〈
t2, 1 − t

〉
= 〈2t, −1〉

g′(t) = d

dt
(et ) = et

Using the Chain Rule we get:

d

dt
r(g(t)) = g′(t)r′(g(t)) = et

〈
2et , −1

〉 =
〈
2e2t , −et

〉

24. r(t) = 〈
t2, t3〉, g(t) = sin t

solution We first differentiate the two functions:

r′(t) = d

dt

〈
t2, t3

〉
=

〈
2t, 3t2

〉

g′(t) = cos t

Using the Chain Rule we get:

d

dt
r(g(t)) = g′(t)r′(g(t)) = cos t

〈
2 sin t, 3 sin2 t

〉
=

〈
2 sin t cos t, 3 sin2 t cos t

〉

25. r(t) = 〈
et , e2t , 4

〉
, g(t) = 4t + 9

solution We first differentiate the two functions:

r′(t) = d

dt

〈
et , e2t , 4

〉 = 〈
et , 2e2t , 0

〉
g′(t) = d

dt
(4t + 9) = 4

Using the Chain Rule we get:

d

dt
r (g(t)) = g′(t)r′(g(t)) = 4

〈
e4t+9, 2e2(4t+9), 0

〉 = 〈
4e4t+9, 8e8t+18, 0

〉

26. r(t) = 〈4 sin 2t, 6 cos 2t〉, g(t) = t2

solution We differentiate the two functions:

r′(t) = d

dt
〈4 sin 2t, 6 cos 2t〉 = 〈8 cos 2t, −12 sin 2t〉

g′(t) = 2t

Using the Chain Rule we obtain:

d

dt
r(g(t)) = g′(t)r′(g(t)) = 2t

〈
8 cos 2t2, −12 sin 2t2〉 = 8t

〈
2 cos 2t2, −3 sin 2t2〉

27. Let r(t) = 〈
t2, 1 − t, 4t

〉
. Calculate the derivative of r(t) · a(t) at t = 2, assuming that a(2) = 〈1, 3, 3〉 and

a′(2) = 〈−1, 4, 1〉.
solution By the Product Rule for dot products we have

d

dt
r(t) · a(t) = r(t) · a′(t) + r′(t) · a(t)

At t = 2 we have

d

dt
r(t) · a(t)

∣∣∣∣
t=2

= r(2) · a′(2) + r′(2) · a(2) (1)
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We compute the derivative r′(2):

r′(t) = d

dt

〈
t2, 1 − t, 4t

〉 = 〈2t, −1, 4〉 ⇒ r′(2) = 〈4, −1, 4〉 (2)

Also, r(2) = 〈
22, 1 − 2, 4 · 2

〉 = 〈4, −1, 8〉. Substituting the vectors in the equation above, we obtain:

d

dt
r(t) · a(t)

∣∣∣∣
t=2

= 〈4, −1, 8〉 · 〈−1, 4, 1〉 + 〈4, −1, 4〉 · 〈1, 3, 3〉 = (−4 − 4 + 8) + (4 − 3 + 12) = 13

The derivative of r(t) · a(t) at t = 2 is 13.

28. Let v(s) = s2i + 2sj + 9s−2k. Evaluate
d

ds
v(g(s)) at s = 4, assuming that g(4) = 3 and g′(4) = −9.

solution Applying the Chain Rule we have

d

ds
v (g(s)) = g′(s)v′ (g(s))

The derivative at s = 4 is, thus,

d

ds
v (g(s))

∣∣∣∣
s=4

= g′(4)v′ (g(4)) = −9v′(3) (1)

We differentiate v(s):

v′(s) = 2si + 2j − 18s−3k ⇒ v′(3) = 6i + 2j − 2

3
k (2)

Combining (1) and (2) gives:

d

ds
v (g(s))

∣∣∣∣
s=4

= −9

(
6i + 2j − 2

3
k
)

= −54i − 18j + 6k

In Exercises 29–34, find a parametrization of the tangent line at the point indicated.

29. r(t) = 〈
t2, t4〉, t = −2

solution The tangent line has the following parametrization:

�(t) = r(−2) + tr′(−2) (1)

We compute the vectors r(−2) and r′(−2):

r(−2) = 〈
(−2)2, (−2)4〉 = 〈4, 16〉

r′(t) = d

dt

〈
t2, t4〉 = 〈

2t, 4t3〉 ⇒ r′(−2) = 〈−4, −32〉

Substituting in (1) gives:

�(t) = 〈4, 16〉 + t 〈−4, −32〉 = 〈4 − 4t, 16 − 32t〉

The parametrization for the tangent line is, thus,

x = 4 − 4t, y = 16 − 32t, −∞ < t < ∞.

To find a direct relation between y and x, we express t in terms of x and substitute in y = 16 − 32t . This gives:

x = 4 − 4t ⇒ t = x − 4

−4
.

Hence,

y = 16 − 32t = 16 − 32 · x − 4

−4
= 16 + 8(x − 4) = 8x − 16.

The equation of the tangent line is y = 8x − 16.
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30. r(t) = 〈
cos 2t, sin 3t

〉
, t = π

4

solution The tangent line is parametrized by:

�(t) = r
(π

4

)
+ tr′ (π

4

)
(1)

We compute the vectors in the above parametrization:

r
(π

4

)
= 〈

cos
π

2
, sin

3π

4

〉 =
〈
0,

1√
2

〉

r′(t) = d

dt

〈
cos 2t, sin 3t

〉 = 〈−2 sin 2t, 3 cos 3t
〉

⇒ r′ (π

4

)
=

〈
−2 sin

π

2
, 3 cos

3π

4

〉
=

〈
−2,

−3√
2

〉

Substituting the vectors in (1) we obtain the following parametrization:

�(t) =
〈
0,

1√
2

〉
+ t

〈
−2,

−3√
2

〉
=

〈
−2t,

1√
2
(1 − 3t)

〉

31. r(t) = 〈
1 − t2, 5t, 2t3〉, t = 2

solution The tangent line is parametrized by:

�(t) = r(2) + tr′(2) (1)

We compute the vectors in the above parametrization:

r(2) = 〈
1 − 22, 5 · 2, 2 · 23〉 = 〈−3, 10, 16〉

r′(t) = d

dt

〈
1 − t2, 5t, 2t3〉 = 〈−2t, 5, 6t2〉 ⇒ r′(2) = 〈−4, 5, 24〉

Substituting the vectors in (1) we obtain the following parametrization:

�(t) = 〈−3, 10, 16〉 + t 〈−4, 5, 24〉 = 〈−3 − 4t, 10 + 5t, 16 + 24t〉
32. r(t) = 〈

4t, 5t, 9t
〉
, t = −4

solution The tangent line is parametrized by:

�(t) = r(−4) + tr′(−4) (1)

We compute the vectors in the above parametrization:

r(−4) = 〈
4(−4), 5(−4), 9(−4)

〉 = 〈−16, −20, −36〉

r′(t) = d

dt

〈
4t, 5t, 9t

〉 = 〈
4, 5, 9

〉 ⇒ r′(−4) = 〈4, 5, 9〉

Substituting the vectors in (1) we obtain the following parametrization:

�(t) = 〈−16, −20, −36〉 + t 〈4, 5, 9〉 = 〈−16 + 4t, −20 + 5t, −36 + 9t〉

33. r(s) = 4s−1i − 8
3 s−3k, s = 2

solution The tangent line is parametrized by:

�(s) = r(2) + sr′(2) (1)

We compute the vectors in the above parametrization:

r(2) = 4(2)−1i − 8

3
(2)−3k = 2i − 1

3
k

r′(s) = d

ds

(
4s−1i − 8

3
s−3k

)
= −4s−2i + 8s−4k ⇒ r′(2) = −i + 1

2
k

Substituting the vectors in (1) we obtain the following parametrization:

�(t) =
(

2i − 1

3
k
)

+ s

(
−i + 1

2
k
)

= (2 − s)i +
(

1

2
s − 1

3

)
k
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34. r(s) = (ln s)i + s−1j + 9sk, s = 1

solution The tangent line has the following parametrization:

�(s) = r(1) + sr′(1) (1)

We compute the vectors r(1) and r′(1):

r(1) = ln 1i + 1−1j + 9 · 1k = j + 9k

r′(s) = d

ds
(ln si + s−1j + 9sk) = 1

s
i − s−2j + 9k ⇒ r′(1) = i − j + 9k

We substitute the vectors in (1) to obtain the following parametrization:

�(s) = j + 9k + s(i − j + 9k) = si + (1 − s)j + (9 + 9s)k

or in scalar form:

x = s, y = 1 − s, z = 9 + 9s.

35. Use Example 4 to calculate
d

dt
(r × r′), where r(t) = 〈

t, t2, et
〉
.

solution In Example 4 it is proved that:

d

dt
r × r′ = r × r′′ (1)

We compute the derivatives r′(t) and r′′(t):

r′(t) = d

dt

〈
t, t2, et

〉 = 〈
1, 2t, et

〉
r′′(t) = d

dt

〈
1, 2t, et

〉 = 〈
0, 2, et

〉
Using (1) we get

d

dt
r × r′ = r × r′′ = 〈

t, t2, et
〉 × 〈

0, 2, et
〉 =

∣∣∣∣∣∣
i j k
t t2 et

0 2 et

∣∣∣∣∣∣ = (
t2et − 2et

)
i − (

0 − tet
)
j + (

2t − 0
)
k

= (
t2 − 2

)
et i + tet j + 2tk = 〈(

t2 − 2t
)
et , tet , 2t

〉
36. Let r(t) = 〈3 cos t, 5 sin t, 4 cos t〉. Show that ‖r(t)‖ is constant and conclude, using Example 7, that r(t) and r′(t)
are orthogonal. Then compute r′(t) and verify directly that r′(t) is orthogonal to r(t).

solution First let us compute ||r(t)||:

||r(t)|| =
√

9 cos2 t + 25 sin2 t + 16 cos2 t =
√

25(cos2 t + sin2 t) = √
25 = 5

Therefore, ||r(t)|| is constant. Using Example 7, we see:

d

dt
||r(t)||2 = 2r(t) · r′(t)

Since ||r(t)|| is constant, its derivative is 0, therefore we get:

2r(t) · r′(t) = 0 ⇒ r(t) · r′(t) = 0

and we can conclude that r(t) and r′(t) are orthogonal.
Now, computing in a different way, we know:

r′(t) = 〈−3 sin t, 5 cos t, −4 sin t〉
and

r(t) · r′(t) = 〈3 cos t, 5 sin t, 4 cos t〉 · 〈−3 sin t, 5 cos t, −4 sin t〉
= −9 cos t sin t + 25 sin t cos t − 16 cos t sin t

= 0

Hence we can conclude that r(t) and r′(t) are orthogonal.
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37. Show that the derivative of the norm is not equal to the norm of the derivative by verifying that ‖r(t)‖′ �= ‖r′(t)‖ for
r(t) = 〈t, 1, 1〉.
solution First let us compute ‖r(t)‖′ for r(t) = 〈t, 1, 1〉:

‖r(t)‖′ = d

dt
(
√

t2 + 2) = t√
t2 + 2

Now, first let us compute the derivative, r′(t):

r′(t) = 〈1, 0, 0〉

and then computing the norm:

‖r′(t)‖ = ‖〈1, 0, 0〉‖ = √
1 = 1

It is clear in this example, that ‖r(t)‖′ �= ‖r′(t)‖.

38. Show that
d

dt
(a × r) = a × r′ for any constant vector a.

solution We use the Product Rule for cross products and the derivative d
dt

(a) = 0 of the constant vector a, to write:

d

dt
a × r = a × r′ + a′ × r = a × r′ + 0 × r = a × r′ + 0 = a × r′

In Exercises 39–46, evaluate the integrals.

39.
∫ 3

−1

〈
8t2 − t, 6t3 + t

〉
dt

solution Vector-valued integration is defined via componentwise integration. Thus, we first compute the integral of
each component.

∫ 3

−1
8t2 − t dt = 8

3
t3 − t2

2

∣∣∣∣3−1
=

(
72 − 9

2

)
−

(
−8

3
− 1

2

)
= 212

3∫ 3

−1
6t3 + t dt = 3

2
t4 + t2

2

∣∣∣∣3−1
=

(
243

2
+ 9

2

)
−

(
3

2
+ 1

2

)
= 124

Therefore,

∫ 3

−1

〈
8t2 − t, 6t3 + t

〉
dt =

〈∫ 3

−1
8t2 − t dt,

∫ 3

−1
6t3 + t dt

〉
=

〈
212

3
, 124

〉

40.
∫ 1

0

〈
1

1 + s2
,

s

1 + s2

〉
ds

solution The vector-valued integration is defined via componentwise integration. Thus, we first compute the integral

of each component. For the second integral we use the substitution t = 1 + s2, dt = 2s ds. We get:

∫ 1

0

ds

1 + s2
= tan−1(s)

∣∣∣∣1
0

= tan−1(1) − tan1(0) = π

4
− 0 = π

4∫ 1

0

s

1 + s2
ds =

∫ 2

1

1

t

(
dt

2

)
= 1

2

∫ 2

1

dt

t
= 1

2
ln t

∣∣∣∣2
1

= 1

2
(ln 2 − ln 1) = 1

2
ln 2

Therefore,

∫ 1

0

〈
1

1 + s2
,

s

1 + s2

〉
ds =

〈∫ 1

0

ds

1 + s2
,

∫ 1

0

s ds

1 + s2

〉
=

〈
π

4
,

1

2
ln 2

〉
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41.
∫ 2

−2

(
u3i + u5j

)
du

solution The vector-valued integration is defined via componentwise integration. Thus, we first compute the integral
of each component.

∫ 2

−2
u3 du = u4

4

∣∣∣∣2−2
= 16

4
− 16

4
= 0

∫ 2

−2
u5 du = u6

6

∣∣∣∣2−2
= 64

6
− 64

6
= 0

Therefore,

∫ 2

−2

(
u3i + u5j

)
du =

(∫ 2

−2
u3 du

)
i +

(∫ 2

−2
u5 du

)
j = 0i + 0j

42.
∫ 1

0

(
te−t2

i + t ln(t2 + 1)j
)

dt

solution We compute the integral of each component. The integral of the first component is computed using the

substitution s = −t2 , ds = −2t dt . This gives

∫ 1

0
te−t2

dt =
∫ −1

0
es

(
−ds

2

)
= 1

2

∫ 0

−1
es ds = 1

2
es

∣∣∣∣0−1
= 1

2

(
e0 − e−1) = 1

2

(
1 − e−1)

For the integral of the second component we use the substitution s = t2 + 1 , ds = 2t dt . This gives:

∫ 1

0
t ln(t2 + 1) dt =

∫ 2

1
ln s

ds

2
= 1

2

∫ 2

1
ln s ds = 1

2
s(ln s − 1)

∣∣∣∣2
1

= 1

2
(2(ln 2 − 1) − 1(ln 1 − 1))

= ln 2 − 1 + 1

2
= ln 2 − 1

2

Hence,

∫ 1

0

〈
te−t2

, t ln(t2 + 1)
〉

dt =
〈

1

2

(
1 − e−1

)
, −1

2
+ ln 2

〉
.

43.
∫ 1

0
〈2t, 4t, − cos 3t〉 dt

solution The vector valued integration is defined via componentwise integration. Therefore,

∫ 1

0
〈2t, 4t, − cos 3t〉 dt =

〈∫ 1

0
2t dt,

∫ 1

0
4t dt,

∫ 1

0
− cos 3t dt

〉
=

〈
t2

∣∣∣∣1
0
, 2t2

∣∣∣∣1
0
, − sin 3t

3

∣∣∣∣1
0

〉
=

〈
1, 2, − sin 3

3

〉

44.
∫ 1

1/2

〈
1

u2
,

1

u4
,

1

u5

〉
du

solution The vector valued integration is defined via componentwise integration. Computing the integral of each
component we get:

∫ 1

1/2

1

u2
du = −1

u

∣∣∣∣1
1/2

= −1 − (−2) = 1

∫ 1

1/2

1

u4
du = −1

3u3

∣∣∣∣1
1/2

= −1

3
− −8

3
= 7

3

∫ 1

1/2

1

u5 du = −1

4u4

∣∣∣∣1
1/2

= −1

4
− −16

4
= 15

4

Therefore,

∫ 1

1/2

〈
1

u2
,

1

u4
,

1

u5

〉
du =

〈∫ 1

1/2

1

u2
du,

∫ 1

1/2

1

u4
du,

∫ 1

1/2

1

u5 du

〉
=

〈
1,

7

3
,

15

4

〉



April 19, 2011

S E C T I O N 13.2 Calculus of Vector-Valued Functions (LT SECTION 14.2) 497

45.
∫ 4

1

(
t−1i + 4

√
t j − 8t3/2k

)
dt

solution We perform the integration componentwise. Computing the integral of each component we get:

∫ 4

1
t−1 dt = ln t

∣∣∣∣4
1

= ln 4 − ln 1 = ln 4

∫ 4

1
4
√

t dt = 4 · 2

3
t3/2

∣∣∣∣4
1

= 8

3

(
43/2 − 1

)
= 56

3∫ 4

1
−8t3/2 dt = −16

5
t5/2

∣∣∣∣4
1

= −16

5

(
45/2 − 1

)
= −496

5

Hence, ∫ 4

1

(
t−1i + 4

√
tj − 8t3/2k

)
dt = (ln 4) i + 56

3
j − 496

5
k

46.
∫ t

0

(
3si + 6s2j + 9k

)
ds

solution We first compute the integral of each component:

∫ t

0
3s ds = 3

2
s2

∣∣∣∣t
0

= 3

2
t2

∫ t

0
6s2 ds = 6

3
s3

∣∣∣∣t
0

= 2t3

∫ t

0
9 ds = 9s

∣∣∣∣t
0

= 9t

Hence,∫ t

0

(
3si + 6s2j + 9k

)
dt =

(∫ t

0
3s ds

)
i +

(∫ t

0
6s2 ds

)
j +

(∫ t

0
9 ds

)
k =

(
3

2
t2

)
i + (

2t3)j + (9t)k

In Exercises 47–54, find both the general solution of the differential equation and the solution with the given initial
condition.

47.
dr
dt

= 〈1 − 2t, 4t〉, r(0) = 〈3, 1〉

solution We first find the general solution by integrating dr
dt

:

r(t) =
∫

〈1 − 2t, 4t〉 dt =
〈∫

(1 − 2t) dt,

∫
4t dt

〉
= 〈

t − t2, 2t2〉 + c (1)

Since r(0) = 〈3, 1〉, we have:

r(0) = 〈
0 − 02, 2 · 02〉 + c = 〈3, 1〉 ⇒ c = 〈3, 1〉

Substituting in (1) gives the solution:

r(t) = 〈
t − t2, 2t2〉 + 〈3, 1〉 = 〈−t2 + t + 3, 2t2 + 1

〉
48. r′(t) = i − j, r(0) = 2i + 3k

solution The general solution is obtained by integrating r′(t):

r(t) =
∫

(i − j) dt =
(∫

1 dt

)
i −

(∫
1 dt

)
j = t i − tj + c (1)

Hence,

r(0) = 0i − 0j + c = c

The solution with the initial condition r(0) = 2i + 3k must satisfy:

r(0) = c = 2i + 3k
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Substituting in (1) yields the solution:

r(t) = t i − tj + 2i + 3k = (t + 2) i − tj + 3k

49. r′(t) = t2i + 5tj + k, r(1) = j + 2k

solution We first find the general solution by integrating r′(t):

r(t) =
∫ (

t2i + 5tj + k
)

dt =
(∫

t2 dt

)
i +

(∫
5t dt

)
j +

(∫
1 dt

)
k =

(
1

3
t3

)
i +

(
5

2
t2

)
j + tk + c (1)

The solution which satisfies the initial condition must satisfy:

r(1) =
(

1

3
· 13

)
i +

(
5

2
· 12

)
j + 1 · k + c = j + 2k

That is,

c = −1

3
i − 3

2
j + 1k

Substituting in (1) gives the following solution:

r(t) =
(

1

3
t3

)
i +

(
5

2
t2

)
j + tk − 1

3
i − 3

2
j + k =

(
1

3
t3 − 1

3

)
i +

(
5t2

2
− 3

2

)
j + (t + 1) k

50. r′(t) = 〈sin 3t, sin 3t, t〉, r
(
π
2

) =
〈

2, 4,
π2

4

〉

solution We first integrate the vector r′(t) to find the general solution:

r(t) =
∫

〈sin 3t, sin 3t, t〉 dt =
〈∫

sin 3t dt,

∫
sin 3t dt,

∫
t dt

〉
(1)

=
〈
−1

3
cos 3t, −1

3
cos 3t,

1

2
t2

〉
+ c (2)

Substituting the initial condition we obtain:

r(π/2) =
〈
−1

3
cos

π

2
, −1

3
cos

π

2
,

1

2
·
(π

2

)2
〉
+ c =

〈
0, 0,

π2

8

〉
+ c =

〈
2, 4,

π2

4

〉

Hence,

c =
〈

2, 4,
π2

4

〉
−

〈
0, 0,

π2

8

〉
=

〈
2, 4,

π2

8

〉

Substituting in (2) we obtain the solution:

r(t) =
〈
−1

3
cos 3t, −1

3
cos 3t,

1

2
t2

〉
+

〈
2, 4,

π2

8

〉
=

〈
−1

3
cos 3t + 2, −1

3
cos 3t + 4,

1

2
t2 + π2

8

〉

51. r′′(t) = 16k, r(0) = 〈1, 0, 0〉, r′(0) = 〈0, 1, 0〉
solution To find the general solution we first find r′(t) by integrating r′′(t):

r′(t) =
∫

r′′(t) dt =
∫

16k dt = (16t) k + c1 (1)

We now integrate r′(t) to find the general solution r(t):

r(t) =
∫

r′(t) dt =
∫

((16t) k + c1) dt =
(∫

16(t) dt

)
k + c1t + c2 = (8t2)k + c1t + c2 (2)

We substitute the initial conditions in (1) and (2). This gives:

r′(0) = c1 = 〈0, 1, 0〉 = j

r(0) = 0k + c1 · 0 + c2 = 〈1, 0, 0〉 ⇒ c2 = 〈1, 0, 0〉 = i

Combining with (2) we obtain the following solution:

r(t) = (8t2)k + tj + i = i + tj + (8t2)k
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52. r′′(t) =
〈
e2t−2, t2 − 1, 1

〉
, r(1) = 〈0, 0, 1〉, r′(1) = 〈2, 0, 0〉

solution To find the general solution we first find r′(t) by integrating r′′(t):

r′(t) =
∫

r′′(t) dt =
∫ 〈

e2t−2, t2 − 1, 1
〉

dt =
〈

1

2
e2t−2,

t3

3
− t, t

〉
+ c1 (1)

We now integrate r′(t) to find the general solution r(t):

r(t) =
∫

r′(t) dt =
∫ (〈

1

2
e2t−2,

t3

3
− t, t

〉
+ c1

)
dt =

〈
1

4
e2t−2,

t4

12
− t2

2
,
t2

2

〉
+ c1t + c2 (2)

We substitute the initial conditions in (1) and (2). This gives:

r′(1) =
〈

1

2
, −2

3
, 1

〉
+ c1 = 〈2, 0, 0〉 ⇒ c1 =

〈
3

2
,

2

3
, −1

〉

r(1) =
〈

1

4
, − 5

12
,

1

2

〉
+ c1(1) + c2 =< 0, 0, 1 >

〈
1

4
, − 5

12
,

1

2

〉
+

〈
3

2
,

2

3
, −1

〉
+ c2 =< 0, 0, 1 >

⇒ c2 =
〈
−7

4
, −1

4
,

3

2

〉

Combining with (2) we obtain the following solution:

r(t) =
〈

1

4
e2t−2,

t4

12
− t2

2
,
t2

2

〉
+ t

〈
3

2
,

2

3
, −1

〉
+

〈
−7

4
, −1

4
,

3

2

〉

=
〈

1

4
e2t−2 + 3

2
t − 7

4
,

t4

12
− t2

2
+ 2

3
t − 1

4
,
t2

2
− t + 3

2

〉

53. r′′(t) = 〈0, 2, 0〉, r(3) = 〈1, 1, 0〉, r′(3) = 〈0, 0, 1〉
solution To find the general solution we first find r′(t) by integrating r′′(t):

r′(t) =
∫

r′′(t) dt =
∫

〈0, 2, 0〉 dt = 〈0, 2t, 0〉 + c1 (1)

We now integrate r′(t) to find the general solution r(t):

r(t) =
∫

r′(t) dt =
∫

(〈0, 2t, 0〉 + c1) dt =
〈
0, t2, 0

〉
+ c1t + c2 (2)

We substitute the initial conditions in (1) and (2). This gives:

r′(3) = 〈0, 6, 0〉 + c1 = 〈0, 0, 1〉 ⇒ c1 = 〈0, −6, 1〉
r(3) = 〈0, 9, 0〉 + c1(3) + c2 =< 1, 1, 0 >

〈0, 9, 0〉 + 〈0, −18, 3〉 + c2 =< 1, 1, 0 >

⇒ c2 = 〈1, 10, −3〉
Combining with (2) we obtain the following solution:

r(t) =
〈
0, t2, 0

〉
+ t 〈0, −6, 1〉 + 〈1, 10, −3〉

=
〈
1, t2 − 6t + 10, t − 3

〉

54. r′′(t) = 〈
et , sin t, cos t

〉
, r(0) = 〈1, 0, 1〉 , r′(0) = 〈0, 2, 2〉

solution We perform integration componentwise on r′′(t) to obtain:

r′(t) =
∫ 〈

et , sin t, cos t
〉
dt = 〈

et , − cos t, sin t
〉 + c1 (1)
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We now integrate r′(t) to obtain the general solution:

r(t) =
∫ (〈

et , − cos t, sin t
〉 + c1

)
dt = 〈

et , − sin t, − cos t
〉 + c1t + c2 (2)

Now, we substitute the initial conditions r(0) = 〈1, 0, 1〉 and r′(0) = 〈0, 2, 2〉 into (1) and (2) and solve for the vectors
c1 and c2. We obtain:

r′(0) = 〈1, −1, 0〉 + c1 = 〈0, 2, 2〉 ⇒ c1 = 〈−1, 3, 2〉
r(0) = 〈1, 0, −1〉 + c2 = 〈1, 0, 1〉 ⇒ c2 = 〈0, 0, 2〉

Finally we combine the above to obtain the solution:

r(t) = 〈
et , − sin t, − cos t

〉 + 〈−1, 3, 2〉 t + 〈0, 0, 2〉 = 〈
et − t, − sin t + 3t, − cos t + 2t + 2

〉
55. Find the location at t = 3 of a particle whose path (Figure 8) satisfies

dr
dt

=
〈
2t − 1

(t + 1)2
, 2t − 4

〉
, r(0) = 〈3, 8〉

y

x
252015105

10

5

(3, 8)
t = 0

t = 3

FIGURE 8 Particle path.

solution To determine the position of the particle in general, we perform integration componentwise on r′(t) to obtain:

r(t) =
∫

r′(t) dt

=
∫ 〈

2t − 1

(t + 1)2
, 2t − 4

〉
dt

=
〈
t2 + 1

t + 1
, t2 − 4t

〉
+ c1

Using the initial condition, observe the following:

r(0) = 〈1, 0〉 + c1 = 〈3, 8〉
⇒ c1 = 〈2, 8〉

Therefore,

r(t) =
〈
t2 + 1

t + 1
, t2 − 4t

〉
+ 〈2, 8〉 =

〈
t2 + 1

t + 1
+ 2, t2 − 4t + 8

〉

and thus, the location of the particle at t = 3 is r(3) = 〈45/4, 5〉 = 〈11.25, 5〉
56. Find the location and velocity at t = 4 of a particle whose path satisfies

dr
dt

=
〈
2t−1/2, 6, 8t

〉
, r(1) = 〈4, 9, 2〉

solution The velocity of this particle at t = 4 is exactly:

r′(4) =
〈
2(4)−1/2, 6, 8(4)

〉
= 〈1, 6, 32〉

To determine the location of the particle at any general t , we will perform integration componentwise on r′(t):

r(t) =
∫

r′(t) dt =
∫ 〈

2t−1/2, 6, 8t
〉

dt

=
〈
4
√

t, 6t, 4t2
〉
+ c1
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Using the initial condition, observe the following:

r(1) = 〈4, 6, 4〉 + c1 = 〈4, 9, 2〉
⇒ c1 = 〈0, 3, −2〉

Therefore,

r(t) =
〈
4
√

t, 6t, 4t2
〉
+ 〈0, 3, −2〉 =

〈
4
√

t, 6t + 3, 4t2 − 2
〉

Then the location of this particle at t = 4 is:

r(4) = 〈8, 27, 62〉

57. A fighter plane, which can shoot a laser beam straight ahead, travels along the path r(t) = 〈
5 − t, 21 − t2, 3 − t3/27

〉
.

Show that there is precisely one time t at which the pilot can hit a target located at the origin.

solution By the given information the laser beam travels in the direction of r′(t). The pilot hits a target located at
the origin at the time t when r′(t) points towards the origin, that is, when r(t) and r′(t) are parallel and point to opposite
directions.

321

10

x

20

y

r (t)

r ′(t)

We find r′(t):

r′(t) = d

dt

〈
5 − t, 21 − t2, 3 − t3

27

〉
=

〈
−1, −2t, − t2

9

〉

We first find t such that r(t) and r′(t) are parallel, that is, we find t such that the cross product of the two vectors is zero.
We obtain:

0 = r′(t) × r(t) =

∣∣∣∣∣∣∣
i j k

−1 −2t − t2

9
5 − t 21 − t2 3 − t3

27

∣∣∣∣∣∣∣
=

(
−2t

(
3 − t3

27

)
+ t2

9
(21 − t2)

)
i −

(
−

(
3 − t3

27

)
+ t2

9
(5 − t)

)
j + (−(

21 − t2) + 2t (5 − t)
)
k

=
(

−t4

27
+ 7t2

3
− 6t

)
i −

(
−2t3

27
+ 5t2

9
− 3

)
j + (−t2 + 10t − 21

)
k

Equating each component to zero we obtain the following equations:

− t4

27
+ 7

3
t2 − 6t = 0

−2t3

27
+ 5t2

9
− 3 = 0

−t2 + 10t − 21 = −(t − 7)(t − 3) = 0

The third equation implies that t = 3 or t = 7. Only t = 3 satisfies the other two equations as well. We now must verify
that r(3) and r′(3) point in opposite directions. We find these vectors:

r(3) =
〈

5 − 3, 21 − 32, 3 − 33

27

〉
= 〈2, 12, 2〉

r′(3) =
〈
−1, −2 · 3, −32

9

〉
= 〈−1, −6, −1〉

Since r(3) = −2r′(3), the vectors point in opposite direction. We conclude that only at time t = 3 can the pilot hit a
target located at the origin.
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58. The fighter plane of Exercise 57 travels along the path r(t) = 〈
t − t3, 12 − t2, 3 − t

〉
. Show that the pilot cannot hit

any target on the x-axis.

solution First we will compute the tangent line to the given path of the plane at any time t . The tangent line will be

�(t) = r(t0) + tr′(t0)

Computing the derivatives we get:

r′(t) =
〈
1 − 3t2, −2t, −1

〉
Therefore, the tangent line at time t is

�(t) = r(0) + tr′(0)

= 〈0, 12, 3〉 + t 〈1, 0, −1〉
= 〈t, 12, 3 − t〉

The tangent line always lies on the plane y = 12, so it can never hit the x-axis.

59. Find all solutions to r′(t) = v with initial condition r(1) = w, where v and w are constant vectors in R3.

solution We denote the components of the constant vector v by v = 〈v1, v2, v3〉 and integrate to find the general
solution. This gives:

r(t) =
∫

v dt =
∫

〈v1, v2, v3〉 dt =
〈∫

v1 dt,

∫
v2 dt,

∫
v3 dt

〉

= 〈v1t + c1, v2t + c2, v3t + c3〉 = t 〈v1, v2, v3〉 + 〈c1, c2, c3〉
We let c = 〈c1, c2, c3〉 and obtain:

r(t) = tv + c = c + tv

Notice that the solutions are the vector parametrizations of all the lines with direction vector v.
We are also given the initial condition that r(1) = w, using this information we can determine:

r(1) = (1)v + c = w

Therefore c = w − v and we get:

r(t) = (w − v) + tv = (t − 1)v + w

60. Let u be a constant vector in R3. Find the solution of the equation r′(t) = (sin t)u satisfying r′(0) = 0.

solution We first integrate to find the general solution. Denoting u = 〈u1, u2, u3〉 we get:

r(t) =
∫

(sin t) u dt =
∫

〈u1 sin t, u2 sin t, u3 sin t〉 dt

=
〈∫

u1 sin t dt,

∫
u2 sin t dt,

∫
u3 sin t dt

〉
=

〈
u1

∫
sin t dt, u2

∫
sin t dt, u3

∫
sin t dt

〉

= 〈−u1 cos t + c1, −u2 cos t + c2, −u3 cos t + c3〉 = − cos t 〈u1, u2, u3〉 + 〈c1, c2, c3〉
Letting c = 〈c1, c2, c3〉 we obtain the following solutions:

r(t) = (− cos t) u + c

Since r′(0) = 0 we have r′(0) = sin 0 · u = 0.

61. Find all solutions to r′(t) = 2r(t) where r(t) is a vector-valued function in three-space.

solution We denote the components of r(t) by r(t) = 〈x(t), y(t), z(t)〉. Then, r′(t) = 〈
x′(t), y′(t), z′(t)

〉
. Substituting

in the differential equation we get: 〈
x′(t), y′(t), z′(t)

〉 = 2 〈x(t), y(t), z(t)〉
Equating corresponding components gives:

x′(t) = 2x(t)

y′(t) = 2y(t)

z′(t) = 2z(t)

⇒
x(t) = c1e2t

y(t) = c2e2t

z(t) = c3e2t
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We denote the constant vector by c = 〈c1, c2, c3〉 and obtain the following solutions:

r(t) = 〈
c1e2t , c2e2t , c3e2t

〉 = e2t 〈c1, c2, c3〉 = e2tc

62. Show that w(t) = 〈sin(3t + 4), sin(3t − 2), cos 3t〉 satisfies the differential equation w′′(t) = −9w(t).

solution We differentiate the vector w(t) twice:

w′(t) = 〈3 cos (3t + 4) , 3 cos (3t − 2) , −3 sin 3t〉

w′′(t) = d

dt

(
w′(t)

) = 〈−9 sin (3t + 4) , −9 sin (3t − 2) , −9 cos 3t〉
= −9 〈sin (3t + 4) , sin (3t − 2) , cos 3t〉 = −9w(t)

We thus showed that w′′(t) = −9w(t)

63. Prove that the Bernoulli spiral (Figure 9) with parametrization r(t) = 〈
et cos 4t, et sin 4t

〉
has the property that the

angle ψ between the position vector and the tangent vector is constant. Find the angle ψ in degrees.

−10

20
x

y

t = 0

ψ

ψ

ψ

t = 
π

2

FIGURE 9 Bernoulli spiral.

solution First, let us compute the tangent vector, r′(t):

r(t) = 〈
et cos 4t, et sin 4t

〉
, ⇒ r′(t) = 〈−4et sin 4t + et cos 4t, 4et cos 4t + et sin 4t

〉
Then recall the identity that a · b = ‖a‖ · ‖b‖ cos θ , where θ is the angle between a and b, so then,

r(t) · r′(t) = 〈
et cos 4t, et sin 4t

〉 · 〈−4et sin 4t + et cos 4t, 4et cos 4t + et sin 4t
〉

= −4e2t sin 4t cos 4t + e2t cos2 4t + 4e2t sin 4t cos 4t + e2t sin2 4t

= e2t (cos2 4t + sin2 4t)

= e2t

Then, computing norms, we get:

‖r(t)‖ =
√

e2t cos2 4t + e2t sin2 4t =
√

e2t (cos2 4t + sin2 4t) = et

‖r′(t)‖ =
√

(−4et sin 4t + et cos 4t)2 + (4et cos 4t + et sin 4t)2

=
√

16e2t sin2 4t − 4e2t sin 4t cos 4t + e2t cos2 4t + 16e2t cos2 4t + 4e2t sin 4t cos 4t + e2t sin2 4t

=
√

16e2t (sin2 4t + cos2 4t) + e2t (cos2 4t + sin2 4t)

=
√

16e2t + e2t

= √
17et

Then using the dot product relation listed above we get:

e2t = et (
√

17et ) cos θ = √
17e2t cos θ

Hence

cos θ = 1√
17

, ⇒ θ ≈ 75.96◦

Therefore, the angle between the position vector and the tangent vector is constant.
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64. A curve in polar form r = f (θ) has parametrization

r(θ) = f (θ) 〈cos θ, sin θ〉
Let ψ be the angle between the radial and tangent vectors (Figure 10). Prove that

tan ψ = r

dr/dθ
= f (θ)

f ′(θ)

Hint: Compute r(θ) × r′(θ) and r(θ) · r′(θ).

r'(θ)

r(θ)

θ

y

x

ψ

FIGURE 10 Curve with polar parametrization r(θ) = f (θ) 〈cos θ, sin θ〉.
solution First we will compute r(θ) and r′(θ):

r(θ) = f (θ) 〈cos θ, sin θ〉 = 〈f (θ) cos θ, f (θ) sin θ〉
r′(θ) = f (θ) 〈− sin θ, cos θ〉 + f ′(θ) 〈cos θ, sin θ〉

= 〈
f ′(θ) cos θ − f (θ) sin θ, f ′(θ) sin θ + f (θ) cos θ

〉
Now we will compute both r(θ) · r′(θ) and r(θ) × r′(θ).

r(θ) · r′(θ) = f (θ) cos θ [f ′(θ) cos θ − f (θ) sin θ ] + f (θ) sin θ [f ′(θ) sin θ + f (θ) cos θ ]
= f (θ)f ′(θ) cos2 θ − [f (θ)]2 cos θ sin θ + f (θ)f ′(θ) sin θ + [f (θ)]2 sin θ cos θ

= f (θ)f ′(θ)[cos2 θ + sin2 θ ]
= f (θ)f ′(θ)

r(θ) × r′(θ) = 〈f (θ) cos θ, f (θ) sin θ〉 × 〈
f ′(θ) cos θ − f (θ) sin θ, f ′(θ) sin θ + f (θ) cos θ

〉

=
∣∣∣∣∣∣

i j k
f (θ) cos θ f (θ) sin θ 0

f ′(θ) cos θ − f (θ) sin θ f ′(θ) sin θ + f (θ) cos θ) 0

∣∣∣∣∣∣
= 0i + 0j + [f (θ) cos θ(f ′(θ) sin θ + f (θ) cos θ) − f (θ) sin θ(f ′(θ) cos θ − f (θ) sin θ)]k
= 0i + 0j + [f (θ)]2k

Recall that a · b = ‖a‖‖b‖ cos ψ and ‖a × b‖ = ‖a‖‖b‖ sin ψ so then:

tan ψ = sin ψ

cos ψ
=

‖r(θ)×r′(θ)‖
‖r(θ)‖‖r′(θ)‖

r(θ)·r′(θ)
‖r(θ)‖‖r′(θ)‖

= ‖r(θ) × r′(θ)‖
r(θ) · r′(θ)

=
√

[f (θ)]4
f (θ)f ′(θ)

= |[f (θ)]2|
f (θ)f ′(θ)

= f (θ)

f ′(θ)
= r

dr/dθ

65. Prove that if ‖r(t)‖ takes on a local minimum or maximum value at t0, then r(t0) is orthogonal to r′(t0).
Explain how this result is related to Figure 11. Hint: Observe that if ‖r(t0)‖ is a minimum, then r(t) is tangent at t0 to the
sphere of radius ‖r(t0)‖ centered at the origin.

z

y

x

r¢(t0)

r (t0)

r(t)

FIGURE 11
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solution Suppose that ‖r(t)‖ takes on a minimum or maximum value at t = t0. Hence, ‖r(t)‖2 also takes on a

minimum or maximum value at t = t0, therefore d
dt

‖r(t)‖2
∣∣
t=t0

= 0. Using the Product Rule for dot products we get

d

dt
‖r(t)‖2

∣∣∣∣
t=t0

= d

dt
r(t) · r(t)

∣∣∣∣
t=t0

= r(t0) · r′(t0) + r′(t0) · r(t0) = 2r(t0) · r′(t0) = 0

Thus r(t0) · r′(t0) = 0, which implies the orthogonality of r(t0) and r′(t0). In Figure 11, ‖r(t0)‖ is a minimum and the
path intersects the sphere of radius ‖r(t0)‖ at a single point. Therefore, the point of intersection is a tangency point which
implies that r′(t0) is tangent to the sphere at t0. We conclude that r(t0) and r′(t0) are orthogonal.

66. Newton’s Second Law of Motion in vector form states that F = dp
dt

where F is the force acting on an object of mass

m and p = mr′(t) is the object’s momentum. The analogs of force and momentum for rotational motion are the torque
τ = r × F and angular momentum

J = r(t) × p(t)

Use the Second Law to prove that τ = dJ
dt

.

solution We differentiate J = r(t) × mr′(t) using the Product Rule for cross products. Using r′(t) × r′(t) = 0 we
get:

dJ
dt

= d

dt

(
r(t) × mr′(t)

) = m
d

dt

(
r(t) × r′(t)

) = m
(
r(t) × r′′(t) + r′(t) × r′(t)

)
= mr(t) × r′′(t) = r(t) × mr′′(t) (1)

Since p = mr′(t), we have dp
dt

= mr′′(t). Combining with (1) we obtain:

dJ
dt

= r(t) × dp
dt

(2)

Finally, we use Newton’s Second Law of Motion, F = dp
dt

. Substituting in (2) we obtain the required equality:

dJ
dt

= r(t) × F(t) = τ

Further Insights and Challenges
67. Let r(t) = 〈x(t), y(t)〉 trace a plane curve C. Assume that x′(t0) �= 0. Show that the slope of the tangent vector r′(t0)

is equal to the slope dy/dx of the curve at r(t0).

solution

(a) By the Chain Rule we have

dy

dt
= dy

dx
· dx

dt

Hence, at the points where dx
dt

�= 0 we have:

dy

dx
=

dy
dt
dx
dt

= y′(t)
x′(t)

(b) The line �(t) = 〈a, b〉 + tr′(t0) passes through (a, b) at t = 0. It holds that:

�(0) = 〈a, b〉 + 0r′(t0) = 〈a, b〉
That is, (a, b) is the terminal point of the vector �(0), hence the line passes through (a, b). The line has the direction

vector r′(t0) = 〈
x′(t0), y′(t0)

〉
, therefore the slope of the line is y′(t0)

x′(t0) which is equal to dy
dx

∣∣∣
t=t0

by part (a).

68. Prove that
d

dt
(r · (r′ × r′′)) = r · (r′ × r′′′).

solution We use the Product Rule for dot products to obtain:

d

dt

(
r · (r′ × r′′)) = r · d

dt

(
r′ × r′′) + r′ · (r′ × r′′) (1)
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By the Product Rule for cross products and properties of cross products, we have:

d

dt

(
r′ × r′′) = r′ × r′′′ + r′′ × r′′ = r′ × r′′′ + 0 = r′ × r′′′ (2)

Substituting (2) into (1) yields:

d

dt

(
r · (r′ × r′′)) = r · (r′ × r′′′) + r′ · (r′ × r′′) (3)

Since r′ × r′′ is orthogonal to r′, the dot product r′ · (r′ × r′′) = 0. So (3) gives:

d

dt

(
r · (r′ × r′′)) = r · (r′ × r′′′) + 0 = r · (r′ × r′′′)

69. Verify the Sum and Product Rules for derivatives of vector-valued functions.

solution We first verify the Sum Rule stating:

(r1(t) + r2(t))′ = r′
1(t) + r′

2(t)

Let r1(t) = 〈x1(t), y1(t), z1(t)〉 and r2(t) = 〈x2(t), y2(t), z2(t)〉. Then,

(r1(t) + r2(t)) ′ = d

dt
〈x1(t) + x2(t), y1(t) + y2(t), z1(t) + z2(t)〉

= 〈
(x1(t) + x2(t))′, (y1(t) + y2(t))′, (z1(t) + z2(t))′

〉
= 〈

x′
1(t) + x′

2(t), y′
1(t) + y′

2(t), z′
1(t) + z′

2(t)
〉

= 〈
x′

1(t), y′
1(t), z′

1(t)
〉 + 〈

x′
2(t), y′

2(t), z′
2(t)

〉 = r′
1(t) + r′

2(t)

The Product Rule states that for any differentiable scalar-valued function f (t) and differentiable vector-valued function
r(t), it holds that:

d

dt
f (t)r(t) = f (t)r′(t) + f ′(t)r(t)

To verify this rule, we denote r(t) = 〈x(t), y(t), z(t)〉. Then,

d

df
f (t)r(t) = d

dt
〈f (t)x(t), f (t)y(t), f (t)z(t)〉

Applying the Product Rule for scalar functions for each component we get:

d

dt
f (t)r(t) = 〈

f (t)x′(t) + f ′(t)x(t), f (t)y′(t) + f ′(t)y(t), f (t)z′(t) + f ′(t)z(t)
〉

= 〈
f (t)x′(t), f (t)y′(t), f (t)z′(t)

〉 + 〈
f ′(t)x(t), f ′(t)y(t), f ′(t)z(t)

〉
= f (t)

〈
x′(t), y′(t), z′(t)

〉 + f ′(t) 〈x(t), y(t), z(t)〉 = f (t)r′(t) + f ′(t)r(t)

70. Verify the Chain Rule for vector-valued functions.

solution Let g(t) and r(t) = 〈x(t), y(t), z(t)〉 be differentiable scalar and vector valued functions respectively. We
must show that:

d

dt
r (g(t)) = g′(t)r′ (g(t)) .

We have

r (g(t)) = 〈x (g(t)) , y (g(t)) , z (g(t))〉

We differentiate the vector componentwise, using the Chain Rule for scalar functions. This gives:

d

dt
r (g(t)) =

〈
d

dt
(x (g(t))) ,

d

dt
(y (g(t))) ,

d

dt
(z (g(t)))

〉
= 〈

g′(t)x′ (g(t)) , g′(t)y′ (g(t)) , g′(t)z′ (g(t))
〉

= g′(t)
〈
x′ (g(t)) , y′ (g(t)) , z′ (g(t))

〉 = g′(t)r′ (g(t))
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71. Verify the Product Rule for cross products [Eq. (5)].

solution Let r1(t) = 〈a1(t), a2(t), a3(t)〉 and r2(t) = 〈b1(t), b2(t), b3(t)〉. Then (we omit the independent variable
t for simplicity):

r1(t) × r2(t) =
∣∣∣∣∣∣

i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ = (a2b3 − a3b2) i − (a1b3 − a3b1) j + (a1b2 − a2b1) k

Differentiating this vector componentwise we get:

d

dt
r1 × r2 = (

a2b′
3 + a′

2b3 − a3b′
2 − a′

3b2
)

i − (
a1b′

3 + a′
1b3 − a3b′

1 − a′
3b1

)
j + (

a1b′
2 + a′

1b2 − a2b′
1 − a′

2b1
)

k

= ((
a2b′

3 − a3b′
2
)

i − (
a1b′

3 − a3b′
1
)

j + (
a1b′

2 − a2b′
1
)

k
)

+ ((
a′

2b3 − a′
3b2

)
i − (

a′
1b3 − a′

3b1
)

j + (
a′

1b2 − a′
2b1

)
k
)

Notice that the vectors in each of the two brackets can be written as the following formal determinants:

d

dt
r1 × r2 =

∣∣∣∣∣∣
i j k

a1 a2 a3
b′

1 b′
2 b′

3

∣∣∣∣∣∣ +
∣∣∣∣∣∣

i j k
a′

1 a′
2 a′

3
b1 b2 b3

∣∣∣∣∣∣ = 〈
a1,a2, a3

〉 × 〈
b′

1, b′
2, b′

3
〉 + 〈

a′
1, a′

2, a′
3
〉 × 〈

b1,b2, b3
〉

= r1 × r′
2 + r′

1 × r2

72. Verify the linearity properties ∫
cr(t) dt = c

∫
r(t) dt (c any constant)

∫ (
r1(t) + r2(t)

)
dt =

∫
r1(t) dt +

∫
r2(t) dt

solution We denote the components of the vectors by r(t) = 〈x(t), y(t), z(t)〉; r1(t) = 〈x1(t), y1(t), z1(t)〉; r2(t) =
〈x2(t), y2(t), z2(t)〉. Using vector operations, componentwise integration and the linear properties for scalar functions,
we obtain: ∫

cr(t) dt =
∫

〈cx(t), cy(t), cz(t)〉 dt =
〈∫

cx(t) dt,

∫
cy(t) dt,

∫
cz(t) dt

〉

=
〈
c

∫
x(t) dt, c

∫
y(t) dt, c

∫
z(t) dt

〉
= c

〈∫
x(t) dt,

∫
y(t) dt,

∫
z(t) dt

〉

= c

∫
〈x(t), y(t), z(t)〉 dt = c

∫
r(t) dt

Next we prove the second linear property:∫
(r1(t) + r2(t)) dt =

∫
〈x1(t) + x2(t), y1(t) + y2(t), z1(t) + z2(t)〉 dt

=
〈∫

(x1(t) + x2(t)) dt,

∫
(y1(t) + y2(t)) dt,

∫
(z1(t) + z2(t)) dt

〉

=
〈∫

x1(t) dt +
∫

x2(t) dt,

∫
y1(t) dt +

∫
y2(t) dt,

∫
z1(t) dt +

∫
z2(t) dt

〉

=
〈∫

x1(t) dt,

∫
y1(t) dt,

∫
z1(t) dt

〉
+

〈∫
x2(t) dt,

∫
y2(t) dt,

∫
z2(t) dt

〉

=
∫

〈x1(t), y1(t), z1(t)〉 dt +
∫

〈x2(t), y2(t), z2(t)〉 dt =
∫

r1(t) dt +
∫

r2(t) dt

73. Prove the Substitution Rule (where g(t) is a differentiable scalar function):

∫ b

a
r(g(t))g′(t) dt =

∫ g−1(b)

g−1(a)
r(u) du

solution (Note that an early edition of the textbook had the integral limits as g(a) and g(b); they should actually

be g−1(a) and g−1(b).) We denote the components of the vector-valued function by r(t) dt = 〈x(t), y(t), z(t)〉. Using
componentwise integration we have:
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∫ b

a
r(t) dt =

〈∫ b

a
x(t) dt,

∫ b

a
y(t) dt,

∫ b

a
z(t) dt

〉

Write
∫ b

a
x(t) dt as

∫ b

a
x(s) ds. Let s = g(t), so ds = g′(t) dt . The substitution gives us

∫ g−1(b)

g−1(a)
x(g(t))g′(t) dt . A

similar procedure for the other two integrals gives us:

∫ b

a
r(t) dt =

〈∫ g−1(b)

g−1(a)
x (g(t)) g′(t) dt,

∫ g−1(b)

g−1(a)
y (g(t)) g′(t) dt,

∫ g−1(b)

g−1(a)
z (g(t)) g′(t) dt

〉

=
∫ g−1(b)

g−1(a)

〈
x (g(t)) g′(t), y (g(t)) g′(t), z (g(t)) g′(t)

〉
dt

=
∫ g−1(b)

g−1(a)
〈x (g(t)) , y (g(t)) , z (g(t))〉 g′(t) dt =

∫ g−1(b)

g−1(a)
r (g(t)) g′(t) dt

74. Prove that if ‖r(t)‖ ≤ K for t ∈ [a, b], then∥∥∥∥∥
∫ b

a
r(t) dt

∥∥∥∥∥ ≤ K(b − a)

solution Think of r(t) as a velocity vector. Then,
∫ b

a
r(t) dt gives the displacement vector from the location at time

t = a to the time t = b, and so

∥∥∥∥∥
∫ b

a
r(t) dt

∥∥∥∥∥ gives the length of this displacement vector. But, since speed is ‖r(t)‖ which

is less than or equal to K , then in the interval a ≤ t ≤ b, the object can move a total distance not more than K(b − a).

Thus, the length of the displacement vector is ≤ K(b − a), which gives us

∥∥∥∥∥
∫ b

a
r(t) dt

∥∥∥∥∥ ≤ K(b − a), as desired.

13.3 Arc Length and Speed (LT Section 14.3)

Preliminary Questions
1. At a given instant, a car on a roller coaster has velocity vector r′ = 〈25, −35, 10〉 (in miles per hour). What would the

velocity vector be if the speed were doubled? What would it be if the car’s direction were reversed but its speed remained
unchanged?

solution The speed is doubled but the direction is unchanged, hence the new velocity vector has the form:

λr′ = λ 〈25, −35, 10〉 for λ > 0

We use λ = 2, and so the new velocity vector is 〈50, −70, 20〉. If the direction is reversed but the speed is unchanged,
the new velocity vector is:

−r′ = 〈−25, 35, −10〉 .

2. Two cars travel in the same direction along the same roller coaster (at different times). Which of the following
statements about their velocity vectors at a given point P on the roller coaster is/are true?

(a) The velocity vectors are identical.
(b) The velocity vectors point in the same direction but may have different lengths.
(c) The velocity vectors may point in opposite directions.

solution
(a) The length of the velocity vector is the speed of the particle. Therefore, if the speeds of the cars are different the
velocities are not identical. The statement is false.
(b) The velocity vector is tangent to the curve. Since the cars travel in the same direction, their velocity vectors point in
the same direction. The statement is true.
(c) Since the cars travel in the same direction, the velocity vectors point in the same direction. The statement is false.

3. A mosquito flies along a parabola with speed v(t) = t2. Let s(t) be the total distance traveled at time t .

(a) How fast is s(t) changing at t = 2?
(b) Is s(t) equal to the mosquito’s distance from the origin?
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solution
(a) By the Arc Length Formula, we have:

s(t) =
∫ t

t0

‖r′(t)‖ dt =
∫ t

t0

v(t) dt

Therefore,

s′(t) = v(t)

To find the rate of change of s(t) at t = 2 we compute the derivative of s(t) at t = 2, that is,

s′(2) = v(2) = 22 = 4

(b) s(t) is the distance along the path traveled by the mosquito. This distance is usually different from the mosquito’s
distance from the origin, which is the length of r(t).

r(t)Distance L(t)

Distance from
the origin

t0

t

4. What is the length of the path traced by r(t) for 4 ≤ t ≤ 10 if r(t) is an arc length parametrization?

solution Since r(t) is an arc length parametrization, the length of the path for 4 ≤ t ≤ 10 is equal to the length of the
time interval 4 ≤ t ≤ 10, which is 6.

Exercises
In Exercises 1–6, compute the length of the curve over the given interval.

1. r(t) = 〈3t, 4t − 3, 6t + 1〉, 0 ≤ t ≤ 3

solution We have x(t) = 3t , y(t) = 4t − 3, z(t) = 6t + 1 hence

x′(t) = 3, y′(t) = 4, z′(t) = 6.

We use the Arc Length Formula to obtain:

s =
∫ 3

0
‖r′(t)‖ dt =

∫ 3

0

√
x′(t)2 + y′(t)2 + z′(t)2 dt =

∫ 3

0

√
32 + 42 + 62 dt = 3

√
61

2. r(t) = 2t i − 3tk, 11 ≤ t ≤ 15

solution We have, x(t) = 2t , y(t) = 0, z(t) = −3t . Hence

x′(t) = 2, y′(t) = 0, z′(t) = −3

Using the Arc Length Formula we get:

s =
∫ 15

11
‖r′(t)‖ dt

=
∫ 15

11

√
x′(t)2 + y′(t)2 + z′(t)2 dt

=
∫ 15

11

√
22 + 02 + (−3)2 dt

= √
13(15 − 11) = 4

√
13.

3. r(t) = 〈
2t, ln t, t2〉, 1 ≤ t ≤ 4

solution The derivative of r(t) is r′(t) =
〈
2, 1

t , 2t
〉
. We use the Arc Length Formula to obtain:

s =
∫ 4

1
‖r′(t)‖ dt =

∫ 4

1

√
22 +

(
1

t

)2
+ (2t)2 dt =

∫ 4

1

√
4t2 + 4 + 1

t2
dt =

∫ 4

1

√(
2t + 1

t

)2
dt

=
∫ 4

1

(
2t + 1

t

)
dt = t2 + ln t

∣∣∣∣4
1

= (16 + ln 4) − (1 + ln 1) = 15 + ln 4
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4. r(t) = 〈
2t2 + 1, 2t2 − 1, t3〉, 0 ≤ t ≤ 2

solution The derivative of r(t) is r′(t) =
〈
4t, 4t, 3t2

〉
. Using the Arc Length Formula we have:

s =
∫ 2

0
‖r′(t)‖ dt =

∫ 2

0

√
(4t)2 + (4t)2 + (3t2)2 dt =

∫ 2

0

√
32t2 + 9t4 dt =

∫ 2

0
t
√

32 + 9t2 dt

We compute the integral using the substitution u = 32 + 9t2, du = 18t dt . This gives:

s =
∫ 68

32

√
u

du

18
= 1

18
· 2

3
u3/2

∣∣∣∣68

32
= 1

27

(
683/2 − 323/2) ≈ 14.063

5. r(t) = 〈t cos t, t sin t, 3t〉, 0 ≤ t ≤ 2π

solution The derivative of r(t) is r′(t) = 〈cos t − t sin t, sin t + t cos t, 3〉. The length of r′(t) is, thus,

‖r′(t)‖ =
√

(cos t − t sin t)2 + (sin t + t cos t)2 + 9

=
√

cos2 t − 2t cos t sin t + t2 sin2 t + sin2 t + 2t sin t cos t + t2 cos2 t + 9

=
√(

cos2 t + sin2 t
)

+ t2
(

sin2 t + cos2t
)

+ 9 =
√

t2 + 10

Using the Arc Length Formula and the integration formula given in Exercise 6, we obtain:

s =
∫ 2π

0
‖r′(t)‖ dt =

∫ 2π

0

√
t2 + 10 dt = 1

2
t
√

t2 + 10 + 1

2
· 10 ln

(
t +

√
t2 + 10

)∣∣∣∣2π

0

= π
√

4π2 + 10 + 5 ln
(

2π +
√

4π2 + 10
)

− 5 ln
√

10 = π
√

4π2 + 10 + 5 ln
2π +

√
4π2 + 10√
10

≈ 29.3

6. r(t) = t i + 2tj + (t2 − 3)k, 0 ≤ t ≤ 2. Use the formula:∫ √
t2 + a2 dt = 1

2
t
√

t2 + a2 + 1

2
a2 ln

(
t +

√
t2 + a2

)
solution The derivative of r(t) is r′(t) = i + 2j + 2tk. Using the Arc Length Formula we get:

s =
∫ 2

0
‖r′(t)‖ dt =

∫ 2

0

√
12 + (2)2 + (2t)2 dt =

∫ 2

0

√
4t2 + 5 dt

We substitute u = 2t , du = 2 dt and use the given integration formula. This gives:

s = 1

2

∫ 4

0

√
u2 + 5 du = 1

4
u
√

u2 + 5 + 1

4
· 5 ln

(
u +

√
u2 + 5

)∣∣∣∣4
0

= 1

4
· 4

√
42 + 5 + 5

4
ln

(
4 +

√
42 + 5

)
− 5

4
ln

√
5 = √

21 + 5

4
ln

(
4 + √

21
)

− 5

4
ln

√
5

= √
21 + 5

4
ln

4 + √
21√

5
≈ 6.26

In Exercises 7 and 8, compute the arc length function s(t) =
∫ t

a
‖r′(u)‖ du for the given value of a.

7. r(t) = 〈
t2, 2t2, t3〉, a = 0

solution The derivative of r(t) is r′(t) = 〈
2t, 4t, 3t2〉. Hence,

‖r′(t)‖ =
√

(2t)2 + (4t)2 + (3t2)
2 =

√
4t2 + 16t2 + 9t4 = t

√
20 + 9t2

Hence,

s(t) =
∫ t

0
‖r′(u)‖ du =

∫ t

0
u
√

20 + 9u2 du

We compute the integral using the substitution v = 20 + 9u2, dv = 18u du. This gives:

s(t) = 1

18

∫ 20+9t2

20
v1/2 dv = 1

18
· 2

3
v3/2

∣∣∣∣20+9t2

20
= 1

27

(
(20 + 9t2)3/2 − 203/2

)
.
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8. r(t) = 〈
4t1/2, ln t, 2t

〉
, a = 1

solution The derivative of r(t) is r′(t) =
〈
2t−1/2, 1/t, 2

〉
Hence,

‖r′(t)‖ =
√

(2t−1/2)2 + (1/t)2 + 22 =
√

4

t
+ 1

t2
+ 4 =

√
4t2 + 4t + 1

t2
=

√
(2t + 1)2

t2
= 2t + 1

t
= 2 + 1

t

Therefore,

s(t) =
∫ t

1
‖r′(u)‖ du =

∫ t

1
2 + 1

u
du = 2u + ln u

∣∣∣∣t
1

= 2t + ln t − (2 + ln 1) = 2t + ln t − 2

In Exercises 9–12, find the speed at the given value of t .

9. r(t) = 〈2t + 3, 4t − 3, 5 − t〉, t = 4

solution The speed is the magnitude of the derivative r′(t) = 〈2, 4, −1〉. That is,

v(t) = ‖r′(t)‖ =
√

22 + 42 + (−1)2 = √
21 ≈ 4.58

10. r(t) = 〈
et−3, 12, 3t−1〉, t = 3

solution The velocity vector is r′(t) = 〈
et−3, 0, −3t−2〉 and at t = 3, r′(3) = 〈

e3−3, 0, −3 · 3−2〉 = 〈
1, 0, − 1

3

〉
. The

speed is the magnitude of the velocity vector, that is,

v(3) = ‖r′(3)‖ =
√

12 + 02 +
(

−1

3

)2
=

√
10

9
≈ 1.05

11. r(t) = 〈sin 3t, cos 4t, cos 5t〉, t = π
2

solution The velocity vector is r′(t) = 〈3 cos 3t, −4 sin 4t, −5 sin 5t〉. At t = π
2 the velocity vector is r′ (π

2

) =〈
3 cos 3π

2 , −4 sin 2π, −5 sin 5π
2

〉
= 〈0, 0, −5〉. The speed is the magnitude of the velocity vector:

v
(π

2

)
= ‖ 〈0, 0, −5〉 ‖ = 5.

12. r(t) = 〈cosh t, sinh t, t〉, t = 0

solution The velocity vector is r′(t) = 〈sinh t, cosh t, 1〉. At t = 0 the velocity is r′(0) = 〈sinh(0),

cosh(0), 1〉 = 〈0, 1, 1〉, hence the speed is

v(0) = ‖r′(0)‖ =
√

02 + 12 + 12 = √
2.

13. What is the velocity vector of a particle traveling to the right along the hyperbola y = x−1 with constant speed 5 cm/s
when the particle’s location is

(
2, 1

2

)
?

solution The position of the particle is given as r(t) = t−1. The magnitude of the velocity vector r′(t) is the speed
of the particle. Hence,

‖r′(t)‖ = 5 (1)

The velocity vector points in the direction of motion, hence it is parallel to the tangent line to the curve y = x−1 and
points to the right. We find the slope of the tangent line at x = 2:

m = dy

dx

∣∣∣∣
x=2

= d

dx
(x−1)

∣∣∣∣
x=2

= −x−2
∣∣∣∣
x=2

= −1

4

We conclude that the vector
〈
1, − 1

4

〉
is a direction vector of the tangent line at x = 2, and for some λ > 0 we have at the

given instance:

r′ = λ

〈
1, −1

4

〉
(2)
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x

y

1
2 1

4

y = 1
x

1
4〈1, −   〉

2 4

1

1
1
2(2,    )

To satisfy (1) we must have:

‖r′‖ = λ

√
12 +

(
−1

4

)2
= λ

√
17

4
= 5 ⇒ λ = 20√

17

Substituting in (2) we obtain the following velocity vector at
(

2, 1
2

)
:

r′ = 20√
17

〈
1, −1

4

〉
=

〈
20√
17

,
−5√

17

〉

14. A bee with velocity vector r′(t) starts out at the origin at t = 0 and flies around for T seconds. Where is the bee

located at time T if
∫ T

0
r′(u) du = 0? What does the quantity

∫ T

0
‖r′(u)‖ du represent?

solution By the Fundamental Theorem for vector-valued functions,
∫ T

0
r′(u) du = r(T ) − r(0), hence by the given

information r(T ) = r(0). It follows that at time T the bee is located at the starting point which is at the origin. The

integral
∫ T

0
‖r′(u)‖ du is the length of the path traveled by the bee in the time interval 0 ≤ t ≤ T . Notice that there is a

difference between the displacement and the actual length traveled.

15. Let

r(t) =
〈
R cos

(
2πNt

h

)
, R sin

(
2πNt

h

)
, t

〉
, 0 ≤ t ≤ h

(a) Show that r(t) parametrizes a helix of radius R and height h making N complete turns.

(b) Guess which of the two springs in Figure 5 uses more wire.

(c) Compute the lengths of the two springs and compare.

3 cm4 cm

5 turns, radius 4 cm3 turns, radius 7 cm
(A) (B)

FIGURE 5 Which spring uses more wire?

solution We first verify that the projection p(t) =
〈
R cos

(
2πNt

h

)
, R sin

(
2πNt

h

)
, 0

〉
onto the xy-plane describes a

point moving around the circle of radius R. We have:

x(t)2 + y(t)2 = R2 cos2
(

2πNt

h

)
+ R2 sin2

(
2πNt

h

)
= R2

(
cos2

(
2πNt

h

)
+ sin2

(
2πNt

h

))
= R2

This is the equation of the circle of radius R in the xy-plane. As t changes in the interval 0 ≤ t ≤ h the argument 2πNt
h

changes from 0 to 2πN , that is, it covers N periods of the cos and sin functions. It follows that the projection onto the
xy-plane describes a point moving around the circle of radius R, making N complete turns. The height of the helix is the
maximum value of the z-component, which is t = h.

(a) The second wire seems to use more wire than the first one.

(b) Setting R = 7, h = 4 and N = 3 in the parametrization in Exercise 15 gives:

r1(t) =
〈
7 cos

2π · 3t

4
, 7 sin

2π · 3t

4
, t

〉
=

〈
7 cos

3πt

2
, 7 sin

3πt

2
, t

〉
, 0 ≤ t ≤ 4
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Setting R = 4, h = 3 and N = 5 in this parametrization we get:

r2(t) =
〈
4 cos

2π · 5t

3
, 4 sin

2π · 5t

3
, t

〉
=

〈
4 cos

10πt

3
, 4 sin

10πt

3
, t

〉
, 0 ≤ t ≤ 3

We find the derivatives of the two vectors and their lengths:

r′
1(t) =

〈
−21π

2
sin

3πt

2
,

21π

2
cos

3πt

2
, 1

〉
⇒ ‖r′

1(t)‖ =
√

441π2

4
+ 1 = 1

2

√
441π2 + 4

r′
2(t) =

〈
−40π

3
sin

10πt

3
,

40π

3
cos

10πt

3
, 1

〉
⇒ ‖r′

2(t)‖ =
√

1600π2

9
+ 1 = 1

3

√
1600π2 + 9

Using the Arc Length Formula we obtain the following lengths:

s1 =
∫ 4

0

1

2

√
441π2 + 4 dt = 2

√
441π2 + 4 ≈ 132

s2 =
∫ 3

0

1

3

√
1600π2 + 9 dt =

√
1600π2 + 9 ≈ 125.7

We see that the first spring uses more wire than the second one.

16. Use Exercise 15 to find a general formula for the length of a helix of radius R and height h that makes N complete
turns.

solution In Exercise 15 it is shown that the helix has the following parametrization:

r(t) =
〈
R cos

2πNt

h
, R sin

2πNt

h
, t

〉
; 0 ≤ t ≤ h

We compute the derivative vector and its length:

r′(t) =
〈
−R · 2πN

h
sin

2πNt

h
,
R · 2πN

h
cos

2πNt

h
, 1

〉

‖r′(t)‖ =
√(

R · 2πN

h
sin

2πNt

h

)2
+

(
R · 2πN

h
cos

2πNt

h

)2
+ 12

=
√

4π2N2R2

h2

(
sin2 2πNt

h
+ cos2 2πNt

h

)
+ 1 =

√
4π2N2R2

h2
+ 1 = 1

h

√
4π2N2R2 + h2

We now apply the Arc Length Formula to compute the length of the helix:

s =
∫ h

0
‖r′(t)‖ dt =

∫ h

0

1

h

√
4π2N2R2 + h2 dt =

√
4π2N2R2 + h2

h
· h =

√
4π2N2R2 + h2

17. The cycloid generated by the unit circle has parametrization

r(t) = 〈t − sin t, 1 − cos t〉
(a) Find the value of t in [0, 2π ] where the speed is at a maximum.

(b) Show that one arch of the cycloid has length 8. Recall the identity sin2(t/2) = (1 − cos t)/2.

solution One arch of the cycloid is traced as 0 ≤ t ≤ 2π . By the Arc Length Formula we have:

s =
∫ 2π

0
‖r′(t)‖ dt (1)

We compute the derivative and its length:

r′(t) = 〈1 − cos t, sin t〉

‖r′(t)‖ =
√

(1 − cos t)2 + (sin t)2 =
√

1 − 2 cos t + cos2 t + sin2 t

= √
2 − 2 cos t = √

2(1 − cos t) =
√

2 · 2 sin2 t

2
= 2

∣∣∣∣sin
t

2

∣∣∣∣ .
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For 0 ≤ t ≤ 2π , we have 0 ≤ t
2 ≤ π , so sin t

2 ≥ 0. Therefore we may omit the absolute value sign and write:

‖r′(t)‖ = 2 sin
t

2

Substituting in (1) and computing the integral using the substitution u = t
2 , du = 1

2 dt , gives:

s =
∫ 2π

0
2 sin

t

2
dt =

∫ π

0
2 sin u · (2 du) = 4

∫ π

0
sin u du

= 4(− cos u)

∣∣∣∣π
0

= 4 (− cos π − (− cos 0)) = 4(1 + 1) = 8

The length of one arc of the cycloid is s = 8. The speed is given by the function:

v(t) = ‖r′(t)‖ = 2 sin
t

2
, 0 ≤ t ≤ π

To find the value of t in [0, 2π ] where the speed is at maximum, we first find the critical point in this interval:

v′(t) = 2 · 1

2
cos

t

2
= cos

t

2

cos
t

2
= 0 ⇒ t

2
= π

2
⇒ t = π

Since v′′(t) = − 1
2 sin t

2 , we have v′′(π) = − 1
2 sin π

2 = − 1
2 < 0, hence the speed v(t) has a maximum value at t = π.

18. Which of the following is an arc length parametrization of a circle of radius 4 centered at the origin?

(a) r1(t) = 〈4 sin t, 4 cos t〉
(b) r2(t) = 〈4 sin 4t, 4 cos 4t〉
(c) r3(t) = 〈

4 sin t
4 , 4 cos t

4

〉
solution The arc length parametrization is defined by the condition ‖r′(t)‖ = 1 for all t . We thus must check whether
this condition is satisfied.

(a) The derivative vector is r′
1(t) = 〈4 cos t, −4 sin t〉. We compute the length of this vector:

‖r′
1(t)‖ =

√
(4 cos t)2 + (−4 sin t)2 =

√
16

(
cos2 t + sin2 t

) = √
16 = 4 �= 1

We conclude that this parametrization is not the arc length parametrization of the circle.

(b) We compute the derivative vector and its length:

r′
2(t) = 〈16 cos 4t, −16 sin 4t〉

‖r′
2(t)‖ =

√
(16 cos 4t)2 + (−16 sin 4t)2 =

√
162(cos2 4t + sin2 4t

) =
√

162 · 1 = 16 �= 1

Hence, this parametrization is not the arc length parametrization of the circle.

(c) We find the derivative vector and its length:

r′
3(t) =

〈
4 · 1

4
cos

t

4
, −4 · 1

4
sin

t

4

〉
=

〈
cos

t

4
, − sin

t

4

〉

‖r′
3(t)‖ =

√(
cos

t

4

)2
+

(
− sin

t

4

)2
= 1

Hence, this parametrization is the arc length parametrization of the circle.

19. Let r(t) = 〈3t + 1, 4t − 5, 2t〉.
(a) Evaluate the arc length integral s(t) =

∫ t

0
‖r′(u)‖ du.

(b) Find the inverse g(s) of s(t).

(c) Verify that r1(s) = r(g(s)) is an arc length parametrization.

solution

(a) We differentiate r(t) componentwise and then compute the norm of the derivative vector. This gives:

r′(t) = 〈3, 4, 2〉
‖r′(t)‖ =

√
32 + 42 + 22 = √

29



April 19, 2011

S E C T I O N 13.3 Arc Length and Speed (LT SECTION 14.3) 515

We compute s(t):

s(t) =
∫ t

0
‖r′(u)‖ du =

∫ t

0

√
29 du = √

29 u

∣∣∣∣t
0

= √
29t

(b) We find the inverse g(s) = t (s) by solving s = √
29t for t . We obtain:

s = √
29t ⇒ t = g(s) = s√

29

We obtain the following arc length parametrization:

r1(s) = r
(

s√
29

)
=

〈
3s√
29

+ 1,
4s√
29

− 5,
2s√
29

〉

To verify that r1(s) is an arc length parametrization we must show that ‖r′
1(s)‖ = 1. We compute r′

1(s):

r′
1(s) = d

ds

〈
3s√
29

+ 1,
4s√
29

− 5,
2s√
29

〉
=

〈
3√
29

,
4√
29

,
2√
29

〉
= 1√

29
〈3, 4, 2〉

Thus,

‖r′
1(s)‖ = 1√

29
‖ 〈3, 4, 2〉 ‖ = 1√

29

√
32 + 42 + 22 = 1√

29
· √

29 = 1

20. Find an arc length parametrization of the line y = 4x + 9.

solution First, let r(t) = 〈t, 4t + 9〉. Then we know r′(t) = 〈1, 4〉 and ‖r′(t)‖ = √
17. We now compute s(t):

s(t) =
∫ t

0
‖r′(u)‖ du =

∫ t

0

√
17 du = t

√
17

We find the inverse g(s) = t (s) by solving s = t
√

17 for t :

s = t
√

17, ⇒ t = 1√
17

s

We obtain the following arc length parametrization:

r1(s) = r
(

s√
17

)
=

〈
s√
17

,
4s√
17

+ 9

〉

21. Let r(t) = w + tv be the parametrization of a line.

(a) Show that the arc length function s(t) =
∫ t

0
‖r′(u)‖ du is given by s(t) = t‖v‖. This shows that r(t) is an arc length

parametrizaton if and only if v is a unit vector.

(b) Find an arc length parametrization of the line with w = 〈1, 2, 3〉 and v = 〈3, 4, 5〉.
solution

(a) Since r(t) = w + tv, then r′(t) = v and ‖r′(t)‖ = ‖v‖. Then computing s(t) we get:

s(t) =
∫ t

0
‖r′(u)‖ du =

∫ t

0
‖v‖ du = t‖v‖

If we consider s(t),

s(t) = t if and only if ‖v‖ = 1

(b) Since v = 〈3, 4, 5〉, then from part (a) we get:

s(t) = t‖v‖ = t
√

32 + 42 + 52 = t
√

50, ⇒ t = g(s) = s√
50

Therefore, since we are given r(t) = w + tv, the arc length parametrization is:

r1(s) = 〈1, 2, 3〉 + s√
50

〈3, 4, 5〉 =
〈
1 + 3s√

50
, 2 + 4s√

50
, 3 + 5s√

50

〉



April 19, 2011

516 C H A P T E R 13 CALCULUS OF VECTOR-VALUED FUNCTIONS (LT CHAPTER 14)

22. Find an arc length parametrization of the circle in the plane z = 9 with radius 4 and center (1, 4, 9).

solution We start with the following parametrization of the circle:

r(t) = 〈1, 4, 9〉 + 4 〈cos t, sin t, 0〉 = 〈1 + 4 cos t, 4 + 4 sin t, 9〉
We now follow two steps:

Step 1. Find the inverse of the arc length function. The arc length function is s(t) =
∫ t

0
‖r′(l)‖ dl. We compute r′(t)

and its length:

r(t) = 〈−4 sin t, 4 cos t, 0〉

‖r′(t)‖ =
√

(−4 sin t)2 + (4 cos t)2 + 02 =
√

16(sin2 t + cos2 t) = √
16 · 1 = 4

Hence,

s(t) =
∫ t

0
4 dl = 4t

The inverse of s = 4t is t = g(s) = s
4 .

Step 2. Reparametrize the curve. The arc length parametrization is

r1(s) = r (g(s)) = r
( s

4

)
=

〈
1 + 4 cos

s

4
, 4 + 4 sin

s

4
, 9

〉

23. Find a path that traces the circle in the plane y = 10 with radius 4 and center (2, 10, −3) with constant speed 8.

solution We start with the following parametrization of the circle:

r(t) = 〈2, 10, −3〉 + 4 〈cos t, 0, sin t〉 = 〈2 + 4 cos t, 10, −3 + 4 sin t〉
We need to reparametrize the curve by making a substitution t = g(s), so that the new parametrization r1(s) = r (g(s))

satisfies ‖r′
1(s)‖ = 8 for all s. We find r′

1(s) using the Chain Rule:

r′
1(s) = d

ds
r (g(s)) = g′(s)r′ (g(s)) (1)

Next, we differentiate r(t) and then replace t by g(s):

r′(t) = 〈−4 sin t, 0, 4 cos t〉
r′ (g(s)) = 〈−4 sin g(s), 0, 4 cos g(s)〉

Substituting in (1) we get:

r′
1(s) = g′(s) 〈−4 sin g(s), 0, 4 cos g(s)〉 = −4g′(s) 〈sin g(s), 0, − cos g(s)〉

Hence,

‖r′
1(s)‖ = 4|g′(s)|

√
(sin g(s))2 + (− cos g(s))2 = 4|g′(s)|

To satisfy ‖r′
1(s)‖ = 8 for all s, we choose g′(s) = 2. We may take the antiderivative g(s) = 2 · s, and obtain the

following parametrization:

r1(s) = r (g(s)) = r(2s) = 〈2 + 4 cos(2s), 10, −3 + 4 sin(2s)〉 .

This is a parametrization of the given circle, with constant speed 8.

24. Find an arc length parametrization of r(t) = 〈
et sin t, et cos t, et

〉
.

solution An arc length parametrization is r1(s) = r (g(s)) where t = g(s) is the inverse of the arc length function.
We compute the arc length function:

s(t) =
∫ t

0
‖r′(u)‖ du (1)

Differentiating r(t) and computing the norm of r′(t) gives:

r′(t) = 〈
et sin t + et cos t, et cos t − et sin t, et

〉 = et 〈sin t + cos t, cos t − sin t, 1〉

‖r′(t)‖ = et
√

(sin t + cos t)2 + (cos t − sin t)2 + 12
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= et (sin2 t + 2 sin t cos t + cos2 t + cos2 t − 2 sin t cos t + sin2 t + 1)1/2

= et
√

2(sin2 t + cos2 t) + 1 = et
√

2 · 1 + 1 = √
3 et (2)

Substituting (2) into (1) gives:

s(t) =
∫ t

0

√
3 eu du = √

3 eu

∣∣∣∣t
0

= √
3(et − e0) = √

3(et − 1)

We find the inverse function of s(t) by solving s = √
3
(
et − 1

)
for t . We obtain:

s = √
3(et − 1)

s√
3

= et − 1

et = 1 + s√
3

⇒ t = g(s) = ln

(
1 + s√

3

)

An arc length parametrization for r1(s) = r (g(s)) is:〈
eln(1+s/(

√
3)) sin

(
ln

(
1 + s√

3

))
, eln(1+s/(

√
3)) cos

(
ln

(
1 + s√

3

))
, eln(1+s/(

√
3))

〉

=
(

1 + s√
3

) 〈
sin

(
ln

(
1 + s√

3

))
, cos

(
ln

(
1 + s√

3

))
, 1

〉

25. Find an arc length parametrization of r(t) = 〈
t2, t3〉.

solution We follow two steps.

Step 1. Find the inverse of the arc length function. The arc length function is the following function:

s(t) =
∫ t

0
‖r′(u)‖ du (1)

In our case r′(t) = 〈
2t, 3t2〉 hence ‖r′(t)‖ =

√
4t2 + 9t4 =

√
4 + 9t2t . We substitute in (1) and compute the resulting

integral using the substitution v = 4 + 9u2, dv = 18u du. This gives:

s(t) =
∫ t

0

√
4 + 9u2u du = 1

18

∫ 4+9t2

4
v1/2 dv = 1

18
· 2

3
v3/2

∣∣∣∣4+9t2

4
= 1

27

(
(4 + 9t2)3/2 − 43/2

)

= 1

27

((
4 + 9t2

)3/2 − 8

)

We find the inverse of t = s(t) by solving for t in terms of s. This function is invertible for t ≥ 0 and for t ≤ 0.

s = 1

27

(
(4 + 9t2)3/2 − 8

)
27s + 8 = (4 + 9t2)3/2

(27s + 8)2/3 − 4 = 9t2

t2 = 1

9

(
(27s + 8)2/3 − 4

)
= 1

9
(27s + 8)2/3 − 4

9

t = ±1

3

√
(27s + 8)2/3 − 4 (2)

Step 2. Reparametrize the curve. The arc length parametrization is obtained by replacing t by (2) in r(t):

r1(s) =
〈

1

9
(27s + 8)2/3 − 4

9
, ± 1

27

(
(27s + 8)2/3 − 4

)3/2
〉

26. Find an arc length parametrization of the cycloid with parametrization r(t) = 〈t − sin t, 1 − cos t〉.
solution

Step 1. Find the inverse of the arc length function. We are given r(t) = 〈t − sin t, 1 − cos t〉, so then r′(t) =
〈1 − cos t, sin t〉 and

‖r′(t)‖ =
√

(1 − cos t)2 + sin2 t =
√

1 − 2 cos t + cos2 t + sin2 t
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= √
2 − 2 cos t =

√
4 sin2(t/2) = 2 sin(t/2)

We then compute s(t):

s(t) =
∫ t

0
‖r′(u)‖ du =

∫ t

0
2 sin

u

2
du

= −4 cos
u

2

∣∣∣∣t
0

= −4 cos
t

2
+ 4 = 4

(
1 − cos

t

2

)

Then solve s(t) = 4
(
1 − cos t

2

)
for t :

s = 4

(
1 − cos

t

2

)
⇒ s

4
= 1 − cos

t

2
⇒ 1 − s

4
= cos

t

2
⇒ t = 2 arccos

(
1 − s

4

)

Step 2. Reparametrize the curve using the t we just found. We will write this as t = 2 arccos

(
4 − s

4

)
and solving, let

us first note that:

sin t = 2 sin
t

2
cos

t

2
= 2

(√
8s − s2

4

)(
4 − s

4

)
= (4 − s)

√
8s − s2

8

cos t = 2 cos2 t

2
− 1 = 2

(
4 − s

4

)2
− 1

So then, rewriting

r(t) = 〈t − sin t, 1 − cos t〉

r1(s) =
〈

2 arccos

(
4 − s

4

)
− (4 − s)

√
8s − s2

8
, 1 −

(
2

(
4 − s

4

)2
− 1

)〉

=
〈

2 arccos

(
4 − s

4

)
− (4 − s)

√
8s − s2

8
, 1 − 1

8
(4 − s)2 + 1

〉

=
〈

2 arccos

(
4 − s

4

)
− (4 − s)

√
8s − s2

8
, 2 − 1

8
(4 − s)2

〉

27. Find an arc length parametrization of the line y = mx for an arbitrary slope m.

solution
Step 1. Find the inverse of the arc length function. We are given the line y = mx and a parametrization of this line is
r(t) = 〈t, mt〉, thus r′(t) = 〈1, m〉 and

‖r′(t)‖ =
√

1 + m2

We then compute s(t):

s(t) =
∫ t

0

√
1 + m2 du = t

√
1 + m2

Solving s = t
√

1 + m2 for t we get:

t = s√
1 + m2

Step 2. Reparametrize the curve using the t we just found.

r1(s) =
〈

s√
1 + m2

,
sm√

1 + m2

〉

28. Express the arc length s of y = x3 for 0 ≤ x ≤ 8 as an integral in two ways, using the parametrizations r1(t) = 〈
t, t3〉

and r2(t) = 〈
t3, t9〉. Do not evaluate the integrals, but use substitution to show that they yield the same result.

solution For r1(t) = 〈
t, t3〉 we have r′

1(t) = 〈
1, 3t2〉 hence ‖r′

1(t)‖ =
√

1 + 9t4. For r2(t) = 〈
t3, t9〉 we have

r′
2(t) = 〈

3t2, 9t8〉 hence ‖r′
2(t)‖ =

√
9t4 + 81t16. The length s may be computed using the two parametrizations by the

following integrals (notice that in the second parametrization 0 ≤ t3 ≤ 8 hence 0 ≤ t ≤ 2).
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s =
∫ 8

0
‖r′

1(t)‖ dt =
∫ 8

0

√
1 + 9t4 dt (1)

s =
∫ 2

0
‖r′

2(t)‖ dt =
∫ 2

0

√
1 + 9t12 3t2 dt (2)

We use the substitution u = t3, du = 3t2 dt in the second integral to obtain:

∫ 2

0

√
1 + 9t12 3t2 dt =

∫ 8

0

√
1 + 9u4 du

This integral is the same as the integral in (1), in accordance with the well known property: the arc length is independent
of the parametrization we choose for the curve.

29. The curve known as the Bernoulli spiral (Figure 6) has parametrization r(t) = 〈
et cos 4t, et sin 4t

〉
.

(a) Evaluate s(t) =
∫ t

−∞
‖r′(u)‖ du. It is convenient to take lower limit −∞ because r(−∞) = 〈0, 0〉.

(b) Use (a) to find an arc length parametrization of r(t).

20

t = 0

t = 2π

−10

x

y

FIGURE 6 Bernoulli spiral.

solution

(a) We differentiate r(t) and compute the norm of the derivative vector. This gives:

r′(t) = 〈
et cos 4t − 4et sin 4t, et sin 4t + 4et cos 4t

〉 = et 〈cos 4t − 4 sin 4t, sin 4t + 4 cos 4t〉

‖r′(t)‖ = et
√

(cos 4t − 4 sin 4t)2 + (sin 4t + 4 cos 4t)2

= et
(
cos2 4t − 8 cos 4t sin 4t + 16 sin2 4t + sin2 4t + 8 sin 4t cos 4t + 16 cos2 4t

)1/2

= et
√

cos2 4t + sin2 4t + 16
(
sin2 4t + cos2 4t

) = et
√

1 + 16 · 1 = √
17et

We now evaluate the improper integral:

s(t) =
∫ t

−∞
‖r′(u)‖ du = lim

R→−∞

∫ t

R

√
17eu du = lim

R→−∞
√

17eu
∣∣∣t
R

= lim
R→−∞

√
17(et − eR)

= √
17(et − 0) = √

17et

(b) An arc length parametrization of r(t) is r1(s) = r (g(s)) where t = g(s) is the inverse function of s(t). We find
t = g(s) by solving s = √

17et for t :

s = √
17et ⇒ et = s√

17
⇒ t = g(s) = ln

s√
17

An arc length parametrization of r(t) is:

r1(s) = r (g(s)) =
〈
eln(s/(

√
17)) cos

(
4 ln

s√
17

)
, eln(s/(

√
17)) sin

(
4 ln

s√
17

)〉

= s√
17

〈
cos

(
4 ln

s√
17

)
, sin

(
4 ln

s√
17

)〉
(1)
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Further Insights and Challenges
30. Prove that the length of a curve as computed using the arc length integral does not depend on its parametriza-
tion. More precisely, let C be the curve traced by r(t) for a ≤ t ≤ b. Let f (s) be a differentiable function such that
f ′(s) > 0 and that f (c) = a and f (d) = b. Then r1(s) = r(f (s)) parametrizes C for c ≤ s ≤ d. Verify that

∫ b

a
‖r′(t)‖ dt =

∫ d

c
‖r′

1(s)‖ ds

solution By the Chain Rule we have:

r′
1(t) = g′(t)r′ (g(t)) ⇒ ‖r′

1(t)‖ = |g′(t)|‖r′ (g(t)) ‖ = g′(t)‖r′ (g(t)) ‖
Hence, ∫ d

c
‖r′

1(t)‖ dt =
∫ d

c
g′(t)‖r′ (g(t)) ‖dt (1)

We use the substitution u = g(t), du = g′(t) dt . We are given that g(c) = a and g(d) = b, hence the new limits of
integration are g(c) = a and ϕ(d) = b. Thus, by (1):

∫ d

c
‖r′

1(t)‖ dt =
∫ g(d)

g(c)
‖r′(u)‖ du =

∫ b

a
‖r′(u)‖ du =

∫ b

a
‖r′(t)‖ dt

31. The unit circle with the point (−1, 0) removed has parametrization (see Exercise 73 in Section 11.1)

r(t) =
〈

1 − t2

1 + t2
,

2t

1 + t2

〉
, −∞ < t < ∞

Use this parametrization to compute the length of the unit circle as an improper integral. Hint: The expression for ‖r′(t)‖
simplifies.

solution We have x(t) = 1−t2

1+t2 , y(t) = 2t
1+t2 . Hence,

x2(t) + y2(t) =
(

1 − t2

1 + t2

)2

+
(

2t

1 + t2

)2
= 1 − 2t2 + t4 + 4t2(

1 + t2
)2

= 1 + 2t2 + t4(
1 + t2

)2
=

(
1 + t2

)2

(
1 + t2

)2
= 1

It follows that the path r(t) lies on the unit circle. We now show that the entire circle is indeed parametrized by r(t)
as t moves from −∞ to ∞. First, note that x′(t) can be written as

[−2t (1 + t2) − 2t (1 − t2)
]
/(1 + t2)2 which is

−4t/(1 + t2)2. So, for t negative, x(t) is an increasing function, y(t) is negative, and since lim
t→−∞ x(t) = −1 and

lim
t→0

x(t) = 1, we conclude that r(t) does indeed parametrize the lower half of the circle for negative t . A similar

argument proves that we get the upper half of the circle for positive t . We now compute r′(t) and its length:

r′(t) =
〈

−2t (1 + t2) − 2t (1 − t2)

(1 + t2)2
,

2(1 + t2) − 2t · 2t

(1 + t2)2

〉

=
〈
− 4t

(1 + t2)2
,

2 − 2t2

(1 + t2)2

〉
= 1

(1 + t2)
2

〈
−4t, 2(1 − t2)

〉

‖r′(t)‖ = 1

(1 + t2)2

√
16t2 + 4(1 − t2)2 = 2

(1 + t2)2

√
t4 + 2t2 + 1

= 2

(1 + t2)2

√
(t2 + 1)2 = 2(t2 + 1)

(1 + t2)
2

= 2

1 + t2

That is,

‖r′(t)‖ = 2

1 + t2

We now use the Arc Length Formula to compute the length of the circle:

s =
∫ ∞
−∞

‖r′(t)‖ dt = 2
∫ ∞
−∞

dt

1 + t2
= 2

(
lim

R→∞ tan−1 R − lim
R→−∞ tan−1 R

)
= 2

(π

2
−

(
−π

2

))
= 2π
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32. The involute of a circle (Figure 7), traced by a point at the end of a thread unwinding from a circular spool of radius
R, has parametrization (see Exercise 26 in Section 12.2)

r(θ) = 〈
R(cos θ + θ sin θ), R(sin θ − θ cos θ)

〉
Find an arc length parametrization of the involute.

x
θ

(R cos θ, R sin θ)

String

(length Rθ)

R

P

y

FIGURE 7 The involute of a circle.

solution We have:

r(t) = −→
OP = −→

OA + −→
AP (1)

We find the vectors in the right-hand side of the equation.

r (t)

x
t(R cos t, R sin t)

A

String
(length Rt)

R
O

P

y

A is a point on the circle of radius R. Hence:

−→
OA = 〈R cos t, R sin t〉 = R 〈cos t, sin t〉

The vector
−→
AP is orthogonal to

−→
OA, hence

−→
OA · −→

AP = 0. It has length Rt and points in the opposite direction to the
tangent vector, hence:

−→
AP = R 〈t sin t, −t cos t〉

Substituting in (1) gives:

r(t) = R 〈cos t + t sin t, sin t − t cos t〉 (2)

To find the arc length function we first must compute the derivative vector r′(t) and its length. We get:

r′(t) = R 〈− sin t + sin t + t cos t, cos t − cos t + t sin t〉 = Rt 〈cos t, sin t〉

‖r′(t)‖ = Rt

√
cos2 t + sin2 t = Rt

Using the Arc Length Formula we obtain:

s(t) =
∫ t

0
‖r′(u)‖ du =

∫ t

0
Ru du = Ru2

2

∣∣∣∣t
0

= Rt2

2

That is:

s(t) = Rt2

2

We now find the arc length parametrization. The inverse of the arc length function for t ≥ 0 is t =
√

2s
R

. Substituting in
(2) we obtain the following arc length parametrization:

r1(s) = r

(√
2s

R

)
= R

〈
cos

√
2s

R
+

√
2s

R
sin

√
2s

R
, sin

√
2s

R
−

√
2s

R
cos

√
2s

R

〉



April 19, 2011

522 C H A P T E R 13 CALCULUS OF VECTOR-VALUED FUNCTIONS (LT CHAPTER 14)

33. The curve r(t) = 〈t − tanh t, sech t〉 is called a tractrix (see Exercise 92 in Section 11.1).

(a) Show that s(t) =
∫ t

0
‖r′(u)‖ du is equal to s(t) = ln(cosh t).

(b) Show that t = g(s) = ln(es +
√

e2s − 1) is an inverse of s(t) and verify that

r1(s) =
〈
tanh−1

(√
1 − e−2s

)
−

√
1 − e−2s , e−s

〉
is an arc length parametrization of the tractrix.

solution
(a) We compute the derivative vector and its length:

r′(t) = 〈
1 − sech2 t, − sech t tanh t

〉
‖r′(t)‖ =

√
(1 − sech2 t) + sech2 t tanh2 t =

√
1 − 2 sech2 t + sech4 t + sech2 t tanh2 t

=
√

− sech2 t (2 − tanh2 t) + 1 + sech4 t

We use the identity 1 − tanh2 t = sech2 t to write:

‖r′(t)‖ =
√

− sech2 t (1 + sech2 t) + 1 + sech4 t =
√

− sech2 t − sech4 t + 1 + sech4 t

=
√

1 − sech2 t =
√

tanh2 t = | tanh t |
For t ≥ 0, tanh t ≥ 0 hence, ‖r′(t)‖ = tanh t . We now apply the Arc Length Formula to obtain:

s(t) =
∫ t

0
‖r′(u)‖ du =

∫ t

0
(tanh u) du = ln(cosh u)

∣∣∣∣t
0

= ln(cosh t) − ln(cosh 0)

= ln(cosh t) − ln 1 = ln(cosh t)

That is:

s(t) = ln(cosh t)

(b) We show that the function t = g(s) = ln
(
es +

√
e2s − 1

)
is an inverse of s(t). First we note that s′(t) = tanh t ,

hence s′(t) > 0 for t > 0, which implies that s(t) has an inverse function for t ≥ 0. Therefore, it suffices to verify that
g(s(t)) = t . We have:

g(s(t)) = ln
(
eln(cosh t) +

√
e2 ln(cosh t) − 1

)
= ln

(
cosh t +

√
cosh2t − 1

)

Since cosh2t − 1 = sinh2t we obtain (for t ≥ 0):

g (s(t)) = ln
(

cosh t +
√

sinh2t
)

= ln (cosh t + sinh t) = ln

(
et + e−t

2
+ et − e−t

2

)
= ln

(
et

) = t

We thus proved that t = g(s) is an inverse of s(t). Therefore, the arc length parametrization is obtained by substituting
t = g(s) in r(t) = 〈t − tanh t, sech t〉. We compute t , tanh t and sech t in terms of s. We have:

s = ln (cosh t) ⇒ es = cosh t ⇒ sech t = e−s

Also:

tanh2 t = 1 − sech2 t = 1 − e−2s ⇒ tanh t =
√

1 − e−2s ⇒ t = tanh−1
√

1 − e−2s

Substituting in r(t) gives:

r1(s) = 〈t − tanh t, sech t〉 =
〈
tanh−1

√
1 − e−2s −

√
1 − e−2s , e−s

〉
(c) The tractrix is shown in the following figure:

2 4

y

x

1 
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13.4 Curvature (LT Section 14.4)

Preliminary Questions
1. What is the unit tangent vector of a line with direction vector v = 〈2, 1, −2〉?

solution A line with direction vector v has the parametrization:

r(t) = −−→
OP0 + tv

hence, since
−−→
OP0 and v are constant vectors, we have:

r′(t) = v

Therefore, since ‖v‖ = 3, the unit tangent vector is:

T(t) = r′(t)
‖r′(t)‖ = v

‖v‖ = 〈2/3, 1/3, −2/3〉

2. What is the curvature of a circle of radius 4?

solution The curvature of a circle of radius R is 1
R

, hence the curvature of a circle of radius 4 is 1
4 .

3. Which has larger curvature, a circle of radius 2 or a circle of radius 4?

solution The curvature of a circle of radius 2 is 1
2 , and it is larger than the curvature of a circle of radius 4, which is

1
4 .

4. What is the curvature of r(t) = 〈2 + 3t, 7t, 5 − t〉?
solution r(t) parametrizes the line 〈2, 0, 5〉 + t 〈3, 7, −1〉, and a line has zero curvature.

5. What is the curvature at a point where T′(s) = 〈1, 2, 3〉 in an arc length parametrization r(s)?

solution The curvature is given by the formula:

κ(t) = ‖T′(t)‖
‖r′(t)‖

In an arc length parametrization, ‖r′(t)‖ = 1 for all t , hence the curvature is κ(t) = ‖T′(t)‖. Using the given information
we obtain the following curvature:

κ = ‖ 〈1, 2, 3〉 ‖ =
√

12 + 22 + 32 = √
14

6. What is the radius of curvature of a circle of radius 4?

solution The definition of the osculating circle implies that the osculating circles at the points of a circle, is the circle
itself. Therefore, the radius of curvature is the radius of the circle, that is, 4.

7. What is the radius of curvature at P if κP = 9?

solution The radius of curvature is the reciprocal of the curvature, hence the radius of curvature at P is:

R = 1

κP
= 1

9

Exercises
In Exercises 1–6, calculate r′(t) and T(t), and evaluate T(1).

1. r(t) = 〈
4t2, 9t

〉
solution We differentiate r(t) to obtain:

r′(t) = 〈8t, 9〉 ⇒ ‖r′(t)‖ =
√

(8t)2 + 92 =
√

64t2 + 81

We now find the unit tangent vector:

T(t) = r′(t)
‖r′(t)‖ = 1√

64t2 + 81
〈8t, 9〉

For t = 1 we obtain the vector:

T(t) = 1√
64 + 81

〈8, 9〉 =
〈

8√
145

,
9√
145

〉
.
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2. r(t) = 〈
et , t2〉

solution We find r′(t) and its length:

r′(t) = 〈
et , 2t

〉 ⇒ ‖r′(t)‖ =
√(

et
)2 + (2t)2 =

√
e2t + 4t2

The unit tangent vector is, thus,

T(t) = r′(t)
‖r′(t)‖ = 1√

e2t + 4t2

〈
et , 2t

〉
For t = 1 we get:

T(1) =
〈

e√
e2 + 4

,
2√

e2 + 4

〉
.

3. r(t) = 〈
3 + 4t, 3 − 5t, 9t

〉
solution We first find the vector r′(t) and its length:

r′(t) = 〈4, −5, 9〉 ⇒ ‖r′(t)‖ =
√

42 + (−5)2 + 92 = √
122

The unit tangent vector is therefore:

T(t) = r′(t)
‖r′(t)‖ = 1√

122
〈4, −5, 9〉 =

〈
4√
122

, − 5√
122

,
9√
122

〉

We see that the unit tangent vector is constant, since the curve is a straight line.

4. r(t) = 〈
1 + 2t, t2, 3 − t2〉

solution We compute the derivative vector and its length:

r′(t) = 〈2, 2t, −2t〉

‖r′(t)‖ =
√

22 + (2t)2 + (−2t)2 =
√

4 + 8t2

The unit tangent vector is thus:

T(t) = r′(t)
‖r′(t)‖ = 1

2
√

1 + 2t2
〈2, 2t, −2t〉 = 1√

1 + 2t2
〈1, t, −t〉

For t = 1 we have:

T(1) = 1√
1 + 2

〈1, 1, −1〉 =
〈

1√
3
,

1√
3
, − 1√

3

〉
.

5. r(t) = 〈
cos πt, sin πt, t

〉
solution We compute the derivative vector and its length:

r′(t) = 〈−π sin πt, π cos πt, 1〉

‖r′(t)‖ =
√

(−π sin πt)2 + (π cos πt)2 + 12 =
√

π2(sin2 πt + cos2 πt) + 1 =
√

π2 + 1

The unit tangent vector is thus:

T(t) = r′(t)
‖r′(t)‖ = 1√

π2 + 1
〈−π sin πt, π cos πt, 1〉

For t = 1 we get:

T(1) = 1√
π2 + 1

〈−π sin π, π cos π, 1〉 = 1√
π2 + 1

〈0, −π, 1〉 =
〈

0, − π√
π2 + 1

,
1√

π2 + 1

〉
.

6. r(t) = 〈
et , e−t , t2〉

solution We compute the tangent vector and its length:

r′(t) = 〈
et , −e−t , 2t

〉
‖r′(t)‖ =

√
(et )2 + (−e−t )2 + (2t)2 =

√
2e2t + 4t2
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The unit tangent vector is:

T(t) = r′(t)
‖r′(t)‖ = 1√

2e2t + 4t2

〈
et , −e−t , 2t

〉
For t = 1 we get:

T(1) = 1√
2e2 + 4

〈
e, −1

e
, 2

〉

In Exercises 7–10, use Eq. (3) to calculate the curvature function κ(t).

7. r(t) = 〈
1, et , t

〉
solution We compute the first and the second derivatives of r(t):

r′(t) = 〈
0, et , 1

〉
, r′′(t) = 〈

0, et , 0
〉
.

Next, we find the cross product r′(t) × r′′(t):

r′(t) × r′′(t) =
∣∣∣∣∣∣

i j k
0 et 1
0 et 0

∣∣∣∣∣∣ =
∣∣∣∣ et 1

et 0

∣∣∣∣ i −
∣∣∣∣ 0 1

0 0

∣∣∣∣ j +
∣∣∣∣ 0 et

0 et

∣∣∣∣ k = −et i = 〈−et , 0, 0
〉

We need to find the lengths of the following vectors:

‖r′(t) × r′′(t)‖ = ∣∣〈−et , 0, 0
〉∣∣ = et

‖r′(t)‖ =
√

02 + (et )2 + 12 =
√

1 + e2t

We now use the formula for curvature to calculate κ(t):

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

= et(√
1 + e2t

)3
= et(

1 + e2t
)3/2

8. r(t) = 〈
4 cos t, t, 4 sin t

〉
solution By the formula for curvature we have:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

(1)

First we find r′(t) and r′′(t):

r′(t) = 〈−4 sin t, 1, 4 cos t〉
r′′(t) = 〈−4 cos t, 0, −4 sin t〉

We compute the cross product:

r′(t) × r′′(t) =
∣∣∣∣∣∣

i j k
−4 sin t 1 4 cos t

−4 cos t 0 −4 sin t

∣∣∣∣∣∣
=

∣∣∣∣ 1 4 cos t

0 −4 sin t

∣∣∣∣ i −
∣∣∣∣ −4 sin t 4 cos t

−4 cos t −4 sin t

∣∣∣∣ j +
∣∣∣∣ −4 sin t 1

−4 cos t 0

∣∣∣∣ k

= −4 sin t i − (
16 sin2 t + 16 cos2 t

)
j + 4 cos tk

= −4 sin t i − 16j + 4 cos tk = 4 〈− sin t, −4, cos t〉
We compute the lengths of the following vectors:

‖r′(t) × r′′(t)‖ = 4
√

(− sin t)2 + (−4)2 + cos2 t = 4
√

sin2 t + 16 + cos2 t = 4
√

17‖r′(t)‖

=
√

(−4 sin t)2 + 12 + (4 cos t)2 =
√

16 sin2 t + 1 + 16 cos2 t = √
17

Substituting in (1) gives the following curvature:

κ(t) = 4
√

17(√
17

)3
= 4

√
17

17
√

17
= 4

17

We see that this curve has constant curvature.
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9. r(t) = 〈
4t + 1, 4t − 3, 2t

〉
solution By Formula (3) we have:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

We compute r′(t) and r′′(t):

r′(t) = 〈4, 4, 2〉 , r′′(t) = 〈0, 0, 0〉
Thus r′(t) × r′′(t) = 〈0, 0, 0〉, ‖r′(t) × r′′(t)‖ = 0, and κ(t) = 0, as expected.

10. r(t) = 〈
t−1, 1, t

〉
solution By the formula for curvature we have:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

(1)

We now find r′(t), r′′(t) and their cross product. This gives:

r′(t) = 〈−t−2, 0, 1
〉
, r′′(t) = 〈

2t−3, 0, 0
〉

r′(t) × r′′(t) = (−t−2i + k
) × 2t−3i = 2t−3k × i = 2t−3j

We compute the lengths of the vector in (1):

‖r′(t) × r′′(t)‖ = ‖2t−3j‖ = 2|t−3|

‖r′(t)‖ =
√(

(−t)−2
)2 + 02 + 12 =

√
t−4 + 1

Substituting in (1) we obtain the following curvature:

κ(t) = 2|t |−3(√
t−4 + 1

)3
= 2|t |−3(

t−4 + 1
)3/2

We multiply through by |t |4·3/2 = |t |6 to obtain:

κ(t) = 2|t |3(
1 + |t |4)3/2

In Exercises 11–14, use Eq. (3) to evaluate the curvature at the given point.

11. r(t) = 〈
1/t, 1/t2, t2〉, t = −1

solution By the formula for curvature we know:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

We now find r′(t), r′′(t) and the cross product. These give:

r′(t) =
〈
−t−2, −2t−3, 2t

〉
, ⇒ r′(−1) = 〈−1, 2, −2〉

r′′(t) =
〈
2t−3, 6t−4, 2

〉
, ⇒ r′′(−1) = 〈−2, 6, 2〉

r′(−1) × r′′(−1) = 〈16, 6, −2〉
Now finding the norms, we get:

‖r′(−1)‖ =
√

(−1)2 + 22 + (−2)2 = 3

‖r′(−1) × r′′(−1)‖ =
√

162 + 62 + (−2)2 = √
296 = 2

√
74

Therefore,

κ(−1) = ‖r′(−1) × r′′(−1)‖
‖r′(−1)‖3

= 2
√

74

33
= 2

√
74

27
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12. r(t) = 〈
3 − t, et−4, 8t − t2〉, t = 4

solution By the formula for curvature we know:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

We now find r′(t), r′′(t) and the cross product. These give:

r′(t) =
〈
−1, et−4, 8 − 2t

〉
⇒ r′(4) = 〈−1, 1, 0〉

r′′(t) =
〈
0, et−4, −2

〉
⇒ r′′(4) = 〈0, 1, −2〉

r′(4) × r′′(4) = 〈−2, −2, −1〉

Now finding norms we get:

‖r′(4)‖ =
√

(−1)2 + 12 + 02 = √
2

‖r′(4) × r′′(4)‖ =
√

(−2)2 + (−2)2 + (−1)2 = 3

Therefore,

κ(4) = ‖r′(4) × r′′(4)‖
‖r′(4)‖3

= 3

(
√

2)3
= 3

23/2

13. r(t) = 〈
cos t, sin t, t2〉, t = π

2

solution By the formula for curvature we know:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

We now find r′(t), r′′(t) and the cross product. These give:

r′(t) = 〈− sin t, cos t, 2t〉 ⇒ r′(π/2) = 〈−1, 0, π〉
r′′(t) = 〈− cos t, − sin t, 2〉 ⇒ r′′(π/2) = 〈0, −1, 2〉

r′(π/2) × r′′(π/2) = 〈π, 2, 1〉

Now finding norms we get:

‖r′(π/2)‖ =
√

(−1)2 + 02 + π2 =
√

1 + π2

‖r′(π/2) × r′′(π/2)‖ =
√

π2 + (−1)2 + 22 =
√

π2 + 5

Therefore,

κ(π/2) = ‖r′(π/2) × r′′(π/2)‖
‖r′(π/2)‖3

=
√

π2 + 5

(
√

1 + π2)3
=

√
π2 + 5

(1 + π2)3/2
≈ 0.108

14. r(t) = 〈
cosh t, sinh t, t

〉
, t = 0

solution We compute the values needed to use the formula for curvature:

r′(t) = 〈sinh t, cosh t, 1〉 , r′′(t) = 〈cosh t, sinh t, 0〉

r′(t) × r′′(t) =
∣∣∣∣∣∣

i j k
sinh t cosh t 1
cosh t sinh t 0

∣∣∣∣∣∣ =
∣∣∣∣ cosh t 1

sinh t 0

∣∣∣∣ i −
∣∣∣∣ sinh t 1

cosh t 0

∣∣∣∣ j +
∣∣∣∣ sinh t cosh t

cosh t sinh t

∣∣∣∣ k

= − sinh t i + cosh tj + (
sinh2 t − cosh2 t

)
k = − sinh t i + cosh tj − k

We find the lengths of the following vectors:

‖r′(t) × r′′(t)‖ =
√

(− sinh t)2 + (cosh t)2 + (−1)2 =
√

sinh2 t + cosh2 t + 1
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=
√

cosh2 t − 1 + cosh2 t + 1 =
√

2 cosh2 t = √
2 cosh t

‖r′(t)‖ =
√

sinh2 t + cosh2 t + 12 =
√

sinh2 t + 1 + sinh2 t + 1 =
√

2 + 2 sinh2 t = √
2 cosh t

Substituting in the formula for the curvature we get:

κ(t) =
√

2 cosh t(√
2 cosh t

)3
= 1

2 cosh2 t

and

κ(0) = 1

2(1)2
= 1

2

In Exercises 15–18, find the curvature of the plane curve at the point indicated.

15. y = et , t = 3

solution We use the curvature of a graph in the plane:

κ(t) = |f ′′(t)|(
1 + f ′(t)2

)3/2

In our case f (t) = et , hence f ′(t) = f ′′(t) = et and we obtain:

κ(t) = et(
1 + e2t

)3/2
⇒ κ(3) = e3(

1 + e6
)3/2

≈ 0.0025

16. y = cos x, x = 0

solution We have f (x) = cos x, hence f ′(x) = − sin x and f ′′(x) = − cos x. By the curvature of a graph in the
plane we have:

κ(x) = |f ′′(x)|
(1 + f ′(x)2)3/2

= |− cos x|
(1 + (− sin x)2)3/2

= | cos x|
(1 + sin2 x)3/2

At x = 0 we obtain the following curvature:

κ(0) = cos 0

(1 + sin2 0)3/2
= 1

17. y = t4, t = 2

solution By the curvature of a graph in the plane, we have:

κ(t) = |f ′′(t)|(
1 + f ′(t)2)3/2

In this case f (t) = t4, f ′(t) = 4t3, f ′′(t) = 12t2. Hence,

κ(t) = 12t2(
1 + (

4t3
)2

)3/2
= 12t2(

1 + 16t6
)3/2

At t = 2 we obtain the following curvature:

κ(2) = 12 · 22

(1 + 16 · 26)3/2
= 48

(1025)3/2
≈ 0.0015.

18. y = tn, t = 1

solution In this case f (t) = tn, hence f ′(t) = ntn−1 and f ′′(t) = n (n − 1) tn−2. Using the curvature of a graph in
the plane we get:

κ(t) = |f ′′(t)|(
1 + f ′(t)2)3/2

= |n(n − 1)tn−2|(
1 + n2t2(n−1)

)3/2
= n (n − 1) |t |n−2(

1 + n2t2(n−1)
)3/2
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At the point t = 1 we have the following curvature:

κ(1) = n (n − 1) · 1(
1 + n2 · 1

)3/2
= n (n − 1)(

n2 + 1
)3/2

19. Find the curvature of r(t) = 〈2 sin t, cos 3t, t〉 at t = π
3 and t = π

2 (Figure 16).

y
x

z

t = π

3

FIGURE 16 The curve r(t) = 〈2 sin t, cos 3t, t〉.
solution By the formula for curvature we have:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

(1)

We compute the first and second derivatives:

r′(t) = 〈2 cos t, −3 sin 3t, 1〉 , r′′(t) = 〈−2 sin t, −9 cos 3t, 0〉
At the points t = π

3 and t = π
2 we have:

r′ (π

3

)
=

〈
2 cos

π

3
, −3 sin

3π

3
, 1

〉
=

〈
2 cos

π

3
, −3 sin π, 1

〉
= 〈1, 0, 1〉

r′′ (π

3

)
=

〈
−2 sin

π

3
, −9 cos

3π

3
, 0

〉
=

〈
−√

3, 9, 0
〉

r′ (π

2

)
=

〈
2 cos

π

2
, −3 sin

3π

2
, 1

〉
= 〈0, 3, 1〉

r′′ (π

2

)
=

〈
−2 sin

π

2
, −9 cos

3π

2
, 0

〉
= 〈−2, 0, 0〉

We compute the cross products required to use (1):

r′ (π

3

)
× r′′ (π

3

)
=

∣∣∣∣∣∣
i j k
1 0 1

−√
3 9 0

∣∣∣∣∣∣ =
∣∣∣∣ 0 1

9 0

∣∣∣∣ i −
∣∣∣∣ 1 1

−√
3 0

∣∣∣∣ j +
∣∣∣∣ 1 0

−√
3 9

∣∣∣∣ k = −9i − √
3j + 9k

r′ (π

2

)
× r′′ (π

2

)
=

∣∣∣∣∣∣
i j k
0 3 1

−2 0 0

∣∣∣∣∣∣ =
∣∣∣∣ 3 1

0 0

∣∣∣∣ i −
∣∣∣∣ 0 1

−2 0

∣∣∣∣ j +
∣∣∣∣ 0 3

−2 0

∣∣∣∣ k = −2j + 6k

Hence,

∥∥∥r′ (π

3

)
× r′′ (π

3

)∥∥∥ =
√

(−9)2 +
(
−√

3
)2 + 92 = √

165

∥∥∥r′ (π

3

)∥∥∥ =
√

12 + 02 + 12 = √
2

At t = π
2 we have:

∥∥∥r′ (π

2

)
× r′′ (π

2

)∥∥∥ =
√

(−2)2 + 62 = √
40 = 2

√
10∥∥∥r′ (π

2

)∥∥∥ =
√

02 + 32 + 12 = √
10

Substituting the values for t = π
3 and t = π

2 in (1) we obtain the following curvatures:

κ
(π

3

)
=

√
165(√
2
)3

=
√

165

2
√

2
≈ 4.54
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κ
(π

2

)
= 2

√
10(√

10
)3

= 2
√

10

10
√

10
= 0.2

20. Find the curvature function κ(x) for y = sin x. Use a computer algebra system to plot κ(x) for 0 ≤ x ≤ 2π .

Prove that the curvature takes its maximum at x = π
2 and 3π

2 . Hint: As a shortcut to finding the max, observe that the
maximum of the numerator and the minimum of the denominator of κ(x) occur at the same points.

solution The curvature function is the following function:

κ(x) = |f ′′(x)|(
1 + f ′(x)2)3/2

(1)

In our case f (x) = sin x, hence f ′(x) = cos x and f ′′(x) = − sin x. Substituting in (1) gives:

κ(x) = | sin x|(
1 + cos2 x

)3/2

The graph of κ(x) for 0 ≤ x ≤ π is shown in the following figure:

2p

1

p
x

y

To find the points where κ(x) takes its maximum on the interval 0 ≤ x ≤ 2π , we notice that κ(x) and κ2(x) take maximum
values at the same points, hence we may maximize κ2(x). Moreover, since κ2(x) ≥ 0 and κ2(0) = κ2 (2π) = 0, we may
maximize the function in the open interval 0 < x < 2π . We find the stationary points of

g(x) = κ2(x) = sin2 x

(1 + cos2 x)3

on 0 < x < 2π :

g′(x) = 2 sin x cos x
(
1 + cos2 x

)3 − sin2 x · 3
(
1 + cos2 x

)2 · 2 cos x (− sin x)(
1 + cos2 x

)6
= 0

Using 2 sin x cos x = sin 2x we get:

(
1 + cos2 x

)2
sin 2x

(
1 + cos2 x + 3 sin2 x

) = 0

Since 1 + cos2 x �= 0 and sin2 x = 1 − cos2 x we get:

sin 2x
(
4 − 2 cos2 x

) = 0

We know that 0 ≤ cos2 x ≤ 1, hence 4 − 2 cos2 x �= 0. Therefore:

sin 2x = 0 ⇒ 2x = πκ ⇒ x = π

2
κ, κ = 0, ±1, . . .

The solutions in the interval (0, 2π) are:

x1 = π

2
, x2 = π, x3 = 3π

2
.

Now, x2 = π is a minimum point since g(π) = 0. We compute g
(
π
2

)
and g

( 3π
2

)
:

g
(π

2

)
= sin2 π

2(
1 + cos2 π

2

)3/2
= 1

g

(
3π

2

)
= sin2 3π

2(
1 + cos2 3π

2

)3/2
= 1

Since g(x) ≤ 1 it follows that x1 = π
2 and x2 = 3π

2 are the points where g(x) = κ2(x) (hence also the curvature κ(x))
takes its maximum value.
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21. Show that the tractrix r(t) = 〈t − tanh t, sech t〉 has the curvature function κ(t) = sech t .

solution Writing r(t) = 〈x(t), y(t)〉, we have x(t) = t − tanh t and y(t) = sech t . We compute the first and second

derivatives of these functions. We use tanh2 t = 1 − sech2t to obtain:

x′(t) = 1 − sech2t = tanh2 t

x′′(t) = −2 sech t (− sech t tanh t) = 2 sech2 t tanh t

y′(t) = − sech t tanh t

y′′(t) = −(− sech t tanh2 t + sech3 t
) = sech t

(
tanh2 t − sech2 t

) = sech t
(
1 − 2 sech2 t

)
We compute the cross product ‖r′ × r′′‖:

x′(t)y′′(t) − x′′(t)y′(t) = tanh2 t sech t (1 − 2 sech2 t) + 2 sech3 t tanh2 t

= tanh2 t
[
sech t − 2 sech3 t + 2 sech3 t

]
= tanh2 t sech t

We compute the length of r′:

x′(t)2 + y′(t)2 = tanh4 t + sech2 t tanh2 t = tanh2 t (tanh2 t + sech2 t) = tanh2 t

Hence

‖r′‖3 = (
tanh2 t

)3/2 = tanh3 t

Substituting, we obtain

κ(t) = | sech t tanh2 t |
tanh3 t

= sech t tanh2 t

tanh3 t
= sech t

tanh t

22. Show that curvature at an inflection point of a plane curve y = f (x) is zero.

solution The curvature of the graph y = f (x) in the plane is the following function:

κ(x) = |f ′′(x)|(
1 + f ′(x)2)3/2

(1)

At an inflection point the second derivative changes its sign. Therefore, if f ′′ is continuous at the inflection point, it is
zero at this point, hence by (1) the curvature at this point is zero.

23. Find the value of α such that the curvature of y = eαx at x = 0 is as large as possible.

solution Using the curvature of a graph in the plane we have:

κ(x) = |y′′(x)|(
1 + y′(x)2)3/2

(1)

In our case y′(x) = αeαx , y′′(x) = α2eαx . Substituting in (1) we obtain

κ(x) = α2eαx(
1 + α2e2αx

)3/2

The curvature at the origin is thus

κ(0) = α2eα·0(
1 + α2e2α·0)3/2

= α2(
1 + α2

)3/2

Since κ(0) and κ2(0) have their maximum values at the same values of α, we may maximize the function:

g(α) = κ2(0) = α4

(1 + α2)
3

We find the stationary points:

g′(α) = 4α3(1 + α2)
3 − α4(3)(1 + α2)

2
2α

(1 + α2)
6

= 2α3(1 + α2)
2
(2 − α2)

(1 + α2)
6

= 0
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The stationary points are the solutions of the following equation:

2α3(1 + α2)2(2 − α2) = 0
↙ ↘

α3 = 0 or 2 − α2 = 0
α = 0 α = ±√

2

Since g(α) ≥ 0 and g(0) = 0, α = 0 is a minimum point. Also, g′(α) is positive immediately to the left of
√

2 and
negative to the right. Hence, α = √

2 is a maximum point. Since g(α) is an even function, α = −√
2 is a maximum point

as well. Conclusion: κ(x) takes its maximum value at the origin when α = ±√
2.

24. Find the point of maximum curvature on y = ex .

solution We substitute y′(x) = y′′(x) = ex in the curvature of a graph in the plane, to obtain the following curvature:

κ(x) = |y′′(x)|(
1 + y′(x)2

)3/2
= ex

(1 + e2x)
3/2

The functions κ(x) and g(x) = κ2(x) = e2x

(1+e2x)
3 take maximum values at the same points, hence we may maximize the

function g(x). We find the stationary points of g(x):

g′(x) = 2e2x(1 + e2x)
3 − e2x · 3(1 + e2x)

2 · 2e2x

(1 + e2x)
6

= 2(1 + e2x)
2
e2x(1 − 2e2x)

(1 + e2x)
6

= 0 (1)

We obtain the following equation:

(1 + e2x)2e2x(1 − 2e2x) = 0

Since (1 + e2x)
2
e2x > 0 for all x, we get:

1 − 2e2x = 0 ⇒ e2x = 1

2
⇒ 2x = ln

1

2
⇒ x = ln

√
1

2

If x < ln
√

1
2 , then since 1 − 2e2x is decreasing we have:

1 − 2e2x > 1 − 2e2 ln
√

1/2 = 1 − 2eln(1/2) = 1 − 1 = 0

Likewise, if x > ln
√

1
2 then:

1 − 2e2x < 1 − 2e2 ln
√

1/2 = 1 − 2eln(1/2) = 1 − 2 · 1

2
= 0

It follows by (1) that g′(x) > 0 left of x = ln
√

1
2 and g′(x) < 0 right of this point. Therefore, x = ln

√
1
2 ≈ −0.347 is

the point where g(x) (hence also κ(x)) takes its maximum value.

25. Show that the curvature function of the parametrization r(t) = 〈a cos t, b sin t〉 of the ellipse(x

a

)2 +
(y

b

)2 = 1 is

κ(t) = ab

(b2 cos2 t + a2 sin2 t)3/2
9

solution The curvature is the following function:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

(1)

We compute the derivatives and their cross product:

r′(t) = 〈−a sin t, b cos t〉 , r′′(t) = 〈−a cos t, −b sin t〉
r′(t) × r′′(t) = (−a sin t i + b cos tj) × (−a cos t i − b sin tj)

= ab sin2 tk + ab cos2 tk = ab
(
sin2 t + cos2 t

)
k = abk

Thus,

‖r′(t) × r′′(t)‖ = ‖abk‖ = ab
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‖r′(t)‖ =
√

(−a sin t)2 + (b cos t)2 =
√

a2 sin2 t + b2 cos2 t

Substituting in (1) we obtain the following curvature:

κ(t) = ab(√
a2 sin2 t + b2 cos2 t

)3
= ab(

a2 sin2 t + b2 cos2 t
)3/2

26. Use a sketch to predict where the points of minimal and maximal curvature occur on an ellipse. Then use Eq. (9) to
confirm or refute your prediction.

solution As suggested by the graphs, for a > b the maximal curvature seems to occur at the points t = 0, π and the

minimal curvature at t = π
2 , 3π

2 , and vice versa for a < b.

(x

a

)2 +
(y

b

)2 = 1

x

y

a > b

t = 0

t = 2p t = 2p

p
2

t = 

3p
2

t = 

t = p
x

y

a < b

t = 0

p
2

t = 

3p
2

t = 

t = p

In Exercise 25 we showed that the curvature of the ellipse r(t) = 〈a cos t, b sin t〉 is:

κ(t) = ab(
b2 cos2 t + a2 sin2 t

)3/2
(1)

κ(t) has minimal (maximal) value, where the denominator has maximal (minimal) value. Since the function y = x3/2 is
increasing, the minimal and maximal values of the denominator in (1) occur at the points where g(t) = b2 cos2 t + a2 sin2 t

has minimal and maximal values respectively. We find these points. We first find the critical points of g(t):

g′(t) = b2 · 2 cos t (− sin t) + a2 · 2 sin t cos t = 2 sin t cos t (a2 − b2) = (a2 − b2) sin 2t

The critical points are the solutions of g′(t) = 0 in the interval 0 ≤ t ≤ 2π . That is:

(a2 − b2) sin 2t = 0

If a = b then the ellipse is a circle, hence it has a constant curvature. For a �= b we have:

sin 2t = 0 ⇒ 2t = πκ ⇒ t = π

2
κ, κ = 0, ±1, . . .

The solutions in the interval 0 ≤ t ≤ 2π are

t1 = 0, t2 = π

2
, t3 = π, t4 = 3π

2
, t5 = 2π

We compute the second derivative and substitute the stationary points:

g′′(t) = 2(a2 − b2) · cos 2t

g′′(0) = 2(a2 − b2) · cos 0 = 2(a2 − b2)

g′′ (π

2

)
= 2(a2 − b2) · cos π = 2(b2 − a2)

g′′(π) = 2(a2 − b2) · cos 2π = 2
(
a2 − b2

)

g′′
(

3π

2

)
= 2(a2 − b2) · cos 3π = 2(b2 − a2)

g′′(2π) = 2(a2 − b2) · cos 4π = 2(a2 − b2)
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We summarize the conclusions in the following table:

a > b

t g(t) κ(t)

0 min max
π
2 max min
π min max
3π
2 max min

2π min max

x

y

a > b

t = 0

t = 2p

p
2

t = 

3p
2

t = 

t = p

a < b

t g(t) κ(t)

0 max min
π
2 min max
π max min
3π
2 min max

2π max min

t = 2p
x

y

a < b

t = 0

p
2

t = 

3p
2

t = 

t = p

27. In the notation of Exercise 25, assume that a ≥ b. Show that b/a2 ≤ κ(t) ≤ a/b2 for all t .

solution In Exercise 25 we showed that the curvature of the ellipse r(t) = 〈a cos t, b sin t〉 is the following function:

κ(t) = ab(
b2 cos2 t + a2 sin2 t

)3/2

Since a ≥ b > 0 the quotient becomes greater if we replace a by b in the denominator, and it becomes smaller if we
replace b by a in the denominator. We use the identity cos2 t + sin2 t = 1 to obtain:

ab(
a2 cos2 t + a2 sin2 t

)3/2
≤ κ(t) ≤ ab(

b2 cos2 t + b2 sin2 t
)3/2

ab(
a2

(
cos2 t + sin2 t

))3/2
≤ κ(t) ≤ ab(

b2
(
cos2 t + sin2 t

))3/2

ab

a3
= ab

(a2)
3/2

≤ κ(t) ≤ ab

(b2)
3/2

= ab

b3

b

a2
≤ κ(t) ≤ a

b2

28. Use Eq. (3) to prove that for a plane curve r(t) = 〈x(t), y(t)〉,

κ(t) = |x′(t)y′′(t) − x′′(t)y′(t)|(
x′(t)2 + y′(t)2

)3/2
10

solution By the formula for curvature we have

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

(1)

We compute the cross product of r′(t) = 〈
x′(t), y′(t)

〉
and r′′(t) = 〈

x′′(t), y′′(t)
〉
. Actually, since the cross product is

only defined for three-dimensional vectors, we will think of these two vectors as follows: r′(t) = x′(t)i + y′(t)j and
r′′(t) = x′′(t)i + y′′(t)j. Thus, the cross product is:

r′(t) × r′′(t) = (
x′(t)i + y′(t)j

) × (
x′′(t)i + y′′(t)j

) = x′(t)y′′(t)i × j + y′(t)x′′(t)j × i



April 19, 2011

S E C T I O N 13.4 Curvature (LT SECTION 14.4) 535

= x′(t)y′′(t)k − y′(t)x′′(t)k = (
x′(t)y′′(t) − y′(t)x′′(t)

)
k

We compute the lengths of the following vectors:

‖r′(t) × r′′(t)‖ = ‖ (
x′(t)y′′(t) − y′(t)x′′(t)

)
k‖ = |x′(t)y′′(t) − y′(t)x′′(t)|

‖r′(t)‖ = ‖ 〈
x′(t), y′(t)

〉 ‖ =
√

x′(t)2 + y′(t)2

Substituting in (1) we get:

κ(t) = |x′(t)y′′(t) − y′(t)x′′(t)|(
x′(t)2 + y′(t)2

)3/2

In Exercises 29–32, use Eq. (10) to compute the curvature at the given point.

29.
〈
t2, t3〉, t = 2

solution For the given parametrization, x(t) = t2, y(t) = t3, hence

x′(t) = 2t

x′′(t) = 2

y′(t) = 3t2

y′′(t) = 6t

At the point t = 2 we have

x′(2) = 4, x′′(2) = 2, y′(2) = 3 · 22 = 12, y′′(2) = 12

Substituting in Eq. (10) we get

κ(2) = |x′(2)y′′(2) − x′′(2)y′(2)|(
x′(2)2 + y′(2)2

)3/2
= |4 · 12 − 2 · 12|(

42 + 122
)3/2

= 24

1603/2
≈ 0.012

30.
〈
cosh s, s

〉
, s = 0

solution For this parametrization x(s) = cosh s, y(s) = s, hence x′(s) = sinh s, x′′(s) = cosh s, y′(s) = 1,
y′′(s) = 0. At the point s = 0 we have

x′(0) = sinh 0 = 0, x′′(0) = cosh 0 = 1, y′(0) = 1, y′′(0) = 0

Substituting in Eq. (10) we obtain the following curvature:

κ(0) = |x′(0)y′′(0) − y′(0)x′′(0)|(
x′(0)2 + y′(0)2)3/2

= |0 · 0 − 1 · 1|
(02 + 12)

3/2
= 1

1
= 1

31.
〈
t cos t, sin t

〉
, t = π

solution We have x(t) = t cos t and y(t) = sin t , hence:

x′(t) = cos t − t sin t ⇒ x′(π) = cos π − π sin π = −1

x′′(t) = − sin t − (sin t + t cos t) = −2 sin t − t cos t ⇒ x′′(π) = −2 sin π − π cos π = π

y′(t) = cos t ⇒ y′(π) = cos π = −1

y′′(t) = − sin t ⇒ y′′(π) = − sin π = 0

Substituting in Eq. (10) gives the following curvature:

κ(π) = |x′(π)y′′(π) − x′′(π)y′(π)|(
x′(π)2 + y′(π)2)3/2

= | − 1 · 0 − π · (−1)|(
(−1)2 + (−1)2)3/2

= π

2
√

2
≈ 1.11



April 19, 2011

536 C H A P T E R 13 CALCULUS OF VECTOR-VALUED FUNCTIONS (LT CHAPTER 14)

32.
〈
sin 3s, 2 sin 4s

〉
, s = π

2

solution We have x(s) = sin 3s, y(s) = 2 sin 4s. Hence

x′(s) = 3 cos 3s ⇒ x′ (π

2

)
= 3 cos

3π

2
= 0

x′′(s) = −9 sin 3s ⇒ x′′ (π

2

)
= −9 sin

3π

2
= 9

y′(s) = 8 cos 4s ⇒ y′ (π

2

)
= 8 cos 2π = 8

y′′(s) = −32 sin 4s ⇒ y′′ (π

2

)
= −32 sin 2π = 0

Substituting in Eq. (10) we get

κ
(π

2

)
= |x′ (π

2

)
y′′ (π

2

) − x′′ (π
2

)
y′ (π

2

) |(
x′(π

2

)2 + y′(π
2

)2
)3/2

= |0 · 0 − 9 · 8|(
02 + 82

)3/2
= 72

83
= 9

64

33. Let s(t) =
∫ t

−∞
‖r′(u)‖ du for the Bernoulli spiral r(t) = 〈

et cos 4t, et sin 4t
〉

(see Exercise 29 in Section 13.3).

Show that the radius of curvature is proportional to s(t).

solution The radius of curvature is the reciprocal of the curvature:

R(t) = 1

κ(t)

We compute the curvature using the equality given in Exercise 29 in Section 3:

κ(t) = |x′(t)y′′(t) − x′′(t)y′(t)|(
x′(t)2 + y′(t)2

)3/2
(1)

In our case, x(t) = et cos 4t and y(t) = et sin 4t . Hence:

x′(t) = et cos 4t − 4et sin 4t = et (cos 4t − 4 sin 4t)

x′′(t) = et (cos 4t − 4 sin 4t) + et (−4 sin 4t − 16 cos 4t) = −et (15 cos 4t + 8 sin 4t)

y′(t) = et sin 4t + 4et cos 4t = et (sin 4t + 4 cos 4t)

y′′(t) = et (sin 4t + 4 cos 4t) + et (4 cos 4t − 16 sin 4t) = et (8 cos 4t − 15 sin 4t)

We compute the numerator in (1):

x′(t)y′′(t) − x′′(t)y′(t) = e2t (cos 4t − 4 sin 4t) · (8 cos 4t − 15 sin 4t)

+e2t (15 cos 4t + 8 sin 4t) · (sin 4t + 4 cos 4t)

= e2t
(
68 cos2 4t + 68 sin2 4t

) = 68e2t

We compute the denominator in (1):

x′(t)2 + y′(t)2 = e2t (cos 4t − 4 sin 4t)2 + e2t (sin 4t + 4 cos 4t)2

= e2t
(
cos2 4t − 8 cos 4t sin 4t + 16 sin2 4t + sin2 4t + 8 sin 4t cos 4t + 16 cos2 4t

)
= e2t

(
cos2 4t + sin2 4t + 16

(
sin2 4t + cos2 4t

))
= e2t (1 + 16 · 1) = 17e2t (2)

Hence (
x′(t)2 + y′(t)2)3/2 = 173/2e3t

Substituting in (2) we have

κ(t) = 68e2t

173/2e3t
= 4√

17
e−t ⇒ R =

√
17

4
et (3)

On the other hand, by the Fundamental Theorem and (2) we have

s′(t) = ‖r′(t)‖ =
√

x′(t)2 + y′(t)2 =
√

17e2t = √
17et
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We integrate to obtain

s(t) =
∫ √

17 et dt = √
17 et + C (4)

Since s(t) =
∫ t

−∞
‖r′(u)‖ du, we have lim

t→−∞ s(t) = 0, hence by (4):

0 = lim
t→−∞

(√
17et + C

)
= 0 + C = C.

Substituting C = 0 in (4) we get:

s(t) = √
17et (5)

Combining (3) and (5) gives:

R(t) = 1

4
s(t)

which means that the radius of curvature is proportional to s(t).

34. The Cornu spiral is the plane curve r(t) = 〈x(t), y(t)〉, where

x(t) =
∫ t

0
sin

u2

2
du, y(t) =

∫ t

0
cos

u2

2
du

Verify that κ(t) = |t |. Since the curvature increases linearly, the Cornu spiral is used in highway design to create transitions
between straight and curved road segments (Figure 17).

1−1

−1

1

x

y

FIGURE 17 Cornu spiral.

solution We use the formula for the curvature given earlier:

κ(t) = |x′(t)y′′(t) − x′′(t)y′(t)|(
x′(t)2 + y′(t)2

)3/2
(1)

We compute the first and second derivatives of x(t) and y(t):

x′(t) = d

dt

(∫ t

0
sin

u2

2
du

)
= sin

t2

2

x′′(t) = d

dt

(
sin

t2

2

)
= 2t

2
cos

t2

2
= t cos

t2

2

y′(t) = d

dt

(∫ t

0
cos

u2

2
du

)
= cos

t2

2

y′′(t) = d

dt

(
cos

t2

2

)
= 2t

2

(
− sin

t2

2

)
= −t sin

t2

2

We compute the numerator in (1):

x′(t)y′′(t) − x′′(t)y′(t) = sin
t2

2

(
−t sin

t2

2

)
− t cos

t2

2
cos

t2

2

= −t

(
sin2

(
t2

2

)
+ cos2

(
t2

2

))
= −t · 1 = −t (2)
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We compute the denominator in (1):

x′(t)2 + y′(t)2 =
(

sin
t2

2

)2

+
(

cos
t2

2

)2

= 1

Hence:

(
x′(t)2 + y′(t)2)3/2 = (1)3/2 = 1 (3)

Substituting (2) and (3) in (1) gives the following curvature:

κ(t) = | − t |
1

= |t |.

35. Plot and compute the curvature κ(t) of the clothoid r(t) = 〈x(t), y(t)〉, where

x(t) =
∫ t

0
sin

u3

3
du, y(t) =

∫ t

0
cos

u3

3
du

solution We use the following formula for the curvature (given earlier):

κ(t) = |x′(t)y′′(t) − x′′(t)y′(t)|(
x′(t)2 + y′(t)2

)3/2
(1)

We compute the first and second derivatives of x(t) and y(t). Using the Fundamental Theorem and the Chain Rule we
get:

x′(t) = sin
t3

3

x′′(t) = 3t2

3
cos

t3

3
= t2 cos

t3

3

y′(t) = cos
t3

3

y′′(t) = 3t2

3

(
− sin

t3

3

)
= −t2 sin

t3

3

Substituting in (1) gives the following curvature function:

κ(t) =
∣∣∣sin t3

3

(
−t2 sin t3

3

)
− t2 cos t3

3 cos t3

3

∣∣∣((
sin t3

3

)2 +
(

cos t3

3

)2
)3/2

=
t2

(
sin2 t3

3 + cos2 t3

3

)
13/2

= t2

That is, κ(t) = t2. Here is a plot of the curvature as a function of t :

κ

t

κ(t) = t2

36. Find the unit normal vector N(θ) to r(θ) = R 〈cos θ, sin θ〉, the circle of radius R. Does N(θ) point inside or outside
the circle? Draw N(θ) at θ = π

4 with R = 4.

solution We first find the unit tangent vector:

T(θ) = r′(θ)

‖r′(θ)‖
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We have:

r′(θ) = R 〈− sin θ, cos θ〉 ⇒ ‖r′(θ)‖ = R‖ 〈− sin θ, cos θ〉 ‖ = R

√
sin2 θ + cos2 θ = R

Hence:

T(θ) = R 〈− sin θ, cos θ〉
R

= 〈− sin θ, cos θ〉

The unit normal vector is the following vector:

N(θ) = T′(θ)

‖T′(θ)‖ (1)

We compute T′(θ) and its length:

T′(θ) = 〈− cos θ, − sin θ〉 ⇒ ‖T′(θ)‖ =
√

(− cos θ)2 + (− sin θ)2 = √
1 = 1

Substituting in (1) we get:

N(θ) = 〈− cos θ, − sin θ〉 = − 〈cos θ, sin θ〉
The unit normal vector points to the “inside” of the curve, in this case it points inside the circle. For θ = π

4 , N
(
π
4

) =
− 〈

cos π
4 , sin π

4

〉 =
〈
−

√
2

2 , −
√

2
2

〉
. We plot the vector for R = 4:

x

y

(2 2, 2 2)

4

p
4

N( )

37. Find the unit normal vector N(t) to r(t) = 〈4, sin 2t, cos 2t〉.
solution We first find the unit tangent vector:

T(t) = r′(t)
‖r′(t)‖ (1)

We have

r′(t) = d

dt
〈4, sin 2t, cos 2t〉 = 〈0, 2 cos 2t, −2 sin 2t〉 = 2 〈0, cos 2t, − sin 2t〉

‖r′(t)‖ = 2
√

02 + cos2 2t + (− sin 2t)2 = 2
√

0 + 1 = 2

Substituting in (1) gives:

T(t) = 2 〈0, cos 2t, − sin 2t〉
2

= 〈0, cos 2t, − sin 2t〉

The normal vector is the following vector:

N(t) = T′(t)
‖T′(t)‖ (2)

We compute the derivative of the unit tangent vector and its length:

T′(t) = d

dt
〈0, cos 2t, − sin 2t〉 = 〈0, −2 sin 2t, −2 cos 2t〉 = −2 〈0, sin 2t, cos 2t〉

‖T′(t)‖ = 2
√

02 + sin2 2t + cos2 2t = 2
√

0 + 1 = 2

Substituting in (2) we obtain:

N(t) = −2 〈0, sin 2t, cos 2t〉
2

= 〈0, − sin 2t, − cos 2t〉
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38. Sketch the graph of r(t) = 〈
t, t3〉. Since r′(t) = 〈

1, 3t2〉, the unit normal N(t) points in one of the two directions

±〈−3t2, 1
〉
. Which sign is correct at t = 1? Which is correct at t = −1?

solution The graph r(t) = 〈t, t3〉 is shown in the following figure:

t = 1

t = −1

x

y

N = 〈−3, 1〉 

N = 〈3, −1〉 

r(t) = 〈t, t3〉
Since the unit normal vector points to the “inside” of the curve, the unit normal vector at t = 1 is along the direction
〈−3, 1〉 rather than 〈3, −1〉. At t = −1 the unit normal vector is along the direction 〈3, −1〉 rather than 〈−3, 1〉.
39. Find the normal vectors to r(t) = 〈t, cos t〉 at t = π

4 and t = 3π
4 .

solution The normal vector to r(t) = 〈t, cos t〉 is T′(t), where T(t) = r′(t)
‖r′(t)‖ is the unit tangent vector. We have

r′(t) = 〈1, − sin t〉 ⇒ ‖r′(t)‖ =
√

12 + (sin t)2 =
√

1 + sin2 t

Hence,

T(t) = 1√
1 + sin2 t

〈1, − sin t〉

We compute the derivative of T(t) to find the normal vector.We use the Product Rule and the Chain Rule to obtain:

T′(t) = 1√
1 + sin2 t

d

dt
〈1, − sin t〉 +

(
1√

1 + sin2 t

)′
〈1, − sin t〉

= 1√
1 + sin2 t

〈0, − cos t〉 − 1

1 + sin2 t
· 2 sin t cos t

2
√

1 + sin2 t
〈1, − sin t〉

= 1√
1 + sin2 t

〈0, − cos t〉 − sin 2t

2
(

1 + sin2 t
)3/2

〈1, − sin t〉

At t = π
4 we obtain the normal vector:

T′ (π

4

)
= 1√

1 + 1
2

〈
0, − 1√

2

〉
− 1

2
(

1 + 1
2

)3/2

〈
1, − 1√

2

〉
=

〈
0, − 1√

3

〉
−

〈 √
2

3
√

3
,

−1

3
√

3

〉
=

〈
−√

2

3
√

3
,

−2

3
√

3

〉

At t = 3π
4 we obtain:

T′
(

3π

4

)
= 1√

1 + 1
2

〈
0,

1√
2

〉
− −1

2
(

1 + 1
2

)3/2

〈
1, − 1√

2

〉
=

〈
0,

1√
3

〉
+

〈 √
2

3
√

3
,

−1

3
√

3

〉
=

〈 √
2

3
√

3
,

2

3
√

3

〉

40. Find the unit normal to the Cornu spiral (Exercise 34) at t = √
π .

solution The Cornu Spiral is the plane curve r(t) = 〈x(t), y(t)〉 with

x(t) =
∫ t

0
sin

u2

2
du, y(t) =

∫ t

0
cos

u2

2
du

The unit normal is the following vector:

N(t) = T′(t)
‖T′(t)‖ (1)
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We find the vector T′(t) and its length. By the Fundamental Theorem we have

r′(t) = 〈
x′(t), y′(t)

〉 =
〈

sin
t2

2
, cos

t2

2

〉

‖r′(t)‖ =
√

sin2 t2

2
+ cos2 t2

2
= √

1 = 1

Hence,

T(t) = r′(t)
‖r′(t)‖ =

〈
sin

t2

2
, cos

t2

2

〉

Differentiating T(t), using the Chain Rule, gives

T′(t) =
〈

2t

2
cos

t2

2
,

2t

2

(
− sin

t2

2

)〉
= t

〈
cos

t2

2
, − sin

t2

2

〉

‖T′(t)‖ = |t |
√

cos2 t2

2
+

(
− sin

t2

2

)2

= |t |√1 = |t |

Substituting in (1) gives the following unit normal:

N(t) = t

|t |

〈
cos

t2

2
, − sin

t2

2

〉
⇒ N

(√
π
) =

〈
cos

π

2
, − sin

π

2

〉
= 〈0, −1〉

41. Find the unit normal to the clothoid (Exercise 35) at t = π1/3.

solution The Clothoid is the plane curve r(t) = 〈x(t), y(t)〉 with

x(t) =
∫ t

0
sin

u3

3
du, y(t) =

∫ t

0
cos

u3

3
du

The unit normal is the following vector:

N(t) = T′(t)
‖T′(t)‖ (1)

We first find the unit tangent vector T(t) = r′(t)
‖r′(t)‖ . By the Fundamental Theorem we have

r′(t) =
〈

sin
t3

3
, cos

t3

3

〉
⇒ ‖r′(t)‖ =

√
sin2 t3

3
+ cos2 t3

3
= √

1 = 1

Hence,

T(t) =
〈

sin
t3

3
, cos

t3

3

〉

We now differentiate T(t) using the Chain Rule to obtain:

T′(t) =
〈

3t2

3
cos

t3

3
,
−3t2

3
sin

t3

3

〉
= t2

〈
cos

t3

3
, − sin

t3

3

〉

Hence,

‖T′(t)‖ = t2

√
cos2 t3

3
+

(
− sin

t3

3

)2

= t2

Substituting in (1) we obtain the following unit normal:

N(t) =
〈

cos
t3

3
, − sin

t3

3

〉

At the point T = π1/3 the unit normal is

N(π1/3) =
〈

cos
(π1/3)

3

3
, − sin

(π1/3)
3

3

〉
=

〈
cos

π

3
, − sin

π

3

〉
=

〈
1

2
, −

√
3

2

〉
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42. Method for Computing N Let v(t) = ‖r′(t)‖. Show that

N(t) = v(t)r′′(t) − v′(t)r′(t)
‖v(t)r′′(t) − v′(t)r′(t)‖ 11

Hint: N is the unit vector in the direction T′(t). Differentiate T(t) = r′(t)/v(t) to show that v(t)r′′(t) − v′(t)r′(t) is a
positive multiple of T′(t).
solution Since v(t) = ‖r′(t)‖ and T(t) is a unit vector in the direction at r′(t), we may write:

T(t) = r′(t)
v(t)

Differentiating this vector, using the Quotient Rule, we get

T′(t) = v(t)r′′(t) − v′(t)r′(t)
(v(t))2

thus,

(v(t))2T′(t) = v(t)r′′(t) − v′(t)r′(t)

Now, N(t) is a unit vector in the direction of T′(t), hence we can find it by dividing the vector (v(t))2T′(t) by its length.
Therefore,

N(t) = v(t)r′′(t) − v′(t)r′(t)
‖v(t)r′′(t) − v′(t)r′(t)‖

In Exercises 43–48, use Eq. (11) to find N at the point indicated.

43.
〈
t2, t3〉, t = 1

solution We use the equality

N(t) = v(t)r′′(t) − v′(t)r′(t)
‖v(t)r′′(t) − v′(t)r′(t)‖

For r(t) = 〈
t2, t3〉 we have

r′(t) = 〈2t, 3t2〉
r′′(t) = 〈2, 6t〉

v(t) = ‖r′(t)‖ =
√

(2t)2 + (3t2)
2 =

√
4t2 + 9t4

v′(t) = 8t + 36t3

2
√

4t2 + 9t4
= 4t + 18t3√

4t2 + 9t4

At the point t = 1 we get

r′′(1) = 〈2, 6〉 , v′(1) = 4 + 18√
4 + 9

= 22√
13

,

and also

r′(1) = 〈2, 3〉 , v(1) = √
4 + 9 = √

13

Hence,

v(1)r′′(1) − v′(1)r′(1) = √
13 〈2, 6〉 − 22√

13
· 〈2, 3〉 =

〈
26 − 44√

13
,

78 − 66√
13

〉
= 1√

13
〈−18, 12〉

∥∥v(1)r′′(1) − v′(1)r′(1)
∥∥ =

∥∥∥∥ 1√
13

〈−18, 12〉
∥∥∥∥ = 1√

13

√
(−18)2 + 122 =

√
468

13
= 6

Substituting in (1) gives the following unit normal:

N(1) =
1√
13

〈−18, 12〉
6

= 1√
13

〈−3, 2〉
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44.
〈
t − sin t, 1 − cos t

〉
, t = π

solution We use the following equality:

N(t) = v(t)r′′(t) − v′(t)r′(t)
‖v(t)r′′(t) − v′(t)r′(t)‖

We compute the vectors in the above equality. For r(t) = 〈t − sin t, 1 − cos t〉 we have

r′(t) = 〈1 − cos t, sin t〉
r′′(t) = 〈sin t, cos t〉

v(t) = ‖r′(t)‖ =
√

(1 − cos t)2 + sin2 t =
√

1 − 2 cos t + cos2 t + sin2 t

= √
1 − 2 cos t + 1 = √

2(1 − cos t) =
√

2 · 2 sin2 t

2
= 2

∣∣∣∣sin
t

2

∣∣∣∣
For 0 ≤ t ≤ 2π , sin t

2 ≥ 0, hence v(t) = 2 sin t
2 . Therefore,

v′(t) = 2 · 1

2
cos

t

2
= cos

t

2
, 0 ≤ t ≤ 2π

At the point t = π we have

r′′(π) = 〈sin π, cos π〉 = 〈0, −1〉
v′(π) = cos

π

2
= 0

r′(π) = 〈1 − cos π, sin π〉 = 〈2, 0〉
v(π) = 2

∣∣∣sin
π

2

∣∣∣ = 2

We now substitute these values in (1) to obtain the following unit normal:

N(π) = v(π)r′′(π) − v′(π)r′(π)

‖v(π)r′′(π) − v′(π)r′(π)‖ = 2 〈0, −1〉 − 0 〈2, 0〉
‖v(π)r′′(π) − v′(π)r′(π)‖ = 〈0, −2〉√

02 + (−2)2
= 〈0, −1〉

45.
〈
t2/2, t3/3, t

〉
, t = 1

solution We use the following equality:

N(t) = v(t)r′′(t) − v′(t)r′(t)
‖v(t)r′′(t) − v′(t)r′(t)‖

We compute the vectors in the equality above. For r(t) =
〈
t2/2, t3/3, t

〉
we get:

r′(t) =
〈
t, t2, 1

〉
r′′(t) = 〈1, 2t, 0〉
v(t) = ‖r′(t)‖ =

√
t2 + t4 + 1

v′(t) = 1

2
(t2 + t4 + 1)−1/2(4t3 + 2t) = 4t3 + 2t

2
√

t2 + t4 + 1

At the point t = 1 we get:

r′(1) = 〈1, 1, 1〉
r′′(1) = 〈1, 2, 0〉

v′(1) = 6

2
√

3
= 3√

3
= √

3

v(1) = √
3
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Hence,

v(1)r′′(1) − v′(1)r′(1) = √
3 〈1, 2, 0〉 − √

3 〈1, 1, 1〉 =
〈
0,

√
3, −√

3
〉

‖v(1)r′′(1) − v′(1)r′(1)‖ =
√

02 + (
√

3)2 + (−√
3)2 = √

6

We now substitute these values in (1) to obtain the following unit normal:

N(1) = v(1)r′′(1) − v′(1)r′(1)

‖v(1)r′′(1) − v′(1)r′(1)‖ =
〈
0,

√
3, −√

3
〉

√
6

=
〈
0,

1√
2
, − 1√

2

〉

46.
〈
t−1, t, t2〉, t = −1

solution We use the equality

N(t) = v(t)r′′(t) − v′(t)r′(t)
‖v(t)r′′(t) − v′(t)r′(t)‖

We compute the vectors in the above equality. For r(t) = 〈
t−1, t, t2〉 we have

r′(t) = 〈−t−2, 1, 2t
〉

r′′(t) = 〈
2t−3, 0, 2

〉
v(t) = ‖r′(t)‖ =

√
t−4 + 1 + 4t2

v′(t) = −4t−5 + 8t

2
√

t−4 + 1 + 4t2
= −2t−5 + 4t√

t−4 + 1 + 4t2

At the point t = −1 we get

r′(−1) = 〈−1, 1, −2〉 , r′′(−1) = 〈−2, 0, 2〉 , v′(−1) = 2 − 4√
1 + 1 + 4

= −2√
6
,

v(−1) =
√

(−1)−4 + 1 + 4(−1)2 = √
6

Hence,

v(−1)r′′(−1) − v′(−1)r′(−1) = √
6 〈−2, 0, 2〉 + 2√

6
〈−1, 1, −2〉

=
〈−12 − 2√

6
,

2√
6
,

12 − 4√
6

〉

=
〈
− 14√

6
,

2√
6
,

8√
6

〉

=
√

2

3
〈−7, 1, 4〉

‖v(−1)r′′(−1) − v′(−1)r′(−1)‖ =
√

2

3

√
49 + 1 + 16 = √

44

Substituting in (1) gives the following unit normal:

N(−1) =
√

2
3 〈−7, 1, 4〉

√
44

= 1√
66

〈−7, 1, 4〉

47.
〈
t, et , t

〉
, t = 0

solution We use the equality

N(t) = v(t)r′′(t) − v′(t)r′(t)
‖v(t)r′′(t) − v′(t)r′(t)‖

For r(t) = 〈
t, et , t

〉
we have

r′(t) = 〈
1, et , 1

〉
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r′′(t) = 〈
0, et , 0

〉
v(t) = ‖r′(t)‖ =

√
12 + (et )2 + 12 =

√
e2t + 2

v′(t) = 2e2t

2
√

e2t + 2
= e2t√

e2t + 2

At the point t = 0 we have

r′(0 = 〈1, 1, 1〉 , r′′(0) = 〈
0, 1, 0

〉
, v(0) = √

3, v′(0) = 1√
3
,

Hence,

v(0)r′′(0) − v′(0)r′(0) = √
3 〈0, 1, 0〉 − 1√

3
〈1, 1, 1〉

=
〈
− 1√

3
,

2√
3
, − 1√

3

〉

= 1√
3

〈−1, 2, −1〉

‖v(0)r′′(0) − v′(0)r′(0)‖ = 1√
3

√
1 + 4 + 1 = √

2

Substituting in (1) we obtain the following unit normal:

N(0) =
1√
3

〈−1, 2, −1〉
√

2
= 1√

6
〈−1, 2, −1〉

48.
〈
cosh t, sinh t, t2〉, t = 0

solution We use the following equality:

N(t) = v(t)r′′(t) − v′(t)r′(t)
‖v(t)r′′(t) − v′(t)r′(t)‖

For r(t) =
〈
cosh t, sinh t, t2

〉
we have

r′(t) = 〈sinh t, cosh t, 2t〉
r′′(t) = 〈cosh t, sinh t, 2〉

v(t) = ‖r′(t)‖ =
√

sinh2 t + cosh2 t + (2t)2

=
√(

cosh2 t − 1
) + cosh2 t + 4t2

=
√

2 cosh2 t + 4t2 − 1

v′(t) = 1

2
(2 cosh2 t + 4t2 − 1)−1/2(4 cosh t sinh t + 8t) = 4 cosh t sinh t

2
√

2 cosh2 t + 4t2 − 1

At the point t = 0 we get

r′(0) = 〈sinh 0, cosh 0, 0〉 = 〈0, 1, 0〉
r′′(0) = 〈cosh 0, sinh 0, 2〉 = 〈1, 0, 2〉

v(0) =
√

2(1)2 + 4(0)2 − 1 = 1

v′(0) = 0

2(1)
= 0

Hence,

v(0)r′′(0) − v′(0)r′(0) = 1 〈1, 0, 2〉 − 0 = 〈1, 0, 2〉
‖v(0)r′′(0) − v′(0)r′(0)‖ = ‖ 〈1, 0, 2〉 ‖ = √

5
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Substituting in (1) gives the following unit normal:

N(0) = v(0)r′′(0) − v′(0)r′(0)

‖v(0)r′′(0) − v′(0)r′(0)‖ = 1√
5

〈1, 0, 2〉 =
〈

1√
5
, 0,

2√
5

〉

49. Let f (x) = x2. Show that the center of the osculating circle at (x0, x2
0 ) is given by

(
−4x3

0 , 1
2 + 3x2

0

)
.

solution We parametrize the curve by r(x) = 〈
x, x2〉. The center Q of the osculating circle at x = x0 has the position

vector

−−→
OQ = r(x0) + κ(x0)−1N(x0) (1)

We first find the curvature, using the formula for the curvature of a graph in the plane. We have f ′(x) = 2x and f ′′(x) = 2,
hence,

κ(x) = |f ′′(x)|
(1 + f ′(x)2)

3/2
= 2

(1 + 4x2)
3/2

⇒ κ(x0)−1 = 1

2
(1 + 4x2

0 )
3/2

To find the unit normal vector N(x0) we use the following considerations:

• The tangent vector is r′(x0) = 〈1, 2x0〉, hence the vector 〈−2x0, 1〉 is orthogonal to r′(x0) (since their dot product
is zero). Hence N(x0) is one of the two unit vectors ± 1√

1+4x2
0

〈−2x0, 1〉.

• The graph of f (x) = x2 shows that the unit normal vector points in the positive y-direction, hence, the appropriate
choice is:

N(x0) = 1√
1 + 4x2

0

〈−2x0, 1〉 (2)

y

x

f(x) = x2

We now substitute (2), (3), and r(x0) = 〈
x0, x2

0

〉
in (1) to obtain

−−→
OQ = 〈

x0, x2
0
〉 + 1

2

(
1 + 4x2

0
)3/2 · 1√

1 + 4x2
0

〈−2x0, 1
〉 = 〈

x0, x2
0
〉 + 1

2

(
1 + 4x2

0
) 〈−2x0, 1〉

= 〈
x0, x2

0
〉 + 〈

−x0 − 4x3
0 ,

1

2

(
1 + 4x2

0
)〉 =

〈
−4x3

0 ,
1

2
+ 3x2

0

〉

The center of the osculating circle is the terminal point of
−−→
OQ, that is,

Q =
(

−4x3
0 ,

1

2
+ 3x2

0

)

50. Use Eq. (8) to find the center of curvature to r(t) = 〈
t2, t3〉 at t = 1.

solution The center Q of curvature has the position vector:

−−→
OQ = r(1) + κ(1)−1N(1) (1)

We find the curvature κ(x), using the formula for the curvature of a graph in the plane. Since x = t2 and y = t3 we have
y = x3/2, hence y′(x) = 3

2x1/2 and y′′(x) = 3
4x−1/2. Thus:

κ(x) = |y′′(x)|(
1 + y′(x)2)3/2

=
3
4x−1/2(

1 + 9
4x

)3/2
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The point t = 1 corresponds to x = 12 = 1, hence the curvature at this point is:

κ(1) =
3
4 · 1−1/2(

1 + 9
4 · 1

)3/2
=

3
4( 13

4

)3/2
= 6

133/2
(2)

We now must find the unit vector N. The tangent vector is r′(t) = 〈
2t, 3t2〉, and we observe that the vector 〈−3t, 2〉

is orthogonal to r′(t) (since the dot product is zero). Therefore N(t) is the unit vector in the direction of 〈−3t, 2〉 or
− 〈−3t, 2〉. Recall that the vector N points to the “inside” of the curve, hence as shown in the graph the unit normal points
in the positive y-direction.

x

y

y = x3/2

Therefore we must take the positive sign. That is,

N(t) = 〈−3t, 2〉√
9t2 + 4

⇒ N(1) = 1√
13

〈−3, 2〉 (3)

We now substitute (2), (3), and r(1) = 〈
12, 13〉 = 〈1, 1〉 in (1) to obtain

−−→
OQ = 〈1, 1〉 + 133/2

6
· 1

131/2
〈−3, 2〉 = 〈1, 1〉 + 13

6
〈−3, 2〉

The center of the curvature is the endpoint Q = (− 11
2 , 16

3

)
.

In Exercises 51–58, find a parametrization of the osculating circle at the point indicated.

51. r(t) = 〈
cos t, sin t

〉
, t = π

4

solution The curve r(t) = 〈cos t, sin t〉 is the unit circle. By the definition of the osculating circle, it follows that the
osculating circle at each point of the circle is the circle itself. Therefore the osculating circle to the unit circle at t = π

4 is
the unit circle itself.

52. r(t) = 〈
sin t, cos t

〉
, t = 0

solution The parametrization r(t) = 〈sin t, cos t〉parametrizes the unit circle.We can see this by using the parametriza-
tion s = π

2 − t to obtain:

r(s) = r
(π

2
− t

)
=

〈
sin

(π

2
− t

)
, cos

(π

2
− t

)〉
= 〈cos t, sin t〉 = r1(t)

which is a parametrization of the unit circle. Since the osculating circle at each point of a circle is the circle itself, the
osculating circle at t = 0 is the unit circle itself.

53. y = x2, x = 1

solution Let f (x) = x2. We use the parametrization r(x) = 〈x, x2〉 and proceed by the following steps.

Step 1. Find κ and N. We compute κ using the curvature of a graph in the plane:

κ(x) = |f ′′(x)|(
1 + f ′(x)2)3/2

We have f ′(x) = 2x, f ′′(x) = 2, therefore,

κ(x) = 2

(1 + (2x)2)
3/2

= 2

(1 + 4x2)
3/2

⇒ κ(1) = 2

53/2
(1)

To find N(x) we notice that the tangent vector is r′(x) = 〈1, 2x〉 hence 〈−2x, 1〉 is orthogonal to r′(x) (their dot product
is zero). Therefore, N(x) is the unit vector in the direction of 〈−2x, 1〉 or − 〈−2x, 1〉 that points to the “inside” of the
curve.
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x

y

y = x2

As shown in the figure, the unit normal vector points in the positive y-direction, hence:

N(x) = 〈−2x, 1〉√
4x2 + 1

⇒ N(1) = 1√
5

〈−2, 1〉 (2)

Step 2. Find the center of the osculating circle. The center Q at r(1) has the position vector

−−→
OQ = r(1) + κ(1)−1N(1)

Substituting (1), (2) and r(1) = 〈1, 1〉 we get:

−−→
OQ = 〈1, 1〉 + 53/2

2
· 1

51/2
〈−2, 1〉 = 〈1, 1〉 + 5

2
〈−2, 1〉 =

〈
−4,

7

2

〉

Step 3. Parametrize the osculating circle. The osculating circle has radius R = 1
κ(1)

= 53/2

2 and it is centered at the point(
−4, 7

2

)
, therefore it has the following parametrization:

c(t) =
〈
−4,

7

2

〉
+ 53/2

2
〈cos t, sin t〉

54. y = sin x, x = π
2

solution We use the parametrization r(x) = 〈x, sin x〉. The radius of the osculating circle is the radius of curvature

R = 1
κ
(

π
2

) and the center is the terminal point of the following vector:

−−→
OQ = r

(π

2

)
+ RN

(π

2

)
We first compute the curvature. Since y′(x) = cos x and y′′(x) = − sin x, we have:

κ(x) = |y′′(x)|
(1 + y′(x)2)

3/2
= | − sin x|

(1 + cos2 x)
3/2

⇒ κ
(π

2

)
= sin π

2(
1 + cos2 π

2

)3/2
= 1

1
= 1

We compute the unit normal vector N(x). N(x) is a unit vector orthogonal to the tangent vector r′(x) = 〈1, cos x〉. We
observe that 〈− cos x, 1〉 is orthogonal to r′(x), since their dot product is zero. Therefore, N(x) is the unit vector in the
direction of either 〈− cos x, 1〉 or − 〈− cos x, 1〉, depending on the graph. Considering the accompanying figure, we see
that the unit normal vector at x = π/2 points to the negative y-direction. Thus,

N(x) = 〈cos x, −1〉
‖ 〈cos x, −1〉 ‖ = 〈cos x, −1〉√

cos2 x + (−1)2
⇒ N

(π

2

)
= 〈0, −1〉

y

x

P(   , 1 )

Q(   , 0 )

We now find the center of the osculating circle. We substitute R = 1
κ
(

π
2

) = 1, N
(
π
2

) = 〈0, −1〉, and r
(
π
2

) = 〈
π
2 , sin π

2

〉 =〈
π
2 , 1

〉
into (1) to obtain

−−→
OQ =

〈π
2

, 1
〉
+ 1 · 〈0, −1〉 =

〈π
2

, 0
〉
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The osculating circle is the circle with center at the point
(
π
2 , 0

)
and radius 1, so it has the following parametrization:

c(t) =
〈π

2
, 0

〉
+ 1 · 〈cos t, sin t〉 =

〈π
2

, 0
〉
+ 〈cos t, sin t〉

55.
〈
t − sin t, 1 − cos t

〉
, t = π

solution
Step 1. Find κ and N. In Exercise 44 we found that:

N(π) = 〈0, −1〉 (1)

To find κ we use the formula for curvature:

κ(π) = ‖r′ (π) × r′′ (π) ‖
‖r′ (π) ‖3

(2)

For r(t) = 〈t − sin t, 1 − cos t〉 we have:

r′(t) = 〈1 − cos t, sin t〉 ⇒ r′ (π) = 〈1 − cos π, sin π〉 = 〈2, 0〉
r′′(t) = 〈sin t, cos t〉 ⇒ r′′ (π) = 〈sin π, cos π〉 = 〈0, −1〉

Hence,

r′ (π) × r′′ (π) = 2i × (−j) = −2k

‖r′ (π) × r′′ (π) ‖ = ‖ − 2k‖ = 2 and ‖r′ (π) ‖ = ‖ 〈2, 0〉 ‖ = 2

Substituting in (2) we get:

κ (π) = 2

23
= 1

4
(3)

Step 2. Find the center of the osculating circle. The center Q of the osculating circle at r (π) = 〈π, 2〉 has position vector

−−→
OQ = r (π) + κ(π)−1N (π)

Substituting (1), (3) and r (π) = 〈π, 2〉 we get:

−−→
OQ = 〈π, 2〉 +

(
1

4

)−1
〈0, −1〉 = 〈π, 2〉 + 〈0, −4〉 = 〈π, −2〉

Step 3. Parametrize the osculating circle. The osculating circle has radius R = 1
κ(π)

and it is centered at (π, −2), hence
it has the following parametrization:

c(t) = 〈π, −2〉 + 4 〈cos t, sin t〉

56. r(t) = 〈
t2/2, t3/3, t

〉
, t = 0

solution
Step 1. Find κ and N. The unit normal is:

N(t) = r′′(t) − v′(t)T(t)

‖r′′(t) − v′(t)T(t)‖
and the curvature is

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

For r(t) =
〈
t2/2, t3/3, t

〉
, we have:

r′(t) =
〈
t, t2, 1

〉
r′′(t) = 〈1, 2t, 0〉
v(t) = ‖r′(t)‖ =

√
t2 + t4 + 1

v′(t) = 1

2
(t2 + t4 + 1)−1/2(4t3 + 2t) = 4t3 + 2t

2
√

t2 + t4 + 1
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At the point t = 0 we have:

r′(0) = 〈0, 0, 1〉
r′′(0) = 〈1, 0, 0〉

r′(0) × r′′(0) = 〈0, 1, 0〉
v′(0) = 0

And calculating norms we get:

‖r′(0)‖ =
√

02 + 02 + 12 = 1

‖r′(0) × r′′(0)‖ =
√

02 + 12 + 02 = 1

T(0) = r′(0)

‖r′(0)‖ = 〈0, 0, 1〉

Also,

r′′(0) − v′(0)T(0) = 〈1, 0, 0〉 ⇒ ‖r′′(0) − v′(0)T(0)‖ = 1

Therefore,

N(0) = r′′(0) − v′(0)T(0)

‖r′′(0) − v′(0)T(0)‖ = 〈1, 0, 0〉

and

κ(0) = ‖r′(0) × r′′(0)‖
‖r′(0)‖3

= 1

1
= 1

Step 2. Find the center of the osculating circle. In this case, the center Q of the osculating circle at r(0) = 〈0, 0, 0〉 has
position vector:

−−→
OQ = r(0) + κ−1(0)N(0) = 〈0, 0, 0〉 + 1 〈1, 0, 0〉 = 〈1, 0, 0〉

Step 3. Parametrize the osculating circle. The circle has radius R = 1/κ(0) = 1 and it is centered at (1, 0, 0). Therefore,
it has the following parametrization:

c(t) = −−→
OQ + RN(0) cos t + RT(0) sin t

= 〈1, 0, 0〉 + cos t 〈1, 0, 0〉 + sin t 〈0, 0, 1〉
= 〈1 + cos t, 0, sin t〉

57. r(t) = 〈
cos t, sin t, t

〉
, t = 0

solution The curvature is the following quotient:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

(1)

We compute the vectors r′(t) and r′′(t):

r′(t) = d

dt
〈cos t, sin t, t〉 = 〈− sin t, cos t, 1〉 (2)

r′′(t) = d

dt
〈− sin t, cos t, 1〉 = 〈− cos t, − sin t, 0〉

We now compute the following cross product:

r′(t) × r′′(t) =
∣∣∣∣∣∣

i j k
− sin t cos t 1
− cos t − sin t 0

∣∣∣∣∣∣ =
∣∣∣∣ cos t 1

− sin t 0

∣∣∣∣ i −
∣∣∣∣ − sin t 1

− cos t 0

∣∣∣∣ j +
∣∣∣∣ − sin t cos t

− cos t − sin t

∣∣∣∣ k

= (sin t)i − (cos t)j + 1 · k (3)

We calculate the norms of the vectors in (1). By (2) and (3) we have:

‖r′(t) × r′′(t)‖ =
√

sin2 t + (− cos t)2 + 12 = √
1 + 1 = √

2
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‖r′(t)‖ =
√

(− sin t)2 + cos2 t + 12 = √
1 + 1 = √

2 (4)

Substituting (4) in (1) yields the following curvature:

κ(t) =
√

2(√
2
)3

= 1

2
⇒ κ(0) = 1

2
(5)

The unit normal vector is the following vector:

N(t) = T′(t)
‖T′(t)‖ (6)

By (2) and (4) we have:

T(t) = r′(t)
‖r′(t)‖ = 1√

2
〈− sin t, cos t, 1〉 ⇒ T′(t) = 1√

2
〈− cos t, − sin t, 0〉 (7)

‖T′(t)‖ = 1√
2

√
(− cos t)2 + (− sin t)2 + 02 = 1√

2
· 1 = 1√

2

Combining (6) and (7) gives:

N(t) = 〈− cos t, − sin t, 0〉 ⇒ N(0) = 〈−1, 0, 0〉 (8)

The center of curvature at t = 0 is:
−−→
OQ = r(0) + κ(0)−1N(0)

By (5), (8) and r(0) = 〈1, 0, 0〉 we get:

−−→
OQ = 〈1, 0, 0〉 + 2 〈−1, 0, 0〉 = 〈1, 0, 0〉 + 〈−2, 0, 0〉 = 〈−1, 0, 0〉

Finally, we find a parametrization of the osculating circle at t = 0. The osculating circle has radius R = 1
κ(0)

= 2 and
center 〈−1, 0, 0〉, hence it has the following parametrization:

c(t) = 〈−1, 0, 0〉 + 2N(0) cos t + 2T(0) sin t = 〈−1, 0, 0〉 + 2〈−1, 0, 0〉 cos t + 2√
2
〈0, 1, 1〉 sin t

c(t) =
〈
−1 − 2 cos t,

2 sin t√
2

,
2 sin t√

2

〉

58. r(t) = 〈
cosh t, sinh t, t

〉
, t = 0

solution
Step 1. Find κ and N. In Exercise 14 we found that:

κ(t) = 1

2 cosh2 t
⇒ κ(0) = 1

2 cosh2 0
= 1

2
(1)

We now must find the unit normal N. We have:

r′(t) = 〈sinh t, cosh t, 1〉

‖r′(t)‖ =
√

sinh2 t + cosh2 t + 1 =
√

cosh2 t − 1 + cosh2 t + 1 =
√

2 cosh2t = √
2 cosh t

T(t) = r′(t)
‖r′(t)‖ = 1√

2 cosh t
〈sinh t, cosh t, 1〉 = 1√

2
〈tanh t, 1, sech t〉

T′(t) = 1√
2

〈
sech2 t, 0, − sech t tanh t

〉
We compute the length of T′(t). Using the identity tanh2 t + sech2 t = 1 we get:

‖T′(t)‖ = 1√
2

√
sech4 t + 0 + sech2 t tanh2 t = 1√

2

√
sech2 t

(
tanh2 t + sech2 t

) = 1√
2

√
sech2 t · 1 = sech t√

2

Hence,

N(t) = T′(t)
‖T′(t)‖ =

√
2

sech t

1√
2

· 〈sech2 t, 0, − sech t tanh t
〉 = 〈sech t, 0, − tanh t〉

At the point t = 0 we have sech 0 = 1, tanh 0 = 0, hence

N(0) = 〈1, 0, 0〉 (2)
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Step 2. Find the center of the osculating circle. The center Q of the osculating circle at r(0) = 〈1, 0, 0〉 has position
vector:

−−→
OQ = r(0) + κ(0)−1N(0)

Substituting (1), (2) and r(0) = 〈1, 0, 0〉 we get:

−−→
OQ = 〈1, 0, 0〉 + 2 · 〈1, 0, 0〉 = 〈3, 0, 0〉

Step 3. Parametrize the osculating circle. The osculating circle is centered at Q = (3, 0, 0) and has radius R = 1
κ(0)

= 2,
hence it has the following parametrization:

c(t) = 〈3, 0, 0〉 + 2N cos t + 2T sin t = 〈3, 0, 0〉 + 2〈1, 0, 0〉 cos t + 2√
2
〈0, 1, 1〉 sin t

59. Figure 18 shows the graph of the half-ellipse y = ±
√

2rx − px2, where r and p are positive constants. Show that the
radius of curvature at the origin is equal to r . Hint: One way of proceeding is to write the ellipse in the form of Exercise
25 and apply Eq. (9).

x

y

r

r

FIGURE 18 The curve y = ±
√

2rx − px2 and the osculating circle at the origin.

solution The radius of curvature is the reciprocal of the curvature. We thus must find the curvature at the origin. We
use the following simple variant of the formula for the curvature of a graph in the plane:

κ(y) = |x′′(y)|(
1 + x′(y)2)3/2

(1)

(The traditional formula of κ(x) = |y′′(x)|(
1+y′(x)2

)3/2 is inappropriate for this problem, as y′(x) is undefined at x = 0.) We

find x in terms of y:

y =
√

2rx − px2

y2 = 2rx − px2

px2 − 2rx + y2 = 0

We solve for x and obtain:

x = ± 1

p

√
r2 − py2 + r

p
, y ≥ 0.

We find x′ and x′′:

x′ = ± −2py

2p
√

r2 − py2
= ± y√

r2 − py2

x′′ = ±
1 ·

√
r2 − py2 − y · −py√

r2−py2

r2 − py2
= ± r2 − py2 + py2(

r2 − py2
)3/2

= ± r2(
r2 − py2

)3/2

At the origin we get:

x′(0) = 0, x′′(0) = ±r2

(r2)
3/2

= ±1

r
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Substituting in (1) gives the following curvature at the origin:

κ(0) = |x′′(0)|
(1 + x′(0)2)3/2

= |±1
r |

(1 + 0)3/2
= 1

|r| = 1

r

We conclude that the radius of curvature at the origin is

R = 1

κ(0)
= r

60. In a recent study of laser eye surgery by Gatinel, Hoang-Xuan, and Azar, a vertical cross section of the cornea is
modeled by the half-ellipse of Exercise 59. Show that the half-ellipse can be written in the form x = f (y), where
f (y) = p−1(r −

√
r2 − py2

)
. During surgery, tissue is removed to a depth t (y) at height y for −S ≤ y ≤ S, where t (y)

is given by Munnerlyn’s equation (for some R > r):

t (y) =
√

R2 − S2 −
√

R2 − y2 −
√

r2 − S2 +
√

r2 − y2

After surgery, the cross section of the cornea has the shape x = f (y) + t (y) (Figure 19). Show that after surgery, the
radius of curvature at the point P (where y = 0) is R.

Segment of

length t (y)

y

S

−S

Eye shape

before surgery

x = f (y)

Eye shape

after surgery

x = f (y) + t(y)

P
x

FIGURE 19 Contour of cornea before and after surgery.

solution We consider the half-ellipse:

r > 0, p > 0, y =
√

2rx − px2

As in Exercise 59, squaring the two sides and solving for x gives:

x − r

p
= ± 1

p

√
r2 − py2 ⇒ x = 1

p

(
r ±

√
r2 − py2

)

The negative sign must be taken, since this is the half in which we are interested. That is,

f (y) = x = 1

p

(
r −

√
r2 − py2

)
(1)

We are given the following curve:

x = f (y) + t (y)

where

t (y) =
√

R2 − S2 −
√

R2 − y2 −
√

r2 − S2 +
√

r2 − y2 (2)

We must show that the radius of curvature at O is R. We use the curvature of a graph in the plane:

κ(y) = |x′′(y)|(
1 + x′(y)2

)3/2
⇒ κ(0) = |x′′(0)|(

1 + x′(0)2
)3/2

(3)

We differentiate f (y) in (1) and t (y) in (2) twice. This gives:

f ′(y) = − 1

p
· −py√

r2 − py2
= y√

r2 − py2
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f ′′(y) =
√

r2 − py2 − y · −py√
r2−py2

r2 − py2
= r2 − py2 + py2(

r2 − py2
)3/2

= r2(
r2 − py2

)3/2

t ′(y) = − −2y

2
√

R2 − y2
+ −2y

2
√

r2 − y2
= y√

R2 − y2
− y√

r2 − y2

t ′′(y) =
√

R2 − y2 − y · −y√
R2−y2

R2 − y2
−

√
r2 − y2 − y · −y√

r2−y2

r2 − y2
= R2 − y2 + y2(

R2 − y2
)3/2

− r2 − y2 + y2(
r2 − y2

)3/2

= R2(
R2 − y2

)3/2
− r2(

r2 − y2
)3/2

At y = 0 we obtain:

f ′(0) = 0; t ′(0) = 0

f ′′(0) = r2

(r2)3/2
= 1

r
; t ′′(0) = R2

(R2)
3/2

− r2

(r2)
3/2

= 1

R
− 1

r

Hence,

x′′(0) = f ′′(0) + t ′′(0) = 1

r
+ 1

R
− 1

r
= 1

R

x′(0) = f ′(0) + t ′(0) = 0

Substituting in (3) gives the following curvature:

κ(0) =
1
R(

1 + 02
)3/2

= 1

R
.

The radius of curvature at the origin is therefore,

1

κ(0)
= 1

1
R

= R.

61. The angle of inclination at a point P on a plane curve is the angle θ between the unit tangent vector T and the x-axis
(Figure 20). Assume that r(s) is a arc length parametrization, and let θ = θ(s) be the angle of inclination at r(s). Prove
that

κ(s) =
∣∣∣∣dθ

ds

∣∣∣∣ 12

Hint: Observe that T(s) = 〈cos θ(s), sin θ(s)〉.

y

P

x

T = 〈cos θ, sin θ〉

θ

FIGURE 20 The curvature at P is the quantity |dθ/ds|.

solution Since T(t) is a unit vector that makes an angle θ(t) with the positive x-axis, we have

T(t) = 〈cos θ(t), sin θ(t)〉 .

Differentiating this vector using the Chain Rule gives:

T′(t) = 〈−θ ′(t) sin θ(t), θ ′(t) cos θ(t)
〉 = θ ′(t) 〈− sin θ(t), cos θ(t)〉

We compute the norm of the vector T′(t):

‖T′(t)‖ = ‖θ ′(t) 〈− sin θ(t), cos θ(t)〉 ‖ = |θ ′(t)|
√

(− sin θ(t))2 + (cos θ(t))2 = |θ ′(t)| · 1 = |θ ′(t)|
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When r(s) is a parametrization by arc length we have:

κ(s) =
∥∥∥∥dT

ds

∥∥∥∥ =
∥∥∥∥dT

dt

∥∥∥∥
∣∣∣∣ dt

dθ

dθ

ds

∣∣∣∣ = ∣∣θ ′(t)
∣∣ 1

|θ ′(t)|
∣∣∣∣dθ

ds

∣∣∣∣ =
∣∣∣∣dθ

ds

∣∣∣∣
as desired.

62. A particle moves along the path y = x3 with unit speed. How fast is the tangent turning (i.e., how fast is the angle of
inclination changing) when the particle passes through the point (2, 8)?

solution The particle has unit speed hence the parametrization is in arc length parametrization. Therefore, the change
in the angle of inclination is, by Exercise 61: ∣∣∣∣dθ

ds

∣∣∣∣ = κ(s)

In particular at the point (2, 8) we have: ∣∣∣∣dθ

ds

∣∣∣∣
(2,8)

= κ(s)
∣∣
(2,8)

(1)

We, thus, must find the curvature at the given point. We use the formula for the curvature of a graph in the plane:

κ(x) = |y′′(x)|(
1 + y′(x)2

)3/2
⇒ κ(2) = |y′′(2)|(

1 + y′(2)2
)3/2

(2)

For y = x3 we have y′ = 3x2 and y′′ = 6x, hence y′(2) = 12 and y′′(2) = 12. Substituting in (2), we get:

κ(2) = 12(
1 + 122)3/2

= 12

1453/2
≈ 0.0069

Combining with (1) we conclude that when the particle passes through the point (2, 8) the tangent is turning at a rate of
0.0069.

63. Let θ(x) be the angle of inclination at a point on the graph y = f (x) (see Exercise 61).

(a) Use the relation f ′(x) = tan θ to prove that
dθ

dx
= f ′′(x)

(1 + f ′(x)2)
.

(b) Use the arc length integral to show that
ds

dx
=

√
1 + f ′(x)2.

(c) Now give a proof of Eq. (5) using Eq. (12).

solution

(a) By the relation f ′(x) = tan θ we have θ = tan−1f ′(x). Differentiating using the Chain Rule we get:

dθ

dx
= d

dx

(
tan−1f ′(x)

) = 1

1 + f ′(x)2

d

dx

(
f ′(x)

) = f ′′(x)

1 + f ′(x)2

(b) We use the parametrization r(x) = 〈x, f (x)〉. Hence, r′(x) = 〈
1, f ′(x)

〉
and we obtain the following arc length

function:

S(x) =
∫ x

0
‖r′(u)‖ du =

∫ x

0

∥∥〈1, f ′(u)
〉∥∥ du =

∫ x

0

√
1 + f ′(u)2 du

Differentiating using the Fundamental Theorem gives:

ds

dx
= d

dx

(∫ x

0

√
1 + f ′(u)2 du

)
=

√
1 + f ′(x)2

(c) By Eq. (12),

κ(s) =
∣∣∣∣dθ

ds

∣∣∣∣ (1)

Using the Chain Rule and the equalities in part (a) and part (b), we obtain:

dθ

ds
= dθ

dx
· dx

ds
= dθ

dx
· 1

ds
dx

= f ′′(x)

1 + f ′(x)2
· 1√

1 + f ′(x)2
= f ′′(x)(

1 + f ′(x)2
)3/2

Combining with (1) we obtain the curvature as the following function of x:

κ(x) = |f ′′(x)|(
1 + f ′(x)2)3/2

which proves Eq. (5).
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64. Use the parametrization r(θ) = 〈f (θ) cos θ, f (θ) sin θ〉 to show that a curve r = f (θ) in polar coordinates has
curvature

κ(θ) = |f (θ)2 + 2f ′(θ)2 − 2f (θ)f ′′(θ)|(
f (θ)2 + f ′(θ)2

)3/2
13

solution By the formula for curvature we have

κ(θ) = ‖r′(θ) × r′′(θ)‖
‖r′(θ)‖3

(1)

We differentiate r(θ) and r′(θ):

r′(θ) = 〈
f ′(θ) cos θ − f (θ) sin θ, f ′(θ) sin θ + f (θ) cos θ

〉
r′′(θ) = 〈

f ′′(θ) cos θ − f ′(θ) sin θ − f ′(θ) sin θ − f (θ) cos θ,

f ′′(θ) sin θ + f ′(θ) cos θ + f ′(θ) cos θ − f (θ) sin θ
〉

= 〈(
f ′′(θ) − f (θ)

)
cos θ − 2f ′(θ) sin θ,

(
f ′′(θ) − f (θ)

)
sin θ + 2f ′(θ) cos θ

〉
Hence,

r′(θ) × r′′(θ) = (
f ′(θ) cos θ − f (θ) sin θ

) · ((f ′′(θ) − f (θ)
)

sin θ + 2f ′(θ) cos θ
)

k

− (
f ′(θ) sin θ + f (θ) cos θ

) · ((f ′′(θ) − f (θ)
)

cos θ − 2f ′(θ) sin θ
)

k

=
{
f ′(θ)

(
f ′′(θ) − f (θ)

)
cos θ sin θ − f (θ)

(
f ′′(θ) − f (θ)

)
sin2 θ + 2f ′2(θ) cos2 θ

− 2f (θ)f ′(θ) sin θ cos θ
(
−f ′(θ)

(
f ′′(θ) − f (θ)

)
sin θ cos θ − f (θ)

(
f ′′(θ) − f (θ)

)
cos2 θ

+ 2f ′(θ)2 sin2 θ + 2f (θ)f ′(θ) cos θ sin θ
)}

k

=
(
−f (θ)

(
f ′′(θ) − f (θ)

) (
sin2 θ + cos2 θ

) + 2f ′2(θ)
(
cos2 θ + sin2 θ

))
k

=
(
−f (θ)

(
f ′′(θ) − f (θ)

) + 2f ′2(θ)
)

k

=
(
−f (θ)f ′′(θ) + f 2(θ) + 2f ′2(θ)

)
k

The length of the cross product is:

‖r′(θ) × r′′(θ)‖ = |f 2(θ) + 2f ′2(θ) − f (θ)f ′′(θ)| (2)

We compute the length of r′(θ):

‖r′(θ)‖2 = (
f ′(θ) cos θ − f (θ) sin θ

)2 + (
f ′(θ) sin θ + f (θ) cos θ

)2

= f ′2(θ) cos2 θ − 2f ′(θ)f (θ) cos θ sin θ + f 2(θ) sin2 θ + f ′2(θ) sin2 θ

+ 2f ′(θ)f (θ) sin θ cos θ + f 2(θ) cos2 θ

= f ′2(θ)
(
cos2 θ + sin2 θ

) + f 2(θ)
(
sin2 θ + cos2 θ

) = f ′2(θ) + f 2(θ)

Hence,

‖r′(θ)‖ =
√

f ′2(θ) + f 2(θ) (3)

Substituting (2) and (3) in (1) gives:

κ(θ) = |f 2(θ) + 2f ′2(θ) − f (θ)f ′′(θ)|(
f ′2(θ) + f 2(θ)

)3/2
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In Exercises 65–67, use Eq. (13) to find the curvature of the curve given in polar form.

65. f (θ) = 2 cos θ

solution By Eq. (13):,

κ(θ) = |f (θ)2 + 2f ′(θ)2 − f (θ)f ′′(θ)|(
f (θ)2 + f ′2(θ)

)3/2

We compute the derivatives f ′(θ) and f ′′(θ) and evaluate the numerator of κ(θ). This gives:

f ′(θ) = −2 sin θ

f ′′(θ) = −2 cos θ

f (θ)2 + 2f ′(θ)2 − f (θ)f ′′(θ) = 4 cos2 θ + 2 · 4 sin2 θ − 2 cos θ(−2 cos θ)

= 8 cos2 θ + 8 sin2 θ = 8

We compute the denominator of κ(θ):

(
f (θ)2 + f ′(θ)2)3/2 = (

4 cos2 θ + 4 sin2 θ
)3/2 = 43/2 = 8

Hence,

κ(θ) = 8

8
= 1

66. f (θ) = θ

solution We have f ′(θ) = 1, f ′′(θ) = 0. The numerator and denominator in Eq. (13) are thus:

f (θ)2 + 2f ′(θ) − f (θ)f ′′(θ) = θ2 + 2 · 1 − 0 = θ2 + 2(
f (θ)2 + f ′(θ)2)3/2 = (

θ2 + 1
)3/2

Hence,

κ(θ) = θ2 + 2(
θ2 + 1

)3/2

67. f (θ) = eθ

solution By Eq. (13) we have the following curvature:

κ(θ) = |f (θ)2 + 2f ′(θ)2 − f (θ)f ′′(θ)|(
f (θ)2 + f ′2(θ)

)3/2

Since f (θ) = eθ also f ′(θ) = f ′′(θ) = eθ . We compute the numerator and denominator of κ(θ):

f (θ)2 + 2f ′(θ)2 − f (θ)f ′′(θ) = e2θ + 2e2θ − eθ · eθ = 2e2θ

(
f (θ)2 + f ′(θ)2)3/2 = (

e2θ + e2θ
)3/2 = (

2e2θ
)3/2 = 2

√
2e3θ

Substituting in the formula for κ(θ) we obtain:

κ(θ) = 2e2θ

2
√

2e3θ
= 1√

2
e−θ

68. Use Eq. (13) to find the curvature of the general Bernoulli spiral r = aebθ in polar form (a and b are constants).

solution By Eq. (13):

κ(θ) = |f (θ)2 + 2f ′(θ)2 − f (θ)f ′′(θ)|(
f (θ)2 + f ′2(θ)

)3/2

In our case f (θ) = aebθ hence f ′(θ) = abebθ and f ′′(θ) = ab2ebθ . We compute the numerator of κ(θ):

f (θ)2 + 2f ′(θ)2 − f (θ)f ′′(θ) = a2e2bθ + 2a2b2e2bθ − aebθ · ab2ebθ = a2e2bθ + 2a2b2e2bθ − a2b2e2bθ
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= a2e2bθ + a2b2e2bθ = a2(1 + b2)e2bθ

We compute the denominator of κ(θ):

(
f (θ)2 + f ′(θ)2)3/2 = (

a2e2bθ + a2b2e2bθ
)3/2 = (

a2e2bθ
(
1 + b2))3/2 = a3e3bθ

(
1 + b2)3/2

Therefore:

κ(θ) = a2(1 + b2)e2bθ

a3(1 + b2)
3/2

e3bθ
= 1

a
√

1 + b2
e−bθ

69. Show that both r′(t) and r′′(t) lie in the osculating plane for a vector function r(t). Hint: Differentiate r′(t) = v(t)T(t).

solution The osculating plane at P is the plane through P determined by the unit tangent T and the unit normal N at

P . Since T(t) = r′(t)
‖r′(t)‖ we have r′(t) = v(t)T(t) where v(t) = ‖r′(t)‖. That is, r′(t) is a scalar multiple of T(t), hence

it lies in every plane containing T(t), in particular in the osculating plane. We now differentiate r′(t) = v(t)T(t) using
the Product Rule:

r′′(t) = v′(t)T(t) + v(t)T′(t) (1)

By N(t) = T′(t)
‖T′(t)‖ we have T′(t) = b(t)N(t) for b(t) = ‖T′(t)‖. Substituting in (1) gives:

r′′(t) = v′(t)T(t) + v(t)b(t)N(t)

We see that r′′(t) is a linear combination of T(t) and N(t), hence r′′(t) lies in the plane determined by these two vectors,
that is, r′′(t) lies in the osculating plane.

70. Show that

γ (s) = r(t0) + 1

κ
N + 1

κ

(
(sin κs)T − (cos κs)N

)
is an arc length parametrization of the osculating circle at r(t0).

solution Let P be a fixed point on the curve C, T and N are the unit tangent and the unit normal to the curve at P . We
place the xy-coordinate system so that the origin is at P and the x and y axes are in the directions of T and N, respectively.
We next show that γ (s) is an arc length parametrization of the osculating circle at P .

P
T

N

We compute the following expression:

∥∥∥∥γ (s) − 1

κ
N

∥∥∥∥2
= 1

κ2
‖ (sin κs) T − (cos κs) N‖2 = 1

κ2
((sin κs) T − (cos κs) N) · ((sin κs) T − (cos κs) N)

= 1

κ2

(
sin2 κsT · T − (sin κs cos κs) T · N − (cos κs sin κs) N · T + (

cos2 κs
)
N · N

)

The vectors T and N are orthogonal unit vectors, hence T · N = N · T = 0 and T · T = ‖T‖2 = 1, N · N = ‖N‖2 = 1.
We use the identity sin2(κs) + cos2(κs) = 1 to obtain

∥∥∥∥γ (s) − 1

κ
N

∥∥∥∥2
= 1

κ2

(
sin2 κs + cos2 κs

) = 1

κ2

That is, ∥∥∥∥γ (s) − 1

κ
N

∥∥∥∥ = 1

κ
(1)

Notice that κ , N, and T are fixed and only s is changing in γ (s). It follows by (1) that γ (s) is a circle of radius 1
κ centered

at 1
κ N. The curvature of the circle is the reciprocal of the radius, which is κ (the curvature of C at the point P ). We thus

showed that the circle γ (s) satisfies the second condition in the definition of the osculating circle. We now show that the
first condition is satisfied as well.
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The center of the circle is the terminal point of the vector 1
κ N, which is in the direction of N and orthogonal to T. This

shows that T and N are the unit tangent and unit normal to the circle at P . Finally, we verify that the given parametrization
is the arc length parametrization, by showing that ‖γ ′(s)‖ = 1. Differentiating γ (s) with respect to s gives (notice that
κ , T, and N are fixed):

γ ′(s) = 1

κ

(
(κ cos κs) T + (κ sin κs) N

) = (cos κs)T + (sin κs)N

Hence, since T · T = N · N = 1 and T · N = N · T = 0 we get:

‖γ ′(s)‖2 = (
(cos κs)T + (sin κs)N

) · ((cos κs)T + (sin κs)N
)

= (
cos2 κs

)
T · T + (cos κs)(sin κs)T · N + (sin κs cos κs)N · T + (

sin2 κs
)
N · N

= cos2 κs + sin2 κs = 1

Hence

‖γ ′(s)‖ = 1

71. Two vector-valued functions r1(s) and r2(s) are said to agree to order 2 at s0 if

r1(s0) = r2(s0), r′
1(s0) = r′

2(s0), r′′
1(s0) = r′′

2(s0)

Let r(s) be an arc length parametrization of a path C, and let P be the terminal point of r(0). Let γ (s) be the arc length
parametrization of the osculating circle given in Exercise 70. Show that r(s) and γ (s) agree to order 2 at s = 0 (in fact,
the osculating circle is the unique circle that approximates C to order 2 at P ).

solution The arc length parametrization of the osculating circle at P , described in the xy-coordinate system with P

at the origin and the x and y axes in the directions of T and N respectively, is given in Exercise 70 by:

γ (s) = 1

κ
N + 1

κ

(
(sin κs)T − (cos κs)N

)
Hence

γ (0) = 1

κ
N + 1

κ

(
(sin 0)T − (cos 0)N

) = 1

κ
N + 1

κ
(0 − 1 · N) = 1

κ
N − 1

κ
N = 0

r(0) = −→
OP = 0

We get:

γ (0) = r(0) (1)

Differentiating γ (s) gives (notice that N, T, and κ are fixed):

γ ′(s) = 1

κ

(
(κ cos κs)T + (κ sin κs)N

) = (cos κs)T + (sin κs)N

Hence:

γ ′(0) = (cos κ · 0) T + (sin κ · 0) N = 1 · T + 0 · N = T

P
T

N

Also, since r(s) is the arc length parametrization, ‖r′(s)‖ = 1, hence:

T = T(0) = r′(0)

‖r′(0)‖ = r′(0)

We conclude that:

γ ′(0) = r′(0) (2)
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We differentiate γ ′(s) to obtain:

γ ′′(s) = (−κ sin κs) T + (κ cos κs) N

Hence:

γ ′′(0) = (−κ sin 0) T + (κ cos 0) N = 0T + κN = κN

For the arc length parametrization r(s) we have:

r′′(s) = T′(s) = ‖T′(s)‖N(s) = ‖r′(s)‖κ(s)N(s) = 1 · κ(s)N(s)

Hence:

r′′(0) = κ(0)N(0) = κN

We conclude that:

γ ′′(0) = r′′(0) (3)

(1), (2), and (3) show that r(s) and γ (s) agree to order two at s = 0.

72. Let r(t) = 〈x(t), y(t), z(t)〉 be a path with curvature κ(t) and define the scaled path r1(t) = 〈λx(t), λy(t), λz(t)〉,
where λ �= 0 is a constant. Prove that curvature varies inversely with the scale factor. That is, prove that the curvature
κ1(t) of r1(t) is κ1(t) = λ−1κ(t). This explains why the curvature of a circle of radius R is proportional to 1/R (in fact,
it is equal to 1/R). Hint: Use Eq. (3).

solution The resulting curvature k1 and the original curvature κ are:

κ1(t) = ‖r′
1(t) × r′′

1(t)‖
‖r′

1(t)‖3
, κ(t) = ‖r′(t) × r′′(t)‖

‖r′(t)‖3

We have

r′
1(t) = d

dt
(λr(t)) = λr′(t)

r′′
1(t) = d

dt

(
r ′
1(t)

) = d

dt

(
λr′(t)

) = λr′′(t)

Hence,

‖r′
1(t) × r′′

1(t)‖ = ‖λr′(t) × λr′′(t)‖ = λ2‖r′(t) × r′′(t)‖
‖r′

1(t)‖ = ‖λr′(t)‖ = |λ|‖r′(t)‖
Substituting in (1) we get:

κ1(t) = λ2‖r′(t) × r′′(t)‖
|λ|3‖r′(t)‖3

= 1

|λ|
‖r′(t) × r′′(t)‖

‖r′(t)‖3
= 1

|λ|κ(t)

We conclude that the resulting curvature is:

κ1(t) = 1

|λ|κ(t)

Multiplying the vector by λ causes the curvature to be divided by |λ|.

Further Insights and Challenges
73. Show that the curvature of Viviani’s curve, given by r(t) = 〈1 + cos t, sin t, 2 sin(t/2)〉, is

κ(t) =
√

13 + 3 cos t

(3 + cos t)3/2

solution We use the formula for curvature:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

(1)

Differentiating r(t) gives

r′(t) =
〈
− sin t, cos t, 2 · 1

2
cos

t

2

〉
=

〈
− sin t, cos t, cos

t

2

〉



April 19, 2011

S E C T I O N 13.4 Curvature (LT SECTION 14.4) 561

r′′(t) =
〈
− cos t, − sin t, −1

2
sin

t

2

〉

We compute the cross product in (1):

r′(t) × r′′(t) =
∣∣∣∣∣∣

i j k
− sin t cos t cos t

2
− cos t − sin t − 1

2 sin t
2

∣∣∣∣∣∣
=

(
−1

2
cos t sin

t

2
+ sin t cos

t

2

)
i −

(
1

2
sin t sin

t

2
+ cos t cos

t

2

)
j + k

We find the length of the cross product:

‖r′(t) × r′′(t)‖2 =
(

−1

2
cos t sin

t

2
+ sin t cos

t

2

)2
+

(
1

2
sin t sin

t

2
+ cos t cos

t

2

)2
+ 1

= 1

4
sin2 t

2

(
cos2 t + sin2 t

)
+ cos2 t

2

(
sin2 t + cos2 t

)
+ 1

= 1

4
sin2 t

2
+ cos2 t

2
+ 1

We use the identities sin2 t
2 + cos2 t

2 = 1 and cos2 t
2 = 1

2 + 1
2 cos t to write:

‖r′(t) × r′′(t)‖2 = 1

4
sin2 t

2
+ cos2 t

2
+ 1 = 1

4

(
sin2 t

2
+ cos2 t

2

)
+ 3

4
cos2 t

2
+ 1

= 1

4
+ 3

4

(
1

2
+ 1

2
cos t

)
+ 1 = 3

8
cos t + 13

8

Hence:

‖r′(t) × r′′(t)‖ = 1√
8

√
13 + 3 cos t (2)

We compute the length of r′(t):

‖r′(t)‖2 = (− sin t)2 + cos2 t + cos2 t

2
= 1 + cos2 t

2
= 1 +

(
1

2
+ 1

2
cos t

)
= 3

2
+ 1

2
cos t

Hence,

‖r′(t)‖ = 1√
2

√
3 + cos t (3)

Substituting (2) and (3) in (1) gives:

κ(t) =
1√
8

√
13 + 3 cos t(

1√
2

√
3 + cos t

)3
=

1√
8

√
13 + 3 cos t

1
2

1√
2
(3 + cos t)3/2

=
√

13 + 3 cos t

(3 + cos t)3/2

74. Let r(s) be an arc length parametrization of a closed curve C of length L. We call C an oval if dθ/ds > 0 (see
Exercise 61). Observe that −N points to the outside of C. For k > 0, the curve C1 defined by r1(s) = r(s) − kN is called
the expansion of c(s) in the normal direction.

(a) Show that ‖r′
1(s)‖ = ‖r′(s)‖ + kκ(s).

(b) As P moves around the oval counterclockwise, θ increases by 2π [Figure 21(A)]. Use this and a change of variables

to prove that
∫ L

0
κ(s) ds = 2π .

(c) Show that C1 has length L + 2πk.

(A) An oval

T
−N

C1 is the expansion of C
in the normal direction.

(B)

C1

C

x

y

P P

C

θ = 0

θ

FIGURE 21 As P moves around the oval, θ increases by 2π .
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solution
(a) Since r1(s) = r(s) − kN we have

r′
1(s) = r′(s) − k

dN
ds

(1)

We compute dN
ds

using the Chain Rule:

dN
ds

= dN
dθ

· dθ

ds
(2)

By Exercise 61 and since C is oval we have:

κ(s) =
∣∣∣∣dθ

ds

∣∣∣∣ = dθ

ds
(3)

T

N

Also, as illustrated in the figure, the following holds:

N =
〈
cos

(π

2
+ θ

)
, sin

(π

2
+ θ

)〉
= 〈− sin θ, cos θ〉

Hence:

dN
dθ

= 〈− cos θ, − sin θ〉 = − 〈cos θ, sin θ〉 = −T (4)

Substituting (3) and (4) in (2) yields:

dN
ds

= −κ(s)T(s)

Substituting in (1) we obtain:

r′
1(s) = r′(s) + kκ(s)T(s)

In the arc length parametrization, T(s) = r′(s), therefore:

r′
1(s) = r′(s) + kκ(s)r′(s) = r′(s) (1 + kκ(s))

Computing the length and using ‖r′(s)‖ = 1 we obtain:

‖r′
1(s)‖ = ‖r′(s)‖ (1 + kκ(s)) = ‖r′(s)‖ + ‖r′(s)‖ · kκ(s) = ‖r′(s)‖ + kκ(s)

(b) In Exercise 61 we showed that:

κ(s) =
∣∣∣∣dθ

ds

∣∣∣∣
Since dθ

ds
> 0 we have κ(s) = dθ

ds
. As P moves around the oval, θ increases by 2π , hence θ (s = L) − θ (s = 0) = 2π .

Using these considerations we get:∫ L

0
κ(s) ds =

∫ θ(L)

θ(0)

dθ

ds
ds =

∫ θ(L)

θ(0)
dθ = θ(L) − θ(0) = 2π.

(c) We use the Arc Length Formula and the equality in part (a) to write the length L1 of C1 as the following integral:

L1 =
∫ L

0
‖r′

1(s)‖ ds =
∫ L

0
‖r′(s)‖ ds + k

∫ L

0
κ(s) ds

By the Arc Length Formula, the first integral is the length L of C. The second integral was computed in part (b). Therefore
we get:

L1 = L + k · 2π = L + 2πk.
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In Exercises 75–82, let B denote the binormal vector at a point on a space curve C, defined by B = T × N.

75. Show that B is a unit vector.

solution T and N are orthogonal unit vectors, therefore the length of their cross product is:

‖B‖ = ‖T × N‖ = ‖T‖‖N‖ sin
π

2
= 1 · 1 · 1 = 1

Therefore B is a unit vector.

76. Follow steps (a)–(c) to prove that there is a number τ (lowercase Greek “tau”) called the torsion such that

dB
ds

= −τN 14

(a) Show that
dB
ds

= T × dN
ds

and conclude that dB/ds is orthogonal to T.

(b) Differentiate B · B = 1 with respect to s to show that dB/ds is orthogonal to B.
(c) Conclude that dB/ds is a multiple of N.

solution
(a) Using the Product Rule for cross product we have:

dB
ds

= d

ds
(T × N) = dT

ds
× N + T × dN

ds

N is a unit vector in the direction of dT
ds

, hence dT
ds

× N = 0, so we obtain:

dB
ds

= T × dN
ds

By properties of cross products we conclude that dB
ds

is orthogonal to T.
(b) We differentiate B · B = 1 using the Product Rule for dot products:

B · dB
ds

+ dB
ds

· B = 0

2B · dB
ds

= 0 ⇒ B · dB
ds

= 0

Since the dot product of B and dB
ds

is zero, the two vectors are orthogonal.

(c) In parts (a) and (b) we showed that dB
ds

is orthogonal to B and T. It follows that dB
ds

is parallel to any other vector that
is orthogonal to B and T. We show that N is such a vector.

Since B = T × N, the vectors N and B are orthogonal. The unit normal N is also orthogonal to the unit tangent T. We
conclude that dB

ds
and N are parallel, hence there exists a number (−τ ) such that:

dB
ds

= −τN.

77. Show that if C is contained in a plane P , then B is a unit vector normal to P . Conclude that τ = 0 for a plane curve.

solution If C is contained in a plane P , then the unit normal N and the unit tangent T are in P . The cross product
B = T × N is orthogonal to T and N which are in the plane, hence B is normal to the plane. Thus, B is a unit vector
normal to the plane. There are only two different unit normal vectors to a plane, one pointing “up” and the other pointing
“down”. Thus, we can assume (due to continuity) that B is a constant vector, therefore

dB
ds

= 0 or τ = 0.

78. Torsion means “twisting.” Is this an appropriate name for τ? Explain by interpreting τ geometrically.

solution B is the unit normal to the osculating plane at a point P on the curve. As P moves along the curve, the unit

normal B is changing by dB
ds

= −τN. Geometrically the osculating plane is “twisted” and τ is a measure for this twisting.

79. Use the identity

a × (b × c) = (a · c)b − (a · b)c

to prove

N × B = T, B × T = N 15
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solution We use the given equality and the definition B = T × N to write:

N × B = N × (T × N) = (N · N) T − (N · T) N (1)

The unit normal N and the unit tangent T are orthogonal unit vectors, hence N · N = ‖N‖2 = 1 and N · T = 0. Therefore,
(1) gives:

N × B = 1 · T − 0N = T

To prove the second equality, we substitute T = N × B and then use the given equality. We obtain:

B × T = B × (N × B) = (B · B) N − (B · N) B (2)

Now, B is a unit vector, hence B · B = ‖B‖2 = 1. Also, since B = T × N, B is orthogonal to N which implies that
B · N = 0. Substituting in (2) we get:

B × T = 1N − 0B = N.

80. Follow steps (a)–(b) to prove

dN
ds

= −κT + τB 16

(a) Show that dN/ds is orthogonal to N. Conclude that dN/ds lies in the plane spanned by T and B, and hence,
dN/ds = aT + bB for some scalars a, b.

(b) Use N · T = 0 to show that T · dN
ds

= −N · dT
ds

and compute a. Compute b similarly. Equations (14) and (16)

together with dT/dt = κN are called the Frenet formulas and were discovered by the French geometer Jean Frenet
(1816–1900).

solution

(a) We first show that dN
ds

is orthogonal to N. Earlier we showed that dB
ds

= T × dN
ds

and dB
ds

= −τN, hence:

−τN = T × dN
ds

By properties of the cross product, this equality implies that dN
ds

is orthogonal to −τN, hence it is orthogonal to N. Now,

N is orthogonal to T and B, hence N is normal to the plane spanned by T and B. Therefore, since N is orthogonal to dN
ds

,
this last vector lies in the plane spanned by T and B, that is, there exist scalars a and b such that:

dN
ds

= aT + bB

(b) By the orthogonality of N and T we have:

N · T = 0

Differentiating this equality, using the product rule for dot product we get:

N · dT
ds

+ dN
ds

· T = 0 ⇒ T · dN
ds

= −N · dT
ds

To compute a, we substitute dN
ds

= aT + bB and use T · T = ‖T‖2 = 1 and T · B = 0. This gives:

T · (aT + bB) = −N · dT
ds

aT · T + bT · B = −N · dT
ds

a · 1 + b · 0 = −N · dT
ds

⇒ a = −N · dT
ds

(1)

To find b we differentiate the equality N · B = 0 (notice that by B = T × N follows the orthogonality of N and B). We
get:

N · dB
ds

+ dN
ds

· B = 0 ⇒ dN
ds

· B = −N · dB
ds

We now substitute dN
ds

= aT + bB and we use B · B = ‖B‖2 = 1 and T · B = 0 to obtain:

(aT + bB) · B = −N · dB
ds
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aT · B + bB · B = −N · dB
ds

a · 0 + b · 1 = −N · dB
ds

⇒ b = −N · dB
ds

Since dB
ds

= −τN we may write:

b = −N · (−τN) = τN · N = τ‖N‖2 = τ (2)

Also for the arc length parametrization dT
ds

= κ(s)N, hence by (1):

a = −N · κ(s)N = −κ(s)N · N = −κ(s)‖N‖2 = −κ(s) (3)

We combine (2), (3), and part (a) to conclude:

dN
ds

= −κT + τB.

81. Show that r′ × r′′ is a multiple of B. Conclude that

B = r′ × r′′
‖r′ × r′′‖ 17

solution By the definition of the binormal vector, B = T × N. We denote a(t) = 1
‖r′(t)‖ and write:

T(t) = r′(t)
‖r′(t)‖ = a(t)r′(t) (1)

We differentiate T(t) using the Product Rule:

T′(t) = a(t)r′′(t) + a′(t)r′(t)

We denote b(t) = ‖T′(t)‖ and obtain:

N(t) = T′(t)
‖T′(t)‖ = a(t)

b(t)
r′′(t) + a′(t)

b(t)
r′(t)

For c1 = a(t)
b(t)

and c2 = a′(t)
b(t)

we have:

N(t) = c1(t)r′′(t) + c2(t)r′(t) (2)

We now find B as the cross product of T(t) in (1) and N(t) in (2). This gives:

B(t) = a(t)r′(t) × (
c1(t)r′′(t) + c2(t)r′(t)

) = a(t)c1(t)r′(t) × r′′(t) + a(t)c2(t)r′(t) × r′(t)
= a(t)c1(t)r′(t) × r′′(t) + 0 = a(t)c1(t)r′(t) × r′′(t)

We see that B is parallel to r′ × r′′. Since B is a unit vector we have:

B = r′ × r′′
‖r′ × r′′‖ .

82. The vector N can be computed using N = B × T [Eq. (15)] with B, as in Eq. (17). Use this method to find N in the
following cases:

(a) r(t) = 〈
cos t, t, t2〉 at t = 0

(b) r(t) = 〈
t2, t−1, t

〉
at t = 1

solution

(a) We first compute the vector B using Eq. (17):

B = r′ × r′′
‖r′ × r′′‖ (1)

Differentiating r(t) = 〈
cos t, t, t2〉 gives

r′(t) = 〈− sin t, 1, 2t〉
r′′(t) = 〈− cos t, 0, 2〉 ⇒ r′(0) = 〈0, 1, 0〉

r′′(0) = 〈−1, 0, 2〉
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We compute the cross product:

r′(0) × r′′(0) = j × (−i + 2k) = −j × i + 2j × k = k + 2i = 〈2, 0, 1〉
‖r′(0) × r′′(0)‖ =

√
22 + 02 + 12 = √

5

Substituting in (1) we obtain:

B(0) = 〈2, 0, 1〉√
5

= 1√
5

〈2, 0, 1〉

We now compute T(0):

T(0) = r′(0)

‖r′(0)‖ = 〈0, 1, 0〉
‖ 〈0, 1, 0〉 ‖ = 〈0, 1, 0〉

Finally we find N = B × T:

N(0) = 1√
5

〈2, 0, 1〉 × 〈0, 1, 0〉 = 1√
5

(2i + k) × j = 1√
5

(2i × j + k × j) = 1√
5

(2k − i) = 1√
5

〈−1, 0, 2〉

(b) Differentiating r(t) = 〈
t2, t−1, t

〉
gives

r′(t) = 〈
2t, −t−2, 1

〉
r′′(t) = 〈

2, 2t−3, 0
〉 ⇒ r′(1) = 〈2, −1, 1〉

r′′(1) = 〈2, 2, 0〉
We compute the cross product:

r′(1) × r′′(1) =
∣∣∣∣∣∣

i j k
2 −1 1
2 2 0

∣∣∣∣∣∣ =
∣∣∣∣ −1 1

2 0

∣∣∣∣ i −
∣∣∣∣ 2 1

2 0

∣∣∣∣ j +
∣∣∣∣ 2 −1

2 2

∣∣∣∣ k = −2i + 2j + 6k = 〈−2, 2, 6〉

‖r′(1) × r′′(1)‖ =
√

(−2)2 + 22 + 62 = √
44 = 2

√
11

Substituting in (1) gives:

B(1) = 〈−2, 2, 6〉
2
√

11
= 1√

11
〈−1, 1, 3〉

We now find T(1):

T(1) = r′(1)

‖r′(1)‖ = 〈2, −1, 1〉√
4 + 1 + 1

= 1√
6

〈2, −1, 1〉

Finally we find N(1) by computing the following cross product:

N(1) = B(1) × T(1) = 1√
11

〈−1, 1, 3〉 × 1√
6

〈2, −1, 1〉 = 1√
66

∣∣∣∣∣∣
i j k

−1 1 3
2 −1 1

∣∣∣∣∣∣
= 1√

66

{∣∣∣∣ 1 3
−1 1

∣∣∣∣ i −
∣∣∣∣ −1 3

2 1

∣∣∣∣ j +
∣∣∣∣ −1 1

2 −1

∣∣∣∣ k
}

= 1√
66

(4i + 7j − k) = 1√
66

〈4, 7, −1〉

13.5 Motion in Three-Space (LT Section 14.5)

Preliminary Questions
1. If a particle travels with constant speed, must its acceleration vector be zero? Explain.

solution If the speed of the particle is constant, the tangential component, aT (t) = v′(t), of the acceleration is zero.

However, the normal component, aN(t) = κ(t)v(t)2 is not necessarily zero, since the particle may change its direction.

2. For a particle in uniform circular motion around a circle, which of the vectors v(t) or a(t) always points toward the
center of the circle?

solution For a particle in uniform circular motion around a circle, the acceleration vector a(t) points towards the
center of the circle, whereas v(t) is tangent to the circle.

3. Two objects travel to the right along the parabola y = x2 with nonzero speed. Which of the following statements
must be true?

(a) Their velocity vectors point in the same direction.
(b) Their velocity vectors have the same length.
(c) Their acceleration vectors point in the same direction.
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solution

(a) The velocity vector points in the direction of motion, hence the velocities of the two objects point in the same direction.

(b) The length of the velocity vector is the speed. Since the speeds are not necessarily equal, the velocity vectors may
have different lengths.

(c) The acceleration is determined by the tangential component v′(t) and the normal component κ(t)v(t)2. Since v and
v′ may be different for the two objects, the acceleration vectors may have different directions.

4. Use the decomposition of acceleration into tangential and normal components to explain the following statement: If
the speed is constant, then the acceleration and velocity vectors are orthogonal.

solution If the speed is constant, v′(t) = 0. Therefore, the acceleration vector has only the normal component:

a(t) = aN(t)N(t)

The velocity vector always points in the direction of motion. Since the vector N(t) is orthogonal to the direction of motion,
the vectors a(t) and v(t) are orthogonal.

5. If a particle travels along a straight line, then the acceleration and velocity vectors are (choose the correct description):

(a) Orthogonal (b) Parallel

solution Since a line has zero curvature, the normal component of the acceleration is zero, hence a(t) has only the
tangential component. The velocity vector is always in the direction of motion, hence the acceleration and the velocity
vectors are parallel to the line. We conclude that (b) is the correct statement.

6. What is the length of the acceleration vector of a particle traveling around a circle of radius 2 cm with constant
velocity 4 cm/s?

solution The acceleration vector is given by the following decomposition:

a(t) = v′(t)T(t) + κ(t)v(t)2N(t) (1)

In our case v(t) = 4 is constant hence v′(t) = 0. In addition, the curvature of a circle of radius 2 is κ(t) = 1
2 . Substituting

v(t) = 4, v′(t) = 0 and κ(t) = 1
2 in (1) gives:

a(t) = 1

2
· 42N(t) = 8N(t)

The length of the acceleration vector is, thus,

‖a(t)‖ = 8 cm/s2

7. Two cars are racing around a circular track. If, at a certain moment, both of their speedometers read 110 mph. then
the two cars have the same (choose one):

(a) aT (b) aN

solution The tangential acceleration aT and the normal acceleration aN are the following values:

aT (t) = v′(t); aN(t) = κ(t)v(t)2

At the moment where both speedometers read 110 mph, the speeds of the two cars are v = 110 mph. Since the track is
circular, the curvature κ(t) is constant, hence the normal accelerations of the two cars are equal at this moment. Statement
(b) is correct.

Exercises
1. Use the table below to calculate the difference quotients

r(1 + h) − r(1)

h
for h = −0.2, −0.1, 0.1, 0.2. Then estimate

the velocity and speed at t = 1.

r(0.8) 〈1.557, 2.459, −1.970〉
r(0.9) 〈1.559, 2.634, −1.740〉
r(1) 〈1.540, 2.841, −1.443〉
r(1.1) 〈1.499, 3.078, −1.035〉
r(1.2) 〈1.435, 3.342, −0.428〉
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solution

(h = −0.2)

r(1 − 0.2) − r(1)

−0.2
= r(0.8) − r(1)

−0.2
= 〈1.557, 2.459, −1.970〉 − 〈1.540, 2.841, −1.443〉

−0.2

= 〈0.017, −0.382, −0.527〉
−0.2

= 〈−0.085, 1.91, 2.635〉

(h = −0.1)

r(1 − 0.1) − r(1)

−0.1
= r(0.9) − r(1)

−0.1
= 〈1.559, 2.634, −1.740〉 − 〈1.540, 2.841, −1.443〉

−0.1

= 〈0.019, −0.207, −0.297〉
−0.1

= 〈−0.19, 2.07, 2.97〉

(h = 0.1)

r(1 + 0.1) − r(1)

0.1
= r(1.1) − r(1)

0.1
= 〈1.499, 3.078, −1.035〉 − 〈1.540, 2.841, −1.443〉

0.1

= 〈−0.041, 0.237, 0.408〉
0.1

= 〈−0.41, 2.37, 4.08〉

(h = 0.2)

r(1 + 0.2) − r(1)

0.2
= r(1.2) − r(1)

0.2
= 〈1.435, 3.342, −0.428〉 − 〈1.540, 2.841, −1.443〉

0.2

= 〈−0.105, 0.501, 1.015〉
0.2

= 〈−0.525, 2.505, 5.075〉

The velocity vector is defined by:

v(t) = r′(t) = lim
h→0

r(t + h) − r(t)
h

We may estimate the velocity at t = 1 by:

v(1) ≈ 〈−0.3, 2.2, 3.5〉

and the speed by:

v(1) = ‖v(1)‖ ≈
√

0.32 + 2.22 + 3.52 ∼= 4.1

2. Draw the vectors r(2 + h) − r(2) and
r(2 + h) − r(2)

h
for h = 0.5 for the path in Figure 10. Draw v(2) (using a

rough estimate for its length).

O r (2)

r (2.5)

FIGURE 10

solution The difference r(2 + h) − r(2) = r(2.5) − r(2) is the following vector:

O
r (2)

r (2.5)

r (2.5) − r (2)

The vector r(2.5)−r(2)
0.5 points in the direction of r(2.5) − r(2), and its length is twice the length of this vector, as shown

in the following figure:
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O
r (2)

r (2.5)

r (2.5) − r (2)
0.5

By definition, v(2) = lim
h→0

r(2 + h) − r(2)

h
. This vector is tangent to the path at the endpoint of r(2). The vector v(2) is

shown in the following figure:

O
r (2)

v (2)

In Exercises 3–6, calculate the velocity and acceleration vectors and the speed at the time indicated.

3. r(t) = 〈
t3, 1 − t, 4t2〉, t = 1

solution In this case r(t) = 〈
t3, 1 − t, 4t2〉 hence:

v(t) = r′(t) = 〈
3t2, −1, 8t

〉 ⇒ v(1) = 〈3, −1, 8〉
a(t) = r′′(t) = 〈6t, 0, 8〉 ⇒ a(1) = 〈6, 0, 8〉

The speed is the magnitude of the velocity vector, that is,

v(1) = ‖v(1)‖ =
√

32 + (−1)2 + 82 = √
74

4. r(t) = et j − cos(2t)k, t = 0

solution Since r(t) = et j − cos(2t)k we have:

v(t) = r′(t) = et j + 2 sin(2t)k ⇒ v(0) = e0j + (2 sin 0)k = j

a(t) = r′′(t) = et j + 4 cos(2t)k ⇒ a(0) = e0j + (4 cos 0)k = j + 4k

The speed is the magnitude of the velocity vectors, that is,

v(0) = ‖v(0)‖ = ‖j‖ = 1

5. r(θ) = 〈sin θ, cos θ, cos 3θ〉, θ = π
3

solution Differentiating r(θ) = 〈sin θ, cos θ, cos 3θ〉 gives:

v(θ) = r′(θ) = 〈cos θ, − sin θ, −3 sin 3θ〉

⇒ v
(π

3

)
=

〈
cos

π

3
, − sin

π

3
, −3 sin π

〉
=

〈
1

2
, −

√
3

2
, 0

〉

a(θ) = r′′(θ) = 〈− sin θ, − cos θ, −9 cos 3θ〉

⇒ a
(π

3

)
=

〈
− sin

π

3
, − cos

π

3
, −9 cos π

〉
=

〈
−

√
3

2
, −1

2
, 9

〉

The speed is the magnitude of the velocity vector, that is:

v
(π

3

)
=

∥∥∥v
(π

3

)∥∥∥ =
√√√√(

1

2

)2
+

(
−

√
3

2

)2

+ 02 = 1
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6. r(s) =
〈

1

1 + s2
,

s

1 + s2

〉
, s = 2

solution The velocity and acceleration vectors are the first and second derivatives of r(s) =
〈

1
1+s2 , s

1+s2

〉
. We

compute these vectors:

v(s) = r′(s) =
〈

−2s

(1 + s2)
2
,

1 + s2 − s · 2s

(1 + s2)
2

〉
=

〈
− 2s

(1 + s2)
2
,

1 − s2

(1 + s2)
2

〉

a(s) = r′′(s) =
〈

−2(1 + s2)
2 + 2s · 2(1 + s2) · 2s

(1 + s2)
4

,
−2s(1 + s2)

2 − (1 − s2) · 2(1 + s2) · 2s

(1 + s2)
4

〉

=
〈

6s2 − 2

(1 + s2)
3
,
s(2s2 − 6)

(1 + s2)
3

〉

At the point s = 2 we obtain:

v(2) =
〈
− 4

(1 + 22)
2
,

1 − 4

(1 + 22)
2

〉
= − 1

25
〈4, 3〉

a(2) =
〈

6 · 4 − 2

(1 + 22)3
,

2(2 · 4 − 6)

(1 + 22)3

〉
= 2

125
〈11, 2〉

The speed is the magnitude of the velocity vector:

v(2) = 1

25

√
42 + 32 = 1

5

7. Find a(t) for a particle moving around a circle of radius 8 cm at a constant speed of v = 4 cm/s (see Example 4).
Draw the path and acceleration vector at t = π

4 .

solution The position vector is:

r(t) = 8 〈cos ωt, sin ωt〉
Hence,

v(t) = r′(t) = 8 〈−ω sin ωt, ω cos ωt〉 = 8ω 〈− sin ωt, cos ωt〉 (1)

We are given that the speed of the particle is v = 4 cm/s. The speed is the magnitude of the velocity vector, hence:

v = 8ω

√
(− sin ωt)2 + cos2 ωt = 8ω = 4 ⇒ ω = 1

2
rad/s

Substituting in (2) we get:

v(t) = 4

〈
− sin

t

2
, cos

t

2

〉

We now find a(t) by differentiating the velocity vector. This gives

a(t) = v′(t) = 4

〈
−1

2
cos

t

2
, −1

2
sin

t

2

〉
= −2

〈
cos

t

2
, sin

t

2

〉

The path of the particle is r(t) = 8
〈
cos t

2 , sin t
2

〉
and the acceleration vector at t = π

4 is:

a
(π

4

)
= −2

〈
cos

π

8
, sin

π

8

〉
≈ 〈−1.85, −0.77〉

The path r(t) and the acceleration vector at t = π
4 are shown in the following figure:

8

r(t) = 8
〈
cos t

2 , sin t
2

〉
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8. Sketch the path r(t) = 〈
1 − t2, 1 − t

〉
for −2 ≤ t ≤ 2, indicating the direction of motion. Draw the velocity and

acceleration vectors at t = 0 and t = 1.

solution We compute the velocity and acceleration vectors at t = 0 and t = 1:

v(t) = r′(t) = 〈−2t, −1〉 ⇒ v(0) = 〈0, −1〉
v(1) = 〈−2, −1〉

a(t) = v′(t) = 〈−2, 0〉 ⇒ a(0) = a(1) = 〈−2, 0〉

Below is a sketch of the path and the velocity and acceleration vectors at t = 0 and t = 1:

x

y

t = 0

t = 1
t = 2

t = −2

v (0)

v (1)

a (0)

a (1)

r(t) = 〈
1 − t2, 1 − t

〉
, −2 ≤ t ≤ 2

9. Sketch the path r(t) = 〈
t2, t3〉 together with the velocity and acceleration vectors at t = 1.

solution We compute the velocity and acceleration vectors at t = 1:

v(t) = r′(t) = 〈
2t, 3t2〉 ⇒ v(1) = 〈2, 3〉

a(t) = v′(t) = 〈2, 6t〉 ⇒ a(1) = 〈2, 6〉

The following figure shows the path r(t) = 〈
t2, t3〉 and the vectors v(1) and a(1):

x

y

a(1)

r(t) = (t2, t  3  )

v(1)

t = 1

10. The paths r(t) = 〈
t2, t3〉 and r1(t) = 〈

t4, t6〉 trace the same curve, and r1(1) = r(1). Do you expect either
the velocity vectors or the acceleration vectors of these paths at t = 1 to point in the same direction? Compute these
vectors and draw them on a single plot of the curve.

solution The paths r1(t) = 〈
t4, t6〉 and r(t) = 〈

t2, t3〉 trace the same curve and r1(1) = r(1). However, the velocity
and acceleration vectors determined by the two parametrizations may differ at the same point ∗. Notice that a parametriza-
tion of a curve includes information on the velocity and acceleration of the particle, hence different parametrizations
correspond to different velocity and acceleration vectors. We compute these vectors at t = 1 for each parametrization:

r1(t) = 〈
t4, t6〉 r(t) = 〈

t2, t3〉
v1(t) = r′

1(t) = 〈
4t3, 6t5〉 v(t) = r′(t) = 〈

2t, 3t2〉
a1(1) = r′′

1(t) = 〈
12t2, 30t4〉 a(1) = r′′(t) = 〈2, 6t〉

Hence, Hence,

v1(1) = 〈4, 6〉 , a1(1) = 〈12, 30〉 v(1) = 〈2, 3〉 , a(1) = 〈2, 6〉

We see that the vectors in the two parametrizations, are different. We draw the vectors on the following plot:
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x

y

v (1)

v1(1)

a1(1)

a (1)
10

20

30

10 150 5

The velocity vectors should point in the same direction but may be of different size. The acceleration vectors may point
to different directions.

In Exercises 11–14, find v(t) given a(t) and the initial velocity.

11. a(t) = 〈
t, 4

〉
, v(0) = 〈 1

3 , −2
〉

solution We find v(t) by integrating a(t):

v(t) =
∫ t

0
a(u)du =

∫ t

0
〈u, 4〉 du =

〈
1

2
u2, 4u

〉 ∣∣∣∣t
0

+ v0 =
〈

t2

2
, 4t

〉
+ v0

The initial condition gives:

v(0) = 〈0, 0〉 + v0 =
〈

1

3
, −2

〉
⇒ v0 =

〈
1

3
, −2

〉

Hence,

v(t) =
〈

t2

2
, 4t

〉
+

〈
1

3
, −2

〉
=

〈
3t2 + 2

6
, 4t − 2

〉

12. a(t) = 〈
et , 0, t + 1

〉
, v(0) = 〈

1, −3,
√

2
〉

solution Integrating a(t) gives:

v(t) =
∫ t

0
a(u)du =

∫ t

0

〈
eu, 0, u + 1

〉
du =

〈
eu, 0,

u2

2
+ u

〉 ∣∣∣∣t
0

+ v0 =
〈
et − 1, 0,

t2

2
+ t

〉
+ v0 (1)

The initial condition gives:

v(0) =
〈
e0 − 1, 0,

02

2
+ 0

〉
+ v0 =

〈
1, −3,

√
2
〉

〈0, 0, 0〉 + v0 = 〈
1, −3,

√
2
〉

⇒ v0 =
〈
1, −3,

√
2
〉

Substituting in (1) we obtain:

v(t) =
〈
et − 1, 0,

t2

2
+ t

〉
+ 〈

1, −3,
√

2
〉 =

〈
et , −3,

t2

2
+ t + √

2

〉

13. a(t) = k, v(0) = i

solution We compute v(t) by integrating the acceleration vector:

v(t) =
∫ t

0
a(u) du =

∫ t

0
k du = ku

∣∣∣∣t
0

+ v0 = tk + v0 (1)

Substituting the initial condition gives:

v(0) = 0k + v0 = i ⇒ v0 = i

Combining with (1) we obtain:

v(t) = i + tk
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14. a(t) = t2k, v(0) = i − j

solution We integrate the acceleration vector to find the velocity vector v(t). This gives

v(t) =
∫ t

0
a(u) du =

∫ t

0
u2k du = u3

3
k

∣∣∣∣t
0

+ v0 = t3

3
k + v0 (1)

The initial condition gives:

v(0) = 03

3
k + v0 = i − j ⇒ v0 = i − j

Substituting in (1) we obtain:

v(t) = t3

3
k + i − j = i − j + t3

3
k

In Exercises 15–18, find r(t) and v(t) given a(t) and the initial velocity and position.

15. a(t) = 〈t, 4〉, v(0) = 〈3, −2〉, r(0) = 〈0, 0〉
solution We first integrate a(t) to find the velocity vector:

v(t) =
∫ t

0
〈u, 4〉 du =

〈
u2

2
, 4u

〉 ∣∣∣∣t
0

+ v0 =
〈

t2

2
, 4t

〉
+ v0 (1)

The initial condition v(0) = 〈3, −2〉 gives:

v(0) = 〈0, 0〉 + v0 = 〈3, −2〉 ⇒ v0 = 〈3, −2〉
Substituting in (1) we get:

v(t) =
〈

t2

2
, 4t

〉
+ 〈3, −2〉 =

〈
t2

2
+ 3, 4t − 2

〉

We now integrate the velocity vector to find r(t):

r(t) =
∫ t

0

〈
u2

2
+ 3, 4u − 2

〉
du =

〈
u3

6
+ 3u, 2u2 − 2u

〉∣∣∣∣∣
t

0

+ r0 =
〈

t3

6
+ 3t, 2t2 − 2t

〉
+ r0

The initial condition r(0) = 〈0, 0〉 gives:

r(0) = 〈0, 0〉 + r0 = 〈0, 0〉 ⇒ r0 = 〈0, 0〉
Hence,

r(t) =
〈

t3

6
+ 3t, 2t2 − 2t

〉

16. a(t) = 〈
et , 2t, t + 1

〉
, v(0) = 〈1, 0, 1〉, r(0) = 〈2, 1, 1〉

solution We integrate a(t) to find v(t):

v(t) =
∫ t

0

〈
eu, 2u, u + 1

〉
du =

〈
et − 1, t2,

t2

2
+ t

〉
+ v0

The initial condition for the velocity vector gives:

v(0) =
〈
e0 − 1, 0, 0

〉
+ v0 = 〈1, 0, 1〉

〈0, 0, 0〉 + v0 = 〈1, 0, 1〉 ⇒ v0 = 〈1, 0, 1〉
Hence,

v(t) =
〈
et , t2,

t2

2
+ t + 1

〉
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We now integrate v(t) to find r(t):

r(t) =
∫ t

0

〈
eu, u2,

u2

2
+ u + 1

〉
du =

〈
et − 1,

t3

3
,
t3

6
+ t2

2
+ t

〉
+ r0 (1)

The initial condition for r(t) gives:

r(0) = 〈0, 0, 0〉 + r0 = 〈2, 1, 1〉
〈0, 0, 0〉 + r0 = 〈2, 1, 1〉 ⇒ r0 = 〈2, 1, 1〉

Substituting in (1) we get:

r(t) =
〈
et + 1,

t3

3
+ 1,

t3

6
+ t2

2
+ t + 1

〉

17. a(t) = tk, v(0) = i, r(0) = j

solution Integrating the acceleration vector gives:

v(t) =
∫ t

0
uk du = u2

2
k

∣∣∣∣t
0

+ v0 = t2

2
k + v0 (1)

The initial condition for v(t) gives:

v(0) = 02

2
k + v0 = i ⇒ v0 = i

We substitute in (1):

v(t) = t2

2
k + i = i + t2

2
k

We now integrate v(t) to find r(t):

r(t) =
∫ t

0

(
i + u2

2
k

)
du = ui + u3

6
k

∣∣∣∣t
0

+ r0 = t i + t3

6
k + r0 (2)

The initial condition for r(t) gives:

r(0) = 0i + 0k + r0 = j ⇒ r0 = j

Combining with (2) gives the position vector:

r(t) = t i + j + t3

6
k

18. a(t) = cos tk, v(0) = i − j, r(0) = i

solution We integrate a(t) to find the velocity vector v(t):

v(t) =
∫ t

0
cos uk du = sin tk + v0 (1)

The initial condition for v(t) gives:

v(0) = sin 0k + v0 = 0 + v0 = i − j ⇒ v0 = i − j

Substituting in (1) we obtain:

v(t) = i − j + sin tk

We now integrate v(t) to find the position vector r(t):

r(t) =
∫ t

0
(i − j + sin uk) du = t i − tj − (cos t − 1)k + r0

The initial condition for r(t) gives:

r(0) = 0i − 0j − 0k + r0 = i
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⇒ r0 = i

Substituting in (2) we obtain:

r(t) = (t + 1)i − tj + (1 − cos t)k

In Exercises 19–24, recall that g = 9.8 m/s2 is the acceleration due to gravity on the earth’s surface.

19. A bullet is fired from the ground at an angle of 45◦. What initial speed must the bullet have in order to hit the top of
a 120-m tower located 180 m away?

solution We place the gun at the origin and let r(t) be the bullet’s position vector.

Step 1. Use Newton’s Law. The net force vector acting on the bullet is the force of gravity F = 〈0, −gm〉 = m 〈0, −g〉.
By Newton’s Second Law, F = mr′′(t), hence:

m 〈0, −g〉 = mr′′(t) ⇒ r′′(t) = 〈0, −g〉
We compute the position vector by integrating twice:

r′(t) =
∫ t

0
r′′(u) du =

∫ t

0
〈0, −g〉 du = 〈0, −gt〉 + v0

r(t) =
∫ t

0
r′(u) du =

∫ t

0
(〈0, −gu〉 + v0) du =

〈
0, −g

t2

2

〉
+ v0t + r0

That is,

r(t) =
〈
0,

−g

2
t2

〉
+ v0t + r0 (1)

Since the gun is at the origin, r0 = 0. The bullet is fired at an angle of 45◦, hence the initial velocity v0 points in the

direction of the unit vector
〈
cos 45◦, sin 45◦〉 =

〈√
2

2 ,

√
2

2

〉
therefore, v0 = v0

〈√
2

2 ,

√
2

2

〉
. Substituting these initial values

in (1) gives:

r(t) =
〈
0,

−g

2
t2

〉
+ tv0

〈√
2

2
,

√
2

2

〉

Step 2. Solve for v0. The position vector of the top of the tower is 〈180, 120〉, hence at the moment of hitting the tower
we have,

r(t) =
〈
0,

−g

2
t2

〉
+ tv0

〈√
2

2
,

√
2

2

〉
= 〈180, 120〉

〈
tv0

√
2

2
,
−g

2
t2 +

√
2

2
tv0

〉
= 〈180, 120〉

Equating components, we get the equations: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tv0

√
2

2
= 180

−g

2
t2 +

√
2

2
tv0 = 120

The first equation implies that t = 360√
2v0

. We substitute in the second equation and solve for v0 (we use g = 9.8 m/s2):

−9.8

2

(
360√
2v0

)2
+

√
2

2

(
360√
2v0

)
v0 = 120

−2.45

(
360

v0

)2
+ 180 = 120

(
360

v0

)2
= 1200

49
⇒ 360

v0
=

√
1200

49
⇒ v0 = 42

√
3 ≈ 72.746 m/s

The initial speed of the bullet must be v0 = 42
√

3 m/s ≈ 72.746 m/s.
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20. Find the initial velocity vector v0 of a projectile released with initial speed 100 m/s that reaches a maximum height
of 300 m.

solution If v = 〈a, b〉, then in the text we found that the maximum height is b2

2g
= 300 and

b = √
2(9.8)(300) = √

5880 = 14
√

30 ≈ 76.68

and using the Pythagorean Theorem for right triangles, a =
√

1002 − (
√

5880)2 = 2
√

1030 ≈ 64.19. Therefore, the
initial velocity vector is

v0 =
〈
2
√

1030, 14
√

30
〉
≈ 〈64.19, 76.68〉

21. Show that a projectile fired at an angle θ with initial speed v0 travels a total distance (v2
0/g) sin 2θ before hitting the

ground. Conclude that the maximum distance (for a given v0) is attained for θ = 45◦.

solution We place the gun at the origin and let r(t) be the projectile’s position vector. The net force acting on the
projectile is F = 〈0, −mg〉 = m 〈0, −g〉. By Newton’s Second Law, F = mr′′(t), hence:

m 〈0, −g〉 = mr′′(t) ⇒ r′′(t) = 〈0, −g〉
Integrating twice we get:

r′(t) =
∫ t

0
r′′(u) du =

∫ t

0
〈0, −g〉 du = 〈0, −gt〉 + v0

r(t) =
∫ t

0
r′(u) du =

∫ t

0
(〈0, −g · u〉 + v0) du =

〈
0, −g

2
t2

〉
+ v0t + r0 (1)

Since the gun is at the origin, r0 = 0. The firing was at an angle θ , hence the initial velocity points in the direction of the
unit vector 〈cos θ, sin θ〉. Hence, v0 = v0 〈cos θ, sin θ〉. We substitute the initial vectors in (1) to obtain:

r(t) =
〈
0, −g

2
t2

〉
+ v0t 〈cos θ, sin θ〉 (2)

The total distance is obtained when the y-component of r(t) is zero (besides the original moment, that is,

−g

2
t2 + (v0 sin θ) t = 0

t
(
−g

2
t + v0 sin θ

)
= 0 ⇒ t = 0 or t = 2v0 sin θ

g

The appropriate choice is t = 2v0 sin θ
g . We now find the total distance xT by substituting this value of t in the x-component

of r(t) in (2). We obtain:

x(t) = v0t cos θ

xT = v0 cos θ · 2v0 sin θ

g
= 2v2

0 cos θ sin θ

g
= v2

0 sin 2θ

g

The maximum distance is attained when sin 2θ = 1, that is 2θ = 90◦ or θ = 45◦.

22. One player throws a baseball to another player standing 25 m away with initial speed 18 m/s. Use the result of
Exercise 21 to find two angles θ at which the ball can be released. Which angle gets the ball there faster?

solution We suppose that the baseball is thrown from the origin, and that r(t) is the baseball’s position vector. By

Exercise 21 the total distance travelled by the ball is
v2

0
g sin 2θ . Using the given information we obtain the following

equation:

182

9.8
sin 2θ = 25

sin 2θ = 9.8 · 25

182
≈ 0.756

The solutions for 0 ≤ θ ≤ 90◦ are:

2θ ≈ 49.13◦
θ ≈ 24.56◦ or

2θ ≈ 139.12◦
θ ≈ 69.56◦
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By Newton’s Second Law we have:

F = m 〈0, −g〉 = mr′′(t) ⇒ r′′(t) = 〈0, −g〉 = 〈0, −9.8〉
Integrating gives:

v(t) =
∫ t

0
r′′(u) du =

∫ t

0
〈0, −9.8〉 du = 〈0, −9.8t〉 + v0 (1)

The initial velocity points in the direction of the unit vector 〈cos θ, sin θ〉 and its magnitude is the initial speed v0 = 18.
Hence, v0 = 18 〈cos θ, sin θ〉. Substituting in (1) we get:

v(t) = 〈0, −9.8t〉 + 18 〈cos θ, sin θ〉 (2)

Integrating this vector with respect to t and using r0 = 0 we obtain:

r(t) =
∫ t

0
v(u) du =

∫ t

0
(〈0, −9.8u〉 + 18 〈cos θ, sin θ〉) du = 〈

0, −4.9t2〉 + 18t 〈cos θ, sin θ〉

At the final time x(t) = 25. This gives:

x(t) = 18t cos θ = 25 ⇒ t = 25

18 cos θ

Since we want to minimize t we need to maximize cos θ , hence, to minimize θ . Therefore, θ = 24.56◦ will get the ball
faster to the other player.

23. A bullet is fired at an angle θ = π
4 at a tower located d = 600 m away, with initial speed v0 = 120 m/s. Find the

height H at which the bullet hits the tower.

solution We place the gun at the origin and let r(t) be the bullet’s position vector.

Step 1. Use Newton’s Law. The net force vector acting on the bullet is the force of gravity F = 〈0, −gm〉 = m 〈0, −g〉.
By Newton’s Second Law, F = mr′′(t), hence:

m 〈0, −g〉 = mr′′(t) ⇒ r′′(t) = 〈0, −g〉
We compute the position vector by integrating twice:

r′(t) =
∫ t

0
r′′(u) du =

∫ t

0
〈0, −g〉 du = 〈0, −gt〉 + v0

r(t) =
∫ t

0
r′(u) du =

∫ t

0
(〈0, −gu〉 + v0) du =

〈
0, −g

t2

2

〉
+ v0t + r0

That is,

r(t) =
〈
0,

−g

2
t2

〉
+ v0t + r0 (1)

Since the gun is at the origin, r0 = 0. The bullet is fired at an angle of π/4 radians, hence the initial velocity v0 points

in the direction of the unit vector 〈cos π/4, sin π/4〉 =
〈

1√
2
, 1√

2

〉
therefore, v0 = v0

〈
1√
2
, 1√

2

〉
. Substituting these initial

values in (1) gives:

r(t) =
〈
0,

−g

2
t2

〉
+ tv0

〈
1√
2
,

1√
2

〉

Step 2. Solve for H .
The position vector for the point at which the bullet hits the tower, 600 meters away, is 〈600, H 〉, hence at the moment

of hitting the tower we have, 〈
0,

−g

2
t2

〉
+ tv0

〈
1√
2
,

1√
2

〉
= 〈600, H 〉

Therefore, for v0 = 120:

tv0√
2

= 600 ⇒ t = 600
√

2

120
= 5

√
2

and

−gt2

2
+ tv0√

2
= −9.8(50)

2
+ 5(

√
2)(120)√

2
= H

Hence, H = 355 meters. The bullet hits the tower at 355 meters high.
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24. Show that a bullet fired at an angle θ will hit the top of an h-meter tower located d meters away if its initial speed is

v0 =
√

g/2 d sec θ√
d tan θ − h

solution We place the gun at the origin and let r(t) be the position vector of the bullet. The net force acting on the
bullet is F = 〈0, −mg〉 = m 〈0, −g〉. By Newton’s Second Law, F = mr′′(t), hence:

m 〈0, −g〉 = mr′′(t) ⇒ r′′(t) = 〈0, −g〉
We integrate twice and use the initial value r(0) = 0, to obtain:

v(t) =
∫ t

0
r′′(u) du =

∫ t

0
〈0, −g〉 du = 〈0, −gt〉 + v0

r(t) =
∫ t

0
v(u) du =

∫ t

0
(〈0, −gu〉 + v0) du =

〈
0, −g

2
t2

〉
+ v0t (1)

To determine v0 we notice that the initial velocity vector points in the direction of the unit vector 〈cos θ, sin θ〉 and its
magnitude is the initial speed v0. Hence v0 = v0 〈cos θ, sin θ〉. Substituting in (1), we get:

r(t) =
〈
0, −g

2
t2

〉
+ v0t 〈cos θ, sin θ〉

For the bullet to hit the top of the tower, there must be a value of t such that r(t) = 〈d, h〉. That is:〈
0, −g

2
t2

〉
+ v0t 〈cos θ, sin θ〉 = 〈d, h〉

Equating components we get the following equations:

v0t cos θ = d

−g

2
t2 + v0t sin θ = h

The first equation implies that t = d
v0 cos θ . We substitute in the second equation and solve for v0:

−g

2

(
d

v0 cos θ

)2
+ v0

(
d

v0 cos θ

)
sin θ = h

− gd2

2v2
0 cos2 θ

+ d tan θ = h

gd2

2v2
0cos2θ

= d tan θ − h

v0
2 = gd2

2 cos2 θ (d tan θ − h)
= gd2sec2θ

2 (d tan θ − h)

Therefore,

v0 =
√

g/2 d sec θ√
d tan θ − h

25. A constant force F = 〈5, 2〉 (in newtons) acts on a 10-kg mass. Find the position of the mass at t = 10 s if it is located
at the origin at t = 0 and has initial velocity v0 = 〈2, −3〉 (in meters per second).

solution We know that F = ma and thus 〈5, 2〉 = 10a so then a = 〈0.5, 0.2〉. Using integration we know

v(t) =
∫

a(t) dt = ta + c

and we know v(0) = 〈2, −3〉 = c. Therefore,

v(t) = ta + v0 = t 〈0.5, 0.2〉 + 〈2, −3〉 = 〈0.5t + 2, 0.2t − 3〉
Again, integrating,

r(t) =
∫

v(t) dt
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=
∫

ta + v0 dt

= t2

2
a + tv0 + c

= t2

2
〈0.5, 0.2〉 + t 〈2, −3〉

=
〈
0.25t2 + 2t, 0.1t2 − 3t

〉
+ r0

Using the initial condition r(0) = 〈0, 0〉 = c, we conclude

r(t) =
〈
0.25t2 + 2t, 0.1t2 − 3t

〉
and hence the position of the mass at t = 10 is r(10) = 〈45, −20〉.
26. A force F = 〈24t, 16 − 8t〉 (in newtons) acts on a 4-kg mass. Find the position of the mass at t = 3 s if it is located
at (10, 12) at t = 0 and has zero initial velocity.

solution We know F = ma and thus 〈24t, 16 − 8t〉 = 4a, therefore, a = 〈6t, 4 − 2t〉, and

v(t) =
∫

a dt =
∫

〈6t, 4 − 2t〉 dt =
〈
3t2, 4t − t2

〉
+ c

using the initial velocity condition, v(0) = 〈0, 0〉, then c = 〈0, 0〉 and

v(t) =
〈
3t2, 4t − t2

〉
Now integrating again, we get:

r(t) =
∫

v(t) dt =
∫ 〈

3t2, 4t − t2
〉

dt =
〈
t3, 2t2 − t3

3

〉
+ c

Using the initial position condition r(0) = 〈10, 12〉, we get r(0) = 〈10, 12〉 = c and therefore,

r =
〈
t3 + 10, 2t2 − t3

3
+ 12

〉

and at t = 3 the position of the mass is r(3) =
〈
33 + 10, 2(9) − 9 + 12

〉
= 〈37, 21〉.

27. A particle follows a path r(t) for 0 ≤ t ≤ T , beginning at the origin O. The vector v = 1

T

∫ T

0
r′(t) dt is called the

average velocity vector. Suppose that v = 0. Answer and explain the following:

(a) Where is the particle located at time T if v = 0?

(b) Is the particle’s average speed necessarily equal to zero?

solution

(a) If the average velocity is 0, then the particle must be back at its original position at time t = T . This is perhaps best

seen by noting that v = 1

T

∫ T

0
r′(t) dt = r(t)

∣∣∣∣T
0

.

(b) The average speed need not be zero! Consider a particle moving at constant speed around a circle, with position
vector r(t) = 〈cos t, sin t〉. From 0 to 2π , this has average velocity of 0, but constant average speed of 1.

28. At a certain moment, a moving particle has velocity v = 〈2, 2, −1〉 and a = 〈0, 4, 3〉. Find T, N, and the decomposition
of a into tangential and normal components.

solution We go through the following steps:

Step 1. Compute T and aT. The unit tangent is the following vector:

T = v
‖v‖ = 〈2, 2, −1〉√

22 + 22 + (−1)2
= 1

3
〈2, 2, −1〉 (1)

The tangential component of a = 〈0, 4, 3〉 is:

aT = a · T = 〈0, 4, 3〉 · 1

3
〈2, 2, −1〉 = 1

3
(0 + 8 − 3) = 5

3
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Step 2. Compute aN and N. Since aNN = a − aTT, we have:

aNN = 〈0, 4, 3〉 − 5

3
· 1

3
〈2, 2, −1〉 = 〈0, 4, 3〉 −

〈
10

9
,

10

9
, −5

9

〉
= 1

9
〈−10, 26, 32〉 (3)

The unit normal N is a unit vector, therefore:

aN = ‖aNN‖ = 1

9

√
(−10)2 + 262 + 322 = 1

9
· 30

√
2 = 10

√
2

3
(4)

We compute N, using (3) and (4):

N = aNN
aN

=
1
9 〈−10, 26, 32〉

10
√

2
3

= 1

15
√

2
〈−5, 13, 16〉

Step 3. Write the decomposition. Using (1)–(4) we obtain the following decomposition:

a = aTT + aNN

〈0, 4, 3〉 = 5

3
T + 10

√
2

3
N,

where T =
〈

2
3 , 2

3 , − 1
3

〉
and N = 1

15
√

2
〈−5, 13, 16〉.

29. At a certain moment, a particle moving along a path has velocity v = 〈12, 20, 20〉 and acceleration a = 〈2, 1, −3〉.
Is the particle speeding up or slowing down?

solution We are asked if the particle is speeding up or slowing down, that is if ‖v‖ or ‖v‖2 is increasing or decreasing.

We check
(‖v‖2)′:

(‖v‖2)′ = (v · v)′ = 2v′ · v = 2 · a · v = 2 〈2, 1, −3〉 · 〈12, 20, 20〉 = 2 · (24 + 20 − 60) = −32 < 0

So the speed is decreasing.

In Exercises 30–33, use Eq. (3) to find the coefficients aT and aN as a function of t (or at the specified value of t).

30. r(t) = 〈
t2, t3〉

solution We find v(t) and a(t) by differentiating r(t) twice:

v(t) = r′(t) = 〈
2t, 3t2〉

a(t) = r′′(t) = 〈2, 6t〉
The unit tangent vector T is:

T = v
‖v‖ =

〈
2t, 3t2〉√

(2t)2 + (
3t2

)2
=

〈
2t, 3t2〉√
4t2 + 9t4

We compute aT:

aT = a · T = 〈2, 6t〉 · 〈2t, 3t2〉√
4t2 + 9t4

= 4t + 18t3√
4t2 + 9t4

To find aN we first compute the cross product a × v:

a × v = (2i + 6tj) × (
2t i + 3t2j

) = 6t2i × j + 12t2j × i = 6t2k − 12t2k = −6t2k

Hence,

aN = ‖a × v‖
‖v‖ = ‖ − 6t2k‖√

4t2 + 9t4
= 6t2√

4t2 + 9t4

31. r(t) = 〈
t, cos t, sin t

〉
solution We find aT and aN using the following equalities:

aT = a · T, aN = ‖a × v‖
‖v‖ .
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We compute v and a by differentiating r twice:

v(t) = r′(t) = 〈1, − sin t, cos t〉 ⇒ ‖v(t)‖ =
√

1 + (− sin t)2 + cos2 t = √
2

a(t) = r′′(t) = 〈0, − cos t, − sin t〉
The unit tangent vector T is, thus:

T(t) = v(t)

‖v(t)‖ = 1√
2

〈1, − sin t, cos t〉

Since the speed is constant (v = ‖v(t)‖ = √
2), the tangential component of the acceleration is zero, that is:

aT = 0

To find aN we first compute the following cross product:

a × v =
∣∣∣∣∣∣

i j k
0 − cos t − sin t

1 − sin t cos t

∣∣∣∣∣∣ =
∣∣∣∣ − cos t − sin t

− sin t cos t

∣∣∣∣ i −
∣∣∣∣ 0 − sin t

1 cos t

∣∣∣∣ j +
∣∣∣∣ 0 − cos t

1 − sin t

∣∣∣∣ k

= −
(

cos2 t + sin2 t
)

i − sin tj + cos tk = −i − sin tj + cos tk = 〈−1, − sin t, cos t〉

Hence,

aN = ‖a × v‖
‖v‖ =

√
(−1)2 + (− sin t)2 + cos2t√

2
=

√
2√
2

= 1.

32. r(t) = 〈
t−1, ln t, t2〉, t = 1

solution We use the following equalities:

aT = a · T, aN = ‖a × v‖
‖v‖ .

We first find a and v by twice differentiating r. We get:

v(t) = r′(t) =
〈
− 1

t2
,

1

t
, 2t

〉
⇒ ‖v(t)‖ =

√
1

t4
+ 1

t2
+ 4t2 = 1

t2

√
1 + t2 + 4t6

a(t) = r′′(t) = 〈
2t−3, −t−2, 2

〉
At the point t = 1 we have:

v(1) = 〈−1, 1, 2〉 , ‖v(1)‖ = √
6, a(1) = 〈2, −1, 2〉

Hence, T = v
‖v‖ = 1√

6
〈−1, 1, 2〉 and we obtain:

aT = a · T = 〈2, −1, 2〉 · 1√
6

〈−1, 1, 2〉 = 1√
6

(−2 − 1 + 4) = 1√
6

To find aN we first compute the following cross product:

a × v =
∣∣∣∣∣∣

i j k
2 −1 2
−1 1 2

∣∣∣∣∣∣ =
∣∣∣∣ −1 2

1 2

∣∣∣∣ i −
∣∣∣∣ 2 2

−1 2

∣∣∣∣ j +
∣∣∣∣ 2 −1

−1 1

∣∣∣∣ k = −4i − 6j + k = 〈−4, −6, 1〉

Therefore:

aN = ‖a × v‖
‖v‖ =

√
(−4)2 + (−6)2 + 12

√
6

=
√

53

6

33. r(t) = 〈
e2t , t, e−t

〉
, t = 0

solution We will use the following equalities:

aT = a · T, aN = ‖a × v‖
‖v‖ .
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We first find a and v by twice differentiating r. We get:

v(t) = r′(t) =
〈
2e2t , 1, −e−t

〉
a(t) = r′′(t) =

〈
4e2t , 0, e−t

〉

Then evaluating at t = 0 we get:

v(0) = 〈2, 1, −1〉 , ⇒ ‖v(0)‖ =
√

22 + 12 + (−1)2 = √
6

a(0) = 〈4, 0, 1〉

Hence, T = v
‖v‖ = 1√

6
〈2, 1, −1〉 and we obtain:

aT = a · T = 〈4, 0, 1〉 · 1√
6

〈2, 1, −1〉 = 1√
6
(8 + 0 − 1) = 7√

6

To find aN we first compute the following cross product:

a × v =
∣∣∣∣∣∣
i j k
4 0 1
2 1 −1

∣∣∣∣∣∣ = 〈−1, 6, 4〉

Therefore,

aN = ‖a × v‖
‖v‖ =

√
(−1)2 + 62 + 42

√
6

=
√

53

6

In Exercise 34–41, find the decomposition of a(t) into tangential and normal components at the point indicated, as in
Example 6.

34. r(t) = 〈
et , 1 − t

〉
, t = 0

solution First note here that:

v(t) = r′(t) = 〈
et , −1

〉
a(t) = r′′(t) = 〈

et , 0
〉

At t = 0 we have:

v = r′(0) = 〈1, −1〉
a = r′′(0) = 〈1, 0〉

Thus,

a · v = 〈1, 0〉 · 〈1, −1〉 = 1

‖v‖ = √
1 + 1 = √

2

Recall that we have:

T = v
‖v‖ = 〈1, −1〉√

1 + 1
=

〈
1√
2
, − 1√

2

〉

aT = a · v
‖v‖ = 1√

2

Next, we compute aN and N:

aNN = a − aTT = 〈1, 0〉 − 1√
2

〈
1√
2
, − 1√

2

〉
= 〈1, 0〉 −

〈
1

2
, −1

2

〉
=

〈
1

2
,

1

2

〉

This vector has length:

aN = ‖aNN‖ =
√

1

4
+ 1

4
= 1√

2
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and thus,

N = aNN
aN

=
〈

1
2 , 1

2

〉
1/

√
2

=
〈

1√
2
,

1√
2

〉

Finally, we obtain the decomposition,

a = 〈1, 0〉 = 1√
2

T + 1√
2

N

where T =
〈

1√
2
, − 1√

2

〉
and N =

〈
1√
2
, 1√

2

〉
.

35. r(t) =
〈

1
3 t3, 1 − 3t

〉
, t = −2

solution First note here that:

v(t) = r′(t) =
〈
t2, −3

〉
a(t) = r′′(t) = 〈2t, 0〉

At t = −2 we have:

v = r′(−2) = 〈4, −3〉
a = r′′(−2) = 〈−4, 0〉

Thus,

a · v = 〈−4, 0〉 · 〈4, −3〉 = −16

‖v‖ = √
16 + 9 = 5

Recall that we have:

T = v
‖v‖ = 〈4, −3〉

5
=

〈
4

5
, −3

5

〉

aT = a · v
‖v‖ = −16

5

Next, we compute aN and N:

aNN = a − aTT = 〈−4, 0〉 + 16

5

〈
4

5
, −3

5

〉
=

〈
−36

25
, −48

25

〉

This vector has length:

aN = ‖aNN‖ =
√(

−36

25

)2
+

(
−48

25

)2
= 60

25
= 12

5

and thus,

N = aNN
aN

=
〈
− 36

25 , − 48
25

〉
12/5

=
〈
−3

5
, −4

5

〉

Finally we obtain the decomposition,

a = 〈−4, 0〉 = −16

5
T + 12

5
N

where T =
〈

4
5 , − 3

5

〉
and N =

〈
− 3

5 , − 4
5

〉
.

36. r(t) =
〈
t, 1

2 t2, 1
6 t3

〉
, t = 1

solution First note here that:

v(t) = r′(t) =
〈
1, t,

1

2
t2

〉

a(t) = r′′(t) = 〈0, 1, t〉
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At t = 1 we have:

v = r′(1) =
〈
1, 1,

1

2

〉

a = r′′(1) = 〈0, 1, 1〉
Thus,

a · v = 〈0, 1, 1〉 ·
〈
1, 1,

1

2

〉
= 3

2

‖v‖ =
√

1 + 1 + 1

4
= 3

2

Recall that we have:

T = v
‖v‖ =

〈
1, 1, 1

2

〉
3/2

=
〈

2

3
,

2

3
,

1

3

〉

aT = a · v
‖v‖ = 3/2

3/2
= 1

Next, we compute aN and N:

aNN = a − aTT = 〈0, 1, 1〉 − 1

〈
2

3
,

2

3
,

1

3

〉
=

〈
−2

3
,

1

3
,

2

3

〉

This vector has length:

aN = ‖aNN‖ =
√

4

9
+ 1

9
+ 4

9
= 1

and thus,

N = aNN
aN

=
〈
− 2

3 , 1
3 , 2

3

〉
1

=
〈
−2

3
,

1

3
,

2

3

〉

Finally we obtain the decomposition,

a = 〈0, 1, 1〉 = (1)T + (1)N

where T =
〈

2
3 , 2

3 , 1
3

〉
and N =

〈
− 2

3 , 1
3 , 2

3

〉
.

37. r(t) =
〈
t, 1

2 t2, 1
6 t3

〉
, t = 4

solution First note here that:

v(t) = r′(t) =
〈
1, t,

1

2
t2

〉

a(t) = r′′(t) = 〈0, 1, t〉
At t = 4 we have:

v = r′(4) = 〈1, 4, 8〉
a = r′′(4) = 〈0, 1, 4〉

Thus,

a · v = 〈0, 1, 4〉 · 〈1, 4, 8〉 = 36

‖v‖ = √
1 + 16 + 64 = √

81 = 9

Recall that we have:

T = v
‖v‖ = 〈1, 4, 8〉

9
=

〈
1

9
,

4

9
,

8

9

〉

aT = a · v
‖v‖ = 36

9
= 4
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Next, we compute aN and N:

aNN = a − aTT = 〈0, 1, 4〉 − 4

〈
1

9
,

4

9
,

8

9

〉
=

〈
−4

9
, −7

9
,

4

9

〉

This vector has length:

aN = ‖aNN‖ =
√

16

81
+ 49

81
+ 16

81
= 1

and thus,

N = aNN
aN

=
〈
− 4

9 , − 7
9 , 4

9

〉
1

=
〈
−4

9
, −7

9
,

4

9

〉

Finally we obtain the decomposition,

a = 〈0, 1, 4〉 = 4T + (1)N

where T =
〈

1
9 , 4

9 , 8
9

〉
and N =

〈
− 4

9 , − 7
9 , 4

9

〉
.

38. r(t) = 〈
4 − t, t + 1, t2〉, t = 2

solution First note here that:

v(t) = r′(t) = 〈−1, 1, 2t〉
a(t) = r′′(t) = 〈0, 0, 2〉

At t = 2 we have:

v = r′(2) = 〈−1, 1, 4〉
a = r′′(2) = 〈0, 0, 2〉

Thus,

a · v = 〈0, 0, 2〉 · 〈−1, 1, 4〉 = 8

‖v‖ = √
1 + 1 + 16 = 3

√
2

Recall that we have:

T = v
‖v‖ = 〈−1, 1, 4〉

3
√

2
=

〈 −1

3
√

2
,

1

3
√

2
,

4

3
√

2

〉

aT = a · v
‖v‖ = 8

3
√

2

Next, we compute aN and N:

aNN = a − aTT = 〈0, 0, 2〉 − 8

3
√

2

〈 −1

3
√

2
,

1

3
√

2
,

4

3
√

2

〉

= 〈0, 0, 2〉 +
〈

4

9
, −4

9
, −16

9

〉
=

〈
4

9
, −4

9
,

2

9

〉

This vector has length:

aN = ‖aNN‖ =
∣∣∣∣
∣∣∣∣2

9
〈2, −2, 1〉

∣∣∣∣
∣∣∣∣ = 2

9

√
4 + 4 + 1 = 2

3

and thus,

N = aNN
aN

=
2
9 〈2, −2, 1〉

2/3
=

〈
2

3
, −2

3
,

1

3

〉

Finally we obtain the decomposition,

a = 〈0, 0, 2〉 = 8

3
√

2
T + 2

3
N

where T =
〈 −1

3
√

2
, 1

3
√

2
, 4

3
√

2

〉
and N =

〈
2
3 , − 2

3 , 1
3

〉
.
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39. r(t) = 〈
t, et , tet

〉
, t = 0

solution First note here that:

v(t) = r′(t) = 〈
1, et , (t + 1)et

〉
a(t) = r′′(t) = 〈

0, et , (t + 2)et
〉

At t = 0 we have:

v = r′(0) = 〈1, 1, 1〉
a = r′′(0) = 〈0, 1, 2〉

Thus,

a · v = 〈0, 1, 2〉 · 〈1, 1, 1〉 = 3

‖v‖ = √
1 + 1 + 1 = √

3

Recall that we have:

T = v
‖v‖ = 1√

3
〈1, 1, 1〉

aT = a · v
‖v‖ = 3√

3
= √

3

Next, we compute aN and N:

aNN = a − aTT = 〈0, 1, 2〉 − √
3

1√
3

〈1, 1, 1〉 = 〈−1, 0, 1〉

This vector has length:

aN = ‖aNN‖ = √
1 + 1 = √

2

and thus,

N = aNN
aN

= 〈−1, 0, 1〉√
2

=
〈
− 1√

2
, 0,

1√
2

〉

Finally we obtain the decomposition,

a = 〈0, 1, 2〉 = √
3T + √

2N

where T = 1√
3

〈1, 1, 1〉 and N =
〈
− 1√

2
, 0, 1√

2

〉
.

40. r(θ) = 〈cos θ, sin θ, θ〉, θ = 0

solution First note here that:

v(θ) = r′(θ) = 〈− sin θ, cos θ, 1〉
a(θ) = r′′(θ) = 〈− cos θ, − sin θ, 0〉

At θ = 0 we have:

v = r′(0) = 〈0, 1, 1〉
a = r′′(0) = 〈−1, 0, 0〉

Thus,

a · v = 〈−1, 0, 0〉 · 〈0, 1, 1〉 = 0

‖v‖ = √
1 + 1 = √

2

Recall that we have:

T = v
‖v‖ = 1√

2
〈0, 1, 1〉

aT = a · v
‖v‖ = 0√

2
= 0
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Next, we compute aN and N:

aNN = a − aTT = 〈−1, 0, 0〉 − 0 = 〈−1, 0, 0〉
This vector has length:

aN = ‖aNN‖ = 1

and thus,

N = aNN
aN

= 〈−1, 0, 0〉
1

= 〈−1, 0, 0〉

Finally we obtain the decomposition,

a = 〈−1, 0, 0〉 = 0T + (1)N

where T = 1√
2

〈0, 1, 1〉 and N = 〈−1, 0, 0〉.
Notice that the vector a(0) = 〈−1, 0, 0〉 is already a unit vector, hence (1) implies that N(0) = a(0) and aN(0) = 1.

Hence the required decomposition reduces to:

a(0) = 1 · N(0) = 1 · N where N = a(0) = 〈−1, 0, 0〉

41. r(t) = 〈t, cos t, t sin t〉, t = π
2

solution First note here that:

v(t) = r′(t) = 〈1, − sin t, t cos t + sin t, 〉
a(t) = r′′(t) = 〈0, − cos t, −t sin t + 2 cos t〉

At t = π
2 we have:

v = r′(π/2) = 〈1, −1, 1〉
a = r′′(−2) =

〈
0, 0, −π

2

〉
Thus,

a · v =
〈
0, 0, −π

2

〉
· 〈1, −1, 1〉 = −π

2

‖v‖ = √
1 + 1 + 1 = √

3

Recall that we have:

T = v
‖v‖ = 1√

3
〈1, −1, 1〉

aT = a · v
‖v‖ = −π/2√

3
= − π

2
√

3

Next, we compute aN and N:

aNN = a − aTT =
〈
0, 0, −π

2

〉
+ π

2
√

3

1√
3

〈1, −1, 1〉

=
〈
0, 0, −π

2

〉
+ π

6
〈1, −1, 1〉

=
〈π

6
, −π

6
, −π

3

〉
= π

6
〈1, −1, −2〉

This vector has length:

aN = ‖aNN‖ =
∣∣∣∣
∣∣∣∣π6 〈1, −1, −2〉

∣∣∣∣
∣∣∣∣ = π

6

√
1 + 1 + 4 = π

√
6

6
= π√

6

and thus,

N = aNN
aN

=
π
6 〈1, −1, −2〉

π√
6

= 1√
6

〈1, −1, −2〉
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Finally we obtain the decomposition,

a =
〈
0, 0, −π

2

〉
= π

2
√

3
T + π√

6
N

where T = 1√
3

〈1, −1, 1〉 and N = 1√
6

〈1, −1, −2〉.
42. Let r(t) = 〈

t2, 4t − 3
〉
. Find T(t) and N(t), and show that the decomposition of a(t) into tangential and normal

components is

a(t) =
(

2t√
t2 + 4

)
T +

(
4√

t2 + 4

)
N

solution
(a) We differentiate r(t) twice to obtain:

r′(t) = 〈2t, 4〉 (1)

r′′(t) = 〈2, 0〉
By the formula for the tangential component of a(t), we have:

aT = a · v
‖v‖ = a · r′

‖r′‖ (2)

By (1) we get:

‖r′‖ = ‖ 〈2t, 4〉 ‖ =
√

(2t)2 + 42 =
√

4t2 + 16 = 2
√

t2 + 4 (3)

a = r′′ = 〈2, 0〉
Substituting (3) in (2) yields:

aT = 〈2, 0〉 · 〈2t, 4〉
2
√

t2 + 4
= 2 · 2t + 0 · 4

2
√

t2 + 4
= 2t√

t2 + 4
(4)

(b) By the formula for the normal component of a(t), we have:

aNN = a −
(a · v

v · v

)
v = a −

(
a · r′
r′ · r′

)
r′ (5)

We use (1) and (3) to compute the values in (5):

a · r′ = 〈2, 0〉 · 〈2t, 4〉 = 2 · 2t + 0 · 4 = 4t

r′ · r′ = 〈2t, 4〉 · 〈2t, 4〉 = 2t · 2t + 4 · 4 = 4t2 + 16 = 4(t2 + 4) (6)

Substituting (1), (3) and (6) into (5) gives:

aNN = 〈2, 0〉 − 4t

4
(
t2 + 4

) 〈2t, 4〉 = 〈2, 0〉 − t

t2 + 4
〈2t, 4〉

=
〈

2 − 2t2

t2 + 4
,

−4t

t2 + 4

〉
=

〈
8

t2 + 4
,

−4t

t2 + 4

〉
= 1

t2 + 4
〈8, −4t〉 (7)

Since aN = ‖a×v‖
‖v‖ , aN is positive, hence N is a unit vector in the direction of aNN. Hence, by (7):

N = aNN
‖aNN‖ =

1
t2+4

〈8, −4t〉
1

t2+4

√
82 + (−4t)2

= 〈8, −4t〉√
64 + 16t2

= 4 〈2, −t〉
4
√

4 + t2
= 1√

4 + t2
〈2, −t〉 (8)

Combining (7) and (8) yields:

aNN = 4

t2 + 4
〈2, −t〉 = 4√

t2 + 4
N ⇒ aN = 4√

t2 + 4
(9)

(c) By (4) and (9) we obtain the following decomposition:

a(t) = aT(t)T + aN(t)N =
(

2t√
t2 + 4

)
T +

(
4√

t2 + 4

)
N
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43. Find the components aT and aN of the acceleration vector of a particle moving along a circular path of radius
R = 100 cm with constant velocity v0 = 5 cm/s.

solution Since the particle moves with constant speed, we have v′(t) = 0, hence:

aT = v′(t) = 0

The normal component of the acceleration is aN = κ(t)v(t)2. The curvature of a circular path of radius R = 100 is
κ(t) = 1

R
= 1

100 , and the velocity is the constant value v(t) = v0 = 5. Hence,

aN = 1

R
v2

0 = 25

100
= 0.25 cm/s2

44. In the notation of Example 5, find the acceleration vector for a person seated in a car at (a) the highest point of the
Ferris wheel and (b) the two points level with the center of the wheel.

solution In Example 6 we are given that the ferris wheel has radius R = 30 m. At time t = t0, the wheel rotates

counterclockwise with speed of 40 meters per minute and is slowing at a rate of 15 m/min2. The decomposition of a(t)

into tangential and normal direction at time t0 is:

a(t0) = aT(t0)T(t0) + aN(t0)N(t0) (1)

where

aT(t0) = v′(t0) and aN(t0) = κ(t0)v(t0)2 (2)

By the given information, v(t0) = 40 and v′(t0) = −15. Also, the curvature of the wheel is κ = 1
R

= 1
30 . Substituting

in (2) we have:

aT(t0) = −15, aN(t0) = 402

30
= 160

3

Combining with (1) we get:

a(t0) = −15T(t0) + 160

3
N(t0) (3)

(a)

x

y

N

T

At the highest point of the wheel, T = 〈−1, 0〉 and N = 〈0, −1〉, therefore by (3) the acceleration vector at this point is:

a(t0) = −15 〈−1, 0〉 + 160

3
〈0, −1〉 ≈ 〈15, −53.3〉

(b)

x
AB

y

N

N

T

T
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At the point A (see figure) we have T = 〈0, 1〉 and N = 〈−1, 0〉, and at the point B, T = 〈0, −1〉 and N = 〈1, 0〉.
Substituting in (3) we obtain the following accelerations at these points, at t = t0:

At the point A:

a(t0) = −15 〈0, 1〉 + 160

3
〈−1, 0〉 = 〈−160/3, −15〉

At the point B:

a(t0) = −15 〈0, −1〉 + 160

3
〈1, 0〉 = 〈160/3, 15〉

45. Suppose that the Ferris wheel in Example 5 is rotating clockwise and that the point P at angle 45◦ has acceleration
vector a = 〈0, −50〉 m/min2 pointing down, as in Figure 11. Determine the speed and tangential acceleration of the Ferris
wheel.

Ferris wheel

45°
x

y

FIGURE 11

solution The normal and tangential accelerations are both 50/
√

2 ≈ 35 m/min2. The normal acceleration is v2/R =
v2/30 = 35, so the speed is

v = √
35(28) ≈ 31.3

46. At time t0, a moving particle has velocity vector v = 2i and acceleration vector a = 3i + 18k. Determine the
curvature κ(t0) of the particle’s path at time t0.

solution The curvature is the following value:

κ(t0) = ‖r′(t0) × r′′(t0)‖
‖r′(t0)‖3

(1)

Since r′(t0) = v(t) = 2i and r′′(t0) = a(t0) = 3i + 18k we have:

r′(t0) × r′′(t0) =
∣∣∣∣∣∣

i j k
2 0 0
3 0 18

∣∣∣∣∣∣ =
∣∣∣∣ 0 0

0 18

∣∣∣∣ i −
∣∣∣∣ 2 0

3 18

∣∣∣∣ j +
∣∣∣∣ 2 0

3 0

∣∣∣∣ k = −36j (2)

‖r′(t0) × r′′(t0)‖ = ‖ − 36j‖ = 36 (3)

‖r′(t0)‖ = ‖2i‖ = 2

Substituting (2) into (1) gives the following curvature:

κ(t0) = 36

23
= 4.5

47. A space shuttle orbits the earth at an altitude 400 km above the earth’s surface, with constant speed v = 28,000 km/h.
Find the magnitude of the shuttle’s acceleration (in km/h2), assuming that the radius of the earth is 6378 km (Figure 12).

FIGURE 12 Space shuttle orbit.
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solution The shuttle is in a uniform circular motion, therefore the tangential component of its acceleration is zero,
and the acceleration can be written as:

a = κv2N (1)

The radius of motion is 6378 + 400 = 6778 km hence the curvature is κ = 1
6778 . Also by the given information the

constant speed is v = 28000 km/h. Substituting these values in (1) we get:

a =
(

1

6778
· 280002

)
N = (11.5668 · 104 km/h2)N

The magnitude of the shuttle’s acceleration is thus:

‖a‖ = 11.5668 · 104 km/h2

In units of m/s2 we obtain

‖a‖ = 11.5668 · 104 · 1000

36002
= 8.925 m/s2

48. A car proceeds along a circular path of radius R = 300 m centered at the origin. Starting at rest, its speed increases at
a rate of t m/s2. Find the acceleration vector a at time t = 3 s and determine its decomposition into normal and tangential
components.

solution The acceleration vector can be decomposed into tangential and normal directions as follows:

a(t) = aT(t)T(t) + aN(t)N(t) (1)

where

aT(t) = v′(t) and aN(t) = κ(t)v(t)2 (2)

Since the speed v(t) is increasing at a rate of t m/s2, we have v′(t) = t . The car starts at rest hence the initial speed is
v0 = 0. We now integrate to find v(t):

v(t) =
∫ t

0
v′(u) du =

∫ t

0
u du = 1

2
t2 + v0 = 1

2
t2 + 0 = 1

2
t2

The curvature of the circular path is κ(t) = 1
R

= 1
300 . Substituting v′(t) = t , κ = 1

300 , and v(t) = 1
2 t2 in (2) gives:

aT(t) = t, aN(t) = 1

300

(
1

2
t2

)2
= 1

1200
t4

Combining with (1) gives the following decomposition:

a(t) = tT(t) + 1

1200
t4N(t) (3)

We now find the unit tangent T(t) and the unit normal N(t).

N

T

Q (starting 
point)

P

O

We have (see figure):

T =
〈
cos

(π

2
+ θ

)
, sin

(π

2
+ θ

)〉
= 〈− sin θ, cos θ〉 (4)

N = 〈cos (π + θ) , sin (π + θ)〉 = 〈− cos θ, − sin θ〉 (5)

We use the arc length formula to find θ :

�
PQ=

∫ t

0
‖r ′(u)‖ du =

∫ t

0
v(u) du =

∫ t

0

1

2
u2 du = t3

6
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In addition,
�

PQ= Rθ = 300θ . Hence,

300θ = t3

6
⇒ θ = t3

1800

Substituting in (4) and (5) yields:

T =
〈
− sin

t3

1800
, cos

t3

1800

〉
; N =

〈
− cos

t3

1800
, − sin

t3

1800

〉
(6)

We now combine (3) and (6) to obtain the following decomposition:

a(t) = t

〈
− sin

t3

1800
, cos

t3

1800

〉
+ 1

1200
t4

〈
− cos

t3

1800
, − sin

t3

1800

〉

At t = 3 we get:

aT = 3aN = 34

1200
≈ 0.0675

T =
〈
− sin

33

1800
, cos

33

1800

〉
≈ 〈−0.0150, 0.9999〉

N =
〈
− cos

33

1800
, − sin

33

1800

〉
≈ 〈−0.9999, −0.0150〉

49. A runner runs along the helix r(t) = 〈cos t, sin t, t〉. When he is at position r
(
π
2

)
, his speed is 3 m/s and he is

accelerating at a rate of 1
2 m/s2. Find his acceleration vector a at this moment. Note: The runner’s acceleration vector

does not coincide with the acceleration vector of r(t).

solution We have

r′(t) = 〈− sin t, cos t, 1〉 , ‖r′(t)‖ =
√

(− sin t)2 + cos2 t + 12 = √
2,

⇒ T = 1√
2

〈− sin t, cos t, 1〉

By definition, N is the unit vector in the direction of

dT
dt

= 1√
2

〈− cos t, − sin t, 0〉 ⇒ N = 〈− cos t, − sin t, 0〉

Therefore N = 〈− cos t, − sin t, 0〉. At t = π/2, we have

T = 1√
2

〈−1, 0, 1〉 , N = 〈0, −1, 0〉

The acceleration vector is

a = v′T + κv2N

We need to find the curvature, which happens to be constant:

κ =
∣∣∣∣
∣∣∣∣dT
ds

∣∣∣∣
∣∣∣∣ = ‖ dT

dt
‖

‖r′‖ =
‖ 1√

2
〈− cos t, − sin t, 0〉‖

√
2

= 1

2

Now we have

a = v′T + κv2N =
(

1

2

)
T +

(
1

2

)
(32)N =

(
1

2

)(
1√
2

)
〈−1, 0, 1〉 + 9

2
〈0, −1, 0〉

=
〈
− 1

2
√

2
, −9

2
,

1

2
√

2

〉
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50. Explain why the vector w in Figure 13 cannot be the acceleration vector of a particle moving along the circle.
Hint: Consider the sign of w · N.

w

N

FIGURE 13

solution If we consider the sign of w · N, recall that:

w · N = ‖w‖‖N‖ cos θ

where θ is the angle between them. Since θ in the figure is larger than π/2 we know that cos θ < 0. Therefore, w · N < 0
as well.

If we assume that the particle follows this circular path, and w is the acceleration vector (w = a), we will compute
a · N to see:

w · N = a · N = r′′ · T′
‖T′‖ = 1

‖T′‖ (r′′ · T′)

Now we know T = r′
‖r′‖ so then differentiating we get:

T′ = 1

‖r′‖ r′′

Substituting this fact in we see:

w · N = a · N = r′′ · T′
‖T′‖ = 1

‖T′‖ (r′′ · T′)

= 1

‖T′‖
(

r′′ · r′′
‖r′‖

)
= 1

‖T′‖
1

‖r′‖ (r′′ · r′′) = ‖r′′‖2

‖T′‖‖r′‖ > 0

This is a contradiction, w cannot be the acceleration vector of the particle moving along this circle.

51. Figure 14 shows acceleration vectors of a particle moving clockwise around a circle. In each case, state
whether the particle is speeding up, slowing down, or momentarily at constant speed. Explain.

(A) (B) (C)

FIGURE 14

solution In (A) and (B) the acceleration vector has a nonzero tangential and normal components; these are both
possible acceleration vectors. In (C) the normal component of the acceleration toward the inside of the curve is zero, that
is, a is parallel to T, so κ · v(t)2 = 0, so either κ = 0 (meaning our curve is not a circle) or v(t) = 0 (meaning our particle
isn’t moving). Either way, (C) is not a possible acceleration vector.

52. Prove that aN = ‖a × v‖
‖v‖ .

solution We have a = aT T + aN N and T = v
‖v‖ and therefore

v = ‖v‖T

Using this information, consider the following:

a × v = (aTT + aNN) × (‖v‖)T
= (aTT × ‖v‖T) + (aNN × ‖v‖T)

= aT‖v‖(T × T) + aN‖v‖(N × T)

= 0 + aN‖v‖(N × T)
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= aN‖v‖(N × T)

Both T and N are unit vectors and they are orthogonal to each other. It follows that N × T is a unit vector and

‖a × v‖ = aN‖v‖(N × T) = aN‖v‖ · 1 ⇒ ‖a × v‖
‖v‖ = aN

53. Suppose that r = r(t) lies on a sphere of radius R for all t . Let J = r × r′. Show that r′ = (J × r)/‖r‖2. Hint:
Observe that r and r′ are perpendicular.

solution
(a) Solution 1. Since r = r(t) lies on the sphere, the vectors r = r(t) and r′ = r′(t) are orthogonal, therefore:

r · r′ = 0 (1)

We use the following well-known equality:

a × (b × c) = (a · c) b − (a · b) · c

Using this equality and (1) we obtain:

J × r = (
r × r′) × r = −r × (

r × r′) = − ((
r · r′) r − (r · r) r′)

= − (
r · r′) r + ‖r‖2r′ = 0r + ‖r‖2r′ = ‖r‖2r′

Divided by the scalar ‖r‖2 we obtain:

r′ = J × r

‖r‖2

(b) Solution 2. The cross product J = r × r′ is orthogonal to r and r′. Also, r and r′ are orthogonal, hence the vectors r,
r′ and J are mutually orthogonal. Now, since r′ is orthogonal to r and J, the right-hand rule implies that r′ points in the
direction of J × r. Therefore, for some α > 0 we have:

r′ = αJ × r = ‖r′‖ · J × r
‖J × r‖ (2)

By properties of the cross product and since J, r, and r′ are mutually orthogonal we have:

‖J × r‖ = ‖J‖‖r‖ = ‖r × r′‖‖r‖ = ‖r‖‖r′‖‖r‖ = ‖r‖2‖r′‖
Substituting in (2) we get:

r′ = ‖r′‖ J × r

‖r‖2‖r′‖ = J × r

‖r‖2

Further Insights and Challenges
54. The orbit of a planet is an ellipse with the sun at one focus. The sun’s gravitational force acts along the radial
line from the planet to the sun (the dashed lines in Figure 15), and by Newton’s Second Law, the acceleration vector
points in the same direction. Assuming that the orbit has positive eccentricity (the orbit is not a circle), explain why the
planet must slow down in the upper half of the orbit (as it moves away from the sun) and speed up in the lower half.
Kepler’s Second Law, discussed in the next section, is a precise version of this qualitative conclusion. Hint: Consider the
decomposition of a into normal and tangential components.

Planetary motion 

Sun

N

N

N

a

a

a

FIGURE 15 Elliptical orbit of a planet around the sun.

solution In the upper half of the orbit, as the planet moves away from the sun the acceleration vector has a negative
component in the tangential direction T, so the particle’s velocity is decreasing (since aT(t) = v′(t) < 0).
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T

T

a

a

Sun

However, in the lower half of the orbit, as the planet gets closer to the sun, the acceleration has a positive component in
the tangential direction, that is, aT(t) = v′(t) > 0. Therefore the velocity v(t) is increasing.

In Exercises 55–59, we consider an automobile of mass m traveling along a curved but level road. To avoid skidding,
the road must supply a frictional force F = ma, where a is the car’s acceleration vector. The maximum magnitude of the
frictional force is μmg, where μ is the coefficient of friction and g = 9.8 m/s2. Let v be the car’s speed in meters per
second.

55. Show that the car will not skid if the curvature κ of the road is such that (with R = 1/κ)

(v′)2 +
(

v2

R

)2

≤ (μg)2 5

Note that braking (v′ < 0) and speeding up (v′ > 0) contribute equally to skidding.

solution To avoid skidding, the frictional force the road must supply is:

F = ma

where a is the acceleration of the car. We consider the decomposition of the acceleration a into normal and tangential
directions:

a(t) = v′(t)T(t) + κv2(t)N(t)

Since N and T are orthogonal unit vectors, T · N = 0 and T · T = N · N = 1. Thus:

‖a‖2 =
(
v′T + κv2N

)
·
(
v′T + κv2N

)
= v′2T · T + 2κv2v′N · T + κ2v4N · N

= v′2 + κ2v4 = v′2 + v4

R2

Therefore:

‖a‖ =
√(

v′)2 + v4

R2

Since the maximal fractional force is μmg we obtain that to avoid skidding the curvature must satisfy:

m

√(
v′)2 + v4

R2
≤ mμg.

Hence,

(
v′)2 + v4

R2
≤ (μg)2,

which becomes:

(
v′)2 +

(
v2

R

)2

≤ (μg)2

56. Suppose that the maximum radius of curvature along a curved highway is R = 180 m. How fast can an automobile
travel (at constant speed) along the highway without skidding if the coefficient of friction is μ = 0.5?

solution Recall the general result that max speed is

v = √
μgR

In Exercise 55 we showed that the car will not skid if the following inequality is satisfied:

(
v′)2 + v4

R2
< μ2g2
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We compute the constant speed v for which the car can travel without skidding. In case of constant speed, v′ = 0. We
substitute R = 180, μ = 0.5 and g = 9.8 and solve for v. This gives:

v4

1802
< 0.52 · 9.82

v4 < 777924 ⇒ v < 29.70 m/s

The maximum speed (in case of constant speed) is about 29.70 m/s.

57. Beginning at rest, an automobile drives around a circular track of radius R = 300 m, accelerating at a rate of 0.3 m/s2.
After how many seconds will the car begin to skid if the coefficient of friction is μ = 0.6?

solution By Exercise 55 the car will begin to skid when:

(v′)2 + v4

R2
= μ2g2 (1)

We are given that v′ = 0.3 and v0 = 0. Integrating gives:

v =
∫ t

0
v′ dt =

∫ t

0
0.3 dt = 0.3t + v0 = 0.3t

We substitute v = t , v′ = 0.3, R = 300, μ = 0.6 and g = 9.8 in (1) and solve for t . This gives:

(0.3)2 + 0.34t4

3002
= 0.62 · 9.82

t4 = 3002(0.62 · 9.82 − 0.32)
0.34

= 383,160,000

t = 139.91 s

After 139.91 s or 2.33 minutes, the car will begin to skid.

58. You want to reverse your direction in the shortest possible time by driving around a semicircular bend (Figure 16).
If you travel at the maximum possible constant speed v that will not cause skidding, is it faster to hug the inside curve
(radius r) or the outside curb (radius R)? Hint: Use Eq. (5) to show that at maximum speed, the time required to drive
around the semicircle is proportional to the square root of the radius.

r

R

FIGURE 16 Car going around the bend.

solution In Exercise 55 we showed that the car will not skid if the following inequality is satisfied:

(
v′)2 + v4

R2
< μ2g2

In case of constant speed, v′ = 0, so the inequality becomes:

v4

R2
< μ2g2

We solve for v:

v4 < (μgR)2 ⇒ v <
√

μgR

The maximum speed in which skidding does not occur is, thus,

v ≈ √
μgR (1)

If T is the time required to drive around the semicircle of radius R at the constant speed v, then the length of the semicircle
can be written as:

πR =
∫ T

0
‖r′(t)‖ dt =

∫ T

0
v dt = vT
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Hence,

T = πR

v
(2)

Combining (1) and (2) gives:

T ≈ πR√
μgR

≈ π√
μg

√
R

We conclude that it is faster to hug the inside curve of radius r (r < R), rather than the outside curve of radius R.

59. What is the smallest radius R about which an automobile can turn without skidding at 100 km/h if μ = 0.75 (a typical
value)?

solution In Exercise 55 we showed that the car will not skid if the following inequality holds:

(
v′)2 + v4

R2
< μ2g2

In case of constant speed, v′ = 0, so the inequality becomes:

v4

R2
< μ2g2

Solving for R we get:

v4 < μ2g2R2

v4

μ2g2
< R2 ⇒ R >

v2

μg

The smallest radius R in which skidding does not occur is, thus,

R ≈ v2

μg

We substitute v = 100 km/h, μ = 0.75, and g ≈ 127,008 km/h2 to obtain:

R ≈ 1002

0.75 · 127,008
= 0.105 km.

13.6 Planetary Motion According to Kepler and Newton (LT Section 14.6)

Preliminary Questions
1. Describe the relation between the vector J = r × r′ and the rate at which the radial vector sweeps out area.

solution The rate at which the radial vector sweeps out area equals half the magnitude of the vector J. This relation
is expressed in the formula:

dA

dt
= 1

2
‖J‖.

2. Equation (1) shows that r′′ is proportional to r. Explain how this fact is used to prove Kepler’s Second Law.

solution In the proof of Kepler’s Second Law it is shown that the rate at which area is swept out is

dA

dt
= 1

2
‖J‖, where J = r(t) × r′(t)

To show that ‖J‖ is constant, show that J is constant. This is done using the proportionality of r′′ and r which implies
that r(t) × r′′(t) = 0. Using this we get:

dJ
dt

= d

dt

(
r × r′) = r × r′′ + r′ × r′ = 0 + 0 = 0 ⇒ J = const

3. How is the period T affected if the semimajor axis a is increased four-fold?

solution Kepler’s Third Law states that the period T of the orbit is given by:

T 2 =
(

4π2

GM

)
a3
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or

T = 2π√
GM

a3/2

If a is increased four-fold the period becomes:

2π√
GM

(4a)3/2 = 8 · 2π√
GM

a3/2

That is, the period is increased eight-fold.

Exercises
1. Kepler’s Third Law states that T 2/a3 has the same value for each planetary orbit. Do the data in the following table

support this conclusion? Estimate the length of Jupiter’s period, assuming that a = 77.8 × 1010 m.

Planet Mercury Venus Earth Mars

a (1010 m) 5.79 10.8 15.0 22.8
T (years) 0.241 0.615 1.00 1.88

solution Using the given data we obtain the following values of T 2/a3, where a, as always, is measured not in meters

but in 1010 m:

Planet Mercury Venus Earth Mars

T 2/a3 2.99 · 10−4 3 · 10−4 2.96 · 10−4 2.98 · 10−4

The data on the planets supports Kepler’s prediction. We estimate Jupiter’s period (using the given a) as T ≈√
a3 · 3 · 10−4 ≈ 11.9 years.

2. Finding the Mass of a Star Using Kepler’s Third Law, show that if a planet revolves around a star with period T

and semimajor axis a, then the mass of the star is M =
(

4π2

G

)(
a3

T 2

)
.

solution By Kepler’s Third Law with the star replacing the sun we have:

T 2 =
(

4π2

GM

)
a3

Solving for M we obtain:

T 2GM = 4π2a3 ⇒ M = 4π2

G
· a3

T 2

3. Ganymede, one of Jupiter’s moons discovered by Galileo, has an orbital period of 7.154 days and a semimajor axis
of 1.07 × 109 m. Use Exercise 2 to estimate the mass of Jupiter.

solution By Exercise 2, the mass of Jupiter can be computed using the following equality:

M = 4π2

G

a3

T 2

We substitute the given data T = 7.154 · 24 · 602 = 618,105.6 a = 1.07 × 109 m and G = 6.67300 × 10−11m3kg−1s−1,
to obtain:

M =
4π2 ·

(
1.07 × 109

)3

6.67300 × 10−11 · (618,105.6)2
≈ 1.897 × 1027 kg.

4. An astronomer observes a planet orbiting a star with a period of 9.5 years and a semimajor axis of 3 × 108 km. Find
the mass of the star using Exercise 2.

solution By Exercise 2 the mass of the star can be computed using the following equality:

M = 4π2

G

a3

T 2
(1)
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Using units of m, kg, and s we have the following data:

T = 9.5 years = 9.5 · 365 · 24 · 3600 = 2.99 · 108 s

a = 3 × 1011 m

G = 6.673 × 10−11 m3kg−1s−1

Substituting in (1) we get:

M = 4π2 · (3 × 1011)
3

6.673 × 10−11 · (2.99 × 108)
2

≈ 17.87 × 1028 kg.

5. Mass of the Milky Way The sun revolves around the center of mass of the Milky Way galaxy in an orbit that is

approximately circular, of radius a ≈ 2.8 × 1017 km and velocity v ≈ 250 km/s. Use the result of Exercise 2 to estimate
the mass of the portion of the Milky Way inside the sun’s orbit (place all of this mass at the center of the orbit).

solution Write a = 2.8 × 1020 m and v = 250 × 103 m/s. The circumference of the sun’s orbit (which is assumed

circular) is 2πa m; since the sun’s speed is a constant v m/s, its period is T = 2πa

v
s. By Exercise 2, the mass of the

portion of the Milky Way inside the sun’s orbit is

M =
(

4π2

G

)(
a3

T 2

)

Substituting the values of a and T from above, G = 6.673 × 10−11 m3kg−1s−2 gives

M = 4π2a3

G
( 4π2a2

v3

) = av2

G
= 2.8 · 1020 · (250 × 103)

2

6.673 × 10−11
= 2.6225 × 1041 kg.

The mass of the sun is 1.989 × 1030 kg, hence M is 1.32 × 1011 times the mass of the sun (132 billions times the mass
of the sun).

6. A satellite orbiting above the equator of the earth is geosynchronous if the period is T = 24 hours (in this case, the
satellite stays over a fixed point on the equator). Use Kepler’s Third Law to show that in a circular geosynchronous orbit,
the distance from the center of the earth is R ≈ 42,246 km. Then compute the altitude h of the orbit above the earth’s
surface. The earth has mass M ≈ 5.974 × 1024 kg and radius R ≈ 6371 km.

solution By Kepler’s Third Law,

T 2 =
(

4π2

GM

)
a3

R
h

a

We substitute T = 24 · 3600 = 86,400 s, M = 5.974 × 1024 kg, and G = 6.673 × 10−11 m3kg−1s−1 and solve for a.
We obtain:

86,4002 = 4π2

6.673 · 10−11 · 5.974 · 1024
a3

7.465 · 109 = 0.99 · 10−13a3

a3 = 75.4 · 1021 ⇒ a = 4.2246 · 107 m = 42,246 km

The altitude h is thus

h = a − Rearth = 42,246 − 6,371 = 35,875 km.

7. Show that a planet in a circular orbit travels at constant speed. Hint: Use that J is constant and that r(t) is orthogonal
to r′(t) for a circular orbit.

solution It is shown in the proof of Kepler’s Second Law that the vector J = r(t) × r′(t) is constant, hence its length
is constant:

‖J‖ = ‖r(t) × r′(t)‖ = const (1)
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We consider the orbit as a circle of radius R, therefore, r(t) and r′(t) are orthogonal and ‖r(t)‖ = R. By (1) and using
properties of the cross product we obtain:

‖r(t) × r′(t)‖ = ‖r(t)‖‖r′(t)‖ sin
π

2
= R · ‖r′(t)‖ = const

We conclude that ‖r′(t)‖ is constant, that is the speed v = ‖r′(t)‖ of the planet is constant.

8. Verify that the circular orbit

r(t) = 〈R cos ωt, R sin ωt〉

satisfies the differential equation, Eq. (1), provided that ω2 = kR−3. Then deduce Kepler’s Third Law T 2 =
(

4π2

k

)
R3

for this orbit.

solution Note that ‖r‖ = R, and note that

r′ = 〈−Rω sin ωt, Rω cos ωt〉 and r′′ =
〈
−Rω2 cos ωt, −Rω2 sin ωt

〉
We rewrite this as:

r′′ = −ω2 〈R cos ωt, R sin ωt〉 = −ω2r

Since ω2 = k/R3 and R = ‖r‖, we get r′′ = −k
‖r‖3 r, as desired. Since T = 2π

ω then T 2 = 4π2

ω2 = 4π2R3

k
, as desired.

9. Prove that if a planetary orbit is circular of radius R, then vT = 2πR, where v is the planet’s speed (constant by

Exercise 7) and T is the period. Then use Kepler’s Third Law to prove that v =
√

k

R
.

solution By the Arc Length Formula and since the speed v = ‖r′(t)‖ is constant, the length L of the circular orbit
can be computed by the following integral:

L =
∫ T

0
‖r′(t)‖ dt =

∫ T

0
v dt = vt

∣∣∣∣T
0

= vT

On the other hand, the length of a circular orbit of radius R is 2πR, so we obtain:

vT = 2πR ⇒ T = 2πR

v
(1)

In a circular orbit of radius R, a = R, hence by Kepler’s Third Law we have:

T 2 = 4π2

GM
R3 (2)

We now substitute (1) in (2) and solve for v. This gives:

(
2πR

v

)2
= 4π2R3

GM

4π2R2

v2
= 4π2R3

GM

1

v2
= R

GM
⇒ v =

√
GM

R

10. Find the velocity of a satellite in geosynchronous orbit about the earth. Hint: Use Exercises 6 and 9.

solution In Exercise 9 we showed that the velocity of a planet in a circular orbit of radius a is:

v = 2πa

T
(1)

A geosynchronous orbit has period T = 24 hours and in Exercise 6 we found that a = 42,246 km. Substituting in (1) we
get:

v = 2π · 42,246

24
= 11,060 km/h

11. A communications satellite orbiting the earth has initial position r = 〈29,000, 20,000, 0〉 (in km) and initial velocity
r′ = 〈1, 1, 1〉 (in km/s), where the origin is the earth’s center. Find the equation of the plane containing the satellite’s
orbit. Hint: This plane is orthogonal to J.
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solution The vectors r(t) and r′(t) lie in the plane containing the satellite’s orbit, in particular the initial position
r = 〈29,000, 20,000, 0〉 and the initial velocity r′ = 〈1, 1, 1〉. Therefore, the cross product J = r × r′ is perpendicular
to the plane. We compute J:

J = r × r′ =
∣∣∣∣∣∣

i j k
29,000 20,000 0

1 1 1

∣∣∣∣∣∣ =
∣∣∣∣ 20,000 0

1 1

∣∣∣∣ i −
∣∣∣∣ 29,000 0

1 1

∣∣∣∣ j +
∣∣∣∣ 29,000 20,000

1 1

∣∣∣∣ k

= 20,000i − 29,000j + 9000k = 〈20,000, −29,000, 9000〉
We now use the vector form of the equation of the plane with n = J = 〈20,000, −29,000, 9000〉 and 〈x0, y0, z0〉 = r =
〈29,000, 20,000, 0〉, to obtain the following equation:

〈29,000, −20,000, 9000〉 · 〈x, y, z〉 = 〈29,000, −20,000, 9000〉 · 〈29,000, 20,000, 9000〉
1000 〈29, −20, 9〉 · 〈x, y, z〉 = 1000 〈29, −20, 9〉 · 〈29,000, 20,000, 9000〉

29x − 20y + 9z = 841,000 − 400,000 + 81,000 = 0

29x − 20y + 9z − 522,000 = 0

The plane containing the satellite’s orbit is, thus:

P = {(x, y, z) : 29x − 20y + 9z − 522,000 = 0}

12. Assume that the earth’s orbit is circular of radius R = 150 × 106 km (it is nearly circular with eccentricity e = 0.017).
Find the rate at which the earth’s radial vector sweeps out area in units of km2/s. What is the magnitude of the vector
J = r × r′ for the earth (in units of km2 per second)?

solution The rate at which the earth’s radial vector sweeps out area is

dA

dt
= 1

2
‖J‖; J = r(t) × r′(t) (1)

Since J is a constant vector, its length is constant. Moreover, if we assume that the orbit is circular then r(t) lies on a
circle, and therefore r(t) and r′(t) are orthogonal. Using properties of the cross product we get:

‖J‖ = ‖r(t) × r′(t)‖ = ‖r(t)‖‖r′(t)‖ = R‖r′(t)‖ = const

We conclude that the speed v = ‖r′(t)‖ is constant. We find the speed using the following equality:

2πR = vT ⇒ v = 2πR

T
.

Therefore,

‖J‖ = R · 2πR

T
= 2πR2

T
.

Substituting in (1) we get:

dA

dt
= 1

2
· 2πR2

T
= πR2

T
.

For R = 150 × 106 km and T = 365 × 24 × 3600 = 31,536,000 s we obtain:

‖J‖ = 2π · (150 · 106)2

31,536,000
= 4.483 × 109 km2/s

dA

dt
= 2.241 × 109 km2/s

Exercises 13–19: The perihelion and aphelion are the points on the orbit closest to and farthest from the sun, respectively
(Figure 8). The distance from the sun at the perihelion is denoted rper and the speed at this point is denoted vper . Similarly,
we write rap and vap for the distance and speed at the aphelion. The semimajor axis is denoted a.

F2
F1

y

x
O

Semimajor axis

Aphelion

Perihelion

vperr

vap

a

FIGURE 8 r and v = r′ are perpendicular at the perihelion and aphelion.
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13. Use the polar equation of an ellipse

r = p

1 + e cos θ

to show that rper = a(1 − e) and rap = a(1 + e). Hint: Use the fact that rper + rap = 2a.

solution We use the polar equation of the elliptic orbit:

r = p

1 + e cos θ
(1)

Apogee Perigee
F1F2

rap rper

r

At the perigee, θ = 0 and at the apogee θ = π . Substituting these values in (1) gives the distances rper and rap respectively.
That is,

rper = p

1 + e cos θ
= p

1 + e
(2)

rap = p

1 + e cos π
= p

1 − e
(3)

To obtain the solutions in terms of a rather than p, we notice that:

rper + rap = 2a

Hence:

2a = p

1 + e
+ p

1 − e
= p(1 − e) + p(1 + e)

(1 + e)(1 − e)
= 2p

(1 + e)(1 − e)

yielding

p = a(1 + e)(1 − e)

Substituting in (2) and (3) we obtain:

rper = a(1 + e)(1 − e)

1 + e
= a(1 − e)

rap = a(1 + e)(1 − e)

1 − e
= a(1 + e)

14. Use the result of Exercise 13 to prove the formulas

e = rap − rper

rap + rper
, p = 2raprper

rap + rper

solution In Exercise 13 we showed that:

rper = a(1 − e) , rap = a(1 + e)

Solving for a we get:

a = rper

1 − e
, a = rap

1 + e

We equate the two expressions and solve for e to obtain:

rper

1 − e
= rap

1 + e

(1 + e)rper = (1 − e)rap

rper + erper = rap − erap

e(rper + rap) = rap − rper ⇒ e = rap − rper

rap + rper

To show the equality for p we use the polar equation r = p
1+e cos θ

. At the perigee θ = 0 and at the apogee θ = π , hence,

rper = p

1 + e cos θ
= p

1 + e
, rap = p

1 + e cos π
= p

1 − e
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By these equalities we get:

rper = p

1 + e
⇒ 1 + e = p

rper
⇒ e = p

rper
− 1

rap = p

1 − e
⇒ 1 − e = p

rap
⇒ e = 1 − p

rap

We equate the two expressions for e and solve for p. This gives:

p

rper
− 1 = 1 − p

rap

p

(
1

rper
+ 1

rap

)
= 2

p
rap + rper

rper · rap
= 2 ⇒ p = 2raprper

rap + rper

15. Use the fact that J = r × r′ is constant to prove

vper(1 − e) = vap(1 + e)

Hint: r is perpendicular to r′ at the perihelion and aphelion.

solution Since the vector J(t) = r(t) × r′(t) is constant, it is the same vector at the perigee and at the apogee, hence
we may equate the length of J(t) at these two points. Since at the perigee and at the apogee r(t) and r′(t) are orthogonal
we have by properties of the cross product:

‖rap × r′
ap‖ = ‖rap‖‖r′

ap‖ = rapvap

‖rper × r′
per‖ = ‖rper‖‖r′

per‖ = rpervper

Equating the two values gives:

rapvap = rpervper (1)

In Exercise 13 we showed that rper = a(1 − e) and rap = a(1 + e). Substituting in (1) we obtain:

a(1 + e)vap = a(1 − e)vper

(1 + e)vap = (1 − e)vper

16. Compute rper and rap for the orbit of Mercury, which has eccentricity e = 0.244 (see the table in Exercise 1 for the
semimajor axis).

solution The length of the semi-major axis of the orbit of mercury is a = 5.79 · 107 km. We substitute a and e = 0.244
in the formulas for rper and rap obtained in Exercise 13, to obtain the shortest and longest distances respectively. This
gives:

rper = a(1 − e) = 5.79 · 107(1 − 0.244) = 4.377 · 107 km

rap = a(1 + e) = 5.79 · 107(1 + 0.244) = 7.203 · 107 km.

17. Conservation of Energy The total mechanical energy (kinetic energy plus potential energy) of a planet of mass m

orbiting a sun of mass M with position r and speed v = ‖r′‖ is

E = 1

2
mv2 − GMm

‖r‖ 8

(a) Prove the equations

d

dt

1

2
mv2 = v · (ma),

d

dt

GMm

‖r‖ = v ·
(

−GMm

‖r‖3
r
)

(b) Then use Newton’s Law to show that E is conserved—that is,
dE

dt
= 0.

solution We start by observing that since ‖r‖2 = r · r, we have (using Eq. (4) in Theorem 3, Section 13.2)

d

dt
‖r‖2 = 2‖r‖ d

dt
‖r‖, and

d

dt
‖r‖2 = d

dt
r · r = 2r · r′
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Equating these two expressions gives

d

dt
‖r‖ = r · r′

‖r‖ (1)

(a) Applying (1) to r′, we have

d

dt

1

2
mv2 = d

dt

1

2
m‖r′‖2 = m‖r′‖ d

dt
‖r′‖ = m‖r′‖ r′ · r′′

‖r′‖ = r′ · (mr′′) = v · (ma)

proving half of formula 2. For the other half, note that again by (1),

d

dt

GMm

‖r‖ = GMm
d

dt
‖r‖−1 = −GMm‖r‖−2 d

dt
‖r‖ = −GMm‖r‖−2 · r · r′

‖r‖

= r′ ·
(

−GMm

‖r‖3

)
r = v ·

(
−GMm

‖r‖3
r
)

(b) We have by part (a)

dE

dt
= d

dt

(
1

2
mv2

)
− d

dt

(
GMm

‖r‖
)

= v · (ma) + v ·
(

GMm

‖r‖3
r
)

= v ·
(

ma + GMm

‖r‖3
r
)

(2)

By Newton’s Law, formula (1) in the text,

r′′ = − GM

‖r‖2
er = − GM

‖r‖3
r (3)

Substituting (3) into (2), and noting that v = r′ and a = r′′ gives

dE

dt
= r′ ·

(
mr′′ + GMm

‖r‖3
r
)

= r′ ·
(

−GMm

‖r‖3
r + GMm

‖r‖3
r
)

= 0

18. Show that the total energy [Eq. (8)] of a planet in a circular orbit of radius R is E = −GMm

2R
. Hint: Use Exercise 9.

solution The total energy of a planet in a circular orbit of radius R is

E = 1

2
mv2 − GMm

‖r‖ = 1

2
mv2 − GMm

R
(1)

In Exercise 9 we showed that

v2 = GM

R
(2)

Substituting (2) in (1) we obtain:

E = 1

2
m

GM

R
− GMm

R
= −1

2

GMm

R
= −GMm

2R
.

19. Prove that vper =
√(

GM

a

)
1 + e

1 − e
as follows:

(a) Use Conservation of Energy (Exercise 17) to show that

v2
per − v2

ap = 2GM
(
r−1
per − r−1

ap
)

(b) Show that r−1
per − r−1

ap = 2e

a(1 − e2)
using Exercise 13.

(c) Show that v2
per − v2

ap = 4
e

(1 + e)2
v2

per using Exercise 15. Then solve for vper using (a) and (b).

solution
(a) The total mechanical energy of a planet is constant. That is,

E = 1

2
mv2 − GMm

‖r‖ = const.

Therefore, E has equal values at the perigee and apogee. Hence,

1

2
mv2

per − GMm

rper
= 1

2
mv2

ap − GMm

rap

1

2
m

(
v2

per − v2
ap

)
= GMm

(
1

rper
− 1

rap

)

v2
per − v2

ap = 2GM
(
r−1
per − r−1

ap

)



April 19, 2011

S E C T I O N 13.6 Planetary Motion According to Kepler and Newton (LT SECTION 14.6) 605

(b) In Exercise 13 we showed that rper = a(1 − e) and rap = a(1 + e). Therefore,

r−1
per − r−1

ap = 1

a(1 − e)
− 1

a(1 + e)
= 1 + e − (1 − e)

a(1 − e)(1 + e)
= 2e

a(1 − e2)

(c) In Exercise 15 we showed that

vper(1 − e) = vap(1 + e)

Hence,

vap = 1 − e

1 + e
vper

We compute the following difference,

v2
per − v2

ap = v2
per −

(
1 − e

1 + e
vper

)2
= v2

per

(
1 −

(
1 − e

1 + e

)2
)

= v2
per

(1 + e)2 − (1 − e)2

(1 + e)2
= v2

per
1 + 2e + e2 − (1 − 2e + e2)

(1 + e)2
= 4

e

(1 + e)2
v2

per

We combine this equality with the equality in part (a) to write

4e

(1 + e)2
v2

per = 2GM
(
r−1
per − r−1

ap

)

Replacing the difference in the right-hand side by 2e
a
(
1−e2

) (from part (b)) and solving for vper we obtain:

4e

(1 + e)2
v2

per = 2GM · 2e

a(1 − e2)

v2
per = 4GMe

a(1 − e)(1 + e)
· (1 + e)2

4e
= GM(1 + e)

a(1 − e)

or,

vper =
√

GM

a

1 + e

1 − e

20. Show that a planet in an elliptical orbit has total mechanical energy E = −GMm

2a
, where a is the semimajor axis.

Hint: Use Exercise 19 to compute the total energy at the perihelion.

solution The total energy of a planet of mass m orbiting a sun of mass M with position r and speed v = ‖r′‖ is (given
in Exercise 17):

E = 1

2
mv2 − GMm

‖r‖ (1)

The energy E is conserved, so we can compute it using any point on the elliptical orbit, for instance the perihelion. By
Exercise 13 and Exercise 19 we have:

rper = a(1 − e)

vper =
√

GM

a

1 + e

1 − e
(2)

Substituting (2) into (1) gives:

E = 1

2
m · GM

a

1 + e

1 − e
− GMm

a(1 − e)
= GMm

a(1 − e)

(
1 + e

2
− 1

)
= GMm

a(1 − e)

1 + e − 2

2

= GMm

a(1 − e)

e − 1

2
= −GMm

2a

21. Prove that v2 = GM

(
2

r
− 1

a

)
at any point on an elliptical orbit, where r = ‖r‖, v is the velocity, and a is the

semimajor axis of the orbit.

solution The total energy E = 1
2mv2 − GMm

‖r‖ is conserved, and in Exercise 20 we showed that its constant value is

−GMm
2a

. We obtain the following equality:
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1

2
mv2 − GMm

r
= −GMm

2a

Algebraic manipulations yield:

v2 = 2GM

r
− GM

a
= GM

(
2

r
− 1

a

)

22. Two space shuttles A and B orbit the earth along the solid trajectory in Figure 9. Hoping to catch up to B,
the pilot of A applies a forward thrust to increase her shuttle’s kinetic energy. Use Exercise 20 to show that shuttle A will
move off into a larger orbit as shown in the figure. Then use Kepler’s Third Law to show that A’s orbital period T will
increase (and she will fall farther and farther behind B)!

Earth

A
B

FIGURE 9

solution In Exercise 20 we showed that the total mechanical energy E of a planet in an elliptical orbit with semimajor
axis a is

E = −GMm

2a
(1)

Since E is increased, a is increased, resulting in moving to an elliptic orbit as the dashed orbit in the figure. Now, by
Kepler’s Third Law,

T 2 =
(

4π2

GM

)
a3

We conclude that the orbital period T of shuttle A is also increasing, which means that A will get further and further
behind B.

Further Insights and Challenges
Exercises 23 and 24 prove Kepler’s Third Law. Figure 10 shows an elliptical orbit with polar equation

r = p

1 + e cos θ

where p = J 2/k. The origin of the polar coordinates is at F1. Let a and b be the semimajor and semiminor axes,
respectively.

F2 F1

B

A

Semimajor axis

Semiminor axis

a

a a

b

C

FIGURE 10

23. This exercise shows that b = √
pa.

(a) Show that CF1 = ae. Hint: rper = a(1 − e) by Exercise 13.

(b) Show that a = p

1 − e2
.

(c) Show that F1A + F2A = 2a. Conclude that F1B + F2B = 2a and hence F1B = F2B = a.

(d) Use the Pythagorean Theorem to prove that b = √
pa.
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solution

(a) Since CF2 = AF1, we have:

F2A = CA − CF2 = 2a − F1A

Therefore,

F1A + F2A = 2a (1)

0
C A

B

F2 F1

The ellipse is the set of all points such that the sum of the distances to the two foci F1 and F2 is constant. Therefore,

F1A + F2A = F1B + F2B (2)

Combining (1) and (2), we obtain:

F1B + F2B = 2a (3)

The triangle F2BF1 is isosceles, hence F2B = F1B and so we conclude that

F1B = F2B = a

(b) The polar equation of the ellipse, where the focus F1 is at the origin is

r = p

1 + e cos θ

0
C A

r

B

F2 F1

The point A corresponds to θ = 0, hence,

F1A = p

1 + e cos 0
= p

1 + e
(4)

The point C corresponds to θ = π hence,

F1C = p

1 + e cos π
= p

1 − e

We now find F2A. Using the equality CF2 = AF1 we get:

F2A = F2F1 + F1A = F2F1 + F2C = F1C = p

1 − e

That is,

F2A = p

1 − e
(5)

Combining (1), (4), and (5) we obtain:

p

1 + e
+ p

1 − e
= 2a

Hence,

a = 1

2

(
p

1 + e
+ p

1 − e

)
= p(1 − e) + p(1 + e)

2(1 + e)(1 − e)
= 2p

2
(
1 − e2

) = p

1 − e2
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(c) We use Pythagoras’ Theorem for the triangle OBF1:

OB2 + OF 2
1 = BF 2

1 (6)

0
A

B

b

F1

a

Using (4) we have

OF1 = a − F1A = a − p

1 + e

Also OB = b and BF1 = a, hence (6) gives:

b2 +
(

a − p

1 + e

)2
= a2

We solve for b:

b2 + a2 − 2ap

1 + e
+ p2

(1 + e)2
= a2

b2 − 2ap

1 + e
+ p2

(1 + e)2
= 0

In part (b) we showed that a = p

1−e2 . We substitute to obtain:

b2 − 2p

1 + e
· p

1 − e2
+ p2

(1 + e)2
= 0

b2 = 2p2

(1 + e)2(1 − e)
− p2

(1 + e)2
= 2p2 − p2(1 − e)

(1 + e)2(1 − e)

= p2(1 + e)

(1 + e)2(1 − e)
= p2

1 − e2

Hence,

b = p√
1 − e2

Since 1 − e2 = p
a we also have

b = p√
p
a

= √
ap

24. The area A of the ellipse is A = πab.

(a) Prove, using Kepler’s First Law, that A = 1
2JT , where T is the period of the orbit.

(b) Use Exercise 23 to show that A = (π
√

p)a3/2.

(c) Deduce Kepler’s Third Law: T 2 = 4π2

GM
a3.

solution
(a) The area of an ellipse with semimajor and semiminor axes a , b respectively is,

A = πab (1)

In Exercise 23 we showed that b = √
pa. Substituting in (1) gives:

A = πa
√

pa = (
π

√
p
)
a3/2

(b) The magnitude 1
2‖J‖ is the rate at which the position vector r(t) sweeps out areas. Since this rate is constant, the

total area is obtained by multiplying the rate by the period T . That is,

A = 1

2
‖J‖T
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(c) Equating the expressions for A obtained in parts (a) and (b), (recall that p = ‖J‖2

GM
) we obtain:

(
π

√
p
)
a3/2 = 1

2
‖J‖T

π‖J‖√
GM

a3/2 = 1

2
‖J‖T

T = 2πa3/2
√

GM
⇒ T 2 = 4π2

GM
a3

25. According to Eq. (7) the velocity vector of a planet as a function of the angle θ is

v(θ) = k

J
eθ + c

Use this to explain the following statement: As a planet revolves around the sun, its velocity vector traces out a circle
of radius k/J with center c (Figure 11). This beautiful but hidden property of orbits was discovered by William Rowan
Hamilton in 1847.

c

B
v(θ)

v(θ)

D

Planetary orbit

C

A

Velocity circle

B

A

C D
θ

θ

FIGURE 11 The velocity vector traces out a circle as the planet travels along its orbit.

solution Recall that eθ = 〈− sin θ, cos θ〉, so that

v(θ) = k

J
〈− sin θ, cos θ〉 + c = k

J
〈sin(−θ), cos(−θ)〉 + c

The first term is obviously a clockwise (due to having −θ instead of θ ) parametrization of a circle of radius k/J centered
at the origin. It follows that v(θ) is a clockwise parametrization of a circle of radius k/J and center c.

CHAPTER REVIEW EXERCISES

1. Determine the domains of the vector-valued functions.

(a) r1(t) = 〈
t−1, (t + 1)−1, sin−1 t

〉
(b) r2(t) = 〈√

8 − t3, ln t, e
√

t
〉

solution

(a) We find the domain of r1(t) = 〈
t−1, (t + 1)−1, sin−1 t

〉
. The function t−1 is defined for t �= 0. (t + 1)−1 is defined

for t �= −1 and sin−1 t is defined for −1 ≤ t ≤ 1. Hence, the domain of r1(t) is defined by the following inequalities:

t �= 0

t �= −1 ⇒ −1 < t < 0

−1 ≤ t ≤ 1

or 0 < t ≤ 1

(b) We find the domain of r2(t) = 〈√
8 − t3, ln t, e

√
t
〉
. The domain of

√
8 − t3 is 8 − t3 ≥ 0. The domain of ln t is

t > 0 and e
√

t is defined for t ≥ 0. Hence, the domain of r2(t) is defined by the following inequalities:

8 − t3 ≥ 0

t > 0

t ≥ 0

⇒ t3 ≤ 8

t > 0
⇒ 0 < t ≤ 2

2. Sketch the paths r1(θ) = 〈θ, cos θ〉 and r2(θ) = 〈cos θ, θ〉 in the xy-plane.

solution The parametric equations of r1(θ) = (θ, cos θ) are x = θ , y = cos θ . Therefore, y = cos x. The parametric
equations of r2(θ) = (cos θ, θ) are x = cos θ , y = θ . Therefore, x = cos y. We can sketch the graphs of r1(θ) and r2(θ)

in the xy-plane, using the explicit relations between y and x for the two parametric representations. We obtain:
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r1(  ) = (   , cos   ), y = cos x

2 64−2−4−6

2

1

−2

−1

x
1 32−1−2−3

4

2

−4

−2

x

y

r2(  ) = (cos   ,   ), x = cos y

y

As seen in the graph, although r2(θ) = (cos θ, θ) is a function of θ , y is not a function of x.

3. Find a vector parametrization of the intersection of the surfaces x2 + y4 + 2z3 = 6 and x = y2 in R3.

solution We need to find a vector parametrization r(t) = 〈x(t), y(t), z(t)〉 for the intersection curve. Using t = y as

a parameter, we have x = t2 and y = t . We substitute in the equation of the surface x2 + y4 + 2z3 = 6 and solve for z

in terms of t . This gives:

t4 + t4 + 2z3 = 6

2t4 + 2z3 = 6

z3 = 3 − t4 ⇒ z = 3
√

3 − t4

We obtain the following parametrization of the intersection curve:

r(t) = 〈
t2, t,

3
√

3 − t4
〉
.

4. Find a vector parametrization using trigonometric functions of the intersection of the plane x + y + z = 1 and the

elliptical cylinder
(y

3

)2 +
( z

8

)2 = 1 in R3.

solution We need to find a vector parametrization r(t) = 〈x(t), y(t), z(t)〉 for the intersection curve. We parametrize
the elliptical cylinder by:

x = x, y = 3 sin t, z = 8 cos t

We substitute in the equation of the plane x + y + z = 1 and solve for x in terms of t . This gives:

x + 3 sin t + 8 cos t = 1 ⇒ x = 1 − 3 sin t − 8 cos t

We obtain the following parametrization of the intersection curve:

r(t) = 〈1 − 3 sin t − 8 cos t, 3 sin t, 8 cos t〉

In Exercises 5–10, calculate the derivative indicated.

5. r′(t), r(t) = 〈
1 − t, t−2, ln t

〉
solution We use the Theorem on Componentwise Differentiation to compute the derivative r′(t). We get

r′(t) = 〈
(1 − t)′, (t−2)′, (ln t)′

〉 =
〈
−1, −2t−3,

1

t

〉

6. r′′′(t), r(t) = 〈
t3, 4t2, 7t

〉
solution We use the Theorem on Componentwise Differentiation to find r′(t):

r′(t) = 〈
(t3)′, (4t2)′, (7t)′

〉 = 〈
3t2, 8t, 7

〉
We differentiate r′(t) componentwise to find r′′(t):

r′′(t) = 〈6t, 8, 0〉
Differentiating r′′(t) componentwise gives r′′′(t):

r′′′(t) = 〈6, 0, 0〉



April 19, 2011

Chapter Review Exercises 611

7. r′(0), r(t) = 〈
e2t , e−4t2

, e6t
〉

solution We differentiate r(t) componentwise to find r′(t):

r′(t) = 〈
(e2t )

′
, (e−4t2

)
′
, (e6t )

′〉 = 〈
2e2t , −8te−4t2

, 6e6t
〉

The derivative r′(0) is obtained by setting t = 0 in r′(t). This gives

r′(0) = 〈
2e2·0, −8 · 0e−4·02

, 6e6·0〉 = 〈2, 0, 6〉

8. r′′(−3), r(t) = 〈
t−2, (t + 1)−1, t3 − t

〉
solution We differentiate componentwise to find r′(t):

r′(t) =
〈
−2t−3, −(t + 1)−2, 3t2 − 1

〉
We differentiate componentwise to find r′′(t) and evaluate at t = −3:

r′′(t) =
〈
6t−4, 2(t + 1)−3, 6t

〉
, ⇒ r′′(−3) =

〈
2

27
, −1

4
, −18

〉

9.
d

dt
et

〈
1, t, t2〉

solution Using the Product Rule for differentiation gives

d

dt
et

〈
1, t, t2〉 = et d

dt

〈
1, t, t2〉 + (

et
)′〈1, t, t2〉 = et 〈0, 1, 2t〉 + et

〈
1, t, t2〉

= et
(
〈0, 1, 2t〉 + 〈

1, t, t2〉) = et
〈
1, 1 + t, 2t + t2〉

10.
d

dθ
r(cos θ), r(s) = 〈

s, 2s, s2〉
solution We use the Chain Rule to compute the derivative. That is,

d

dθ
r(cos θ) =

(
dr
ds

∣∣∣∣
s=cos θ

)
· d

dθ
(cos θ) = − sin θ · 〈1, 2, 2s〉

∣∣∣∣
s=cos θ

= − sin θ · 〈1, 2, 2 cos θ〉 = 〈− sin θ, −2 sin θ, −2 sin θ cos θ〉
= − 〈sin θ, 2 sin θ, sin 2θ〉

In Exercises 11–14, calculate the derivative at t = 3, assuming that

r1(3) = 〈1, 1, 0〉 , r2(3) = 〈1, 1, 0〉
r′

1(3) = 〈0, 0, 1〉 , r′
2(3) = 〈0, 2, 4〉

11.
d

dt
(6r1(t) − 4 · r2(t))

solution Using Differentiation Rules we obtain:

d

dt
(6r1(t) − 4r2(t))

∣∣∣∣
t=3

= 6r′
1(3) − 4r′

2(3) = 6 · 〈0, 0, 1〉 − 4 · 〈0, 2, 4〉

= 〈0, 0, 6〉 − 〈0, 8, 16〉 = 〈0, −8, −10〉

12.
d

dt

(
etr2(t)

)
solution Using the Product Rule gives:

d

dt

(
etr2(t)

) = etr′
2(t) + (

et
)′r2(t) = et

(
r′

2(t) + r2(t)
)

Setting t = 3 we get:

d

dt

(
etr2(t)

)∣∣∣∣
t=3

= e3 (
r′

2(3) + r2(3)
) = e3(〈0, 2, 4〉 + 〈1, 1, 0〉) = e3 〈1, 3, 4〉
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13.
d

dt

(
r1(t) · r2(t)

)
solution Using Product Rule for Dot Products we obtain:

d

dt
r1(t) · r2(t) = r1(t) · r′

2(t) + r′
1(t) · r2(t)

Setting t = 3 gives:

d

dt
r1(t) · r2(t)

∣∣∣∣
t=3

= r1(3) · r′
2(3) + r′

1(3) · r2(3) = 〈1, 1, 0〉 · 〈0, 2, 4〉 + 〈0, 0, 1〉 · 〈1, 1, 0〉 = 2 + 0 = 2

14.
d

dt

(
r1(t) × r2(t)

)
solution We use the Product Rule for Cross Product to write:

d

dt
r1(t) × r2(t) = r1(t) × r′

2(t) + r′
1(t) × r2(t)

Setting t = 3 we obtain:

d

dt
r1(t) × r2(t)

∣∣∣∣
t=3

= r1(3) × r′
2(3) + r′

1(3) × r2(3) = 〈1, 1, 0〉 × 〈0, 2, 4〉 + 〈0, 0, 1〉 × 〈1, 1, 0〉

=
∣∣∣∣∣∣

i j k
1 1 0
0 2 4

∣∣∣∣∣∣ +
∣∣∣∣∣∣

i j k
0 0 1
1 1 0

∣∣∣∣∣∣ = (4i − 4j + 2k) + (−i + j)

= 3i − 3j + 2k = 〈3, −3, 2〉

15. Calculate
∫ 3

0

〈
4t + 3, t2, −4t3〉 dt .

solution By the definition of vector-valued integration, we have

∫ 3

0

〈
4t + 3, t2, −4t3

〉
dt =

〈∫ 3

0
(4t + 3) dt,

∫ 3

0
t2 dt,

∫ 3

0
−4t3 dt

〉
(1)

We compute the integrals on the right-hand side:

∫ 3

0
(4t + 3) dt = 2t2 + 3t

∣∣∣∣3
0

= 2 · 9 + 3 · 3 − 0 = 27

∫ 3

0
t2 dt = t3

3

∣∣∣∣3
0

= 33

3
= 9

∫ 3

0
−4t3 dt = −t4

∣∣∣∣3
0

= −34 = −81

Substituting in (1) gives the following integral:

∫ 3

0

〈
4t + 3, t2, −4t3〉 dt = 〈27, 9, −81〉

16. Calculate
∫ π

0

〈
sin θ, θ, cos 2θ

〉
dθ .

solution By the definition of vector-valued integration, we have

∫ π

0
〈sin θ, θ, cos 2θ〉 dθ =

〈∫ π

0
sin θ dθ,

∫ π

0
θ dθ,

∫ π

0
cos 2θ dθ

〉
(1)

We compute the integrals on the right hand-side:∫ π

0
sin θ dθ = − cos θ

∣∣∣∣π
0

= −(cos π − cos 0) = −(−1 − 1) = 2

∫ π

0
θ dθ = 1

2
θ2

∣∣∣∣π
0

= π2

2
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∫ π

0
cos 2θ dθ = 1

2
sin 2θ

∣∣∣∣π
0

= 1

2
(sin 2π − sin 0) = 0

Substituting in (1) gives the following integral:

∫ π

0
〈sin θ, θ, cos 2θ〉 dθ =

〈
2,

π2

2
, 0

〉

17. A particle located at (1, 1, 0) at time t = 0 follows a path whose velocity vector is v(t) = 〈
1, t, 2t2〉. Find the particle’s

location at t = 2.

solution We first find the path r(t) by integrating the velocity vector v(t):

r(t) =
∫ 〈

1, t, 2t2
〉

dt =
〈∫

1 dt,

∫
t dt,

∫
2t2 dt

〉
=

〈
t + c1,

1

2
t2 + c2,

2

3
t3 + c3

〉

Denoting by c = 〈c1, c2, c3〉 the constant vector, we obtain:

r(t) =
〈
t,

1

2
t2,

2

3
t3

〉
+ c (1)

To find the constant vector c, we use the given information on the initial position of the particle. At time t = 0 it is at
the point (1, 1, 0). That is, by (1):

r(0) = 〈0, 0, 0〉 + c = 〈1, 1, 0〉
or,

c = 〈1, 1, 0〉
We substitute in (1) to obtain:

r(t) =
〈
t,

1

2
t2,

2

3
t3

〉
+ 〈1, 1, 0〉 =

〈
t + 1,

1

2
t2 + 1,

2

3
t3

〉

Finally, we substitute t = 2 to obtain the particle’s location at t = 2:

r(2) =
〈
2 + 1,

1

2
· 22 + 1,

2

3
· 23

〉
=

〈
3, 3,

16

3

〉

At time t = 2 the particle is located at the point (
3, 3,

16

3

)

18. Find the vector-valued function r(t) = 〈
x(t), y(t)

〉
in R2 satisfying r′(t) = −r(t) with initial conditions r(0) = 〈1, 2〉.

solution We rewrite the differential equation by components as:

〈
x′(t), y′(t)

〉 = − 〈x(t), y(t)〉 or
〈
x′(t), y′(t)

〉 = 〈−x(t), −y(t)〉
Equating corresponding components, we obtain:

x′(t) = −x(t)

y′(t) = −y(t)
⇒ x′(t)

x(t)
= −1,

y′(t)
y(t)

= −1

By integration we get ln(x(t)) = −t + A, ln(y(t)) = −t + B or:

x(t) = ae−t

y(t) = be−t
where a = eA, b = eB

By the given information r(0) = 〈1, 2〉. Therefore,

x(0) = ae−0 = a = 1

y(0) = be−0 = b = 2
⇒ a = 1, b = 2

We obtain the following vector:

r(t) = 〈x(t), y(t)〉 = 〈
ae−t , be−t

〉 = 〈
e−t , 2e−t

〉
.
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19. Calculate r(t) assuming that

r′′(t) =
〈
4 − 16t, 12t2 − t

〉
, r′(0) = 〈1, 0〉 , r(0) = 〈0, 1〉

solution Using componentwise integration we get:

r′(t) =
∫ 〈

4 − 16t, 12t2 − t
〉

dt

=
〈∫

4 − 16t dt,

∫
12t2 − t dt

〉

=
〈

4t − 8t2, 4t3 − t2

2

〉
+ c1

Then using the initial condition r′(0) = 〈1, 0〉 we get:

r′(0) = 〈1, 0〉 = c1

so then

r′(t) =
〈

4t − 8t2, 4t3 − t2

2

〉
+ 〈1, 0〉 =

〈
4t − 8t2 + 1, 4t3 − t2

2

〉

Then integrating componentwise once more we get:

r(t) =
∫ 〈

4t − 8t2 + 1, 4t3 − t2

2

〉
dt

=
〈∫

4t − 8t2 + 1 dt,

∫
4t3 − t2

2
dt

〉

=
〈

2t2 − 8

3
t3 + t, t4 − t3

6

〉
+ c2

Using the initial condition r(0) = 〈0, 1〉 we have:

r(0) = 〈0, 1〉 = c2

Therefore,

r(t) =
〈

2t2 − 8

3
t3 + t, t4 − t3

6

〉
+ 〈0, 1〉 =

〈
2t2 − 8

3
t3 + t, t4 − t3

6
+ 1

〉

20. Solve r′′(t) =
〈
t2 − 1, t + 1, t3

〉
subject to the initial conditions r(0) = 〈1, 0, 0〉 and r′(0) = 〈−1, 1, 0〉

solution Using integration componentwise we get:

r′(t) =
∫ 〈

t2 − 1, t + 1, t3
〉

dt

=
〈∫

t2 − 1 dt,

∫
t + 1 dt,

∫
t3 dt

〉

=
〈

t3

3
− t,

t2

2
+ t,

t4

4

〉
+ c1

Using the initial condition r′(1) = 〈−1, 1, 0〉 we get:

r′(1) = 〈−1, 1, 0〉 =
〈
−2

3
,

3

2
,

1

4

〉
+ c1

so then, c1 =
〈
− 1

3 , − 1
2 , − 1

4

〉
and

r′(t) =
〈

t3

3
− t,

t2

2
+ t,

t4

4

〉
+

〈
−1

3
, −1

2
, −1

4

〉
=

〈
t3

3
− t − 1

3
,
t2

2
+ t − 1

2
,
t4

4
− 1

4

〉
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Using integration componentwise once more we get:

r(t) =
∫ 〈

t3

3
− t − 1

3
,
t2

2
+ t − 1

2
,
t4

4
− 1

4

〉
dt

=
〈∫

t3

3
− t − 1

3
dt,

∫
t2

2
+ t − 1

2
dt,

∫
t4

4
− 1

4
dt

〉

=
〈

t4

12
− t2

2
− t

3
,
t3

6
+ t2

2
− t

2
,

t5

20
− t

4

〉
+ c2

Using the initial condition, r(1) = 〈1, 0, 0〉 we get:

r(1) = 〈1, 0, 0〉 =
〈
−3

4
,

1

6
, −1

5

〉
+ c2

and

c2 =
〈

7

4
, −1

6
,

1

5

〉

Therefore,

r(t) =
〈

t4

12
− t2

2
− t

3
,
t3

6
+ t2

2
− t

2
,

t5

20
− t

4

〉
+

〈
7

4
, −1

6
,

1

5

〉

=
〈

t4

12
− t2

2
− t

3
+ 7

4
,
t3

6
+ t2

2
− t

2
− 1

6
,

t5

20
− t

4
+ 1

5

〉

21. Compute the length of the path

r(t) = 〈
sin 2t, cos 2t, 3t − 1

〉
for 1 ≤ t ≤ 3

solution We use the formula for the arc length:

s =
∫ 3

1
‖r′(t)‖ dt (1)

We compute the derivative vector r′(t) and its length:

r′(t) = 〈2 cos 2t, −2 sin 2t, 3〉

‖r′(t)‖ =
√

(2 cos 2t)2 + (−2 sin 2t)2 + 32 =
√

4 cos22t + 4 sin2 2t + 9

=
√

4
(

cos2 2t + sin2 2t
)

+ 9 = √
4 · 1 + 9 = √

13

We substitute in (1) and compute the integral to obtain the following length:

s =
∫ 3

1

√
13 dt = √

13t

∣∣∣∣3
1

= 2
√

13.

22. Express the length of the path r(t) = 〈
ln t, t, et

〉
for 1 ≤ t ≤ 2 as a definite integral, and use a computer

algebra system to find its value to two decimal places.

solution By the arc length formula we have

s =
∫ 2

1
‖r′(t)‖ dt (1)

We compute the vector r′(t) and its length:

r′(t) =
〈

1

t
, 1, et

〉

‖r′(t)‖ =
√(

1

t

)2
+ 12 + (

et
)2 =

√
t−2 + 1 + e2t
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Combining with (1) we get:

s =
∫ 2

1

√
t−2 + 1 + e2t dt

Using a CAS we obtain the following approximation:

s ≈ 4.84677

23. Find an arc length parametrization of a helix of height 20 cm that makes four full rotations over a circle of radius
5 cm.

solution Since the radius is 5 cm and the height is 20 cm, the helix is traced by a parametrization of the form:

r(t) = 〈5 cos at, 5 sin at, t〉 , 0 ≤ t ≤ 20

Since the helix makes exactly 4 full rotations, we have:

a · 20 = 4 · 2π ⇒ a = 2π

5

The parametrization of the helix is, thus:

r(t) =
〈
5 cos

2πt

5
, 5 sin

2πt

5
, t

〉
, 0 ≤ t ≤ 20

The helix is shown in the following figure:

0 5
5

0

20

15

10

5

0

5

5

To find the arc length parametrization for the helix, we use:

s(t) =
∫ t

0
‖r′(u)‖ du (1)

We find r′(t) and its length:

r′(t) =
〈
−5 · 2π

5
sin

2πt

5
, 5 · 2π

5
cos

2πt

5
, 1

〉
=

〈
−2π sin

2πt

5
, 2π cos

2πt

5
, 1

〉

‖r′(t)‖ =
√

4π2 sin2 2πt

5
+ 4π2 cos2 2πt

5
+ 1 =

√
4π2

(
sin2 2πt

5
+ cos2 2πt

5

)
+ 1 =

√
1 + 4π2

Substituting in (1) we get:

s(t) =
∫ t

0

√
1 + 4π2 du = t

√
1 + 4π2

Therefore, we let s = t
√

1 + 4π2 and thus,

t = s√
1 + 4π2

= g(s)

Thus, we can write

r(s) =
〈

5 cos
sa√

1 + 4π2
, 5 sin

sa√
1 + 4π2

,
s√

1 + 4π2

〉
, 0 ≤ s ≤ 20

√
1 + 4π2 ≈ 127.245
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24. Find the minimum speed of a particle with trajectory r(t) = 〈
t, et−3, e4−t

〉
.

solution The speed of the particle is the following function:

v(t) = ‖r′(t)‖
We compute the derivative vector r′(t) and its length:

r′(t) = d

dt

〈
t, et−3, e4−t

〉 = 〈
1, et−3, −e4−t

〉

‖r′(t)‖ =
√

12 + (et−3)
2 + (−e4−t )

2 =
√

1 + e2t−6 + e8−2t

Therefore:

v(t) =
√

1 + e2t−6 + e8−2t

Since the function f (x) = x2 is increasing for x ≥ 0, v(t) and v2(t) assume their minimum values at the same value of
t . Thus, we minimize the function:

F(t) = v2(t) = 1 + e2t−6 + e8−2t

We compute the critical point by solving F ′(t) = 0. This gives:

F ′(t) = 2e2t−6 − 2e8−2t = 0

e2t−6 = e8−2t

Therefore:

2t − 6 = 8 − 2t

4t = 14 ⇒ t = 7

2

We compute the second derivative and substitute t = 7
2 :

F ′′(t) = 4e2t−6 + 4e8−2t

F ′′
(

7

2

)
= 4e2·(7/2)−6 + 4e8−2·(7/2) = 4e + 4e = 8e > 0

The Second Derivative Test implies that F(t), hence v(t) as well, have a minimum at t = 7
2 . The minimum speed is:

v

(
7

2

)
=

√
1 + e2·(7/2)−6 + e8−2·(7/2) = √

1 + 2e

25. A projectile fired at an angle of 60◦ lands 400 m away. What was its initial speed?

solution Place the projectile at the origin, and let r(t) be the position vector of the projectile.

Step 1. Use Newton’s Law
Gravity exerts a downward force of magnitude mg, where m is the mass of the bullet and g = 9.8 m/s2. In vector

form,

F = 〈0, −mg〉 = m 〈0, −g〉
Newton’s Second Law F = mr′(t) yields m 〈0, −g〉 = mr′′(t) or r′′(t) = 〈0, −g〉. We determine r(t) by integrating
twice:

r′(t) =
∫ t

0
r′′(u) du =

∫ t

0
〈0, −g〉 du = 〈0, −gt〉 + v0

r(t) =
∫ t

0
r′(u) du =

∫ t

0
(〈0, −gu〉 + v0) du =

〈
0, −1

2
gt2

〉
+ tv0 + r0

Step 2. Use the initial conditions
By our choice of coordinates, r0 = 0. The initial velocity v0 has unknown magnitude v0, but we know that it points

in the direction of the unit vector
〈
cos 60◦, sin 60◦〉. Therefore,

v0 = v0
〈
cos 60◦, sin 60◦〉 = v0

〈
1

2
,

√
3

2

〉

r(t) =
〈
0, −1

2
gt2

〉
+ tv0

〈
1

2
,

√
3

2

〉
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Step 3. Solve for v0.
The projectile hits the point 〈400, 0〉 on the ground if there exists a time t such that r(t) = 〈400, 0〉; that is,〈

0, −1

2
gt2

〉
+ tv0

〈
1

2
,

√
3

2

〉
= 〈400, 0〉

Equating components, we obtain

1

2
tv0 = 400, −1

2
gt2 +

√
3

2
tv0 = 0

The first equation yields t = 800
v0

. Now substitute in the second equation and solve, using g = 9.8m/s2:

−4.9

(
800

v0

)2
+

√
3

2

(
800

v0

)
v0 = 0

(
800

v0

)2
= 400

√
3

4.9( v0

800

)2 = 4.9

400
√

3
≈ 0.00707

v2
0 = 4526.42611, v0 ≈ 67.279 m/s

We obtain v0 ≈ 67.279 m/s.

26. A specially trained mouse runs counterclockwise in a circle of radius 0.6 m on the floor of an elevator with speed
0.3 m/s while the elevator ascends from ground level (along the z-axis) at a speed of 12 m/s. Find the mouse’s acceleration
vector as a function of time. Assume that the circle is centered at the origin of the xy-plane and the mouse is at (2, 0, 0)

at t = 0.

solution The x and y coordinates must trace out a circle of radius 0.6 at speed 0.3, starting at x = 2 and y = 0, so it

seems reasonable to choose x(t) = 0.6 cos t√
1.2

and y(t) = 0.6 sin t√
1.2

. Notice that
[
x′(t)

]2 + [
y′(t)

]2 = 0.3, so this

choice of x(t) and y(t) really does trace out a circle with speed 0.3. The z coordinate must give a (vertical) speed of 12,
so z(t) = 12t . Thus, we have

r(t) =
〈
0.6 cos

t√
1.2

, 0.6 sin
t√
1.2

, 12t

〉
so

r′(t) =
〈
− 0.6√

1.2
sin

t√
1.2

,
0.6√
1.2

cos
t√
1.2

, 12

〉

and

r′′(t) =
〈
−1

2
cos

t√
1.2

, −1

2
sin

t√
1.2

, 0

〉
,

which is the acceleration vector.

27. During a short time interval [0.5, 1.5], the path of an unmanned spy plane is described by

r(t) =
〈
−100

t2
, 7 − t, 40 − t2

〉

A laser is fired (in the tangential direction) toward the yz-plane at time t = 1. Which point in the yz-plane does the laser
beam hit?

solution Notice first that by differentiating we get the tangent vector:

r′(t) =
〈

200

t3
, −1, −2t

〉
, ⇒ r′(1) = 〈200, −1, −2〉

and the tangent line to the path would be:

�(s) = r(1) + sr′(1) = 〈−100, 6, 39〉 + s 〈200, −1, −2〉 = 〈−100 + 200s, 6 − s, 39 − 2s〉
If the laser is fired in the tangential direction toward the yz-plane means that the x-coordinate will be zero - this is when
s = 1/2. Therefore,

�(1/2) = 〈0, 11/2, 38〉
Hence, the laser beam will hit the point (0, 11/2, 38).
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28. A force F = 〈12t + 4, 8 − 24t〉 (in newtons) acts on a 2-kg mass. Find the position of the mass at t = 2 s if it is
located at (4, 6) at t = 0 and has initial velocity 〈2, 3〉 in m/s.

solution Recall the formula F = ma then using F = 〈12t + 4, 8 − 24t〉 and m = 2 we get:

〈12t + 4, 8 − 24t〉 = 2a, ⇒ a(t) = r′′(t) = 〈6t + 2, 4 − 12t〉
Then using componentwise integration,

v(t) =
∫

a(t) dt =
∫

〈6t + 2, 4 − 12t〉 dt =
〈
3t2 + 2t, 4t − 6t2

〉
+ c1

Using the initial condition v0 = v(0) = 〈2, 3〉, we get:

v(0) = 〈2, 3〉 = c1

and therefore,

v(t) =
〈
3t2 + 2t + 2, 4t − 6t2 + 3

〉
Using componentwise integration once more,

r(t) =
∫

v(t) dt =
∫ 〈

3t2 + 2t + 2, 4t − 6t2 + 3
〉

dt =
〈
t3 + t2 + 2t, 2t2 − 2t3 + 3t

〉
+ c2

Using the initial condition r(0) = 〈4, 6〉 we get:

r(0) = 〈4, 6〉 = c2

Therefore,

r(t) =
〈
t3 + t2 + 2t + 4, 2t2 − 2t3 + 3t + 6

〉
and the position of the mass at t = 2 is r(2) = 〈20, 4〉.
29. Find the unit tangent vector to r(t) = 〈

sin t, t, cos t
〉

at t = π .

solution The unit tangent vector at t = π is

T(π) = r′(π)

‖r′(π)‖ (1)

We differentiate r(t) componentwise to obtain:

r′(t) = 〈cos t, 1, − sin t〉
Therefore,

r′(π) = 〈cos π, 1, − sin π〉 = 〈−1, 1, 0〉
We compute the length of r′(π):

‖r′(π)‖ =
√

(−1)2 + 12 + 02 = √
2

Substituting in (1) gives:

T(π) =
〈−1√

2
,

1√
2
, 0

〉

30. Find the unit tangent vector to r(t) = 〈
t2, tan−1 t, t

〉
at t = 1.

solution The unit tangent vector at t = 1 is the following vector:

T(1) = r′(1)

‖r′(1)‖ (1)

We differentiate r(t) = 〈
t2, tan−1t, t

〉
componentwise:

r′(t) =
〈
2t,

1

1 + t2
, 1

〉



April 19, 2011

620 C H A P T E R 13 CALCULUS OF VECTOR-VALUED FUNCTIONS (LT CHAPTER 14)

Setting t = 1, we get:

r′(1) =
〈
2 · 1,

1

1 + 12
, 1

〉
=

〈
2,

1

2
, 1

〉

‖r′(1)‖ =
√

22 +
(

1

2

)2
+ 12 =

√
21

2

Substituting in (1) we obtain the following unit tangent vector:

T(1) = 2√
21

〈
2,

1

2
, 1

〉
=

〈
4√
21

,
1√
21

,
2√
21

〉

31. Calculate κ(1) for r(t) = 〈ln t, t〉.
solution Recall,

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

Computing derivatives we get:

r′(t) =
〈

1

t
, 1

〉
, ⇒ r′(1) = 〈1, 1〉 , ⇒ ‖r′(1)‖ = √

2

r′′(t) =
〈
− 1

t2
, 0

〉
, ⇒ r′′(1) = 〈−1, 0〉

Computing the cross product we get:

r′(1) × r′′(1) =
∣∣∣∣∣∣

i j k
1 1 0

−1 0 0

∣∣∣∣∣∣ = 〈0, 0, 1〉

and ‖r′(1) × r′′(1)‖ = 1. Therefore,

κ(1) = ‖r′(1) × r′′(1)‖
‖r′(1)‖3

= 1

(
√

2)3
= 1

23/2

32. Calculate κ
(
π
4

)
for r(t) = 〈tan t, sec t, cos t〉.

solution Recall,

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

Computing derivatives we get:

r′(t) =
〈
sec2 t, sec t tan t, − sin t

〉
, ⇒ r′ (π

4

)
=

〈
2,

√
2, − 1√

2

〉

r′′(t) =
〈
2 sec2 t tan t, sec3 t + tan2 t sec t, − cos t

〉
, ⇒ r′′ (π

4

)
=

〈
4, 3

√
2, − 1√

2

〉

Note here that ‖r′(π/4)‖ = √
4 + 2 + 1/2 =

√
13
2 . Computing cross products we get:

r′(t) × r′′(t) =

∣∣∣∣∣∣∣
i j k
2

√
2 − 1√

2
4 3

√
2 − 1√

2

∣∣∣∣∣∣∣ =
〈
2, −√

2, 2
√

2
〉

where ‖r′(t) × r′′(t)‖ = √
4 + 2 + 8 = √

14. Therefore,

κ(π/4) = ‖r′(π/4) × r′′(π/4)‖
‖r′(π/4)‖3

=
√

14

(
√

13/2)3
= 2

√
28

133/2
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In Exercises 33 and 34, write the acceleration vector a at the point indicated as a sum of tangential and normal components.

33. r(θ) = 〈
cos θ, sin 2θ

〉
, θ = π

4

solution First note here that:

v(θ) = r′(θ) = 〈− sin θ, 2 cos 2θ〉
a(θ) = r′′(θ) = 〈− cos θ, −4 sin 2θ〉

At t = π/4 we have:

v = r′(π/4) =
〈
− 1√

2
, 0

〉

a = r′′(π/4) =
〈
− 1√

2
, −4

〉

Thus,

a · v =
〈
− 1√

2
, −4

〉
·
〈
− 1√

2
, 0

〉
= 1

2

‖v‖ =
√

1

2
+ 0 = 1√

2

Recall that we have:

T = v
‖v‖ =

〈
− 1√

2
, 0

〉
1/

√
2

= 〈−1, 0〉

aT = a · v
‖v‖ = 1/2

1/
√

2
= 1√

2

Next, we compute aN and N:

aNN = a − aTT =
〈
− 1√

2
, −4

〉
− 1√

2
〈−1, 0〉 = 〈0, −4〉

This vector has length:

aN = ‖aNN‖ = 4

and thus,

N = aNN
aN

= 〈0, −4〉
4

= 〈0, −1〉

Finally, we obtain the decomposition,

a =
〈
− 1√

2
, −4

〉
= 1√

2
T + 4N

where T = 〈−1, 0〉 and N = 〈0, −1〉.
34. r(t) = 〈

t2, 2t − t2, t
〉
, t = 2

solution First note here that:

v(t) = r′(t) = 〈2t, 2 − 2t, 1〉
a(t) = r′′(t) = 〈2, −2, 0〉

At t = 2 we have:

v = r′(2) = 〈4, −2, 1〉
a = r′′(2) = 〈2, −2, 0〉

Thus,

a · v = 〈4, −2, 1〉 · 〈2, −2, 0〉 = 12

‖v‖ = √
16 + 4 + 1 = √

21
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Recall that we have:

T = v
‖v‖ = 〈4, −2, 1〉√

21
= 1√

21
〈4, −2, 1〉

aT = a · v
‖v‖ = 12√

21
= 4

√
21

7

Next, we compute aN and N:

aNN = a − aTT = 〈2, −2, 0〉 − 12√
21

1√
21

〈4, −2, 1〉

= 〈2, −2, 0〉 − 4

7
〈4, −2, 1〉 =

〈
−2

7
, −6

7
, −4

7

〉

= 2

7
〈−1, −3, −2〉

This vector has length:

aN = ‖aNN‖ = 2

7

√
1 + 9 + 4 = 2

√
14

7

and thus,

N = aNN
aN

=
2
7 〈−1, −3, −2〉

2
√

14
7

= 1√
14

〈−1, −3, −2〉

Finally, we obtain the decomposition,

a = 〈2, −2, 0〉 = 4
√

21

7
T + 2

√
14

7
N

where T = 1√
21

〈4, −2, 1〉 and N = 1√
14

〈−1, −3, −2〉.
35. At a certain time t0, the path of a moving particle is tangent to the y-axis in the positive direction. The particle’s speed
at time t0 is 4 m/s, and its acceleration vector is a = 〈5, 4, 12〉. Determine the curvature of the path at t0.

solution We are given that the particle is moving tangent to the y-axis with speed 4 m/s, so then:

r′ = 〈0, 4, 0〉
and a = r′′ = 〈5, 4, 12〉. Recall the formula for curvature:

κ = ‖r′ × r′′‖
‖r′‖3

First calculate the cross product:

r′ × r′′ =
∣∣∣∣∣∣
i j k
0 4 0
5 4 12

∣∣∣∣∣∣ = 〈48, 0, −20〉

Then the length of r′ and r′ × r′′:

‖r′‖ = 4, ‖r′ × r′′‖ =
√

482 + 202 = √
2704 = 52

so then for curvature we get:

κ = ‖r′ × r′′‖
‖r′‖3

= 52

43
= 13

16

36. Parametrize the osculating circle to y = x2 − x3 at x = 1.

solution First differentiate twice:

f ′(x) = 2x − 3x2, f ′′(x) = 2 − 6x

and at the point x = 1 we get:

f ′(1) = −1, f ′′(1) = −4
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Step 1. Find the radius Recall the formula for curvature:

κ(x) = |f ′′(x)|
[1 + (f ′(x))2]3/2

and evaluating at x = 1 we have:

κ(1) = 4

[1 + (−1)2]3/2
= 4

23/2
= √

2

Therefore, the radius of the osculating circle is R = 1√
2

.

Step 2. Find N at x = 1.
First we will parametrize the curve f (x) = x2 − x3 as:

r(x) =
〈
x, x2 − x3

〉
, r(1) = 〈1, 0〉

and differentiate:

r′(x) =
〈
1, 2x − 3x2

〉

Note here that the vector
〈
2x − 3x2, −1

〉
is orthogonal to r′(x) for all values of x and points in the direction of the bending

of the curve y = x2 − x3.
Computing the unit normal to the curve, using the vector orthogonal to r′(x), we get:

N(x) =
〈
2x − 3x2, −1

〉
√

(2x − 3x2)2 + 1
, N(1) = 1√

2
〈−1, −1〉

Step 3. Find the center Q

Now to find the center Q of the osculating circle:

−−→
OQ = r(1) + κ−1N(1)

= 〈1, 0〉 + 1√
2

1√
2

〈−1, −1〉

=
〈

1

2
, −1

2

〉

The center of the osculating circle is Q = (1/2, −1/2).
Step 4. Parametrize the osculating circle.

Then parametrizing the osculating circle we get:

c(t) =
〈

1

2
, −1

2

〉
+ 1√

2
〈cos t, sin t〉

37. Parametrize the osculating circle to y = √
x at x = 4.

solution First differentiate twice:

f ′(x) = 1

2
√

x
, f ′′(x) = − 1

4x3/2

and at the point x = 4 we get:

f ′(4) = 1

4
, f ′′(4) = − 1

32

Step 1. Find the radius
Then recall the formula for curvature:

κ(x) = |f ′′(x)|
[1 + (f ′(x))2]3/2

and evaluating at x = 4 we have:

κ(4) =
1

32[
1 + 1

16

]3/2
= 1

32
· 1(

17
16

)3/2
= 1

32

163/2

173/2
= 2

173/2

Therefore the radius of the osculating circle is R = 173/2

2 .
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Step 2. Find N at x = 4
First we will parametrize the curve f (x) = √

x as:

r(x) = 〈
x,

√
x
〉
, r(4) = 〈4, 2〉

and differentiate:

r′(x) =
〈
1,

1

2
x−1/2

〉

Note here that the vector
〈

1
2x−1/2, −1

〉
is orthogonal to r′(x) for all values of x and points in the direction of the bending

of the curve y = √
x.

Computing the unit normal to the curve, using the vector orthogonal to r′(x) we get:

N(x) =
〈

1
2x−1/2, −1

〉
√

1
4x

+ 1
, N(4) =

〈
1
4 , −1

〉
√

1
16 + 1

= 4√
17

〈
1

4
, −1

〉

Step 3. Find the center Q

Now to find the center Q of the osculating circle:

−−→
OQ = r(4) + κ−1N(4)

= 〈4, 2〉 + 173/2

2

4√
17

〈
1

4
, −1

〉

= 〈4, 2〉 + 34

〈
1

4
, −1

〉

= 〈4, 2〉 +
〈

17

2
, −34

〉

=
〈

25

2
, −32

〉

The center of the osculating circle is Q = ( 25
2 , −32).

Step 4. Parametrize the osculating circle
Then parametrizing the osculating circle we get:

c(t) =
〈

25

2
, −32

〉
+ 173/2

2
〈cos t, sin t〉

38. If a planet has zero mass (m = 0), then Newton’s laws of motion reduce to r′′(t) = 0 and the orbit is a straight line
r(t) = r0 + tv0, where r0 = r(0) and v0 = r′(0) (Figure 1). Show that the area swept out by the radial vector at time t

is A(t) = 1
2‖r0 × v0‖t and thus Kepler’s Second Law continues to hold (the rate is constant).

Sun

Planet

r0

v0

r(t) = r0 + tv0

FIGURE 1

solution Integrating r′′(t) = 0 gives:

r′(t) = c

The constant c is r′(0) = v(0). That is,

r′(t) = v
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We integrate again:

r(t) = vt + d

The constant d is r = r(0). Hence, r(t) = r + tv, where r = r(0) and v = r′(0).

39. Suppose the orbit of a planet is an ellipse of eccentricity e = c/a and period T (Figure 2). Use Kepler’s Second Law
to show that the time required to travel from A′ to B ′ is equal to(

1

4
+ e

2π

)
T

(c, 0)

Sun

y

x
O

B

b

B´

aA´ A

FIGURE 2

solution By the Law of Equal Areas, the position vector pointing from the sun to the planet sweeps out equal areas
in equal times. We denote by S1 the area swept by the position vector when the planet moves from A′ to B ′, and t is the
desired time. Since the position vector sweeps out the whole area of the ellipse (πab) in time T , the Law of Equal Areas
implies that:

S1

πab
= t

T
⇒ t = T S1

πab
(1)

We now find the area S1 as the sum of the area of a quarter of the ellipse and the area of the triangle ODB. That is,

S1 = πab

4
+ OD · OB

′

2
= πab

4
+ cb

2
= b

4
(πa + 2c)

Substituting in (1) we get:

t = T b(πa + 2c)

4πab
= T (πa + 2c)

4πa
= T

(
1

4
+ 1

2π

c

a

)
= T

(
1

4
+ e

2π

)

D(c, 0)

Sun

y

x
O

S1

b

B′

aA′

40. The period of Mercury is approximately 88 days, and its orbit has eccentricity 0.205. How much longer does it take
Mercury to travel from A′ to B ′ than from B ′ to A (Figure 2)?

solution

(c, 0)

Sun

y

x
O

b

aA′

B ′

A

Let T denote the period of the orbit. By the previous exercise, the time T1 takes the planet to travel from A′ to B ′ is,

T1 =
(

1

4
+ e

2π

)
T
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The period of Mercury is T = 88 days and the eccentricity of the orbit is e = 0.205, hence,

T1 =
(

1

4
+ 0.205

2π

)
· 88 ≈ 24.871 days

Using Kepler’s Second Law, the time that takes Mercury to travel from A′ to A is half a period. Therefore, the time T2
that it takes for Mercury to travel from B ′ to A is the difference:

T2 = 1

2
T − T1 ≈ 44 − 24.871 = 19.129 days

The required time is the difference:

T1 − T2 = 24.871 − 19.129 = 5.742 days
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14 DIFFERENTIATION
IN SEVERAL VARIABLES

14.1 Functions of Two or More Variables (LT Section 15.1)

Preliminary Questions
1. What is the difference between a horizontal trace and a level curve? How are they related?

solution A horizontal trace at height c consists of all points (x, y, c) such that f (x, y) = c. A level curve is the curve
f (x, y) = c in the xy-plane. The horizontal trace is in the z = c plane. The two curves are related in the sense that the
level curve is the projection of the horizontal trace on the xy-plane. The two curves have the same shape but they are
located in parallel planes.

2. Describe the trace of f (x, y) = x2 − sin(x3y) in the xz-plane.

solution The intersection of the graph of f (x, y) = x2 − sin(x3y) with the xz-plane is obtained by setting y = 0 in

the equation z = x2 − sin(x3y). We get the equation z = x2 − sin 0 = x2. This is the parabola z = x2 in the xz-plane.

3. Is it possible for two different level curves of a function to intersect? Explain.

solution Two different level curves of f (x, y) are the curves in the xy-plane defined by equations f (x, y) = c1 and
f (x, y) = c2 for c1 �= c2. If the curves intersect at a point (x0, y0), then f (x0, y0) = c1 and f (x0, y0) = c2, which
implies that c1 = c2. Therefore, two different level curves of a function do not intersect.

4. Describe the contour map of f (x, y) = x with contour interval 1.

solution The level curves of the function f (x, y) = x are the vertical lines x = c. Therefore, the contour map of f

with contour interval 1 consists of vertical lines so that every two adjacent lines are distanced one unit from another.

5. How will the contour maps of

f (x, y) = x and g(x, y) = 2x

with contour interval 1 look different?

solution The level curves of f (x, y) = x are the vertical lines x = c, and the level curves of g(x, y) = 2x are the
vertical lines 2x = c or x = c

2 . Therefore, the contour map of f (x, y) = x with contour interval 1 consists of vertical
lines with distance one unit between adjacent lines, whereas in the contour map of g(x, y) = 2x (with contour interval
1) the distance between two adjacent vertical lines is 1

2 .

Exercises
In Exercises 1–4, evaluate the function at the specified points.

1. f (x, y) = x + yx3, (2, 2), (−1, 4)

solution We substitute the values for x and y in f (x, y) and compute the values of f at the given points. This gives

f (2, 2) = 2 + 2 · 23 = 18

f (−1, 4) = −1 + 4 · (−1)3 = −5

2. g(x, y) = y

x2 + y2
, (1, 3), (3, −2)

solution We substitute (x, y) = (1, 3) and (x, y) = (3, −2) in the function to obtain

g(1, 3) = 3

12 + 32
= 3

10
; g(3, −2) = −2

32 + (−2)2
= − 2

13

627



April 19, 2011

628 C H A P T E R 14 DIFFERENTIATION IN SEVERAL VARIABLES (LT CHAPTER 15)

3. h(x, y, z) = xyz−2, (3, 8, 2), (3, −2, −6)

solution Substituting (x, y, z) = (3, 8, 2) and (x, y, z) = (3, −2, −6) in the function, we obtain

h(3, 8, 2) = 3 · 8 · 2−2 = 3 · 8 · 1

4
= 6

h(3, −2, −6) = 3 · (−2) · (−6)−2 = −6 · 1

36
= −1

6

4. Q(y, z) = y2 + y sin z, (y, z) = (2, π
2

)
,
(− 2, π

6

)
solution We have

Q
(

2,
π

2

)
= 22 + 2 sin

π

2
= 4 + 2 · 1 = 6

Q
(
−2,

π

6

)
= (−2)2 − 2 sin

π

6
= 4 − 2 · 1

2
= 3

In Exercises 5–12, sketch the domain of the function.

5. f (x, y) = 12x − 5y

solution The function is defined for all x and y, hence the domain is the entire xy-plane.

6. f (x, y) =
√

81 − x2

solution The function f (x, y) =
√

81 − x2 is defined if 81 − x2 ≥ 0, that is, if x2 ≤ 81. In other words, −9 ≤ x ≤ 9.
This region is the region enclosed by the two vertical lines x = −9 and x = 9 (including the two lines themselves).

−8 −6 −4 −2 2 4 6 8

7. f (x, y) = ln(4x2 − y)

solution The function is defined if 4x2 − y > 0, that is, y < 4x2. The domain is the region in the xy-plane that is

below the parabola y = 4x2.

x

y y = 4x2

8. h(x, t) = 1

x + t

solution The function is defined if x + t �= 0, that is, x �= −t . The domain is the xt-plane with the line x = −t

excluded.

x

y

x �= −t
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9. g(y, z) = 1

z + y2

solution The function is defined if z + y2 �= 0, that is, z �= −y2. The domain is the (y, z) plane with the parabola

z = −y2 excluded.

D = {(y, z) : z �= −y2}

x

y

z = −y2

z + y2 �= 0

10. f (x, y) = sin
y

x

solution The function is defined for all x �= 0. The domain is the xy-plane with the y-axis excluded.

D = {(x, y) : x �= 0}

x

y

x �= 0

11. F(I, R) = √
IR

solution The function is defined if IR ≥ 0. Therefore the domain is the first and the third quadrants of the IR-plane
including both axes.

x

y

IR ≥ 0

12. f (x, y) = cos−1(x + y)

solution Since the cosine function assume only values between −1 and 1, x + y must satisfy −1 ≤ x + y ≤ 1. The
domain is the region between the lines x + y = 1 and x + y = −1, including both lines.

D = {(x, y) : −1 ≤ x + y ≤ 1}

0
x

y

x + y = 1
x + y = −1

−1 ≤ x + y = ≤ 1
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In Exercises 13–16, describe the domain and range of the function.

13. f (x, y, z) = xz + ey

solution The domain of f is the entire (x, y, z)-space. Since f takes all the real values, the range is the entire real
line.

14. f (x, y, z) = x
√

y + zez/x

solution The domain of f depends upon the term
√

y + z. We know that y + z ≥ 0 so then y ≥ −z. The domain is

the region below and including the plane y = −z in R
3.

D = {(x, y, z) : y ≥ −z} = {(x, y, z) : y + z ≥ 0}
Since f takes all the real values, the range is the entire real line.

15. P(r, s, t) =
√

16 − r2s2t2

solution The domain is subset of R3 where rst ≤ 4 and the range is {w : 0 ≤ w ≤ 4} because the minimum is 0 and

the maximum of P is
√

16 = 4.

16. g(r, s) = cos−1(rs)

solution Recall that the domain of the inverse cosine function is [−1, 1] and the range of the inverse cosine function
is [0, π ]. This means that we need |rs| ≤ 1:

D = {(r, s) : |rs| ≤ 1}.
The range of this new function g will remain [0, π ].
17. Match graphs (A) and (B) in Figure 21 with the functions

(i) f (x, y) = −x + y2 (ii) g(x, y) = x + y2

(A) (B)

y

x

z

y

x

z

FIGURE 21

solution

(i) The vertical trace for f (x, y) = −x + y2 in the xz-plane (y = 0) is z = −x. This matches the graph shown in (B).

(ii) The vertical trace for f (x, y) = x + y2 in the xz-plane (y = 0) is z = x. This matches the graph show in (A).

18. Match each of graphs (A) and (B) in Figure 22 with one of the following functions:

(i) f (x, y) = (cos x)(cos y)

(ii) g(x, y) = cos(x2 + y2)

(A)

y

x

z z

(B)

y

x

FIGURE 22
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solution The level curves at z = c, a constant, for g(x, y) = cos(x2 + y2) will give

cos(x2 + y2) = c ⇒ x2 + y2 = cos−1(c) which is a constant

This means that the level curves are an infinite number of concentric circles centered around the z-axis whose radii differ
by 2π . This means the graph in (B) is the given function in (ii).

If we consider the function f (x, y) = (cos x)(cos y), the vertical trace if y = 0 will give us a graph of cos x in the
xz-plane, while the vertical trace if x = 0 will give us a graph of cos y in the yz-plane. This means that the graph in (A)
is the given function in (i).

19. Match the functions (a)–(f) with their graphs (A)–(F) in Figure 23.

(a) f (x, y) = |x| + |y| (b) f (x, y) = cos(x − y)

(c) f (x, y) = −1

1 + 9x2 + y2
(d) f (x, y) = cos(y2)e−0.1(x2+y2)

(e) f (x, y) = −1

1 + 9x2 + 9y2
(f) f (x, y) = cos(x2 + y2)e−0.1(x2+y2)

(A) (B)

y

x

(C) (D)

y

x

z

y

(E) (F)

x

y

x

z

z z

x

y

z z

FIGURE 23

solution
(a) |x| + |y|. The level curves are |x| + |y| = c, y = c − |x|, or y = −c + |x|. The graph (D) corresponds to the function
with these level curves.
(b) cos(x − y). The vertical trace in the plane x = c is the curve z = cos(c − y) in the plane x = c. These traces
correspond to the graph (C).

(c)
−1

1 + 9x2 + y2
(e)

−1

1 + 9x2 + 9y2
.

The level curves of the two functions are:

−1

1 + 9x2 + y2
= c

−1

1 + 9x2 + 9y2
= c

1 + 9x2 + y2 = −1

c
1 + 9x2 + 9y2 = −1

c

9x2 + y2 = −1 − 1

c
9x2 + 9y2 = −1 − 1

c

x2 + y2 = −1 + c

9c
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For suitable values of c, the level curves of the function in (c) are ellipses as in (E), and the level curves of the function
(e) are circles as in (A).

(d) cos(x2)e−1/(x2+y2) (f) cos(x2 + y2)e−1/(x2+y2).
The value of |z| is decreasing to zero as x or y are decreasing, hence the possible graphs are (B) and (F).
In (f), z is constant whenever x2 + y2 is constant, that is, z is constant whenever (x, y) varies on a circle. Hence (f)

corresponds to the graph (F) and (d) corresponds to (B).

To summarize, we have the following matching:

(a) ↔ (D) (b) ↔ (C) (c) ↔ (E)

(d) ↔ (B) (e) ↔ (A) (f) ↔ (F)

20. Match the functions (a)–(d) with their contour maps (A)–(D) in Figure 24.

(a) f (x, y) = 3x + 4y (b) g(x, y) = x3 − y

(c) h(x, y) = 4x − 3y (d) k(x, y) = x2 − y

5

10

0

−5

−10

0

(A)

−10 −5 105

5

10

0

−5

−10

0

(B)

−10 −5 105

5

10

0

−5

−10

0

(C)

−10 −5 105

5

10

0

−5

−10

0

(D)

−10 −5 105

FIGURE 24

solution

(a) Computing the level curves for f (x, y) = 3x + 4y we set z = f (x, y) = c, a constant, to see

3x + 4y = c ⇒ 4y = c − 3x ⇒ y = c

4
− 3

4
x

This means the contour maps would be lines having slopes −3/4, this corresponds to the contour map shown in (B).

(b) Computing the level curves for g(x, y) = x3 − y we set z = g(x, y) = c, a constant, to see

x3 − y = c ⇒ y = x3 − c

This means the contour maps would be contours having the shape of cubic equations, this corresponds to the contour map
shown in (A).

(c) Computing the level curves for h(x, y) = 4x − 3y we set z = h(x, y) = c, a constant, to see

4x − 3y = c ⇒ −3y = c − 4x ⇒ y = c

4
+ 4

3
x

This means the contour maps would be contours that are lines having slopes 4/3, this corresponds to the contour map
shown in (C).

(d) Computing the level curves for k(x, y) = x2 − y we set z = k(x, y) = c, a constant, to see

x2 − y = c ⇒ y = x2 − c

This means the contour maps would be contours having the shape of parabolas, this corresponds to the contour map shown
in (D).
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In Exercises 21–26, sketch the graph and describe the vertical and horizontal traces.

21. f (x, y) = 12 − 3x − 4y

solution The graph of f (x, y) = 12 − 3x − 4y is shown in the figure:

y

x

z

3

12

4

The horizontal trace at height c is the line 12 − 3x − 4y = c or 3x + 4y = 12 − c in the plane z = c.

y

x

z

The vertical traces obtained by setting x = a or y = a are the lines z = (12 − 3a) − 4y and z = −3x + (12 − 4a) in the
planes x = a and y = a, respectively.

y

x

z

y

x

z

22. f (x, y) =
√

4 − x2 − y2

solution The graph of f (x, y) =
√

4 − x2 − y2 is shown in the figure:

−2

z

2
−1

2

11

1

2

y x

The horizontal trace at height c is

√
4 − x2 − y2 = c ⇒ 4 − x2 − y2 = c2 ⇒ x2 + y2 = 4 − c2

in the plane z = c as long as −2 ≤ c ≤ 2. These are circles centered at the origin with radius
√

4 − c2 in the plane z = c.
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y

x

−0.5

−1.0

−1.5

−1.5 −1.0 −0.5 0.5 1.0 1.5

0.5

1.0

1.5

The vertical traces obtained by setting x = a or y = a

√
4 − a2 − y2 = z ⇒ 4 − a2 − y2 = z2 ⇒ y2 + z2 = 4 − a2

y

x

−0.5

−1.0

−1.5

−1.5 −1.0 −0.5 0.5 1.0 1.5

0.5

1.0

1.5

√
4 − x2 − a2 = z ⇒ 4 − x2 − a2 = z2 ⇒ x2 + z2 = 4 − a2

y

x

−0.5

−1.0

−1.5

−1.5 −1.0 −0.5 0.5 1.0 1.5

0.5

1.0

1.5

Both are the upper half circles centered at the origin with radius
√

4 − a2 (in the planes x = a and y = a) as long as
−2 ≤ a ≤ 2. The graph is only the upper half of the sphere having radius 2, since it includes only the positive square root
of z, so the vertical traces are only upper half circles.

23. f (x, y) = x2 + 4y2

solution The graph of the function is shown in the figure:

y

x

z
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The horizontal trace at height c is the curve x2 + 4y2 = c, where c ≥ 0 (if c = 0, it is the origin). The horizontal traces
are ellipses for c > 0.

y

x

z

The vertical trace in the plane x = a is the parabola z = a2 + 4y2, and the vertical trace in the plane y = a is the parabola
z = x2 + 4a2.

y

x

z

y

x

z

24. f (x, y) = y2

solution The graph of the function is shown in the figure:

4
15

10

5

0
2

0

0

2

1
−4

−1

−2

−2
y

x

z

The horizontal trace at height c is y2 = c. For c > 0 the trace consists of the two lines y = √
c and y = −√

c in the plane
z = c, and for c = 0 it is the line y = 0.

0

0

2

4

−4

−2

x

z

1

0.5

0

0.75

1

−0.5
−1

y

0.5

0.25
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The vertical trace in the plane y = a is the line z = a2.

0

0

2

4

−4

−2

x

z

1

0.5

0

0.75

1

−0.5
−1

y

0.5

0.25

The vertical trace in the plane x = a is the parabola z = y2 on this plane.
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25. f (x, y) = sin(x − y)

solution The graph of f (x, y) = sin(x − y) is shown in the figure:
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The horizontal trace at the height z = c is sin(x − y) = c (we could also write x − y = sin−1(c) or y = x − sin−1(c)).
The trace consists of multiple lines all having slope 1, with y-intercepts separated by multiples of 2π .
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The vertical trace in the plane x = a is sin(a − y) = − sin(y − a) = z. This curve is a shifted sine curve reflected
through the z-axis.
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The vertical trace in the plane y = a is sin(x − a) = z. This curve is a shifted sine curve as well.
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26. f (x, y) = 1

x2 + y2 + 1

solution The graph of the function is shown in the figure:

y

z

The horizontal trace at height c is the following curve in the plane z = c:
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x2 + y2 + 1
= c ⇒ x2 + y2 + 1 = 1

c
⇒ x2 + y2 = 1
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For 0 < c < 1 it is a circle of radius
√

1
c − 1 centered at (0, 0), and for c = 1 it is the origin.
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The vertical trace in the plane x = a is the following curve in the plane x = a:

z = 1

a2 + y2 + 1
⇒ z = 1

(1 + a2) + y2
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The vertical trace in the plane y = a is the curve z = 1

x2 + a2 + 1
in this plane.
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27. Sketch contour maps of f (x, y) = x + y with contour intervals m = 1 and 2.

solution The level curves are x + y = c or y = c − x. Using contour interval m = 1, we plot y = c − x for various
values of c.
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Using contour interval m = 2, we plot y = c − x for various values of c.
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28. Sketch the contour map of f (x, y) = x2 + y2 with level curves c = 0, 4, 8, 12, 16.

solution The level curves are x2 + y2 = c for c ≥ 0. We sketch the level curves c = 0, 4, 8, 12, 16:
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In Exercises 29–36, draw a contour map of f (x, y) with an appropriate contour interval, showing at least six level curves.

29. f (x, y) = x2 − y

solution The level curves are the parabolas y = x2 + c. We draw a contour plot with contour interval m = 1, for
c = 0, 1, 2, 3, 4, 5:
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30. f (x, y) = y

x2

solution The level curves are y

x2 = c or y = cx2. We use the contour interval m = 2 and plot y = cx2 for c = −4,
−2, 0, 2, 4, 6. For c �= 0 these are parabolas.
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31. f (x, y) = y

x

solution The level curves are y
x = c or y = cx. We plot y = cx for c = −2, −1, 0, 1, 2, 3 using contour interval

m = 1:
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32. f (x, y) = xy

solution The level curves are xy = c or y = c
x . These are hyperbolas in the xy-plane. We draw a contour map of the

function using contour interval m = 1 and c = 0, ±1, ±2, ±3:
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33. f (x, y) = x2 + 4y2

solution The level curves are x2 + 4y2 = c. These are ellipses centered at the origin in the xy-plane.
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34. f (x, y) = x + 2y − 1

solution The level curves are the lines x + 2y − 1 = c or y = − x
2 + c+1

2 . We draw a contour map using the contour
interval m = 4 and c = −9, −5, −1, 3, 7, 11. The corresponding level curves are:
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35. f (x, y) = x2

solution The level curves are x2 = c. For c > 0 these are the two vertical lines x = √
c and x = −√

c and for c = 0
it is the y-axis. We draw a contour map using contour interval m = 4 and c = 0, 4, 8, 12, 16, 20:

420−4

−4

−2

0

2

4

−2

36. f (x, y) = 3x2 − y2

solution The level curves are the hyperbolas 3x2 − y2 = c, c �= 0, and for c = 0 it is the two lines y = ±√
3x. We

plot a contour map with contour interval m = 2 using c = −4, −2, 0, 2, 4, 6:
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37. Find the linear function whose contour map (with contour interval m = 6) is shown in Figure 25. What is
the linear function if m = 3 (and the curve labeled c = 6 is relabeled c = 3)?

c = 0
c = 6

63−6 −3 −1
−2

2
1

x

y

FIGURE 25 Contour map with contour interval m = 6

solution A linear function has the form f (x, y) = Ax + By + C.

Case 1: According to the contour map, the level curve through the origin (0, 0) has equation f (x, y) = 6. Therefore

f (0, 0) = A(0) + B(0) + C = 6 ⇒ C = 6

Next, we see from the contour map that the points (−3, 0) = 0 and f (0, −1) lie on the level curve f (x, y) = 0. Hence

f (−3, 0) = A(−3) + B(0) + 6 = 0 ⇒ A = 2

f (0, −1) = A(0) + B(−1) + 6 = 0 ⇒ B = 6

Therefore f (x, y) = 2x + 6y + 6.

Case 1: If m = 3, then (0, 0) lies on the level curve f (x, y) = 3, and we proceed as before

f (0, 0) = A(0) + B(0) + C = 3 ⇒ C = 3f (−3, 0) = A(−3) + B(0) + 3 = 0 ⇒ A = 1

f (0, −1) = A(0) + B(−1) + 3 = 0 ⇒ B = 2

Therefore f (x, y) = x + 3y + 3.

38. Use the contour map in Figure 26 to calculate the average rate of change:

(a) From A to B. (b) From A to C.
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FIGURE 26

solution

(a) Using the figure to compute, we have the average rate of change from A to B:

� altitude

� horizontal
= 0

(b) Using the figure to compute, assuming that C is on the level curve c = −9, then we have the average rate of change
from A to C

� altitude

� horizontal
= −9 − (−3)√

22 + 12
= − 6√

5

39. Referring to Figure 27, answer the following questions:

(a) At which of (A)–(C) is pressure increasing in the northern direction?

(b) At which of (A)–(C) is pressure increasing in the easterly direction?

(c) In which direction at (B) is pressure increasing most rapidly?
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FIGURE 27 Atmospheric Pressure (in millibars) over the continental U.S. on March 26, 2009

solution

a. (A) and (B)

b. (C)

c. west

In Exercises 40–43, ρ(S, T ) is seawater density (kg/m3) as a function of salinity S (ppt) and temperature T (◦C). Refer
to the contour map in Figure 28.
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FIGURE 28 Contour map of seawater density ρ(S, T ) (kg/m3).

40. Calculate the average rate of change of ρ with respect to T from B to A.

solution The segment BA spans 5 level curves and the contour interval is 0.0005. Since the density is decreasing in

the direction from B to A, the change in density is �ρ = −0.0005 · 5 = −0.0025 kg/m3. The temperature at A is 17◦C
and at C is 2◦C, so the difference in temperature from C to A is �T = 17 − 2 = 15◦C. Hence,

Average ROC from B to A = �ρ

�T
= −0.0025

15
= −0.000167 kg/m3 ◦C.

41. Calculate the average rate of change of ρ with respect to S from B to C.

solution For fixed temperature, the segment BC spans one level curve and the level curve of C is to the right of the

level curve of B. Therefore, the change in density from B to C is �ρ = 0.0005 kg/m3. The salinity at C is greater than
the salinity at B and �S = 0.8 ppt. Therefore,

Average ROC from B to C = �ρ

�S
= 0.0005

0.8
= 0.000625 kg/m3 · ppt.

42. At a fixed level of salinity, is seawater density an increasing or a decreasing function of temperature?

solution The level of salinity is fixed on each vertical line. The vertical lines intersect level curves with decreasing
values in the direction of increasing temperature (which is the upward direction). Therefore, at a fixed level of salinity,
seawater density is a decreasing function of temperature.

43. Does water density appear to be more sensitive to a change in temperature at point A or point B?

solution The two adjacent level curves are closer to the level curve of A than the corresponding two adjacent level
curves are to the level curve of B. This suggests that water density is more sensitive to a change in temperature at A than
at B.
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In Exercises 44–47, refer to Figure 29.
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FIGURE 29

44. Find the change in elevation from A and B.

solution The segment AB spans 7 level curves and the contour interval is 20 meters. Therefore, the change in elevation
from A to B is 20 · 7 = 140 m.

45. Estimate the average rate of change from A and B and from A to C.

solution The change in elevation from A to B is 140 m. The scale shows that AB is approximately 2000 m. Therefore,

Average ROC from A to B = 140

2000
≈ 0.07.

The change in elevation from A to C is obtained by multiplying the number of level curves between A and C, which is 8,
by the contour interval 20 meters, giving 8 · 20 = 160 m. Using the scale, we approximate the distance AC by 3000 m.
Therefore,

Average ROC from A to C = 160

3000
≈ 0.0533.

46. Estimate the average rate of change from A to points i, ii, and iii.

solution The points i, and ii are on a level curve two adjacent to the level curve of A, hence the change in elevation
is 2 · 20 = 40 meters. The point iii is on the same level curve as A, hence the change in elevation is 0 meters. Using the
scale we approximate the distances from A to the points i, ii, and iii:

From A to i: 1000 m

From A to ii: 500 m

From A to iii: 750 m

Therefore,

Average ROC from A to i ≈ 40

1000
= 0.04

Average ROC from P to ii ≈ 40

500
= 0.08

Average ROC from P to iii ≈ 0

750
= 0

47. Sketch the path of steepest ascent beginning at D.

solution Starting at D, we draw a path that everywhere along the way points on the steepest direction, that is, moves
as straight as possible from one level curve to the next to end at the point C.

Further Insights and Challenges
48. The function f (x, t) = t−1/2e−x2/t , whose graph is shown in Figure 30, models the temperature along a
metal bar after an intense burst of heat is applied at its center point.

(a) Sketch the vertical traces at times t = 1, 2, 3. What do these traces tell us about the way heat diffuses through the
bar?

(b) Sketch the vertical traces x = c for c = ±0.2, ±0.4. Describe how temperature varies in time at points near the
center.
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x

Time t

Metal bar

Temperature T
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FIGURE 30 Graph of f (x, t) = t−1/2e−x2/t beginning shortly after t = 0.

solution
(a) The vertical traces at times t = 0.5, 1, 1.5, 2 are

z = √
2e−2x2

in the plane t = 0.5

z = e−x2
in the plane t = 1

z = 1√
3/2

e−2x2/3 in the plane t = 1.5

z = 1√
2
e−x2/2 in the plane t = 2

These vertical traces are shown in the following figure:
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At each time the temperature decreases as we move away from the center point. Also, as t increases, the temperature at
each point in the bar (except at the middle) increases and then decreases (as can be seen in Figure 30). It also shows that
the temperature tends to equalize throughout the bar (because the traces become closer and closer to flat as time goes on).
(b) The vertical traces x = c for the given values of c are:

z = 1√
t
e− 0.04

t in the planes x = 0.2 and x = −0.2

z = 1√
t
e− 0.16

t in the planes x = 0.4 and x = −0.4.

We see that for small values of t the temperature increases quickly and then slowly decreases as t increases.

x

y

z

t

T

49. Let f (x, y) = x√
x2 + y2

for (x, y) �= 0. Write f as a function f (r, θ) in polar coordinates, and use this to find the

level curves of f .

solution In polar coordinates x = r cos θ and r =
√

x2 + y2. Hence,

f (r, θ) = r cos θ

r
= cos θ.
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y
x

z

The level curves are the curves cos θ = c in the rθ -plane, for |c| ≤ 1. For −1 < c < 1, c �= 0, the level curves cos θ = c

are the two rays θ = cos−1 c and θ = − cos−1 c.

y
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x

For c = 0, the level curve cos θ = 0 is the y-axis; for c = 1 the level curve cos θ = 1 is the nonnegative x-axis.

y

z

x

For c = −1, the level curve cos θ = −1 is the negative x-axis.

14.2 Limits and Continuity in Several Variables (LT Section 15.2)

Preliminary Questions
1. What is the difference between D(P, r) and D∗(P, r)?

solution D(P, r) is the open disk of radius r and center (a, b). It consists of all points distanced less than r from P ,
hence D(P, r) includes the point P . D∗(P, r) consists of all points in D(P, r) other than P itself.

2. Suppose that f (x, y) is continuous at (2, 3) and that f (2, y) = y3 for y �= 3. What is the value f (2, 3)?

solution f (x, y) is continuous at (2, 3), hence the following holds:

f (2, 3) = lim
(x,y)→(2,3)

f (x, y)
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Since the limit exists, we may compute it by approaching (2, 3) along the vertical line x = 2. This gives

f (2, 3) = lim
(x,y)→(2,3)

f (x, y) = lim
y→3

f (2, y) = lim
y→3

y3 = 33 = 27

We conclude that f (2, 3) = 27.

3. Suppose that Q(x, y) is a function such that 1/Q(x, y) is continuous for all (x, y). Which of the following statements
are true?
(a) Q(x, y) is continuous for all (x, y).
(b) Q(x, y) is continuous for (x, y) �= (0, 0).
(c) Q(x, y) �= 0 for all (x, y).

solution All three statements are true. Let f (x, y) = 1
Q(x,y)

. Hence Q(x, y) = 1
f (x,y)

.

(a) Since f is continuous, Q is continuous whenever f (x, y) �= 0. But by the definition of f it is never zero, therefore
Q is continuous at all (x, y).
(b) Q is continuous everywhere including at (0, 0).
(c) Since f (x, y) = 1

Q(x,y)
is continuous, the denominator is never zero, that is, Q(x, y) �= 0 for all (x, y).

Moreover, there are no points where Q(x, y) = 0. (The equality Q(x, y) = (0, 0) is meaningless since the range of Q

consists of real numbers.)

4. Suppose that f (x, 0) = 3 for all x �= 0 and f (0, y) = 5 for all y �= 0. What can you conclude about
lim

(x,y)→(0,0)
f (x, y)?

solution We show that the limit lim(x,y)→(0,0) f (x, y) does not exist. Indeed, if the limit exists, it may be computed
by approaching (0, 0) along the x-axis or along the y-axis. We compute these two limits:

lim
(x,y)→(0,0)

along y=0

f (x, y) = lim
x→0

f (x, 0) = lim
x→0

3 = 3

lim
(x,y)→(0,0)

along x=0

f (x, y) = lim
y→0

f (0, y) = lim
y→0

5 = 5

Since the limits are different,f (x, y)does not approach one limit as (x, y) → (0, 0), hence the limit lim(x,y)→(0,0) f (x, y)

does not exist.

Exercises
In Exercises 1–8, evaluate the limit using continuity

1. lim
(x,y)→(1,2)

(x2 + y)

solution Since the function x2 + y is continuous, we evaluate the limit by substitution:

lim
(x,y)→(1,2)

(x2 + y) = 12 + 2 = 3

2. lim
(x,y)→( 4

9 , 2
9 )

x

y

solution The function x
y is continuous at the point

(
4
9 , 2

9

)
, hence we compute the limit by substitution:

lim
(x,y)→

(
4
9 , 2

9

) x

y
=

4
9
2
9

= 2

3. lim
(x,y)→(2,−1)

(xy − 3x2y3)

solution The function xy − 3x2y3 is continuous everywhere because it is a polynomial, hence we compute the limit
by substitution:

lim
(x,y)→(2,−1)

(xy − 3x2y3) = 2(−1) − 3(4)(−1)3 = −2 + 12 = 10

4. lim
(x,y)→(−2,1)

2x2

4x + y

solution We use the continuity of the function 2x2

4x+y
at the point (−2, 1), hence we evaluate the limit by substitution:

lim
(x,y)→(−2,1)

2x2

4x + y
= 2(4)

4(−2) + 1
= −8

7
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5. lim
(x,y)→( π

4 ,0)
tan x cos y

solution We use the continuity of tan x cos y at the point
(
π
4 , 0

)
to evaluate the limit by substitution:

lim
(x,y)→(

π
4 ,0
) tan x cos y = tan

π

4
cos 0 = 1 · 1 = 1

6. lim
(x,y)→(2,3)

tan−1(x2 − y)

solution We use the continuity of the function tan−1(x2 − y) at the point (2, 3) to evaluate the limit by substitution:

lim
(x,y)→(2,3)

tan−1(x2 − y) = tan−1(1) = π

4

7. lim
(x,y)→(1,1)

ex2 − e−y2

x + y

solution The function is the quotient of two continuous functions, and the denominator is not zero at the point (1, 1).
Therefore, the function is continuous at this point, and we may compute the limit by substitution:

lim
(x,y)→(1,1)

ex2 − e−y2

x + y
= e12 − e−12

1 + 1
= e − 1

e

2
= 1

2
(e − e−1)

8. lim
(x,y)→(1,0)

ln(x − y)

solution We use the continuity of ln(x − y) at the point (1, 0) to evaluate the limit by substitution:

lim
(x,y)→(1,0)

ln(x − y) = ln(1 − 0) = ln 1 = 0

In Exercises 9–12, assume that

lim
(x,y)→(2,5)

f (x, y) = 3, lim
(x,y)→(2,5)

g(x, y) = 7

9. lim
(x,y)→(2,5)

(
g(x, y) − 2f (x, y)

)
solution

lim
(x,y)→(2,5)

(
g(x, y) − 2f (x, y)

) = 7 − 2(3) = 1

10. lim
(x,y)→(2,5)

f (x, y)2g(x, y)

solution

lim
(x,y)→(2,5)

f (x, y)2g(x, y) = 32(7) = 63

11. lim
(x,y)→(2,5)

ef (x,y)2−g(x,y)

solution

lim
(x,y)→(2,5)

ef (x,y)2−g(x,y) = e32−7 = e2

12. lim
(x,y)→(2,5)

f (x, y)

f (x, y) + g(x, y)

solution

lim
(x,y)→(2,5)

f (x, y)

f (x, y) + g(x, y)
= 3

3 + 7
= 3

10
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13. Does lim
(x,y)→(0,0)

y2

x2 + y2
exist? Explain.

solution This limit does not exist. Consider the following approaches to the point (x, y) = (0, 0) - first along the line
x = 0 and second, along the line y = x.

First along the line x = 0 we calculate:

lim
(x,y)→(0,0)

y2

x2 + y2
= lim

y→0

y2

02 + y2
= lim

y→0
1 = 1

Second, along the line y = x we calculate:

lim
(x,y)→(0,0)

y2

x2 + y2
= lim

x→0

x2

x2 + x2
= lim

x→0

1

2
= 1

2

Since these two limits are not equal, the limit in question, lim(x,y)→(0,0)
y2

x2+y2 does not exist.

14. Let f (x, y) = xy/(x2 + y2). Show that f (x, y) approaches zero as (x, y) approaches the origin along the x- and
y-axes. Then prove that lim

(x,y)→(0,0)
f (x, y) does not exist by showing that the limit along the line y = x is nonzero.

solution

Case 1. Consider the limit along the x-axis (y = 0):

lim
(x,y)→(0,0)

xy

x2 + y2
= lim

x→0

0

x2 + 02
= lim

x→0
0 = 0

Case 2. Consider the limit along the y-axis (x = 0):

lim
(x,y)→(0,0)

xy

x2 + y2
= lim

y→0

0

02 + y2
= lim

y→0
0 = 0

Case 3. Consider the limit along the line y = x:

lim
(x,y)→(0,0)

xy

x2 + y2
= lim

x→0

x(x)

x2 + x2
= lim

x→0

x2

2x2
= lim

x→0

1

2
= 1

2

Therefore, since the last limit we computed is not equal to zero, the limit in question, lim(x,y)→(0,0) xy/(x2 + y2) does
not exist.

15. Prove that

lim
(x,y)→(0,0)

x

x2 + y2

does not exist by considering the limit along the x-axis.

solution Compute this limit approaching (x, y) = (0, 0) along the x-axis (y = 0):

lim
(x,y)→(0,0)

x

x2 + y2
= lim

x→0

x

x2 + 02
= lim

x→0

1

x

This limit is known not to exist (it gets arbitrarily large from the right and arbitrarily small from the left), therefore the
limit in question, lim(x,y)→(0,0)

x
x2+y2 , also does not exist.

16. Let f (x, y) = x3/(x2 + y2) and g(x, y) = x2/(x2 + y2). Using polar coordinates, prove that

lim
(x,y)→(0,0)

f (x, y) = 0

and that lim
(x,y)→(0,0)

g(x, y) does not exist. Hint: Show that g(x, y) = cos2 θ and observe that cos θ can take on any value

between −1 and 1 as (x, y) → (0, 0).

solution First we will compute lim(x,y)→(0,0) f (x, y):

lim
(x,y)→(0,0)

x3

x2 + y2
= lim

(r,θ)→(0,0)

r3 cos3 θ

r2 cos2 θ + r2 sin2 θ
= lim

(r,θ)→(0,0)
r cos3 θ = 0
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Now, we will compute lim(x,y)→(0,0) g(x, y):

lim
(x,y)→(0,0)

x2

x2 + y2
= lim

(r,θ)→(0,0

r2 cos2 θ

r2 cos2 θ + r2 sin2 θ
= lim

(r,θ)→(0,0)
cos2 θ

Now cos θ can take on any value between −1 and 1 - it depends on the angle at which (x, y) approaches the origin. (If
it approaches the origin along the line with sin θ , then the limit will be cos θ .) Thus, as a result, cos2 θ can be any value
between 0 and 1. This limit does not exist, there is not just one finite value.

17. Use the Squeeze Theorem to evaluate

lim
(x,y)→(4,0)

(x2 − 16) cos

(
1

(x − 4)2 + y2

)

solution Consider the following inequalities:

−1 ≤ cos

(
1

(x − 4)2 + y2

)
≤ 1

Then for x such that x ≥ 4 then x2 − 16 ≥ 0 and we have:

(−1)(x2 − 16) ≤ (x2 − 16) cos

(
1

(x − 4)2 + y2

)
≤ (x2 − 16)

lim
(x,y)→(4,0)

(−1)(x2 − 16) ≤ lim
(x,y)→(4,0)

(x2 − 16) cos

(
1

(x − 4)2 + y2

)
≤ lim

(x,y)→(4,0)
(x2 − 16)

Then the two limits at the ends of the inequality are clearly equal to 0, by the Squeeze Theorem.
Now, if x < 4, then x2 − 16 < 0 and we have:

(x2 − 16) ≤ (x2 − 16) cos

(
1

(x − 4)2 + y2

)
≤ (−1)(x2 − 16)

lim
(x,y)→(4,0)

(x2 − 16) ≤ lim
(x,y)→(4,0)

(x2 − 16) cos

(
1

(x − 4)2 + y2

)
≤ lim

(x,y)→(4,0)
(−1)(x2 − 16)

Then the two limits at the ends of the inequality are clearly equal to 0, by the Squeeze Theorem.
Thus we can conclude

lim
(x,y)→(4,0)

(x2 − 16) cos

(
1

(x − 4)2 + y2

)
= 0

18. Evaluate lim
(x,y)→(0,0)

tan x sin

(
1

|x| + |y|
)

.

solution We will try to use the Squeeze Theorem for this problem. Consider the following inequalities:

−1 ≤ sin

(
1

|x| + |y|
)

≤ 1

Then we have, if tan x ≥ 0:

(−1) tan x ≤ tan x · sin

(
1

|x| + |y|
)

≤ tan x

lim
(x,y)→(0,0)

− tan x ≤ lim
(x,y)→(0,0)

tan x · sin

(
1

|x| + |y|
)

≤ lim
(x,y)→(0,0)

tan x

If we have tan x < 0 then:

tan x ≤ tan x · sin

(
1

|x| + |y|
)

≤ − tan x

lim
(x,y)→(0,0)

tan x ≤ lim
(x,y)→(0,0)

tan x · sin

(
1

|x| + |y|
)

≤ lim
(x,y)→(0,0)

− tan x

Then the two limits of the endpoints in both cases are clearly equal to 0, by the Squeeze Theorem we can conclude

lim
(x,y)→(0,0)

tan x · sin

(
1

|x| + |y|
)

= 0
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In Exercises 19–32, evaluate the limit or determine that it does not exist.

19. lim
(z,w)→(−2,1)

z4 cos(πw)

ez+w

solution This function is continuous everywhere since the denominator is never equal to 0, therefore, we will evaluate
the limit by substitution:

lim
(z,w)→(−2,1)

z4 cos(πw)

ez+w
= (−2)4 cos(π)

e−2+1
= 16(−1)

e−1
= −16e

20. lim
(z,w)→(−1,2)

(z2w − 9z)

solution The function is continuous everywhere since it is a polynomial. Therefore we use substitution to evaluate
the limit:

lim
(z,ω)→(−1,2)

(z2ω − 9z) = (−1)2 · 2 − 9 · (−1) = 11.

21. lim
(x,y)→(4,2)

y − 2√
x2 − 4

solution The function is continuous at the point (4, 2), since it is the quotient of two continuous functions and the
denominator is not zero at (4, 2). We compute the limit by substitution:

lim
(x,y)→(4,2)

y − 2√
x2 − 4

= 2 − 2√
42 − 4

= 0√
12

= 0

22. lim
(x,y)→(0,0)

x2 + y2

1 + y2

solution The function x2+y2

1+y2 is continuous everywhere since it is a rational function whose denominator is never

zero. We evaluate the limit using substitution:

lim
(x,y)→(0,0)

x2 + y2

1 + y2
= 02 + 02

1 + 02
= 0

23. lim
(x,y)→(3,4)

1√
x2 + y2

solution The function
1√

x2 + y2
is continuous at the point (3, 4) since it is the quotient of two continuous functions

and the denominator is not zero at (3, 4). We compute the limit by substitution:

lim
(x,y)→(3,4)

1√
x2 + y2

= 1√
9 + 16

= 1

5

24. lim
(x,y)→(0,0)

xy√
x2 + y2

solution We can see that the limit along any line through (0, 0) is 0, as well as along other paths through (0, 0) such as

x = y2 and y = x2. So we suspect that the limit exists and equals 0; we use the Squeeze Theorem to prove our assertion.
Consider the following inequalities:

0 ≤
∣∣∣∣∣ xy√

x2 + y2

∣∣∣∣∣ ≤ |x|

since |y| ≤
√

x2 + y2, and |x| → 0 as (x, y) → (0, 0). So then by the Squeeze Theorem, we know:

lim
(x,y)→(0,0)

xy√
x2 + y2

= 0

25. lim
(x,y)→(1,−3)

ex−y ln(x − y)

solution This function ex−y ln(x − y) is continuous at the point (1, −3) since it is the product of two continuous
functions. We can compute the limit by substitution:

lim
(x,y)→(1,−3)

ex−y ln(x − y) = e1+3 ln(1 + 3) = e4 ln 4



April 19, 2011

S E C T I O N 14.2 Limits and Continuity in Several Variables (LT SECTION 15.2) 651

26. lim
(x,y)→(0,0)

|x|
|x| + |y|

solution We compute the limit as (x, y) approaches the origin along the line y = mx, for a fixed positive value of m.

Substituting y = mx in the function f (x, y) = |x|
|x|+|y| , we get for x �= 0:

f (x, mx) = |x|
|x| + m|x| = |x|

|x|(1 + m)
= 1

1 + m

As (x, y) approaches (0, 0), (x, y) �= (0, 0). Therefore x �= 0 on the line y = mx. Thus,

lim
(x,y)→(0,0)
along y=mx

f (x, y) = lim
x→0

1

1 + m
= 1

1 + m

We see that the limits along the lines y = mx are different, hence f (x, y) does not approach one limit as (x, y) → (0, 0).
We conclude that the given limit does not exist.

27. lim
(x,y)→(−3,−2)

(x2y3 + 4xy)

solution The function x2y3 + 4xy is continuous everywhere because it is a polynomial. We can compute this limit
by substitution:

lim
(x,y)→(−3,−2)

(x2y3 + 4xy) = 9(−8) + 4(−3)(−2) = −72 + 24 = −48

28. lim
(x,y)→(2,1)

ex2−y2

solution Since ex2−y2 = ex2 · e−y2
, we evaluate the limit as a product of limits:

lim
(x,y)→(2,1)

ex2−y2 =
(

lim
x→2

ex2
)(

lim
y→1

e−y2
)

= e22 · e−12 = e4 · e−1 = e3

Notice that since ex2−y2
is continuous everywhere, we may evaluate the limit by substitution:

lim
(x,y)→(2,1)

ex2−y2 = e22−12 = e3.

29. lim
(x,y)→(0,0)

tan(x2 + y2) tan−1
(

1

x2 + y2

)

solution Consider the following inequalities:

−π

2
≤ tan−1

(
1

x2 + y2

)
≤ π

2

−π

2
· tan(x2 + y2) ≤ tan(x2 + y2) ·

(
1

x2 + y2

)
≤ π

2
tan(x2 + y2)

and then taking limits:

lim
(x,y)→(0,0)

−π

2
· tan(x2 + y2) ≤ lim

(x,y)→(0,0)
tan(x2 + y2) ·

(
1

x2 + y2

)
≤ lim

(x,y)→(0,0)

π

2
tan(x2 + y2)

Each of the limits on the endpoints of this inequality is equal to 0, thus we can conclude:

lim
(x,y)→(0,0)

tan(x2 + y2) ·
(

1

x2 + y2

)
= 0

30. lim
(x,y)→(0,0)

(x + y + 2)e−1/(x2+y2)

solution First let us recall that limt→0 e−1/t = 0 since −1/t gets infinitely small. Therefore we can conclude,

lim
(x,y)→(0,0)

(x + y + 2)e−1/(x2+y2) = (0 + 0 + 2) · 0 = 0
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31. lim
(x,y)→(0,0)

x2 + y2√
x2 + y2 + 1 − 1

solution We rewrite the function by dividing and multiplying it by the conjugate of
√

x2 + y2 + 1 − 1 and using the

identity (a − b)(a + b) = a2 − b2. This gives

x2 + y2√
x2 + y2 + 1 − 1

=
(x2 + y2)

(√
x2 + y2 + 1 + 1

)
(√

x2 + y2 + 1 − 1
) (√

x2 + y2 + 1 + 1
) =

(x2 + y2)
(√

x2 + y2 + 1 + 1
)

(
x2 + y2 + 1

)− 1

=
(x2 + y2)

(√
x2 + y2 + 1 + 1

)
x2 + y2

=
√

x2 + y2 + 1 + 1

The resulting function is continuous, hence we may compute the limit by substitution. This gives

lim
(x,y)→(0,0)

x2 + y2√
x2 + y2 + 1 − 1

= lim
(x,y)→(0,0)

(√
x2 + y2 + 1 + 1

)
=
√

02 + 02 + 1 + 1 = 2

32. lim
(x,y)→(1,1)

x2 + y2 − 2

|x − 1| + |y − 1|
Hint: Rewrite the limit in terms of u = x − 1 and v = y − 1.

solution Taking the hint given, let us rewrite the problem, instead of (x, y) → (1, 1), then if u = x − 1 and v = y − 1,
then (u, v) → (0, 0). Transforming the limit we have:

lim
(x,y)→(1,1)

x2 + y2 − 2

|x − 1| + |y − 1| = lim
(u,v)→(0,0)

(u + 1)2 + (v + 1)2 − 2

|u| + |v| = lim
(u,v)→(0,0)

u2 + 2u + v2 + 2v

|u| + |v|
Now consider this limit along two different paths, one is let v = u = |u| and the other v = −u = |u|. Examining the
limit along v = u = |u| we have

lim
(u,v)→(0,0)

u2 + 2u + v2 + 2v

|u| + |v| = lim
u→0

u2 + 2u + u2 + 2u

u + u
= lim

u→0

2u2 + 4u

2u
= lim

u→0
u + 2 = 2

whereas if v = −u = |u| we get:

lim
(u,v)→(0,0)

u2 + 2u + v2 + 2v

|u| + |v| = lim
u→0

u2 + 2u + u2 − 2u

−u − u
= lim

u→0

2u2

−2u
= lim

u→0
−u = 0

Since the limits along these two distinct paths are not equal, we conclude that the limit in question does not exist.

33. Let f (x, y) = x3 + y3

x2 + y2
.

(a) Show that

|x3| ≤ |x|(x2 + y2), |y3| ≤ |y|(x2 + y2)

(b) Show that |f (x, y)| ≤ |x| + |y|.
(c) Use the Squeeze Theorem to prove that lim

(x,y)→(0,0)
f (x, y) = 0.

solution

(a) Since |x|y2 ≥ 0, we have

|x3| ≤ |x3| + |x|y2 = |x|3 + |x|y2 = |x|(x2 + y2)

Similarly, since |y|x2 ≥ 0, we have

|y3| ≤ |y3| + |y|x2 = |y|3 + |y|x2 = |y|(x2 + y2)

(b) We use the triangle inequality to write

|f (x, y)| = |x3 + y3|
x2 + y2

≤ |x3| + |y3|
x2 + y2

We continue using the inequality in part (a):

|f (x, y)| ≤ |x|(x2 + y2) + |y|(x2 + y2)

x2 + y2
= (|x| + |y|)(x2 + y2)

x2 + y2
= |x| + |y|
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That is,

|f (x, y)| ≤ |x| + |y|
(c) In part (b) we showed that

|f (x, y)| ≤ |x| + |y| (1)

Let ε > 0. Then if |x| < ε
2 and |y| < ε

2 , we have by (1)

|f (x, y) − 0| ≤ |x| + |y| <
ε

2
+ ε

2
= ε (2)

Notice that if x2 + y2 < ε2

4 , then x2 < ε2

4 and y2 < ε2

4 . Hence |x| < ε
2 and |y| < ε

2 , so (1) holds. In other words, using
D�
(
ε
2

)
to represent the punctured disc of radius ε/2 centered at the origin, we have

(x, y) ∈ D�
( ε

2

)
⇒ |x| <

ε

2

and

|y| <
ε

2
⇒ |f (x, y) − 0| < ε

We conclude by the limit definition that

lim
(x,y)→(0,0)

f (x, y) = 0

34. Let a, b ≥ 0. Show that lim
(x,y)→(0,0)

xayb

x2 + y2
= 0 if a + b > 2 and that the limit does not exist if a + b ≤ 2.

solution We first show that the limit is zero if a + b > 2. We compute the limit using the polar coordinates x = r cos θ ,

y = r sin θ . Then (x, y) → (0, 0) if and only if x2 + y2 → 0, that is, if and only if r → 0+. Therefore,

lim
(x,y)→(0,0)

xayb

x2 + y2
= lim

r→0+
(r cos θ)a(r sin θ)b

r2
= lim

r→0+
ra+b cosa θ sinb θ

r2

= lim
r→0+(ra+b−2 cosa θ sinb θ) (1)

The following inequality holds:

0 ≤ |ra+b−2 cosa θ sinb θ | ≤ ra+b−2 (2)

Since a + b > 2, lim
r→0+ ra+b−2 = 0, therefore (2) and the Squeeze Theorem imply that

lim
r→0

(ra+b−2 cosa θ sinb θ) = 0 (3)

We combine (1) and (3) to conclude that if a + b > 2, then

lim
(x,y)→(0,0)

xayb

x2 + y2
= 0

We now consider the case a + b < 2. We examine the limit as (x, y) approaches the origin along the line y = x. Along
this line, θ = π

4 , therefore (1) gives

lim
(x,y)→(0,0)

xayb

x2 + y2
= lim

r→0+
(
ra+b−2 cosa

π

4
sinb π

4

)
= lim

r→0+

(
ra+b−2 ·

(
1√
2

)a

·
(

1√
2

)b
)

= lim
r→0+

ra+b−2

(
√

2)
a+b

Since a + b < 2, we have a + b − 2 < 0 therefore lim
r→0+ ra+b−2 does not exist. It follows that if a + b < 2, the given

limit does not exist. Finally we examine the case a + b = 2. By (1) we get

lim
(x,y)→(0,0)

xayb

x2 + y2
= lim

r→0+(r0 cosa θ sinb θ) = lim
r→0+ cosa θ sinb θ = cosa θ sinb θ

We see that the function does not approach one limit. For example, approaching the origin along the lines y = x (i.e.,

θ = π
4 ) and y = 0 (i.e., θ = 0) gives two different limits cosa π

4 sinb π
4 =

(√
2

2

)a+b
and cosa 0 sinb 0 = 0. We conclude

that if a + b = 2, the limit does not exist.
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35. Figure 7 shows the contour maps of two functions. Explain why the limit lim
(x,y)→P

f (x, y) does not exist.

Does lim
(x,y)→Q

g(x, y) appear to exist in (B)? If so, what is its limit?

12

6

0

18

24

30

(A) Contour map of f (x, y) (B) Contour map of g(x, y)

P

3−3

−1 1

5−5

Q

FIGURE 7

solution As (x, y) approaches arbitrarily close to P , the function f (x, y) takes the values ±1, ±3, and ±5. Therefore
f (x, y) does not approach one limit as (x, y) → P . Rather, the limit depends on the contour along which (x, y)

is approaching P . This implies that the limit lim(x,y)→P f (x, y) does not exist. In (B) the limit lim(x,y)→Q g(x, y)

appears to exist. If it exists, it must be 4, which is the level curve of Q.

Further Insights and Challenges
36. Evaluate lim

(x,y)→(0,2)
(1 + x)y/x .

solution We denote f (x, y) = (1 + x)y/x . Hence,

ln f (x, y) = ln (1 + x)y/x = y

x
ln(1 + x) = y

ln(1 + x)

x
(1)

Using L’Hôpital’s Rule we have

lim
x→0

ln(1 + x)

x
= lim

x→0

1
1+x

1
= lim

x→0

1

1 + x
= 1

1 + 0
= 1

Since this limit exists, we may use the Product Rule to compute the limit of (1):

lim
(x,y)→(0,2)

ln f (x, y) =
(

lim
y→2

y

)(
lim
x→0

ln(1 + x)

x

)
= 2 · 1 = 2 (2)

ln u approaches 2 if and only if u is approaching e2. Therefore, the limit in (2) implies that

lim
(x,y)→(0,2)

f (x, y) = e2.

37. Is the following function continuous?

f (x, y) =
{

x2 + y2 if x2 + y2 < 1

1 if x2 + y2 ≥ 1

solution f (x, y) is defined by a polynomial in the domain x2 + y2 < 1, hence f is continuous in this domain. In

the domain x2 + y2 > 1, f is a constant function, hence f is continuous in this domain also. Thus, we must examine
continuity at the points on the circle x2 + y2 = 1.

x
0

y

1
y2 + x2
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We express f (x, y) using polar coordinates:

f (r, θ) =
{

r2 0 ≤ r < 1

1 r ≥ 1

Since lim
r→1− f (r, θ) = lim

r→1− r2 = 1 and lim
r→1+ f (r, θ) = lim

r→1+ 1 = 1, we have lim
r→1

f (r, θ) = 1. Therefore f (r, θ) is

continuous at r = 1, or f (x, y) is continuous on x2 + y2 = 1. We conclude that f is continuous everywhere on R2.

38. The function f (x, y) = sin(xy)/xy is defined for xy �= 0.

(a) Is it possible to extend the domain of f (x, y) to all of R2 so that the result is a continuous function?

(b) Use a computer algebra system to plot f (x, y). Does the result support your conclusion in (a)?

solution

(a) We define f (x, y) on the x- and y-axes by f (x, y) = 1 if xy = 0. We now show that f is continuous. f is continuous
at the points where xy �= 0. We next show continuity at (x0, 0) (including x0 = 0). For the points (0, y0), the proof is
similar and hence will be omitted. To prove continuity at P = (x0, 0) we have to show that

lim
(x,y)→P

f (x, y) = lim
(x,y)→P

sin xy

xy
= 1 (1)

Let us denote u = xy. As (x, y) → (x0, 0), u = x · y → x0 · 0 = 0. Thus,

lim
(x,y)→P

f (x, y) = lim
(x,y)→(x0,0)

sin xy

xy
= lim

u→0

sin u

u
= 1 = f (x0, 0).

(b) The following figure shows the graph of f (x, y) = sin xy
xy :

x y

z

The graph shows that, near the axes, the values of f (x, y) are approaching 1, as shown in part (a).

39. Prove that the function

f (x, y) =
⎧⎨
⎩

(2x − 1)(sin y)

xy
if xy �= 0

ln 2 if xy = 0

is continuous at (0, 0).

solution To solve this problem it is necessary to show that lim(x,y)→(0,0) f (x, y) = f (0, 0) = ln 2. Consider the
following:

lim
(x,y)→(0,0)

(2x − 1) sin y

xy
= lim

(x,y)→(0,0)

2x − 1

x
· sin y

y

=
(

lim
x→0

2x − 1

x

)(
lim
y→0

sin y

y

)

= lim
x→0

(ln 2)2x

1
· (1) = ln 2

(Using L’Hopital’s Rule on the limit in terms of x.) Thus since lim(x,y)→(0,0) f (x, y) = f (0, 0), we see that f (x, y) is
continuous at (0, 0).
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40. Prove that if f (x) is continuous at x = a and g(y) is continuous at y = b, then F(x, y) = f (x)g(y) is continuous
at (a, b).

solution Given that f (x) is continuous at x = a, we know that

lim
x→a

f (x) = f (a)

and given that g(x) is continuous at x = b, we know that

lim
x→b

g(x) = g(b).

Consider the limit lim(x,y)→(a,b) F (x, y). Then using the above information we have

lim
(x,y)→(a,b)

F (x, y) = lim
(x,y)→(a,b)

f (x)g(y) =
(

lim
x→a

f (x)
)(

lim
y→b

g(y)

)
= f (a)g(b) = F(a, b)

Therefore, F(x, y) is continuous at the point (a, b).

41. The function f (x, y) = x2y/(x4 + y2) provides an interesting example where the limit as (x, y) → (0, 0)

does not exist, even though the limit along every line y = mx exists and is zero (Figure 8).

(a) Show that the limit along any line y = mx exists and is equal to 0.

(b) Calculate f (x, y) at the points (10−1, 10−2), (10−5, 10−10), (10−20, 10−40). Do not use a calculator.

(c) Show that lim
(x,y)→(0,0)

f (x, y) does not exist. Hint: Compute the limit along the parabola y = x2.

x

y

z

x

y

FIGURE 8 Graph of f (x, y) = x2y

x4 + y2
.

solution

(a) Substituting y = mx in f (x, y) = x2y

x4+y2 , we get

f (x, mx) = x2 · mx

x4 + (mx)2
= mx3

x2(x2 + m2)
= mx

x2 + m2

We compute the limit as x → 0 by substitution:

lim
x→0

f (x, mx) = lim
x→0

mx

x2 + m2
= m · 0

02 + m2
= 0

(b) We compute f (x, y) at the given points:

f (10−1, 10−2) = 10−2 · 10−2

10−4 + 10−4
= 10−4

2 · 10−4
= 1

2

f (10−5, 10−10) = 10−10 · 10−10

10−20 + 10−20
= 10−20

2 · 10−20
= 1

2

f (10−20, 10−40) = 10−40 · 10−40

10−80 + 10−80
= 10−80

2 · 10−80
= 1

2
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(c) We compute the limit as (x, y) approaches the origin along the parabola y = x2 (by part (b), the limit appears to be
1
2 ). We substitute y = x2 in the function and compute the limit as x → 0. This gives

lim
(x,y)→0

along y=x2

f (x, y) = lim
x→0

f (x, x2) = lim
x→0

x2 · x2

x4 + (x2)
2

= lim
x→0

x4

2x4
= lim

x→0

1

2
= 1

2

However, in part (a), we showed that the limit along the lines y = mx is zero. Therefore f (x, y) does not approach one
limit as (x, y) → (0, 0), so the limit lim

(x,y)→(0,0)
f (x, y) does not exist.

14.3 Partial Derivatives (LT Section 15.3)

Preliminary Questions
1. Patricia derived the following incorrect formula by misapplying the Product Rule:

∂

∂x
(x2y2) = x2(2y) + y2(2x)

What was her mistake and what is the correct calculation?

solution To compute the partial derivative with respect to x, we treat y as a constant. Therefore the Constant Multiple
Rule must be used rather than the Product Rule. The correct calculation is:

∂

∂x
(x2y2) = y2 ∂

∂x
(x2) = y2 · 2x = 2xy2.

2. Explain why it is not necessary to use the Quotient Rule to compute
∂

∂x

(
x + y

y + 1

)
. Should the Quotient Rule be used

to compute
∂

∂y

(
x + y

y + 1

)
?

solution In differentiating with respect to x, y is considered a constant. Therefore in this case the Constant Multiple
Rule can be used to obtain

∂

∂x

(
x + y

y + 1

)
= 1

y + 1

∂

∂x
(x + y) = 1

y + 1
· 1 = 1

y + 1
.

As for the second part, since y appears in both the numerator and the denominator, the Quotient Rule is indeed needed.

3. Which of the following partial derivatives should be evaluated without using the Quotient Rule?

(a)
∂

∂x

xy

y2 + 1
(b)

∂

∂y

xy

y2 + 1
(c)

∂

∂x

y2

y2 + 1

solution

(a) This partial derivative does not require use of the Quotient Rule, since the Constant Multiple Rule gives

∂

∂x

(
xy

y2 + 1

)
= y

y2 + 1

∂

∂x
(x) = y

y2 + 1
· 1 = y

y2 + 1
.

(b) This partial derivative requires use of the Quotient Rule.

(c) Since y is considered a constant in differentiating with respect to x, we do not need the Quotient Rule to state that
∂

∂x

(
y2

y2 + 1

)
= 0.

4. What is fx , where f (x, y, z) = (sin yz)ez3−z−1√y?

solution In differentiating with respect to x, we treat y and z as constants. Therefore, the whole expression for
f (x, y, z) is treated as constant, so the derivative is zero:

∂

∂x

(
sin yzez3−z−1√y

) = 0.
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5. Assuming the hypotheses of Clairaut’s Theorem are satisfied, which of the following partial derivatives are equal to
fxxy?

(a) fxyx (b) fyyx (c) fxyy (d) fyxx

solution fxxy involves two differentiations with respect to x and one differentiation with respect to y. Therefore, if
f satisfies the assumptions of Clairaut’s Theorem, then

fxxy = fxyx = fyxx

Exercises
1. Use the limit definition of the partial derivative to verify the formulas

∂

∂x
xy2 = y2,

∂

∂y
xy2 = 2xy

solution Using the limit definition of the partial derivative, we have

∂

∂x
xy2 = lim

h→0

(x + h)y2 − xy2

h
= lim

h→0

xy2 + hy2 − xy2

h
= lim

h→0

hy2

h
= lim

h→0
y2 = y2

∂

∂y
xy2 = lim

k→0

x(y + k)2 − xy2

k
= lim

k→0

x(y2 + 2yk + k2) − xy2

k
= lim

k→0

xy2 + 2xyk + xk2 − xy2

k

= lim
k→0

k(2xy + xk)

k
= lim

k→0
(2xy + k) = 2xy + 0 = 2xy

2. Use the Product Rule to compute
∂

∂y
(x2 + y)(x + y4).

solution Using the Product Rule we obtain

∂

∂y
(x2 + y)(x + y4) = (x2 + y)

∂

∂y
(x + y4) + (x + y4)

∂

∂y
(x2 + y)

= (x2 + y) · 4y3 + (x + y4) · 1 = 4x2y3 + 5y4 + x

3. Use the Quotient Rule to compute
∂

∂y

y

x + y
.

solution Using the Quotient Rule we obtain

∂

∂y

y

x + y
=

(x + y) ∂
∂y

(y) − y ∂
∂y

(x + y)

(x + y)2
= (x + y) · 1 − y · 1

(x + y)2
= x

(x + y)2

4. Use the Chain Rule to compute
∂

∂u
ln(u2 + uv).

solution By the Chain Rule d
du

ln ω = 1
ω

dω
du

. Applying this with ω = u2 + uv gives

∂

∂u
ln(u2 + uv) = 1

u2 + uv

∂

∂u
(u2 + uv) = 2u + v

u2 + uv

5. Calculate fz(2, 3, 1), where f (x, y, z) = xyz.

solution We first find the partial derivative fz(x, y, z):

fz(x, y, z) = ∂

∂z
(xyz) = xy

Substituting the given point we get

fz(2, 3, 1) = 2 · 3 = 6

6. Explain the relation between the following two formulas (c is a constant).

d

dx
sin(cx) = c cos(cx),

∂

∂x
sin(xy) = y cos(xy)
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solution d
dx

sin(cx) is the derivative of the single-variable function sin(cx), where c is a constant. ∂
∂x

sin(xy) is the
partial derivative of the two-variable function sin(xy) with respect to x. While differentiating, the variable y is considered
constant, hence it resembles the first differentiation, and the results are the same where c is replaced by y.

7. The plane y = 1 intersects the surface z = x4 + 6xy − y4 in a certain curve. Find the slope of the tangent line to
this curve at the point P = (1, 1, 6).

solution The slope of the tangent line to the curve z = z(x, 1) = x4 + 6x − 1, obtained by intersecting the surface

z = x4 + 6xy − y4 with the plane y = 1, is the partial derivative ∂z
∂x

(1, 1).

∂z

∂x
= ∂

∂x
(x4 + 6xy − y4) = 4x3 + 6y

m = ∂z

∂x
(1, 1) = 4 · 13 + 6 · 1 = 10

8. Determine whether the partial derivatives ∂f/∂x and ∂f/∂y are positive or negative at the point P on the graph in
Figure 7.

z

x

y
P

FIGURE 7

solution The graph shows that f is increasing in the direction of growing x and f is decreasing in the direction of

growing y. Therefore, ∂f
∂x

∣∣
P

> 0 and ∂f
∂y

∣∣
P

< 0.

In Exercises 9–12, refer to Figure 8.

x

y

−10

−10

−20
A

B
C

50
70

3050

420−2−4

4

2

0

−2

−4

70

30

−30

10

10

0

FIGURE 8 Contour map of f (x, y).

9. Estimate fx and fy at point A.

solution To estimate fx we move horizontally to the next level curve in the direction of growing x, to a point A′. The
change in f from A to A′ is the contour interval, �f = 40 − 30 = 10. The distance between A and A′ is approximately
�x ≈ 1.0. Hence,

fx(A) ≈ �f

�x
= 10

1.0
= 10

To estimate fy we move vertically from A to a point A′′ on the next level curve in the direction of growing y. The change
in f from A to A′′ is �f = 20 − 30 = −10. The distance between A and A′′ is �y ≈ 0.5. Hence,

fy(A) ≈ �f

�y
= −10

0.5
≈ −20.

10. Is fx positive or negative at B?

solution To estimate fx at B, we move horizontally to the next level curve in the direction of growing x, to a point
B ′. The change in f from B to B ′ is the contour interval �f = 10 − 20 = −10 while the distance between B and B ′ is
approximately �x ≈ 1. Hence

fx(B) ≈ �f

�x
= −10

1
= −10 < 0

Therefore fx(B) is negative.



April 19, 2011

660 C H A P T E R 14 DIFFERENTIATION IN SEVERAL VARIABLES (LT CHAPTER 15)

11. Starting at point B, in which compass direction (N, NE, SW, etc.) does f increase most rapidly?

solution The distances between adjacent level curves starting at B are the smallest along the line with slope −1,
upward. Therefore, f is increasing most rapidly in the direction of θ = 135◦ or in the NW direction.

12. At which of A, B, or C is fy smallest?

solution We consider vertical lines through A, B, and C. The distance between each point A, B, C and the intersection
of the vertical line with the adjacent level curves is the largest at C. It means that fy is smallest at C.

In Exercises 13–40, compute the first-order partial derivatives.

13. z = x2 + y2

solution We compute zx(x, y) by treating y as a constant, and we compute zy(x, y) by treating x as a constant:

∂

∂x
(x2 + y2) = 2x; ∂

∂y
(x2 + y2) = 2y

14. z = x4y3

solution Treating y as a constant (to find zx ) and x as a constant (to find zy ) and using Rules for Differentiation, we
get,

∂

∂x
(x4y3) = y3 ∂

∂x
(x4) = y3 · 4x3 = 4x3y3

∂

∂y
(x4y3) = x4 ∂

∂y
(y3) = x4 · 3y2 = 3x4y2

15. z = x4y + xy−2

solution We obtain the following partial derivatives:

∂

∂x
(x4y + xy−2) = 4x3y + y−2

∂

∂y
(x4y + xy−2) = x4 + x · (−2y−3) = x4 − 2xy−3

16. V = πr2h

solution We find ∂V
∂r

and ∂V
∂h

:

∂V

∂r
= ∂

∂r
(πr2h) = πh

∂

∂r
(r2) = πh · 2r = 2πhr

∂V

∂h
= ∂

∂h
(πr2h) = πr2

17. z = x

y

solution Treating y as a constant we have

∂

∂x

(
x

y

)
= 1

y

∂

∂x
(x) = 1

y
· 1 = 1

y

We now find the derivative zy(x, y), treating x as a constant:

∂

∂y

(
x

y

)
= x · ∂

∂y

(
1

y

)
= x · −1

y2
= −x

y2
.

18. z = x

x − y

solution We differentiate with respect to x, using the Quotient Rule. We get

∂

∂x

(
x

x − y

)
= (x − y) ∂

∂x
(x) − x ∂

∂x
(x − y)

(x − y)2
= (x − y) · 1 − x · 1

(x − y)2
= −y

(x − y)2

We now differentiate with respect to y, using the Chain Rule:

∂

∂y

(
x

x − y

)
= x

∂

∂y

(
1

x − y

)
= x · −1

(x − y)2

∂

∂y
(x − y) = x · −1

(x − y)2
· (−1) = x

(x − y)2
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19. z =
√

9 − x2 − y2

solution Differentiating with respect to x, treating y as a constant, and using the Chain Rule, we obtain

∂

∂x

(√
9 − x2 − y2

)
= 1

2
√

9 − x2 − y2

∂

∂x
(9 − x2 − y2) = −2x

2
√

9 − x2 − y2
= −x√

9 − x2 − y2

We now differentiate with respect to y, treating x as a constant:

∂

∂y

(√
9 − x2 − y2

)
= 1

2
√

9 − x2 − y2

∂

∂y
(9 − x2 − y2) = −2y

2
√

9 − x2 − y2
= −y√

9 − x2 − y2

20. z = x√
x2 + y2

solution We compute ∂z
∂x

using the Quotient Rule and the Chain Rule:

∂z

∂x
= 1 ·

√
x2 + y2 − x ∂

∂x

√
x2 + y2(√

x2 + y2
)2

=
√

x2 + y2 − x · 2x

2
√

x2+y2

x2 + y2
= x2 + y2 − x2

(x2 + y2)
3/2

= y2

(x2 + y2)
3/2

We compute ∂z
∂y

using the Chain Rule:

∂z

∂y
= x

∂

∂y
(x2 + y2)

−1/2 = x ·
(

−1

2

)
(x2 + y2)

−3/2 · 2y = −xy

(x2 + y2)
3/2

21. z = (sin x)(sin y)

solution We obtain the following partial derivatives:

∂

∂x
(sin x sin y) = sin y

∂

∂x
sin x = sin y cos x

∂

∂y
(sin x sin y) = sin x

∂

∂y
sin y = sin x cos y

22. z = sin(u2v)

solution By the Chain Rule,

d

du
sin ω = cos ω

dω

du
and

d

dv
sin ω = cos ω

dω

dv
.

Applying this with ω = u2v gives

∂

∂u
sin(u2v) = cos(u2v)

∂

∂u
(u2v) = cos(u2v) · 2uv = 2uv cos(u2v)

∂

∂v
sin(u2v) = cos(u2v)

∂

∂v
(u2v) = cos(u2v) · u2 = u2 cos(u2v)

23. z = tan
x

y

solution By the Chain Rule,

d

dx
tan u = 1

cos2u

du

dx
and

d

dy
tan u = 1

cos2u

du

dy
.

(We could also say that the derivative of tan u is sec2 u, but of course sec2 u = 1/ cos2 u, so it really is the same thing.)
We apply this with u = x

y to obtain

∂

∂x
tan

(
x

y

)
= 1

cos2
(

x
y

) ∂

∂x

(
x

y

)
= 1

cos2
(

x
y

) · 1

y
= 1

ycos2
(

x
y

)
∂

∂y
tan

(
x

y

)
= 1

cos2
(

x
y

) ∂

∂y

(
x

y

)
= 1

cos2
(

x
y

) · −x

y2
= −x

y2cos2
(

x
y

)
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24. S = tan−1(wz)

solution By the Chain Rule,

d

dw
tan−1 u = 1

1 + u2

du

dw
and

d

dz
tan−1 u = 1

1 + u2

du

dz

Using this rule with u = wz gives

dS

dw
= ∂

∂w
tan−1(wz) = 1

1 + (wz)2

∂

∂w
(wz) = z

1 + w2z2

dS

dz
= ∂

∂z
tan−1(wz) = 1

1 + (wz)2

∂

∂z
(wz) = w

1 + w2z2

25. z = ln(x2 + y2)

solution Using the Chain Rule we have

∂z

∂x
= 1

x2 + y2

∂

∂x
(x2 + y2) = 1

x2 + y2
· 2x = 2x

x2 + y2

∂z

∂y
= 1

x2 + y2

∂

∂y
(x2 + y2) = 1

x2 + y2
· 2y = 2y

x2 + y2

26. A = sin(4θ − 9t)

solution We use the Chain Rule to compute ∂A
∂θ

and ∂A
∂t

:

∂A

∂θ
= cos(4θ − 9t)

∂

∂θ
(4θ − 9t) = 4 cos(4θ − 9t)

∂A

∂t
= cos(4θ − 9t)

∂

∂t
(4θ − 9t) = −9 cos(4θ − 9t)

27. W = er+s

solution We use the Chain Rule to compute ∂W
∂r

and ∂W
∂s

:

∂W

∂r
= er+s · ∂

∂r
(r + s) = er+s · 1 = er+s

∂W

∂s
= er+s · ∂

∂s
(r + s) = er+s · 1 = er+s

28. Q = reθ

solution The partial derivatives are

∂Q

∂r
= ∂

∂r
(reθ ) = eθ ∂

∂r
(r) = eθ

∂Q

∂θ
= ∂

∂θ
(reθ ) = r

∂

∂θ
(eθ ) = reθ

29. z = exy

solution We use the Chain Rule, d
dx

eu = eu du
dx

; d
dy

eu = eu du
dy

with u = xy to obtain

∂

∂x
exy = exy ∂

∂x
(xy) = exyy = yexy

∂

∂y
exy = exy ∂

∂y
(xy) = exyx = xexy

30. R = e−v2/k

solution Using the Chain Rule gives

∂R

∂v
= e−v2/k ∂

∂v

(
−v2

k

)
= e−v2/k ·

(
−2v

k

)
= −2v

k
e−v2/k

∂R

∂k
= e−v2/k ∂

∂k

(
−v2

k

)
= e−v2/k ·

(
−v2

) ∂

∂k

(
1

k

)
= e−v2/k(−v2) · −1

k2
=
(v

k

)2
e−v2/k
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31. z = e−x2−y2

solution We use the Chain Rule to find ∂z
∂x

and ∂z
∂y

:

∂z

∂x
= e−x2−y2 ∂

∂x
(−x2 − y2) = e−x2−y2 · (−2x) = −2xe−x2−y2

∂z

∂y
= e−x2−y2 ∂

∂y
(−x2 − y2) = e−x2−y2 · (−2y) = −2ye−x2−y2

32. P = e

√
y2+z2

solution We use the Chain Rule to compute ∂P
∂y

and ∂P
∂z

:

∂P

∂y
= e

√
y2+z2 ∂

∂y

√
y2 + z2 = e

√
y2+z2 · 2y

2
√

y2 + z2
= e

√
y2+z2 · y√

y2 + z2

∂P

∂z
= e

√
y2+z2 ∂

∂z

√
y2 + z2 = e

√
y2+z2 · 2z

2
√

y2 + z2
= e

√
y2+z2 · z√

y2 + z2

33. U = e−rt

r

solution We have

∂U

∂r
= −te−rt · r − e−rt · 1

r2
= −(1 + rt)e−rt

r2

and also

∂U

∂t
= −re−rt

r
= −e−rt

34. z = yx

solution To find ∂z
∂y

, we use the Power Rule for differentiation:

∂z

∂y
= xyx−1

To find ∂z
∂x

, we use the derivative of the exponent function:

∂z

∂x
= yx ln y

35. z = sinh(x2y)

solution By the Chain Rule, d
dx

sinh u = cosh udu
dx

and d
dy

sinh u = cosh udu
dy

. We use the Chain Rule with u = x2y

to obtain

∂

∂x
sinh(x2y) = cosh(x2y)

∂

∂x
(x2y) = 2xy cosh(x2y)

∂

∂y
sinh(x2y) = cosh(x2y)

∂

∂y
(x2y) = x2 cosh(x2y)

36. z = cosh(t − cos x)

solution The partial derivatives of z are

∂z

∂t
= sinh(t − cos x)

∂z

∂x
= sinh(t − cos x)

∂

∂x
(t − cos x) = sinh(t − cos x) · sin x



April 19, 2011

664 C H A P T E R 14 DIFFERENTIATION IN SEVERAL VARIABLES (LT CHAPTER 15)

37. w = xy2z3

solution The partial derivatives of w are

∂w

∂x
= y2z3

∂w

∂y
= xz3 ∂

∂y
(y2) = xz3 · 2y = 2xz3y

∂w

∂z
= xy2 ∂

∂z
(z3) = xy2 · 3z2 = 3xy2z2

38. w = x

y + z

solution We have

∂w

∂x
= ∂

∂x

(
x

y + z

)
= 1

y + z

∂

∂x
(x) = 1

y + z

To find ∂w
∂y

and ∂w
∂z

, we use the Chain Rule:

∂w

∂y
= x

∂

∂y

(
1

y + z

)
= x · −1

(y + z)2

∂

∂y
(y + z) = x · −1

(y + z)2
· 1 = −x

(y + z)2

∂w

∂z
= x

∂

∂z

(
1

y + z

)
= x · −1

(y + z)2

∂

∂z
(y + z) = x · −1

(y + z)2
· 1 = −x

(y + z)2

39. Q = L

M
e−Lt/M

solution

∂Q

∂L
= ∂

∂L

(
L

M
e−Lt/M

)

= L

M
· e−Lt/M · (−t/M) + e−Lt/M · 1

M

= − Lt

M2
e−Lt/M + e−Lt/M

M

∂Q

∂M
= ∂

∂M

(
L

M
e−Lt/M

)

= L

M
· e−Lt/M · Lt

M2
+ e−Lt/M · −L

M2

= L2t

M3
e−Lt/M − L

M2
e−Lt/M

∂Q

∂t
= ∂

∂t

(
L

M
e−Lt/M

)

= − L2

M2
e−Lt/M

40. w = x

(x2 + y2 + z2)3/2

solution To find ∂w
∂x

, we use the Quotient Rule and the Chain Rule:

∂w

∂x
= 1 · (x2 + y2 + z2)

3/2 − x · 3
2 (x2 + y2 + z2)

1/2 · 2x

(x2 + y2 + z2)
3

= (x2 + y2 + z2)1/2 (x2 + y2 + z2) − x · 3x

(x2 + y2 + z2)3

= x2 + y2 + z2 − 3x2

(x2 + y2 + z2)
5/2

= y2 + z2 − 2x2

(x2 + y2 + z2)
5/2

We now use the Chain Rule to compute ∂w
∂y

and ∂w
∂z

:

∂w

∂y
= x

∂

∂y

1

(x2 + y2 + z2)
3/2

= x
∂

∂y
(x2 + y2 + z2)

−3/2
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= x ·
(

−3

2

)
(x2 + y2 + z2)

−5/2 · 2y = − 3xy(
x2 + y2 + z2

)5/2

∂w

∂z
= x

∂

∂z

1(
x2 + y2 + z2

)3/2
= x

∂

∂z
(x2 + y2 + z2)

−3/2

= x ·
(

−3

2

)
(x2 + y2 + z2)

−5/2 · 2z = − 3xz

(x2 + y2 + z2)
5/2

In Exercises 41–44, compute the given partial derivatives.

41. f (x, y) = 3x2y + 4x3y2 − 7xy5, fx(1, 2)

solution Differentiating with respect to x gives

fx(x, y) = 6xy + 12x2y2 − 7y5

Evaluating at (1, 2) gives

fx(1, 2) = 6 · 1 · 2 + 12·12 · 22 − 7 · 25 = −164.

42. f (x, y) = sin(x2 − y), fy(0, π)

solution We differentiate with respect to y, using the Chain Rule. This gives

fy(x, y) = cos(x2 − y)
∂

∂y
(x2 − y) = cos(x2 − y) · (−1) = − cos(x2 − y)

Evaluating at (0, π) we obtain

fy(0, π) = − cos(02 − π) = − cos(−π) = − cos π = 1.

43. g(u, v) = u ln(u + v), gu(1, 2)

solution Using the Product Rule and the Chain Rule we get

gu(u, v) = ∂

∂u
(u ln(u + v)) = 1 · ln(u + v) + u · 1

u + v
= ln(u + v) + u

u + v

At the point (1, 2) we have

gu(1, 2) = ln(1 + 2) + 1

1 + 2
= ln 3 + 1

3
.

44. h(x, z) = exz−x2z3
, hz(3, 0)

solution We obtain the following partial:

hz(x, z) = (x − 3x2z2)exz−x2z3

Substituting x = 3, z = 0 we obtain the partial derivative at the point (3, 0):

hz(3, 0) = (3 − 0)e0−0 = 3.

Exercises 45 and 46 refer to Example 5.

45. Calculate N for L = 0.4, R = 0.12, and d = 10, and use the linear approximation to estimate �N if d is increased
from 10 to 10.4.

solution From the example in the text we have

N =
(

2200R

Ld

)1.9

Calculating N for L = 0.4, R = 0.12, and d = 10 we have

N =
(

2200 · 0.12

0.4 · 10

)1.9
≈ 2865.058
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then we will use the derivation

�N ≈ ∂N

∂d
�d

since d is increasing from 10 to 10.4. We need to compute ∂N/∂d, with L and R constant:

∂N

∂d
= ∂

∂d

(
2200R

Ld

)1.9

=
(

2200R

L

)1.9 ∂

∂d
(d−1.9)

= −1.9

(
2200R

L

)1.9
d−2.9

we have first

∂N

∂d

∣∣∣∣
(L,R,d)=(0.4,0.12,10)

= −1.9

(
2200 · 0.12

0.4

)1.9
(10)−2.9 ≈ −544.361

Therefore we can conclude:

�N ≈ ∂N

∂d
�d ≈ (−544.361)(10.4 − 10) = −217.744

46. Estimate �N if (L, R, d) = (0.5, 0.15, 8) and R is increased from 0.15 to 0.17.

solution From the example in the text we have

N =
(

2200R

Ld

)1.9

then we will use the derivation,

�N ≈ ∂N

∂R
�R

since R is increasing from 0.15 to 0.17. We need to compute ∂N/∂R, with L and d constant:

∂N

∂R
= ∂

∂R

(
2200R

Ld

)1.9

=
(

2200

Ld

)1.9 ∂

∂R
(R1.9)

= 1.9

(
2200

Ld

)1.9
R0.9

We have first

∂N

∂R

∣∣∣∣
(L,R,d)=(0.5,0.15,8)

= 1.9

(
2200

0.5 · 8

)1.9
(0.15)0.9 ≈ 55452.974

Therefore we can conclude:

�N ≈ ∂N

∂R
�R ≈ (55452.974)(0.17 − 0.15) ≈ 1109.059

47. The heat index I is a measure of how hot it feels when the relative humidity is H (as a percentage) and the actual air
temperature is T (in degrees Fahrenheit). An approximate formula for the heat index that is valid for (T , H) near (90, 40)

is

I (T , H) = 45.33 + 0.6845T + 5.758H − 0.00365T 2

− 0.1565HT + 0.001HT 2

(a) Calculate I at (T , H) = (95, 50).

(b) Which partial derivative tells us the increase in I per degree increase in T when (T , H) = (95, 50). Calculate this
partial derivative.
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solution
(a) Let us compute I when T = 95 and H = 50:

I (95, 50) = 45.33 + 0.6845(95) + 5.758(50) − 0.00365(95)2 − 0.1565(50)(95) + 0.001(50)(95)2

= 73.19125

(b) The partial derivative we are looking for here is ∂I/∂T :

∂I

∂T
= 0.6845 − 0.00730T − 0.1565H + 0.002HT

and evaluating we have:

∂I

∂T
(95, 50) = 0.6845 − 0.00730(95) − 0.1565(50) + 0.002(50)(95) = 1.666

48. The wind-chill temperature W measures how cold people feel (based on the rate of heat loss from exposed skin)
when the outside temperature is T ◦C (with T ≤ 10) and wind velocity is v m/s (with v ≥ 2):

W = 13.1267 + 0.6215T − 13.947v0.16 + 0.486T v0.16

Calculate ∂W/∂v at (T , v) = (−10, 15) and use this value to estimate �W if �v = 2.

solution Computing the partial derivative we get:

∂W

∂v
= ∂

∂v

(
13.1267 + 0.6215T − 13.947v0.16 + 0.486T v0.16

)
= −13.947(0.16)v−0.84 + 0.486(0.16)T v−0.84

∂W

∂v
(−10, 15) = −13.947(0.16)(15)−0.84 + 0.486(0.16)(−10)(15)−0.84 ≈ −0.30940

Now using this information we would like to estimate �W if �v = 2:

�W = ∂W

∂v
�v ≈ −0.30940 · 2 ≈ −0.6188

49. The volume of a right-circular cone of radius r and height h is V = π
3 r2h. Suppose that r = h = 12 cm. What leads

to a greater increase in V , a 1-cm increase in r or a 1-cm increase in h? Argue using partial derivatives.

solution We obtain the following derivatives:

∂V

∂r
= ∂

∂r

(π

3
r2h
)

= πh

3

∂

∂r
r2 = πh

3
· 2r = 2πhr

3

∂V

∂h
= ∂

∂h

(π

3
r2h
)

= π

3
r2

An increase �r = 1 cm in r leads to an increase of ∂V
∂r

(12, 12) · 1 in the volume, and an increase �h = 1 cm in h leads

to an increase of ∂V
∂h

(12, 12) · 1 in V . We compute these values, using the partials computed. This gives

∂V

∂r
(12, 12) = 2πhr

3

∣∣∣∣
(12,12)

= 2π · 12 · 12

3
= 301.6

∂V

∂h
(12, 12) = π

3
· 122 = 150.8

We conclude that an increase of 1 cm in r leads to a greater increase in V than an increase of 1 cm in h.

50. Use the linear approximation to estimate the percentage change in volume of a right-circular cone of radius r = 40
cm if the height is increased from 40 to 41 cm.

solution First, the volume of a right-circular cone is V = 1
3πr2h. We obtain the following partial derivative:

∂V

∂h
= 1

3
πr2

Then an increase �h = 1 cm in h leads to an increase of ∂V/∂h · 1 in V .
To compute the percent change in volume of the right-circular cone we consider:

�V

V
≈ ∂V/∂h · �h

V
=

1
3πr2�h

1
3πr2h

= �h

h
= 1

40
= 0.025

Therefore, the percent change is about 2.5%.
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51. Calculate ∂W/∂E and ∂W/∂T , where W = e−E/kT , where k is a constant.

solution We use the Chain Rule

d

dE
eu = eu du

dE
and

d

dT
eu = eu du

dT

with u = − E
kT

, to obtain

∂W

∂E
= e−E/kT ∂

∂E

(
− E

kT

)
= e−E/kT

(
− 1

kT

)
= − 1

kT
e−E/kT

∂W

∂T
= e−E/kT ∂

∂T

(
− E

kT

)
= e−E/kT ·

(
−E

k

)
∂

∂T

(
1

T

)
= e−E/kT

(
−E

k

)(
− 1

T 2

)
= E

kT 2
e−E/kT

52. Calculate ∂P/∂T and ∂P/∂V , where pressure P , volume V , and temperature T are related by the ideal gas law,
PV = nRT (R and n are constants).

solution We differentiate the two sides of the equation PV = nRT with respect to V (treating T as a constant). Using
the Product Rule we obtain

∂

∂V
PV = V

∂P

∂V
+ P

∂V

∂V
= V

∂P

∂V
+ P ;

∂

∂V
nRT = 0

Hence,

V
∂P

∂V
+ P = 0

We substitute P = nRT
V

and solve for ∂P
∂V

. This gives

V
∂P

∂V
+ nRT

V
= 0 ⇒ ∂P

∂V
= −nRT

V 2

We now differentiate PV = nRT with respect to T , treating V as a constant:

∂

∂T
PV = V

∂P

∂T
;

∂

∂T
nRT = nR

Hence,

V
∂P

∂T
= nR ⇒ ∂P

∂T
= nR

V
.

53. Use the contour map of f (x, y) in Figure 9 to explain the following statements.

(a) fy is larger at P than at Q, and fx is smaller (more negative) at P than at Q.

(b) fx(x, y) is decreasing as a function of y; that is, for any fixed value x = a, fx(a, y) is decreasing in y.

x

y

Q

P

20 16
14

10

8
6

4

FIGURE 9 Contour interval 2.

solution

(a) A vertical segment through P meet more level curves than a vertical segment of the same size through Q, so f is
increasing more rapidly in the y at P than at Q. Therefore, fy are both larger at P than at Q.

Similarly, a horizontal segment through P meet more level curves at P than at Q, but f is decreasing in the positive
x-direction, so f is decreasing more rapidly in the x-direction at P than at Q. Therefore, fx is more negative at P than
at Q.

(b) For any fixed value x = a, a horizontal segment meets fewer level curves as we move it vertically upward. This
indicates that fx(a, y) in a decreasing function of y.
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54. Estimate the partial derivatives at P of the function whose contour map is shown in Figure 10.

x

y

P

21
18

12
15

9
6
3

4 6 820

4

2

FIGURE 10

solution The contour interval is m = 3. To estimate the partial derivative ∂f
∂x

at P , we estimate the change �x between

P and the point P ′ on the next level curve to the right, which is the length of the segment PP ′:

�x ≈ 2

x

y

P
P'

P"

21
18

9

4 6 820

4

2

12

6
3

15

The change in f between P and P ′ is the contour interval �f = −3. Hence,

∂f

∂x

∣∣∣∣
P

≈ �f

�x
= −3

2
= −1.5

To estimate the partial derivative ∂f
∂y

at P , we estimate the change �y between P and the point P ′′ on the next level curve
vertically above P :

�y ≈ 0.5

The change in f is �f = 3 (since the level curve of P ′′ is to the left of the level curve of P ). Hence,

∂f

∂y

∣∣∣∣
P

≈ �f

�y
≈ 3

0.5
= 6.

55. Over most of the earth, a magnetic compass does not point to true (geographic) north; instead, it points at some angle
east or west of true north. The angle D between magnetic north and true north is called the magnetic declination. Use
Figure 11 to determine which of the following statements is true.

(a)
∂D

∂y

∣∣∣∣
A

>
∂D

∂y

∣∣∣∣
B

(b)
∂D

∂x

∣∣∣∣
C

> 0 (c)
∂D

∂y

∣∣∣∣
C

> 0

Note that the horizontal axis increases from right to left because of the way longitude is measured.

x

y

50°N

40°N

30°N

120°W 110°W 100°W 90°W 80°W 70°W

Magnetic Declination for the U.S. 2004

B

1015 0

10
0

C
A

FIGURE 11 Contour interval 1◦.

solution

(a) To estimate ∂D
∂y

∣∣
A

and ∂D
∂y

∣∣
B

, we move vertically from A and B to the points on the next level curve in the direction
of increasing y (upward). From A, we quickly come to a level curve corresponding to higher value of D; but from B,
moving vertically, there is hardly any change as we move along the curve. The statement is thus true.
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(b) The derivative ∂D
∂x

∣∣
C

is estimated by �D
�x . Since x varies in the horizontal direction, we move horizontally from C

to a point on the next level curve in the direction of increasing x (leftwards). Since the value of D on this level curve is
greater than on the level curve of C, �D = 1. Also �x > 0, hence

∂D

∂x

∣∣∣∣
C

≈ �D

�x
= 1

�x
> 0.

The statement is correct.
(c) Moving from C vertically upward (in the direction of increasing y), we come to a point on a level curve with a smaller
value of D. Therefore, �D = −1 and �y > 0, so we obtain

∂D

∂y

∣∣∣∣
C

≈ �D

�y
= −1

�y
< 0

Hence, the statement is false.

56. Refer to Table 1.

(a) Estimate ∂ρ/∂T and ∂ρ/∂S at the points (S, T ) = (34, 2) and (35, 10) by computing the average of left-hand and
right-hand difference quotients.

(b) For fixed salinity S = 33, is ρ concave up or concave down as a function of T ? Hint: Determine whether the

quotients �ρ/�T are increasing or decreasing. What can you conclude about the sign of ∂2ρ/∂T 2?

TABLE 1 Seawater Density ρ as a Function of Temperature T and
Salinity S

T
S 30 31 32 33 34 35 36

12 22.75 23.51 24.27 25.07 25.82 26.6 27.36

10 23.07 23.85 24.62 25.42 26.17 26.99 27.73

8 23.36 24.15 24.93 25.73 26.5 27.28 29.09

6 23.62 24.44 25.22 26 26.77 27.55 28.35

4 23.85 24.62 25.42 26.23 27 27.8 28.61

2 24 24.78 25.61 26.38 27.18 28.01 28.78

0 24.11 24.92 25.72 26.5 27.34 28.12 28.91

solution

(a) We estimate ∂ρ
∂T

at the given points using the values in Table 1 and the following approximation:

∂ρ

∂T
(34, 2) ≈ ρ(34, 2 + 2) − ρ(34, 2)

2
= ρ(34, 4) − ρ(34, 2)

2
= 27 − 27.18

2
= −0.09

∂ρ

∂T
(35, 10) ≈ ρ(35, 10 + 2) − ρ(35, 10)

2
= ρ(35, 12) − ρ(35, 10)

2
= 26.6 − 26.99

2
= −0.195

Therefore, the average of the left-hand and right-hand difference quotients is:

1

2

(
∂ρ

∂T
(34, 2) + ∂ρ

∂T
(35, 10)

)
≈ 1

2
(−0.09 − 0.195) = −0.1425

We estimate the partial derivative ∂ρ
∂S

at the given points:

∂ρ

∂S
(34, 2) ≈ ρ(34 + 1, 2) − ρ(34, 2)

1
= ρ(35, 2) − ρ(34, 2)

1
= 28.01 − 27.18 = 0.83

∂ρ

∂S
(35, 10) ≈ ρ(35 + 1, 10) − ρ(35, 10)

1
= ρ(36, 10) − ρ(35, 10)

1
= 27.73 − 26.99 = 0.74

Therefore, the average of the left-hand and right-hand difference quotients is:

1

2

(
∂ρ

∂S
(34, 2) + ∂ρ

∂S
(35, 10)

)
≈ 1

2
(0.85 + 0.74) = 0.795

(b) The function ρ(33, T ) is concave up (concave down) if ∂ρ
∂T

(33, T ) is an increasing (decreasing) function of T . We

use Table 1 to estimate whether the function ∂ρ
∂T

(33, T ) is increasing or decreasing. We compute the following values:

∂ρ

∂T
(33, 2) ≈ ρ(33, 4) − ρ(33, 2)

2
= 26.23 − 26.38

2
= −0.075
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∂ρ

∂T
(33, 4) ≈ ρ(33, 6) − ρ(33, 4)

2
= 26 − 26.23

2
= −0.115

∂ρ

∂T
(33, 6) ≈ ρ(33, 8) − ρ(33, 6)

2
= 25.73 − 26

2
= −0.135

∂ρ

∂T
(33, 8) ≈ ρ(33, 10) − ρ(33, 8)

2
= 25.42 − 25.73

2
= −0.155

∂ρ

∂T
(33, 10) ≈ ρ(33, 12) − ρ(33, 10)

2
= 25.07 − 25.42

2
= −0.175

These values indicate that ∂ρ
∂T

(33, T ) is a decreasing function of T , which means that the second derivative is negative,

i.e., ∂2ρ

∂T 2 (33, T ) < 0 and the graph of ρ(33, T ) is concave down.

In Exercises 57–62, compute the derivatives indicated.

57. f (x, y) = 3x2y − 6xy4,
∂2f

∂x2
and

∂2f

∂y2

solution We first compute the partial derivatives ∂f
∂x

and ∂f
∂y

:

∂f

∂x
= 6xy − 6y4;

∂f

∂y
= 3x2 − 6x · 4y3 = 3x2 − 24xy3

We now differentiate ∂f
∂x

with respect to x and ∂f
∂y

with respect to y. We get

∂2f

∂x2
= ∂

∂x
fx = 6y;

∂2f

∂y2
= ∂

∂y
fy = −24x · 3y2 = −72xy2.

58. g(x, y) = xy

x − y
,

∂2g

∂x ∂y

solution By definition we have

∂2g

∂x∂y
= gyx = ∂

∂x

(
∂g

∂y

)

Thus, we must find ∂g
∂y

:

∂g

∂y
= x

∂

∂y

(
y

x − y

)
= x

1 · (x − y) − y · (−1)

(x − y)2
= x2

(x − y)2

Differentiating ∂g
∂y

with respect to x, using the Quotient Rule, we obtain

∂2g

∂x∂y
= ∂

∂x

(
∂g

∂y

)
= ∂

∂x

x2

(x − y)2
= 2x(x − y)2 − x2 · 2(x − y)

(x − y)4
= − 2xy

(x − y)3

59. h(u, v) = u

u + 4v
, hvv(u, v)

solution We first note

∂h

∂v
= −4u

(u + 4v)2

so thus

∂h2

∂v2
= ∂

∂v

( −4u

(u + 4v)2

)
= 32u

(u + 4v)3

60. h(x, y) = ln(x3 + y3), hxy(x, y)

solution We first note that

∂h

∂y
= 3y2

x3 + y3
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so thus

∂2h

∂x∂y
= ∂

∂x

(
3y2

x3 + y3

)
= −9x2y2

(x3 + y3)2

61. f (x, y) = x ln(y2), fyy(2, 3)

solution We find fy using the Chain Rule:

fy = ∂

∂y
(x ln y2) = x

∂

∂y
ln y2 = x

1

y2
· 2y = 2x

y

We now differentiate fy with respect to y, obtaining

fyy(x, y) = ∂

∂y
fy = 2x

∂

∂y

(
1

y

)
= −2x

y2
.

The derivative at (2, 3) is thus

fyy(2, 3) = −2 · 2

32
= −4

9
.

62. g(x, y) = xe−xy , gxy(−3, 2)

solution We first compute:

∂g

∂x
= x · e−xy · (−y) + e−xy = e−xy(1 − xy)

so thus:

∂2g

∂y∂x
= ∂

∂y
(e−xy(1 − xy)) = e−xy(−x) + (1 − xy)e−xy · (−x) = −xe−xy(2 − xy)

and

gxy(−3, 2) = 3e6(2 + 6) = 24e6

63. Compute fxyxzy for

f (x, y, z) = y sin(xz) sin(x + z) + (x + z2) tan y + x tan

(
z + z−1

y − y−1

)

Hint: Use a well-chosen order of differentiation on each term.

solution At the points where the derivatives are continuous, the partial derivative fxyxzy may be performed in any
order. To simplify the computation we first consider f (x, y, z) as the sum of the following terms:

F(x, y, z) = y sin(xz) sin(x + z), G(x, y, z) = (x + z2) tan y, H(x, y, z) = x tan

(
z + z−1

y − y−1

)

so that

f (x, y, z) = F(x, y, z) + G(x, y, z) + H(x, y, z)

We can differentiate each in any order. First, let us work with F(x, y, z) = y sin(xz) sin(x + z):

Fy(x, y, z) = ∂

∂y
(y sin(xz) sin(x + z)) = sin(xz) sin(x + z)

then

Fyy(x, y, z) = ∂

∂y
(Fy(x, y, z)) = 0

hence,

Fyyxxz(x, y, z) = 0

Next, let us work with G(x, y, z) = (x + z2) tan y:

Gx(x, y, z) = ∂

∂x
((x + z2) tan y) = tan y
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then

Gxx(x, y, z) = ∂

∂x
(Gx(x, y, z)) = 0

Hence

Gxxyyz(x, y, z) = 0

Finally, let us work with H(x, y, z) = x tan

(
z + z−1

y − y−1

)

Hx(x, y, z) = ∂

∂x

(
x tan

(
z + z−1

y − y−1

))
= tan

(
z + z−1

y − y−1

)

then

Hxx(x, y, z) = ∂

∂x
(Hx(x, y, z)) = 0

hence,

Hxxyyz(x, y, z) = 0

Therefore, we can conclude that fxyxzy(x, y, z) = 0 + 0 + 0 = 0.

64. Let

f (x, y, u, v) = x2 + eyv

3y2 + ln(2 + u2)

What is the fastest way to show that fuvxyvu(x, y, u, v) = 0 for all (x, y, u, v)?

solution We first differentiate with respect to v, obtaining

fv(x, y, u, v) = ∂

∂v

(
x2

3y2 + ln(2 + u2)

)
+ ∂

∂v

(
ey

3y2 + ln(2 + u2)
v

)

= 0 + ey

3y2 + ln(2 + u2)
= ey

3y2 + ln(2 + u2)

We now differentiate fv with respect to x. Since fv does not depend on x, we have

fvx(x, y, u, v) = 0

Hence also,

fuvxyvu(x, y, u, v) = ∂

∂u

∂

∂y

∂

∂v

∂

∂u
(0) = 0

In Exercises 65–72, compute the derivative indicated.

65. f (u, v) = cos(u + v2), fuuv

solution Using the Chain Rule, we have

fu = ∂

∂u
cos(u + v2) = − sin(u + v2) · ∂

∂u
(u + v2) = − sin(u + v2)

fuu = ∂

∂u

(− sin(u + v2)
) = − cos(u + v2)

fuuv = ∂

∂v

(− cos(u + v2)
) = sin(u + v2) · ∂

∂v
(u + v2) = 2v sin(u + v2)

66. g(x, y, z) = x4y5z6, gxxyz

solution For g(x, y, z) = x4y5z6, we have

gx = y5z6 ∂

∂x
x4 = y5z6 · 4x3 = 4x3y5z6

gxx = 4y5z6 ∂

∂x
x3 = 4y5z6 · 3x2 = 12x2y5z6
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gxxy = 12x2z6 ∂

∂y
(y5) = 12x2z6 · 5y4 = 60x2y4z6

gxxyz = 60x2y4 ∂

∂z
z6 = 60x2y4 · 6x5 = 360x2y4z5

67. F(r, s, t) = r(s2 + t2), Frst

solution For F(r, s, t) = r(s2 + t2), we have

Fr = s2 + t2

Frs = 2s

Frst = 0

68. u(x, t) = t−1/2e−(x2/4t), uxx

solution Using the Chain Rule we obtain

ux = t−1/2 ∂

∂x
(e−x2/4t ) = t−1/2 · e−x2/4t ∂

∂x

(
−x2

4t

)
= t−1/2 · e−x2/4t · −2x

4t
= −1

2
xt−3/2e−x2/4t

We now differentiate ux with respect to x, using the Product Rule and the Chain Rule:

uxx = −1

2
t−3/2 ∂

∂x

(
xe−x2/4t

) = −1

2
t−3/2

(
1 · e−x2/4t + x · e−x2/4t · −2x

4t

)

= −1

2
t−3/2

(
e−x2/4t − x2

2t
e−x2/4t

)
= −1

2
t−3/2e−x2/4t

(
1 − x2

2t

)

69. F(θ, u, v) = sinh(uv + θ2), Fuuθ

solution We can compute:

Fu = v · cosh(uv + θ2)

Fuu = v2 · sinh(uv + θ2)

Fuuθ = 2θv2 cosh(uv + θ2)

70. R(u, v, w) = u

v + w
, Ruvw

solution We differentiate R with respect to u:

Ru = ∂

∂u

(
u

v + w

)
= 1

v + w

We now differentiate Ru with respect to v, using the Chain Rule:

Ruv = ∂

∂v

1

v + w
= − 1

(v + w)2

Finally we differentiate Ruv with respect to w:

Ruvw = ∂

∂w

(−(v + w)−2) = 2(v + w)−3 = 2

(v + w)3
.

71. g(x, y, z) =
√

x2 + y2 + z2, gxyz

solution Differentiating with respect to x, using the Chain Rule, we get

gx = ∂

∂x

√
x2 + y2 + z2 = 1

2
√

x2 + y2 + z2

∂

∂x
(x2 + y2 + z2) = 1

2
√

x2 + y2 + z2
· 2x = x√

x2 + y2 + z2

We now differentiate gx with respect to y, using the Chain Rule. This gives

gxy = x
∂

∂y
(x2 + y2 + z2)

−1/2 = x ·
(

−1

2

)
(x2 + y2 + z2)

−3/2 · 2y = −xy

(x2 + y2 + z2)
3/2
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Finally, we differentiate gxy with respect to z, obtaining

gxyz = −xy
∂

∂z
(x2 + y2 + z2)

−3/2 = −xy ·
(

−3

2

)
(x2 + y2 + z2)

−5/2 · 2z = 3xyz

(x2 + y2 + z2)
5/2

72. u(x, t) = sech2(x − t), uxxx

solution Using the Chain Rule we have

ux = ∂

∂x
sech2(x − t) = 2 sech(x − t) · (− sech(x − t) tanh(x − t)

) · ∂

∂x
(x − t) = −2 sech2(x − t) tanh(x − t)

We now use the Product Rule and the Chain Rule to differentiate ux with respect to x:

uxx = −2
[
2 sech(x − t) · (− sech(x − t) tanh(x − t)

)
tanh(x − t) + sech2(x − t) · sech2(x − t)

]
= 4 sech2(x − t) tanh2(x − t) − 2 sech4(x − t) = 2 sech2(x − t)

(
2 tanh2(x − t) − sech2(x − t)

)
We find uxxx , using the Product Rule and the Chain Rule:

uxxx = 4 sech(x − t)
(− sech(x − t) tanh(x − t)

)(
2 tanh2(x − t) − sech2(x − t)

)
+ 2 sech2(x − t)

[
4 tanh(x − t) · sech2(x − t) − 2 sech(x − t)

(− sech(x − t) tanh(x − t)
)]

= −8 sech2(x − t) tanh3(x − t) + 4 sech4(x − t) tanh(x − t) + 12 sech4(x − t) tanh(x − t)

= 16 sech4(x − t) tanh(x − t) − 8 sech2(x − t) tanh3(x − t)

73. Find a function such that
∂f

∂x
= 2xy and

∂f

∂y
= x2.

solution The function f (x, y) = x2y satisfies ∂f
∂y

= x2 and ∂f
∂x

= 2xy.

74. Prove that there does not exist any function f (x, y) such that
∂f

∂x
= xy and

∂f

∂y
= x2. Hint: Show that f

cannot satisfy Clairaut’s Theorem.

solution Suppose that there exists a function f (x, y) such that ∂f
∂x

= xy and ∂f
∂y

= x2. Hence,

fxy = ∂

∂y

(
∂f

∂x

)
= ∂

∂y
xy = x

fyx = ∂

∂x

(
∂f

∂y

)
= ∂

∂x
x2 = 2x

The mixed partials fxy and fyx are continuous everywhere, but fxy �= fyx for x �= 0. This contradicts Clairaut’s Theorem
on Equality of Mixed Partials. We conclude that there does not exist any function f (x, y) with the given partials.

75. Assume that fxy and fyx are continuous and that fyxx exists. Show that fxyx also exists and that fyxx = fxyx .

solution Since fxy and fyx are continuous, Clairaut’s Theorem implies that

fxy = fyx (1)

We are given that fyxx exists. Using (1) we get

fyxx = ∂

∂x

∂

∂x
fy = ∂

∂x
fyx = ∂

∂x
fxy = fxyx

Therefore, fxyx also exists and fyxx = fxyx .

76. Show that u(x, t) = sin(nx) e−n2t satisfies the heat equation for any constant n:

∂u

∂t
= ∂2u

∂x2
3

solution We compute ∂u
∂t

using the Chain Rule:

∂u

∂t
= sin(nx)

∂

∂t
e−n2t = sin(nx)e−n2t ∂

∂t
(−n2t) = −n2 sin(nx)e−n2t

We now find ux :

ux = e−n2t ∂

∂x
sin(nx) = e−n2t cos(nx) · n = n · cos(nx)e−n2t
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Differentiating ux with respect to x gives

uxx = ne−n2t ∂

∂x
cos(nx) = ne−n2t

(
− sin(nx)

∂

∂x
(nx)

)
= ne−n2t

(− sin(nx)
) · n = −n2e−n2t sin(nx)

We see that ut = uxx , therefore u satisfies the heat equation.

77. Find all values of A and B such that f (x, t) = eAx+Bt satisfies Eq. (3).

solution We compute the following partials, using the Chain Rule:

∂f

∂t
= ∂

∂t
(eAx+Bt ) = eAx+Bt ∂

∂t
(Ax + Bt) = BeAx+Bt

∂f

∂x
= ∂

∂x
(eAx+Bt ) = eAx+Bt ∂

∂x
(Ax + Bt) = AeAx+Bt

∂2f

∂x2
= ∂

∂x
(AeAx+Bt ) = A

∂

∂x
(eAx+Bt ) = AeAx+Bt ∂

∂x
(Ax + Bt) = A2eAx+Bt

Substituting these partials in the differential equation (3), we get

BeAx+Bt = A2eAx+Bt

We divide by the nonzero eAx+Bt to obtain

B = A2

We conclude that f (x, t) = eAx+Bt satisfies equation (5) if and only if B = A2, where A is arbitrary.

78. The function

f (x, t) = 1

2
√

πt
e−x2/4t

describes the temperature profile along a metal rod at time t > 0 when a burst of heat is applied at the origin (see Example
11). A small bug sitting on the rod at distance x from the origin feels the temperature rise and fall as heat diffuses through
the bar. Show that the bug feels the maximum temperature at time t = 1

2x2.

solution From the example in the text we see that:

∂f

∂t
= − 1

4
√

π
t−3/2e−x2/4t + 1

8
√

π
x2t−5/2e−x2/4t

We take this expression, in order to find the maximum, and set it equal to 0 and solve for t :

− 1

4
√

π
t−3/2e−x2/4t + 1

8
√

π
x2t−5/2e−x2/4t = 0

e−x2/4t (−2t−3/2 + x2t−5/2) = 0

t−5/2e−x2/4t (−2t + x2) = 0

Then since the exponential factor is never equal to 0 and the t−5/2 is not either, we only consider when

−2t + x2 = 0 ⇒ t = 1

2
x2

Since we are told that the bug experiences the rise and then the fall of the temperature, we are assured that t = 1/2x2 is
the point in time when the bug experiences the maximum temperature.

In Exercises 79–82, the Laplace operator � is defined by �f = fxx + fyy . A function u(x, y) satisfying the Laplace
equation �u = 0 is called harmonic.

79. Show that the following functions are harmonic:

(a) u(x, y) = x (b) u(x, y) = ex cos y

(c) u(x, y) = tan−1 y

x
(d) u(x, y) = ln(x2 + y2)
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solution
(a) We compute uxx and uyy for u(x, y) = x:

ux = ∂

∂x
(x) = 1; uxx = ∂

∂x
(1) = 0

uy = ∂

∂y
(x) = 0; uyy = ∂

∂y
(0) = 0

Since uxx + uyy = 0, u is harmonic.
(b) We compute the partial derivatives of u(x, y) = ex cos y:

ux = ∂

∂x

(
ex cos y

) = cos y
∂

∂x
ex = (cos y)ex

uy = ∂

∂y

(
ex cos y

) = ex ∂

∂y
cos y = −ex sin y

uxx = ∂

∂x

(
(cos y)ex

) = cos y
∂

∂x
ex = (cos y)ex

uyy = ∂

∂y

(−ex sin y
) = −ex ∂

∂y
sin y = −ex cos y

Thus,

uxx + uyy = (cos y)ex − ex cos y = 0

Hence u(x, y) = ex cos y is harmonic.

(c) We compute the partial derivatives of u(x, y) = tan−1 y

x
using the Chain Rule and the formula

d

dt
tan−1 t = 1

1 + t2

We have

ux = ∂

∂x
tan−1 y

x
= 1

1 + (y/x)2

∂

∂x

y

x
= 1

1 + (y/x)2

(−y

x2

)
= − y

x2 + y2

uy = ∂

∂y
tan−1 y

x
= 1

1 + (y/x)2

∂

∂y

y

x
= 1

1 + (y/x)2

(
1

x

)
= x

x2 + y2

uxx = ∂

∂x

(
− y

x2 + y2

)
= 2xy

(x2 + y2)2

uyy = ∂

∂y

x

x2 + y2
= − 2xy

(x2 + y2)2

Therefore uxx + uxx = 0. This shows that u(x, y) = tan−1 y

x
is harmonic.

(d) We compute the partial derivatives of u(x, y) = ln
(
x2 + y2) using the Chain Rule:

ux = ∂

∂x
ln(x2 + y2) = 1

x2 + y2
· 2x = 2x

x2 + y2

uy = ∂

∂y
ln(x2 + y2) = 1

x2 + y2
· 2y = 2y

x2 + y2

We now find uxx and uyy using the Quotient Rule:

uxx = ∂

∂x

2x

x2 + y2
= 2(x2 + y2) − 2x · 2x

(x2 + y2)
2

= 2(y2 − x2)

(x2 + y2)
2

uyy = ∂

∂y

2y

x2 + y2
= 2(x2 + y2) − 2y · 2y

(x2 + y2)
2

= 2(x2 − y2)

(x2 + y2)
2

Thus,

uxx + uyy = 2(y2 − x2)

(x2 + y2)
2

+ 2(x2 − y2)

(x2 + y2)
2

= 0.

Therefore, u(x, y) = ln(x2 + y2) is harmonic.
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80. Find all harmonic polynomials u(x, y) of degree three, that is, u(x, y) = ax3 + bx2y + cxy2 + dy3.

solution We compute the first-order partials ux and uy and the second-order partials uxx and uyy of the given
polynomial u(x, y). This gives

ux = 3ax2 + 2bxy + cy2

uy = bx2 + 2cxy + 3dy2

uxx = 6ax + 2by

uyy = 2cx + 6dy

The polynomial is harmonic if uxx + uyy = 0, that is, if for all x and y

6ax + 2by + 2cx + 6dy = 0

This equality holds for all x and y if and only if the coefficients of x and y are both zero. That is, 6a + 2c = 0 (so
c = −3a) and 2b + 6d = 0 (so b = −3d). We conclude that the harmonic polynomials in the given form are

u(x, y) = ax3 − 3dx2y − 3axy2 + dy3

81. Show that if u(x, y) is harmonic, then the partial derivatives ∂u/∂x and ∂u/∂y are harmonic.

solution We assume that the second-order partials are continuous, hence the partial differentiation may be performed
in any order. By the given data, we have

uxx + uyy = 0 (1)

We must show that

(ux)xx + (ux)yy = 0 and (uy)xx + (uy)yy = 0

We differentiate (1) with respect to x, obtaining

0 = (uxx)x + (uyy)x = uxxx + uxyy = (ux)xx + (ux)yy (2)

We differentiate (1) with respect to y:

0 = (uxx)y + (uyy)y = uxxy + uyyy = uyxx + uyyy = (uy)xx + (uy)yy (3)

Equalities (2) and (3) prove that ux and uy are harmonic.

82. Find all constants a, b such that u(x, y) = cos(ax)eby is harmonic.

solution To determine if the functions cos(ax)eby are harmonic, we compute the following derivatives:

(cos ax)′ = −a sin ax ⇒ (cos ax)′′ = −a2 cos ax

(eby)
′ = beby ⇒ (eby)

′′ = b2eby = a2eby

Thus, we can conclude

uxx = ∂2

∂x2
cos(ax)eby = −a2 cos(ax)eby = −a2u

uyy = ∂2

∂y2
cos(ax)eby = b2 cos(ax)eby = b2u

Thus, uxx + uyy = (b2 − a2)u, which equals 0 if and only if a2 = b2.

83. Show that u(x, t) = sech2(x − t) satisfies the Korteweg–deVries equation (which arises in the study of water
waves):

4ut + uxxx + 12uux = 0

solution In Exercise 72 we found the following derivatives:

ux = −2 sech2(x − t) tanh(x − t)

uxxx = 16 sech4(x − t) tanh(x − t) − 8 sech2(x − t) tanh3(x − t)

Hence,

4ut + uxxx + 12uux = 8 sech2(x − t) tanh(x − t) + 16 sech4(x − t) tanh(x − t)
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− 8 sech2(x − t) tanh3(x − t) − 24 sech4(x − t) tanh(x − t)

= 8 sech2(x − t)
{
tanh(x − t) − tanh3(x − t)

}− 8 sech4(x − t) tanh(x − t)

= 8 sech2(x − t) tanh(x − t)
{
1 − tanh2(x − t)

}− 8 sech4(x − t) tanh(x − t)

= 8 sech2(x − t) tanh(x − t)
{
sech2(x − t)

}− 8 sech4(x − t) tanh(x − t)

= 0

Further Insights and Challenges
84. Assumptions Matter This exercise shows that the hypotheses of Clairaut’s Theorem are needed. Let

f (x, y) = xy
x2 − y2

x2 + y2

for (x, y) �= (0, 0) and f (0, 0) = 0.

(a) Verify for (x, y) �= (0, 0):

fx(x, y) = y(x4 + 4x2y2 − y4)

(x2 + y2)2

fy(x, y) = x(x4 − 4x2y2 − y4)

(x2 + y2)2

(b) Use the limit definition of the partial derivative to show that fx(0, 0) = fy(0, 0) = 0 and that fyx(0, 0) and fxy(0, 0)

both exist but are not equal.

(c) Show that for (x, y) �= (0, 0):

fxy(x, y) = fyx(x, y) = x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3

Show that fxy is not continuous at (0, 0). Hint: Show that lim
h→0

fxy(h, 0) �= lim
h→0

fxy(0, h).

(d) Explain why the result of part (b) does not contradict Clairaut’s Theorem.

solution

(a) These are the partials for (x, y) �= (0, 0):

fx(x, y) = y(x4 + 4x2y2 − y4)

(x2 + y2)
2

fy(x, y) = x(x4 − 4x2y2 − y4)

(x2 + y2)
2

(b) Using the limit definition of the partial derivatives at the point (0, 0) we have

fx(0, 0) = lim
h→0

f (h, 0) − f (0, 0)

h
= lim

h→0

h · 0 h2−02

h2+02 − 0

h
= lim

h→0

0

h
= 0

fy(0, 0) = lim
k→0

f (0, k) − f (0, 0)

k
= lim

k→0

0 · k 02−k2

02+k2 − 0

k
= lim

k→0

0

k
= 0

We now use the derivatives in part (a) and the limit definition of the partial derivatives to compute fyx(0, 0) and fxy(0, 0).
By the formulas in part (a), we have

fy(0, 0) = 0, fy(h, 0) = h(h4 − 0 − 0)

(h2 + 0)
2

= h

fx(0, 0) = 0, fx(0, k) = k(0 + 0 − k4)

(02 + k2)
2

= −k

Thus,

fyx(0, 0) = ∂

∂x
fy

∣∣∣∣
(0,0)

= lim
h→0

fy(h, 0) − fy(0, 0)

h
= lim

h→0

h − 0

h
= lim

h→0
1 = 1
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fxy(0, 0) = ∂

∂y
fx

∣∣∣∣
(0,0)

= lim
k→0

fx(0, k) − fx(0, 0)

k
= lim

k→0

−k − 0

k
= lim

k→0
(−1) = −1

We see that the mixed partials at the point (0, 0) exist but are not equal.

(c) We verify that for (x, y) �= (0, 0) the following derivatives hold:

fxy(x, y) = fyx(x, y) = x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)
3

To show that fxy is not continuous at (0, 0), we show that the limit lim(x,y)→(0,0) fxy(x, y) does not exist. We compute
the limit as (x, y) approaches the origin along the x-axis. Along this axis, y = 0; hence,

lim
(x,y)→(0,0)

along the x-axis

fxy(x, y) = lim
h→0

fxy(h, 0) = lim
h→0

h6 + 9h4 · 0 − 9h2 · 0 − 0

(0 + h2)
3

= lim
h→0

1 = 1

We compute the limit as (x, y) approaches the origin along the y-axis. Along this axis, x = 0, hence,

lim
(x,y)→(0,0)

along the y-axis

fxy(x, y) = lim
h→0

fxy(0, h) = lim
h→0

0 + 0 + 0 − h6

(0 + h2)
3

= lim
h→0

(−1) = −1

Since the limits are not equal f (x, y) does not approach one value as (x, y) → (0, 0), hence the limit lim
(x,y)→(0,0)

fxy(x, y)

does not exist, and fxy(x, y) is not continuous at the origin.

(d) The result of part (b) does not contradict Clairaut’s Theorem since fxy is not continuous at the origin. The continuity
of the mixed derivative is essential in Clairaut’s Theorem.

14.4 Differentiability and Tangent Planes (LT Section 15.4)

Preliminary Questions
1. How is the linearization of f (x, y) at (a, b) defined?

solution The linearization of f (x, y) at (a, b) is the linear function

L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

This function is the equation of the tangent plane to the surface z = f (x, y) at
(
a, b, f (a, b)

)
.

2. Define local linearity for functions of two variables.

solution f (x, y) is locally linear at (a, b) if

f (x, y) − L(x, y) = ε(x, y)

√
(x − a)2 + (y − b)2

for all (x, y) in an open disk D containing (a, b), where ε(x, y) satisfies lim
(x,y)→(a,b)

ε(x, y) = 0.

In Exercises 3–5, assume that

f (2, 3) = 8, fx(2, 3) = 5, fy(2, 3) = 7

3. Which of (a)–(b) is the linearization of f at (2, 3)?

(a) L(x, y) = 8 + 5x + 7y

(b) L(x, y) = 8 + 5(x − 2) + 7(y − 3)

solution The linearization of f at (2, 3) is the following linear function:

L(x, y) = f (2, 3) + fx(2, 3)(x − 2) + fy(2, 3)(y − 3)

That is,

L(x, y) = 8 + 5(x − 2) + 7(y − 3) = −23 + 5x + 7y

The function in (b) is the correct answer.
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4. Estimate f (2, 3.1).

solution We use the linear approximation

f (a + h, b + k) ≈ f (a, b) + fx(a, b)h + fy(a, b)k

We let (a, b) = (2, 3), h = 0, k = 3.1 − 3 = 0.1. Then,

f (2, 3.1) ≈ f (2, 3) + fx(2, 3) · 0 + fy(2, 3) · 0.1 = 8 + 0 + 7 · 0.1 = 8.7

We get the estimation f (2, 3.1) ≈ 8.7.

5. Estimate �f at (2, 3) if �x = −0.3 and �y = 0.2.

solution The change in f can be estimated by the linear approximation as follows:

�f ≈ fx(a, b)�x + fy(a, b)�y

�f ≈ fx(2, 3) · (−0.3) + fy(2, 3) · 0.2

or

�f ≈ 5 · (−0.3) + 7 · 0.2 = −0.1

The estimated change is �f ≈ −0.1.

6. Which theorem allows us to conclude that f (x, y) = x3y8 is differentiable?

solution The function f (x, y) = x3y8 is a polynomial, hence fx(x, y) and fy(x, y) exist and are continuous.
Therefore the Criterion for Differentiability implies that f is differentiable everywhere.

Exercises
1. Use Eq. (2) to find an equation of the tangent plane to the graph of f (x, y) = 2x2 − 4xy2 at (−1, 2).

solution The equation of the tangent plane at the point (−1, 2, 18) is

z = f (−1, 2) + fx(−1, 2)(x + 1) + fy(−1, 2)(y − 2) (1)

We compute the function and its partial derivatives at the point (−1, 2):

f (x, y) = 2x2 − 4xy2 f (−1, 2) = 18

fx(x, y) = 4x − 4y2 ⇒ fx(−1, 2) = −20

fy(x, y) = −8xy fy(−1, 2) = 16

Substituting in (1) we obtain the following equation of the tangent plane:

z = 18 − 20(x + 1) + 16(y − 2) = −34 − 20x + 16y

That is,

z = −34 − 20x + 16y

2. Find the equation of the plane in Figure 9, which is tangent to the graph at (x, y) = (1, 0.8).

z

y

(a, b)

x

FIGURE 9 Graph of f (x, y) = 0.2x4 + y6 − xy.

solution We know that the equation of the tangent plane at the point (1, 0.8) is:

z = f (1, 0.8) + fx(1, 0.8)(x − 1) + fy(1, 0.8)(y − 0.8)
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We compute the function and its partial derivatives at the point (1, 0.8):

f (x, y) = 0.2x4 + y6 − xy ⇒ f (1, 0.8) = −0.34

fx(x, y) = 0.8x3 − y ⇒ fx(1, 0.8) = 0

fy(x, y) = 6y5 − x ⇒ fy(1, 0.8) = 0.96608

Substituting in the equation of the tangent plane we obtain the following equation:

z = −0.34 + 0(x − 1) + 0.96608(y − 0.8)

That is,

z = 0.96608y − 1.112864

In Exercises 3–10, find an equation of the tangent plane at the given point.

3. f (x, y) = x2y + xy3, (2, 1)

solution The equation of the tangent plane at (2, 1) is

z = f (2, 1) + fx(2, 1)(x − 2) + fy(2, 1)(y − 1) (1)

We compute the values of f and its partial derivatives at (2, 1):

f (x, y) = x2y + xy3 f (2, 1) = 6

fx(x, y) = 2xy + y3 ⇒ fx(2, 1) = 5

fy(x, y) = x2 + 3xy2 fy(2, 1) = 10

We now substitute these values in (1) to obtain the following equation of the tangent plane:

z = 6 + 5(x − 2) + 10(y − 1) = 5x + 10y − 14

That is,

z = 5x + 10y − 14.

4. f (x, y) = x√
y

, (4, 4)

solution The equation of the tangent plane at (4, 4) is

z = f (4, 4) + fx(4, 4)(x − 4) + fy(4, 4)(y − 4) (1)

We compute the values of f and its partial derivatives at (4, 4):

f (x, y) = x√
y

f (4, 4) = 2

fx(x, y) = 1√
y

⇒ fx(4, 4) = 1

2

fy(x, y) = x
∂

∂y
y−1/2 = x ·

(
−1

2

)
y−3/2 = − x

2y3/2
fy(4, 4) = −1

4

Substituting these values in (1) gives

z = 2 + 1

2
(x − 4) − 1

4
(y − 4) = 1

2
x − 1

4
y + 1.

5. f (x, y) = x2 + y−2, (4, 1)

solution The equation of the tangent plane at (4, 1) is

z = f (4, 1) + fx(4, 1)(x − 4) + fy(4, 1)(y − 1) (1)

We compute the values of f and its partial derivatives at (4, 1):

f (x, y) = x2 + y−2 f (4, 1) = 17

fx(x, y) = 2x ⇒ fx(4, 1) = 8

fy(x, y) = −2y−3 fy(4, 1) = −2
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Substituting in (1) we obtain the following equation of the tangent plane:

z = 17 + 8(x − 4) − 2(y − 1) = 8x − 2y − 13.

6. G(u, w) = sin(uw),
(
π
6 , 1

)
solution The equation of the tangent plane at

(
π
6 , 1

)
is

z = f
(π

6
, 1
)

+ fu

(π

6
, 1
) (

u − π

6

)
+ fw

(π

6
, 1
)

(w − 1) (1)

We compute the following values:

f (u, w) = sin(uw) f
(π

6
, 1
)

= sin
π

6
= 1

2

fu(u, w) = w cos(uw) ⇒ fu

(π

6
, 1
)

= 1 · cos
π

6
=

√
3

2

fw(u, w) = u cos(uw) fw

(π

6
, 1
)

= π

6
cos

π

6
=

√
3π

12

Substituting in (1) gives the following equation of the tangent plane:

z = 1

2
+

√
3

2

(
u − π

6

)
+

√
3π

12
(w − 1)

That is,

z =
√

3

2
u +

√
3π

12
w + 1

2
−

√
3π

6
.

7. F(r, s) = r2s−1/2 + s−3, (2, 1)

solution The equation of the tangent plane at (2, 1) is

z = f (2, 1) + fr (2, 1)(r − 2) + fs(2, 1)(s − 1) (1)

We compute f and its partial derivatives at (2, 1):

f (r, s) = r2s−1/2 + s−3 f (2, 1) = 5

fr (r, s) = 2rs−1/2 ⇒ fr (2, 1) = 4

fs(r, s) = −1

2
r2s−3/2 − 3s−4 fs(2, 1) = −5

We substitute these values in (1) to obtain the following equation of the tangent plane:

z = 5 + 4(r − 2) − 5(s − 1) = 4r − 5s + 2.

8. g(x, y) = ex/y , (2, 1)

solution The equation of the tangent plane at (2, 1) is:

z = g(2, 1) + gx(2, 1)(x − 2) + gy(2, 1)(y − 1)

We compute g and its partial derivatives at (2, 1):

g(x, y) = ex/y g(2, 1) = e2

gx(x, y) = 1

y
ex/y, gx(2, 1) = e2

gy(x, y) = − x

y2
ex/y, gy(2, 1) = −2e2

We substitute these values in the tangent plane equation to obtain the following equation of the tangent plane:

z = e2 + e2(x − 2) − 2e2(y − 1) = e2x − 2e2y + e2 = e2(x − 2y + 1)
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9. f (x, y) = sech(x − y), (ln 4, ln 2)

solution The equation of the tangent plane at (ln 4, ln 2) is:

z = f (ln 4, ln 2) + fx(ln 4, ln 2)(x − ln 4) + fy(ln 4, ln 2)(y − ln 2)

We compute f and its partial derivatives at (ln 4, ln 2):

f (x, y) = sech(x − y), f (ln 4, ln 2) = sech(ln 2) = 4

5

fx(x, y) = − tanh(x − y) sech(x − y), fx(ln 4, ln 2) = − tanh(ln 2) sech(ln 2) = −12

25

fy(x, y) = tanh(x − y) sech(x − y), fy(ln 4, ln 2) = tanh(ln 2) sech(ln 2) = 12

25

We substitute these values in the tangent plane equation to obtain:

z = 4

5
− 12

25
(x − ln 4) + 12

25
(x − ln 2) = − 4

25
(3x − 3y − 5 − ln 8)

10. f (x, y) = ln(4x2 − y2), (1, 1)

solution The equation of the tangent plane at (1, 1) is

z = f (1, 1) + fx(1, 1)(x − 1) + fy(1, 1)(y − 1)

We compute the values of f and its partial derivatives at (1, 1):

f (x, y) = ln(4x2 − y2), f (1, 1) = ln 3

fx(x, y) = 8x

4x2 − y2
, fx(1, 1) = 8

3

fy(x, y) = −2y

4x2 − y2
, fy(1, 1) = −2

3

Substituting these values into the equation for the tangent plane we obtain:

z = ln 3 + 8

3
(x − 1) − 2

3
(y − 1) = 8

3
x − 2

3
y + ln 3 − 2

11. Find the points on the graph of z = 3x2 − 4y2 at which the vector n = 〈3, 2, 2〉 is normal to the tangent plane.

solution The equation of the tangent plane at the point
(
a, b, f (a, b)

)
on the graph of z = f (x, y) is

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

or

fx(a, b)(x − a) + fy(a, b)(y − b) − z + f (a, b) = 0

Therefore, the following vector is normal to the plane:

v = 〈fx(a, b), fy(a, b), −1
〉

We compute the partial derivatives of the function f (x, y) = 3x2 − 4y2:

fx(x, y) = 6x ⇒ fx(a, b) = 6a

fy(x, y) = −8y ⇒ fy(a, b) = −8b

Therefore, the vector v = 〈6a, −8b, −1〉 is normal to the tangent plane at (a, b). Since we want n = 〈3, 2, 2〉 to be normal
to the plane, the vectors v and n must be parallel. That is, the following must hold:

6a

3
= −8b

2
= −1

2

which implies that a = − 1
4 and b = 1

8 . We compute the z-coordinate of the point:

z = 3 ·
(

−1

4

)2
− 4

(
1

8

)2
= 1

8

The point on the graph at which the vector n = 〈3, 2, 2〉 is normal to the tangent plane is
(
− 1

4 , 1
8 , 1

8

)
.
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12. Find the points on the graph of z = xy3 + 8y−1 where the tangent plane is parallel to 2x + 7y + 2z = 0.

solution The equation of the tangent plane at the point
(
a, b, f (a, b)

)
on the graph of z = f (x, y) is

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

or

fx(a, b)(x − a) + fy(a, b)(y − b) − z + f (a, b) = 0

Therefore, the following vector is normal to the plane:

v = 〈fx(a, b), fy(a, b), −1
〉

We compute the partial derivatives of the function z = xy3 + 8y−1:

fx(x, y) = y3, fx(a, b) = b3

fy(x, y) = 3xy2 − 8y−2, fy(a, b) = 3ab2 − 8b−2

Therefore, the vector v =
〈
b3, 3ab2 − 8b−2, −1

〉
is normal to the tangent plane at (a, b). For two planes to be parallel,

the vectors v and n must be parallel. The corresponding normal vector here is n = 〈2, 7, 2〉. The following must hold:

b3

2
= 3ab2 − 8b−2

7
= −1

2

which implies that b = −1 and a = 3/2. We compute the z-coordinate of the point:

z = 3

2
(−1)3 + 8(−1)−1 = −19

2

The point on the graph at which the tangent plane is parallel to 2x + 7y + 2z = 0 is

(
3

2
, −1, −19

2

)
.

13. Find the linearization L(x, y) of f (x, y) = x2y3 at (a, b) = (2, 1). Use it to estimate f (2.01, 1.02) and f (1.97, 1.01)

and compare with values obtained using a calculator.

solution

(a) We compute the value of the function and its partial derivatives at (a, b) = (2, 1):

f (x, y) = x2y3 f (2, 1) = 4

fx(x, y) = 2xy3 ⇒ fx(2, 1) = 4

fy(x, y) = 3x2y2 fy(2, 1) = 12

The linear approximation is therefore

L(x, y) = f (2, 1) + fx(2, 1)(x − 2) + fy(2, 1)(y − 1)

L(x, y) = 4 + 4(x − 2) + 12(y − 1) = −16 + 4x + 12y

(b) For h = x − 2 and k = y − 1 we have the following form of the linear approximation at (a, b) = (2, 1):

L(x, y) = f (2, 1) + fx(2, 1)h + fy(2, 1)k = 4 + 4h + 12k

To approximate f (2.01, 1.02) we set h = 2.01 − 2 = 0.01, k = 1.02 − 1 = 0.02 to obtain

L(2.01, 1.02) = 4 + 4 · 0.01 + 12 · 0.02 = 4.28

The actual value is

f (2.01, 1.02) = 2.012 · 1.023 = 4.2874

To approximate f (1.97, 1.01) we set h = 1.97 − 2 = −0.03, k = 1.01 − 1 = 0.01 to obtain

L(1.97, 1.01) = 4 + 4 · (−0.03) + 12 · 0.01 = 4.

The actual value is

f (1.97, 1.01) = 1.972 · 1.013 = 3.998.
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14. Write the linear approximation to f (x, y) = x(1 + y)−1 at (a, b) = (8, 1) in the form

f (a + h, b + k) ≈ f (a, b) + fx(a, b)h + fy(a, b)k

Use it to estimate 7.98
2.02 and compare with the value obtained using a calculator.

solution We first compute the value of f (x, y) = x(1 + y)−1 and its partial derivatives at (a, b) = (8, 1):

f (x, y) = x(1 + y)−1 ⇒ f (8, 1) = 4

fx(x, y) = (1 + y)−1 ⇒ fx(8, 1) = 1

2

fy(x, y) = −x(1 + y)−2 ⇒ fy(8, 1) = −2

Hence,

f (8 + h, 1 + k) ≈ 4 + 1

2
h − 2k (1)

To estimate 7.98
2.02 = 7.98

1+1.02 we set h = 7.98 − 8 = −0.02, k = 1.02 − 1 = 0.02 in the equation above to obtain

f (7.98, 1.02) = 7.98

2.02
≈ 4 + 1

2
(−0.02) − 2(0.02) = 3.95

The actual value is

7.98

2.02
= 3.950495 . . .

15. Let f (x, y) = x3y−4. Use Eq. (4) to estimate the change

�f = f (2.03, 0.9) − f (2, 1)

solution We compute the function and its partial derivatives at (a, b) = (2, 1):

f (x, y) = x3y−4 f (2, 1) = 8

fx(x, y) = 3x2y−4 ⇒ fx(2, 1) = 12

fy(x, y) = −4x3y−5 fy(2, 1) = −32

Also, �x = 2.03 − 2 = 0.03 and �y = 0.9 − 1 = −0.1. Therefore,

�f = f (2.03, 0.9) − f (2, 1) ≈ fx(2, 1)�x + fy�y = 12 · 0.03 + (−32) · (−0.1) = 3.56

�f ≈ 3.56

16. Use the linear approximation to f (x, y) = √
x/y at (9, 4) to estimate

√
9.1/3.9.

solution The linear approximation to f (x, y) =
√

x
y at (9, 4) is

f (9 + h, 4 + k) ≈ f (9, 4) + fx(9, 4)h + fy(9, 4)k (1)

We compute the function and its partial derivatives at (9, 4):

f (x, y) = x1/2y−1/2 f (9, 4) = 3

2

fx(x, y) = 1

2
x−1/2y−1/2 ⇒ fx(9, 4) = 1

12

fy(x, y) = −1

2
x1/2y−3/2 fy(9, 4) = − 3

16

Substituting these values and h = 0.1, k = −0.1 in (1) gives the following estimation:√
9.1

3.9
≈ 3

2
+ 1

12
· 0.1 − 3

16
(−0.1) ≈ 1.5271

The value obtained by a calculator is
√

9.1
3.9 ≈ 1.5275. The error is 0.0004 and the percentage error is

percentage error ≈ 0.0004 · 100

1.5275
≈ 0.0262%
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17. Use the linear approximation of f (x, y) = ex2+y at (0, 0) to estimate f (0.01, −0.02). Compare with the value
obtained using a calculator.

solution The linear approximation of f at the point (0, 0) is

f (h, k) ≈ f (0, 0) + fx(0, 0)h + fy(0, 0)k (1)

We first must compute f and its partial derivative at the point (0, 0). Using the Chain Rule we obtain

f (x, y) = ex2+y f (0, 0) = e0 = 1

fx(x, y) = 2xex2+y ⇒ fx(0, 0) = 2 · 0 · e0 = 0

fy(x, y) = ex2+y fy(0, 0) = e0 = 1

We substitute these values and h = 0.01, k = −0.02 in (1) to obtain

f (0.01, −0.02) ≈ 1 + 0 · 0.01 + 1 · (−0.02) = 0.98

The actual value is f (0.01, −0.02) = e0.012−0.02 ≈ 0.9803.

18. Let f (x, y) = x2/(y2 + 1). Use the linear approximation at an appropriate point (a, b) to estimate f (4.01, 0.98).

solution We use the linear approximation at the point (a, b) = (4, 1), which is the closest point with integer coordi-
nates. That is,

f (4 + h, 1 + k) ≈ f (4, 1) + fx(4, 1)h + fy(4, 1)k (1)

We compute f and its partial derivatives at the point (4, 1):

f (x, y) = x2

y2 + 1
f (4, 1) = 8

fx(x, y) = 2x

y2 + 1
⇒ fx(4, 1) = 4

fy(x, y) = x2 ∂

∂y

(
1

y2 + 1

)
= x2 · −2y

(y2 + 1)
2

= −2x2y

(y2 + 1)
2

fy(4, 1) = −8

Substituting these values and h = 0.01, k = −0.02 in (1) gives

f (4.01, 0.98) ≈ 8 + 4 · 0.01 + (−8)(−0.02) = 8.2

The actual value is

f (4.01, 0.98) = 4.012

0.982 + 1
= 8.202

19. Find the linearization of f (x, y, z) = z
√

x + y at (8, 4, 5).

solution The linear approximation of f at the point (8, 4, 5) is:

f (x, y, z) ≈ f (8, 4, 5) + fx(8, 4, 5)(x − 8) + fy(8, 4, 5)(y − 4) + fz(8, 4, 5)(z − 5)

We compute the values of f and its partial derivatives at (8, 4, 5):

f (x, y, z) = z
√

x + y, f (8, 4, 5) = 5
√

12 = 10
√

3

fx(x, y, z) = z

2
√

x + y
, fx(8, 4, 5) = 5

2
√

12
= 5

4
√

3

fy(x, y, z) = z

2
√

x + y
, fy(8, 4, 5) = 5

2
√

12
= 5

4
√

3

fz(x, y, z) = √
x + y, fz(8, 4, 5) = √

12 = 4
√

3

Substituting these values we obtain the linearization:

f (x, y, z) ≈ 10
√

3 + 5

4
√

3
(x − 8) + 5

4
√

3
(y − 4) + 4

√
3(z − 5)

= 5

4
√

3
(x − 8) + 5

4
√

3
(y − 4) + 4

√
3z − 15

√
3
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20. Find the linearization to f (x, y, z) = xy/z at the point (2, 1, 2). Use it to estimate f (2.05, 0.9, 2.01) and compare
with the value obtained from a calculator.

solution The linear approximation to f at the point (2, 1, 2) is:

f (x, y, z) ≈ f (2, 1, 2) + fx(2, 1, 2)(x − 2) + fy(2, 1, 2)(y − 1) + fz(2, 1, 2)(z − 2) (1)

We compute the values of f and its partial derivatives at (2, 1, 2):

f (x, y, z) = xy

z
f (2, 1, 2) = 1

fx(x, y, z) = y

z
⇒ fx(2, 1, 2) = 1

2

fy(x, y, z) = x

z
fy(2, 1, 2) = 1

fz(x, y, z) = −xy

z2
fz(2, 1, 2) = −1

2

We substitute these values in (1) to obtain the following linear approximation:

xy

z
≈ 1 + 1

2
(x − 2) + 1 · (y − 1) − 1

2
(z − 2)

xy

z
≈ 1

2
x + y − 1

2
z

To estimate f (2.05, 0.9, 2.01) we will have:

f (2.05, 0.9, 2.01) ≈ 1

2
(2.05) + 0.9 − 1

2
(2.01) = 0.92

Comparing this with the calculator value we get:

f (2.05, 0.9, 2.01) = 2.05 · 0.9

2.01
≈ 0.9179

21. Estimate f (2.1, 3.8) assuming that

f (2, 4) = 5, fx(2, 4) = 0.3, fy(2, 4) = −0.2

solution We use the linear approximation of f at the point (2, 4), which is

f (2 + h, 4 + k) ≈ f (2, 4) + fx(2, 4)h + fy(2, 4)k

Substituting the given values and h = 0.1, k = −0.2 we obtain the following approximation:

f (2.1, 3.8) ≈ 5 + 0.3 · 0.1 + 0.2 · 0.2 = 5.07.

22. Estimate f (1.02, 0.01, −0.03) assuming that

f (1, 0, 0) = −3, fx(1, 0, 0) = −2,

fy(1, 0, 0) = 4, fz(1, 0, 0) = 2

solution The linear approximation at (1, 0, 0) is

f (1 + h, k, l) ≈ f (1, 0, 0) + fx(1, 0, 0)h + fy(1, 0, 0)k + fz(1, 0, 0)l (1)

We substitute h = 0.02, k = 0.01, l = −0.03 and the given values to obtain the following estimation:

f (1.02, 0.01, −0.03) ≈ −3 + (−2) · 0.02 + 4 · 0.01 + 2(−0.03) = −3.06

That is,

f (1.02, 0.01, −0.03) ≈ −3.06.
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In Exercises 23–28, use the linear approximation to estimate the value. Compare with the value given by a calculator.

23. (2.01)3(1.02)2

solution The number (2.01)3(1.02)2 is a value of the function f (x, y) = x3y2. We use the li(8, near approximation
at (2, 1), which is

f (2 + h, 1 + k) ≈ f (2, 1) + fx(2, 1)h + fy(2, 1)k (1)

We compute the value of the function and its partial derivatives at (2, 1):

f (x, y) = x3y2 f (2, 1) = 8

fx(x, y) = 3x2y2 ⇒ fx(2, 1) = 12

fy(x, y) = 2x3y fy(2, 1) = 16

Substituting these values and h = 0.01, k = 0.02 in (1) gives the approximation

(2.01)3(1.02)2 ≈ 8 + 12 · 0.01 + 16 · 0.02 = 8.44

The value given by a calculator is 8.4487. The error is 0.0087 and the percentage error is

Percentage error ≈ 0.0087 · 100

8.4487
= 0.103%

24.
4.1

7.9

solution The number 4.1
7.9 is a value of the function f (x, y) = xy−1. We use the linear approximation at the point

(4, 8), which is

f (4 + h, 8 + k) ≈ f (4, 8) + fx(4, 8)h + fy(4, 8)k (1)

We compute the values of the function and its partial derivatives at (4, 8):

f (x, y) = xy−1 f (4, 8) = 1

2

fx(x, y) = y−1 ⇒ fx(4, 8) = 1

8

fy(x, y) = −xy−2 fy(4, 8) = − 1

16

We substitute these values and h = 0.1, k = −0.1 in (1) to obtain the following approximation:

4.1

7.9
≈ 1

2
+ 1

8
· 0.1 − 1

16
· (−0.1) = 83

160
= 0.51875

The value given by a calculator is 4.1
7.9 ≈ 0.51899. The error is 0.00024 and the percentage error is at most

Percentage error ≈ 0.00024 · 100

0.51899
= 0.04625%

25.
√

3.012 + 3.992

solution This is a value of the function f (x, y) =
√

x2 + y2. We use the linear approximation at the point (3, 4),
which is

f (3 + h, 4 + k) ≈ f (3, 4) + fx(3, 4)h + fy(3, 4)k (1)

Using the Chain Rule gives the following partial derivatives:

f (x, y) =
√

x2 + y2 f (3, 4) = 5

fx(x, y) = 2x

2
√

x2 + y2
= x√

x2 + y2
⇒ fx(3, 4) = 3

5

fy(x, y) = 2y

2
√

x2 + y2
= y√

x2 + y2
fy(3, 4) = 4

5
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Substituting these values and h = 0.01, k = −0.01 in (1) gives the following approximation:

√
3.012 + 3.992 ≈ 5 + 3

5
· 0.01 + 4

5
· (−0.01) = 4.998

The value given by a calculator is
√

3.012 + 3.992 ≈ 4.99802. The error is 0.00002 and the percentage error is at most

Percentage error ≈ 0.00002 · 100

4.99802
= 0.0004002%

26.
0.982

2.013 + 1

solution We use the linear approximation of the function f (x, y) = x2

y3+1
at the point (1, 2), which is

f (1 + h, 2 + k) ≈ f (1, 2) + fx(1, 2)h + fy(1, 2)k (1)

We compute the values of f and its partial derivatives at (1, 2). We get:

f (x, y) = x2

y3 + 1
f (1, 2) = 1

9

fx(x, y) = 2x

y3 + 1
⇒ fx(1, 2) = 2

9

fy(x, y) = x2 · −1

(y3 + 1)
2

· 3y2 = −3x2y2

(y3 + 1)
2

fy(1, 2) = − 4

27

Substituting these values and h = −0.02, k = 0.01 in (1) gives the following approximation:

0.982

2.013 + 1
≈ 1

9
+ 2

9
(−0.02) − 4

27
· 0.01 ≈ 0.1052

The value given by a calculator is 0.982

2.013+1
≈ 0.1053. The error is 0.0001 and the percentage error is at most

Percentage error ≈ 0.0001 · 100

0.1053
≈ 0.095%

27.
√

(1.9)(2.02)(4.05)

solution We use the linear approximation of the function f (x, y, z) = √
xyz at the point (2, 2, 4), which is

f (2 + h, 2 + k, 4 + l) ≈ f (2, 2, 4) + fx(2, 2, 4)h + fy(2, 2, 4)k + fz(2, 2, 4)l (1)

We compute the values of the function and its partial derivatives at (2, 2, 4):

f (x, y, z) = √
xyz f (2, 2, 4) = 4

fx(x, y, z) = yz

2
√

xyz
= 1

2

√
yz

x
⇒ fx(2, 2, 4) = 1

fy(x, y, z) = xz

2
√

xyz
= 1

2

√
xz

y
fy(2, 2, 4) = 1

fz(x, y, z) = xy

2
√

xyz
= 1

2

√
xy

z
fz(2, 2, 4) = 1

2

Substituting these values and h = −0.1, k = 0.02, l = 0.05 in (1) gives the following approximation:

√
(1.9)(2.02)(4.05) = 4 + 1 · (−0.1) + 1 · 0.02 + 1

2
(0.05) = 3.945

The value given by a calculator is: √
(1.9)(2.02)(4.05) ≈ 3.9426
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28.
8.01√

(1.99)(2.01)

solution We use the linear approximation of the function f (x, y, z) = x√
yz

at the point (8, 2, 2), which is

f (8 + h, 2 + k, 2 + l) ≈ f (8, 2, 2) + fx(8, 2, 2)h + fy(8, 2, 2)k + fz(8, 2, 2)l (1)

We compute the values of the function and its partial derivatives at (8, 2, 2). This gives

f (x, y, z) = x√
yz

f (8, 2, 2) = 4

fx(x, y, z) = 1√
yz

⇒ fx(8, 2, 2) = 1

2

fy(x, y, z) = x
∂

∂y
(yz)−1/2 = −1

2
x(yz)−3/2z = −1

2
xy−3/2z−1/2 fy(8, 2, 2) = −1

fz(x, y, z) = x
∂

∂z
(yz)−1/2 = −1

2
x(yz)−3/2y = −1

2
xy−1/2z−3/2 fz(8, 2, 2) = −1

Substituting these values and h = 0.01, k = −0.01, l = 0.01 in (1) gives the following approximation:

8.01√
(1.99)(2.01)

= 4 + 1

2
· 0.01 − 1 · (−0.01) − 1 · 0.01 = 4.005

The value given by a calculator is 4.00505. The error is 0.00005 and the percentage error is at most

Percentage error ≈ 0.00005 · 100

4.00505
≈ 0.00125%

29. Find an equation of the tangent plane to z = f (x, y) at P = (1, 2, 10) assuming that

f (1, 2) = 10, f (1.1, 2.01) = 10.3, f (1.04, 2.1) = 9.7

solution The equation of the tangent plane at the point (1, 2) is

z = f (1, 2) + fx(1, 2)(x − 1) + fy(1, 2)(y − 2)

z = 10 + fx(1, 2)(x − 1) + fy(1, 2)(y − 2) (1)

Since the values of the partial derivatives at (1, 2) are not given, we approximate them as follows:

fx(1, 2) ≈ f (1.1, 2) − f (1, 2)

0.1
≈ f (1.1, 2.01) − f (1, 2)

0.1
= 3

fy(1, 2) ≈ f (1, 2.1) − f (1, 2)

0.1
≈ f (1.04, 2.1) − f (1, 2)

0.1
= −3

Substituting in (1) gives the following approximation to the equation of the tangent plane:

z = 10 + 3(x − 1) − 3(y − 2)

That is, z = 3x − 3y + 13.

30. Suppose that the plane tangent to z = f (x, y) at (−2, 3, 4) has equation 4x + 2y + z = 2. Estimate f (−2.1, 3.1).

solution The tangent plane z = 2 − 4x − 2y is also a linear approximation for f near (−2, 3), so we can thus calculate
the following:

f (−2.1, 3.1) ≈ 2 − 4(−2.1) − 2(3.1) = 4.2

In Exercises 31–34, let I = W/H 2 denote the BMI described in Example 5.

31. A boy has weight W = 34 kg and height H = 1.3 m. Use the linear approximation to estimate the change in I if
(W, H) changes to (36, 1.32).

solution Let �I = I (36, 1.32) − I (34, 1.3) denote the change in I . Using the linear approximation of I at the point
(34, 1.3) we have

I (34 + h, 1.3 + k) − I (34, 1.3) ≈ ∂I

∂W
(34, 1.3)h + ∂I

∂H
(34, 1.3)k

For h = 2, k = 0.02 we obtain

�I ≈ ∂I

∂W
(34, 1.3) · 2 + ∂I

∂H
(34, 1.3) · 0.02 (1)
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We compute the partial derivatives in (1):

∂I

∂W
= ∂

∂W

W

H 2
= 1

H 2
⇒ ∂I

∂W
(34, 1.3) = 0.5917

∂I

∂H
= W

∂

∂H
H−2 = W · (−2H−3) = −2W

H 3
⇒ ∂I

∂H
(34, 1.3) = −30.9513

Substituting the partial derivatives in (1) gives the following estimation of �I :

�I ≈ 0.5917 · 2 − 30.9513 · 0.02 = 0.5644

32. Suppose that (W, H) = (34, 1.3). Use the linear approximation to estimate the increase in H required to keep I

constant if W increases to 35.

solution The linear approximation of I = W
H 2 at the point (34, 1.3) is:

�I = I (34 + h, 1.3 + k) − I (34, 1.3) ≈ ∂I

∂W
(34, 1.3)h + ∂I

∂H
(34, 1.3)k (1)

In the earlier exercise, we found that

∂I

∂W
(34, 1.3) = 0.5917,

∂I

∂H
(34, 1.3) = −30.9513

We substitute these derivatives and h = 1 in (1), equate the resulting expression to zero and solve for k. This gives:

�I ≈ 0.5917 · 1 − 30.9513 · k = 0

0.5917 = 30.9513k ⇒ k = 0.0191

That is, for an increase in weight of 1 kg, the increase in height must be approximately 0.0191 meters (or 1.91 centimeters)
in order to keep I constant.

33. (a) Show that �I ≈ 0 if �H/�W ≈ H/2W .

(b) Suppose that (W, H) = (25, 1.1). What increase in H will leave I (approximately) constant if W is increased by
1 kg?

solution

(a) The linear approximation implies that

�I ≈ ∂I

∂W
�W + ∂I

∂H
�H

Hence, �I ≈ 0 if

∂I

∂W
�W + ∂I

∂H
�H = 0 (1)

We compute the partial derivatives of I = W
H 2 :

∂I

∂W
= ∂

∂W

(
W

H 2

)
= 1

H 2

∂I

∂H
= W

∂

∂H
(H−2) = −2WH−3 = −2W

H 3

We substitute the partial derivatives in (1) to obtain

1

H 2
�W − 2W

H 3
�H = 0

Hence,

1

H 2
�W = 2W

H 3
�H

or

�H

�W
= 1

H 2
· H 3

2W
= H

2W
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(b) In part (a) we showed that if �H
�W

= H
2W

, then I remains approximately constant. We thus substitute W = 25,
H = 1.1, �W = 1, and solve for �H . This gives

�H

1
= 1.1

50
⇒ �H ≈ 0.022 meters.

That is, an increase of 0.022 meters in H will leave I approximately constant.

34. Estimate the change in height that will decrease I by 1 if (W, H) = (25, 1.1), assuming that W remains constant.

solution If �W = 0, then

�I ≈ −(2W/H 3)�H = −1

This yields �H = H 3/2W = 1.13/50 ≈ 0.027 meters, or 2.7 cm

35. A cylinder of radius r and height h has volume V = πr2h.

(a) Use the linear approximation to show that

�V

V
≈ 2�r

r
+ �h

h

(b) Estimate the percentage increase in V if r and h are each increased by 2%.
(c) The volume of a certain cylinder V is determined by measuring r and h. Which will lead to a greater error in V : a
1% error in r or a 1% error in h?

solution
(a) The linear approximation is

�V ≈ Vr�r + Vh�h (1)

We compute the partial derivatives of V = πr2h:

Vr = πh
∂

∂r
r2 = 2πhr

Vh = πr2 ∂

∂h
h = πr2

Substituting in (1) gives

�V ≈ 2πhr�r + πr2�h

We divide by V = πr2h to obtain

�V

V
≈ 2πhr�r

V
+ πr2�h

V
= 2πhr�r

πr2h
+ πr2�h

πr2h
= 2�r

r
+ �h

h

That is,

�V

V
≈ 2�r

r
+ �h

h

(b) The percentage increase in V is, by part (a),

�V

V
· 100 ≈ 2

�r

r
· 100 + �h

h
· 100

We are given that �r
r · 100 = 2 and �h

h
· 100 = 2, hence the percentage increase in V is

�V

V
· 100 = 2 · 2 + 2 = 6%

(c) The percentage error in V is

�V

V
· 100 = 2

�r

r
· 100 + �h

h
· 100

A 1% error in r implies that �r
r · 100 = 1. Assuming that there is no error in h, we get

�V

V
· 100 = 2 · 1 + 0 = 2%

A 1% in h implies that �h
h

· 100 = 1. Assuming that there is no error in r , we get

�V

V
· 100 = 0 + 1 = 1%

We conclude that a 1% error in r leads to a greater error in V than a 1% error in h.
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36. Use the linear approximation to show that if I = xayb, then

�I

I
≈ a

�x

x
+ b

�y

y

solution The linear approximation is

�I ≈ Ix�x + Iy�y (1)

We compute the partial derivatives of I = xayb: {
Ix = axa−1yb

Iy = bxayb−1

substituting in (1) gives

�I ≈ axa−1yb�x + bxayb−1�y

We now divide by I = xayb to obtain

�I

I
≈ axa−1yb�x

I
+ bxayb−1�y

I
= axa−1yb�x

xayb
+ bxayb−1�y

xayb
= a

�x

x
+ b

�y

y

That is,

�I

I
≈ a

�x

x
+ b

�y

y
.

37. The monthly payment for a home loan is given by a function f (P, r, N), where P is the principal (initial size of the
loan), r the interest rate, and N is the length of the loan in months. Interest rates are expressed as a decimal: A 6% interest
rate is denoted by r = 0.06. If P = $100,000, r = 0.06, and N = 240 (a 20-year loan), then the monthly payment is
f (100,000, 0.06, 240) = 716.43. Furthermore, at these values, we have

∂f

∂P
= 0.0071,

∂f

∂r
= 5769,

∂f

∂N
= −1.5467

Estimate:

(a) The change in monthly payment per $1000 increase in loan principal.

(b) The change in monthly payment if the interest rate increases to r = 6.5% and r = 7%.

(c) The change in monthly payment if the length of the loan increases to 24 years.

solution

(a) The linear approximation to f (P, r, N) is

�f ≈ ∂f

∂P
�P + ∂f

∂r
�r + ∂f

∂N
�N

We are given that ∂f
∂P

= 0.0071, ∂f
∂r

= 5769, ∂f
∂N

= −1.5467, and �P = 1000. Assuming that �r = 0 and �N = 0,
we get

�f ≈ 0.0071 · 1000 = 7.1

The change in monthly payment per thousand dollar increase in loan principal is $7.1.

(b) By the given data, we have

�f ≈ 0.0071�P + 5769�r − 1.5467�N (1)

The interest rate 6.5% corresponds to r = 0.065, and the interest rate 7% corresponds to r = 0.07. In the first case
�r = 0.065 − 0.06 = 0.005 and in the second case �r = 0.07 − 0.06 = 0.01. Substituting in (1), assuming that
�P = 0 and �N = 0, gives

�f = 5769 · 0.005 = $28.845

�f = 5769 · 0.01 = $57.69

(c) We substitute �N = (24 − 20) · 12 = 48 months and �r = �N = 0 in (1) to obtain

�f ≈ −1.5467 · 48 = −74.2416

The monthly payment will be reduced by $74.2416.



April 19, 2011

S E C T I O N 14.4 Differentiability and Tangent Planes (LT SECTION 15.4) 695

38. Automobile traffic passes a point P on a road of width w ft at an average rate of R vehicles per second. Although
the arrival of automobiles is irregular, traffic engineers have found that the average waiting time T until there is a gap
in traffic of at least t seconds is approximately T = teRt seconds. A pedestrian walking at a speed of 3.5 ft/s (5.1 mph)
requires t = w/3.5 s to cross the road. Therefore, the average time the pedestrian will have to wait before crossing is
f (w, R) = (w/3.5)ewR/3.5 s.

(a) What is the pedestrian’s average waiting time if w = 25 ft and R = 0.2 vehicle per second?

(b) Use the linear approximation to estimate the increase in waiting time if w is increased to 27 ft.

(c) Estimate the waiting time if the width is increased to 27 ft and R decreases to 0.18.

(d) What is the rate of increase in waiting time per 1-ft increase in width when w = 30 ft and R = 0.3 vehicle per
second?

solution

(a) We are given that the average time the pedestrian will have to wait for a t-second gap in traffic is

f (w, R) = w

3.5
ewR/3.5

Substituting the values w = 25 and R = 0.2, we obtain

f (25, 0.2) = 25

3.5
e(25·0.2)/3.5 ≈ 29.8 seconds

(b) The linear approximation at (w, R) = (25, 0.2) is,

�f ≈ fw(25, 0.2)�w + fr (25, 0.2)�R (1)

We compute the partial derivatives. Using the Product Rule and the Chain Rule we have

fw(w, R) = 1

3.5

(
ewR/3.5 + wewR/3.5 · R

3.5

)
= ewR/3.5

3.5

(
1 + wR

3.5

)

By the Chain Rule we get

fR(w, R) = w

3.5
ewR/3.5 · w

3.5
=
( w

3.5

)2
ewR/3.5

At the point (25, 0.2) we have

fw(25, 0.2) ≈ 2.9; fR(25, 0.2) ≈ 212.9 (2)

Substituting these derivatives, �w = 27 − 25 = 2, and �r = 0 in (1) we get

�f = 2.9 · 2 = 5.8

An increase of 2 ft in w causes an increase of 5.8 seconds in waiting time.

(c) We substitute the derivatives in (2) with �w = 2 and �r = 0.18 − 0.2 = −0.02 in the linear approximation (1) to
obtain

�f ≈ 2.9 · 2 − 212.9 · 0.02 ≈ 1.54

That is, the waiting time is increased by approximately 1.54 seconds. Using part (a), the estimated waiting time is

f (25, 0.2) + 1.54 ≈ 29.8 + 1.54 = 31.34 seconds

(d) The rate of increase in waiting time per one foot increase in width, when w = 30 and R = 0.3, is ∂f
∂w

(30, 0.3). Using
the derivative obtained in part (b) we have

∂f

∂w
(30, 0.3) = e9/3.5

3.5

(
1 + 9

3.5

)
≈ 13.35

39. The volume V of a right-circular cylinder is computed using the values 3.5 m for diameter and 6.2 m for height. Use
the linear approximation to estimate the maximum error in V if each of these values has a possible error of at most 5%.
Recall that V = 1

3πr2h.

solution We denote by d and h the diameter and height of the cylinder, respectively. By the Formula for the Volume
of a Cylinder we have

V = π

(
d

2

)2
h = π

4
d2h
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The linear approximation is

�V ≈ ∂V

∂d
�d + ∂V

∂h
�h (1)

We compute the partial derivatives at (d, h) = (3.5, 6.2):

∂V

∂d
(d, h) = π

4
h · 2d = π

2
hd

∂V

∂h
(d, h) = π

4
d2

⇒
∂V

∂d
(3.5, 6.2) ≈ 34.086

∂V

∂h
(3.5, 6.2) = 9.621

Substituting these derivatives in (1) gives

�V ≈ 34.086�d + 9.621�h (2)

We are given that the errors in the measurements of d and h are at most 5%. Hence,

�d

3.5
= 0.05 ⇒ �d = 0.175

�h

6.2
= 0.05 ⇒ �h = 0.31

Substituting in (2) we obtain

�V ≈ 34.086 · 0.175 + 9.621 · 0.31 ≈ 8.948

The error in V is approximately 8.948 meters. The percentage error is at most

�V · 100

V
= 8.948 · 100

π
4 · 3.52 · 6.2

= 15%

Further Insights and Challenges
40. Show that if f (x, y) is differentiable at (a, b), then the function of one variable f (x, b) is differentiable at x = a.
Use this to prove that f (x, y) =

√
x2 + y2 is not differentiable at (0, 0).

solution If f (x, y) is differentiable at (a, b), then the partial derivatives fx and fy both exist at (a, b), which means

that (in particular) d
dx

f (x, b) exists at x = a, which means that f (x, b) is differentiable at x = a. In our case, for

(a, b) = (0, 0) and f (x, y) =
√

x2 + y2, then f (x, b) = f (x, 0) =
√

x2 + 02 =
√

x2 = |x|, which is not differentiable
at x = 0. Hence the original two-variable function f (x, y) =

√
x2 + y2 is not differentiable at (0, 0).

41. This exercise shows directly (without using Theorem 1) that the function f (x, y) = 5x + 4y2 from Example 1 is
locally linear at (a, b) = (2, 1).

(a) Show that f (x, y) = L(x, y) + e(x, y) with e(x, y) = 4(y − 1)2.
(b) Show that

0 ≤ e(x, y)√
(x − 2)2 + (y − 1)2

≤ 4|y − 1|

(c) Verify that f (x, y) is locally linear.

solution According to Example 1,

L(x, y) = −4 + 5x + 8y

(a) We compute the difference:

f (x, y) − L(x, y) = (5x + 4y2) − (−4 + 5x + 8y)

= 4y2 − 8y + 4 = 4(y − 1)2

Therefore, f (x, y) = L(x, y) + 4(y − 1)2.
(b) For (x, y) �= (2, 1), we consider

e(x, y)√
(x − 2)2 + (y − 1)2

= 4(y − 1)2√
(x − 2)2 + (y − 1)2

The following inequality holds

4(y − 1)2√
(x − 2)2 + (y − 1)2

≤ 4(y − 1)2√
(y − 1)2

= 4|y − 1|

because we have made the denominator smaller.
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(c) We have

f (x, y) = L(x, y) + e(x, y)

where

0 ≤ e(x, y)√
(x − 2)2 + (y − 1)2

≤ 4|y − 1|

We have lim
(x,y)→(2,1)

4|y − 1| = 0, and therefore

lim
(x,y)→(2,1)

e(x, y) = 0

by the Squeeze Theorem. This proves that f (x, y) is locally linear at (2, 1).

42. Show directly, as in Exercise 41, that f (x, y) = xy2 is differentiable at (0, 2).

solution

(a) Firstly, we need to find L(x, y). We know from the text that

L(x, y) = f (0, 2) + fx(0, 2)(x − 0) + fy(0, 2)(y − 2)

Computing with the function and the partial derivatives we see

f (x, y) = xy2 ⇒ f (0, 2) = 0

fx(x, y) = y2 ⇒ fx(0, 2) = 4

fy(x, y) = 2xy ⇒ fy(0, 2) = 0

Therefore we have

L(x, y) = 0 + 4(x − 0) + 0(y − 2) = 4x

Hence, using the methods from the previous exercise we have

e(x, y) = f (x, y) − L(x, y) = xy2 − 4x = x(y2 − 4)

and

f (x, y) = L(x, y) + x(y2 − 4)

(b) For (x, y) �= (0, 2), consider

x(y2 − 4)√
x2 + (y − 2)2

The following inequality holds for all x values:

x(y2 − 4)√
x2 + (y − 2)2

≤ |x|(y2 − 4)√
x2 + (y − 2)2

≤ |x|(y2 − 4)√
x2

= |x|(y2 − 4)

|x| = y2 − 4

(c) Then we have

f (x, y) = L(x, y) + e(x, y)

where

0 ≤ e(x, y)√
x2 + (y − 2)2

≤ y2 − 4

and easily we know lim(x,y)→(0,2)(y
2 − 4) = 0, and therefore

lim
(x,y)→(0,2)

e(x, y)√
x2 + (y − 2)2

= 0

by the Squeeze Theorem. Therefore lim(x,y)→(0,0) e(x, y) = 0 as well. This proves that f (x, y) is locally linear at the
point (0, 2), and therefore, differentiable at (0, 2).
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43. Differentiability Implies Continuity Use the definition of differentiability to prove that if f is differentiable at
(a, b), then f is continuous at (a, b).

solution Suppose that f is differentiable at (a, b), then we know f is locally linear at (a, b), that is

f (x, y) = L(x, y) + e(x, y)

where e(x, y) satisfies

lim
(x,y)→(a,b)

e(x, y)√
(x − a)2 + (y − b)2

= lim
(x,y)→(a,b)

E(x, y) = 0

and

L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

We would like to show lim(x,y)→(a,b) f (x, y) = f (a, b), then f would be continuous at (a, b). Consider the following
computation:

lim
(x,y)→(a,b)

f (x, y) = lim
(x,y)→(a,b)

L(x, y) + e(x, y)

= lim
(x,y)→(a,b)

L(x, y) + E(x, y)

√
(x − a)2 + (y − b)2

= lim
(x,y)→(a,b)

f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b) + E(x, y)

√
(x − a)2 + (y − b)2

= f (a, b) + 0 + 0 + 0 = f (a, b)

Therefore we have shown that if f is differentiable at (a, b) then f is continuous at (a, b).

44. Let f (x) be a function of one variable defined near x = a. Given a number M , set

L(x) = f (a) + M(x − a), e(x) = f (x) − L(x)

Thus f (x) = L(x) + e(x). We say that f is locally linear at x = a if M can be chosen so that lim
x→a

e(x)

|x − a| = 0.

(a) Show that if f (x) is differentiable at x = a, then f (x) is locally linear with M = f ′(a).

(b) Show conversely that if f is locally linear at x = a, then f (x) is differentiable and M = f ′(a).

solution

(a) Suppose that f is differentiable at x = a. From single-variable calculus we also know that f is continuous and that

lim
x→a

f (x) − f (a)

x − a
= f ′(a)

Then also, using methods of linear approximation from single variable calculus, we can write

L(x) = f (a) + f ′(a)(x − a) with M = f ′(a)

Now to fulfill local linearity we need to show limx→a
e(x)

|x−a| = 0. Let us note here that limx→a
e(x)

|x−a| = 0 if and only if

limx→a
e(x)
x−a = 0. It will be enough to show, limx→a

e(x)
x−a = 0.

Consider the following:

lim
x→a

e(x)

x − a
= lim

x→a

f (x) − L(x)

x − a

= lim
x→a

f (x) − f (a) − f ′(a)(x − a)

x − a

= lim
x→a

f (x) − f (a)

x − a
− lim

x→a

f ′(a)(x − a)

x − a

= lim
x→a

f (x) − f (a)

x − a
− lim

x→a
f ′(a)

= f ′(a) − f ′(a) = 0

Therefore, f is locally linear at x = a.
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(b) Now suppose that f is locally linear at x = a. By definition

f (x) = f (a) + M(x − a) + e(x)

Therefore,

f (x) − f (a)

x − a
= M + e(x)

x − a

If f (x) is locally linear, then (by definition), e(x)
x−a tends to zero and thus the difference quotient for f (x) approaches M .

Therefore, f ′(a) exists and equals M .

45. Assumptions Matter Define g(x, y) = 2xy(x + y)/(x2 + y2) for (x, y) �= 0 and g(0, 0) = 0. In this exercise,
we show that g(x, y) is continuous at (0, 0) and that gx(0, 0) and gy(0, 0) exist, but g(x, y) is not differentiable at (0, 0).
(a) Show using polar coordinates that g(x, y) is continuous at (0, 0).
(b) Use the limit definitions to show that gx(0, 0) and gy(0, 0) exist and that both are equal to zero.
(c) Show that the linearization of g(x, y) at (0, 0) is L(x, y) = 0.

(d) Show that if g(x, y) were locally linear at (0, 0), we would have lim
h→0

g(h, h)

h
= 0. Then observe that this is not the

case because g(h, h) = 2h. This shows that g(x, y) is not locally linear at (0, 0) and, hence, not differentiable at (0, 0).

solution
(a) We would like to show lim(x,y)→(0,0) g(x, y) = g(0, 0). Consider the following, using polar coordinates, x = r cos θ

and y = r sin θ :

lim
(x,y)→(0,0)

2xy(x + y)

x2 + y2
= lim

(r,θ)→(0,0)

2r2 cos θ sin θ(r cos θ + r sin θ)

r2 cos2 θ + r2 sin2 θ

= lim
(r,θ)→(0,0)

2r3 cos θ sin θ(cos θ + sin θ)

r2

= lim
(r,θ)→(0,0)

2r cos θ sin θ(cos θ + sin θ) = 0 = g(0, 0)

Therefore g(x, y) is continuous at (0, 0).
(b) Taking partial derivatives we have:

gx(x, y) = 2y2(y − x)2

(x2 + y2)2
, gy(x, y) = 2x2(x − y)2

(x2 + y2)2

But we need to use limit definitions for the partial derivatives. Consider the following:

gx(0, 0) = lim
h→0

g(h, 0) − g(0, 0)

h

= lim
h→0

1

h
(0 − 0) = 0

gy(0, 0) = lim
h→0

g(0, h) − g(0, 0)

h

= lim
h→0

1

h
(0 − 0) = 0

Thus both partial derivatives exist and gx(0, 0) = 0 and gy(0, 0) = 0.
(c) We know that the linearization of g will be:

g(x, y) ≈ g(0, 0) + gx(0, 0)(x − 0) + gy(0, 0)(y − 0)

We are given that g(0, 0) = 0. In part (b) we know gx(0, 0) = 0 and gy(0, 0) = 0. Substituting in these values in the
linearization we have:

g(x, y) ≈ 0 + 0 + 0 = 0

(d) We know if g were locally linear at (0, 0), we would have:

lim
h→0

g(h, h)

h
= 0

However, we know:

g(h, h) = 2h2(2h)

2h2
= 2h,

g(h, h)

h
= 2h

h
= 2

This is a contradiction, g(x, y) is not locally linear at (0, 0) and hence, is not differentiable at (0, 0).
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14.5 The Gradient and Directional Derivatives (LT Section 15.5)

Preliminary Questions
1. Which of the following is a possible value of the gradient ∇f of a function f (x, y) of two variables?

(a) 5 (b) 〈3, 4〉 (c) 〈3, 4, 5〉
solution The gradient of f (x, y) is a vector with two components, hence the possible value of the gradient ∇f =〈
∂f
∂x

,
∂f
∂y

〉
is (b).

2. True or false? A differentiable function increases at the rate ‖∇fP ‖ in the direction of ∇fP .

solution The statement is true. The value ‖∇fP ‖ is the rate of increase of f in the direction ∇fP .

3. Describe the two main geometric properties of the gradient ∇f .

solution The gradient of f points in the direction of maximum rate of increase of f and is normal to the level curve
(or surface) of f .

4. You are standing at a point where the temperature gradient vector is pointing in the northeast (NE) direction. In which
direction(s) should you walk to avoid a change in temperature?

(a) NE (b) NW (c) SE (d) SW

solution The rate of change of the temperature T at a point P in the direction of a unit vector u, is the directional
derivative DuT (P ), which is given by the formula

DuT (P ) = ‖∇fP ‖ cos θ

To avoid a change in temperature, we must choose the direction u so that DuT (P ) = 0, that is, cos θ = 0, so θ = π
2 or

θ = 3π
2 . Since the gradient at P is pointing NE, we should walk NW or SE to avoid a change in temperature. Thus, the

answer is (b) and (c).

EW

N

S

P

SE

NW NE

∇T(P)

5. What is the rate of change of f (x, y) at (0, 0) in the direction making an angle of 45◦ with the x-axis if ∇f (0, 0) =
〈2, 4〉?
solution By the formula for directional derivatives, and using the unit vector

〈
1/

√
2, 1/

√
2
〉
, we get 〈2, 4〉 ·〈

1/
√

2, 1/
√

2
〉 = 6/

√
2 = 3

√
2.

Exercises
1. Let f (x, y) = xy2 and c(t) = ( 1

2 t2, t3).
(a) Calculate ∇f and c′(t).
(b) Use the Chain Rule for Paths to evaluate

d

dt
f (c(t)) at t = 1 and t = −1.

solution

(a) We compute the partial derivatives of f (x, y) = xy2:

∂f

∂x
= y2,

∂f

∂y
= 2xy

The gradient vector is thus

∇f =
〈
y2, 2xy

〉
.

Also,

c′(t) =
〈(

1

2
t2
)′

,
(
t3
)′〉 =

〈
t, 3t2

〉
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(b) Using the Chain Rule gives

d

dt
f (c(t)) = d

dt

(
1

2
t2 · t6

)
= d

dt

(
1

2
t8
)

= 4t7

Substituting x = 1
2 t2 and y = t3, we obtain

d

dt
f (c(t)) = t6 · t + 2 · 1

2
t2 · 3 · t3 · t2 = 4t7

At the point t = 1 and t = −1, we get

d

dt
(f (c(t)))

∣∣∣∣
t=1

= 4 · 17 = 4,
d

dt
(f (c(t)))

∣∣∣∣
t=−1

= 4 · (−1)7 = −4.

2. Let f (x, y) = exy and c(t) = (t3, 1 + t).

(a) Calculate ∇f and c′(t).
(b) Use the Chain Rule for Paths to calculate

d

dt
f (c(t)).

(c) Write out the composite f (c(t)) as a function of t and differentiate. Check that the result agrees with part (b).

solution
(a) We first find the partial derivatives of f (x, y) = exy :

∂f

∂x
= yexy,

∂f

∂y
= xexy.

The gradient vector is thus

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈yexy, xexy

〉
Differentiating c(t) = (t3, 1 + t) componentwise, we obtain

c′(t) =
(
(t3)

′
, (1 + t)′

)
= (3t2, 1)

(b) We find d
dt

f (c(t)) using the Chain Rule and the results of part (a). This gives

d

dt
f (c(t)) = ∂f

∂x

dx

dt
+ ∂f

∂y

dy

dt
= (yexy) · 3t2 + (xexy) · 1

To write the answer in terms of t only, we substitute x = t3 and y = 1 + t . This gives

d

dt
f (c(t)) = (1 + t)et3+t4 · 3t2 + (t3)et3+t4 = (3t2 + 4t3)et3+t4

(c) We substitute x = t3, y = 1 + t in f (x, y) = exy to obtain the composite function f (c(t)):

f (c(t)) = et3+t4

We now differentiate the composite function to obtain

d

dt
f (c(t)) = d

dt

(
et3+t4) = (3t2 + 4t3)et3+t4

This result agrees with the result obtained in part (a).

3. Figure 14 shows the level curves of a function f (x, y) and a path c(t), traversed in the direction indicated. State

whether the derivative
d

dt
f (c(t)) is positive, negative, or zero at points A–D.

y

x

−4

0

4

8

−4 840

A 10

−10

−20

20
30

B
C

DD

0

FIGURE 14
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solution At points A and D, the path is (temporarily) tangent to one of the contour lines, which means that along the

path c(t) the function f (x, y) is (temporarily) constant, and so the derivative d
dt

f (c(t)) is zero. At point B, the path is
moving from a higher contour (of −10) to a lower one (of −20), so the derivative is negative. At the point C, where the
path moves from the contour of −10 towards the contour of value 0, the derivative is positive.

4. Let f (x, y) = x2 + y2 and c(t) = (cos t, sin t).

(a) Find
d

dt
f (c(t)) without making any calculations. Explain.

(b) Verify your answer to (a) using the Chain Rule.

solution

(a) The level curves of f (x, y) are the circles x2 + y2 = c2. Since c(t) is a parametrization of the unit circle, f has
constant value 1 on c. That is, f (c(t)) = 1, which implies that d

dt
f (c(t)) = 0.

(b) We now find d
dt

f (c(t)) using the Chain Rule:

d

dt
f (c(t)) = ∂f

∂x

dx

dt
+ ∂f

∂y

dy

dt
(1)

We compute the derivatives involved in (1):

∂f

∂x
= ∂

∂x

(
x2 + y2

)
= 2x,

∂f

∂y
= ∂

∂y

(
x2 + y2

)
= 2y

dx

dt
= d

dt
(cos t) = − sin t,

dy

dt
= d

dt
(sin t) = cos t

Substituting the derivatives in (1) gives

d

dt
f (c(t)) = 2x(− sin t) + 2y cos t

Finally, we substitute x = cos t and y = sin t to obtain

d

dt
f (c(t)) = −2 cos t sin t + 2 sin t cos t = 0.

In Exercises 5–8, calculate the gradient.

5. f (x, y) = cos(x2 + y)

solution We find the partial derivatives using the Chain Rule:

∂f

∂x
= − sin

(
x2 + y

) ∂

∂x

(
x2 + y

)
= −2x sin

(
x2 + y

)
∂f

∂y
= − sin

(
x2 + y

) ∂

∂y

(
x2 + y

)
= − sin

(
x2 + y

)
The gradient vector is thus

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
=
〈
−2x sin

(
x2 + y

)
, − sin

(
x2 + y

)〉
= − sin

(
x2 + y

)
〈2x, 1〉

6. g(x, y) = x

x2 + y2

solution We compute the partial derivatives. We first find ∂g
∂x

using the Quotient Rule:

∂g

∂x
=

1 ·
(
x2 + y2

)
− x · 2x(

x2 + y2
)2 = y2 − x2(

x2 + y2
)2

We compute ∂g
∂y

using the Chain Rule:

∂g

∂y
= x

∂

∂y

1

x2 + y2
= x · −1(

x2 + y2
)2 · 2y = −2xy(

x2 + y2
)2

The gradient vector is thus

∇g =
〈
∂g

∂x
,
∂g

∂y

〉
=
〈

y2 − x2(
x2 + y2

)2 ,
−2xy(

x2 + y2
)2
〉

= 1(
x2 + y2

)2
〈
y2 − x2, −2xy

〉
.
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7. h(x, y, z) = xyz−3

solution We compute the partial derivatives of h(x, y, z) = xyz−3, obtaining

∂h

∂x
= yz−3,

∂h

∂y
= xz−3,

∂h

∂z
= xy ·

(
−3z−4

)
= −3xyz−4

The gradient vector is thus

∇h =
〈
∂h

∂x
,
∂h

∂y
,
∂h

∂z

〉
=
〈
yz−3, xz−3, −3xyz−4

〉
.

8. r(x, y, z, w) = xzeyw

solution We find the partial derivatives of r(x, y, z, w) = xzeyw:

∂r

∂x
= zeyw,

∂r

∂y
= xzweyw,

∂r

∂z
= xeyw,

∂r

∂w
= xzyeyw

The gradient vector is thus

∇r =
〈
∂r

∂x
,
∂r

∂y
,
∂r

∂z
,

∂r

∂w

〉
= 〈zeyw, xzweyw, xeyw, xzyeyw

〉 = eyw 〈z, xzw, x, xzy〉

In Exercises 9–20, use the Chain Rule to calculate
d

dt
f (c(t)).

9. f (x, y) = 3x − 7y, c(t) = (cos t, sin t), t = 0

solution By the Chain Rule for paths, we have

d

dt
f (c(t)) = ∇f c(t) · c′(t) (1)

We compute the gradient and the derivative c′(t):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈3, −7〉 , c′(t) = 〈− sin t, cos t〉

We determine these vectors at t = 0:

c′(0) = 〈− sin 0, cos 0〉 = 〈0, 1〉
and since the gradient is a constant vector, we have

∇f c(0) = ∇f(1,0) = 〈3, −7〉
Substituting these vectors in (1) gives

d

dt
f (c(t))

∣∣∣∣
t=0

= 〈3, −7〉 · 〈0, 1〉 = 0 − 7 = −7

10. f (x, y) = 3x − 7y, c(t) = (t2, t3), t = 2

solution We first compute the gradient and c′(t):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈3, −7〉 , c′(t) =

(
2t, 3t2

)

At the point t = 2 we have

∇f c(2) = 〈3, −7〉 , c′(2) = 〈4, 12〉
We now use the Chain Rule for paths to compute the following derivative:

d

dt
f (c(t))

∣∣∣∣
t=2

= ∇f c(2) · c′(2) = 〈3, −7〉 · 〈4, 12〉 = −72
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11. f (x, y) = x2 − 3xy, c(t) = (cos t, sin t), t = 0

solution By the Chain Rule For Paths we have

d

dt
f (c(t)) = ∇f c(t) · c′(t) (1)

We compute the gradient and c′(t):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈2x − 3y, −3x〉

c′(t) = 〈− sin t, cos t〉
At the point t = 0 we have

c(0) = (cos 0, sin 0) = (1, 0)

c′(0) = 〈− sin 0, cos 0〉 = 〈0, 1〉

∇f

∣∣∣∣
c(0)

= ∇f(1,0) = 〈2 · 1 − 3 · 0, −3 · 1〉 = 〈2, −3〉

Substituting in (1) we obtain

d

dt
f (c(t))

∣∣∣∣
t=0

= 〈2, −3〉 · 〈0, 1〉 = −3

12. f (x, y) = x2 − 3xy, c(t) = (cos t, sin t), t = π
2

solution In the previous exercise we found that

∇f = 〈2x − 3y, −3x〉 , c′(t) = 〈− sin t, cos t〉
At the point t = π

2 we have

c
(π

2

)
=
(

cos
π

2
, sin

π

2

)
= (0, 1)

c′ (π

2

)
=
〈
− sin

π

2
, cos

π

2

〉
= 〈−1, 0〉

∇fc
(

π
2

) = ∇f(0,1) = 〈2 · 0 − 3 · 1, −3 · 0〉 = 〈−3, 0〉
We now use the Chain Rule for Paths to obtain

d

dt
f (c(t))

∣∣∣∣
t= π

2

= ∇fc
(

π
2

) · c′ (π

2

)
= 〈−3, 0〉 · 〈−1, 0〉 = 3 + 0 = 3

13. f (x, y) = sin(xy), c(t) = (e2t , e3t ), t = 0

solution By the Chain Rule for Paths we have

d

dt
f (c(t)) = ∇f c(t) · c′(t) (1)

We compute the gradient and c′(t):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈y cos(xy), x cos(xy)〉

c′(t) =
〈
2e2t , 3e3t

〉
At the point t = 0 we have

c(0) =
(
e0, e0

)
= (1, 1)

c′(0) =
〈
2e0, 3e0

〉
= 〈2, 3〉

∇fc(0) = ∇f(1,1) = 〈cos 1, cos 1〉
Substituting the vectors in (1) we get

d

dt
f (c(t))

∣∣∣∣
t=0

= 〈cos 1, cos 1〉 · 〈2, 3〉 = 5 cos 1



April 19, 2011

S E C T I O N 14.5 The Gradient and Directional Derivatives (LT SECTION 15.5) 705

14. f (x, y) = cos(y − x), c(t) = (et , e2t ), t = ln 3

solution By the Chain Rule for Paths we have

d

dt
f (c(t)) = ∇f c(t) · c′(t) (1)

We compute the gradient and c′(t):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
=
〈
2xy3, 3x2y2

〉

c′(t) =
〈
et , 2e2t

〉
At the point t = ln 3 we have

c(ln 3) =
(
eln 3, e2 ln 3

)
=
(

3, 32
)

= (3, 9)

c′(ln 3) =
〈
eln 3, 2e2 ln 3

〉
=
〈
3, 2 · 32

〉
= 〈3, 18〉

∇fc(ln 3) = ∇f(3,9) =
〈
2 · 3 · 93, 3 · 32 · 92

〉
= 2187 〈2, 1〉

Substituting the vectors in (1) we obtain

d

dt
f (c(t))

∣∣∣∣
t=ln 3

= 2187 〈2, 1〉 · 〈3, 18〉 = 52,488

15. f (x, y) = x − xy, c(t) = (t2, t2 − 4t), t = 4

solution We compute the gradient and c′(t):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈1 − y, −x〉

c′(t) = (2t, 2t − 4)

At the point t = 4 we have

c(4) =
(

42, 42 − 4 · 4
)

= (16, 0)

c′(4) = 〈2 · 4, 2 · 4 − 4〉 = 〈8, 4〉
∇fc(4) = ∇f(16,0) = 〈1 − 0, −16〉 = 〈1, −16〉

We now use the Chain Rule for Paths to compute the following derivative:

d

dt
f (c(t))

∣∣∣∣
t=4

= ∇fc(4) · c′(4) = 〈1, −16〉 · 〈8, 4〉 = 8 − 64 = −56

16. f (x, y) = xey , c(t) = (t2, t2 − 4t), t = 0

solution We compute the gradient and c′(t):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈ey, xey

〉 = ey 〈1, x〉

c′(t) = 〈2t, 2t − 4〉
At the point t = 0 we have

c(0) = (0, 0)

c′(0) = 〈0, −4〉
∇fc(0) = ∇f(0,0) = e0 〈1, 0〉 = 〈1, 0〉

Using the Chain Rule for Paths we obtain the following derivative:

d

dt
f (c(t))

∣∣∣∣
t=0

= ∇fc(0) · c′(0) = 〈1, 0〉 · 〈0, −4〉 = 0
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17. f (x, y) = ln x + ln y, c(t) = (cos t, t2), t = π
4

solution We compute the gradient and c′(t):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
=
〈

1

x
,

1

y

〉

c′(t) = 〈− sin t, 2t〉
At the point t = π

4 we have

c
(π

4

)
=
(

cos
π

4
,
(π

4

)2
)

=
(√

2

2
,
π2

16

)

c′ (π

4

)
=
〈
− sin

π

4
,

2π

4

〉
=
〈
−

√
2

2
,
π

2

〉

∇fc
(

π
4

) = ∇f(√
2

2 , π2
16

) =
〈√

2,
16

π2

〉

Using the Chain Rule for Paths we obtain the following derivative:

d

dt
f (c(t))

∣∣∣∣
t= π

4

= ∇fc
(

π
4

) · c′ (π

4

)
=
〈√

2,
16

π2

〉
·
〈
−

√
2

2
,
π

2

〉
= −1 + 8

π
≈ 1.546

18. g(x, y, z) = xyez, c(t) = (t2, t3, t − 1), t = 1

solution We compute the gradient and c′(t):

∇g =
〈
∂g

∂x
,
∂g

∂y
,
∂g

∂z

〉
= 〈yez, xez, xyez

〉 = ez 〈y, x, xy〉

c′(t) =
〈
2t, 3t2, 1

〉
At the point t = 1 we have

c(1) = (1, 1, 0)

c′(1) = 〈2, 3, 1〉
∇gc(1) = ∇g(1,1,0) = e0 〈1, 1, 1〉 = 〈1, 1, 1〉

Using the Chain Rule for Paths we obtain the following derivative:

d

dt
g (c(t))

∣∣∣∣
t=1

= ∇gc(1) · c′(1) = 〈1, 1, 1〉 · 〈2, 3, 1〉 = 2 + 3 + 1 = 6

19. g(x, y, z) = xyz−1, c(t) = (et , t, t2), t = 1

solution By the Chain Rule for Paths we have

d

dt
g (c(t)) = ∇gc(t) · c′(t) (1)

We compute the gradient and c′(t):

∇g =
〈
∂g

∂x
,
∂g

∂y
,
∂g

∂z

〉
=
〈
yz−1, xz−1, −xyz−2

〉
c′(t) = 〈et , 1, 2t

〉
At the point t = 1 we have

c(1) = (e, 1, 1)

c′(1) = 〈e, 1, 2〉
∇gc(1) = ∇g(e,1,1) = 〈1, e, −e〉

Substituting the vectors in (1) gives the following derivative:

d

dt
g (c(t))

∣∣∣∣
t=1

= 〈1, e, −e〉 · 〈e, 1, 2〉 = e + e − 2e = 0
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20. g(x, y, z, w) = x + 2y + 3z + 5w, c(t) = (t2, t3, t, t−2), t = 1

solution We compute the gradient and c′(t):

∇g =
〈
∂g

∂x
,
∂g

∂y
,
∂g

∂z
,

∂g

∂w

〉
= 〈1, 2, 3, 5〉

c′(t) =
〈
2t, 3t2, 1, 1

〉
At the point t = 1 we have (notice that the gradient is a constant vector)

∇gc(1) = 〈1, 2, 3, 5〉
c′(1) = 〈2, 3, 1, 1〉

We now use the Chain Rule for Paths to obtain the following derivative:

d

dt
g (c(t))

∣∣∣∣
t=1

= ∇gc(1) · c′(1) = 〈1, 2, 3, 5〉 · 〈2, 3, 1, 1〉 = 2 + 6 + 3 + 5 = 16

In Exercises 21–30, calculate the directional derivative in the direction of v at the given point. Remember to normalize
the direction vector or use Eq. (4).

21. f (x, y) = x2 + y3, v = 〈4, 3〉, P = (1, 2)

solution We first normalize the direction vector v:

u = v
‖v‖ = 〈4, 3〉√

42 + 32
=
〈

4

5
,

3

5

〉

We compute the gradient of f (x, y) = x2 + y3 at the given point:

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
=
〈
2x, 3y2

〉
⇒ ∇f(1,2) = 〈2, 12〉

Using the Theorem on Evaluating Directional Derivatives, we get

Duf (1, 2) = ∇f(1,2) · u = 〈2, 12〉 ·
〈

4

5
,

3

5

〉
= 8

5
+ 36

5
= 44

5
= 8.8

22. f (x, y) = x2y3, v = i + j, P = (−2, 1)

solution We normalize v to obtain a unit vector u in the direction of v:

u = v
‖v‖ = 1√

2
(i + j) = 1√

2
i + 1√

2
j

We compute the gradient of f (x, y) = x2y3 at the point P :

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
=
〈
2xy3, 3x2y2

〉
⇒ ∇f (−2,1) = 〈−4, 12〉 = −4i + 12j

The directional derivative in the direction of v is therefore

Duf (−2, 1) = ∇f(−2,1) · u = (−4i + 12j) ·
(

1√
2

i + 1√
2

j
)

= − 4√
2

+ 12√
2

= 8√
2

= 4
√

2

23. f (x, y) = x2y3, v = i + j, P = ( 1
6 , 3
)

solution We normalize v to obtain a unit vector u in the direction of v:

u = v
‖v‖ = 1√

2
(i + j) = 1√

2
i + 1√

2
j

We compute the gradient of f (x, y) = x2y3 at the point P :

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
=
〈
2xy3, 3x2y2

〉
⇒ ∇f ( 1

6 ,3
) =

〈
2 · 1

6
· 33, 3 · 1

62
· 32
〉

=
〈
9,

3

4

〉
= 9i + 3

4
j

The directional derivative in the direction v is thus

Duf

(
1

6
, 3

)
= ∇f( 1

6 ,3
) · u =

(
9i + 3

4
j
)

·
(

1√
2

i + 1√
2

j
)

= 9√
2

+ 3

4
√

2
= 39

4
√

2
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24. f (x, y) = sin(x − y), v = 〈1, 1〉, P = (π2 , π
6

)
solution We normalize v to obtain a unit vector u in the direction v:

u = v
‖v‖ = 1√

2
〈1, 1〉

We compute the gradient of f (x, y) = sin(x − y) at the point P :

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈cos(x − y), − cos(x − y)〉 ⇒ ∇f( π

2 , π
6

) =
〈
cos

π

3
, − cos

π

3

〉
=
〈

1

2
, −1

2

〉

The directional derivative in the direction v is thus

Duf (P ) = ∇f( π
2 , π

6

) · u =
〈

1

2
, −1

2

〉
· 1√

2
〈1, 1〉 = 0

25. f (x, y) = tan−1(xy), v = 〈1, 1〉, P = (3, 4)

solution We first normalize v to obtain a unit vector u in the direction v:

u = v
‖v‖ = 1√

2
〈1, 1〉

We compute the gradient of f (x, y) = tan−1(xy) at the point P = (3, 4):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
=
〈

y

1 + (xy)2
,

x

1 + (xy)2

〉
= 1

1 + x2y2
〈y, x〉

∇f(3,4) = 1

1 + 32 · 42
〈4, 3〉 = 1

145
〈4, 3〉

Therefore, the directional derivative in the direction v is

Duf (3, 4) = ∇f(3,4) · u = 1

145
〈4, 3〉 · 1√

2
〈1, 1〉 = 1

145
√

2
(4 + 3) = 7

145
√

2
= 7

√
2

290

26. f (x, y) = exy−y2
, v = 〈12, −5〉, P = (2, 2)

solution We first normalize v to obtain a unit vector u in the direction v:

u = v
‖v‖ = 〈12, −5〉√

122 + (−5)2
= 1

13
〈12, −5〉

We compute the gradient of f (x, y) = exy−y2
at the point P = (2, 2):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
=
〈
yexy−y2

, (x − 2y)exy−y2
〉
= exy−y2 〈y, x − 2y〉

∇f(2,2) = e0 〈2, −2〉 = 〈2, −2〉
Therefore, the directional derivative in the direction v is thus

Duf (2, 2) = ∇f(2,2) · u = 〈2, −2〉 · 1

13
〈12, −5〉 = 34

13

27. f (x, y) = ln(x2 + y2), v = 3i − 2j, P = (1, 0)

solution We normalize v to obtain a unit vector u in the direction v:

u = v
‖v‖ = 1√

32 + (−2)2
(3i − 2j) = 1√

13
(3i − 2j)

We compute the gradient of f (x, y) = ln
(
x2 + y2

)
at the point P = (1, 0):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
=
〈

2x

x2 + y2
,

2y

x2 + y2

〉
= 2

x2 + y2
〈x, y〉

∇f(1,0) = 2

12 + 02
〈1, 0〉 = 〈2, 0〉 = 2i
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The directional derivative in the direction v is thus

Duf (1, 0) = ∇f(1,0) · u = 2i · 1√
13

(3i − 2j) = 6√
13

28. g(x, y, z) = z2 − xy2, v = 〈−1, 2, 2〉, P = (2, 1, 3)

solution We normalize v to obtain a unit vector u in the direction v:

u = v
‖v‖ = 〈−1, 2, 2〉√

(−1)2 + 22 + 22
= 1

3
〈−1, 2, 2〉

We compute the gradient of f (x, y, z) = z2 − xy2 at the point P = (2, 1, 3):

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
=
〈
−y2, −2xy, 2z

〉
⇒ ∇f(2,1,3) = 〈−1, −4, 6〉

The directional derivative in the direction v is thus

Duf (2, 1, 3) = ∇f(2,1,3) · u = 〈−1, −4, 6〉 · 1

3
〈−1, 2, 2〉 = 1

3
(1 − 8 + 12) = 5

3

29. g(x, y, z) = xe−yz, v = 〈1, 1, 1〉, P = (1, 2, 0)

solution We first compute a unit vector u in the direction v:

u = v
‖v‖ = 〈1, 1, 1〉√

12 + 12 + 12
= 1√

3
〈1, 1, 1〉

We find the gradient of f (x, y, z) = xe−yz at the point P = (1, 2, 0):

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= 〈e−yz, −xze−yz, −xye−yz

〉 = e−yz 〈1, −xz, −xy〉

∇f(1,2,0) = e0 〈1, 0, −2〉 = 〈1, 0, −2〉
The directional derivative in the direction v is thus

Duf (1, 2, 0) = ∇f(1,2,0) · u = 〈1, 0, −2〉 · 1√
3

〈1, 1, 1〉 = 1√
3
(1 + 0 − 2) = − 1√

3

30. g(x, y, z) = x ln(y + z), v = 2i − j + k, P = (2, e, e)

solution We first find a unit vector u in the direction v:

u = v
‖v‖ = 2i − j + k√

22 + (−1)2 + 12
= 1√

6
(2i − j + k)

We compute the gradient of f (x, y, z) = x ln(y + z) at the point P = (2, e, e):

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
=
〈
ln(y + z),

x

y + z
,

x

y + z

〉

∇f(2,e,e) =
〈
ln 2e,

2

2e
,

2

2e

〉
=
〈
ln 2e, e−1, e−1

〉
= (ln 2e)i + e−1j + e−1k

The directional derivative in the direction v is thus

Duf (2, e, e) = ∇f(2,e,e) · u =
(
(ln 2e)i + e−1j + e−1k

)
· 1√

6
(2i − j + k)

= 1√
6

(
2 ln(2e) − e−1 + e−1

)
= 2 ln 2e√

6

31. Find the directional derivative of f (x, y) = x2 + 4y2 at P = (3, 2) in the direction pointing to the origin.

solution The direction vector is v = →
PO= 〈−3, −2〉. A unit vector u in the direction v is obtained by normalizing v.

That is,

u = v
‖v‖ = 〈−3, −2〉√

32 + 22
= −1√

13
〈3, 2〉
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We compute the gradient of f (x, y) = x2 + 4y2 at the point P = (3, 2):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈2x, 8y〉 ⇒ ∇f(3,2) = 〈6, 16〉

The directional derivative is thus

Duf (3, 2) = ∇f(3,2) · u = 〈6, 16〉 · −1√
13

〈3, 2〉 = −50√
13

32. Find the directional derivative of f (x, y, z) = xy + z3 at P = (3, −2, −1) in the direction pointing to the origin.

solution The direction vector is v = −→
PO = 〈−3, 2, 1〉. We normalize v to obtain a unit vector u in the direction v:

u = v
‖v‖ = 〈−3, 2, 1〉√

9 + 4 + 1
= 1√

14
〈−3, 2, 1〉

We compute the gradient of f (x, y, z) = xy + z3 at P :

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
=
〈
y, x, 3z2

〉
⇒ ∇f(3,−2,−1) = 〈−2, 3, 3〉

The directional derivative is thus

Duf(3,−2,−1) = ∇f (3,−2,−1) · u = 〈−2, 3, 3〉 · 1√
14

〈−3, 2, 1〉 = 1√
14

(6 + 6 + 3) = 15√
14

33. A bug located at (3, 9, 4) begins walking in a straight line toward (5, 7, 3). At what rate is the bug’s temperature
changing if the temperature is T (x, y, z) = xey−z? Units are in meters and degrees Celsius.

solution The bug is walking in a straight line from the point P = (3, 9, 4) towards Q = (5, 7, 3), hence the rate of

change in the temperature is the directional derivative in the direction of v = −→
PQ. We first normalize v to obtain

v = →
PQ= 〈5 − 3, 7 − 9, 3 − 4〉 = 〈2, −2, −1〉

u = v
‖v‖ = 〈2, −2, −1〉√

4 + 4 + 1
= 1

3
〈2, −2, −1〉

We compute the gradient of T (x, y, z) = xey−z at P = (3, 9, 4):

∇T =
〈
∂T

∂x
,
∂T

∂y
,
∂T

∂z

〉
= 〈ey−z, xey−z, −xey−z

〉 = ey−z 〈1, x, −x〉

∇T(3,9,4) = e9−4 〈1, 3, −3〉 = e5 〈1, 3, −3〉
The rate of change of the bug’s temperature at the starting point P is the directional derivative

Duf (P ) = ∇T (3,9,4) · u = e5 〈1, 3, −3〉 · 1

3
〈2, −2, −1〉 = − e5

3
≈ −49.47

The answer is −49.47 degrees Celsius per meter.

34. The temperature at location (x, y) is T (x, y) = 20 + 0.1(x2 − xy) (degrees Celsius). Beginning at (200, 0) at time
t = 0 (seconds), a bug travels along a circle of radius 200 cm centered at the origin, at a speed of 3 cm/s. How fast is the
temperature changing at time t = π/3?

solution First we should parametrize the circle the bug is walking along as:

r(t) = 〈200 cos t, 200 sin t〉, 0 ≤ t ≤ 2π

Then at t = π/3 then x = 100 and y = 100
√

3.
Next we need to calculate the velocity vector at t = π/3, using the parametrization for the circle we have

r′(t) = 〈−200 sin t, 200 cos t〉 ⇒ v = r′(π/3) =
〈
−100

√
3, 100

〉
Now to normalize v we have

u = 1√
30000 + 10000

〈
−100

√
3, 100

〉
= 1

200

〈
−100

√
3, 100

〉
=
〈
−

√
3

2
,

1

2

〉
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We also need to compute the gradient of T (x, y) = 20 + 0.1(x2 − xy) at t = π/3 (or x = 100, y = 100
√

3):

∇T =
〈
∂T

∂x
,
∂T

∂y

〉
= 〈0.2x − 0.1y, −0.1x〉

∇T
(100,100

√
3)

=
〈
0.2(100) − 0.1(100

√
3), −0.1(100)

〉
=
〈
20 − 10

√
3, −10

〉
Then the rate of change of the bug’s temperature at the point t = π/3 is the directional derivative:

Duf (π/3) = ∇T
(100,100

√
3)

· u =
〈
20 − 10

√
3, −10

〉
·
〈
−

√
3

2
,

1

2

〉
= 10 − 10

√
3 ≈ −7.32

So the temperature is changing at -7.32 degrees Celsius per second.

35. Suppose that ∇fP = 〈2, −4, 4〉. Is f increasing or decreasing at P in the direction v = 〈2, 1, 3〉?
solution We compute the derivative of f at P with respect to v:

Dvf (P ) = ∇fP · v = 〈2, −4, 4〉 · 〈2, 1, 3〉 = 4 − 4 + 12 = 12 > 0

Since the derivative is positive, f is increasing at P in the direction of v.

36. Let f (x, y) = xex2−y and P = (1, 1).

(a) Calculate ‖∇fP ‖.

(b) Find the rate of change of f in the direction ∇fP .

(c) Find the rate of change of f in the direction of a vector making an angle of 45◦ with ∇fP .

solution

(a) We compute the gradient of f (x, y) = xex2−y . The partial derivatives are

∂f

∂x
= 1 · ex2−y + xex2−y · 2x = ex2−y

(
1 + 2x2

)
∂f

∂y
= −xex2−y

The gradient vector is thus

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
=
〈
ex2−y

(
1 + 2x2

)
, −xex2−y

〉
= ex2−y

〈
1 + 2x2, −x

〉

At the point P = (1, 1) we have

∇fP = e0 〈1 + 2, −1〉 = 〈3, −1〉 ⇒ ‖∇fP ‖ =
√

32 + (−1)2 = √
10

(b) The rate of change of f in the direction of the gradient vector is the length of the gradient, that is, ‖∇fP ‖ = √
10.

(c) Let ev be the unit vector making an angle of 45◦ with ∇fP . The rate of change of f in the direction of ev is the
directional derivative of f in the direction ev, which is the following dot product:

Dev f (P ) = ∇fP · ev = ‖∇fP ‖‖ev‖ cos 45◦ = √
10 · 1 · 1√

2
= √

5 ≈ 2.236

37. Let f (x, y, z) = sin(xy + z) and P = (0, −1, π). Calculate Duf (P ), where u is a unit vector making an angle
θ = 30◦ with ∇fP .

solution The directional derivative Duf (P ) is the following dot product:

Duf (P ) = ∇f P · u

Since u is a unit vector making an angle θ = 30◦ with ∇fP , we have by the properties of the dot product

Duf (P ) = ‖∇f P ‖ · ‖u‖ cos 30◦ =
√

3

2
‖∇f P ‖ (1)

We now must find the gradient at P and its length:

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= 〈y cos(xy + z), x cos(xy + z), cos(xy + z)〉 = cos(xy + z) 〈y, x, 1〉

∇f (0,−1,π) = cos π 〈−1, 0, 1〉 = −1 〈−1, 0, 1〉 = 〈1, 0, −1〉
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Hence,

‖∇f (0,−1,π)‖ =
√

12 + 02 + (−1)2 = √
2

Substituting in (1) we get

Duf (P ) =
√

3

2

√
2 =

√
6

2
.

38. Let T (x, y) be the temperature at location (x, y). Assume that ∇T = 〈y − 4, x + 2y〉. Let c(t) = (t2, t) be a path in
the plane. Find the values of t such that

d

dt
T (c(t)) = 0

solution By the Chain Rule for Paths we have

d

dt
T (c(t)) = ∇Tc(t) · c′(t) (1)

We compute the gradient vector ∇T for x = t2 and y = t :

∇T =
〈
t − 4, t2 + 2t

〉
Also c′(t) = 〈2t, 1〉. Substituting in (1) gives

d

dt
T (c(t)) =

〈
t − 4, t2 + 2t

〉
· 〈2t, 1〉 = (t − 4) · 2t +

(
t2 + 2t

)
· 1 = 3t2 − 6t

We are asked to find the values of t such that

d

dt
T (c(t)) = 3t2 − 6t = 0

We solve to obtain

3t2 − 6t = 3t (t − 2) = 0 ⇒ t1 = 0, t2 = 2

39. Find a vector normal to the surface x2 + y2 − z2 = 6 at P = (3, 1, 2).

solution The gradient ∇fP is normal to the level curve f (x, y, z) = x2 + y2 − z2 = 6 at P . We compute this vector:

fx(x, y, z) = 2x

fy(x, y, z) = 2y ⇒ ∇fP = ∇f(3,1,2) = 〈6, 2, −4〉
fz(x, y, z) = −2z

The vector 〈6, 2, −4〉 is normal to the surface x2 + y2 − z2 = 6 at P .

40. Find a vector normal to the surface 3z3 + x2y − y2x = 1 at P = (1, −1, 1).

solution The gradient is normal to the level surfaces, that is ∇fP is normal to the level surface f (x, y, z) = 3z3 +
x2y − y2x = 1. We compute the gradient vector at P = (1, −1, 1):

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
=
〈
2xy − y2, x2 − 2yx, 9z2

〉
∇fP = 〈−3, 3, 9〉

41. Find the two points on the ellipsoid

x2

4
+ y2

9
+ z2 = 1

where the tangent plane is normal to v = 〈1, 1, −2〉.

solution The gradient ∇fP is normal to the level surface f (x, y, z) = x2

4
+ y2

9
+ z2 = 1. If v = 〈1, 1, −2〉 is also

normal, then ∇fP and v are parallel, that is, ∇fP = kv for some constant k. This yields the equation

∇fP = 〈x

2
,

2y

9
, 2z〉 = k 〈1, 1, −2〉
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Thus x = 2k, y = 9k/2, and z = −k. To determine k, substitute in the equation of the ellipsoid:

x2

4
+ y2

9
+ z2 = (2k)2

4
+ (9k/2)2

9
+ (−k)2 = 1

This yields k2 + 9
4k2 + k2 = 1 or k = ±2/

√
17. The two points are

(x, y, z) = (2k,
9

2
k, −k) = ±

(
4√
17

,
9√
17

, − 2√
17

)

In Exercises 42–45, find an equation of the tangent plane to the surface at the given point.

42. x2 + 3y2 + 4z2 = 20, P = (2, 2, 1)

solution The equation of the tangent plane is

∇fP · 〈x − 2, y − 2, z − 1〉 = 0 (1)

We compute the gradient of f (x, y, z) = x2 + 3y2 + 4z2 at P = (2, 2, 1):

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= 〈2x, 6y, 8z〉

At the point P we have

∇fP = 〈2 · 2, 6 · 2, 8 · 1〉 = 〈4, 12, 8〉
Substituting in (1) we obtain the following equation of the tangent plane:

〈4, 12, 8〉 · 〈x − 2, y − 2, z − 1〉 = 0

4(x − 2) + 12(y − 2) + 8(z − 1) = 0

x − 2 + 3(y − 2) + 2(z − 1) = 0

or

x + 3y + 2z = 10

43. xz + 2x2y + y2z3 = 11, P = (2, 1, 1)

solution The equation of the tangent plane at P is

∇fP · 〈x − 2, y − 1, z − 1〉 = 0 (1)

We compute the gradient of f (x, y, z) = xz + 2x2y + y2z3 at the point P = (2, 1, 1):

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
=
〈
z + 4xy, 2x2 + 2yz3, x + 3y2z2

〉

At the point P we have

∇fP = 〈9, 10, 5〉
Substituting in (1) we obtain the following equation of the tangent plane:

〈9, 10, 5〉 · 〈x − 2, y − 1, z − 1〉 = 0

9(x − 2) + 10(y − 1) + 5(z − 1) = 0

or

9x + 10y + 5z = 33

44. x2 + z2ey−x = 13, P =
(

2, 3,
3√
e

)

solution We compute the gradient of f (x, y, z) = x2 + z2ey−x at the point P =
(

2, 3, 3√
e

)
:

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
=
〈
2x − z2ey−x, z2ey−x, 2zey−x

〉
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At the point P =
(

2, 3, 3√
e

)
we have

∇fP =
〈
4 − 9

e
· e,

9

e
· e, 2 · 3√

e
· e

〉
= 〈−5, 9, 6

√
e
〉

The equation of the tangent plane at P is

∇fP ·
〈
x − 2, y − 3, z − 3√

e

〉
= 0

That is,

−5(x − 2) + 9(y − 3) + 6
√

e

(
z − 3√

e

)
= 0

or

−5x + 9y + 6
√

ez = 35

45. ln[1 + 4x2 + 9y4] − 0.1z2 = 0, P = (3, 1, 6.1876)

solution The equation of the tangent plane at P is

∇fP · (x − 3, y − 1, z − 6.1876) = 0 (1)

We compute the gradient of f (x, y, z) = ln(1 + 4x2 + 9y4) − 0.1z2 at the point P :

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
=
〈

8x

1 + 4x2 + 9y4
,

36y3

1 + 4x2 + 9y4
, −0.2z

〉

At the point P = (3, 1, 6.1876) we have

∇fP =
〈

24

1 + 36 + 9
,

36

46
, −1.2375

〉
= 〈0.5217, 0.7826, −1.2375〉

We substitute in (1) to obtain the following equation of the tangent plane:

0.5217(x − 3) + 0.7826(y − 1) − 1.2375(z − 6.1876) = 0

or

0.5217x + 0.7826y − 1.2375z = −5.309

46. Verify what is clear from Figure 15: Every tangent plane to the cone x2 + y2 − z2 = 0 passes through the origin.

y

x

z

FIGURE 15 Graph of x2 + y2 − z2 = 0.

solution The equation of the tangent plane to the surface f (x, y, z) = x2 + y2 − z2 = 0 at the point P = (x0, y0, z0)

on the surface is

∇fP · 〈x − x0, y − y0, z − z0〉 (1)

We compute the gradient of f (x, y, z) = x2 + y2 − z2 at P :

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= 〈2x, 2y, −2z〉

Hence,

∇fP = 〈2x0, 2y0, −2z0〉
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Substituting in (1) we obtain the following equation of the tangent plane:

〈2x0, 2y0, −2z0〉 · 〈x − x0, y − y0, z − z0〉 = 0

x0(x − x0) + y0(y − y0) − z0(z − z0) = 0

x0x + y0y − z0z = x2
0 + y2

0 − z2
0

Since P = (x0, y0, z0) is on the surface, we have x2
0 + y2

0 − z2
0 = 0. The equation of the tangent plane is thus

x0x + y0y − z0z = 0

This plane passes through the origin.

47. Use a computer algebra system to produce a contour plot of f (x, y) = x2 − 3xy + y − y2 together with its
gradient vector field on the domain [−4, 4] × [−4, 4].
solution

x

y

4

2

−2

2

−4

4−2−4

48. Find a function f (x, y, z) such that ∇f is the constant vector 〈1, 3, 1〉.
solution The gradient of f (x, y, z) must satisfy the equality

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= 〈1, 3, 1〉

Equating corresponding components gives

∂f

∂x
= 1

∂f

∂y
= 3

∂f

∂z
= 1

One of the functions that satisfies these equalities is

f (x, y, z) = x + 3y + z

49. Find a function f (x, y, z) such that ∇f = 〈2x, 1, 2〉.
solution The following equality must hold:

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= 〈2x, 1, 2〉

Equating corresponding components gives

∂f

∂x
= 2x

∂f

∂y
= 1

∂f

∂z
= 2

One of the functions that satisfies these equalities is f (x, y, z) = x2 + y + 2z.
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50. Find a function f (x, y, z) such that ∇f = 〈x, y2, z3〉.
solution The following equality must hold:

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
=
〈
x, y2, z3

〉

That is,

∂f

∂x
= x

∂f

∂y
= y2

∂f

∂z
= z3

One of the functions that satisfies these equalities is

f (x, y, z) = 1

2
x2 + 1

3
y3 + 1

4
z4

51. Find a function f (x, y, z) such that ∇f = 〈z, 2y, x〉.
solution f (x, y, z) = xz + y2 is a good choice.

52. Find a function f (x, y) such that ∇f = 〈y, x〉.
solution We must find a function f (x, y) such that

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈y, x〉

That is,

∂f

∂x
= y,

∂f

∂y
= x

We integrate the first equation with respect to x. Since y is treated as a constant, the constant of integration is a function
of y. We get

f (x, y) =
∫

y dx = yx + g(y) (1)

We differentiate f with respect to y and substitute in the second equation. This gives

∂f

∂y
= ∂

∂y
(yx + g(y)) = x + g′(y)

Hence,

x + g′(y) = x ⇒ g′(y) = 0 ⇒ g(y) = C

Substituting in (1) gives

f (x, y) = yx + C

One of the solutions is f (x, y) = yx (obtained for C = 0).

53. Show that there does not exist a function f (x, y) such that ∇f = 〈y2, x
〉
. Hint: Use Clairaut’s Theorem fxy = fyx .

solution Suppose that for some differentiable function f (x, y),

∇f = 〈fx, fy

〉 = 〈y2, x
〉

That is, fx = y2 and fy = x. Therefore,

fxy = ∂

∂y
fx = ∂

∂y
y2 = 2y and fyx = ∂

∂x
fy = ∂

∂x
x = 1

Since fxy and fyx are both continuous, they must be equal by Clairaut’s Theorem. Since fxy �= fyx we conclude that
such a function f does not exist.
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54. Let �f = f (a + h, b + k) − f (a, b) be the change in f at P = (a, b). Set �v = 〈h, k〉. Show that the linear
approximation can be written

�f ≈ ∇fP · �v 8

solution The linear approximation is

�f ≈ fx(a, b)h + fy(a, b)k = 〈fx(a, b), fy(a, b)
〉 · 〈h, k〉 = ∇f P · �v

55. Use Eq. (8) to estimate

�f = f (3.53, 8.98) − f (3.5, 9)

assuming that ∇f(3.5,9) = 〈2, −1〉.
solution By Eq. (8),

�f ≈ ∇fP · �v

The vector �v is the following vector:

�v = 〈3.53 − 3.5, 8.98 − 9〉 = 〈0.03, −0.02〉
Hence,

�f ≈ ∇f (3,5,9) · �v = 〈2, −1〉 · 〈0.03, −0.02〉 = 0.08

56. Find a unit vector n that is normal to the surface z2 − 2x4 − y4 = 16 at P = (2, 2, 8) that points in the direction of
the xy-plane (in other words, if you travel in the direction of n, you will eventually cross the xy-plane).

solution The gradient vector ∇fP is normal to the surface f (x, y, z) = z2 − 2x4 − y4 = 16 at P . We find this
vector:

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
=
〈
−8x3, −4y3, 2z

〉
⇒ ∇f(2,2,8) =

〈
−8 · 23, −4 · 23, 2 · 8

〉
= 〈−64, −32, 16〉

We normalize to obtain a unit vector normal to the surface:

∇fP

‖∇fP ‖ = 〈−64, −32, 16〉√
(−64)2 + 322 + 162

= 〈−64, −32, 16〉
16

√
21

= 1√
21

〈−4, −2, 1〉

There are two unit normals to the surface at P , namely,

n = ± 1√
21

〈−4, −2, 1〉

We need to find the normal that points in the direction of the xy-plane. Since the point P = (2, 2, 8) is above the xy-plane,
the normal we need has negative z-component. Hence,

n = 1√
21

〈4, 2, −1〉

57. Suppose, in the previous exercise, that a particle located at the point P = (2, 2, 8) travels toward the xy-plane in the
direction normal to the surface.

(a) Through which point Q on the xy-plane will the particle pass?
(b) Suppose the axes are calibrated in centimeters. Determine the path c(t) of the particle if it travels at a constant speed
of 8 cm/s. How long will it take the particle to reach Q?

solution
(a) The particle travels along the line through P = (2, 2, 8) in the direction (4, 2, −1). The vector parametrization of
this line is

r(t) = 〈2, 2, 8〉 + t 〈4, 2, −1〉 = 〈2 + 4t, 2 + 2t, 8 − t〉 (1)

We must find the point where this line intersects the xy-plane. At this point the z-component is zero. Hence,

8 − t = 0 ⇒ t = 8

Substituting t = 8 in (1) we obtain

r(8) = 〈2 + 4 · 8, 2 + 2 · 8, 0〉 = 〈34, 18, 0〉
The particle will pass through the point Q = (34, 18, 0) on the xy-plane.
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(b) If v is a direction vector of the line PQ, so that ‖v‖ = 8, the following parametrization of the line has constant
speed 8:

c(t) = 〈2, 2, 8〉 + tv

(This has speed 8 because ‖c′(t)‖ = ‖v‖ = 8). In the previous exercise, we found the unit vector n = 1√
21

〈4, 2, −1〉,
therefore we use the direction vector v = 8n = 8√

21
〈4, 2, −1〉, obtaining the following parametrization of the line:

c(t) = 〈2, 2, 8〉 + t · 8√
21

〈4, 2, −1〉 =
〈
2 + 32√

21
t, 2 + 16√

21
t, 8 − 8t√

21

〉

To find the time needed for the particle to reach Q if it travels along c(t), we first compute the distance PQ:

PQ =
√

(34 − 2)2 + (18 − 2)2 + (0 − 8)2 = √
1344 = 8

√
21

The time needed is thus

T = PQ

8
= 8

√
21

8
= √

21 ≈ 4.58 s

58. Let f (x, y) = tan−1 x

y
and u =

〈√
2

2
,

√
2

2

〉
.

(a) Calculate the gradient of f .

(b) Calculate Duf (1, 1) and Duf (
√

3, 1).

(c) Show that the lines y = mx for m �= 0 are level curves for f .

(d) Verify that ∇fP is orthogonal to the level curve through P for P = (x, y) �= (0, 0).

solution

(a) We compute the partial derivatives of f (x, y) = tan−1 x
y . Using the Chain Rule we get

∂f

∂x
= 1

1 +
(

x
y

)2
· 1

y
= y

x2 + y2

∂f

∂y
= 1

1 +
(

x
y

)2
·
(

− x

y2

)
= − x

x2 + y2

The gradient of f is thus

∇f =
〈

y

x2 + y2
, − x

x2 + y2

〉
= 1

x2 + y2
〈y, −x〉

(b) By the Theorem on Evaluating Directional Derivatives,

Duf (a, b) = ∇f (a,b) · u (1)

We find the values of the gradient at the two points:

∇f(1,1) = 1

12 + 12
〈1, −1〉 = 1

2
〈1, −1〉

∇f(√
3,1
) = 1(√

3
)2 + 12

〈
1, −√

3
〉
= 1

4

〈
1, −√

3
〉

Substituting in (1) we obtain the following directional derivatives

Duf (1, 1) = ∇f (1,1) · u = 1

2
〈1, −1〉 ·

〈√
2

2
,

√
2

2

〉
= 0

Duf
(√

3, 1
)

= ∇f (√
3,1
) · u = 1

4

〈
1, −√

3
〉
·
〈√

2

2
,

√
2

2

〉
=

√
2

8

〈
1, −√

3
〉
· 〈1, 1〉

=
√

2

8

(
1 − √

3
)

=
√

2 − √
6

8
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(c) Note that f is not defined for y = 0. For x = 0, the level curve of f is the y-axis, and the gradient vector is 〈 1
y , 0〉,

which is perpendicular to the y-axis. For y �= 0 and x �= 0, the level curves of f are the curves where f (x, y) is constant.
That is,

tan−1 x

y
= k

x

y
= tan k (for k �= 0)

y = 1

tan k
x

We conclude that the lines y = mx, m �= 0, are level curves for f .

(d) By part (c), the level curve through P = (x0, y0) is the line y = y0
x0

x. This line has a direction vector
〈
1,

y0
x0

〉
. The

gradient at P is, by part (a), ∇fP = 1
x2

0+y2
0

〈y0, −x0〉. We verify that the two vectors are orthogonal:

(
1,

y0

x0

)
· ∇fP =

〈
1,

y0

x0

〉
· 1

x2
0 + y2

0

〈y0, −x0〉 = 1

x2
0 + y2

0

(
y0 − x0y0

x0

)
= 0

Since the dot products is zero, the two vectors are orthogonal as expected (Theorem 6).

59. Suppose that the intersection of two surfaces F(x, y, z) = 0 and G(x, y, z) = 0 is a curve C, and let P be a
point on C. Explain why the vector v = ∇FP × ∇GP is a direction vector for the tangent line to C at P .

solution The gradient ∇FP is orthogonal to all the curves in the level surface F(x, y, z) = 0 passing through P .
Similarly, ∇GP is orthogonal to all the curves in the level surface G(x, y, z) = 0 passing through P . Therefore, both
∇FP and ∇GP are orthogonal to the intersection curve C at P , hence the cross product ∇FP × ∇GP is parallel to the
tangent line to C at P .

60. Let C be the curve of intersection of the spheres x2 + y2 + z2 = 3 and (x − 2)2 + (y − 2)2 + z2 = 3. Use the result
of Exercise 59 to find parametric equations of the tangent line to C at P = (1, 1, 1).

solution The parametric equations of the tangent line to C at P = (1, 1, 1) are

x = 1 + at, y = 1 + bt, z = 1 + ct (1)

where v = 〈a, b, c〉 is a direction vector for the line. By Exercise 59 v may be chosen as the following cross product:

v = ∇FP × ∇GP (2)

where F(x, y, z) = x2 + y2 + z2 and G(x, y, z) = (x − 2)2 + (y − 2)2 + z2. We compute ∇FP and ∇GP :

Fx(x, y, z) = 2x

Fy(x, y, z) = 2y

Fz(x, y, z) = 2z

⇒ ∇FP = 〈2 · 1, 2 · 1, 2 · 1〉 = 〈2, 2, 2〉

Gx(x, y, z) = 2(x − 2)

Gy(x, y, z) = 2(y − 2)

Gz(x, y, z) = 2z

⇒ ∇GP = 〈2(1 − 2), 2(1 − 2), 2 · 1〉 = 〈−2, −2, 2〉

Hence,

v = 〈2, 2, 2〉 × 〈−2, −2, 2〉 =
∣∣∣∣∣∣

i j k
2 2 2

−2 −2 2

∣∣∣∣∣∣ = (4 + 4)i − (4 + 4)j + (−4 + 4)k = 8i − 8j = 〈8, −8, 0〉

Therefore, v = 〈a, b, c〉 = 〈8, −8, 0〉, yielding a = 8, b = −8, c = 0. Substituting in (1) gives the following equations
of the tangent line: x = 1 + 8t , y = 1 − 8t , z = 1.

61. Let C be the curve obtained by intersecting the two surfaces x3 + 2xy + yz = 7 and 3x2 − yz = 1. Find the
parametric equations of the tangent line to C at P = (1, 2, 1).

solution The parametric equations of the tangent line to C at P = (1, 2, 1) are

x = 1 + at, y = 2 + bt, z = 1 + ct (1)

where v = 〈a, b, c〉 is a direction vector for the line. By Exercise 59, v may be chosen as the cross product:

v = ∇FP × ∇GP (2)
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where F(x, y, z) = x3 + 2xy + yz and G(x, y, z) = 3x2 − yz. We compute the gradient vectors:

Fx(x, y, z) = 3x2 + 2y Fx(1, 2, 1) = 7

Fy(x, y, z) = 2x + z ⇒ Fy(1, 2, 1) = 3

Fz(x, y, z) = y Fz(1, 2, 1) = 2

⇒ ∇FP = 〈7, 3, 2〉

Gx(x, y, z) = 6x Gx(1, 2, 1) = 6

Gy(x, y, z) = −z ⇒ Gy(1, 2, 1) = −1

Gz(x, y, z) = −y Gz(1, 2, 1) = −2

⇒ ∇GP = 〈6, −1, −2〉

Hence,

v = 〈7, 3, 2〉 × 〈6, −1, −2〉 =
∣∣∣∣∣∣

i j k
7 3 2
6 −1 −2

∣∣∣∣∣∣ = −4i + 26j − 25k = 〈−4, 26, −25〉

Therefore, v = 〈a, b, c〉 = 〈−4, 26, −25〉, so we obtain

a = −4, b = 26, c = −25.

Substituting in (1) gives the following parametric equations of the tangent line:

x = 1 − 4t, y = 2 + 26t, z = 1 − 25t.

62. Verify the linearity relations for gradients:

(a) ∇(f + g) = ∇f + ∇g

(b) ∇(cf ) = c∇f

solution

(a) We use the linearity relations for partial derivative to write

∇(f + g) = 〈(f + g)x, (f + g)y, (f + g)z
〉 = 〈fx + gx, fy + gy, fz + gz

〉
= 〈fx, fy, fz

〉+ 〈gx, gy, gz

〉 = ∇f + ∇g

(b) We use the linearity properties of partial derivatives to write

∇(cf ) = 〈(cf )x, (cf )y, (cf )z
〉 = 〈cf x, cf y, cf z

〉 = c
〈
fx, fy, fz

〉 = c∇f

63. Prove the Chain Rule for Gradients (Theorem 1).

solution We must show that if F(t) is a differentiable function of t and f (x, y, z) is differentiable, then

∇F (f (x, y, z)) = F ′ (f (x, y, z)) ∇f

Using the Chain Rule for partial derivatives we get

∇F (f (x, y, z)) =
〈

∂

∂x
F (f (x, y, z)) ,

∂

∂y
F (f (x, y, z)) ,

∂

∂z
F (f (x, y, z))

〉

=
〈
dF

dt
· ∂f

∂x
,
dF

dt
· ∂f

∂y
,
dF

dt
· ∂f

∂z

〉
= dF

dt

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= F ′ (f (x, y, z)) ∇F

64. Prove the Product Rule for Gradients (Theorem 1).

solution We must show that if f (x, y, z) and g(x, y, z) are differentiable, then

∇(fg) = f ∇g + g∇f

Using the Product Rule for partial derivatives we get

∇(fg) = 〈(fg)x, (fg)y, (fg)z
〉 = 〈fxg + fgx, fyg + fgy, fzg + fgz

〉
= 〈fxg, fyg, fzg

〉+ 〈fgx, fgy, fgz

〉 = 〈fx, fy, fz

〉
g + f

〈
gx, gy, gz

〉 = g∇f + f ∇g
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Further Insights and Challenges
65. Let u be a unit vector. Show that the directional derivative Duf is equal to the component of ∇f along u.

solution The component of ∇f along u is ∇f · u. By the Theorem on Evaluating Directional Derivatives, Duf =
∇f · u, which is the component of ∇f along u.

66. Let f (x, y) = (xy)1/3.

(a) Use the limit definition to show that fx(0, 0) = fy(0, 0) = 0.

(b) Use the limit definition to show that the directional derivative Duf (0, 0) does not exist for any unit vector u other
than i and j.

(c) Is f differentiable at (0, 0)?

solution

(a) By the limit definition and since f (0, 0) = 0, we have

fx(0, 0) = lim
h→0

f (h, 0) − f (0, 0)

h
= lim

h→0

(h · 0)1/3 − 0

h
= lim

h→0

0

h
= 0

fy(0, 0) = lim
h→0

f (0, h) − f (0, 0)

h
= lim

h→0

(0 · h)1/3 − 0

h
= lim

h→0

0

h
= 0

(b) By the limit definition of the directional derivative, and for u = 〈u1, u2〉 a unit vector, we have

Duf (0, 0) = lim
t→0

f (tu1, tu2) − f (0, 0)

t
= lim

t→0

(
t2u1u2

)1/3 − 0

t
= lim

t→0

u1u2

t1/3

This limit does not exist unless u1 = 0 or u2 = 0. u1 = 0 corresponds to the unit vector j, and u2 = 0 corresponds to the
unit vector i.

(c) If f was differentiable at (0, 0), then Duf (0, 0) would exist for any vector u. Therefore, using the result obtained in
part (b), f is not differentiable at (0, 0).

67. Use the definition of differentiability to show that if f (x, y) is differentiable at (0, 0) and

f (0, 0) = fx(0, 0) = fy(0, 0) = 0

then

lim
(x,y)→(0,0)

f (x, y)√
x2 + y2

= 0 9

solution If f (x, y) is differentiable at (0, 0), then there exists a function ε(x, y) satisfying lim(x,y)→(0,0) ε(x, y) = 0
such that

f (x, y) = L(x, y) + ε(x, y)

√
x2 + y2 (1)

Since f (0, 0) = 0, the linear function L(x, y) is

L(x, y) = f (0, 0) + fx(0, 0)x + fy(0, 0)y = fx(0, 0)x + fy(0, 0)y

Substituting in (1) gives

f (x, y) = fx(0, 0)x + fy(0, 0)y + ε(x, y)

√
x2 + y2

Therefore,

lim
(x,y)→(0,0)

f (x, y) − fx(0, 0)x − fy(0, 0)y√
x2 + y2

= lim
(x,y)→(0,0)

ε(x, y) = 0
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68. This exercise shows that there exists a function that is not differentiable at (0, 0) even though all directional derivatives
at (0, 0) exist. Define f (x, y) = x2y/(x2 + y2) for (x, y) �= 0 and f (0, 0) = 0.

(a) Use the limit definition to show that Dvf (0, 0) exists for all vectors v. Show that fx(0, 0) = fy(0, 0) = 0.

(b) Prove that f is not differentiable at (0, 0) by showing that Eq. (9) does not hold.

solution

(a) Let v �= 0 be the vector v = 〈v1, v2〉. By the definition of the derivative Dvf (0, 0), we have

Dvf (0, 0) = lim
t→0

f (tv1, tv2) − f (0, 0)

t
= lim

t→0

(tv1)
2tv2

(tv1)
2+(tv2)

2 − 0

t

= lim
t→0

t3v2
1v2

t3
(
v2

1 + v2
2

) = lim
t→0

v2
1v2

v2
1 + v2

2

= v2
1v2

v2
1 + v2

2

(1)

Therefore Dvf (0, 0) exists for all vectors v.

(b) In Exercise 67 we showed that if f (x, y) is differentiable at (0, 0) and f (0, 0) = 0, then

lim
(x,y)→(0,0)

f (x, y) − fx(0, 0)x − fy(0, 0)y√
x2 + y2

= 0

We now show that f does not satisfy the above equation. We first compute the partial derivatives fx(0, 0) and fy(0, 0).
The partial derivatives fx and fy are the directional derivatives in the directions of v = 〈1, 0〉 and v = 〈0, 1〉, respectively.
Substituting v1 = 1, v2 = 0 in (1) gives

fx(0, 0) = 12 · 0

12 + 02
= 0

Substituting v1 = 0, v2 = 1 in (1) gives

fy(0, 0) = 02 · 1

02 + 12
= 0

Also f (0, 0) = 0, therefore for (x, y) �= (0, 0) we have

lim
(x,y)→(0,0)

f (x, y) − fx(0, 0)x − fy(0, 0)y√
x2 + y2

= lim
(x,y)→(0,0)

x2y

x2+y2 − 0x − 0y√
x2 + y2

= lim
(x,y)→(0,0)

x2y

(x2 + y2)
3
2

We compute the limit along the line y = √
3x:

lim
(x,y)→(0,0)

along y=√
3x

x2y

(x2 + y2)
3/2

= lim
x→0

x2
√

3x(
x2 +

(√
3x
)2
)3/2

= lim
x→0

√
3x3(

4x2
)3/2

= lim
x→0

√
3x3

8x3
=

√
3

8
�= 0

Since this limit is not zero, f does not satisfy Eq. (9), hence f is not differentiable at (0, 0).

69. Prove that if f (x, y) is differentiable and ∇f(x,y) = 0 for all (x, y), then f is constant.

solution Since ∇f = 〈fx, fy

〉 = 〈0, 0〉 for all (x, y), we have

fx(x, y) = fy(x, y) = 0 for all (x, y) (1)

Let Q0 = (x0, y0) be a fixed point and let P = (x1, y1) be any other point. Let c(t) = 〈x(t), y(t)〉 be a parametric
equation of the line joining Q0 and P , with P = c(t1) and Q0 = c(t0). We define the following function:

F(t) = f (x(t), y(t))

F (t) is defined for all t , since f (x, y) is defined for all (x, y). By the Chain Rule we have

F ′(t) = fx (x(t), y(t))
dx

dt
+ fy (x(t), y(t))

dy

dt

Combining with (1) we get F ′(t) = 0 for all t . We conclude that F(t) = const. That is, f is constant on the line c(t). In
particular, f (P ) = f (Q0). Since P is any point, it follows that f (x, y) is a constant function.
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70. Prove the following Quotient Rule, where f, g are differentiable:

∇
(

f

g

)
= g∇f − f ∇g

g2

solution The Quotient Rule is valid for partial derivatives, therefore

∇
(

f

g

)
=
〈

∂

∂x

(
f

g

)
,

∂

∂y

(
f

g

)
,

∂

∂z

(
f

g

)〉
=
〈

g
∂f
∂x

− f
∂g
∂x

g2
,
g

∂f
∂y

− f
∂g
∂y

g2
,
g

∂f
∂z

− f
∂g
∂z

g2

〉

=
〈

g
∂f
∂x

g2
,
g

∂f
∂y

g2
,
g

∂f
∂z

g2

〉
−
〈

f
∂g
∂x

g2
,
f

∂g
∂y

g2
,
f

∂g
∂z

g2

〉
= g

g2

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
− f

g2

〈
∂g

∂x
,
∂g

∂y
,
∂g

∂z

〉

= g

g2
∇f − f

g2
∇g = g∇f − f ∇g

g2

In Exercises 71–73, a path c(t) = (x(t), y(t)) follows the gradient of a function f (x, y) if the tangent vector c′(t) points
in the direction of ∇f for all t . In other words, c′(t) = k(t)∇fc(t) for some positive function k(t). Note that in this case,
c(t) crosses each level curve of f (x, y) at a right angle.

71. Show that if the path c(t) = (x(t), y(t)) follows the gradient of f (x, y), then

y′(t)
x′(t) = fy

fx

solution Since c(t) follows the gradient of f (x, y), we have

c′(t) = k(t)∇fc(t) = k(t)
〈
fx (c(t)) , fy (c(t))

〉
which implies that

x′(t) = k(t)fx (c(t)) and y′(t) = k(t)fy (c(t))

Hence,

y′(t)
x′(t) = k(t)fy (c(t))

k(t)fx (c(t))
= fy (c(t))

fx (c(t))

or in short notation,

y′(t)
x′(t) = fy

fx

72. Find a path of the form c(t) = (t, g(t)) passing through (1, 2) that follows the gradient of f (x, y) = 2x2 + 8y2

(Figure 16). Hint: Use Separation of Variables.

x

y

1

1

2

FIGURE 16 The path c(t) is orthogonal to the level curves of f (x, y) = 2x2 + 8y2.

solution By the previous exercise, if c(t) = (x(t), y(t)) follows the gradient of f , then

dy

dx
= y′(t)

x′(t) = fy

fx
(1)

We find the partial derivatives of f :

fy = ∂

∂y

(
2x2 + 8y2

)
= 16y, fx = ∂

∂x

(
2x2 + 8y2

)
= 4x

Substituting in (1) we get

dy

dx
= 16y

4x
= 4y

x
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We solve the differential equation using separation of variables. We obtain

dy

y
= 4

dx

x∫
dy

y
= 4

∫
dx

x

ln y = 4 ln x + c = ln x4 + c

or

y = eln x4+c = ecx4

Denoting k = ec, we obtain the following solution:

y = kx4

The corresponding path may be parametrized using the parameter x = t as

c(t) =
(
t, kt4

)
(2)

Since we want the path to pass through (1, 2), there must be a solution t for the equation(
t, kt4

)
= (1, 2)

or

t = 1

kt4 = 2
⇒ k · 14 = 2 ⇒ k = 2

Substituting in (2) we obtain the following path:

c(t) =
(
t, 2t4

)
We now show that c follows the gradient of f (x, y) = 2x2 + 8y2. We have

c′(t) =
(

1, 8t3
)

and ∇f = 〈fx, fy

〉 = 〈4x, 16y〉

Therefore, ∇fc(t) =
〈
4t, 16 · 2t4

〉
=
〈
4t, 32t4

〉
, so we obtain

c′(t) =
(

1, 8t3
)

= 1

4t

〈
4t, 32t4

〉
= 1

4t
∇fc(t), t �= 0

For t = 0, ∇fc(0) = ∇f(0,0) = 〈0, 0〉 and c′(0) = 〈1, 0〉. We conclude that c follows the gradient of f for t �= 0.

73. Find the curve y = g(x) passing through (0, 1) that crosses each level curve of f (x, y) = y sin x at a right
angle. If you have a computer algebra system, graph y = g(x) together with the level curves of f .

solution Using fx = y cos x, fy = sin x, and y(0) = 1, we get

dy

dx
= tan x

y
⇒ y(0) = 1

We solve the differential equation using separation of variables:

y dy = tan x dx∫
y dy =

∫
tan x dx

1

2
y2 = − ln | cos x| + k

y2 = −2 ln | cos x| + k = − ln
(

cos2 x
)

+ k

y = ±
√

− ln
(
cos2 x

)+ k

Since y(0) = 1 > 0, the appropriate sign is the positive sign. That is,

y =
√

− ln
(
cos2 x

)+ k (1)
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We find the constant k by substituting x = 0, y = 1 and solve for k. This gives

1 =
√

− ln
(
cos2 0

)+ k = √− ln 1 + k = √
k

Hence,

k = 1

Substituting in (2) gives the following solution:

y =
√

1 − ln
(
cos2 x

)
(2)

The following figure shows the graph of the curve (3) together with some level curves of f .

x
0

y

y sin x = c
c = 0.15

y = √1-ln (cos2x)

14.6 The Chain Rule (LT Section 15.6)

Preliminary Questions
1. Let f (x, y) = xy, where x = uv and y = u + v.

(a) What are the primary derivatives of f ?

(b) What are the independent variables?

solution

(a) The primary derivatives of f are ∂f
∂x

and ∂f
∂y

.

(b) The independent variables are u and v, on which x and y depend.

In Questions 2 and 3, suppose that f (u, v) = uev , where u = rs and v = r + s.

2. The composite function f (u, v) is equal to:

(a) rser+s (b) res (c) rsers

solution The composite function f (u, v) is obtained by replacing u and v in the formula for f (u, v) by the corre-
sponding functions u = rs and v = r + s. This gives

f
(
u(r, s), v(r, s)

) = u(r, s)ev(r,s) = rser+s

Answer (a) is the correct answer.

3. What is the value of f (u, v) at (r, s) = (1, 1)?

solution We compute u = rs and v = r + s at the point (r, s) = (1, 1):

u(1, 1) = 1 · 1 = 1; v(1, 1) = 1 + 1 = 2

Substituting in f (u, v) = uev , we get

f (u, v)

∣∣∣∣
(r,s)=(1,1)

= 1 · e2 = e2.

4. According to the Chain Rule, ∂f/∂r is equal to (choose the correct answer):

(a)
∂f

∂x

∂x

∂r
+ ∂f

∂x

∂x

∂s
(b)

∂f

∂x

∂x

∂r
+ ∂f

∂y

∂y

∂r
(c)

∂f

∂r

∂r

∂x
+ ∂f

∂s

∂s

∂x
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solution For a function f (x, y) where x = x(r, s) and y = y(r, s), the Chain Rule states that the partial derivative
∂f
∂r

is as given in (b). That is,

∂f

∂x

∂x

∂r
+ ∂f

∂y

∂y

∂r

5. Suppose that x, y, z are functions of the independent variables u, v, w. Which of the following terms appear in the
Chain Rule expression for ∂f/∂w?

(a)
∂f

∂v

∂x

∂v
(b)

∂f

∂w

∂w

∂x
(c)

∂f

∂z

∂z

∂w

solution By the Chain Rule, the derivative ∂f
∂w

is

∂f

∂w
= ∂f

∂x

∂x

∂w
+ ∂f

∂y

∂y

∂w
+ ∂f

∂z

∂z

∂w

Therefore (c) is the only correct answer.

6. With notation as in the previous question, does ∂x/∂v appear in the Chain Rule expression for ∂f/∂u?

solution The Chain Rule expression for ∂f
∂u

is

∂f

∂u
= ∂f

∂x

∂x

∂u
+ ∂f

∂y

∂y

∂u
+ ∂f

∂z

∂z

∂u

The derivative ∂x
∂v

does not appear in differentiating f with respect to the independent variable u.

Exercises
1. Let f (x, y, z) = x2y3 + z4 and x = s2, y = st2, and z = s2t .

(a) Calculate the primary derivatives
∂f

∂x
,
∂f

∂y
,
∂f

∂z
.

(b) Calculate
∂x

∂s
,
∂y

∂s
,
∂z

∂s
.

(c) Compute
∂f

∂s
using the Chain Rule:

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
+ ∂f

∂z

∂z

∂s

Express the answer in terms of the independent variables s, t .

solution

(a) The primary derivatives of f (x, y, z) = x2y3 + z4 are

∂f

∂x
= 2xy3,

∂f

∂y
= 3x2y2,

∂f

∂z
= 4z3

(b) The partial derivatives of x, y, and z with respect to s are

∂x

∂s
= 2s,

∂y

∂s
= t2,

∂z

∂s
= 2st

(c) We use the Chain Rule and the partial derivatives computed in parts (a) and (b) to find the following derivative:

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
+ ∂f

∂z

∂z

∂s
= 2xy3 · 2s + 3x2y2t2 + 4z3 · 2st = 4xy3s + 3x2y2t2 + 8z3st

To express the answer in terms of the independent variables s, t we substitute x = s2, y = st2, z = s2t . This gives

∂f

∂s
= 4s2(st2)

3
s + 3(s2)

2
(st2)

2
t2 + 8(s2t)

3
st = 4s6t6 + 3s6t6 + 8s7t4 = 7s6t6 + 8s7t4.

2. Let f (x, y) = x cos(y) and x = u2 + v2 and y = u − v.

(a) Calculate the primary derivatives
∂f

∂x
,
∂f

∂y
.

(b) Use the Chain Rule to calculate ∂f/∂v. Leave the answer in terms of both the dependent and the independent variables.
(c) Determine (x, y) for (u, v) = (2, 1) and evaluate ∂f/∂v at (u, v) = (2, 1).

solution
(a) The primary derivatives of f (x, y) = x cos(y) are

∂f

∂x
= cos(y),

∂f

∂y
= −x sin(y).
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(b) By the Chain Rule, we have

∂f

∂v
= ∂f

∂x

∂x

∂v
+ ∂f

∂y

∂y

∂v
(1)

We compute the partial derivatives ∂x
∂v

and ∂y
∂v

:

∂x

∂v
= 2v,

∂y

∂v
= −1.

Substituting these derivatives and the primary derivatives computed in part (a) in the Chain Rule (1) gives

∂f

∂v
= cos(y) · 2v − x sin(y) · (−1) = 2v cos(y) + x sin(y)

(c) We substitute u = 2, v = 1 in x = u2 + v2 and y = u − v, and determine (x, y) for (u, v) = (2, 1). This gives

x = 22 + 12 = 5, y = 2 − 1 = 1.

To find ∂f
∂x

at (u, v) = (2, 1) we substitute u = 2, v = 1, x = 5, and y = 1 in ∂f
∂v

computed in part (b). We obtain

∂f

∂v

∣∣∣∣
(u,v)=(2,1)

= 2 · 1 cos 1 + 5 sin 1 = 2 cos 1 + 5 sin 1.

In Exercises 3–10, use the Chain Rule to calculate the partial derivatives. Express the answer in terms of the independent
variables.

3.
∂f

∂s
,
∂f

∂r
; f (x, y, z) = xy + z2, x = s2, y = 2rs, z = r2

solution We perform the following steps:

Step 1. Compute the primary derivatives. The primary derivatives of f (x, y, z) = xy + z2 are

∂f

∂x
= y,

∂f

∂y
= x,

∂f

∂z
= 2z

Step 2. Apply the Chain Rule. By the Chain Rule,

∂f

∂s
= ∂f

∂x
· ∂x

∂s
+ ∂f

∂y
· ∂y

∂s
+ ∂f

∂z
· ∂z

∂s
(1)

∂f

∂r
= ∂f

∂x
· ∂x

∂r
+ ∂f

∂y
· ∂y

∂r
+ ∂f

∂z
· ∂z

∂r
(2)

We compute the partial derivatives of x, y, z with respect to s and r:

∂x

∂s
= 2s,

∂y

∂s
= 2r,

∂z

∂s
= 0.

∂x

∂r
= 0,

∂y

∂r
= 2s,

∂z

∂r
= 2r.

Substituting these derivatives and the primary derivatives computed in step 1 in (1) and (2), we get

∂f

∂s
= y · 2s + x · 2r + 2z · 0 = 2ys + 2xr

∂f

∂r
= y · 0 + x · 2s + 2z · 2r = 2xs + 4zr

Step 3. Express the answer in terms of r and s. We substitute x = s2, y = 2rs, and z = r2 in ∂f
∂s

and ∂f
∂r

in step 2, to
obtain

∂f

∂s
= 2rs · 2s + s2 · 2r = 4rs2 + 2rs2 = 6rs2.

∂f

∂r
= 2s2 · s + 4r2 · r = 2s3 + 4r3.

4.
∂f

∂r
,
∂f

∂t
; f (x, y, z) = xy + z2, x = r + s − 2t , y = 3rt , z = s2

solution We use the following steps:

Step 1. Compute the primary derivatives. The primary derivatives of f (x, y, z) = xy + z2 are

∂f

∂x
= y,

∂f

∂y
= x,

∂f

∂z
= 2z
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Step 2. Apply the Chain Rule. By the Chain Rule,

∂f

∂r
= ∂f

∂x

∂x

∂r
+ ∂f

∂y

∂y

∂r
+ ∂f

∂z

∂z

∂r
= y

∂x

∂r
+ x

∂y

∂r
+ 2z

∂z

∂r
(1)

∂f

∂t
= ∂f

∂x

∂x

∂t
+ ∂f

∂y

∂y

∂t
+ ∂f

∂z

∂z

∂t
= y

∂x

∂t
+ x

∂y

∂t
+ 2z

∂z

∂t
(2)

We compute the partial derivatives of x, y with respect to r and t :

∂x

∂r
= 1,

∂y

∂r
= 3t,

∂z

∂r
= 0

∂x

∂t
= −2,

∂y

∂t
= 3r,

∂z

∂t
= 0

Substituting in (1) and (2), we get

∂f

∂r
= y + 3tx + 2z · 0 = y + 3xt

∂f

∂t
= y · (−2) + x · 3r + 2z · 0 = −2y + 3xr

Step 3. Express the answer in terms of r and t . We substitute x = r + s − 2t , y = 3rt , and z = s2 in ∂f
∂r

and ∂f
∂t

obtained
in step 2. This gives

∂f

∂r
= 3rt + 3(r + s − 2t)t = 3rt + 3rt + 3st − 6t2 = 6rt + 3st − 6t2

∂f

∂t
= −2 · 3rt + 3(r + s − 2t)r = −6rt + 3r2 + 3sr − 6tr = −12rt + 3rs + 3r2

5.
∂g

∂u
,
∂g

∂v
; g(x, y) = cos(x − y), x = 3u − 5v, y = −7u + 15v

solution We use the following steps:

Step 1. Compute the primary derivatives. The primary derivatives of g(x, y) = cos(x − y) are:

∂g

∂x
= − sin(x − y),

∂g

∂y
= sin(x − y)

Step 2. Apply the Chain Rule. By the Chain Rule,

∂g

∂u
= ∂g

∂x

∂x

∂u
+ ∂g

∂y

∂y

∂u
= − sin(x − y)

∂x

∂u
+ sin(x − y)

∂y

∂u

∂g

∂v
= ∂g

∂x

∂x

∂v
+ ∂g

∂y

∂y

∂v
= − sin(x − y)

∂x

∂v
+ sin(x − y)

∂y

∂v

We compute the partial derivatives of x, y with respect to u and v:

∂x

∂u
= 3,

∂x

∂v
= −5

∂y

∂u
= −7,

∂y

∂v
= 15

substituting in the expressions above we have:

∂g

∂u
= − sin(x − y)(3) + sin(x − y)(−7) = −10 sin(x − y)

∂g

∂v
= − sin(x − y)(−5) + sin(x − y)(15) = 20 sin(x − y)

Step 3. Express the answer in terms of u and v. We substitute x = 3u − 5v and y = −7u + 15v in ∂g/∂u and ∂g/∂v

found in step 2. This gives:

∂g

∂u
= −10 sin(10u − 20v)

∂g

∂v
= 20 sin(10u − 20v)
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6.
∂R

∂u
,
∂R

∂v
; R(x, y) = (3x + 4y)5, x = u2, y = uv

solution We perform the following steps:

Step 1. Compute the primary derivatives. The primary derivatives of R(x, y) = (3x + 4y)5 are:

∂R

∂x
= 15(3x + 4y)4,

∂R

∂y
= 20(3x + 4y)4

Step 2. Apply the Chain Rule. By the Chain Rule,

∂R

∂u
= ∂R

∂x

∂x

∂u
+ ∂R

∂y

∂y

∂u
= 15(3x + 4y)4 ∂x

∂u
+ 20(3x + 4y)4 ∂y

∂u

∂R

∂v
= ∂R

∂x

∂x

∂v
+ ∂R

∂y

∂y

∂v
= 15(3x + 4y)4 ∂x

∂v
+ 20(3x + 4y)4 ∂y

∂v

We compute the partial derivatives of x, y with respect to u and v:

∂x

∂u
= 2u,

∂x

∂v
= 0

∂y

∂u
= v,

∂y

∂v
= u

Substituting in the expressions above we get:

∂R

∂u
= 15(3x + 4y)4(2u) + 20(3x + 4y)5(v) = 30(3x + 4y)5(u) + 20v(3x + 4y)5

∂R

∂v
= 15(3x + 4y)4(0) + 20(3x + 4y)5(u) = 20(3x + 4y)5(u)

Step 3. Express the answer in terms of u and v. We substitute x = u2 and y = uv:

∂R

∂u
= 30u(3u2 + 4uv)4 + 20v(3u2 + 4uv)4 = (3u2 + 4uv)4(30u + 20v)

∂R

∂v
= 20u(3u2 + 4uv)4

7.
∂F

∂y
; F(u, v) = eu+v , u = x2, v = xy

solution We use the following steps:

Step 1. Compute the primary derivatives. The primary derivatives of F(u, v) = eu+v are

∂f

∂u
= eu+v,

∂f

∂v
= eu+v

Step 2. Apply the Chain Rule. By the Chain Rule,

∂F

∂y
= ∂F

∂u

∂u

∂y
+ ∂F

∂v

∂v

∂y
= eu+v ∂u

∂y
+ eu+v ∂v

∂y
= eu+v

(
∂u

∂y
+ ∂v

∂y

)

We compute the partial derivatives of u and v with respect to y:

∂u

∂y
= 0,

∂v

∂y
= x

We substitute to obtain

∂F

∂y
= xeu+v (1)

Step 3. Express the answer in terms of x and y. We substitute u = x2, v = xy in (1) and (2), obtaining

∂F

∂y
= xex2+xy .
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8.
∂f

∂u
; f (x, y) = x2 + y2, x = eu+v , y = u + v

solution We use the following steps:

Step 1. Compute the primary derivatives. The primary derivatives of f (x, y) = x2 + y2 are

∂f

∂x
= 2x,

∂f

∂y
= 2y

Step 2. Apply the Chain Rule. By the Chain Rule,

∂f

∂u
= ∂f

∂x

∂x

∂u
+ ∂f

∂y

∂y

∂u
= 2x

∂x

∂u
+ 2y

∂y

∂u

We compute ∂x
∂u

and ∂y
∂u

:

∂x

∂u
= eu+v,

∂y

∂u
= 1

Hence,

∂f

∂u
= 2xeu+v + 2y (1)

Step 3. Express the answer in terms of u and v. We substitute x = eu+v and y = u + v in (1) to obtain

∂f

∂u
= 2eu+veu+v + 2(u + v) = 2

(
e2(u+v) + u + v

)

9.
∂h

∂t2
; h(x, y) = x

y
, x = t1t2, y = t2

1 t2

solution We use the following steps:

Step 1. Compute the primary derivatives. The primary derivatives of h(x, y) = x
y are

∂h

∂x
= 1

y
,

∂h

∂y
= − x

y2

Step 2. Apply the Chain Rule. By the Chain Rule,

∂h

∂t2
= ∂h

∂x

∂x

∂t2
+ ∂h

∂y

∂y

∂t2
= 1

y

∂x

∂t2
− x

y2

∂y

∂t2

We compute the partial derivatives of x and y with respect to t2:

∂x

∂t2
= t1,

∂y

∂t2
= t2

1

Hence,

∂h

∂t2
= t1

y
− x

y2
t2
1

Step 3. Express the answer in terms of t1 and t2. We substitute x = t1t2, y = t2
1 t2 in ∂h

∂t2
computed in step 2, to obtain

∂h

∂t2
= t1

t2
1 t2

− t1t2 · t2
1

(t2
1 t2)

2
= 1

t1t2
− 1

t1t2
= 0

Remark: Notice that h
(
x(t1, t2), y(t1, t2)

)= h(t1, t2) = t1t2
t2
1 t2

= 1
t1

. h(t1, t2) is independent of t2, hence ∂h
∂t2

= 0 (as

obtained in our computations).

10.
∂f

∂θ
; f (x, y, z) = xy − z2, x = r cos θ , y = cos2 θ , z = r

solution We use the following steps:

Step 1. Compute the primary derivatives. The primary derivatives of f (x, y, z) = xy − z2 are

∂f

∂x
= y,

∂f

∂y
= x,

∂f

∂z
= −2z
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Step 2. Apply the Chain Rule. By the Chain Rule,

∂f

∂θ
= ∂f

∂x

∂x

∂θ
+ ∂f

∂y

∂y

∂θ
+ ∂f

∂z

∂z

∂θ
= y

∂x

∂θ
+ x

∂y

∂θ
− 2z

∂z

∂θ

We compute the partial derivatives of x, y, and z with respect to θ :

∂x

∂θ
= −r sin θ,

∂y

∂θ
= −2 cos θ sin θ = − sin 2θ,

∂z

∂θ
= 0

Step 3. Express the answer in terms of θ and r . We substitute x = r cos θ , y = cos2 θ , and z = r in (1) to obtain

∂f

∂θ
= −r cos2 θ sin θ − r cos θ sin 2θ = −r · 1

2
cos θ sin 2θ − r cos θ sin 2θ = −3

2
cos θ sin 2θ

In Exercises 11–16, use the Chain Rule to evaluate the partial derivative at the point specified.

11. ∂f/∂u and ∂f/∂v at (u, v) = (−1, −1), where f (x, y, z) = x3 + yz2, x = u2 + v, y = u + v2, z = uv.

solution The primary derivatives of f (x, y, z) = x3 + yz2 are

∂f

∂x
= 3x2,

∂f

∂y
= z2,

∂f

∂z
= 2yz

By the Chain Rule we have

∂f

∂u
= ∂f

∂x

∂x

∂u
+ ∂f

∂y

∂y

∂u
+ ∂f

∂z

∂z

∂u
= 3x2 ∂x

∂u
+ z2 ∂y

∂u
+ 2yz

∂z

∂u
(1)

∂f

∂v
= ∂f

∂x

∂x

∂v
+ ∂f

∂y

∂y

∂v
+ ∂f

∂z

∂z

∂v
= 3x2 ∂x

∂v
+ z2 ∂y

∂v
+ 2yz

∂z

∂v
(2)

We compute the partial derivatives of x, y, and z with respect to u and v:

∂x

∂u
= 2u,

∂y

∂u
= 1,

∂z

∂u
= v

∂x

∂v
= 1,

∂y

∂v
= 2v,

∂z

∂v
= u

Substituting in (1) and (2) we get

∂f

∂u
= 6x2u + z2 + 2yzv (3)

∂f

∂v
= 3x2 + 2vz2 + 2yzu (4)

We determine (x, y, z) for (u, v) = (−1, −1):

x = (−1)2 − 1 = 0, y = −1 + (−1)2 = 0, z = (−1) · (−1) = 1.

Finally, we substitute (x, y, z) = (0, 0, 1) and (u, v) = (−1, −1) in (3), (4) to obtain the following derivatives:

∂f

∂u

∣∣∣∣
(u,v)=(−1,−1)

= 6 · 02 · (−1) + 12 + 2 · 0 · 1 · (−1) = 1

∂f

∂v

∣∣∣∣
(u,v)=(−1,−1)

= 3 · 02 + 2 · (−1) · 12 + 2 · 0 · 1 · (−1) = −2

12. ∂f/∂s at (r, s) = (1, 0), where f (x, y) = ln(xy), x = 3r + 2s, y = 5r + 3s.

solution The primary derivatives of f (x, y) = ln(xy) are

∂f

∂x
= y

xy
= 1

x
,

∂f

∂y
= x

xy
= 1

y

By the Chain Rule we have

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
= 1

x

∂x

∂s
+ 1

y

∂y

∂s
(1)
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We compute ∂x
∂s

and ∂y
∂s

:

∂x

∂s
= 2,

∂y

∂s
= 3

Substituting in (1) we get

∂f

∂s
= 2

x
+ 3

y
(2)

We now must determine (x, y) for (s, r) = (1, 0):

x = 3 · 0 + 2 · 1 = 2, y = 5 · 0 + 3 · 1 = 3

Substituting in (2) gives the following derivative:

∂f

∂s

∣∣∣∣
(s,r)=(1,0)

= 2

2
+ 3

3
= 2

13. ∂g/∂θ at (r, θ) = (2√
2, π

4

)
, where g(x, y) = 1/(x + y2), x = r sin θ , y = r cos θ .

solution We compute the primary derivatives of g(x, y) = 1
x+y2 :

∂g

∂x
= − 1

(x + y2)
2
,

∂g

∂y
= − 2y

(x + y2)
2

By the Chain Rule we have

∂g

∂θ
= ∂g

∂x

∂x

∂θ
+ ∂g

∂y

∂y

∂θ
= − 1

(x + y2)
2

∂x

∂θ
− 2y

(x + y2)
2

∂y

∂θ
= − 1

(x + y2)
2

(
∂x

∂θ
+ 2y

∂y

∂θ

)

We find the partial derivatives ∂x
∂θ

, ∂y
∂θ

:

∂x

∂θ
= r cos θ,

∂y

∂θ
= −r sin θ

Hence,

∂g

∂θ
= − r

(x + y2)
2
(cos θ − 2y sin θ) (1)

At the point (r, θ) = (
2
√

2, π
4

)
, we have x = 2

√
2 sin π

4 = 2 and y = 2
√

2 cos π
4 = 2. Substituting (r, θ) = (

2
√

2, π
4

)
and (x, y) = (2, 2) in (1) gives the following derivative:

∂g

∂θ

∣∣∣∣
(r,θ)=

(
2
√

2, π
4

) = −2
√

2

(2 + 22)
2

(
cos

π

4
− 4 sin

π

4

)
= −√

2

18

(
1√
2

− 4√
2

)
= 1

6
.

14. ∂g/∂s at s = 4, where g(x, y) = x2 − y2, x = s2 + 1, y = 1 − 2s.

solution We find the primary derivatives of g(x, y) = x2 − y2:

∂g

∂x
= 2x,

∂g

∂y
= −2y

Applying the Chain Rule gives

∂g

∂s
= ∂g

∂x
· dx

ds
+ ∂g

∂y
· dy

ds
= 2x

dx

ds
− 2y

dy

ds
(1)

We compute dx
ds

and dy
ds

:

dx

ds
= 2s,

dy

ds
= −2

Substituting in (1) we obtain

∂g

∂s
= 4xs + 4y (2)
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We now determine (x, y) for s = 4:

x = 42 + 1 = 17, y = 1 − 2 · 4 = −7

Substituting (x, y) = (17, −7) and s = 4 in (2) gives the following derivative:

∂g

∂s

∣∣∣∣
s=4

= 4 · 17 · 4 − 4 · 7 = 244

15. ∂g/∂u at (u, v) = (0, 1), where g(x, y) = x2 − y2, x = eu cos v, y = eu sin v.

solution The primary derivatives of g(x, y) = x2 − y2 are

∂g

∂x
= 2x,

∂g

∂y
= −2y

By the Chain Rule we have

∂g

∂u
= ∂g

∂x
· ∂x

∂u
+ ∂g

∂y
· ∂y

∂u
= 2x

∂x

∂u
− 2y

∂y

∂u
(1)

We find ∂x
∂u

and ∂y
∂u

:

∂x

∂u
= eu cos v,

∂y

∂u
= eu sin v

Substituting in (1) gives

∂g

∂u
= 2xeu cos v − 2yeu sin v = 2eu(x cos v − y sin v) (2)

We determine (x, y) for (u, v) = (0, 1):

x = e0 cos 1 = cos 1, y = e0 sin 1 = sin 1

Finally, we substitute (u, v) = (0, 1) and (x, y) = (cos 1, sin 1) in (2) and use the identity cos2 α − sin2 α = cos 2α, to
obtain the following derivative:

∂g

∂u

∣∣∣∣
(u,v)=(0,1)

= 2e0
(

cos21 − sin2 1
)

= 2 · cos 2 · 1 = 2 cos 2

16.
∂h

∂q
at (q, r) = (3, 2), where h(u, v) = uev , u = q3, v = qr2.

solution We first find the primary derivatives of h(u, v) = uev :

∂h

∂u
= ev,

∂h

∂v
= uev

By the Chain Rule, we have

∂h

∂q
= ∂h

∂u
· ∂u

∂q
+ ∂h

∂v
· ∂v

∂q
= ev ∂u

∂q
+ uev ∂v

∂q
= ev

(
∂u

∂q
+ u

∂v

∂q

)
(1)

We compute ∂u
∂q

and ∂v
∂q

:

∂u

∂q
= 3q2,

∂v

∂q
= r2

Substituting in (1) gives

∂h

∂q
= ev

(
3q2 + ur2) (2)

We now determine (u, v) for (q, r) = (3, 2):

u = 33 = 27, v = 3 · 22 = 12

Substituting in (2) gives the following derivative:

∂h

∂q

∣∣∣∣
(q,r)=(3,2)

= e12(3 · 32 + 27 · 22) = 135e12
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17. Jessica and Matthew are running toward the point P along the straight paths that make a fixed angle of θ (Figure
3). Suppose that Matthew runs with velocity va m/s and Jessica with velocity vb m/s. Let f (x, y) be the distance from
Matthew to Jessica when Matthew is x meters from P and Jessica is y meters from P .

(a) Show that f (x, y) =
√

x2 + y2 − 2xy cos θ .

(b) Assume that θ = π/3. Use the Chain Rule to determine the rate at which the distance between Matthew and Jessica
is changing when x = 30, y = 20, va = 4 m/s, and vb = 3 m/s.

A

B

x
va

vb
y

P

θ

FIGURE 3

solution

(a) This is a simple application of the Law of Cosines. Connect points A and B in the diagram to form a line segment
that we will call f . Then, the Law of Cosines says that f 2 = x2 + y2 − 2xy cos θ . By taking square roots, we find that
f =

√
x2 + y2 − 2xy cos θ .

(b) Using the chain rule,

df

dt
= ∂f

∂x

dx

dt
+ ∂f

∂y

dy

dt

so we get

df

dt
= (x − y cos θ)dx/dt√

x2 + y2 − 2xy cos θ
+ (y − x cos θ)dy/dt√

x2 + y2 − 2xy cos θ

and using x = 30, y = 20, and dx/dt = 4, dy/dt = 3, we get

df

dt
= 180 − 170 cos θ√

1300 − 1200 cos θ

18. The Law of Cosines states that c2 = a2 + b2 − 2ab cos θ , where a, b, c are the sides of a triangle and θ is the angle
opposite the side of length c.

(a) Compute ∂θ/∂a, ∂θ/∂b, and ∂θ/∂c using implicit differentiation.

(b) Suppose that a = 10, b = 16, c = 22. Estimate the change in θ if a and b are increased by 1 and c is increased by 2.

solution

(a) Let F(a, b, c, θ) = a2 + b2 − 2ab cos θ − c2. We use the formulas obtained by implicit differentiation (Eq. (7)) to
write

∂θ

∂a
= −

∂F
∂a
∂F
∂θ

,
∂θ

∂b
= −

∂F
∂b
∂F
∂θ

,
∂θ

∂c
= −

∂F
∂c
∂F
∂θ

(1)

The partial derivatives of F are

∂F

∂a
= 2a − 2b cos θ,

∂F

∂b
= 2b − 2a cos θ,

∂F

∂c
= −2c,

∂F

∂θ
= 2ab sin θ

Substituting these derivatives in (1), we obtain

∂θ

∂a
= −2a − 2b cos θ

2ab sin θ
= −a − b cos θ

ab sin θ

∂θ

∂b
= −2b − 2a cos θ

2ab sin θ
= −b − a cos θ

ab sin θ

∂θ

∂c
= − −2c

2ab sin θ
= c

ab sin θ

(b) The linear approximation for θ is

�θ ≈ ∂θ

∂a
�a + ∂θ

∂b
�b + ∂θ

∂c
�c = ∂θ

∂a
· 1 + ∂θ

∂b
· 1 + ∂θ

∂c
· 2 (2)
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We find the partial derivatives for a = 10, b = 16, c = 22. We first find θ using the relation c2 = a2 + b2 − 2ab cos θ .
This gives

222 = 102 + 162 − 2 · 10 · 16 cos θ

484 = 356 − 320 cos θ

cos θ = 356 − 484

320
= −0.4 ⇒ θ ≈ 1.98 rad

We now substitute (a, b, c, θ) = (10, 16, 22, 1.98) in the partial derivatives of θ to obtain

∂θ

∂a
= −10 − 16 cos 1.98

10 · 16 sin 1.98
≈ −0.111

∂θ

∂b
= −16 − 10 cos 1.98

10 · 16 sin 1.98
≈ −0.136

∂θ

∂c
= 22

10 · 16 sin 1.98
≈ 0.15

Substituting in (2) gives the following estimation for �θ :

�θ ≈ −0.111 − 0.136 + 2 · 0.15 = 0.053

We conclude that the angle θ will increase by approximately 0.053 rad.

19. Let u = u(x, y), and let (r, θ) be polar coordinates. Verify the relation

‖∇u‖2 = u2
r + 1

r2
u2
θ 8

Hint: Compute the right-hand side by expressing uθ and ur in terms of ux and uy .

solution By the Chain Rule we have

uθ = uxxθ + uyyθ (1)

ur = uxxr + uyyr (2)

Since x = r cos θ and y = r sin θ , the partial derivatives of x and y with respect to r and θ are

xθ = −r sin θ, yθ = r cos θ

xr = cos θ, yr = sin θ

Substituting in (1) and (2) gives

uθ = (−r sin θ)ux + (r cos θ)uy (3)

ur = (cos θ)ux + (sin θ)uy (4)

We now solve these equations for ux and uy in terms of uθ and ur . Multiplying (3) by (− sin θ) and (4) by r cos θ and
adding the resulting equations gives

(− sin θ)uθ = (r sin2 θ)ux − (r cos θ sin θ)uy

+ r cos θur = (r cos2 θ)ux + (r cos θ sin θ)uy

(r cos θ)ur − (sin θ)uθ = rux

or

ux = (cos θ)ur − sin θ

r
uθ (5)

Similarly, we multiply (3) by cos θ and (4) by r sin θ and add the resulting equations. We get

(cos θ)uθ = (−r sin θ cos θ)ux +
(
r cos2 θ

)
uy

+ r sin θur = (r sin θ cos θ)ux + (r sin2 θ)uy

(cos θ)uθ + (r sin θ)ur = ruy

or

uy = (sin θ)ur + cos θ

r
uθ (6)
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We now use (5) and (6) to compute ‖∇u‖2 in terms of ur and uθ . We get

‖∇u‖2 = u2
x + u2

y =
(

(cos θ)ur − sin θ

r
uθ

)2
+
(

(sin θ)ur + cos θ

r
uθ

)2

=
(

cos2 θ
)

u2
r − 2 cos θ sin θ

r
uruθ + sin2 θ

r2
u2
θ +

(
sin2 θ

)
u2
r + 2 sin θ cos θ

r
uruθ + cos2 θ

r2
u2
θ

=
(

cos2 θ + sin2 θ
)

u2
r + 1

r2

(
sin2θ + cos2 θ

)
u2
θ = u2

r + 1

r2
u2
θ

That is,

‖∇u‖2 = u2
r + 1

r2
u2
θ

20. Let u(r, θ) = r2 cos2 θ . Use Eq. (8) to compute ‖∇u‖2. Then compute ‖∇u‖2 directly by observing that u(x, y) = x2,
and compare.

solution By Eq. (8) we have

‖∇u‖2 = u2
r + 1

r2
u2
θ

We compute the partial derivatives of u(r, θ) = r2 cos2 θ :

ur = 2r cos2 θ, uθ = r2 · 2 cos θ(− sin θ) = −2r2 cos θ sin θ

Substituting in Eq. (8) we get

‖∇u‖2 = (2r cos2 θ)
2 + 1

r2
(−2r2 cos θ sin θ)

2 = 4r2 cos4 θ + 4r2 cos2 θ sin2 θ

= 4r2cos2θ(cos2 θ + sin2 θ) = 4r2 cos2 θ

That is,

‖∇u‖2 = 4r2 cos2 θ (1)

We now compute ‖∇u‖2 directly. We first express u(r, θ) as a function of x and y. Since x = r cos θ , we have

u(x, y) = x2

Hence ux = 2x, uy = 0, so we obtain

‖∇u‖2 = u2
x + u2

y = (2x)2 + 02 = 4x2 = 4(r cos θ)2 = 4r2 cos2 θ

The answer agrees with the result in (1), as expected.

21. Let x = s + t and y = s − t . Show that for any differentiable function f (x, y),

(
∂f

∂x

)2
−
(

∂f

∂y

)2
= ∂f

∂s

∂f

∂t

solution By the Chain Rule we have

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
= ∂f

∂x
· 1 + ∂f

∂y
· 1 = ∂f

∂x
+ ∂f

∂y

∂f

∂t
= ∂f

∂x

∂x

∂t
+ ∂f

∂y

∂y

∂t
= ∂f

∂x
· 1 + ∂f

∂y
· (−1) = ∂f

∂x
− ∂f

∂y

Hence, using the algebraic identity (a + b)(a − b) = a2 − b2, we get

∂f

∂s
· ∂f

∂t
=
(

∂f

∂x
+ ∂f

∂y

)
·
(

∂f

∂x
− ∂f

∂y

)
=
(

∂f

∂x

)2
−
(

∂f

∂y

)2
.

22. Express the derivatives

∂f

∂ρ
,
∂f

∂θ
,
∂f

∂φ
in terms of

∂f

∂x
,
∂f

∂y
,
∂f

∂z

where (ρ, θ, φ) are spherical coordinates.
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solution The spherical coordinates are

x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ (1)

We apply the Chain Rule to write

∂f

∂ρ
= ∂f

∂x

∂x

∂ρ
+ ∂f

∂y

∂y

∂ρ
+ ∂f

∂z

∂z

∂ρ

∂f

∂θ
= ∂f

∂x

∂x

∂θ
+ ∂f

∂y

∂y

∂θ
+ ∂f

∂z

∂z

∂θ

∂f

∂φ
= ∂f

∂x

∂x

∂φ
+ ∂f

∂y

∂y

∂φ
+ ∂f

∂z

∂z

∂φ
(2)

We use (1) to compute the partial derivatives of x, y, and z with respect to ρ, θ , and φ. This gives

∂x

∂θ
= −ρ sin φ sin θ,

∂y

∂θ
= ρ sin φ cos θ,

∂z

∂θ
= 0

∂x

∂φ
= ρ cos φ cos θ,

∂y

∂φ
= ρ cos φ sin θ,

∂z

∂φ
= −ρ sin φ

∂x

∂ρ
= sin φ cos θ,

∂y

∂ρ
= sin φ sin θ,

∂z

∂ρ
= cos φ

Substituting these derivatives in (2), we get

∂f

∂ρ
= (sin φ cos θ)

∂f

∂x
+ (sin φ sin θ)

∂f

∂y
+ (cos φ)

∂f

∂z

∂f

∂φ
= (ρ cos φ cos θ)

∂f

∂x
+ (ρ cos φ sin θ)

∂f

∂y
− (ρ sin φ)

∂f

∂z

∂f

∂θ
= (−ρ sin φ sin θ)

∂f

∂x
+ (ρ sin φ cos θ)

∂f

∂y

23. Suppose that z is defined implicitly as a function of x and y by the equation F(x, y, z) = xz2 + y2z + xy − 1 = 0.

(a) Calculate Fx, Fy, Fz.

(b) Use Eq. (7) to calculate
∂z

∂x
and

∂z

∂y
.

solution
(a) The partial derivatives of F are

Fx = z2 + y, Fy = 2yz + x, Fz = 2xz + y2

(b) By Eq. (7) we have

∂z

∂x
= −Fx

Fz
= − z2 + y

2xz + y2

∂z

∂y
= −Fy

Fz
= − 2yz + x

2xz + y2

24. Calculate ∂z/∂x and ∂z/∂y at the points (3, 2, 1) and (3, 2, −1), where z is defined implicitly by the equation
z4 + z2x2 − y − 8 = 0.

solution For F(x, y, z) = z4 + z2x2 − y − 8 = 0, we use the following equalities, (Eq. (7)):

∂z

∂x
= −Fx

Fz
,

∂z

∂y
= −Fy

Fz
(1)

The partial derivatives of F are

Fx = 2z2x, Fy = −1, Fz = 4z3 + 2zx2

Substituting in (1) gives

∂z

∂x
= − 2z2x

4z3 + 2zx2
= − zx

2z2 + x2

∂z

∂y
= 1

4z3 + 2zx2
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At the point (3, 2, 1), we have

∂z

∂x

∣∣∣∣
(3,2,1)

= − 1 · 3

2 · 12 + 32
= − 3

11
,

∂z

∂y

∣∣∣∣
(3,2,1)

= 1

4 · 13 + 2 · 1 · 32
= 1

22

At the point (3, 2, −1), we have

∂z

∂x

∣∣∣∣
(3,2,−1)

= − −3

2 · (−1)2 + 32
= 3

11

∂z

∂y

∣∣∣∣
(3,2,−1)

= 1

4 · (−1)3 + 2 · (−1) · 32
= − 1

22

In Exercises 25–30, calculate the partial derivative using implicit differentiation.

25.
∂z

∂x
, x2y + y2z + xz2 = 10

solution For F(x, y, z) = x2y + y2z + xz2 = 10 we have

∂z

∂x
= −Fx

Fz
(1)

We compute the partial derivatives of F :

Fx = 2xy + z2, Fz = y2 + 2xz

Substituting in (1) gives the following derivative:

∂z

∂x
= − 2xy + z2

2xz + y2

26.
∂w

∂z
, x2w + w3 + wz2 + 3yz = 0

solution We find the partial derivatives Fw and Fz of

F(x, w, z) = x2w + w3 + wz2 + 3yz

Fw = x2 + 3w2 + z2, Fz = 2wz + 3y

Using Eq. (7) we get

∂w

∂z
= − Fz

Fw
= − 2wz + 3y

x2 + 3w2 + z2
.

27.
∂z

∂y
, exy + sin(xz) + y = 0

solution We use Eq. (7):

∂z

∂y
= −Fy

Fz
(1)

The partial derivatives of F(x, y, z) = exy + sin(xz) + y are

Fy = xexy + 1, Fz = x cos(xz)

Substituting in (1), we get

∂z

∂y
= − xexy + 1

x cos(xz)

28.
∂r

∂t
and

∂t

∂r
, r2 = te s/r

solution We use the formulas obtained by implicit differentiation of F(r, s, t) = r2 − tes/r (Eq. (7)):

∂r

∂t
= − Ft

Fr
,

∂t

∂r
= −Fr

Ft
(1)
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The partial derivatives of F are

Fr = 2r − tes/r

(
− s

r2

)
= 2r + st

r2
es/r

Ft = −es/r

Substituting in (1) gives

∂r

∂t
= es/r

2r + st
r2 es/r

= r2es/r

2r3 + stes/r

∂t

∂r
= 2r + st

r2 es/r

es/r
= 2r3 + stes/r

r2es/r
= 2re−s/r + st

r2

29.
∂w

∂y
,

1

w2 + x2
+ 1

w2 + y2
= 1 at (x, y, w) = (1, 1, 1)

solution Using the formula obtained by implicit differentiation (Eq. (7)), we have

∂w

∂y
= − Fy

Fw
(1)

We find the partial derivatives of F(x, y, w) = 1
w2+x2 + 1

w2+y2 − 1:

Fy = − 2y

(w2 + y2)
2
, Fw = −2w

(w2 + x2)
2

− 2w

(w2 + y2)
2

We substitute in (1) to obtain

∂w

∂y
= −

−2y

(w2+y2)
2

−2w

(w2+x2)
2 − 2w

(w2+y2)
2

= − y(w2 + x2)
2

w(w2 + y2)
2 + w(w2 + x2)

2
= −y(w2 + x2)

2

w
(
(w2 + y2)

2 + (w2 + x2)
2)

30. ∂U/∂T and ∂T /∂U , (T U − V )2 ln(W − UV ) = 1 at (T , U, V, W) = (1, 1, 2, 4)

solution Using the formulas obtained by implicit differentiation (Eq. (7)) we have,

∂U

∂T
= − FT

FU
,

∂T

∂U
= −FU

FT
(1)

We compute the partial derivatives of F(T , U, V, W) = (T U − V )2 ln(W − UV ) − 1:

FT = 2U(T U − V ) ln(W − UV )

FU = 2T (T U − V ) ln(W − UV ) + (T U − V )2 · −V

W − UV

= (T U − V )

(
2T ln(W − UV ) − V (T U − V )

W − UV

)

At the point (T , U, V, W) = (1, 1, 2, 4) we have

FT = 2(1 − 2) ln(4 − 2) = −2 ln 2

FU = (1 − 2)

(
2 ln(4 − 2) − 2(1 − 2)

4 − 2

)
= (−2 ln 2 − 1) = −1 − 2 ln 2

Substituting in (1) we obtain

∂U

∂T

∣∣∣∣
(1,1,2,4)

= − 2 ln 2

1 + 2 ln 2
,

∂T

∂U

∣∣∣∣
(1,1,2,4)

= −1 + 2 ln 2

2 ln 2
.

31. Let r = 〈x, y, z〉 and er = r/‖r‖. Show that if a function f (x, y, z) = F(r) depends only on the distance from the
origin r = ‖r‖ =

√
x2 + y2 + z2, then

∇f = F ′(r)er 9
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solution The gradient of f is the following vector:

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉

We must express this vector in terms of r and r . Using the Chain Rule, we have

∂f

∂x
= F ′(r) ∂r

∂x
= F ′(r) · 2x

2
√

x2 + y2 + z2
= F ′(r) · x

r

∂f

∂y
= F ′(r) ∂r

∂y
= F ′(r) · 2y

2
√

x2 + y2 + z2
= F ′(r) · y

r

∂f

∂z
= F ′(r) ∂r

∂z
= F ′(r) · 2z

2
√

x2 + y2 + z2
= F ′(r) · z

r

Hence,

∇f =
〈
F ′(r) x

r
, F ′(r) y

r
, F ′(r) z

r

〉
= F ′(r)

r
〈x, y, z〉 = F ′(r) r

‖r‖ = F ′(r)er

32. Let f (x, y, z) = e−x2−y2−z2 = e−r2
, with r as in Exercise 31. Compute ∇f directly and using Eq. (9).

solution Direct computation gives

∇f = 〈fx, fy, fz

〉 = 〈−2xe−x2−y2−z2
, −2ye−x2−y2−z2

, −2ze−x2−y2−z2 〉
= −2e−(x2+y2+z2) 〈x, y, z〉 = −2e−r2

r

We now compute the gradient using Eq. (9):

∇f = F ′(r)er

Since F(r) = e−r2
, we have F ′(r) = −2re−r2

. Also, er = r
‖r‖ . So we obtain

∇f = −2re−r2 · r
‖r‖ = −2e−r2

r

Both answers agree, as expected.

33. Use Eq. (9) to compute ∇
(

1

r

)
.

solution To compute ∇( 1
r

)
using Eq. (9), we let F(r) = 1

r
:

F ′(r) = − 1

r2

We obtain

∇
(

1

r

)
= F ′(r)er = − 1

r2
· r
‖r‖ = − 1

r3
r

34. Use Eq. (9) to compute ∇(ln r).

solution To compute ∇(ln r) we let F(r) = ln r , hence F ′(r) = 1

r
. Thus,

∇(ln r) = F ′(r)er = 1

r
· r
‖r‖ = 1

r2
r

35. Figure 4 shows the graph of the equation

F(x, y, z) = x2 + y2 − z2 − 12x − 8z − 4 = 0

(a) Use the quadratic formula to solve for z as a function of x and y. This gives two formulas, depending on the choice
of sign.

(b) Which formula defines the portion of the surface satisfying z ≥ −4? Which formula defines the portion satisfying
z ≤ −4?
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(c) Calculate ∂z/∂x using the formula z = f (x, y) (for both choices of sign) and again via implicit differentiation. Verify
that the two answers agree.

z

z = −4

y

x

FIGURE 4 Graph of x2 + y2 − z2 − 12x − 8z − 4 = 0.

solution
(a) We rewrite F(x, y, z) = 0 as a quadratic equation in the variable z:

z2 + 8z +
(

4 + 12x − x2 − y2
)

= 0

We solve for z. The discriminant is

82 − 4
(

4 + 12x − x2 − y2
)

= 4x2 + 4y2 − 48x + 48 = 4
(
x2 + y2 − 12x + 12

)
Hence,

z1,2 =
−8 ±

√
4
(
x2 + y2 − 12x + 12

)
2

= −4 ±
√

x2 + y2 − 12x + 12

We obtain two functions:

z = −4 +
√

x2 + y2 − 12x + 12, z = −4 −
√

x2 + y2 − 12x + 12

(b) The formula with the positive root defines the portion of the surface satisfying z ≥ −4, and the formula with the
negative root defines the portion satisfying z ≤ −4.

(c) Differentiating z = −4 +
√

x2 + y2 − 12x + 12 with respect to x, using the Chain Rule, gives

∂z

∂x
= 2x − 12

2
√

x2 + y2 − 12x + 12
= x − 6√

x2 + y2 − 12x + 12
(1)

Alternatively, using the formula for ∂z
∂x

obtained by implicit differentiation gives

∂z

∂x
= −Fx

Fz
(2)

We find the partial derivatives of F(x, y, z) = x2 + y2 − z2 − 12x − 8z − 4:

Fx = 2x − 12, Fz = −2z − 8

Substituting in (2) gives

∂z

∂x
= − 2x − 12

−2z − 8
= x − 6

z + 4

This result is the same as the result in (1), since z = −4 +
√

x2 + y2 − 12x + 12 implies that√
x2 + y2 − 12x + 12 = z + 4

For z = −4 −
√

x2 + y2 − 12x + 12, differentiating with respect to x gives

∂z

∂x
= − 2x − 12

2
√

x2 + y2 − 12x + 12
= x − 6

−
√

x2 + y2 − 12x + 12
= x − 6

z + 4

which is equal to −Fx
Fz

computed above.
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36. For all x > 0, there is a unique value y = r(x) that solves the equation y3 + 4xy = 16.

(a) Show that dy/dx = −4y/(3y2 + 4x).
(b) Let g(x) = f (x, r(x)), where f (x, y) is a function satisfying

fx(1, 2) = 8, fy(1, 2) = 10

Use the Chain Rule to calculate g′(1). Note that r(1) = 2 because (x, y) = (1, 2) satisfies y3 + 4xy = 16.

solution
(a) Using implicit differentiation we see:

3y2 dy

dx
+ 4x

dy

dx
+ 4y = 0

dy

dx
(3y2 + 4x) = −4y

dy

dx
= −4y

3y2 + 4x

(b) Note that r ′(1) = − 4(2)

3(2)2 + 4(1)
= −1

2
Therefore,

g′(1) = fx(1, 2) + fy(1, 2) · r ′(1) = 8 + 10

(
−1

2

)
= 3

37. The pressure P , volume V , and temperature T of a van der Waals gas with n molecules (n constant) are related by
the equation (

P + an2

V 2

)
(V − nb) = nRT

where a, b, and R are constant. Calculate ∂P/∂T and ∂V/∂P .

solution Let F be the following function:

F(P, V, T ) =
(

P + an2

V 2

)
(V − nb) − nRT

By Eq. (7),

∂P

∂T
= −

∂F
∂T
∂F
∂P

,
∂V

∂P
= −

∂F
∂P
∂F
∂V

(1)

We compute the partial derivatives of F :

∂F

∂P
= V − nb

∂F

∂T
= −nR

∂F

∂V
= −2an2V −3(V − nb) +

(
P + an2

V 2

)
= P + 2an3b

V 3
− an2

V 2

Substituting in (1) gives

∂P

∂T
= − −nR

V − nb
= nR

V − nb

∂V

∂P
= − V − nb

P + 2an3b
V 3 − an2

V 2

= nbV 3 − V 4

PV 3 + 2an3b − an2V

38. When x, y, and z are related by an equation F(x, y, z) = 0, we sometimes write (∂z/∂x)y in place of ∂z/∂x to
indicate that in the differentiation, z is treated as a function of x with y held constant (and similarly for the other variables).

(a) Use Eq. (7) to prove the cyclic relation(
∂z

∂x

)
y

(
∂x

∂y

)
z

(
∂y

∂z

)
x

= −1 10
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(b) Verify Eq. (10) for F(x, y, z) = x + y + z = 0.

(c) Verify the cyclic relation for the variables P, V, T in the ideal gas law PV − nRT = 0 (n and R are constants).

solution

(a) Using implicit differentiation for F(x, y, z) = 0, we have

∂z

∂x
= −Fx

Fz
,

∂x

∂y
= −Fy

Fx
,

∂y

∂z
= − Fz

Fy

Hence,

∂z

∂x
· ∂x

∂y
· ∂y

∂z
= −Fx

Fz
· −Fy

Fx
· −Fz

Fy
= −1

(b) For F(x, y, z) = x + y + z = 0 we have

x = −y − z, y = −x − z, z = −x − y

Hence,

∂z

∂x
= −1,

∂x

∂y
= −1,

∂y

∂z
= −1

Eq. (10) holds since

∂z

∂x
· ∂x

∂y
· ∂y

∂z
= (−1) · (−1) · (−1) = −1

(c) If PV − nRT = 0, then

T = PV

nR
, P = nRT

V
, V = nRT

P

Hence,

∂T

∂V
= P

nR
,

∂V

∂P
= −nRT

P 2
,

∂P

∂T
= nR

V

We have

∂T

∂V
· ∂V

∂P
· ∂P

∂T
= P

nR
· −nRT

P 2
· nR

V
= −nRT

PV

and, since PV = nRT , we get

∂T

∂V
· ∂V

∂P
· ∂P

∂T
= −PV

PV
= −1

Similarly,

∂T

∂P
· ∂P

∂V
· ∂V

∂T
= V

nR
·
(

−nRT

V 2

)
· nR

P
= −nRT

V P
= −PV

PV
= −1

39. Show that if f (x) is differentiable and c �= 0 is a constant, then u(x, t) = f (x − ct) satisfies the so-called advection
equation

∂u

∂t
+ c

∂u

∂x
= 0

solution For s = x − ct , we have u(x, t) = f (s). We use the Chain Rule to compute ∂u
∂t

and ∂u
∂x

:

∂u

∂t
= f ′(s) ∂s

∂t
= f ′(s) · (−c) = −cf ′(s) (1)

∂u

∂x
= f ′(s) ∂s

∂x
= f ′(s) · 1 = f ′(s) (2)

Equalities (1) and (2) imply that:

∂u

∂t
= −c

∂u

∂x
or

∂u

∂t
+ c

∂u

∂x
= 0
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Further Insights and Challenges
In Exercises 40–43, a function f (x, y, z) is called homogeneous of degree n if f (λx, λy, λz) = λnf (x, y, z) for all
λ ∈ R.

40. Show that the following functions are homogeneous and determine their degree.

(a) f (x, y, z) = x2y + xyz (b) f (x, y, z) = 3x + 2y − 8z

(c) f (x, y, z) = ln

(
xy

z2

)
(d) f (x, y, z) = z4

solution

(a) For f (x, y, z) = x2y + xyz we have

f (λx, λy, λz) = (λx)2(λy) + (λx)(λy)(λz) = λ3x2y + λ3xyz = λ3(x2y + xyz) = λ3f (x, y, z)

Hence, f is homogeneous of degree 3.

(b) For f (x, y, z) = 3x + 2y − 8z we have

f (λx, λy, λz) = 3(λx) + 2(λy) − 8(λz) = λ(3x + 2y − 8z) = λf (x, y, z)

Hence, f is homogeneous of degree 1.

(c) For f (x, y, z) = ln
(

xy

z2

)
we have, for λ �= 0,

f (λx, λy, λz) = ln

(
(λx)(λy)

(λz)2

)
= ln

(
λ2xy

λ2z2

)
= ln

(
xy

z2

)
= f (x, y, z) = λ0f (x, y, z)

Thus, f is homogeneous of degree 0.

(d) For f (z) = z4 we have

f (λz) = (λz)4 = λ4z4 = λ4f (z)

Hence, f is homogeneous of degree 4.

41. Prove that if f (x, y, z) is homogeneous of degree n, then fx(x, y, z) is homogeneous of degree n − 1. Hint: Either
use the limit definition or apply the Chain Rule to f (λx, λy, λz).

solution We are given that f (λx, λy, λz) = λnf (x, y, z) for all λ, and we must show that fx(λx, λy, λz) =
λn−1fx(x, y, z). We use the limit definition of fx . Since for all λ �= 0, λh → 0 if and only if h → 0, we get

fx(λx, λy, λz) = lim
h→0

f (λx + λh, λy, λz) − f (λx, λy, λz)

λh
= lim

h→0

f (λ(x + h), λy, λz) − f (λx, λy, λz)

λh

= lim
h→0

λnf (x + h, y, z) − λnf (x, y, z)

λh
= lim

h→0

λn−1f (x + h, y, z) − λn−1f (x, y, z)

h

= λn−1 lim
h→0

f (x + h, y, z) − f (x, y, z)

h
= λn−1fx(x, y, z)

Alternatively, we prove this property using the Chain Rule. We use the Chain Rule to differentiate the following equality
with respect to x:

f (λx, λy, λz) = λnf (x, y, z)

We get

fx(λx, λy, λz) · ∂(λx)

∂x
+ fy(λx, λy, λz) · ∂(λy)

∂x
+ fz(λx, λy, λz) · ∂(λz)

∂x
= λnfx(x, y, z)

Since ∂(λy)
∂x

= ∂(λz)
∂x

= 0 and ∂(λx)
∂x

= λ, we obtain for λ �= 0,

λfx(λx, λy, λz) = λnfx(x, y, z) or fx(λx, λy, λz) = λn−1fx(x, y, z)

42. Prove that if f (x, y, z) is homogeneous of degree n, then

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= nf 11

Hint: Let F(t) = f (tx, ty, tz) and calculate F ′(1) using the Chain Rule.
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solution We use the Chain Rule to differentiate the function F(t) = f (tx, ty, tz) with respect to t . This gives

F ′(t) = ∂f

∂x
· ∂(tx)

∂t
+ ∂f

∂y
· ∂(ty)

∂t
+ ∂f

∂z
· ∂(tz)

∂t
= x

∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
(1)

On the other hand, since f is homogeneous of degree n, we have

F(t) = f (tx, ty, tz) = tnf (x, y, z)

Differentiating with respect to t we get

F ′(t) = ntn−1f (x, y, z) (2)

By (1) and (2) we obtain

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= ntn−1f (x, y, z)

Substituting t = 1 gives

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= nf

43. Verify Eq. (11) for the functions in Exercise 40.

solution Eq. (11) states that if f is homogeneous of degree n, then

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= nf

(a) f (x, y, z) = x2y + xyz. f is homogeneous of degree n = 3. The partial derivatives of f are

∂f

∂x
= 2xy + yz,

∂f

∂y
= x2 + xz,

∂f

∂z
= xy

Hence,

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= x(2xy + yz) + y(x2 + xz) + zxy = 3x2y + 3xyz = 3(x2y + xyz) = 3f (x, y, z)

(b) f (x, y, z) = 3x + 2y − 8z. f is homogeneous of degree n = 1. We have

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= x · 3 + y · 2 + z · (−8) = 3x + 2y − 8z = 1 · f (x, y, z)

(c) f (x, y, z) = ln
(

xy

z2

)
. f is homogeneous of degree n = 0. The partial derivatives of f are

∂f

∂x
=

y

z2

xy

z2

= 1

x
,

∂f

∂y
=

x
z2

xy

z2

= 1

y
,

∂f

∂z
= −2z−3xy

xyz−2
= −2

z

Hence,

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= x · 1

x
+ y · 1

y
+ z ·

(
−2

z

)
= 0 = 0 · f (x, y, z)

(d) f (x, y, z) = z4. f is homogeneous of degree n = 4. We have

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= x · 0 + y · 0 + z · 4z3 = 4z4 = 4f (x, y, z)

44. Suppose that x = g(t, s), y = h(t, s). Show that ftt is equal to

fxx

(
∂x

∂t

)2
+ 2fxy

(
∂x

∂t

)(
∂y

∂t

)
+ fyy

(
∂y

∂t

)2
+ fx

∂2x

∂t2
+ fy

∂2y

∂t2
12

solution We are given that x = g(t, s), y = h(t, s). We must compute ftt for a function f (x, y). We first compute
ft using the Chain Rule:

ft = fx
∂x

∂t
+ fy

∂y

∂t
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To find ftt we differentiate the two sides with respect to t using the Product Rule. This gives

ftt = ∂

∂t
(fx)

∂x

∂t
+ fx

∂2x

∂t2
+ ∂

∂t
(fy)

∂y

∂t
+ fy

∂2y

∂t2
(1)

By the Chain Rule,

∂

∂t
(fx) = fxx

∂x

∂t
+ fxy

∂y

∂t

∂

∂t
(fy) = fyx

∂x

∂t
+ fyy

∂y

∂t

Substituting in (1) we obtain

ftt =
(

fxx
∂x

∂t
+ fxy

∂y

∂t

)
∂x

∂t
+ fx

∂2x

∂t2
+
(

fyx
∂x

∂t
+ fyy

∂y

∂t

)
∂y

∂t
+ fy

∂2y

∂t2

= fxx

(
∂x

∂t

)2
+ fxy

(
∂y

∂t

)(
∂x

∂t

)
+ fx

∂2x

∂t2
+ fyx

(
∂x

∂t

)(
∂y

∂t

)
+ fyy

(
∂y

∂t

)2
+ fy

∂2y

∂t2

If fxy and fyx are continuous, Clairaut’s Theorem implies that fxy = fyx . Hence,

ftt = fxx

(
∂x

∂t

)2
+ 2fxy

(
∂x

∂t

)(
∂y

∂t

)
+ fyy

(
∂y

∂t

)2
+ fx

∂2x

∂t2
+ fy

∂2y

∂t2

45. Let r =
√

x2
1 + · · · + x2

n and let g(r) be a function of r . Prove the formulas

∂g

∂xi
= xi

r
gr ,

∂2g

∂x2
i

= x2
i

r2
grr + r2 − x2

i

r3
gr

solution By the Chain Rule, we have

∂g

∂xi
= g′(r) ∂r

∂xi
= gr · 2xi

2
√

x2
1 + · · · + x2

n

= gr
xi

r

We differentiate ∂g
∂xi

with respect to xi . Using the Product Rule we get

∂2g

∂xi
2

= ∂

∂xi
(gr ) · xi

r
+ gr

∂

∂xi

(xi

r

)
(1)

We use the Chain Rule to compute ∂
∂xi

(gr ):

∂

∂xi
(gr ) = d

dr
(gr ) · ∂r

∂xi
= grr · 2xi

2
√

x2
1 + · · · + x2

n

= grr · xi

r
(2)

We compute ∂
∂xi

· ( xi
r

)
using the Quotient Rule and the Chain Rule:

∂

∂xi
·
(xi

r

)
=

1 · r − xi · ∂r
∂xi

r2
= r − xi · xi

r

r2
= r2 − x2

i

r3
(3)

Substituting (2) and (3) in (1), we obtain

∂2g

∂xi
2

= grr · xi

r
· xi

r
+ gr

r2 − x2
i

r3
= x2

i

r2
grr + r2 − x2

i

r3
gr

46. Prove that if g(r) is a function of r as in Exercise 45, then

∂2g

∂x2
1

+ · · · + ∂2g

∂x2
n

= grr + n − 1

r
gr

solution In Exercise 45 we showed that

∂2g

∂xi
2

= x2
i

r2
grr + r2 − x2

i

r3
gr
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Hence,

∂2g

∂xi
2

+ · · · + ∂2g

∂xn
2

=
(

x2
1

r2
grr + r2 − x2

1

r3
gr

)
+ · · · +

(
x2
n

r2
grr + r2 − x2

n

r3
gr

)

= x2
1 + · · · + x2

n

r2
grr + 1

r3
gr

(
(r2 − x2

1 ) + · · · + (r2 − x2
n)
)

= r2

r2
grr + 1

r3
gr

(
nr2 − (x2

1 + · · · + x2
n)
)

= grr + 1

r3
gr (nr2 − r2) = grr + r2

r3
gr (n − 1) = grr + n − 1

r
gr

In Exercises 47–51, the Laplace operator is defined by �f = fxx + fyy . A function f (x, y) satisfying the Laplace

equation �f = 0 is called harmonic. A function f (x, y) is called radial if f (x, y) = g(r), where r =
√

x2 + y2.

47. Use Eq. (12) to prove that in polar coordinates (r, θ),

�f = frr + 1

r2
fθθ + 1

r
fr 13

solution The polar coordinates are x = r cos θ , y = r sin θ . Hence,

∂x

∂θ
= −r sin θ,

∂y

∂θ
= r cos θ,

∂x

∂r
= cos θ,

∂y

∂r
= sin θ,

∂2x

∂θ2
= −r cos θ,

∂2y

∂θ2
= −r sin θ,

∂2x

∂r2
= ∂2y

∂r2
= 0

By Eq. (12) we have

fθθ = fxx

(
∂x

∂θ

)2
+ fyy

(
∂y

∂θ

)2
+ 2fxy

(
∂x

∂θ

)(
∂y

∂θ

)
+ fx

∂2x

∂θ2
+ fy

∂2y

∂θ2

= fxx

(
r2 sin2 θ

)
+ fyy

(
r2 cos2 θ

)
−
(

2r2 sin θ cos θ
)

fxy − (r cos θ)fx − (r sin θ)fy (1)

and

frr = fxx

(
∂x

∂r

)2
+ fyy

(
∂y

∂r

)2
+ 2fxy

(
∂x

∂r

)(
∂y

∂r

)
+ fx

∂2x

∂r2
+ fy

∂2y

∂r2

= fxx

(
cos2 θ

)
+ fyy

(
sin2 θ

)
+ (2 cos θ sin θ)fxy (2)

fr = fx
∂x

∂r
+ fy

∂y

∂r
= fx(cos θ) + fy(sin θ) (3)

We now compute the right-hand side of the equality we need to prove. Using (1), (2), and (3), we obtain

frr + 1

r2
fθθ + 1

r
fr = fxx

(
cos2 θ

)
+ fyy

(
sin2 θ

)
+ (2 cos θ sin θ)fxy + fxx

(
sin2θ

)

+fyy

(
cos2 θ

)
− (2 sin θ cos θ)fxy − cos θ

r
fx − sin θ

r
fy + fx

cos θ

r
+ fy

sin θ

r

= fxx

(
cos2 θ + sin2 θ

)
+ fyy

(
sin2θ + cos2 θ

)
= fxx + fyy = �f

We thus showed that

�f = frr + 1

r2
fθθ + 1

r
fr

48. Use Eq. (13) to show that f (x, y) = ln r is harmonic.

solution We must show that f (r, θ) = ln r satisfies

�f = frr + 1

r2
fθθ + 1

r
fr = 0
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We compute the derivatives of f (r, θ) = ln r:

fr = 1

r
, frr = − 1

r2
, fθ = 0, fθθ = 0

Hence,

�f = frr + 1

r2
fθθ + 1

r
fr = − 1

r2
+ 1

r2
· 0 + 1

r
· 1

r
= − 1

r2
+ 1

r2
= 0

Since �f = 0, f is harmonic.

49. Verify that f (x, y) = x and f (x, y) = y are harmonic using both the rectangular and polar expressions for �f .

solution We must show that �f = 0.

(a) Using the rectangular expression for �f :

�f = fxx + fyy

For f (x, y) = x we have fx = 1, fy = 0, hence, fxx = 0, fyy = 0. Therefore �f = fxx + fyy = 0 + 0 = 0. For
f (x, y) = y we have fy = 1, fx = 0, hence, fxx = 0, fyy = 0, and again, �f = fxx + fyy = 0 + 0 = 0.

(b) Using the polar expression for �f ,

�f = frr + 1

r2
fθθ + 1

r
fr (1)

Since x = r cos θ , we have f (r, θ) = x = r cos θ . Hence,

fr = cos θ, fθ = −r sin θ, frr = 0, fθθ = −r cos θ

We now show that �f = 0:

�f = frr + 1

r2
fθθ + 1

r
fr = 0 + 1

r2
· (−r cos θ) + 1

r
cos θ = 0

Similarly, since y = r sin θ , we have f (r, θ) = y = r sin θ . Hence,

fr = sin θ, fθ = r cos θ, frr = 0, fθθ = −r sin θ

Substituting in (1) gives

�f = 0 + 1

r2
(−r sin θ) + 1

r
sin θ = 0

50. Verify that f (x, y) = tan−1 y
x is harmonic using both the rectangular and polar expressions for �f .

solution

(a) Using the rectangular expression for �f :

�f = fxx + fyy

We compute the partial derivatives of f (x, y) = tan−1 ( y
x

)
. Using the Chain Rule we get

fx = 1

1 + ( yx )2 ·
(

− y

x2

)
= − y

x2 + y2

fy = 1

1 + ( yx )2 · 1

x
= x

x2 + y2

fxx = − −y(
x2 + y2

)2 · 2x = 2xy(
x2 + y2

)2
fyy = −x(

x2 + y2
)2 · 2y = −2xy(

x2 + y2
)2

Hence,

fxx + fyy = 2xy

(x2 + y2)
2

− 2xy

(x2 + y2)
2

= 0
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(b) Using the polar expression for �f ,

�f = frr + 1

r2
fθθ + 1

r
fr (1)

Since y
x = r sin θ

r cos θ = tan θ , we have f (x, y) = tan−1 ( y
x

) = tan−1(θ) = θ . We compute the partial derivatives:

fr = 0, fθ = 1, frr = 0, fθθ = 0.

Substituting in (1), we get

�f = 0 + 1

r2
· 0 + 1

r
· 0 = 0

51. Use the Product Rule to show that

frr + 1

r
fr = r−1 ∂

∂r

(
r
∂f

∂r

)

Use this formula to show that if f is a radial harmonic function, then rfr = C for some constant C. Conclude that
f (x, y) = C ln r + b for some constant b.

solution We show that frr + 1
r fr = r−1 ∂

∂r

(
r

∂f
∂r

)
. We use the Product Rule to compute the following derivative:

∂

∂r

(
r
∂f

∂r

)
= 1 · ∂f

∂r
+ r

∂

∂r

(
∂f

∂r

)
= ∂f

∂r
+ r

∂2f

∂r2
= fr + rfrr = r

(
frr + 1

r
fr

)

Hence,

frr + 1

r
fr = r−1 ∂

∂r

(
r
∂f

∂r

)
(1)

Now, suppose that f (x, y) is a radial harmonic function. Since f is radial, f (x, y) = g(r), therefore fθθ = 0. Substituting
in the polar expressions for �f gives

�f = frr + 1

r2
fθθ + 1

r
fr = frr + 1

r
fr = 0

Combining with (1), we get

r−1 ∂

∂r

(
r
∂f

∂r

)
= 0 or

∂

∂r

(
r
∂f

∂r

)
= 0

yielding

r
∂f

∂r
= C ⇒ fr = C

r

We now integrate the two sides to obtain∫
fr dr =

∫
C

r
dr or f (r) = C ln r + b.

14.7 Optimization in Several Variables (LT Section 15.7)

Preliminary Questions
1. The functions f (x, y) = x2 + y2 and g(x, y) = x2 − y2 both have a critical point at (0, 0). How is the behavior of

the two functions at the critical point different?

solution Let f (x, y) = x2 + y2 and g(x, y) = x2 − y2. In the domain R2, the partial derivatives of f and g are

fx = 2x, fxx = 2, fy = 2y, fyy = 2, fxy = 0

gx = 2x, gxx = 2, gy = −2y, gyy = −2, gxy = 0

Therefore, fx = fy = 0 at (0, 0) and gx = gy = 0 at (0, 0). That is, the two functions have one critical point, which
is the origin. Since the discriminant of f is D = 4 > 0, fxx > 0, and the discriminant of g is D = −4 < 0, f has
a local minimum (which is also a global minimum) at the origin, whereas g has a saddle point there. Moreover, since
lim

y→∞ g(0, y) = −∞ and lim
x→∞ g(x, 0) = ∞, g does not have global extrema on the plane. Similarly, f does not have a

global maximum but does have a global minimum, which is f (0, 0) = 0.
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2. Identify the points indicated in the contour maps as local minima, local maxima, saddle points, or neither (Figure 15).

0

1

1

1

2

3

6

10
−1 −1 0

−1

−2

−3
−3

−6

−10

−3

3

3

000

FIGURE 15

solution If f (P ) is a local minimum or maximum, then the nearby level curves are closed curves encircling P . In
Figure (C), f increases in all directions emanating from P and decreases in all directions emanating from Q. Hence, f

has a local minimum at P and local maximum at Q.

2

6

10

−2

−6

−10

0

P Q

In Figure (A), the level curves through the point R consist of two intersecting lines that divide the neighborhood near R

into four regions. f is decreasing in some directions and increasing in other directions. Therefore, R is a saddle point.

0

1

1

−1
−1

−3

−3

3

3

1

R

Figure (A)

Point S in Figure (B) is neither a local extremum nor a saddle point of f .

1 30−1−3 S

Figure (B)

3. Let f (x, y) be a continuous function on a domain D in R2. Determine which of the following statements are true:

(a) If D is closed and bounded, then f takes on a maximum value on D.

(b) If D is neither closed nor bounded, then f does not take on a maximum value of D.

(c) f (x, y) need not have a maximum value on the domain D defined by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

(d) A continuous function takes on neither a minimum nor a maximum value on the open quadrant

{(x, y) : x > 0, y > 0}
solution

(a) This statement is true. It follows by the Theorem on Existence of Global Extrema.

(b) The statement is false. Consider the constant function f (x, y) = 2 in the following domain:
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x
1

y

D = {(x, y) : 0 < x ≤ 1, 0 ≤ y < ∞}
Obviously f is continuous and D is neither closed nor bounded. However, f takes on a maximum value (which is 2)
on D.

(c) The domain D = {(x, y) : 0 ≤ x, y ≤ 1} is the following rectangle:

x
1

y

1

D = {(x, y) : 0 ≤ x, y ≤ 1}
D is closed and bounded, hence f takes on a maximum value on D. Thus the statement is false.

(d) The statement is false. The constant function f (x, y) = c takes on minimum and maximum values on the open
quadrant.

Exercises
1. Let P = (a, b) be a critical point of f (x, y) = x2 + y4 − 4xy.

(a) First use fx(x, y) = 0 to show that a = 2b. Then use fy(x, y) = 0 to show that P = (0, 0), (2
√

2,
√

2), or
(−2

√
2, −√

2).

(b) Referring to Figure 16, determine the local minima and saddle points of f (x, y) and find the absolute minimum value
of f (x, y).

x

z

y

FIGURE 16

solution
(a) We find the partial derivatives:

fx(x, y) = ∂

∂x

(
x2 + y4 − 4xy

)
= 2x − 4y

fy(x, y) = ∂

∂y

(
x2 + y4 − 4xy

)
= 4y3 − 4x

Since P = (a, b) is a critical point, fx(a, b) = 0. That is,

2a − 4b = 0 ⇒ a = 2b

Also fy(a, b) = 0, hence,

4b3 − 4a = 0 ⇒ a = b3
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We obtain the following equations for the critical points (a, b):{
a = 2b

a = b3

Equating the two equations, we get

2b = b3

b3 − 2b = b(b2 − 2) = 0 ⇒
⎧⎨
⎩

b1 = 0
b2 = √

2
b3 = −√

2

Since a = 2b, we have a1 = 0, a2 = 2
√

2, a3 = −2
√

2. The critical points are thus

P1 = (0, 0), P2 =
(

2
√

2,
√

2
)

, P3 =
(
−2

√
2, −√

2
)

(b) Referring to Figure 14, we see that P1 = (0, 0) is a saddle point and P2 =
(

2
√

2,
√

2
)

, P3 =
(
−2

√
2, −√

2
)

are

local minima. The absolute minimum value of f is −4.

2. Find the critical points of the functions

f (x, y) = x2 + 2y2 − 4y + 6x, g(x, y) = x2 − 12xy + y

Use the Second Derivative Test to determine the local minimum, local maximum, and saddle points. Match f (x, y) and
g(x, y) with their graphs in Figure 17.

z

x

z

y
y

x

(A) (B)

FIGURE 17

solution
Step 1. Find the critical points. We set the first partial derivatives equal to zero and solve:

fx = 2x + 6 = 0

fy = 4y − 4
⇒

x = −3

y = 1

The critical point is (−3, 1).

gx = 2x − 12y = 0

gy = −12x + 1 = 0
⇒

y = 1

72

x = 1

12

The critical point is
(

1
12 , 1

72

)
.

Step 2. Compute the Discriminant. We compute the second-order partial derivatives:

fxx = 2

fyy = 4

fxy = 0

The discriminant is D(x, y) = fxxfyy − f 2
xy = 2 · 4 − 02 = 8.

gxx = 2

gyy = 0

gxy = −12

The discriminant is D(x, y) = gxxgyy − g2
xy = 2 · 0 − 144 = −144.
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Step 3. Apply the Second Derivative Test.

For f , we have D > 0 and fxx > 0, therefore f (−3, 1) is a local minimum.

For g, we have D < 0, hence g
(

1
12 , 1

72

)
is a saddle point.

The graph in Figure 17(A) has a saddle point, therefore it is the graph of g(x, y). The graph in Figure 17(B) corresponds
to f (x, y), since it has a local minimum.

3. Find the critical points of

f (x, y) = 8y4 + x2 + xy − 3y2 − y3

Use the contour map in Figure 18 to determine their nature (local minimum, local maximum, or saddle point).

0.1 0

−0.3
−0.2
−0.1

0.2
0.3

10

1

0

−1

−1

y

x

−0.1

−0.2

FIGURE 18 Contour map of f (x, y) = 8y4 + x2 + xy − 3y2 − y3.

solution The critical points are the solutions of fx = 0 and fy = 0. That is,

fx(x, y) = 2x + y = 0

fy(x, y) = 32y3 + x − 6y − 3y2 = 0

The first equation gives y = −2x. We substitute in the second equation and solve for x. This gives

32(−2x)3 + x − 6(−2x) − 3(−2x)2 = 0

−256x3 + 13x − 12x2 = 0

−x(256x2 + 12x − 13) = 0

Hence x = 0 or 256x2 + 12x − 13 = 0. Solving the quadratic,

x1,2 = −12 ±
√

122 − 4 · 256 · (−13)

512
= −12 ± 116

512
⇒ x = 13

64
or − 1

4

Substituting in y = −2x gives the y-coordinates of the critical points. The critical points are thus

(0, 0),

(
13

64
, −13

32

)
,

(
−1

4
,

1

2

)

We now use the contour map to determine the type of each critical point. The level curves through (0, 0) consist of two
intersecting lines that divide the neighborhood near (0, 0) into four regions. The function is decreasing in the y direction

and increasing in the x-direction. Therefore, (0, 0) is a saddle point. The level curves near the critical points
(

13
64 , − 13

32

)
and

(
− 1

4 , 1
2

)
are closed curves encircling the points, hence these are local minima or maxima. The graph shows that both(

13
64 , − 13

32

)
and

(
− 1

4 , 1
2

)
are local minima.
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4. Use the contour map in Figure 19 to determine whether the critical points A, B, C, D are local minima, local maxima,
or saddle points.

11 0

0
23

−1

−1

−2
−3

2

0

−2

0 2−2

A

CD

B

y

x

FIGURE 19

solution The nearby level curves at A and C are closed curves encircling A and C. As we move towards A the
function increases in all directions, while moving towards C the function decreases in all directions. We conclude that the
function has a local maximum at A and a local minimum at C. The level curves through B and D consist of two curves
intersecting at these points respectively. These curves divide the neighborhoods near B and D into four regions. In some
of the regions the function is increasing and in others it is decreasing as we move towards B or D. This implies that B

and D are saddle points.

5. Let f (x, y) = y2x − yx2 + xy.

(a) Show that the critical points (x, y) satisfy the equations

y(y − 2x + 1) = 0, x(2y − x + 1) = 0

(b) Show that f has four critical points.

(c) Use the second derivative to determine the nature of the critical points.

solution

(a) The critical points are the solutions of the two equations fx(x, y) = 0 and fy(x, y) = 0. That is,

fx(x, y) = y2 − 2yx + y = 0

fy(x, y) = 2yx − x2 + x = 0
⇒

y(y − 2x + 1) = 0

x(2y − x + 1) = 0

(b) We find the critical points by solving the equations obtained in part (a):

y(y − 2x + 1) = 0 (1)

x(2y − x + 1) = 0 (2)

Equation (1) implies that y = 0 or y = 2x − 1. Substituting y = 0 in (2) and solving for x gives

x(−x + 1) = 0 ⇒ x = 0 or x = 1

We obtain the solutions (0, 0) and (1, 0). We now substitute y = 2x − 1 in (2) and solve for x. We get

x(4x − 2 − x + 1) = 0

x(3x − 1) = 0 ⇒ x = 0 or x = 1

3

We compute the y-coordinate, using y = 2x − 1:

y = 2 · 0 − 1 = −1

y = 2 · 1

3
− 1 = −1

3

We obtain the solutions (0, −1) and
(

1
3 , − 1

3

)
. To summarize, the critical points are (0, 0), (1, 0), (0, −1), and

(
1
3 , − 1

3

)
.

Three of the critical points have at least one zero coordinate, and one has two nonzero coordinates.

(c) We compute the second-order partial derivatives:

fxx(x, y) = ∂

∂x
(y2 − 2yx + y) = −2y

fyy(x, y) = ∂

∂y
(2yx − x2 + x) = 2x
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fxy(x, y) = ∂

∂y
(y2 − 2yx + y) = 2y − 2x + 1

The discriminant is

D(x, y) = fxxfyy − f 2
xy = −2y · 2x − (2y − 2x + 1)2 = −4xy − (2y − 2x + 1)2

We now apply the Second Derivative Test. We first compute the discriminants at the critical points:

D(0, 0) = −1 < 0

D(1, 0) = −1 < 0

D(0, −1) = −1 < 0

D

(
1

3
, −1

3

)
= −4 · 1

3

(
−1

3

)
−
(

−2

3
− 2

3
+ 1

)2
= 1

3
> 0,

fxx

(
1

3
, −1

3

)
= −2 ·

(
−1

3

)
= 2

3
> 0

The Second Derivative Test implies that the points (0, 0), (1, 0), and (0, −1) are saddle points, and f
(

1
3 , − 1

3

)
is a local

minimum.

6. Show that f (x, y) =
√

x2 + y2 has one critical point P and that f is nondifferentiable at P . Does f take on a
minimum, maximum, or saddle point at P ?

solution Since f (x, y) =
√

x2 + y2 ≥ 0 and f (0, 0) = 0, f (0, 0) is an absolute minimum value. To find the critical
point of f we first find the first derivatives:

fx(x, y) = ∂

∂x

(√
x2 + y2

)
= 2x

2
√

x2 + y2
= x√

x2 + y2

fy(x, y) = ∂

∂y

(√
x2 + y2

)
= 2y

2
√

x2 + y2
= y√

x2 + y2

Since fx and fy do not exist at (0, 0) and the equations fx(x, y) = 0 and fy(x, y) = 0 have no solutions, the only critical
point is P = (0, 0), a point where f is non-differentiable (and is the absolute minimum).

In Exercises 7–23, find the critical points of the function. Then use the Second Derivative Test to determine whether they
are local minima, local maxima, or saddle points (or state that the test fails).

7. f (x, y) = x2 + y2 − xy + x

solution

Step 1. Find the critical points. We set the first-order partial derivatives of f (x, y) = x2 + y2 − xy + x equal to zero
and solve:

fx(x, y) = 2x − y + 1 = 0 (1)

fy(x, y) = 2y − x = 0 (2)

Equation (2) implies that x = 2y. Substituting in (1) and solving for y gives

2 · 2y − y + 1 = 0 ⇒ 3y = −1 ⇒ y = −1

3

The corresponding value of x is x = 2 ·
(
− 1

3

)
= − 2

3 . The critical point is
(
− 2

3 , − 1
3

)
.

Step 2. Compute the Discriminant. We find the second-order partials:

fxx(x, y) = 2, fyy(x, y) = 2, fxy(x, y) = −1

The discriminant is

D(x, y) = fxxfyy − f 2
xy = 2 · 2 − (−1)2 = 3

Step 3. Applying the Second Derivative Test. We have

D

(
−2

3
, −1

3

)
= 3 > 0 and fxx

(
−2

3
, −1

3

)
= 2 > 0

The Second Derivative Test implies that f
(
− 2

3 , − 1
3

)
is a local minimum.
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8. f (x, y) = x3 − xy + y3

solution

Step 1. Find the critical points. We set the first-order partial derivatives of f (x, y) = x3 − xy + y3 equal to zero and
solve:

fx(x, y) = 3x2 − y = 0 (1)

fy(x, y) = −x + 3y2 = 0 (2)

Equation (1) implies that y = 3x2. Substituting in equation (2) and solving for x gives

−x + 3(3x2)
2 = 0

−x + 27x4 = x(−1 + 27x3) = 0 ⇒ x = 0, x = 1

3

The y-coordinates are y = 3 · 02 = 0 and y = 3 ·
(

1
3

)2 = 1
3 . The critical points are thus (0, 0) and

(
1
3 , 1

3

)
.

Step 2. Compute the Discriminant. We find the second-order partials:

fxx(x, y) = 6x, fyy(x, y) = 6y, fxy(x, y) = −1

The discriminant is

D(x, y) = fxxfyy − f 2
xy = 6x · 6y − (−1)2 = 36xy − 1

Step 3. Apply the Second Derivative Test. We have

D(0, 0) = −1 < 0

D

(
1

3
,

1

3

)
= 36 · 1

3
· 1

3
− 1 = 3 > 0, fxx

(
1

3
,

1

3

)
= 6 · 1

3
= 2 > 0

Thus, (0, 0) is a saddle point, whereas f
(

1
3 , 1

3

)
is a local minimum.

9. f (x, y) = x3 + 2xy − 2y2 − 10x

solution

Step 1. Find the critical points. We set the first-order partial derivatives of f (x, y) = x3 + 2xy − 2y2 − 10x equal to
zero and solve:

fx(x, y) = 3x2 + 2y − 10 = 0 (1)

fy(x, y) = 2x − 4y = 0 (2)

Equation (2) implies that x = 2y. We substitute in (1) and solve for y. This gives

3 · (2y)2 + 2y − 10 = 0

12y2 + 2y − 10 = 0

6y2 + y − 5 = 0

y1,2 = −1 ± √
1 − 4 · 6 · (−5)

12
= −1 ± 11

12
⇒ y1 = −1 and y2 = 5

6

We find the x-coordinates using x = 2y:

x1 = 2 · (−1) = −2, x2 = 2 · 5

6
= 5

3

The critical points are thus (−2, −1) and
(

5
3 , 5

6

)
.

Step 2. Compute the Discriminant. We find the second-order partials:

fxx(x, y) = 6x, fyy(x, y) = −4, fxy(x, y) = 2

The discriminant is

D(x, y) = fxxfyy − f 2
xy = 6x · (−4) − 22 = −24x − 4
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Step 3. Apply the Second Derivative Test. We have

D(−2, −1) = −24 · (−2) − 4 = 44 > 0,

fxx(−2, −1) = 6 · (−2) = −12 < 0

D

(
5

3
,

5

6

)
= −24 · 5

3
− 4 = −44 < 0

We conclude that f (−2, −1) is a local maximum and
(

5
3 , 5

6

)
is a saddle point.

10. f (x, y) = x3y + 12x2 − 8y

solution

Step 1. Find the critical points. We set the first-order partial derivatives of f (x, y) = x3y + 12x2 − 8y equal to zero
and solve:

fx(x, y) = 3x2y + 24x = 3x(xy + 8) = 0 (1)

fy(x, y) = x3 − 8 = 0 (2)

Equation (2) implies that x = 2. We substitute in equation (1) and solve for y to obtain

6(2y + 8) = 0 or y = −4

The critical point is (2, −4).

Step 2. Compute the Discriminant. We find the second-order partials:

fxx(x, y) = 6xy + 24, fyy = 0, fxy = 3x2

The discriminant is thus

D(x, y) = fxxfyy − f 2
xy = −9x4

Step 3. Apply the Second Derivative Test. We have

D(2, −4) = −9 · 24 < 0

Hence (2, −4) is a saddle point.

11. f (x, y) = 4x − 3x3 − 2xy2

solution

Step 1. Find the critical points. We set the first-order derivatives of f (x, y) = 4x − 3x3 − 2xy2 equal to zero and solve:

fx(x, y) = 4 − 9x2 − 2y2 = 0 (1)

fy(x, y) = −4xy = 0 (2)

Equation (2) implies that x = 0 or y = 0. If x = 0, then equation (1) gives

4 − 2y2 = 0 ⇒ y2 = 2 ⇒ y = √
2, y = −√

2

If y = 0, then equation (1) gives

4 − 9x2 = 0 ⇒ 9x2 = 4 ⇒ x = 2

3
, x = −2

3

The critical points are therefore

(
0,

√
2
)

,
(

0, −√
2
)

,

(
2

3
, 0

)
,

(
−2

3
, 0

)

Step 2. Compute the discriminant. The second-order partials are

fxx(x, y) = −18x, fyy(x, y) = −4x, fxy = −4y

The discriminant is thus

D(x, y) = fxxfyy − f 2
xy = −18x · (−4x) − (−4y)2 = 72x2 − 16y2
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Step 3. Apply the Second Derivative Test. We have

D
(

0,
√

2
)

= −32 < 0

D
(

0, −√
2
)

= −32 < 0

D

(
2

3
, 0

)
= 72 · 4

9
= 32 > 0,

fxx

(
2

3
, 0

)
= −18 · 2

3
= −12 < 0

D

(
−2

3
, 0

)
= 72 · 4

9
= 32 > 0,

fxx

(
−2

3
, 0

)
= −18 ·

(
−2

3

)
= 12 > 0

The Second Derivative Test implies that the points
(

0, ±√
2
)

are the saddle points, f
(

2
3 , 0
)

is a local maximum, and

f
(
− 2

3 , 0
)

is a local minimum.

12. f (x, y) = x3 + y4 − 6x − 2y2

solution

Step 1. Find the critical points. We set the first-order derivatives of f (x, y) = x3 + y4 − 6x − 2y2 equal to zero and
solve:

fx(x, y) = 3x2 − 6 = 0, fy(x, y) = 4y3 − 4y = 0 or 4y(y2 − 1) = 0

The first equation implies that x = ±√
2, and the second equation implies that y = 0 or y = ±1. The critical points are

therefore (√
2, 0
)

,
(√

2, 1
)

,
(√

2, −1
)

,
(
−√

2, 0
)

,
(
−√

2, 1
)

,
(
−√

2, −1
)

Step 2. Compute the discriminant. We find the second-order partials:

fxx(x, y) = 6x, fyy(x, y) = 12y2 − 4, fxy = 0

The discriminant is

D(x, y) = fxxfyy − f 2
xy = 6x · 4(3y2 − 1) − 02 = 24x(3y2 − 1)

Step 3. Apply the Second Derivative Test. We have

D
(√

2, 0
)

= −24
√

2 < 0

D
(√

2, 1
)

= 48
√

2 > 0, fxx

(√
2, 1
)

= 6
√

2 > 0

D
(√

2, −1
)

= 48
√

2 > 0, fxx

(√
2, −1

)
= 6

√
2 > 0

D
(
−√

2, 0
)

= 24
√

2 > 0, fxx

(
−√

2, 0
)

= −6
√

2 < 0

D
(
−√

2, 1
)

= −48
√

2 < 0

D
(
−√

2, −1
)

= −48
√

2 < 0

By the Second Derivative Test we obtain the following conclusions:
(√

2, 0
)

,
(
−√

2, 1
)

, and
(
−√

2, −1
)

are saddle

points; f
(√

2, 1
)

and f
(√

2, −1
)

are local minima; and f
(
−√

2, 0
)

is a local maximum.

13. f (x, y) = x4 + y4 − 4xy

solution

Step 1. Find the critical points. We set the first-order derivatives of f (x, y) = x4 + y4 − 4xy equal to zero and solve:

fx(x, y) = 4x3 − 4y = 0, fy(x, y) = 4y3 − 4x = 0 (1)
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Equation (1) implies that y = x3. Substituting in (2) and solving for x, we obtain

(x3)
3 − x = x9 − x = x(x8 − 1) = 0 ⇒ x = 0, x = 1, x = −1

The corresponding y coordinates are

y = 03 = 0, y = 13 = 1, y = (−1)3 = −1

The critical points are therefore

(0, 0), (1, 1), (−1, −1)

Step 2. Compute the discriminant. We find the second-order partials:

fxx(x, y) = 12x2, fyy(x, y) = 12y2, fxy(x, y) = −4

The discriminant is thus

D(x, y) = fxxfyy − f 2
xy = 12x2 · 12y2 − (−4)2 = 144x2y2 − 16

Step 3. Apply the Second Derivative Test. We have

D(0, 0) = −16 < 0

D(1, 1) = 144 − 16 = 128 > 0, fxx(1, 1) = 12 > 0

D(−1, −1) = 144 − 16 = 128 > 0, fxx(−1, −1) = 12 > 0

We conclude that (0, 0) is a saddle point, whereas f (1, 1) and f (−1, −1) are local minima.

14. f (x, y) = ex2−y2+4y

solution

Step 1. Find the critical points. We set the first partials of f (x, y) = ex2−y2+4y equal to zero and solve:

fx(x, y) = 2xex2−y2+4y = 0, fy(x, y) = (−2y + 4)ex2−y2+4y = 0

Since ex2−y2+4y �= 0, the first equation gives x = 0 and the second equation gives −2y + 4 = 0 or y = 2. We obtain
the critical point (0, 2).

Step 2. Compute the discriminant. We find the second-order partials:

fxx(x, y) = ∂

∂x

(
2xex2−y2+4y

)
= 2ex2−y2+4y + 2xex2−y2+4y · 2x = 2ex2−y2+4y(1 + 2x2)

fyy(x, y) = ∂

∂y

(
(−2y + 4)ex2−y2+4y

)
= −2ex2−y2+4y + (−2y + 4)ex2−y2+4y · (−2y + 4)

= 2ex2−y2+4y (−1 + (−y + 2)(−2y + 4)) = 2ex2−y2+4y
(

2y2 − 8y + 7
)

fxy(x, y) = ∂

∂y

(
2xex2−y2+4y

)
= 2xex2−y2+4y(−2y + 4) = 4x(2 − y)ex2−y2+4y

The discriminant is

D(x, y) = fxxfyy − f 2
xy = 4e2

(
x2−y2+4y

) (
1 + 2x2

) (
2y2 − 8y + 7

)
− 16x2(2 − y)2e2

(
x2−y2+4y

)

Step 3. Apply the Second Derivative Test. We have

D(0, 2) = −4e8 < 0

Therefore, (0, 2) is a saddle point.

15. f (x, y) = xye−x2−y2

solution

Step 1. Find the critical points. We compute the partial derivatives of f (x, y) = xye−x2−y2
, using the Product Rule and

the Chain Rule:

fx(x, y, z) = y
(

1 · e−x2−y2 + xe−x2−y2 · (−2x)
)

= ye−x2−y2
(

1 − 2x2
)

fy(x, y, z) = x
(

1 · e−x2−y2 + ye−x2−y2 · (−2y)
)

= xe−x2−y2
(

1 − 2y2
)
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We set the partial derivatives equal to zero and solve to find the critical points. This gives

ye−x2−y2
(

1 − 2x2
)

= 0

xe−x2−y2
(

1 − 2y2
)

= 0

Since e−x2−y2 �= 0, the first equation gives y = 0 or 1 − 2x2 = 0, that is, y = 0, x = 1√
2

, x = − 1√
2

. We substitute

each of these values in the second equation and solve to obtain

y = 0: xe−x2 = 0 ⇒ x = 0

x = 1√
2
: 1√

2
e− 1

2 −y2
(

1 − 2y2
)

= 0 ⇒ 1 − 2y2 = 0 ⇒ y = ± 1√
2

x = − 1√
2
: − 1√

2
e− 1

2 −y2
(

1 − 2y2
)

= 0 ⇒ 1 − 2y2 = 0 ⇒ y = ± 1√
2

We obtain the following critical points: (0, 0),(
1√
2
,

1√
2

)
,

(
1√
2
, − 1√

2

)
,

(
− 1√

2
,

1√
2

)
,

(
− 1√

2
, − 1√

2

)

Step 2. Compute the second-order partials.

fxx(x, y) = y
∂

∂x

(
e−x2−y2

(
1 − 2x2

))
= y

(
e−x2−y2

(−2x)
(

1 − 2x2
)

+ e−x2−y2
(−4x)

)

= −2xye−x2−y2
(

3 − 2x2
)

fyy(x, y) = x
∂

∂y

(
e−x2−y2

(
1 − 2y2

))
= x

(
e−x2−y2

(−2y)
(

1 − 2y2
)

+ e−x2−y2
(−4y)

)

= −2yxe−x2−y2
(

3 − 2y2
)

fxy(x, y) = ∂

∂y
fx =

(
1 − 2x2

) ∂

∂y

(
ye−x2−y2

)
=
(

1 − 2x2
) (

1 · e−x2−y2 + ye−x2−y2
(−2y)

)

= e−x2−y2
(

1 − 2x2
) (

1 − 2y2
)

The discriminant is

D(x, y) = fxxfyy − f 2
xy

Step 3. Apply the Second Derivative Test. We construct the following table:

Critical Point fxx fyy fxy D Type
(0, 0) 0 0 1 −1 D < 0, saddle point(
1√
2
, 1√

2

)
− 2

e − 2
e 0 4

e2 D > 0, fxx < 0 local maximum(
1√
2
, − 1√

2

)
2
e

2
e 0 4

e2 D > 0, fxx > 0 local minimum(
− 1√

2
, 1√

2

)
2
e

2
e 0 4

e2 D > 0, fxx > 0 local minimum(
− 1√

2
, − 1√

2

)
− 2

e − 2
e 0 4

e2 D > 0, fxx < 0 local maximum

16. f (x, y) = ex − xey

solution

Step 1. Find the critical points. We set the first-order derivatives of f (x, y) = ex − xey equal to zero and solve:

fx(x, y) = ex − ey = 0

fy(x, y) = −xey = 0

Since ey �= 0, the second equation gives x = 0. Substituting in the first equation, we get

e0 − ey = 1 − ey = 0 ⇒ ey = 1 ⇒ y = 0

The critical point is (0, 0).
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Step 2. Compute the discriminant. We find the second-order partial derivatives:

fxx(x, y) = ∂

∂x

(
ex − ey

) = ex

fyy(x, y) = ∂

∂y

(−xey
) = −xey

fxy(x, y) = ∂

∂y

(
ex − ey

) = −ey

The discriminant is

D(x, y) = fxxfyy − f 2
xy = −xex+y − e2y

Step 3. Apply the Second Derivative Test. We have

D(0, 0) = 0 − e0 = −1 < 0

The point (0, 0) is a saddle point.

17. f (x, y) = sin(x + y) − cos x

solution
Step 1. Find the critical points. We set the first-order derivatives of f (x, y) = sin(x + y) − cos x equal to zero and solve:

fx(x, y) = cos(x + y) + sin x = 0

fy(x, y) = cos(x + y) = 0

First consider the second equation, cos(x + y) = 0 this is when

x + y = (2k + 1)π

2
→ y = (2k + 1)π

2
− x where k is an integer

Then setting the two equations equal to one another we gain sin x = 0 which are the values:

x = 0, ±π, ±2π, · · · = ±kπ where k is an integer.

Thus we have:

x = kπ and y = (2n + 1)π

2
where n, k are integers

Step 2. Compute the discriminant. We find the second-order partial derivatives:

fxx(x, y) = − sin(x + y) + cos x, fyy(x, y) = − sin(x + y), fxy(x, y) = − sin(x + y)

The discriminant is:

D(x, y) = fxxfyy − f 2
xy = (− sin(x + y) + cos x)(− sin(x + y)) − sin2(x + y) = − cos(x) sin(x + y)

Step 3. Apply the Second Derivative Test. We have

D =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1, if y = 4n + 3

2
π

−1, y = 4n + 1

2
π

Therefore, the points

(
kπ,

4n + 1

2
π

)
are saddle points since D < 0.

Since D > 0 for the points

(
kπ,

4n + 3

2
π

)
, we need to examine fxx . The results show:

fxx > 0 if k is even and fxx < 0 if k is odd

Thus: (
kπ,

4n + 3

2
π

)
are local minima if k is even

while (
kπ,

4n + 3

2
π

)
are local maxima if k is odd
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18. f (x, y) = x ln(x + y)

solution

Step 1. Find the critical points. We set the first-order partial derivatives of f (x, y) = x ln(x + y) equal to zero and solve:

fx(x, y) = ln(x + y) + x · 1

x + y
= ln(x + y) + x

x + y
= 0

fy(x, y) = x

x + y
= 0

The second equation implies x = 0. Substituting in the first equation gives

ln y + 0 = 0 ⇒ ln y = 0 ⇒ y = 1.

We obtain the critical point (0, 1). fx and fy do not exist at the points where x + y = 0, but these points are not in the
domain of f , hence they are not critical points. The critical point is thus (0, 1).

Step 2. Compute the discriminant. We find the second-order derivatives:

fxx = ∂

∂x

(
ln(x + y) + x

x + y

)
= 1

x + y
+ 1 · (x + y) − x · 1

(x + y)2
= 1

x + y
+ y

(x + y)2
= x + 2y

(x + y)2

fyy = ∂

∂y

(
x

x + y

)
= − x

(x + y)2

fxy = fyx = ∂

∂x

(
x

x + y

)
= 1 · (x + y) − x · 1

(x + y)2
= y

(x + y)2

The discriminant is

D(x, y) = fxxfyy − f 2
xy = −x(x + 2y)

(x + y)4
− y2

(x + y)4

Step 3. Apply the Second Derivative Test. We have

D(0, 1) = 0 − 12

(0 + 1)4
= −1 < 0

Therefore, (0, 1) is a saddle point.

19. f (x, y) = ln x + 2 ln y − x − 4y

solution

Step 1. Find the critical points. We set the first-order partials of f (x, y) = ln x + 2 ln y − x − 4y equal to zero and solve:

fx(x, y) = 1

x
− 1 = 0, fy(x, y) = 2

y
− 4 = 0

The first equation gives x = 1, and the second equation gives y = 1
2 . We obtain the critical point

(
1, 1

2

)
. Notice that fx

and fy do not exist if x = 0 or y = 0, respectively, but these are not critical points since they are not in the domain of f .

The critical point is thus
(

1, 1
2

)
.

Step 2. Compute the discriminant. We find the second-order partials:

fxx(x, y) = − 1

x2
, fyy(x, y) = − 2

y2
, fxy(x, y) = 0

The discriminant is

D(x, y) = fxxfyy − f 2
xy = 2

x2y2

Step 3. Apply the Second Derivative Test. We have

D

(
1,

1

2

)
= 2

12 ·
(

1
2

)2
= 8 > 0, fxx

(
1,

1

2

)
= − 1

12
= −1 < 0

We conclude that f
(

1, 1
2

)
is a local maximum.
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20. f (x, y) = (x + y) ln(x2 + y2)

solution

Step 1. Find the critical points. We set the partial derivatives of f (x, y) = (x + y) ln(x2 + y2) equal to zero and solve.

fx(x + y) = 2x(x + y)

x2 + y2
+ ln(x2 + y2) = 0, fy(x, y) = 2y(x + y)

x2 + y2
+ ln(x2 + y2) = 0

and note that

2x(x + y) = 2y(x + y) ⇒ 2(x + y)(x − y) = 0

So critical points satisfy x = ±y.
If x = y we would have

2y(2y)

2y2
+ ln(2y2) = 0 ⇒ ln(2y2) = −2 ⇒ y = ± 1

e
√

2

If x = −y we would have

2y(0)

2y2
+ ln(2y2) = 0 ⇒ ln(2y2) = 0 ⇒ y = ± 1√

2

Our critical points are:(
1

e
√

2
,

1

e
√

2

)
,

(
− 1

e
√

2
, − 1

e
√

2

)
,

(
1√
2
, − 1√

2

)
,

(
− 1√

2
,

1√
2

)

Step 2. Compute the discriminant. We compute the second-order partial derivatives

fxx(x, y) = 4x

x2 + y2
+ 2(x + y)

x2 + y2
− 4x2(x + y)

(x2 + y2)2

fxy(x, y) = 2y

x2 + y2
+ 2x

x2 + y2
− 4xy(x + y)

(x2 + y2)2

fyy(x, y) = 4y

x2 + y2
+ 2(x + y)

x2 + y2
− 4y2(x + y)

(x2 + y2)2

Step 3. Apply the Second Derivative Test. We can form the table

Critical point fxx fyy fxy D Type

(
1

e
√

2
, 1

e
√

2

)
2e

√
2 2e

√
2 0 8e2 local minimum(

− 1
e
√

2
, − 1

e
√

2

)
−2e

√
2 −2e

√
2 0 8e2 local maximum(

1√
2
, − 1√

2

)
2
√

2 −2
√

2 0 −8 saddle point(
− 1√

2
, 1√

2

)
−2

√
2 2

√
2 0 −8 saddle point

21. f (x, y) = x − y2 − ln(x + y)

solution

Step 1. Find the critical points. We set the partial derivatives of f (x, y) = x − y2 − ln(x + y) equal to zero and solve.

fx(x, y) = 1 − 1

x + y
= 0, fy(x, y) = −2y − 1

x + y
= 0

The first equation implies that 1
x+y = 1. Substituting in the second equation gives

−2y − 1 = 0 ⇒ 2y = −1 ⇒ y = −1

2

We substitute y = − 1
2 in the first equation and solve for x:

1 − 1

x − 1
2

= 0 ⇒ x − 1

2
= 1 ⇒ x = 3

2

We obtain the critical point
(

3
2 , − 1

2

)
. Notice that although fx and fy do not exist where x + y = 0, these are not critical

points since f is not defined at these points.
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Step 2. Compute the discriminant. We compute the second-order partial derivatives:

fxx(x, y) = ∂

∂x

(
1 − 1

x + y

)
= 1

(x + y)2

fyy(x, y) = ∂

∂y

(
−2y − 1

x + y

)
= −2 + 1

(x + y)2

fxy(x, y) = ∂

∂y

(
1 − 1

x + y

)
= 1

(x + y)2

The discriminant is

D(x, y) = fxxfyy − f 2
xy = 1

(x + y)2

(
−2 + 1

(x + y)2

)
− 1

(x + y)4
= −2

(x + y)2

Step 3. Apply the Second Derivative Test. We have

D

(
3

2
, −1

2

)
= −2(

3
2 − 1

2

)2
= −2 < 0

We conclude that
(

3
2 , − 1

2

)
is a saddle point.

22. f (x, y) = (x − y)ex2−y2

solution Find the critical points. We set the partial derivatives of f (x, y) = (x − y)ex2−y2
equal to zero and solve:

fx(x, y) = ex2−y2 + (x − y)ex2−y2 · 2x = ex2−y2
(

2x2 − 2xy + 1
)

= 0

fy(x, y) = −ex2−y2 + (x − y)ex2−y2 · (−2y) = ex2−y2
(

2y2 − 2xy − 1
)

= 0

Since ex2−y2 �= 0, we have the following equations:

2x2 − 2xy + 1 = 0

2y2 − 2xy − 1 = 0

We add and subtract the two equations to obtain the following equations:

2
(
x2 + y2

)
− 4xy = 0

2
(
x2 − y2

)
+ 2 = 0

The first equation can be rewritten as x2 − 2xy + y2 = 0 or (x − y)2 = 0, yielding x = y. Substituting in the second
equation gives 2 = 0, we conclude that the two equations have no solutions, that is, there are no critical points (notice
that fx and fy exist everywhere). Since local minima and local maxima can occur only at critical points, it follows that

f (x, y) = (x − y)ex2−y2
does not have local minima or local maxima.

23. f (x, y) = (x + 3y)ey−x2

solution

Step 1. Find the critical points. We compute the partial derivatives of f (x, y) = (x + 3y)ey−x2
, using the Product Rule

and the Chain Rule:

fx(x, y) = 1 · ey−x2 + (x + 3y)ey−x2 · (−2x) = ey−x2
(

1 − 2x2 − 6xy
)

fy(x, y) = 3ey−x2 + (x + 3y)ey−x2 · 1 = ey−x2
(3 + x + 3y)

We set the partial derivatives equal to zero and solve to find the critical points:

ey−x2
(

1 − 2x2 − 6xy
)

= 0

ey−x2
(3 + x + 3y) = 0

Since ey−x2 �= 0, we obtain the following equations:

1 − 2x2 − 6xy = 0

3 + x + 3y = 0
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The second equation gives x = −3(1 + y). We substitute for x in the first equation and solve for y:

1 − 2 · 9(1 + y)2 + 18(1 + y)y = 0

1 − 18
(

1 + 2y + y2
)

+ 18
(
y + y2

)
= 0

−17 − 18y = 0 ⇒ y = −17

18
, x = −3

(
1 − 17

18

)
= −1

6

The critical point is
(
− 1

6 , − 17
18

)
.

Step 2. Compute the second-order partials.

fxx(x, y) = ∂

∂x
fx = ey−x2

(−2x)
(

1 − 2x2 − 6xy
)

+ ey−x2
(−4x − 6y) = 2ey−x2

(
2x3 + 6x2y − 3x − 3y

)

fyy(x, y) = ∂

∂y
fy = ey−x2

(3 + x + 3y) + ey−x2 · 3 = ey−x2
(6 + x + 3y)

fxy(x, y) = ∂

∂x
fy = ey−x2

(−2x)(3 + x + 3y) + ey−x2 · 1 = ey−x2
(

1 − 6xy − 2x2 − 6x
)

The discriminant is

D(x, y) = fxxfyy − f 2
xy

Step 3. Apply the Second Derivative Test. We obtain the following table:

Critical Point fxx fyy fxy D Type(
− 1

6 , − 17
18

)
2.4 1.13 0.38 2.57 D > 0, fxx > 0, local minimum

24. Show that f (x, y) = x2 has infinitely many critical points (as a function of two variables) and that the Second
Derivative Test fails for all of them. What is the minimum value of f ? Does f (x, y) have any local maxima?

solution First if we solve for critical points we get

fx(x, y) = 2x, fy(x, y) = 0

Thus setting each equal to zero only yields x = 0 and y can be any real number. The list of critical points is

(0, r) where r is any real number.

Now computing the second-order partials for the discriminant we get

fxx(x, y) = 2, fxy(x, y) = 0, fyy(x, y) = 0

Therefore, D = 0. This means that the Second Derivative Test is inconclusive for every critical point, it fails.
Finally this function does have a minimum value of 0 since the smallest any square can be is 0. Since x can get

arbitrarily large, this function has no maximum value, and no local maxima.

25. Prove that the function f (x, y) = 1
3x3 + 2

3y3/2 − xy satisfies f (x, y) ≥ 0 for x ≥ 0 and y ≥ 0.

(a) First, verify that the set of critical points of f is the parabola y = x2 and that the Second Derivative Test fails for
these points.

(b) Show that for fixed b, the function g(x) = f (x, b) is concave up for x > 0 with a critical point at x = b1/2.

(c) Conclude that f (a, b) ≥ f (b1/2, b) = 0 for all a, b ≥ 0.

solution

(a) To find the critical points, we need the first-order partial derivatives, set them equal to zero and solve:

fx(x, y) = x2 − y = 0, fy(x, y) = y1/2 − x = 0

This gives us:

y = x2

as the solution set for the critical points.
Now to compute the discriminant, we need the second-order partials

fxx(x, y) = 2x, fyy(x, y) = 1

2
y−1/2, fxy(x, y) = −1
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Thus the discriminant is

D(x, y) = x√
y

− 1

Since y = x2 is the solution set for the critical points we see:

D(x, y) = 1 − 1 = 0

Therefore the Second Derivative Test is inconclusive and fails us.

(b) If we fix a value b and consider g(x) = f (x, b) = 1
3x3 + 2

3b3/2 − bx to find the concavity, we see

g′(x) = x2 − b, g′′(x) = 2x

Then certainly, for x > 0, this function is concave up. The critical point will occur at the point when x2 − b = 0 or
x = b1/2.

(c) Now, since for fixed b, we know that g(x) = f (x, b) is concave up if x > 0, and the critical point is x = b1/2.
Therefore

f (a, b) ≥ f (b1/2, b) = 0 for all b ≥ 0

26. Let f (x, y) = (x2 + y2)e−x2−y2
.

(a) Where does f take on its minimum value? Do not use calculus to answer this question.

(b) Verify that the set of critical points of f consists of the origin (0, 0) and the unit circle x2 + y2 = 1.

(c) The Second Derivative Test fails for points on the unit circle (this can be checked by some lengthy algebra). Prove,
however, that f takes on its maximum value on the unit circle by analyzing the function g(t) = te−t for t > 0.

solution

(a) We know that e−(x2+y2) is always positive and greater than 0, and x2 + y2 ≥ 0, therefore the minimum is reached
when x2 + y2 = 0 and the only point where this occurs is at (0, 0).

(b) Find the critical points. We set the first-order derivatives equal to zero and solve:

fx(x, y) = 2xe−x2−y2 + (x2 + y2)e−x2−y2 · (−2x) = 2xe−x2−y2
(1 − x2 − y2) = 0

fy(x, y) = 2ye−x2−y2 + (x2 + y2)e−x2−y2 · (−2y) = 2ye−x2−y2
(1 − x2 − y2) = 0

Since e−x2−y2 �= 0, the first equation gives x = 0 or x2 + y2 = 1. We substitute x = 0 in the second equation and solve
for y:

2ye−y2
(1 − y2) = 0

Since e−y2 �= 0, the solutions are y = 0 or y = ±1. The corresponding points are (0, 0), (0, 1), (0, −1). The solution
x2 + y2 = 1 also satisfies the second equation. We conclude that there are infinitely many critical points, namely, the
points on the unit circle x2 + y2 = 1 and its center (0, 0).

(c) For the given function we can define t = x2 + y2 to obtain the function g(t) = te−t . The critical point of g(t) is

g′(t) = e−t − te−t = (1 − t)e−t = 0 ⇒ t = 1

We find the second derivative at the critical point:

g′′(t) = d

dt

[
(1 − t)e−t

] = −e−t + (1 − t)e−t (−1) = (t − 2)e−t

Therefore, by the Second Derivative Test for functions of one variable, t = 1 gives a local maximum. Also, the value of
f (x, y) at all the points on the unit circle is the same:

f (x, y) = (x2 + y2)e−(x2+y2) = te−t = e−1 when t = 1

It follows that at the points on the unit circle x2 + y2 = 1, f (x, y) has local maxima.

27. Use a computer algebra system to find a numerical approximation to the critical point of

f (x, y) = (1 − x + x2)ey2 + (1 − y + y2)ex2

Apply the Second Derivative Test to confirm that it corresponds to a local minimum as in Figure 20.
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x

y

z

FIGURE 20 Plot of f (x, y) = (1 − x + x2)ey2 + (1 − y + y2)ex2
.

solution The critical points are the solutions of fx(x, y) = 0 and fy(x, y) = 0. We compute the partial derivatives:

fx(x, y) = (−1 + 2x)ey2 +
(

1 − y + y2
)

ex2 · 2x

fy(x, y) =
(

1 − x + x2
)

ey2 · 2y + (−1 + 2y)ex2

Hence, the critical points are the solutions of the following equations:

(2x − 1)ey2 + 2x
(

1 − y + y2
)

ex2 = 0

(2y − 1)ex2 + 2y
(

1 − x + x2
)

ey2 = 0

Using a CAS we obtain the following solution: x = y = 0.27788, which from the figure is a local minimum.

28. Which of the following domains are closed and which are bounded?

(a) {(x, y) ∈ R2 : x2 + y2 ≤ 1} (b) {(x, y) ∈ R2 : x2 + y2 < 1}
(c) {(x, y) ∈ R2 : x ≥ 0} (d) {(x, y) ∈ R2 : x > 0, y > 0}
(e) {(x, y) ∈ R2 : 1 ≤ x ≤ 4, 5 ≤ y ≤ 10} (f) {(x, y) ∈ R2 : x > 0, x2 + y2 ≤ 10}
solution

(a) {(x, y) ∈ R2 : x2 + y2 ≤ 1}: This domain is bounded since it is contained, for instance, in the disk x2 + y2 < 2.
The domain is also closed since it contains all of its boundary points, which are the points on the unit circle x2 + y2 = 1.
(b) {(x, y) ∈ R2 : x2 + y2 < 1}: The domain is contained in the disk x2 + y2 < 1, hence it is bounded. It is not closed
since its boundary x2 + y2 = 1 is not contained in the domain.
(c) {(x, y) ∈ R2 : x ≥ 0}:

x

y

This domain is not contained in any disk, hence it is not bounded. However, the domain contains its boundary x = 0 (the
y-axis), hence it is closed.
(d) {(x, y) ∈ R2 : x > 0, y > 0}:

x

y
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The domain is not contained in any disk, hence it is not bounded. The boundary is the positive x and y axes, and it is not
contained in the domain, therefore the domain is not closed.

(e) {(x, y) ∈ R2 : 1 ≤ x ≤ 4, 5 ≤ y ≤ 10}:

x

y

1 4

10

A (1, 5)
7.5

B (4, 5)

D (1, 10) C (4, 10)

This domain is contained in the disk x2 + y2 ≤ 112, hence it is bounded. Moreover, the domain contains its boundary,
which consists of the segments AB, BC, CD, AD shown in the figure, therefore the domain is closed.

(f) {(x, y) ∈ R2 : x > 0, x2 + y2 ≤ 10}:

x

y

This domain is bounded since it is contained in the disk x2 + y2 ≤ 10. It is not closed since the part {(0, y) ∈ R2 : |y| ≤√
10} of its boundary is not contained in the domain.

In Exercises 29–32, determine the global extreme values of the function on the given set without using calculus.

29. f (x, y) = x + y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

solution The sum x + y is maximum when x = 1 and y = 1, and it is minimum when x = 0 and y = 0. Therefore,
the global maximum of f on the given set is f (1, 1) = 1 + 1 = 2 and the global minimum is f (0, 0) = 0 + 0 = 0.

30. f (x, y) = 2x − y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 3

solution f is maximum when x is maximum and y is minimum, that is x = 1 and y = 0. f is minimum when x is
minimum and y is maximum, that is, x = 0, y = 3. Therefore, the global maximum of f in the set is f (1, 0) = 2 · 1 − 0 = 2
and the global minimum is f (0, 3) = 2 · 0 − 3 = −3.

31. f (x, y) = (x2 + y2 + 1)−1, 0 ≤ x ≤ 3, 0 ≤ y ≤ 5

solution f (x, y) = 1
x2+y2+1

is maximum when x2 and y2 are minimum, that is, when x = y = 0. f is minimum

when x2 and y2 are maximum, that is, when x = 3 and y = 5. Therefore, the global maximum of f on the given set is

f (0, 0) = (02 + 02 + 1)
−1 = 1, and the global minimum is f (3, 5) = (32 + 52 + 1)

−1 = 1
35 .

32. f (x, y) = e−x2−y2
, x2 + y2 ≤ 1

solution The function f (x, y) = e−(x2+y2) = 1
ex2+y2 is maximum when ex2+y2

is minimum, that is, when x2 + y2

is minimum. The minimum value of x2 + y2 on the given set is zero, obtained at x = 0 and y = 0. We conclude that the
maximum value of f on the given set is

f (0, 0) = e−02−02 = e0 = 1

f is minimum when x2 + y2 is maximum, that is, when x2 + y2 = 1. Thus, the minimum value of f on the given disk
is obtained on the boundary of the disk, and it is e−1 = 1

e .

33. Assumptions Matter Show that f (x, y) = xy does not have a global minimum or a global maximum on the
domain

D = {(x, y) : 0 < x < 1, 0 < y < 1}
Explain why this does not contradict Theorem 3.
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solution The largest and smallest values of f on the closed square 0 ≤ x, y ≤ 1 are f (1, 1) = 1 and f (0, 0) = 0.
However, on the open square 0 < x, y < 1, f can never attain these maximum and minimum values, since the boundary
(and in particular the points (1, 1) and (−1, −1)) are not included in the domain. This does not contradict Theorem 3
since the domain is open.

34. Find a continuous function that does not have a global maximum on the domain D = {(x, y) : x + y ≥ 0, x + y ≤ 1}.
Explain why this does not contradict Theorem 3.

solution Consider the continuous function f (x, y) = x. Taking first partial derivatives we have

fx = x, fy = 0

and second-order partials we have

fxx = 1, fyy = 0, fxy = 0

Already we can see that

D = fxxfyy − f 2
xy = 0

So the Second Derivative Test is going to be inconclusive. (In fact, there are no critical points)
Considering this function over the domain, D = {(x, y) : x + y ≥ 0, x + y ≤ 1}, we see that f (x, y) = x is in the

strip formed between to the two lines y = −x and y = 1 − x. We can make f (x, y) = x arbitrarily large within this
region. In fact, we can see that limx→−∞ f (x, y) is arbitrarily large. This does not contradict the theorem in the text,
because the domain D is an bounded domain, in that for any integer n, we can see that the open interval (−n, n + 0.5) is
contained in this region.

35. Find the maximum of

f (x, y) = x + y − x2 − y2 − xy

on the square, 0 ≤ x ≤ 2, 0 ≤ y ≤ 2 (Figure 21).

(a) First, locate the critical point of f in the square, and evaluate f at this point.

(b) On the bottom edge of the square, y = 0 and f (x, 0) = x − x2. Find the extreme values of f on the bottom edge.

(c) Find the extreme values of f on the remaining edges.

(d) Find the largest among the values computed in (a), (b), and (c).

f (x, 2) = −2 − x − x2

Edge y = 2

Edge x = 2

f (2, y) = −2 − y − y2

Edge x = 0

f (0, y) = y − y2

Edge y = 0

f (x, 0) = x − x2

x
2

y

2

FIGURE 21 The function f (x, y) = x + y − x2 − y2 − xy on the boundary segments of the square
0 ≤ x ≤ 2, 0 ≤ y ≤ 2.

solution

(a) To find the critical points, we look at the first-order partial derivatives set equal to zero and solve:

fx(x, y) = 1 − 2x − y = 0, fy(x, y) = 1 − 2y − x = 0

This gives y = 1 − 2x and x = 1 − 2y, solving simultaneously we see y = 1/3 and x = 1/3. The critical point is
(1/3, 1/3), subsequently, f (1/3, 1/3) = 1/3.

(b) To find the extreme points of f (x, 0) = x − x2 we take the first derivative and set it equal to zero and solve:

f ′(x, 0) = 1 − 2x = 0 → x = 1/2

Thus the extreme value on the bottom edge of the square is

f (1/2, 0) = 1/4
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(c) Now to find the extreme values on the other edges of the square.
First, let us use x = 0: f (0, y) = y − y2. Taking the first derivative and setting equal to 0 gives us:

f ′(0, y) = 1 − 2y = 0, → y = 1/2

Therefore, the extreme value along x = 0 is f (0, 1/2) = 1/4.
Next, let us use y = 2: f (x, 2) = −x2 − x − 2. Take the first derivative and setting equal to 0 gives us:

f ′(x, 2) = −2x − 1 = 0, → x = −1/2

Therefore, the extreme value along y = 2 is f (−1/2, 2) = −7/4.
Finally, let us use x = 2: f (2, y) = −2 − y − y2. Take the first derivative and setting equal to 0 gives us:

f ′(2, y) = −1 − 2y = 0, → y = −1/2

Therefore, the extreme value along x = 2 is f (2, −1/2) = −7/4.
(d) Out of all the values we computed in parts (a), (b), and (c), 1/3 is the largest. This value occurs at the point (1/3, 1/3).

36. Find the maximum of f (x, y) = y2 + xy − x2 on the square 0 ≤ x ≤ 2, 0 ≤ y ≤ 2.

solution
(a) First, locate the critical point of f in the square, and evaluate f at this point.

Taking first-order partial derivatives and setting them equal to 0 to solve, we have:

fx = y − 2x = 0, fy = 2y + x = 0

Thus 2x = y and we can write

4x + x = 0 ⇒ x = 0 and y = 0

Therefore our critical point is (0, 0) and note here that f (0, 0) = 0.
(b) Find the extreme values of f on the edges of the square, namely x = 0, 2 and y = 0, 2.

First if x = 0, then f (0, y) = y2 and f ′ = 2y. Setting the derivative equal to 0 to solve we see y = 0. An extreme
value occurs at the point (0, 0), which was already accounted for in the step above. We also must examine the endpoints
on the interval (0, 0) and (0, 2). Using this we have:

f (0, 0) = 0, f (0, 2) = 4

Next, if x = 2, then f (2, y) = y2 + 2y − 4 and f ′ = 2y + 2. Setting the derivative equal to 0 to solve, we see
y = −1, but this value is not on our square, so we remove it from consideration. The endpoints along this line segment
are (2, 0) and (2, 2). Using these we have

f (2, 0) = 4, f (2, 2) = 4

Next, if y = 0, then f (x, 0) = −x2 and f ′ = −2x. Setting the derivative equal to 0 to solve, we see x = 0. This
value has already been accounted for in part (a). Checking the endpoints of this line segment means examining the points
(0, 0) and (2, 0). Both have been accounted for in steps above.

Finally, if y = 2, then f (x, 2) = 4 + 2x − x2 and f ′ = 2 − 2x. Setting this derivative equal to 0 to solve, we see
x = 1. Evaluating at the point (1, 2) we have f (1, 2) = 5. The endpoints of this line segment are (0, 2) and (2, 2), both
have been accounted for in steps above.
(c) Find the largest among the values computed in (a) and (b).

The maximum occurs at critical point f on the top edge, where f (x, 2) = 4 + 2x − x2. The critical point is
(x, y) = (1, 2) and f (1, 2) = 5.

In Exercises 37–43, determine the global extreme values of the function on the given domain.

37. f (x, y) = x3 − 2y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

solution We use the following steps.

Step 1. Find the critical points. We set the first derivative equal to zero and solve:

fx(x, y) = 3x2 = 0, fy(x, y) = −2

The two equations have no solutions, hence there are no critical points.
Step 2. Check the boundary. The extreme values occur either at the critical points or at a point on the boundary of the
domain. Since there are no critical points, the extreme values occur at boundary points. We consider each edge of the
square 0 ≤ x, y ≤ 1 separately.

The segment OA: On this segment y = 0, 0 ≤ x ≤ 1, and f takes the values f (x, 0) = x3. The minimum value is
f (0, 0) = 0 and the maximum value is f (1, 0) = 1.
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x

y

A (1, 0)

B (1, 1)

D (0, 0)

C (0, 1)

The segment AB: On this segment x = 1, 0 ≤ y ≤ 1, and f takes the values f (1, y) = 1 − 2y. The minimum value
is f (1, 1) = 1 − 2 · 1 = −1 and the maximum value is f (1, 0) = 1 − 2 · 0 = 1.
The segment BC: On this segment y = 1, 0 ≤ x ≤ 1, and f takes the values f (x, 1) = x3 − 2. The minimum value
is f (0, 1) = 03 − 2 = −2 and the maximum value is f (1, 1) = 13 − 2 = −1.
The segment OC: On this segment x = 0, 0 ≤ y ≤ 1, and f takes the values f (0, y) = −2y. The minimum value is
f (0, 1) = −2 · 1 = −2 and the maximum value is f (0, 0) = −2 · 0 = 0.

Step 3. Conclusions. The values obtained in the previous steps are

f (0, 0) = 0, f (1, 0) = 1, f (1, 1) = −1, f (0, 1) = −2

The smallest value is f (0, 1) = −2 and it is the global minimum of f on the square. The global maximum is the largest
value f (1, 0) = 1.

38. f (x, y) = 5x − 3y, y ≥ x − 2, y ≥ −x − 2, y ≤ 3

solution

Step 1. Find the critical points. We set the first partial derivatives equal to zero and solve:

fx(x, y) = 5, fy(x, y) = −3

When we set each equal to zero, we have no solutions, hence there are no critical points.

Step 2. Check the boundary. The extreme values occur either at the critical points or at a point on the boundary of the
domain. The edges of the boundary are defined by the line y = x − 2, the line y = −x − 2, and the line y = 3. This is
the triangle with vertices (0, −2), (5, 3), (−5, 3).

On the line y = x − 2 we have:

f (x, x − 2) = 5x − 3(x − 2) = 2x + 6 and f ′ = 2

This means that the function is always increasing and the minimum occurs at the point (0, −2) and the maximum occurs
at the vertex (5, 3):

f (0, −2) = 6, f (5, 3) = 16

On the line y = −x − 2 we have:

f (x, −x − 2) = 5x − 3(−x − 2) = 8x + 6 and f ′ = 8

This means that the function is always increasing and the minimum occurs at the point (−5, 3) and the maximum occurs
at the vertex (0, −2):

f (−5, 3) = −34, f (0, −2) = 6

On the line y = 3 we have:

f (x, 3) = 5x − 9 and f ′ = 5

This means that the function is always increasing and the minimum occurs at the point (−5, 3) and the maximum occurs
at the vertex (5, 3):

f (−5, 3) = −34, f (5, 3) = 16

Step 3. Conclusions. The values obtained in the previous steps are:

f (0, −2) = 6, f (−5, 3) = −34, f (5, 3) = 16

The maximum value is 16 and it occurs at the point (5, 3) and the minimum value is −34 and it occurs at the point (−5, 3).
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39. f (x, y) = x2 + 2y2, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

solution The sum x2 + 2y2 is maximum at the point (1, 1), where x2 and y2 are maximum. It is minimum if
x = y = 0, that is, at the point (0, 0). Hence,

Global maximum = f (1, 1) = 12 + 2 · 12 = 3

Global minimum = f (0, 0) = 02 + 2 · 02 = 0

40. f (x, y) = x3 + x2y + 2y2, x, y ≥ 0, x + y ≤ 1

solution We use the following steps.

Step 1. Examine the critical points. We find the critical points of f (x, y) = x3 + x2y + 2y2 in the interior of the domain
(the standard region in the figure).

x

y

A (1, 0)0

B (0, 1)

We set the partial derivatives of f equal to zero and solve:

fx(x, y) = 3x2 + 2xy = x(3x + 2y) = 0

fy(x, y) = x2 + 4y = 0

The first equation gives x = 0 or y = − 3
2x. Substituting x = 0 in the second equation gives 4y = 0 or y = 0. We obtain

the critical point (0, 0). We now substitute y = − 3
2x in the second equation and solve for x:

x2 + 4 ·
(

−3

2
x

)
= x2 − 6x = x(x − 6) = 0 ⇒ x = 0, x = 6

We get the critical points (0, 0) and (6, −9). None of the critical points (0, 0) and (6, −9) is in the interior of the domain.
Step 2. Check the boundary. The boundary consists of the three segments OA, OB, and AB shown in the figure. We
consider each part of the boundary separately.

The segment OA: On this segment y = 0, 0 ≤ x ≤ 1, and f (x, y) = f (x, 0) = x3. The minimum value is
f (0, 0) = 03 = 0 and the maximum value is f (1, 0) = 13 = 1.
The segment OB: On this segment x = 0, 0 ≤ y ≤ 1, and f (x, y) = f (0, y) = 2y2. The minimum value is
f (0, 0) = 2 · 02 = 0 and the maximum value is f (0, 1) = 2 · 12 = 2.
The segment AB: On this segment y = 1 − x, 0 ≤ x ≤ 1, and

f (x, y) = x3 + x2(1 − x) + 2(1 − x)2 = x3 + x2 − x3 + 2
(

1 − 2x + x2
)

= 3x2 − 4x + 2

We find the extreme values of g(x) = 3x2 − 4x + 2 in the interval 0 ≤ x ≤ 1. With the aid of the graph of g(x), and
with setting the derivative g′ equal to 0, we find that the minimum value is

g

(
2

3

)
= f

(
2

3
,

1

3

)
= 3 ·

(
2

3

)2
− 4 · 2

3
+ 2 = 2

3

and the maximum value is

g(0) = f (0, 1) = 3 · 02 − 4 · 0 + 2 = 2

2
3

g(x) = 3x2 − 4x + 2

1
x

y

0

2
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Step 3. Conclusions. We compare the values of f (x, y) at the points obtained in step (2), and determine the global
extrema of f (x, y). This gives

f (0, 0) = 0, f (1, 0) = 1, f (0, 1) = 2, f

(
2

3
,

1

3

)
= 2

3

We conclude that the global minimum of f in the given domain is f (0, 0) = 0 and the global maximum is f (0, 1) = 2.

41. f (x, y) = x3 + y3 − 3xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

solution We use the following steps.

Step 1. Examine the critical points in the interior of the domain. We set the partial derivatives equal to zero and solve:

fx(x, y) = 3x2 − 3y = 0

fy(x, y) = 3y2 − 3x = 0

The first equation gives y = x2. We substitute in the second equation and solve for x:

3
(
x2
)2 − 3x = 0

3x4 − 3x = 3x
(
x3 − 1

)
= 0 ⇒ x = 0, y = 02 = 0

or x = 1, y = 12 = 1

The critical points (0, 0) and (1, 1) are not in the interior of the domain.

Step 2. Find the extreme values on the boundary. We consider each part of the boundary separately.

x

y

D(0, 1) C(1, 1)

B(1, 0)A(0, 0)

The edge AB: On this edge, y = 0, 0 ≤ x ≤ 1, and f (x, 0) = x3. The maximum value is obtained at x = 1 and the
minimum value is obtained at x = 0. The corresponding extreme points are (1, 0) and (0, 0).

The edge BC: On this edge x = 1, 0 ≤ y ≤ 1, and f (1, y) = y3 − 3y + 1. The critical points are d
dy

(
y3 − 3y + 1

)
=

3y2 − 3 = 0, that is, y = ±1. The point in the given domain is y = 1. The candidates for extreme values are thus
y = 1 and y = 0, giving the points (1, 1) and (1, 0).
The edge DC: On this edge y = 1, 0 ≤ x ≤ 1, and f (x, 1) = x3 − 3x + 1. Replacing the values of x and y in the
previous solutions we get the points (1, 1) and (0, 1).
The edge AD: On this edge x = 0, 0 ≤ y ≤ 1, and f (0, y) = y3. Replacing the values of x and y obtained for the
edge AB, we get (0, 1) and (0, 0).

By Theorem 3, the extreme values occur either at a critical point in the interior of the square or at a point on the boundary
of the square. Since there are no critical points in the interior of the square, the candidates for extreme values are the
following points:

(0, 0), (1, 0), (1, 1), (0, 1)

We compute f (x, y) = x3 + y3 − 3xy at these points:

f (0, 0) = 03 + 03 − 3 · 0 = 0

f (1, 0) = 13 + 03 − 3 · 1 · 0 = 1

f (1, 1) = 13 + 13 − 3 · 1 · 1 = −1

f (0, 1) = 03 + 13 − 3 · 0 · 1 = 1

We conclude that in the given domain, the global maximum is f (1, 0) = f (0, 1) = 1 and the global minimum is
f (1, 1) = −1.
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42. f (x, y) = x2 + y2 − 2x − 4y, x ≥ 0, 0 ≤ y ≤ 3, y ≥ x

solution We use the following steps:

Step 1. Examine the critical points in the interior of the domain. We set the partial derivatives equal to zero and solve:

fx(x, y) = 2x − 2, fy(x, y) = 2y − 4

Setting each equal to zero and solving we get: x = 1 and y = 2. Evaluating at the point (1, 2) we see:

f (1, 2) = −5

Step 2. Find the extreme values on the boundary. We consider each part of the boundary separately. The region that is
described is the triangle bounded by the lines x = 0, y = 3, and y = x with vertices (0, 0), (3, 3), (0, 3).

First consider the line x = 0:

f (0, y) = y2 − 4y ⇒ f ′ = 2y − 4

Setting f ′ equal to zero and solving we get y = 2. So we must consider the point (0, 2):

f (0, 2) = −4

We must also consider the endpoints of this line segment, (0, 0) and (0, 3):

f (0, 0) = 0, f (0, 3) = −3

Next, consider the line y = 3:

f (x, 3) = x2 + 9 − 2x − 12 = x2 − 2x − 3 ⇒ f ′ = 2x − 2

Setting f ′ equal to zero and solving we get x = 1. So we must also consider the point (1, 3):

f (1, 3) = −4

We must also consider the endpoints of this line segment, (0, 3) and (3, 3):

f (0, 3) = −3, f (3, 3) = 0

Finally, consider the line y = x:

f (x, x) = x2 + x2 − 2x − 4x = 2x2 − 6x ⇒ f ′ = 4x − 6

Setting f ′ equal to zero and solving, we get x = 3/2. So we must also consider the point (3/2, 3/2):

f (3/2, 3/2) = −9

2

We have already examined the endpoints of this line segment in the steps above.

Step 3. Conclusions. The points that we have considered in this problem are

f (1, 2) = −5, f (0, 2) = −4, f (1, 3) = −4, f (3/2, 3/2) = −9

2

f (0, 0) = 0, f (0, 3) = −3, f (3, 3) = 0

Therefore the minimum value is −5 and occurs at the point (1, 2) and the maximum value is 0 and occurs in two places,
at the points (0, 0) and (3, 3).

43. f (x, y) = (4y2 − x2)e−x2−y2
, x2 + y2 ≤ 2

solution We use the following steps.

Step 1. Examine the critical points. We compute the partial derivatives of f (x, y) =
(

4y2 − x2
)

e−x2−y2
, set them

equal to zero and solve. This gives

fx(x, y) = −2xe−x2−y2 +
(

4y2 − x2
)

e−x2−y2 · (−2x) = −2xe−x2−y2
(

1 + 4y2 − x2
)

= 0

fy(x, y) = 8ye−x2−y2 +
(

4y2 − x2
)

e−x2−y2 · (−2y) = −2ye−x2−y2
(
−4 + 4y2 − x2

)
= 0

Since e−x2−y2 �= 0, the first equation gives x = 0 or x2 = 1 + 4y2. Substituting x = 0 in the second equation gives

−2ye−y2
(
−4 + 4y2

)
= 0.
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Since e−y2 �= 0, we get

y
(
−1 + y2

)
= y(y − 1)(y + 1) = 0 ⇒ y = 0, y = 1, y = −1

We obtain the three points (0, 0), (0, −1), (0, 1). We now substitute x2 = 1 + 4y2 in the second equation and solve for y:

−2ye−1−5y2
(
−4 + 4y2 − 1 − 4y2

)
= 0

−2ye−1−5y2 · (−5) = 0 ⇒ y = 0

The corresponding values of x are obtained from

x2 = 1 + 4 · 02 = 1 ⇒ x = ±1

We obtain the solutions (1, 0) and (−1, 0). We conclude that the critical points are

(0, 0), (0, −1), (0, 1), (1, 0), and (−1, 0).

All of these points are in the interior x2 + y2 < 2 of the given disk.

Step 2. Check the boundary. The boundary is the circle x2 + y2 = 2. On this set y2 = 2 − x2, hence the function f (x, y)

takes the values

f (x, y)

∣∣∣∣
x2+y2=2

= g(x) =
(

4
(

2 − x2
)

− x2
)

e−2 =
(
−5x2 + 8

)
e−2

That is, g(x) = −5e−2x2 + 8e−2. We determine the interval of x. Since x2 + y2 = 2, we have 0 ≤ x2 ≤ 2 or
−√

2 ≤ x ≤ √
2.

x

y

−

1.265−1.265

8e−2

22

We thus must find the extreme values of g(x) = −5e−2x2 + 8e−2 on the interval −√
2 ≤ x ≤ √

2. With the aid of the
graph of g(x), we conclude that the maximum value is g(0) = 8e−2 and the minimum value is

g
(
−√

2
)

= g
(√

2
)

= −5e−2
(
±√

2
)2 + 8e−2 = −10e−2 + 8e−2 = −2e−2 ≈ −0.271

We conclude that the points on the boundary with largest and smallest values of f are

f
(

0, ±√
2
)

= 8e−2 ≈ 1.083, f
(
±√

2, 0
)

= −2e−2 ≈ −0.271

Step 3. Conclusions. The extreme values either occur at the critical points or at the points on the boundary, found in step
2. We compare the values of f at these points:

f (0, 0) = 0

f (0, −1) = 4e−1 ≈ 1.472

f (0, 1) = 4e−1 ≈ 1.472

f (1, 0) = −e−1 ≈ −0.368

f (−1, 0) = −e−1 ≈ −0.368

f
(

0, ±√
2
)

≈ 1.083

f
(
±√

2, 0
)

≈ −0.271

We conclude that the global minimum is f (1, 0) = f (−1, 0) = −0.368 and the global maximum is f (0, −1) =
f (0, 1) = 1.472.
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44. Find the maximum volume of a box inscribed in the tetrahedron bounded by the coordinate planes and the plane

x + 1

2
y + 1

3
z = 1

solution To maximize volume of a rectangular box we must consider the volume, V = xyz. But since the constraint

is x + 1
2y + 1

3z = 1, we can solve this for z and get:

z = 3 − 3x − 3

2
y ⇒ V (x, y) = xy

(
3 − 3x − 3

2
y

)
= 3xy − 3x2y − 3

2
xy2

Now to maximize V (x, y). First to find the critical points, we take the first-order partial derivatives, set them equal to
zero, and solve:

Vx(x, y) = 3y − 6xy − 3

2
y2 = 0, Vy(x, y) = 3x − 3x2 − 3xy = 0

Using the equation Vy = 0 we see:

3x − 3x2 − 3xy = 0 ⇒ x − x2 − xy = 0 ⇒ xy = x − x2 ⇒ y = 1 − x or x = 0

We can ignore x = 0, because this value would produce a box having volume 0. Using this information in the first
equation, Vx = 0, we see

3y − 6xy − 3

2
y2 = 0 ⇒ 3(1 − x) − 6x(1 − x) − 3

2
(1 − x)2 = 0 ⇒ 9

2
x2 − 6x + 3

2
= 0

Clearing this equation of fractions we have

3x2 − 4x + 1 = 0 ⇒ (3x − 1)(x − 1) = 0 ⇒ x = 1

3
, 1

Using this information we see:

x = 1

3
⇒ y = 1 − 1

3
= 2

3

x = 1 ⇒ y = 1 − 1 = 0

We know that y �= 0, otherwise, volume of the box will be 0 (which is not maximized). In fact, it makes no sense to use
any of the coordinate plane boundaries for critical points because the resultant volume will be 0.

Therefore we examine the point where x = 1
3 and y = 2

3 . To find z we use z = 3 − 3x − 3
2y:

z = 3 − 3 · 1

3
− 3

2
· 2

3
= 1

Hence the maximum volume of the box is

V = xyz = 1

3
· 2

3
· 1 = 2

9
cubic units

45. Find the maximum volume of the largest box of the type shown in Figure 22, with one corner at the origin and the
opposite corner at a point P = (x, y, z) on the paraboloid

z = 1 − x2

4
− y2

9
with x, y, z ≥ 0

x

y

1

P

z

FIGURE 22
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solution To maximize the volume of a rectangular box, start with the relation V = xyz and using the paraboloid
equation we see

z = 1 − x2

4
− y2

9
⇒ V (x, y) = xy

(
1 − x2

4
− y2

9

)

Therefore we will consider

V (x, y) = xy − 1

4
x3y − 1

9
xy3

First to find the critical points, we take the first-order partial derivatives and set them equal to zero, and solve:

Vx(x, y) = y − 3

4
x2y − 1

9
y3, Vy(x, y) = x − 1

4
x3 − 1

3
xy2

Using the equation Vy = 0 we see

x − 1

4
x3 − 1

3
xy2 = 0 ⇒ x = 0, y2 = 3 − 3

4
x2 ⇒ y =

√
3 − 3

4
x2

(Note here, we can ignore the value x = 0, since it produces a box having zero volume.)
Using this relation in the first equation, Vx = 0, we see:√

3 − 3

4
x2 − 3

4
x2

√
3 − 3

4
x2 − 1

9

(
3 − 3

4
x2
)3/2

= 0

Factoring we see: √
3 − 3

4
x2
[

1 − 3

4
x2 − 1

9

(
3 − 3

4
x2
)]

= 0

and thus

3 − 3

4
x2 = 0 ⇒ x2 = 4 ⇒ x = ±2

or

1 − 3

4
x2 − 1

3
+ 1

12
x2 = 0 ⇒ 2

3
− 2

3
x2 = 0 ⇒ x = ±1

Since the governing equation f (x, y) is a paraboloid, that is symmetric about the z-axis, we need only consider the point
when x = 2 or x = 1.

Therefore, since y =
√

3 − 3
4x2 and z = 1 − 1

4x2 − 1
9y2, we have, if x = 2

y =
√

3 − 3

4
· 4 = 0 ⇒ z = 1 − 1

4
· 4 − 1

9
· 0 = 0

This will give a box having zero volume - not a maximum volume at all.

Using x = 1, and y =
√

3 − 3
4x2, z = 1 − 1

4x2 − 1
9y2, we have

y =
√

3 − 3

4
= 3

2
, z = 1 − 1

4
· 12 − 1

9
· 9

4
= 1

2

Therefore, the box having maximum volume has dimensions, x = 1, y = 3/2, and z = 1/2 and maximum value for the
volume:

V = xyz = 1 · 3

2
· 1

2
= 3

4

46. Find the point on the plane

z = x + y + 1

closest to the point P = (1, 0, 0). Hint: Minimize the square of the distance.

solution Using the hint given in the text, minimize the function

f (x, y, z) = (x − 1)2 + y2 + (x + y + 1)2
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We get, after taking first-order partial derivatives and setting them equal to zero to solve:

fx = 2(x − 1) + 2(x + y + 1) = 0, fy = 2y + 2(x + y + 1) = 0

This gives y = x − 1 and 2(x − 1) + 2(2x) = 0 or x = 1/3.
Therefore, since x = 1/3, then y = x − 1 = 1/3 − 1 = −2/3 and z = x + y + 1 = 1/3 − 2/3 + 1 = 2/3. The point

closest to the point P(1, 0, 0) is the point (1/3, −2/3, 2/3).

47. Show that the sum of the squares of the distances from a point P = (c, d) to n fixed points (a1, b1), . . . ,(an, bn) is
minimized when c is the average of the x-coordinates ai and d is the average of the y-coordinates bi .

solution First we must form the sum of the squares of the distances from a point P(c, d) to n fixed points. For instance,
the square of the distance from (c, d) to (a1, b1) would be:

(c − a1)2 + (d − b1)2

using this pattern, the sum in question would be

S =
n∑

i=1

[(c − ai)
2 + (d − bi)

2

Using the methods discussed in this section of the text, we want to minimize the sum S. We will examine the first-order
partial derivatives with respect to c and d and set them equal to zero and solve:

Sc =
n∑

i=1

2(c − ai) = 0, Sd =
n∑

i=1

2(d − bi) = 0

Consider first the following:

n∑
i=1

2(c − ai) = 0 ⇒
n∑

i=1

(c − ai) = 0 ⇒
n∑

i=1

c −
n∑

i=1

ai = 0

Therefore

n∑
i=1

c =
n∑

i=1

ai ⇒ n · c =
n∑

i=1

ai ⇒ c = 1

n

n∑
i=1

ai

Similarly we can examine Sd = 0 to see

n∑
i=1

2(d − bi) = 0 ⇒
n∑

i=1

(d − bi) = 0 ⇒
n∑

i=1

d −
n∑

i=1

bi = 0

and

n∑
i=1

d =
n∑

i=1

bi ⇒ n · d =
n∑

i=1

bi ⇒ d = 1

n

n∑
i=1

bi

Therefore, the sum is minimized when c is the average of the x-coordinates ai and d is the average of the y-coordinates bi .

48. Show that the rectangular box (including the top and bottom) with fixed volume V = 27 m3 and smallest possible
surface area is a cube (Figure 23).

z

y
x

FIGURE 23 Rectangular box with sides x, y, z.

solution
Step 1. Find a function to be maximized. The surface area of the box with sides lengths x, y, z is

S = 2(xz + yz + xy) (1)
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We express the surface area in terms of x and y alone using the equation V = xyz for the volume of the box. This equation
implies that z = V

xy , hence by (1) we get

S = S(x, y) = 2

(
x · V

xy
+ y · V

xy
+ xy

)
= 2

(
V

y
+ V

x
+ xy

)
= 2V

y
+ 2V

x
+ 2xy

That is,

S = 2V

y
+ 2V

x
+ 2xy

Step 2. Determine the domain. The variables x and y express lengths, therefore, they must be nonnegative. Also, S is not
defined if x = 0 or y = 0, therefore the domain is

D = {(x, y) : x > 0, y > 0}
We must find the minimum value of S on D. Because this domain is neither closed nor bounded, we have no guarantee
that an absolute minimum exists. However, it can be proved (see later Justifications) that S has a minimum value on D,
hence it must occur at a critical point in D.

Differentiating S = 2V
y + 2V

x + 2xy and equating the partial derivatives to zero, we get

Sx(x, y) = −2V

x2
+ 2y = 0, Sy(x, y) = −2V

y2
+ 2x = 0

The first equation gives y = V
x2 . Substituting in the second equation yields

2x − 2V

V 2

x4

= 2x − 2x4

V
= 2x

(
1 − x3

V

)
= 0

The solutions are x = 0 and x = 3√
V . The solution x = 0 is not contained in D, hence the only solution in D is x = 3√

V .
The corresponding value of y is obtained from y = V

x2 :

y = V(
3√
V
)2

= V

V 2/3
= 3√

V

The critical point is
(

3√
V ,

3√
V
)

. We find the value of z, using z = V
xy :

z = V
3√
V

3√
V

= V

V 2/3
= 3√

V

But how can we show that this critical point is a minumum? We provide two justifications.
Justification 1: Using the second derivative test, we have Sxx = 4V/x3, so Sxx(

3√
V ) = 4; Syy = 4V/y3, so

Syy(
3√
V ) = 4; and Sxy = 2. Thus, D = 4 · 4 − 22 = 12 > 0, and since Sxx > 0, we do indeed have a minimum surface

area. This makes sense, because when x or y go to 0 or to ∞, then S (which is 2V/x + 2V/y + 2xy) clearly goes to ∞.
Justification 2: We show that the function S(X, Y ) = 2V

y + 2V
x + 2xy has a minimum value in the domain D =

{(x, y) : x > 0, y > 0}.

x

y

D

We denote by a0 the value of S(x, y) at the point (2, 2) in D:

S(2, 2) = 2V + 8 = a0 > 8
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The following inequalities hold in D:

S(x, y) = V

x
+ V

y
+ 2xy ≥ V

x
(2)

S(x, y) = V

x
+ V

y
+ 2xy ≥ V

y
(3)

S(x, y) = V

x
+ V

y
+ 2xy ≥ 2xy (4)

Since lim
x→0+

V
x = ∞, it follows by (1) that there exists 0 < r1 < 1 such that, for all 0 < x < r1 and for all values of y,

S(x, y) > a0

Since lim
y→0+

V
y = ∞, it follows by (2) that there exists 0 < r2 < 1 such that, for all 0 < y < r1 and for all values of x,

S(x, y) > a0

By (3) it follows that if xy > a0 then

S(x, y) > 2a0 > a0

We define the following domain:

R = {(x, y) : x ≥ r1, y ≥ r2, xy ≤ a0}

x

y

1r1

r2
R

xy = a0

1

0

R is closed and bounded and S(x, y) is continuous in R, therefore S has a minimum value in R.
We now show that this minimum is also the minimum value of S in D. First notice that, by the above considerations,

S(x, y) > a0 for all (x, y) outside R. At the point (2, 2), S(2, 2) = a0, and this point is in R, since 2 ≥ r1, 2 ≥ r2 (recall
that 0 < r1, r2 < 1) and 2 · 2 = 4 < 8 < a0. Therefore, the minimum value of S(x, y) in R is also the minimum value
of S in D. We thus proved that S attains a minimum value on D.

49. Consider a rectangular box B that has a bottom and sides but no top and has minimal surface area among all
boxes with fixed volume V .

(a) Do you think B is a cube as in the solution to Exercise 48? If not, how would its shape differ from a cube?

(b) Find the dimensions of B and compare with your response to (a).

solution

(a) Each of the variables x and y is the length of a side of three faces (for example, x is the length of the front, back, and
bottom sides), whereas z is the length of a side of four faces.

y

x

z

Therefore, the variables x, y, and z do not have equal influence on the surface area. We expect that in the box B with
minimal surface area, z is smaller than 3√

V , which is the side of a cube with volume V (also we would expect x = y).

(b) We must find the dimensions of the box B, with fixed volume V and with smallest possible surface area, when the
top is not included.

Step 1. Find a function to be minimized. The surface area of the box with sides lengths x, y, z when the top is not included
is

S = 2xz + 2yz + xy (1)
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y

x

z

To express the surface in terms of x and y only, we use the formula for the volume of the box, V = xyz, giving z = V
xy .

We substitute in (1) to obtain

S = 2x · V

xy
+ 2y · V

xy
+ xy = 2V

y
+ 2V

x
+ xy

That is,

S = 2V

y
+ 2V

x
+ xy.

Step 2. Determine the domain. The variables x, y denote lengths, hence they must be nonnegative. Moreover, S is not
defined for x = 0 or y = 0. Since there are no other limitations on the variables, the domain is

D = {(x, y) : x > 0, y > 0}
We must find the minimum value of S on D. Because this domain is neither closed nor bounded, we are not sure that a
minimum value exists. However, it can be proved (in like manner as in Exercise 48) that S does have a minimum value
on D. This value occurs at a critical point in D, hence we set the partial derivatives equal to zero and solve. This gives

Sx(x, y) = −2V

x2
+ y = 0

Sy(x, y) = −2V

y2
+ x = 0

The first equation gives y = 2V
x2 . Substituting in the second equation yields

x − 2V

4V 2

x4

= x − x4

2V
= x

(
1 − x3

2V

)
= 0

The solutions are x = 0 and x = (2V )1/3. The solution x = 0 is not included in D, so the only solution is x = (2V )1/3.
We find the value of y using y = 2V

x2 :

y = 2V

(2V )2/3
= (2V )1/3

We conclude that the critical point, which is the point where the minimum value of S in D occurs, is
(
(2V )1/3, (2V )1/3

)
.

We find the corresponding value of z using z = V
xy . We get

z = V

(2V )1/3(2V )1/3
= V

22/3V 2/3
= V 1/3

22/3
=
(

V

4

)1/3

We conclude that the sizes of the box with minimum surface area are

width: x = (2V )1/3;
length: y = (2V )1/3;

height: z =
(

V
4

)1/3
.

We see that z is smaller than x and y as predicted.

50. Given n data points (x1, y1), . . . , (xn, yn), the linear least-squares fit is the linear function

f (x) = mx + b

that minimizes the sum of the squares (Figure 24):

E(m, b) =
n∑

j=1

(yj − f (xj ))2
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Show that the minimum value of E occurs for m and b satisfying the two equations

m

⎛
⎝ n∑

j=1

xj

⎞
⎠+ bn =

n∑
j=1

yj

m

n∑
j=1

x2
j + b

n∑
j=1

xj =
n∑

j=1

xj yj

x

(x1, y1)
(x2, y2)

(xn, yn)

(xj, yj)

y = mx + b

y

FIGURE 24 The linear least-squares fit minimizes the sum of the squares of the vertical distances from the data points
to the line.

solution We first find the critical points of E(m, b) = ∑n
j=1

(
yj − mxj − b

)2. Setting the partial derivatives equal
to zero, we get

Em(m, b) = 2
n∑

j=1

(
yj − mxj − b

) · (−xj

) = −2
n∑

j=1

xj · (yj − mxj − b
) = 0

Eb(m, b) = 2
n∑

j=1

(
yj − mxj − b

) · (−1) = −2
n∑

j=1

(
yj − mxj − b

)

= −2

⎛
⎝ n∑

j=1

(
yj − mxj

)− nb

⎞
⎠ = 0

We obtain the following equations:

n∑
j=1

xj · yj − m

n∑
j=1

x2
j − b

n∑
j=1

xj = 0

n∑
j=1

yj − m

n∑
j=1

xj − bn = 0

or

m

n∑
j=1

x2
j + b

n∑
j=1

xj =
n∑

j=1

xj · yj (1)

m

n∑
j=1

xj + bn =
n∑

j=1

yj (2)

By Theorem 3 the minimum value of E(m, b) (if it exists) occurs at a critical point, which is the solution of equations (1)
and (2). It can be shown (see justification) that E(m, b) has a minimum value, hence E is minimized by the solution of
(1) and (2).

Justification: We show that E(m, b) =∑n
j=1

(
yj − mxj − b

)2 has a minimum value. Let (m0, b0) be any point and
E(m0, b0) = E0. Since E(m, b) is increasing without bound as |m| → ∞ and |b| → ∞, there exists a number R > 0
such that

E(m, b) > E0 if |m| > R and |b| > R (3)

The domain D = {(m, b) : |m| ≤ R and |b| ≤ R} is closed and bounded and E(m, b) is continuous on D, hence E has a
minimum value EM on D. The point (m0, b0) is in D (since E(m, b) > E0 for all points (m, b) that are not in D), hence

EM ≤ E(m0, b0) = E0 (4)

It follows by (1) and (2) that EM is the minimum value of E(m, b) on the entire mb-plane.
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51. The power (in microwatts) of a laser is measured as a function of current (in milliamps). Find the linear least-squares
fit (Exercise 50) for the data points.

Current (mA) 1.0 1.1 1.2 1.3 1.4 1.5

Laser power (μW) 0.52 0.56 0.82 0.78 1.23 1.50

solution By Exercise 50, the coefficients of the linear least-square fit f (x) = mx + b are determined by the following
equations:

m

n∑
j=1

xj + bn =
n∑

j=1

yj

m

n∑
j=1

x2
j + b

n∑
j=1

xj =
n∑

j=1

xj · yj (1)

In our case there are n = 6 data points:

(x1, y1) = (1, 0.52), (x2, y2) = (1.1, 0.56),

(x3, y3) = (1.2, 0.82), (x4, y4) = (1.3, 0.78),

(x5, y5) = (1.4, 1.23), (x6, y6) = (1.5, 1.50).

We compute the sums in (1):

6∑
j=1

xj = 1 + 1.1 + 1.2 + 1.3 + 1.4 + 1.5 = 7.5

6∑
j=1

yj = 0.52 + 0.56 + 0.82 + 0.78 + 1.23 + 1.50 = 5.41

6∑
j=1

x2
j = 12 + 1.12 + 1.22 + 1.32 + 1.42 + 1.52 = 9.55

6∑
j=1

xj · yj = 1 · 0.52 + 1.1 · 0.56 + 1.2 · 0.82 + 1.3 · 0.78 + 1.4 · 1.23 + 1.5 · 1.50 = 7.106

Substituting in (1) gives the following equations:

7.5m + 6b = 5.41

9.55m + 7.5b = 7.106 (2)

We multiply the first equation by 9.55 and the second by (−7.5), then add the resulting equations. This gives

71.625m + 57.3b = 51.6655
+ −71.625m − 56.25b = −53.295

1.05b = −1.6295

⇒ b = −1.5519

We now substitute b = −1.5519 in the first equation in (2) and solve for m:

7.5m + 6 · (−1.5519)=5.41

7.5m=14.7214
⇒ m = 1.9629

The linear least squares fit f (x) = mx + b is thus

f (x) = 1.9629x − 1.5519.

52. Let A = (a, b) be a fixed point in the plane, and let fA(P ) be the distance from A to the point P = (x, y). For
P �= A, let eAP be the unit vector pointing from A to P (Figure 25):

eAP =
−→
AP

‖−→AP ‖
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Show that

∇fA(P ) = eAP

x

y

A = (a, b)

eAP

P = (x, y)
Distance  fA(x, y)

FIGURE 25 The distance from A to P increases most rapidly in the direction eAP .

solution Note that we can derive this result without calculation: Because ∇fA(P ) points in the direction of maximal
increase, it must point directly away from A at P , and because the distance fA(x, y) increases at a rate of one as you
move away from A along the line through A and P , ∇fA(P ) must be a unit vector.

Further Insights and Challenges
53. In this exercise, we prove that for all x, y ≥ 0:

1

α
xα + 1

β
xβ ≥ xy

where α ≥ 1 and β ≥ 1 are numbers such that α−1 + β−1 = 1. To do this, we prove that the function

f (x, y) = α−1xα + β−1yβ − xy

satisfies f (x, y) ≥ 0 for all x, y ≥ 0.

(a) Show that the set of critical points of f (x, y) is the curve y = xα−1 (Figure 26). Note that this curve can also be
described as x = yβ−1. What is the value of f (x, y) at points on this curve?

(b) Verify that the Second Derivative Test fails. Show, however, that for fixed b > 0, the function g(x) = f (x, b) is
concave up with a critical point at x = bβ−1.

(c) Conclude that for all x > 0, f (x, b) ≥ f (bβ−1, b) = 0.

inc inc
b

x

y
y = xα−1

(bβ−1, b )

Critical points of f (x, y)

FIGURE 26 The critical points of f (x, y) = α−1xα + β−1yβ − xy form a curve y = xα−1.

solution We define the following function:

f (x, y) = 1

α
xα + 1

β
yβ − xy

Notice that f (0, 0) = 0.

(a) Determine the critical points for f (x, y) = f (x, y) = α−1xα + β−1yβ − xy. First, take the first-order partial
derivatives and set them equal to zero to solve:

fx = α−1 · αxα−1 − y = xα−1 − y = 0, fy = β−1 · βyβ−1 − x = yβ−1 − x = 0

This means that y = xα−1 and simultaneously x = yβ−1. Note here that we are guaranteed that the set of points satisfying
both equations is nonempty because 1/α + 1/β = 1.

Now to compute the value of f (x, y) at these points:

f (x, y) = f (x, xα−1) = α−1xα + β−1(xα−1)β − x(xα−1) =
(

1

α
− 1

)
xα + 1

β
xαβ−β

But remember that α−1 + β−1 = 1 so we can say

1

α
+ 1

β
= 1, β + α = αβ
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Using these relations we see:

f (x, y) = f (x, xα−1) =
(

1

α
− 1

)
xα + 1

β
xαβ−β = − 1

β
xα + 1

β
xα = 0

or similarly,

f (x, y) = f (yβ−1, y) = 1

α
yαβ−α +

(
1

β
− 1

)
yβ = 1

α
yβ − 1

α
yβ = 0

(b) Now computing the second-order partial derivatives we get

fxx = (α − 1)xα−2, fyy = (β − 1)yβ−2, fxy = −1

Therefore we can write the discriminant (while using the relations about α and β above):

D = fxxfyy − f 2
xy = (α − 1)(β − 1)xα−2yβ−2 − 1 = xα−2yβ−2 − 1

Evaluating this expression at the critical points when y = xα−1 we see

D(x, xα−1) = xα−2(xα−1)β−2 − 1 = xα−2xαβ−β−2α+2 − 1 = xα−2+αβ−β−2α+2 − 1 = x0 − 1 = 0

Thus the Second Derivative Test is inconclusive and fails.
Instead, if we fix b > 0, consider the function

g(x) = f (x, b) = 1

α
xα + 1

β
bβ − bx

Therefore, taking the first derivative and setting it equal to zero to solve, we see

g′(x) = xα−1 − b = 0 ⇒ b = xα−1

In order to solve this for x, note here that (α − 1)(β − 1) = 1 so then 1
α−1 = β − 1 and

b = xα−1 ⇒ x = b1/(α−1) ⇒ x = bβ−1

Since

g′′(x) = (α − 1)xα−2, α ≥ 1

then g′′(x) ≥ 0 for all x. Therefore, g(x) is concave up with critical point x = bβ−1.
(c) From our work in part (b), we can conclude, for all x > 0, then

f (x, b) ≥ f (bβ−1, b) = 0

54. The following problem was posed by Pierre de Fermat: Given three points A = (a1, a2), B = (b1, b2), and
C = (c1, c2) in the plane, find the point P = (x, y) that minimizes the sum of the distances

f (x, y) = AP + BP + CP

Let e, f , g be the unit vectors pointing from P to the points A, B, C as in Figure 27.

(a) Use Exercise 52 to show that the condition ∇f (P ) = 0 is equivalent to

e + f + g = 0 3

(b) Show that f (x, y) is differentiable except at points A, B, C. Conclude that the minimum of f (x, y) occurs either at
a point P satisfying Eq. (3) or at one of the points A, B, or C.
(c) Prove that Eq. (3) holds if and only if P is the Fermat point, defined as the point P for which the angles between
the segments AP , BP , CP are all 120◦ (Figure 27).
(d) Show that the Fermat point does not exist if one of the angles in �ABC is > 120◦. Where does the minimum occur
in this case?

P

A

g

e f

C

B

A
C

B

140°

(A) P is the Fermat point
      (the angles between e,
      f, and g are all 120°).

(B) Fermat point does not exist.

FIGURE 27
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solution Let us examine part (b) first.

(b)

C(c1, c2)

P(x, y)
A(a1, a2)

B(b1, b2)

Using the formula for the length of a segment we obtain

f (x, y) =
√

(x − a1)2 + (y − a2)2 +
√

(x − b1)2 + (y − b2)2 +
√

(x − c1)2 + (y − c2)2

We compute the partial derivatives of f :

fx(x, y) = x − a1√
(x − a1)2 + (y − a2)2

+ x − b1√
(x − b1)2 + (y − b2)2

+ x − c1√
(x − c1)2 + (y − c2)2

(1)

fy(x, y) = y − a2√
(x − a1)2 + (y − a2)2

+ y − b2√
(x − b1)2 + (y − b2)2

+ y − c2√
(x − c1)2 + (y − c2)2

(2)

For all (x, y) other then (a1, a2), (b1, b2), (c1, c2) the partial derivatives are continuous, therefore the Criterion for
Differentiability implies that f is differentiable at all points other than A, B, and C.

(a)

C

P e

f

g

A

B

We compute the unit vectors e, f , and g:

e = 〈x − a1, y − a2〉√
(x − a1)2 + (y − a2)2

f = 〈x − b1, y − b2〉√
(x − b1)2 + (y − b2)2

g = 〈x − c1, y − c2〉√
(x − c1)2 + (y − c2)2

We write the condition e + f + g = 0:

e + f + g = 〈x − a1, y − a2〉√
(x − a1)2 + (y − a2)2

+ 〈x − b1, y − b2〉√
(x − b1)2 + (y − b2)2

+ 〈x − c1, y − c2〉√
(x − c1)2 + (y − c2)2

=
〈

x − a1√
(x − a1)2 + (y − a2)2

+ x − b1√
(x − b1)2 + (y − b2)2

+ x − c1√
(x − c1)2 + (y − c2)2

,

y − a2√
(x − a1)2 + (y − a2)2

+ y − b2√
(x − b1)2 + (y − b2)2

+ y − c2√
(x − c1)2 + (y − c2)2

〉
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Combining with (1) and (2) we get

e + f + g = 〈fx(x, y), fy(x, y)
〉 = ∇f

Therefore, the condition ∇f = 0 is equivalent to e + f + g = 0.
(c) We now show that Eq. (3) holds if and only if the mutual angles between the unit vectors are all 120◦. We place the
axes so that the positive x-axis is in the direction of e.

e
q

a f
g

x

y

Let θ and α be the angles that f and g make with e, respectively. Hence,

e = 〈1, 0〉 , f = 〈cos θ, sin θ〉 , g = 〈cos α, sin α〉
Substituting in e + f + g = 0 we have

〈cos θ + cos α + 1, sin θ + sin α〉 = 〈0, 0〉
or

cos θ + cos α + 1 = 0

sin θ + sin α = 0

The second equation implies that

sin θ = − sin α = sin(180 + α)

The solutions for 0 ≤ α, θ ≤ 360 are

θ = 180 + α, θ = 360 − α

We substitute each solution in the first equation and solve for α. This gives

θ = 180 + α θ = 360◦ − α

cos(180 + α) + cos α + 1 = 0 cos(360◦ − α) + cos α + 1 = 0

− cos α + cos α + 1 = 0 cos α + cos α + 1 = 0

1 = 0 2 cos α = −1

cos α = − 1
2

⇒ α = 120◦ α = 240◦
θ = 360◦ − α = 240◦ θ = 360◦ − α = 120◦

We obtain the following vectors:

e = 〈1, 0〉 , f = 〈cos 240◦, sin 240◦〉 , g = 〈cos 120◦, sin 120◦〉
or

e = 〈1, 0〉 , f = 〈cos 120◦, sin 120◦〉 , g = 〈cos 240◦, sin 240◦〉

f

g

x

y

120°

120°
120° e
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or

g

f

x

y

120°

120°
120° e

f

B

A C

P

e g120°

120° 120°

f

B

A

C

Pe

g

120°

120°

120°

In either case the angles between the vectors are 120◦.
Now we see f (x, y) has the minimum value at a critical point:
The critical points are the points where fx and fy are 0 or do not exist, that is, the points A, B, C and the point

where ∇f = 0, which according to part (b) is the Fermat point. We now show that if the Fermat point P exists, then
f (P ) ≤ f (A), f (B), f (C).

P 120°120°

A

B C

120°

Suppose that the Fermat point P exists. The values of f at the critical points are

f (A) = AB + AC

f (B) = AB + BC

f (C) = AC + BC

f (P ) = AP + BP + PC

We show that f (P ) ≤ f (A). Similarly it can be shown that also f (P ) ≤ f (B) and f (P ) ≤ f (C). By the Cosine
Theorem for the triangles ABP and ACP we have

AB =
√

AP
2 + BP

2 − 2AP · BP cos 120◦ =
√

AP
2 + BP

2 + AP · BP

AC =
√

AP
2 + CP

2 − 2AP · PC cos 120◦ =
√

AP
2 + CP

2 + AP · PC

Hence

f (A) = AB + AC =
√

AP
2 + BP

2 + AP · BP +
√

AP
2 + CP

2 + AP · PC

≥ AP + BP + PC = f (P )

The last inequality can be verified by squaring and transferring sides. It’s best to use a computer to help with the algebra;
it’s a daunting task to do by hand.

(d) We show that if one of the angles of �ABC is ≥ 120◦, then the Fermat point does not exist. Notice that the Fermat
point (if it exists) must fall inside the triangle ABC.

120°

120°
120°

A

B

C

P

P cannot lie outside �ABC
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Suppose the Fermat point P exists.

P 120°120°

A

B C

120°1

1 2

1

We sum the angles in the triangles ABP and ACP , obtaining

�A1 + �B1 + 120◦ = 180◦ ⇒ �A1 = 60◦ − �B1

�A2 + �C1 + 120◦ = 180◦ ⇒ �A2 = 60◦ − �C1

Therefore,

�A = �A1 + �A2 = (60◦ − �B1
)+ (60◦ − �C1

) = 120◦ − (�B1 + �C1) < 120◦

We thus showed that if the Fermat point exists, then �A < 120◦. Similarly, one shows also that �B and �C must be
smaller than 120◦. We conclude that if one of the angles in �ABC is equal or greater than 120◦, then the Fermat point
does not exist. In that case, the minimum value of f (x, y) occurs at a point where fx or fy do not exist, that is, at one of
the points A, B, or C.

14.8 Lagrange Multipliers: Optimizing with a Constraint (LT Section 15.8)

Preliminary Questions
1. Suppose that the maximum of f (x, y) subject to the constraint g(x, y) = 0 occurs at a point P = (a, b) such that

∇fP �= 0. Which of the following statements is true?

(a) ∇fP is tangent to g(x, y) = 0 at P .

(b) ∇fP is orthogonal to g(x, y) = 0 at P .

solution

(a) Since the maximum of f subject to the constraint occurs at P , it follows by Theorem 1 that ∇fP and ∇gP are
parallel vectors. The gradient ∇gP is orthogonal to g(x, y) = 0 at P , hence ∇fP is also orthogonal to this curve at P .
We conclude that statement (b) is false (yet the statement can be true if ∇fP = (0, 0)).

(b) This statement is true by the reasoning given in the previous part.

2. Figure 9 shows a constraint g(x, y) = 0 and the level curves of a function f . In each case, determine whether f has
a local minimum, a local maximum, or neither at the labeled point.

4
3
2
1

1
2

3
4

A B

g(x, y) = 0 g(x, y) = 0

∇f ∇f

FIGURE 9

solution The level curve f (x, y) = 2 is tangent to the constraint curve at the point A.Aclose level curve that intersects
the constraint curve is f (x, y) = 1, hence we may assume that f has a local maximum 2 under the constraint at A. The
level curve f (x, y) = 3 is tangent to the constraint curve. However, in approaching B under the constraint, from one side
f is increasing and from the other side f is decreasing. Therefore, f (B) is neither local minimum nor local maximum of
f under the constraint.

3. On the contour map in Figure 10:

(a) Identify the points where ∇f = λ∇g for some scalar λ.

(b) Identify the minimum and maximum values of f (x, y) subject to g(x, y) = 0.
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x

26 −2

2 6

g (x, y) = 0

Contour plot of f (x, y)
(contour interval 2)

−2−6

−6

y

FIGURE 10 Contour map of f (x, y); contour interval 2.

solution

(a) The gradient ∇g is orthogonal to the constraint curve g(x, y) = 0, and ∇f is orthogonal to the level curves of f .
These two vectors are parallel at the points where the level curve of f is tangent to the constraint curve. These are the
points A, B, C, D, E in the figure:

26 −2

2 6
g (x, y) = 0∇fA, ∇gA

A

E

C

D

B

−2−6

−6

(b) The minimum and maximum occur where the level curve of f is tangent to the constraint curve. The level curves
tangent to the constraint curve are

f (A) = −4, f (C) = 2, f (B) = 6, f (D) = −4, f (E) = 4

Therefore the global minimum of f under the constraint is −4 and the global maximum is 6.

Exercises
In this exercise set, use the method of Lagrange multipliers unless otherwise stated.

1. Find the extreme values of the function f (x, y) = 2x + 4y subject to the constraint g(x, y) = x2 + y2 − 5 = 0.

(a) Show that the Lagrange equation ∇f = λ∇g gives λx = 1 and λy = 2.

(b) Show that these equations imply λ �= 0 and y = 2x.

(c) Use the constraint equation to determine the possible critical points (x, y).

(d) Evaluate f (x, y) at the critical points and determine the minimum and maximum values.

solution

(a) The Lagrange equations are determined by the equality ∇f = λ∇g. We find them:

∇f = 〈fx, fy

〉 = 〈2, 4〉 , ∇g = 〈gx, gy

〉 = 〈2x, 2y〉

Hence,

〈2, 4〉 = λ 〈2x, 2y〉

or

λ(2x) = 2

λ(2y) = 4
⇒

λx = 1

λy = 2

(b) The Lagrange equations in part (a) imply that λ �= 0. The first equation implies that x = 1
λ and the second equation

gives y = 2
λ . Therefore y = 2x.
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(c) We substitute y = 2x in the constraint equation x2 + y2 − 5 = 0 and solve for x and y. This gives

x2 + (2x)2 − 5 = 0

5x2 = 5

x2 = 1 ⇒ x1 = −1, x2 = 1

Since y = 2x, we have y1 = 2x1 = −2, y2 = 2x2 = 2. The critical points are thus

(−1, −2) and (1, 2).

Extreme values can also occur at the points where ∇g = 〈2x, 2y〉 = 〈0, 0〉. However, (0, 0) is not on the constraint.

(d) We evaluate f (x, y) = 2x + 4y at the critical points, obtaining

f (−1, −2) = 2 · (−1) + 4 · (−2) = −10

f (1, 2) = 2 · 1 + 4 · 2 = 10

Since f is continuous and the graph of g = 0 is closed and bounded, global minimum and maximum points exist. So
according to Theorem 1, we conclude that the maximum of f (x, y) on the constraint is 10 and the minimum is −10.

2. Find the extreme values of f (x, y) = x2 + 2y2 subject to the constraint g(x, y) = 4x − 6y = 25.

(a) Show that the Lagrange equations yield 2x = 4λ, 4y = −6λ.

(b) Show that if x = 0 or y = 0, then the Lagrange equations give x = y = 0. Since (0, 0) does not satisfy the constraint,
you may assume that x and y are nonzero.

(c) Use the Lagrange equations to show that y = − 3
4x.

(d) Substitute in the constraint equation to show that there is a unique critical point P .

(e) Does P correspond to a minimum or maximum value of f ? Refer to Figure 11 to justify your answer. Hint: Do the
values of f (x, y) increase or decrease as (x, y) moves away from P along the line g(x, y) = 0?

y

x

4

0

−4

80 4

6 12 24 36
g(x, y) = 0

−4

P

FIGURE 11 Level curves of f (x, y) = x2 + 2y2 and graph of the constraint g(x, y) = 4x − 6y − 25 = 0.

solution

(a) The gradients ∇f and ∇g are

∇f = 〈2x, 4y〉 , ∇g = 〈4, −6〉
The Lagrange equations are thus

∇f = λ∇g

〈2x, 4y〉 = λ 〈4, −6〉
or

2x = 4λ

4y = −6λ

(b) If x = 0, the first equation gives 0 = 4λ or λ = 0. Substituting in the second equation gives 4y = 0 or y = 0.
Similarly, if y = 0, the second equation implies that λ = 0, hence by the first equation also x = 0. That is, if x = 0, then
y = 0 and if y = 0 also x = 0. The point (0, 0) does not satisfy the equation of the constraint, hence we may assume that
x �= 0 and y �= 0.

(c) The first equation in part (a) gives λ = x
2 . Substituting in the second equation we get

4y = −6 · x

2
= −3x ⇒ y = −3

4
x
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(d) We substitute y = − 3
4x in the constraint 4x − 6y = 25 and solve for x and y. This gives

4x − 6

(
−3

4
x

)
= 25

4x + 9

2
x = 25

17x = 50 ⇒ x = 50

17
, y = −3

4
· 50

17
= −75

34

We conclude that there is a unique critical point, which is
(

50
17 , − 75

34

)
.

(e) We now refer to Figure 11. As (x, y) moves away from P along the line g(x, y) = 0, the values of f (x, y) increase,
hence P corresponds to a minimum value of f .

3. Apply the method of Lagrange multipliers to the function f (x, y) = (x2 + 1)y subject to the constraint x2 + y2 = 5.
Hint: First show that y �= 0; then treat the cases x = 0 and x �= 0 separately.

solution We first write out the Lagrange Equations. We have ∇f =
〈
2xy, x2 + 1

〉
and ∇g = 〈2x, 2y〉. Hence, the

Lagrange Condition for ∇g �= 0 is

∇f = λ∇g〈
2xy, x2 + 1

〉
= λ 〈2x, 2y〉

We obtain the following equations:

2xy = λ(2x)

x2 + 1 = λ(2y)
⇒

2x(y − λ) = 0

x2 + 1 = 2λy
(1)

The second equation implies that y �= 0, since there is no real value of x such that x2 + 1 = 0. Likewise, λ �= 0. The
solutions of the first equation are x = 0 and y = λ.

Case 1: x = 0. Substituting x = 0 in the second equation gives 2λy = 1, or y = 1
2λ

. We substitute x = 0, y = 1
2λ

(recall that λ �= 0) in the constraint to obtain

02 + 1

4λ2
= 5 ⇒ 4λ2 = 1

5
⇒ λ = ± 1√

20
= ± 1

2
√

5

The corresponding values of y are

y = 1

2 · 1
2
√

5

= √
5 and y = 1

2 ·
(
− 1

2
√

5

) = −√
5

We obtain the critical points: (
0,

√
5
)

and
(

0, −√
5
)

Case 2: x �= 0. Then the first equation in (1) implies y = λ. Substituting in the second equation gives

x2 + 1 = 2λ2 ⇒ x2 = 2λ2 − 1

We now substitute y = λ and x2 = 2λ2 − 1 in the constraint x2 + y2 = 5 to obtain

2λ2 − 1 + λ2 = 5

3λ2 = 6

λ2 = 2 ⇒ λ = ±√
2

The solution (x, y) are thus

λ = √
2: y = √

2, x = ±√
2 · 2 − 1 = ±√

3

λ = −√
2: y = −√

2, x = ±√
2 · 2 − 1 = ±√

3

We obtain the critical points:(√
3,

√
2
)

,
(
−√

3,
√

2
)

,
(√

3, −√
2
)

,
(
−√

3, −√
2
)
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We conclude that the critical points are(
0,

√
5
)

,
(

0, −√
5
)

,
(√

3,
√

2
)

,
(
−√

3,
√

2
)

,
(√

3, −√
2
)

,
(
−√

3, −√
2
)

.

We now calculate f (x, y) =
(
x2 + 1

)
y at the critical points:

f
(

0,
√

5
)

= √
5 ≈ 2.24

f
(

0, −√
5
)

= −√
5 ≈ −2.24

f
(√

3,
√

2
)

= f
(
−√

3,
√

2
)

= 4
√

2 ≈ 5.66

f
(√

3, −√
2
)

= f
(
−√

3, −√
2
)

= −4
√

2 ≈ −5.66

Since the constraint gives a closed and bounded curve, f achieves a minimum and a maximum under it. We conclude
that the maximum of f (x, y) on the constraint is 4

√
2 and the minimum is −4

√
2.

In Exercises 4–13, find the minimum and maximum values of the function subject to the given constraint.

4. f (x, y) = 2x + 3y, x2 + y2 = 4

solution We find the extreme values of f (x, y) = 2x + 3y under the constraint g(x, y) = x2 + y2 − 4 = 0.

Step 1. Write the Lagrange Equations. We have ∇f = 〈2, 3〉 and ∇g = 〈2x, 2y〉, hence the Lagrange Condition is

∇f = λ∇g

〈2, 3〉 = λ 〈2x, 2y〉

The corresponding equations are

2 = λ(2x)

3 = λ(2y)

Step 2. Solve for x and y using the constraint. The two equations imply that x �= 0 and y �= 0, hence

λ = 1

x
and λ = 3

2y

The two expressions for λ must be equal, so we obtain

1

x
= 3

2y
⇒ y = 3

2
x

We now substitute y = 3
2x in the constraint equation x2 + y2 = 4 and solve for x and y:

x2 +
(

3

2
x

)2
= 4

x2 + 9

4
x2 = 4

13x2 = 16 ⇒ x1 = 4√
13

, x2 = − 4√
13

Since y = 3
2x, the corresponding values of y are

y1 = 3

2
· 4√

13
= 6√

13
, y2 = 3

2
·
(

− 4√
13

)
= − 6√

13

We obtain the critical points: (
4√
13

,
6√
13

)
,

(
− 4√

13
, − 6√

13

)

Extreme points may occur also where ∇g = 〈2x, 2y〉 = 〈0, 0〉. However, the point (0, 0) is not on the constraint.
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Step 3. Calculate f at the critical points. We evaluate f (x, y) = 2x + 3y at the critical points:

f

(
4√
13

,
6√
13

)
= 8√

13
+ 18√

13
= 26√

13
≈ 7.21

f

(
− 4√

13
, − 6√

13

)
= − 8√

13
− 18√

13
= − 26√

13
≈ −7.21

We conclude that the maximum of f on the constraint is about 7.21 and the minimum is about −7.21.

5. f (x, y) = x2 + y2, 2x + 3y = 6

solution We find the extreme values of f (x, y) = x2 + y2 under the constraint g(x, y) = 2x + 3y − 6 = 0.

Step 1. Write out the Lagrange Equations. The gradients of f and g are ∇f = 〈2x, 2y〉 and ∇g = 〈2, 3〉. The Lagrange
Condition is

∇f = λ∇g

〈2x, 2y〉 = λ 〈2, 3〉
We obtain the following equations:

2x = λ · 2

2y = λ · 3

Step 2. Solve for λ in terms of x and y. Notice that if x = 0, then the first equation gives λ = 0, therefore by the second
equation also y = 0. The point (0, 0) does not satisfy the constraint. Similarly, if y = 0 also x = 0. We therefore may
assume that x �= 0 and y �= 0 and obtain by the two equations:

λ = x and λ = 2

3
y.

Step 3. Solve for x and y using the constraint. Equating the two expressions for λ gives

x = 2

3
y ⇒ y = 3

2
x

We substitute y = 3
2x in the constraint 2x + 3y = 6 and solve for x and y:

2x + 3 · 3

2
x = 6

13x = 12 ⇒ x = 12

13
, y = 3

2
· 12

13
= 18

13

We obtain the critical point
(

12
13 , 18

13

)
.

Step 4. Calculate f at the critical point. We evaluate f (x, y) = x2 + y2 at the critical point:

f

(
12

13
,

18

13

)
=
(

12

13

)2
+
(

18

13

)2
= 468

169
≈ 2.77

Rewriting the constraint as y = − 2
3x + 2, we see that as |x| → +∞ then so does |y|, and hence x2 + y2 is increasing

without bound on the constraint as |x| → ∞. We conclude that the value 468/169 is the minimum value of f under the
constraint, rather than the maximum value.

6. f (x, y) = 4x2 + 9y2, xy = 4

solution We find the extreme values of f (x, y) = 4x2 + 9y2 under the constraint g(x, y) = xy − 4 = 0.

Step 1. Write out the Lagrange Equations. The gradient vectors are ∇f = 〈8x, 18y〉 and ∇g = 〈y, x〉, hence the Lagrange
condition is

∇f = λ∇g

〈8x, 18y〉 = λ 〈y, x〉
or

8x = λy

18y = λx
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Step 2. Solve for λ in terms of x and y. We may assume that x �= 0 and y �= 0, since the points with x = 0 or y = 0 do
not satisfy the constraint. The two equations give

λ = 8x

y
and λ = 18y

x

Step 3. Solve for x and y using the constraint. We equate the two expressions for λ to obtain

8x

y
= 18y

x
⇒ 8x2 = 18y2 ⇒ y = ±2

3
x

The constraint xy = 4 implies that x and y have the same sign, hence y = 2
3x. We substitute y = 2

3x in the constraint
and solve for x and y:

x · 2

3
x = 4 ⇒ x2 = 6 ⇒ x1 = √

6, x2 = −√
6

The corresponding values of y are obtained by y = 2
3x:

y1 = 2

3

√
6 = 2

√
2

3
, y2 = 2

3
·
(
−√

6
)

= −2

√
2

3

The critical points are thus (√
6, 2

√
2

3

)
,

(
−√

6, −2

√
2

3

)

Extreme values can also occur at the point where ∇g = 〈y, x〉 = 〈0, 0, 〉. However, the point (0, 0) is not on the constraint.
Step 4. Calculate f at the critical points. We evaluate f (x, y) = 4x2 + 9y2 at the critical points:

f

(√
6, 2

√
2

3

)
= 4 · 6 + 9 · 4 · 2

3
= 48

f

(
−√

6, −2

√
2

3

)
= 4 · 6 + 9 · 4 · 2

3
= 48

On the constraint, y = 4
x , thus f (x, y) = f

(
x, 4

x

)
= h(x) = 4x2 + 144

x2 . Since lim
x→∞ h(x) = limx→−∞ h(x) = ∞, h

has a global minimum of 48 (but no maximum!) on (−∞, ∞).

7. f (x, y) = xy, 4x2 + 9y2 = 32

solution We find the extreme values of f (x, y) = xy under the constraint g(x, y) = 4x2 + 9y2 − 32 = 0.

Step 1. Write out the Lagrange Equation. The gradient vectors are ∇f = 〈y, x〉 and ∇g = 〈8x, 18y〉, hence the Lagrange
Condition is

∇f = λ∇g

〈y, x〉 = λ 〈8x, 18y〉
We obtain the following equations:

y = λ(8x)

x = λ(18y)

Step 2. Solve for λ in terms of x and y. If x = 0, then the Lagrange equations also imply that y = 0 and vice versa. Since
the point (0, 0) does not satisfy the equation of the constraint, we may assume that x �= 0 and y �= 0. The two equations
give

λ = y

8x
and λ = x

18y

Step 3. Solve for x and y using the constraint. We equate the two expressions for λ to obtain

y

8x
= x

18y
⇒ 18y2 = 8x2 ⇒ y = ±2

3
x

We now substitute y = ± 2
3x in the equation of the constraint and solve for x and y:

4x2 + 9 ·
(

±2

3
x

)2
= 32
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4x2 + 9 · 4x2

9
= 32

8x2 = 32 ⇒ x = −2, x = 2

We find y by the relation y = ± 2
3x:

y = 2

3
· (−2) = −4

3
, y = −2

3
· (−2) = 4

3
, y = 2

3
· 2 = 4

3
, y = −2

3
· 2 = −4

3

We obtain the following critical points:(
−2, −4

3

)
,

(
−2,

4

3

)
,

(
2,

4

3

)
,

(
2, −4

3

)

Extreme values can also occur at the point where ∇g = 〈8x, 18y〉 = 〈0, 0〉, that is, at the point (0, 0). However, the point
does not lie on the constraint.
Step 4. Calculate f at the critical points. We evaluate f (x, y) = xy at the critical points:

f

(
−2, −4

3

)
= f

(
2,

4

3

)
= 8

3

f

(
−2,

4

3

)
= f

(
2, −4

3

)
= −8

3

Since f is continuous and the constraint is a closed and bounded set in R2 (an ellipse), f attains global extrema on the
constraint. We conclude that 8

3 is the maximum value and − 8
3 is the minimum value.

8. f (x, y) = x2y + x + y, xy = 4

solution Under the constraint xy = 4, then f (x, y) = x(xy) + x + y = 4x + x + 4
x . Therefore, as x → 0+,

f (x, y) → +∞ on the constraint, and as x → 0−, f (x, y) → −∞. Therefore there are no minimum and maximum
values of f (x, y) under the constraint.

9. f (x, y) = x2 + y2, x4 + y4 = 1

solution We find the extreme values of f (x, y) = x2 + y2 under the constraint g(x, y) = x4 + y4 − 1 = 0.

Step 1. Write out the Lagrange Equations. We have ∇f = 〈2x, 2y〉 and ∇g =
〈
4x3, 4y3

〉
, hence the Lagrange Condition

∇f = λ∇g gives

〈2x, 2y〉 = λ
〈
4x3, 4y3

〉
or

2x = λ
(

4x3
)

2y = λ
(

4y3
) ⇒

x = 2λx3

y = 2λy3
(1)

Step 2. Solve for λ in terms of x and y. We first assume that x �= 0 and y �= 0. Then the Lagrange equations give

λ = 1

2x2
and λ = 1

2y2

Step 3. Solve for x and y using the constraint. Equating the two expressions for λ gives

1

2x2
= 1

2y2
⇒ y2 = x2 ⇒ y = ±x

We now substitute y = ±x in the equation of the constraint x4 + y4 = 1 and solve for x and y:

x4 + (±x)4 = 1

2x4 = 1

x4 = 1

2
⇒ x = 1

21/4
, x = − 1

21/4

The corresponding values of y are obtained by the relation y = ±x. The critical points are thus(
1

21/4
,

1

21/4

)
,

(
1

21/4
, − 1

21/4

)
,

(
− 1

21/4
,

1

21/4

)
,

(
− 1

21/4
, − 1

21/4

)
(2)

We examine the case x = 0 or y = 0. Notice that the point (0, 0) does not satisfy the equation of the constraint, hence
either x = 0 or y = 0 can hold, but not both at the same time.
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Case 1: x = 0. Substituting x = 0 in the constraint x4 + y4 = 1 gives y = ±1. We thus obtain the critical points

(0, −1), (0, 1) (3)

Case 2: y = 0. We may interchange x and y in the discussion in case 1, and obtain the critical points:

(−1, 0), (1, 0) (4)

Combining (2), (3), and (4) we conclude that the critical points are

A1 =
(

1

21/4
,

1

21/4

)
, A2 =

(
1

21/4
, − 1

21/4

)
, A3 =

(
− 1

21/4
,

1

21/4

)
,

A4 =
(

− 1

21/4
, − 1

21/4

)
, A5 = (0, −1), A6 = (0, 1), A7 = (−1, 0), A8 = (1, 0)

The point where ∇g =
〈
4x3, 4y3

〉
= 〈0, 0〉, that is, (0, 0), does not lie on the constraint.

Step 4. Compute f at the critical points. We evaluate f (x, y) = x2 + y2 at the critical points:

f (A1) = f (A2) = f (A3) = f (A4) =
(

1

21/4

)2
+
(

1

21/4

)2
= 2

21/2
= √

2

f (A5) = f (A6) = f (A7) = f (A8) = 1

The constraint x4 + y4 = 1 is a closed and bounded set in R2 and f is continuous on this set, hence f has global extrema
on the constraint. We conclude that

√
2 is the maximum value and 1 is the minimum value.

10. f (x, y) = x2y4, x2 + 2y2 = 6

solution We find the extreme values of f (x, y) = x2y4 on the constraint g(x, y) = x2 + 2y2 − 6 = 0.

Step 1. Write out the Lagrange Equations. The gradient vectors are ∇f =
〈
2xy4, 4y3x2

〉
and ∇g = 〈2x, 4y〉, hence the

Lagrange Condition ∇f = λ∇g gives 〈
2xy4, 4y3x2

〉
= λ 〈2x, 4y〉

or

2xy4 = λ(2x)

4y3x2 = λ(4y)
⇒

xy4 = λx

x2y3 = λy
(1)

Step 2. Solve for λ in terms of x and y. Notice that if x = 0 or y = 0, then f (x, y) = x2y4 has the value 0, which is the
minimum value (since f (x, y) ≥ 0). We thus assume that x �= 0 and y �= 0. The Lagrange equations (1) give

λ = xy4

x
= y4, λ = x2y3

y
= x2y2

Step 3. Solve for x and y using the constraint. Equating the two expressions for λ gives

y4 = x2y2 ⇒ y2 = x2 ⇒ y = ±x

Substituting y = ±x in the equation of the constraint x2 + 2y2 = 6 and solving for x and y gives

x2 + 2x2 = 6

3x2 = 6

x2 = 2 ⇒ x = √
2, x = −√

2

The corresponding value of y is obtained by the relation y = ±x. We obtain the following points:(√
2, −√

2
)

,
(√

2,
√

2
)

,
(
−√

2, −√
2
)

,
(
−√

2,
√

2
)

Extreme values can occur also at the point where ∇g = 〈2x, 4y〉 = 〈0, 0〉, that is, (0, 0). However, this point does not lie
on the constraint.
Step 4. Computing f at the critical points. We evaluate f (x, y) = x2y4 at the critical points:

f
(√

2, −√
2
)

= f
(√

2,
√

2
)

= f
(
−√

2, −√
2
)

= f
(
−√

2,
√

2
)

=
(√

2
)2(√

2
)4 =

(√
2
)6 = 8

Recall that there are critical points with x = 0 or y = 0 at which the value of f is zero. Since f has global extrema on
the ellipse x2 + 2y2 = 6, we conclude that the minimum value of f on the constraint is 0 and the maximum value is 8.
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11. f (x, y, z) = 3x + 2y + 4z, x2 + 2y2 + 6z2 = 1

solution We find the extreme values of f (x, y, z) = 3x + 2y + 4z under the constraint g(x, y, z) = x2 + 2y2 +
6z2 − 1 = 0.

Step 1. Write out the Lagrange Equations. The gradient vectors are ∇f = 〈3, 2, 4〉 and ∇g = 〈2x, 4y, 12z〉, therefore
the Lagrange Condition ∇f = λ∇g is:

〈3, 2, 4〉 = λ 〈2x, 4y, 12z〉
The Lagrange equations are, thus:

3 = λ(2x)
3

2
= λx

2 = λ(4y) ⇒ 1

2
= λy

4 = λ(12z)
1

3
= λz

Step 2. Solve for λ in terms of x, y, and z. The Lagrange equations imply that x �= 0, y �= 0, and z �= 0. Solving for λ

we get

λ = 3

2x
, λ = 1

2y
, λ = 1

3z

Step 3. Solve for x, y, and z using the constraint. Equating the expressions for λ gives

3

2x
= 1

2y
= 1

3z
⇒ x = 9

2
z, y = 3

2
z

Substituting x = 9
2z and y = 3

2z in the equation of the constraint x2 + 2y2 + 6z2 = 1 and solving for z we get

(
9

2
z

)2
+ 2

(
3

2
z

)2
+ 6z2 = 1

123

4
z2 = 1 ⇒ z1 = 2√

123
, z2 = − 2√

123

Using the relations x = 9
2z, y = 3

2z we get

x1 = 9

2
· 2√

123
= 9√

123
, y1 = 3

2
· 2√

123
= 3√

123
, z1 = 2√

123

x2 = 9

2
· −2√

123
= − 9√

123
, y2 = 3

2
· −2√

123
= − 3√

123
, z2 = − 2√

123

We obtain the following critical points:

p1 =
(

9√
123

,
3√
123

,
2√
123

)
and p2 =

(
− 9√

123
, − 3√

123
, − 2√

123

)

Critical points are also the points on the constraint where ∇g = 0. However, ∇g = 〈2x, 4y, 12z〉 = 〈0, 0, 0〉 only at the
origin, and this point does not lie on the constraint.

Step 4. Computing f at the critical points. We evaluate f (x, y, z) = 3x + 2y + 4z at the critical points:

f (p1) = 27√
123

+ 6√
123

+ 8√
123

= 41√
123

=
√

41

3
≈ 3.7

f (p2) = − 27√
123

− 6√
123

− 8√
123

= − 41√
123

= −
√

41

3
≈ −3.7

Since f is continuous and the constraint is closed and bounded in R3, f has global extrema under the constraint. We
conclude that the minimum value of f under the constraint is about −3.7 and the maximum value is about 3.7.

12. f (x, y, z) = x2 − y − z, x2 − y2 + z = 0

solution We show that the function f (x, y, z) = x2 − y − z does not have minimum and maximum values subject

to the constraint x2 − y2 + z = 0. Notice that the curve (x, x, 0) lies on the constraint, since it satisfies the equation of
the constraint. On this curve we have

f (x, y, z) = f (x, x, 0) = x2 − x − 0 = x2 − x
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Since lim
x→±∞(x2 − x) = ∞, f does not have a maximum value subject to the constraint. Observe that the curve

(
0,

√
z, z
)

also lies on the constraint, and we have

f (x, y, z) = f
(
0,

√
z, z
) = 02 − √

z − z = − (z + √
z
)

Since lim
z→∞ − (z + √

z
) = −∞, f does not attain a minimum value on the constraint either.

13. f (x, y, z) = xy + 3xz + 2yz, 5x + 9y + z = 10

solution We show that f (x, y, z) = xy + 3xz + 2yz does not have minimum and maximum values subject to the
constraint g(x, y, z) = 5x + 9y + z − 10 = 0. First notice that the curve c1 : (x, x, 10 − 14x) lies on the surface of the
constraint since it satisfies the equation of the constraint. On c1 we have,

f (x, y, z) = f (x, x, 10 − 14x) = x2 + 3x(10 − 14x) + 2x(10 − 14x) = −69x2 + 50x

Since lim
x→∞

(
−69x2 + 50x

)
= −∞, f does not have minimum value on the constraint. Notice that the curve c2 :

(x, −x, 10 + 4x) also lies on the surface of the constraint. The values of f on c2 are

f (x, y, z) = f (x, −x, 10 + 4x) = −x2 + 3x(10 + 4x) − 2x(10 + 4x) = 3x2 + 10x

The limit lim
x→∞(3x2 + 10x) = ∞ implies that f does not have a maximum value subject to the constraint.

14. Let

f (x, y) = x3 + xy + y3, g(x, y) = x3 − xy + y3

(a) Show that there is a unique point P = (a, b) on g(x, y) = 1 where ∇fP = λ∇gP for some scalar λ.

(b) Refer to Figure 12 to determine whether f (P ) is a local minimum or a local maximum of f subject to the constraint.

(c) Does Figure 12 suggest that f (P ) is a global extremum subject to the constraint?

y

x

P

2

0

−2

−3

−5

−1
0 1

3
5

0 2−2

FIGURE 12 Contour map of f (x, y) = x3 + xy + y3 and graph of the constraint g(x, y) = x3 − xy + y3 = 1.

solution

(a) The gradients of f and g are ∇f =
〈
3x2 + y, x + 3y2

〉
and ∇g =

〈
3x2 − y, −x + 3y2

〉
, hence the Lagrange

Condition ∇f = λ∇g is 〈
3x2 + y, x + 3y2

〉
= λ

〈
3x2 − y, −x + 3y2

〉
or

3x2 + y = λ(3x2 − y)

x + 3y2 = λ(−x + 3y2)
(1)

Notice that if 3x2 − y = 0, the first equation implies that also 3x2 + y = 0, hence y = 0 and x = 0. Since the point
(0, 0) does not satisfy the equation of the constraint, we may assume that 3x2 − y �= 0. Similarly, if −x + 3y2 = 0, the
second equation implies that also x + 3y2 = 0, therefore x = y = 0. We thus may also assume that −x + 3y2 �= 0.
Using these assumptions, we have by (1):

λ = 3x2 + y

3x2 − y
, λ = x + 3y2

−x + 3y2
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Equating the two expressions for λ we get

3x2 + y

3x2 − y
= x + 3y2

−x + 3y2(
3x2 + y

) (
−x + 3y2

)
=
(
x + 3y2

) (
3x2 − y

)
−3x3 + 9x2y2 − yx + 3y3 = 3x3 − xy + 9x2y2 − 3y3

x3 = y3 ⇒ x = y

We now substitute x = y in the constraint x3 − xy + y3 = 1 and solve for y:

y3 − y2 + y3 = 1

2y3 − y2 − 1 = 0

We notice that y = 1 is a root of 2y3 − y2 − 1, hence this polynomial is divisible by y − 1. Long division yields

(y − 1)(2y2 + y + 1) = 0

Since 2y2 + y + 1 > 0 for all y (the discriminant is negative), the only solution is y = 1. Then, x = y = 1 and the only
critical point is (1, 1).

(b) Figure 12 suggests that the values of f (x, y) are increasing as (x, y) approaches the critical point (1, 1) along the
constraint. Therefore, f has a local maximum at P , subject to the constraint.

(c) Figure 12 shows the behavior of f and g only in the range −3 ≤ x ≤ 3, so we cannot know whether P is a global
maximum, but it is reasonable to guess that it is.

15. Find the point (a, b) on the graph of y = ex where the value ab is as small as possible.

solution We must find the point where f (x, y) = xy has a minimum value subject to the constraint g(x, y) =
ex − y = 0.

Step 1. Write out the Lagrange Equations. Since ∇f = 〈y, x〉 and ∇g = 〈ex, −1
〉
, the Lagrange Condition ∇f = λ∇g

is

〈y, x〉 = λ
〈
ex, −1

〉
The Lagrange equations are thus

y = λex

x = −λ

Step 2. Solve for λ in terms of x and y. The Lagrange equations imply that

λ = ye−x and λ = −x

Step 3. Solve for x and y using the constraint. We equate the two expressions for λ to obtain

ye−x = −x ⇒ y = −xex

We now substitute y = −xex in the equation of the constraint and solve for x:

ex − (−xex) = 0

ex(1 + x) = 0

Since ex �= 0 for all x, we have x = −1. The corresponding value of y is determined by the relation y = −xex . That is,

y = −(−1)e−1 = e−1

We obtain the critical point

(−1, e−1)

Step 4. Calculate f at the critical point. We evaluate f (x, y) = xy at the critical point.

f (−1, e−1) = (−1) · e−1 = −e−1

We conclude (see Remark) that the minimum value of xy on the graph of y = ex is −e−1, and it is obtained for x = −1
and y = e−1.
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Remark: Since the constraint is not bounded, we need to justify the existence of a minimum value. The values
f (x, y) = xy on the constraint y = ex are f (x, ex) = h(x) = xex . Since h(x) > 0 for x > 0, the minimum value (if it
exists) occurs at a point x < 0. Since

lim
x→−∞ xex = lim

x→−∞
x

e−x
= lim

x→−∞
1

−e−x
= lim

x→−∞ −ex = 0,

then for x < some negative number −R, we have |f (x) − 0| < 0.1, say. Thus, on the bounded region −R ≤ x ≤ 0, f

has a minimum value of −e−1 ≈ −0.37, and this is thus a global minimum (for all x).

16. Find the rectangular box of maximum volume if the sum of the lengths of the edges is 300 cm.

solution We denote by x, y, and z the dimensions of the rectangular box.

y
x

Then the volume of the box is xyz. We must find the values of x, y and z that maximize the volume f (x, y, z) = xyz,
subject to the constraint g(x, y, z) = x + y + z = 300, x ≥ 0, y ≥ 0, z ≥ 0. (One could also argue that the sums of the
lengths of the edges is 4x + 4y + 4z = 300, but that would give a different answer, of course. Instead, we will choose to
interpret the problem with the constraint x + y + z = 300).

Step 1. Write out the Lagrange Equations. The Lagrange Condition is

∇f = λ∇g

〈yz, xz, xy〉 = λ 〈1, 1, 1〉
We obtain the following equations:

yz = λ

xz = λ

xy = λ

Step 2. Solve for λ in terms of x, y, and z. The Lagrange equations already give λ in terms of x, y, and z. Equating the
expressions for λ we get yz = xz = xy.
Step 3. Solve for x, y, and z using the constraint. We have

yz = xz

xy = xz
⇒

z(x − y) = 0

x(z − y) = 0

If x = 0, y = 0, or z = 0, the volume has the minimum value 0. We thus may assume that x �= 0, y �= 0, and z �= 0.
The first equation implies that x = y and the second equation gives z = y. We now substitute x = y and z = y in the
constraint x + y + z = 300 and solve for y:

y + y + y = 300

3y = 300 ⇒ y = 100

Therefore, x = 100 and z = 100. The critical point is (100, 100, 100).
Step 4. Conclusions. The value of f (x, y, z) = xyz at the critical point is

f (100, 100, 100) = 1003 = 106 cm3

The constraint x + y + z = 300, x ≥ 0, y ≥ 0, z ≥ 0 is the part of the plane x + y + z = 300 that lies in the first octant.
This is a bounded and closed set in R3. Since f is continuous on this set, f has global extreme values on this set. The
minimum value is zero (obtained if one of the variables is zero), hence the value 106 is the maximum value. We conclude
that the box with maximum value is a cube of edge 100 cm.

300

300

300

z

x

y
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17. The surface area of a right-circular cone of radius r and height h is S = πr
√

r2 + h2, and its volume is V = 1
3πr2h.

(a) Determine the ratio h/r for the cone with given surface area S and maximum volume V .

(b) What is the ratio h/r for a cone with given volume V and minimum surface area S?

(c) Does a cone with given volume V and maximum surface area exist?

solution

(a) Let S0 denote a given surface area. We must find the ratio h
r for which the function V (r, h) = 1

3πr2h has maximum

value under the constraint S(r, h) = πr
√

r2 + h2 = π
√

r4 + h2r2 = S0.

Step 1. Write out the Lagrange Equation. We have

∇V = π

〈
2rh

3
,
r2

3

〉
and ∇S = π

〈
2r3 + h2r√
r4 + h2r2

,
hr2√

r4 + h2r2

〉

The Lagrange Condition ∇V = λ∇S gives the following equations:

2rh

3
= 2r3 + h2r√

r4 + h2r2
λ ⇒ 2h

3
= 2r2 + h2√

r4 + h2r2
λ

r2

3
= hr2√

r4 + h2r2
λ ⇒ 1

3
= h√

r4 + h2r2
λ

Step 2. Solve for λ in terms of r and h. These equations yield two expressions for λ that must be equal:

λ = 2h

3

√
r4 + h2r2

2r2 + h2
= 1

3h

√
r4 + h2r2

Step 3. Solve for r and h using the constraint. We have

2h

3

√
r4 + h2r2

2r2 + h2
= 1

3h

√
r4 + h2r2

2h
1

2r2 + h2
= 1

h

2h2 = 2r2 + h2 ⇒ h2 = 2r2 ⇒ h

r
= √

2

We substitute h2 = 2r2 in the constraint πr
√

r2 + h2 = S0 and solve for r . This gives

πr
√

r2 + 2r2 = S0

πr
√

3r2 = S0

√
3πr2 = S0 ⇒ r2 = S0√

3π
, h2 = 2r2 = 2S0√

3π

Extreme values can occur also at points on the constraint where ∇S =
〈

2r2+h2r√
r4+h2r2

, hr2√
r4+h2r2

〉
= 〈0, 0〉, that is, at

(r, h) = (0, h), h �= 0. However, since the radius of the cone is positive (r > 0), these points are irrelevant. We conclude
that for the cone with surface area S0 and maximum volume, the following holds:

h

r
= √

2, h =
√

2S0√
3π

, r =
√

S0√
3π

For the surface area S0 = 1 we get

h =
√

2√
3π

≈ 0.6, r =
√

1√
3π

= 0.43

(b) We now must find the ratio h
r that minimizes the function S(r, h) = πr

√
r2 + h2 under the constraint

V (r, h) = 1

3
πr2h = V0
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Using the gradients computed in part (a), the Lagrange Condition ∇S = λ∇V gives the following equations:

2r3 + h2r√
r4 + h2r2

= λ
2rh

3

hr2√
r4 + h2r2

= λ
r2

3

⇒
2r2 + h2√
r4 + h2r2

= λ
2h

3

h√
r4 + h2r2

= λ

3

These equations give

λ

3
= 1

2h

2r2 + h2√
r4 + h2r2

= h√
r4 + h2r2

We simplify and solve for h
r :

2r2 + h2

2h
= h

2r2 + h2 = 2h2

2r2 = h2 ⇒ h

r
= √

2

We conclude that the ratio h
r for a cone with a given volume and minimal surface area is

h

r
= √

2

(c) The constant V = 1 gives 1
3πr2h = 1 or h = 3

πr2 . As r → ∞, we have h → 0, therefore

lim
r→∞
h→0

S(r, h) = lim
r→∞
h→0

πr
√

r2 + h2 = ∞

That is, S does not have maximum value on the constraint, hence there is no cone of volume 1 and maximal surface area.

18. In Example 1, we found the maximum of f (x, y) = 2x + 5y on the ellipse (x/4)2 + (y/3)2 = 1. Solve this problem
again without using Lagrange multipliers. First, show that the ellipse is parametrized by x = 4 cos t , y = 3 sin t . Then
find the maximum value of f (4 cos t, 3 sin t) using single-variable calculus. Is one method easier than the other?

solution We want to find the maximum of f (x, y) = 2x + 5y on the ellipse (x/4)2 + (y/3)2 = 1 without using
Lagrange multipliers. We rewrite the equation of the ellipse in the form

x2

16
+ y2

9
= 1

We now identify the following parametrization for the ellipse:

x = 4 cos t, y = 3 sin t, 0 ≤ t ≤ 2π

Substituting in the function f (x, y) = 2x + 5y we obtain the following function of t :

g(t) = 8 cos t + 15 sin t

We now find the maximum value of the single variable function g(t) = 8 cos t + 15 sin t in the interval 0 ≤ t ≤ 2π . We
first compute the critical points in the interval 0 < t < 2π by solving g′(t) = 0 in this interval. We obtain

g′(t) = −8 sin t + 15 cos t = 0

15 cos t = 8 sin t

tan t = 15

8
⇒ t = tan−1(15/8) ≈ 1.08

We evaluate g(t) = 8 cos t + 15 sin t at the critical points and at the endpoints t = 0, t = 2π of the interval:

g(tan−1(15/8)) = 8 cos(tan−1(15/8)) + 15 sin(tan−1(15/8)) = 8 · 8

17
+ 15 · 15

17
= 289

17
= 17

g(0) = 8 cos 0 + 15 sin 0 = 8

g(2π) = 8 cos 2π + 15 sin 2π = 8
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The greatest value is g(tan−1(15/8)) = 17. We conclude that the maximum value of g in the interval 0 ≤ t ≤ 2π is
g(tan−1(15/8)) = 17. Therefore, the maximum value of f (x, y) = 2x + 5y on the ellipse x2/16 + y2/9 = 1 is 17, and

it occurs at the point
(

4 cos(tan−1(15/8)), 3 sin(tan−1(15/8))
)

= (4 · 8/17, 3 · 15/17) = (32/17, 45/17).

In this example the two methods do not demand much work, hence neither of them is much easier than the other.

19. Find the point on the ellipse

x2 + 6y2 + 3xy = 40

with largest x-coordinate (Figure 13).

x

y

4

−4

84−8 −4

FIGURE 13 Graph of x2 + 6y2 + 3xy = 40

solution We need to maximize f (x, y) = x subject to the constraint

g(x, y) = x2 + 6y2 + 3xy = 40

Step 1. Write out the Lagrange Equations. The gradient vectors are ∇f = 〈1, 0〉 and ∇g = 〈2x + 3y, 12y + 3x〉, hence
the Lagrange Condition ∇f = λ∇g gives:

〈1, 0〉 = λ 〈2x + 3y, 12y + 3x〉
or

1 = λ(2x + 3y), 0 = λ(12y + 3x)

this yields

x = −4y

Step 2. Solve for x and y using the constraint.

x2 + 6y2 + 3xy = (−4y)2 + 6y2 + 3(−4y)y = (16 + 6 − 12)y2 = 10y2 = 40

so y = ±2. If y = 2 then x = −8 and if y = −2 then x = 8. The extreme points are (−8, 2) and (8, −2). We conclude
that the point with largest x-coordinate is P = (8, −2).

20. Find the maximum area of a rectangle inscribed in the ellipse (Figure 14):

x2

a2
+ y2

b2
= 1

(−x, y) (x, y)

(x, −y)(−x, −y)

x

y

FIGURE 14 Rectangle inscribed in the ellipse
x2

a2
+ y2

b2
= 1.

solution Since (x, y) is in the first quadrant, x > 0 and y > 0. The area of the rectangle is 2x · 2y = 4xy. The
vertices lie on the ellipse, hence their coordinates (±x, ±y) must satisfy the equation of the ellipse. Therefore, we must
find the maximum value of the function f (x, y) = 4xy under the constraint

g(x, y) = x2

a2
+ y2

b2
= 1, x > 0, y > 0.

Step 1. Write out the Lagrange Equations. The gradient vectors are ∇f = 〈4y, 4x〉 and ∇g =
〈

2x
a2 ,

2y

b2

〉
, hence the

Lagrange Condition ∇f = λ∇g gives

〈4y, 4x〉 = λ

〈
2x

a2
,

2y

b2

〉
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or

4y = λ

(
2x

a2

)

4x = λ

(
2y

b2

) ⇒
2y = λ

x

a2

2x = λ
y

b2

Step 2. Solve for λ in terms of x and y. The Lagrange equations give the following two expressions for λ:

λ = 2ya2

x
, λ = 2xb2

y

Equating the two equations we get

2ya2

x
= 2xb2

y

Step 3. Solve for x and y using the constraint. We solve the equation in step 2 for y in terms of x:

2ya2

x
= 2xb2

y

2y2a2 = 2x2b2

y2 = x2b2

a2
⇒ y = b

a
x

We now substitute y = b
a x in the equation of the constraint x2

a2 + y2

b2 = 1 and solve for x:

x2

a2
+
(

b
a x
)2

b2
= 1

x2

a2
+ x2

a2
= 1

2x2

a2
= 1

x2 = a2

2
⇒ x = a√

2

The corresponding value of y is obtained by the relation y = b
a x:

y = b

a
· a√

2
= b√

2

We obtain the critical point
(

a√
2
, b√

2

)
. Extreme values can also occur at points on the constraint where ∇g =

〈
2x
a2 ,

2y

b2

〉
=

〈0, 0〉. However, the point (0, 0) is not on the constraint. We conclude that if f (x, y) = 4xy has a maximum value on the

ellipse x2

a2 + y2

b2 = 1 with x > 0, y > 0, then it occurs at the point
(

a√
2
, b√

2

)
and the maximum value is

f

(
a√
2
,

b√
2

)
= 4 · a√

2
· b√

2
= 2ab

We now justify why the maximum value exists. We consider the problem of finding the extreme values of f (x, y) = 4xy

on the quarter ellipse x2

a2 + y2

b2 = 1 in the first quadrant. Since the constraint curve is bounded and f (x, y) is continuous,
f has a minimum and maximum values on the ellipse. The minimum volume occurs at the end points:

x = 0, y = b ⇒ 4xy = 0 or x = a, y = 0 ⇒ 4xy = 0

So the critical point
(

a√
2
, b√

2

)
must be a maximum.

21. Find the point (x0, y0) on the line 4x + 9y = 12 that is closest to the origin.

solution Since we are minimizing distance, we can minimize the square of the distance function without loss of
generality:

f (x, y) = (x − 0)2 + (y − 0)2 = x2 + y2

subject to the constraint g(x, y) = 4x + 9y − 12.
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Step 1. Write out the Lagrange Equations. The gradient vectors are ∇f = 〈2x, 2y〉 and ∇g = 〈4, 9〉, hence the Lagrange
Condition ∇f = λ∇g gives

〈2x, 2y〉 = λ 〈4, 9〉
or

2x = 4λ ⇒ x = 2λ, 2y = 9λ

Step 2. Solve for λ in terms of x and y. The Lagrange equations give the following two expressions for λ:

λ = x

2
, λ = 9

2
y

Equating these two

x

2
= 9

2
y ⇒ x = 9y

Step 3. Solve for x and y using the constraint. We are given 4x + 9y = 12, therefore we can write:

4(9y) + 9y = 12 ⇒ 45y = 12 ⇒ y = 12

45
= 4

15

Since x = 9y, then we conclude:

y = 4

15
x = 9 · 4

15
= 12

5

Step 4. Conclusions. Therefore the point closest to the origin lying on the plane 4x + 9y = 12 is the point (12/5, 4/15).

22. Show that the point (x0, y0) closest to the origin on the line ax + by = c has coordinates

x0 = ac

a2 + b2
, y0 = bc

a2 + b2

solution We need to minimize the distance d(x, y) =
√

x2 + y2 subject to the constraint g(x, y) = ax + by = c.

Notice that the distance d(x, y) is at a minimum at the same points where the square of the distance d2(x, y) is at a
minimum (since the function u2 is increasing for u ≥ 0). Therefore, we may find the minimum of f (x, y) = x2 + y2

subject to the constraint ax + by = c.

Step 1. Write out the Lagrange Equations. The gradient vectors are ∇f = 〈2x, 2y〉 and ∇g = 〈a, b〉, hence the Lagrange
Condition ∇f = λ∇g is

〈2x, 2y〉 = λ 〈a, b〉
or

2x = λa

2y = λb

Step 2. Solve for λ in terms of x and y. The Lagrange equations give

λ = 2x

a
and λ = 2y

b

Step 3. Solve for x and y using the constraint. We equate the two expressions for λ and solve for y in terms of x:

2x

a
= 2y

b
⇒ y = b

a
x

We now substitute y = bx
a in the equation of the constraint ax + by = c and solve for x:

ax + b · b

a
x = c

(
a + b2

a

)
x = c

a2 + b2

a
x = c ⇒ x = ac

a2 + b2
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We find y using the relation y = bx
a :

y = b

a
· ac

a2 + b2
= bc

a2 + b2

The critical point is thus

x0 = ac

a2 + b2
, y0 = bc

a2 + b2
(1)

Step 4. Conclusions. It is clear geometrically that the problem has a minimum value and it does not have a maximum
value. Therefore the minimum occurs at the critical point. We conclude that the point closest to the origin on the line
ax + by = c is given by (1). To show that the vector 〈x0, y0〉 is perpendicular to the line, we write the line in vector form
as 〈x − x0, y − y0〉 · 〈a, b〉 = 0. Thus, 〈a, b〉 is perpendicular to the line. Since 〈x0, y0〉 = c

a2+b2 〈a, b〉, then 〈x0, y0〉 is
parallel to 〈a, b〉, and thus also perpendicular to the line.

23. Find the maximum value of f (x, y) = xayb for x ≥ 0, y ≥ 0 on the line x + y = 1, where a, b > 0 are constants.

solution

Step 1. Write the Lagrange Equations. We must find the maximum value of f (x, y) = xayb under the constraints

g(x, y) = x + y − 1, x > 0, y > 0. The gradient vectors are ∇f =
〈
axa−1yb, bxayb−1

〉
and ∇g = λ 〈1, 1〉, hence the

Lagrange Condition∇f = λ∇g is 〈
axa−1yb, bxayb−1

〉
= λ 〈1, 1〉

We obtain the following equations:

axa−1yb = λ

bxayb−1 = λ
⇒ axa−1yb = bxayb−1

Step 2. Solve for x and y using the constraint. We solve the equation in step 1 for y in terms of x. This gives

axa−1yb = bxayb−1

ay = bx ⇒ y = b

a
x

We now substitute y = b
a x in the constraint x + y = 1 and solve for x:

x + b

a
x = 1

(a + b)x = a ⇒ x = a

a + b

We find y using the relation y = b
a x:

y = b

a
· a

a + b
= b

a + b

The critical point is thus (
a

a + b
,

b

a + b

)
(1)

Step 3. Conclusions. We compute f (x, y) = xayb at the critical point:

f

(
a

a + b
,

b

a + b

)
=
(

a

a + b

)a( b

a + b

)b

= aabb

(a + b)a+b

Now, since f is continuous on the segment x + y = 1, x ≥ 0, y ≥ 0, which is a closed and bounded set in R2, then f

has minimum and maximum values on this segment. The minimum value is 0 (obtained at (0, 1) and (1, 0)), therefore
the critical point (1) corresponds to the maximum value. We conclude that the maximum value of xayb on x + y = 1,
x > 0, y > 0 is

aabb

(a + b)a+b
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24. Show that the maximum value of f (x, y) = x2y3 on the unit circle is 6
25

√
3
5 .

solution We must maximize f (x, y) = x2y3 subject to the constraint x2 + y2 = 1 (the equation of the unit circle).

We will write the constraint equation as g(x, y) = x2 + y2 − 1.

Step 1. Write the Lagrange equations. The gradient vectors are ∇f =
〈
2xy3, 3x2y2

〉
and ∇g = 〈2x, 2y〉, hence the

Lagrange condition, ∇f = λ∇g gives the following equations:〈
2xy3, 3x2y2

〉
= λ 〈2x, 2y〉

or

2xy3 = 2λx ⇒ xy3 = λx, 3x2y2 = 2λy

Step 2. Solve for λ in terms of x and y. Using the first equation above, we can conclude:

xy3 − λx = 0 ⇒ x(y3 − λ) = 0 ⇒ x = 0 or λ = y3

If x = 0, then using the constraint, x2 + y2 = 1 we get y = ±1.
If λ = y3, using the second equation we have

3x2y2 − 2y4 = 0 ⇒ y2(3x2 − 2y2) = 0 ⇒ y = 0 or x = ±
√

2

3
y

If y = 0, then using the constraint we get x = ±1.

Using the constraint, x2 + y2 = 1, for x = ±
√

2
3y, then

2

3
y2 + y2 = 1 ⇒ y2 = 3

5
⇒ y = ±

√
3

5

Since y = ±
√

3
5 , then x = ±

√
2
5 .

Step 3. Now to examine the maximum value of the function f (x, y) = x2y3:

f (0, 1) = 0, f (0, −1) = 0, f (1, 0) = 1, f (−1, 0) = 0

f

(√
2

5
,

√
3

5

)
= 6

25

√
3

5
, f

(
−
√

2

5
,

√
3

5

)
= 6

25

√
3

5

f

(√
2

5
, −
√

3

5

)
= − 6

25

√
3

5
, f

(
−
√

2

5
, −
√

3

5

)
= − 6

25

√
3

5

Step 4. Conclusions. From the analyzing above in Step 3, we see that the maximum value for f (x, y) = x2y3 on the

unit circle is 6
25

√
3
5 .

25. Find the maximum value of f (x, y) = xayb for x ≥ 0, y ≥ 0 on the unit circle, where a, b > 0 are constants.

solution We must find the maximum value of f (x, y) = xayb (a, b > 0) subject to the constraint g(x, y) =
x2 + y2 = 1.

Step 1. Write out the Lagrange Equations. We have ∇f =
〈
axa−1yb, bxayb−1

〉
and ∇g = 〈2x, 2y〉. Therefore the

Lagrange Condition ∇f = λ∇g is 〈
axa−1yb, bxayb−1

〉
= λ 〈2x, 2y〉

or

axa−1yb = 2λx

bxayb−1 = 2λy
(1)

Step 2. Solve for λ in terms of x and y. If x = 0 or y = 0, f has the minimum value 0. We thus may assume that x > 0
and y > 0. The equations (1) imply that

λ = axa−2yb

2
, λ = bxayb−2

2
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Step 3. Solve for x and y using the constraint. Equating the two expressions for λ and solving for y in terms of x gives

axa−2yb

2
= bxayb−2

2

axa−2yb = bxayb−2

ay2 = bx2

y2 = b

a
x2 ⇒ y =

√
b

a
x

We now substitute y =
√

b
a x in the constraint x2 + y2 = 1 and solve for x > 0. We obtain

x2 + b

a
x2 = 1

(a + b)x2 = a

x2 = a

a + b
⇒ x =

√
a

a + b

We find y using the relation y =
√

b
a x:

y =
√

b

a

√
a

a + b
=
√

ab

a(a + b)
=
√

b

a + b

We obtain the critical point: (√
a

a + b
,

√
b

a + b

)

Extreme points can also occur where ∇g = 0, that is, 〈2x, 2y〉 = 〈0, 0〉 or (x, y) = (0, 0). However, this point is not on
the constraint.

Step 4. Conclusions. We compute f (x, y) = xayb at the critical point:

f

(√
a

a + b
,

√
b

a + b

)
=
(

a

a + b

)a/2( b

a + b

)b/2
= aa/2bb/2

(a + b)(a+b)/2
=
√

aabb

(a + b)a+b

The function f (x, y) = xayb is continuous on the set x2 + y2 = 1, x ≥ 0, y ≥ 0, which is a closed and bounded set
in R2, hence f has minimum and maximum values on the set. The minimum value is 0 (obtained at (0, 1) and (1, 0)),
hence the critical point that we found corresponds to the maximum value. We conclude that the maximum value of xayb

on x2 + y2 = 1, x > 0, y > 0 is √
aabb

(a + b)a+b
.

26. Find the maximum value of f (x, y, z) = xaybzc for x, y, z ≥ 0 on the unit sphere, where a, b, c > 0 are constants.

solution We must find the maximum value of f (x, y, z) = xaybzc subject to the constraint g(x, y, z) = x2 + y2 +
z2 − 1 = 0, x ≥ 0, y ≥ 0, z ≥ 0.

Step 1. Write the Lagrange Equations. The gradient vectors are ∇f =
〈
axa−1ybzc, byb−1x

a
zc, czc−1xayb

〉
and ∇g =

〈2x, 2y, 2z〉, hence the Lagrange Condition ∇f = λ∇g gives the following equations:

axa−1ybzc = λ(2x)

byb−1xazc = λ(2y) (1)

czc−1xayb = λ(2z)

Step 2. Solve for λ in terms of x, y, and z. If x = 0, y = 0, or z = 0, f attains the minimum value 0, therefore we may
assume that x �= 0, y �= 0, and z �= 0. The Lagrange equations (1) give

λ = axa−2ybzc

2
, λ = byb−2xazc

2
, λ = czc−2xayb

2
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Step 3. Solve for x, y, and z using the constraint. Equating the expressions for λ, we obtain the following equations:

axa−2ybzc = byb−2xazc

axa−2ybzc = czc−2xayb
(2)

We solve for x and y in terms of z. We first divide the first equation by the second equation to obtain

1 = byb−2xazc

czc−2xayb
= b

c

z2

y2

y2 = b

c
z2 ⇒ y =

√
b

c
z

(3)

Both equations (2) imply that

byb−2x
a
zc = axa−2ybzc

byb−2x
a
zc = czc−2xayb

Dividing the first equation by the second equation gives

1 = axa−2ybzc

czc−2xayb
= a

c

z2

x2

x2 = a

c
z2 ⇒ x =

√
a

c
z

(4)

We now substitute x and y from (3) and (4) in the constraint x2 + y2 + z2 = 1 and solve for z. This gives

(√
a

c
z

)2

+
(√

b

c
z

)2

+ z2 = 1

(
a

c
+ b

c
+ 1

)
z2 = 1

a + b + c

c
z2 = 1 ⇒ z =

√
c

a + b + c

We find x and y using (4) and (3):

x =
√

a

c

√
c

a + b + c
=
√

ac

c(a + b + c)
=
√

a

a + b + c

y =
√

b

c

√
c

a + b + c
=
√

bc

c(a + b + c)
=
√

b

a + b + c

We obtain the critical point:

P =
(√

a

a + b + c
,

√
b

a + b + c
,

√
c

a + b + c

)

We examine the point where ∇g = 〈2x, 2y, 2z〉 = 〈0, 0, 0〉, that is, (0, 0, 0): This point does not lie on the constraint,
hence it is not a critical point.

Step 4. Conclusions. We compute f (x, y, z) = xaybzc at the critical point:

f (P ) =
(√

a

a + b + c

)a
(√

b

a + b + c

)b(√
c

a + b + c

)c

=
√

aabbcc

(a + b + c)a+b+c

Now, f (x, y, z) = xaybzc is continuous on the set x2 + y2 + z2 = 1, x ≥ 0, y ≥ 0, z ≥ 0, which is closed and bounded
in R3. The minimum value is 0 (obtained at the points with at least one zero coordinate), therefore the critical point that
we found corresponds to the maximum value. We conclude that the maximum value of xaybzc subject to the constraint
x2 + y2 + z2 = 1, x ≥ 0, y ≥ 0, z ≥ 0 is √

aabbcc

(a + b + c)a+b+c
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27. Show that the minimum distance from the origin to a point on the plane ax + by + cz = d is

|d|√
a2 + b2 + c2

solution We want to minimize the distance P =
√

x2 + y2 + z2 subject to ax + by + cz = d. Since the square

function u2 is increasing for u ≥ 0, the square P 2 attains its minimum at the same point where the distance P attains
its minimum. Thus, we may minimize the function f (x, y, z) = x2 + y2 + z2 subject to the constraint g(x, y, z) =
ax + by + cz = d .

Step 1. Write out the Lagrange Equations. We have ∇f = 〈2x, 2y, 2z〉 and ∇g = 〈a, b, c〉, hence the Lagrange Condition
∇f = λ∇g gives the following equations:

2x = λa

2y = λb

2z = λc

Assume for now that a �= 0, b �= 0, c �= 0.

Step 2. Solve for λ in terms of x, y, and z. The Lagrange Equations imply that

λ = 2x

a
, λ = 2y

b
, λ = 2z

c

Step 3. Solve for x, y, and z using the constraint. Equating the expressions for λ give the following equations:

2x

a
= 2z

c

2y

b
= 2z

c

⇒
x = a

c
z

y = b

c
z

(1)

We now substitute x = a
c z and y = b

c z in the equation of the constraint ax + by + cz = d and solve for z. This gives

a
(a

c
z
)

+ b

(
b

c
z

)
+ cz = d

a2

c
z + b2

c
z + cz = d

(
a2 + b2 + c2

)
z = dc

Since a2 + b2 + c2 �= 0, we get z = dc
a2+b2+c2 . We now use (1) to compute y and x:

x = a

c
· dc

a2 + b2 + c2
= ad

a2 + b2 + c2
, y = b

c
· dc

a2 + b2 + c2
= bd

a2 + b2 + c2

We obtain the critical point:

P =
(

ad

a2 + b2 + c2
,

bd

a2 + b2 + c2
,

dc

a2 + b2 + c2

)
(2)

Step 4. Conclusions. It is clear geometrically that f has a minimum value subject to the constraint, hence the minimum
value occurs at the point P . We conclude that the point P is the point on the plane closest to the origin. We now consider
the case where a = 0. We consider the planes ax + by + cz = d, where a �= 0 and a → 0. A continuous change in
a causes a continuous change in the closest point P . Therefore, the point P closest to the origin in case of a = 0 can
be obtained by computing the limit of P in (2) as a → 0, that is, by substituting a = 0. Similar considerations hold for
b = 0 or c = 0. We conclude that the closest point P in (2) holds also for the planes with a = 0, b = 0, or c = 0 (but not
all of them 0). The distance P of that point to the origin is

P =
√√√√ (ad)2 + (bd)2 + (dc)2(

a2 + b2 + c2
)2 = |d|

√√√√ a2 + b2 + c2(
a2 + b2 + c2

)2 = |d|√
a2 + b2 + c2

28. Antonio has $5.00 to spend on a lunch consisting of hamburgers ($1.50 each) and French fries ($1.00 per order).
Antonio’s satisfaction from eating x1 hamburgers and x2 orders of French fries is measured by a function U(x1, x2) =√

x1x2. How much of each type of food should he purchase to maximize his satisfaction? (Assume that fractional amounts
of each food can be purchased.)
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solution Antonio has $5.00 to spend on the lunch, hence the total cost 1.5x1 + x2 must satisfy

1.5x1 + x2 = 5

We thus want to maximize the function U(x1, x2) = √
x1x2 subject to the constraint g(x, y) = 1.5x1 + x2 = 5 with

x1 > 0, x2 > 0.

Step 1. Write out the Lagrange Equations. The gradient vectors are ∇U = 1
2

〈√
x2
x1

,
√

x1
x2

〉
and ∇g = 〈1.5, 1〉, hence the

Lagrange Condition ∇U = λ∇g gives the following equations:

1

2

√
x2

x1
= 1.5λ

1

2

√
x1

x2
= λ

⇒
x2

x1
= 9λ2

x1

x2
= 4λ2

Step 2. Solve for x1 and x2 using the constraint. The two equations in step 1 give

λ2 = x2

9x1
= x1

4x2

Therefore,

4x2
2 = 9x2

1

x2
2 = 9

4
x2

1 ⇒ x2 = 3

2
x1

We now substitute x2 = 3
2x1 in the constraint 1.5x1 + x2 = 5 and solve for x1. We get

1.5x1 + 3

2
x1 = 5

3x1 = 5 ⇒ x1 = 5

3

We find x2 by the relation x2 = 3
2x1:

x2 = 3

2
· 5

3
= 5

2

We obtain the critical point: (
5

3
,

5

2

)

Step 3. Conclusions. We conclude that Antonio should have 5
3 hamburgers and 5

2 orders of fries, to maximize his
satisfaction. Notice that U(x1, x2) = √

x1x2 is continuous on the set 1.5x1 + x2 = 5, x1 ≥ 0, x2 ≥ 0, which is closed
and bounded in R2 (it is a triangle in the first quadrant). f has minimum and maximum values on this set. The minimum
value 0 is obtained for x1 = 0 or x2 = 0, hence the critical point that we found corresponds to the maximum value.

29. Let Q be the point on an ellipse closest to a given point P outside the ellipse. It was known to the Greek
mathematician Apollonius (third century bce) that PQ is perpendicular to the tangent to the ellipse at Q (Figure 15).
Explain in words why this conclusion is a consequence of the method of Lagrange multipliers. Hint: The circles centered
at P are level curves of the function to be minimized.

P

Q

FIGURE 15

solution Let P = (x0, y0). The distance d between the point P and a point Q = (x, y) on the ellipse is minimum

where the square d2 is minimum (since the square function u2 is increasing for u ≥ 0). Therefore, we want to minimize
the function

f (x, y, z) = (x − x0)2 + (y − y0)2 + (z − z0)2
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subject to the constraint

g(x, y) = x2

a2
+ y2

b2
= 1

The method of Lagrange indicates that the solution Q is the point on the ellipse where ∇f = λ∇g, that is, the point on the
ellipse where the gradients ∇f and ∇g are parallel. Since the gradient is orthogonal to the level curves of the function,
∇g is orthogonal to the ellipse g(x, y) = 1, and ∇f is orthogonal to the level curve of f passing through Q. But this
level curve is a circle through Q centered at P , hence the parallel vectors ∇g and ∇f are orthogonal to the ellipse and to
the circle centered at P respectively. We conclude that the point Q is the point at which the tangent to the ellipse is also
the tangent to the circle through Q centered at P . That is, the tangent to the ellipse at Q is perpendicular to the radius
PQ of the circle.

30. In a contest, a runner starting at A must touch a point P along a river and then run to B in the shortest time
possible (Figure 16). The runner should choose the point P that minimizes the total length of the path.

(a) Define a function

f (x, y) = AP + PB, where P = (x, y)

Rephrase the runner’s problem as a constrained optimization problem, assuming that the river is given by an equation
g(x, y) = 0.
(b) Explain why the level curves of f (x, y) are ellipses.
(c) Use Lagrange multipliers to justify the following statement: The ellipse through the point P minimizing the length
of the path is tangent to the river.
(d) Identify the point on the river in Figure 16 for which the length is minimal.

River

x

y

A B

P

FIGURE 16

solution
(a) Let A and B be the points A = (a, b) and B = (c, d).

P = (x, y)

A B g(x, y) = 0

By the Length Formula we have

AP =
√

(x − a)2 + (y − b)2

PB =
√

(x − c)2 + (y − d)2

The distance traveled by the runner is

f (x, y) =
√

(x − a)2 + (y − b)2 +
√

(x − c)2 + (y − d)2

We must minimize the function f subject to the constraint g(x, y) = 0 (since the point P = (x, y) must satisfy the
equation of the river).
(b) The level curves of f (x, y) are f (x, y) = k for positive constants k. That is,√

(x − a)2 + (y − b)2 +
√

(x − c)2 + (y − d)2 = k

The level curve consists of all the points P = (x, y) such that the sum of the distances to the two fixed points A = (a, b)

and B = (c, d) is constant k > 0. Therefore the level curves are ellipses with foci at A and B.
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(c) The point P that minimizes the length of the path must satisfy the Lagrange Condition ∇fP = λ∇gP . That is, the
gradients of f and g are parallel vectors. Since the gradient at P is orthogonal to the level curve of the function passing
through P , the level curve of f through P (which is the ellipse through P ) is tangent to the level curve of g through P ,
that is, it is tangent to the river.

(d) The path-minimizing point is the point closest to the line through A and B such that the ellipse through P is tangent
to the river.

River

P

A

B

g(x, y) = 0

In Exercises 31 and 32, let V be the volume of a can of radius r and height h, and let S be its surface area (including the
top and bottom).

31. Find r and h that minimize S subject to the constraint V = 54π .

solution We see that the surface area of the can is S = 2πrh + 2πr2 subject to V = 54π = πr2h. Let us write the

constraint as V (r, h) = πr2h − 54π and use Lagrange Multipliers to solve.

Step 1. Write out the Lagrange Equations. The gradient vectors are ∇S = 〈2πh + 4πr, 2πr〉 and ∇V =
〈
2πrh, πr2

〉
.

Then using ∇S = λ∇V , we see

〈2πh + 4πr, 2πr〉 = λ
〈
2πrh, πr2

〉
or

2πh + 4πr = 2πλrh, 2πr = λπr2

Consider the second equation, rewriting we have:

2πr − λπr2 = 0 ⇒ πr(2 − λr) = 0 ⇒ r = 0, λ = 2

r

We can ignore when r = 0 since it does not correspond to any point on the constraint curve 54π = πr2h.
Using the first equation, rewriting we have:

2πh + 4πr = 2πλrh ⇒ λ = 2πh + 4πr

2πrh
= h + 2r

rh

Step 2. Solve for r, h using the constraint to determine the critical point.
Using the two derived equations for λ we have:

2

r
= h + 2r

rh
⇒ 2rh = hr + 2r2 r(2h − h − 2r) = 0 ⇒ h = 2r

Then using the constraint, 54π = πr2h we see:

54π = πr2(2r) ⇒ 54 = 2r3 ⇒ r3 = 27 ⇒ r = 3

Thus r = 3 and h = 2(3) = 6.

Step 3. Conclusions. The minimum surface area, given that the volume must be 54π is determined by a can having radius
r = 3 and height h = 6. We know this is the minimum surface area because surface area is an increasing function of r

and h.

32. Show that for both of the following two problems, P = (r, h) is a Lagrange critical point if h = 2r:

• Minimize surface area S for fixed volume V .

• Maximize volume V for fixed surface area S.

Then use the contour plots in Figure 17 to explain why S has a minimum for fixed V but no maximum and, similarly, V

has a maximum for fixed S but no minimum.
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Level curves of S

Critical point P = (r, h)

Increasing S

Increasing V

r

h

Level curve of V

FIGURE 17

solution

• To minimize surface area S = 2πrh + 2πr2 for a fixed volume (subject to the constraint c(r, h) = πr2h − V ) we
use the Lagrange equations. Then using ∇S = λ∇c, we see

〈2πh + 4πr, 2πr〉 = λ
〈
2πrh, πr2

〉
or

2πh + 4πr = 2πλrh, 2πr = λπr2

Consider the second equation, rewriting we have:

2πr − λπr2 = 0 ⇒ πr(2 − λr) = 0 ⇒ r = 0, λ = 2

r

Since this is a question about surface area, we are not interested in the point when r = 0.
Using the first equation, rewriting we have:

2πh + 4πr = 2πλrh ⇒ λ = 2πh + 4πr

2πrh
= h + 2r

rh

Now to solve for r, h using the constraint to determine the critical point. Using the two derived equations for λ we
have:

2

r
= h + 2r

rh
⇒ 2rh = hr + 2r2 r(2h − h − 2r) = 0 ⇒ h = 2r

Therefore, we see that the critical point is (r, h) where h = 2r .

• To maximize the volume V = πr2h for a fixed surface area (subject to the constraint c(r, h) = 2πrh + 2πr2 − S)
we use the Lagrange equations. Then using ∇V = λ∇c we see

〈
2πrh, πr2

〉
= λ 〈2πh + 4πr, 2πr〉

or

λ(2πh + 4πr) = 2πrh, λ(2πr) = πr2

λ = rh

h + 2r
, λ = r

2

Using these two derived equations for λ, we have:

r

2
= rh

h + 2r
⇒ h = 2r

Therefore, we see that the critical point is (r, h) where h = 2r .

Using the contour plots in the figure, we can see that S has a minimum for a fixed value of V , but no maximum because
it increases without an upper bound, whereas has V has a maximum for a fixed value of S, but no minimum because it
decreases without a lower bound.

33. A plane with equation
x

a
+ y

b
+ z

c
= 1 (a, b, c > 0) together with the positive coordinate planes forms a tetrahedron

of volume V = 1
6abc (Figure 18). Find the minimum value of V among all planes passing through the point P = (1, 1, 1).
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A = (a, 0, 0)

B = (0, b, 0)

C = (0, 0, c)

z

x

y

P

FIGURE 18

solution The plane is constrained to pass through the point P = (1, 1, 1), hence this point must satisfy the equation
of the plane. That is,

1

a
+ 1

b
+ 1

c
= 1

We thus must minimize the function V (a, b, c) = 1
6abc subject to the constraint g(a, b, c) = 1

a + 1
b

+ 1
c = 1, a > 0,

b > 0, c > 0.

Step 1. Write out the Lagrange Equations. We have ∇V =
〈

1
6bc, 1

6ac, 1
6ab

〉
and ∇g =

〈
− 1

a2 , − 1
b2 , − 1

c2

〉
, hence the

Lagrange Condition ∇V = λ∇g yields the following equations:

1

6
bc = − 1

a2
λ

1

6
ac = − 1

b2
λ

1

6
ab = − 1

c2
λ

Step 2. Solve for λ in terms of a, b, and c. The Lagrange equations imply that

λ = −bca2

6
, λ = −acb2

6
, λ = −abc2

6

Step 3. Solve for a, b, and c using the constraint. Equating the expressions for λ, we obtain the following equations:

bca2 = acb2

abc2 = acb2
⇒

abc(a − b) = 0

abc(c − b) = 0

Since a, b, c are positive numbers, we conclude that a = b and c = b. We now substitute a = b and c = b in the equation
of the constraint 1

a + 1
b

+ 1
c = 1 and solve for b. This gives

1

b
+ 1

b
+ 1

b
= 1

3

b
= 1 ⇒ b = 3

Therefore also a = b = 3 and c = b = 3. We obtain the critical point (3, 3, 3).

Step 4. Conclusions. If V has a minimum value subject to the constraint then it occurs at the point (3, 3, 3). That is, the
plane that minimizes V is

x

3
+ y

3
+ z

3
= 1 or x + y + z = 3

Remark: Since the constraint is not bounded, we need to justify the existence of a minimum value of V = 1
6abc under

the constraint 1
a + 1

b
+ 1

c = 1. First notice that since a, b, c are nonnegative and the sum of their reciprocals is 1, none of
them can tend to zero. In fact, none of a, b, c can be less than 1. Therefore, if a → ∞, b → ∞, or c → ∞, then V → ∞.

This means that we can find a cube that includes the point
(

1
3 , 1

3 , 1
3

)
such that, on the part of the constraint that is outside

the cube, it holds that V > V
(

1
3 , 1

3 , 1
3

)
= 1

162 . On the part of the constraint inside the cube, V has a minimum value m,

since it is a closed and bounded set. Clearly m is the minimum of V on the whole constraint.
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34. With the same set-up as in the previous problem, find the plane that minimizes V if the plane is constrained to pass
through a point P = (α, β, γ ) with α, β, γ > 0.

solution The plane x
a + y

b
+ z

c = 1 must pass through the point P(α, β, γ ), hence

α

a
+ β

b
+ γ

c
= 1

We thus must minimize the function V (a, b, c) = 1
6abc subject to the constant g(a, b, c) = α

a + β
b

+ γ
c = 1, a > 0,

b > 0, c > 0.

Step 1. Write out the Lagrange Equations. We have ∇V =
〈

1
6bc, 1

6ac, 1
6ab

〉
and ∇g =

〈
− α

a2 , − β

b2 , − γ

c2

〉
, hence the

Lagrange Condition ∇V = λ∇g yields the following equations:

1

6
bc = − α

a2
λ

1

6
ac = − β

b2
λ

1

6
ab = − γ

c2
λ

⇒

λ = −a2bc

6α

λ = −b2ac

6β

λ = − c2ab

6γ

Step 2. Solve for a, b, c using the constraint. The Lagrange equations imply the following equations:

a2bc

α
= c2ab

γ

b2ac

β
= c2ab

γ

We simplify the two equations to obtain

abc(γ a − αc) = 0

abc(γ b − βc) = 0

Since abc �= 0, these equations imply that

γ a − αc = 0 ⇒ a = α

γ
c

γ b − βc = 0 ⇒ b = β

γ
c

(1)

We now substitute in the constraint α
a + β

b
+ γ

c = 1 and solve for c. This gives

α
α
γ c

+ β

β
γ c

+ γ

c
= 1

γ

c
+ γ

c
+ γ

c
= 1

3γ

c
= 1 ⇒ c = 3γ

We find a and b using (1):

a = α

γ
· 3γ = 3α, b = β

γ
· 3γ = 3β

We obtain the solution

P = (3α, 3β, 3γ )

Step 3. Conclusions. Since V has a minimum value subject to the constraint, it occurs at the critical point. We substitute
a = 3α, b = 3β, and c = 3γ in the equation of the plane x

a + y
b

+ z
c = 1 to obtain the following plane, which minimizes

V :

x

3α
+ y

3β
+ z

3γ
= 1 or

x

α
+ y

β
+ z

γ
= 3
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35. Show that the Lagrange equations for f (x, y) = x + y subject to the constraint g(x, y) = x + 2y = 0 have no
solution. What can you conclude about the minimum and maximum values of f subject to g = 0? Show this directly.

solution Using the methods of Lagrange we can write ∇f = λ∇g and see

〈1, 1〉 = λ 〈1, 2〉
Which gives us the equations:

1 = λ, 1 = 2λ

hence, λ = 1 or λ = 1/2. This is an inconsistent set of equations, thus the Lagrange method has no solution. What we
can conclude from this is that the maximum and minimum values of f subject to g = 0 does not exist. This means that
f (x, y) increases without an upper bound and decreases without a lower bound.

To show this directly, we can write y = −1/2x from the constraint equation and substitute it into f (x, y) =
f (x, −1/2x) = x − 1/2x = 1/2x. We know that y = 1/2x is a straight line having slope 1/2, increasing, with no
maximum nor minimum values.

36. Show that the Lagrange equations for f (x, y) = 2x + y subject to the constraint g(x, y) = x2 − y2 = 1
have a solution but that f has no min or max on the constraint curve. Does this contradict Theorem 1?

solution Using the methods of Lagrange we can write ∇f = λ∇g and see

〈2, 1〉 = λ 〈2x, −2y〉
or

2 = 2λx, 1 = −2λy

and

λx = 1, 1 = −2λy

hence

λx = −2λy ⇒ λx + 2λy = 0 ⇒ λ(x + 2y) = 0

Hence λ = 0 or x = −2y. But we see if λ = 0 above, we get an inconsistent equation, therefore x = −2y. Using the
constraint equation we see

(−2y)2 − y2 = 1 ⇒ 4y2 − y2 = 1 ⇒ y = ± 1√
3
, x = ∓ 2√

3

Evaluating at these points we see

f

(
2√
3
, − 1√

3

)
= √

3, f

(
− 2√

3
,

1√
3

)
= −√

3

Now, to show that f (x, y) has no min or max on the constraint curve.

The point (x, y) = (x,
√

x2 − 1) lies on the constraint for all x ≥ 1. Consider the following:

lim
x→∞ f (x, y) = lim

x→∞ f (x,
√

x2 − 1) = lim
x→∞ 2x +

√
x2 + 1 → ∞

However, the point (−x, y) = (−x, −
√

x2 − 1) also lies on the constraint curve, and

lim
x→∞ f (x, y) = lim

x→∞ f (−x, −
√

x2 − 1) = lim
x→∞ −2x −

√
x2 − 1 → −∞

Therefore, f (x, y) has no min nor max on the constraint curve.
These calculations do not contradict the Lagrange theorem in the text because the theorem says only that the extrema

(if they exist) must satisfy the Lagrange equations.

37. Let L be the minimum length of a ladder that can reach over a fence of height h to a wall located a distance b behind
the wall.

(a) Use Lagrange multipliers to show that L = (h2/3 + b2/3)3/2 (Figure 19). Hint: Show that the problem amounts to
minimizing f (x, y) = (x + b)2 + (y + h)2 subject to y/b = h/x or xy = bh.

(b) Show that the value of L is also equal to the radius of the circle with center (−b, −h) that is tangent to the graph of
xy = bh.
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Wall
Ladder

Fence

y

h

L
L

b x

x

xy = bh

(−b, −h)

y

FIGURE 19

solution

(a) We denote by x and y the lengths shown in the figure, and express the length l of the ladder in terms of x and y.

BC xo
b

h

A

D
y

E

Using the Pythagorean Theorem, we have

l =
√

OA
2 + OB

2 =
√

(y + h)2 + (x + b)2 (1)

Since the function u2 is increasing for u ≥ 0, l and l2 have their minimum values at the same point. Therefore, we may
minimize the function f (x, y) = l2(x, y), which is

f (x, y) = (x + b)2 + (y + h)2

We now identify the constraint on the variables x and y. (Notice that h, b are constants while x and y are free to change).
Using proportional lengths in the similar triangles �AED and �DCB, we have

AE

DC
= ED

CB

That is,

y

h
= b

x
⇒ xy = bh

We thus must minimize f (x, y) = (x + b)2 + (y + h)2 subject to the constraint g(x, y) = xy = bh, x > 0, y > 0.

Step 1. Write out the Lagrange Equations. We have ∇f = 〈2(x + b), 2(y + h)〉 and ∇g = 〈y, x〉, hence the Lagrange
Condition ∇f = λ∇g gives the following equations:

2(x + b) = λy

2(y + h) = λx

Step 2. Solve for λ in terms of x and y. The equation of the constraint implies that y �= 0 and x �= 0. Therefore, the
Lagrange equations yield

λ = 2(x + b)

y
, λ = 2(y + h)

x

Step 3. Solve for x and y using the constraint. Equating the two expressions for λ gives

2(x + b)

y
= 2(y + h)

x

We simplify:

x(x + b) = y(y + h)

x2 + xb = y2 + yh
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The equation of the constraint implies that y = bh
x . We substitute and solve for x > 0. This gives

x2 + xb =
(

bh

x

)2
+ bh

x
· h

x2 + xb = b2h2

x2
+ bh2

x

x4 + x3b = b2h2 + bh2x

x4 + bx3 − bh2x − b2h2 = 0

x3(x + b) − bh2(x + b) = 0(
x3 − bh2

)
(x + b) = 0

Since x > 0 and b > 0, also x + b > 0 and the solution is

x3 − bh2 = 0 ⇒ x = (bh2)
1/3

We compute y. Using the relation y = bh
x ,

y = bh

(bh2)
1/3

= bh

b1/3h2/3
= b2/3h1/3 = (b2h)

1/3

We obtain the solution

x =
(
bh2
)1/3

, y =
(
b2h
)1/3

(2)

Extreme values may also occur at the point on the constraint where ∇g = 0. However, ∇g = 〈y, x〉 = 〈0, 0〉 only at the
point (0, 0), which is not on the constraint.
Step 4. Conclusions. Notice that on the constraint y = bh

x or x = bh
y , as x → 0+ then y → ∞, and as x → ∞, then

y → 0+. Also, as y → 0+, x → ∞ and as y → ∞, x → 0+. In either case, f (x, y) is increasing without bound. Using
this property and the theorem on the existence of extreme values for a continuous function on a closed and bounded set
(for a certain part of the constraint), one can show that f has a minimum value on the constraint. This minimum value
occurs at the point (2). We substitute this point in (1) to obtain the following minimum length L:

L =
√(

(b2h)
1/3 + h

)2 +
(
(bh2)

1/3 + b
)2

=
√

(b2h)
2/3 + 2h(b2h)

1/3 + h2 + (bh2)
2/3 + 2b(bh2)

1/3 + b2

=
√

b
4
3 h2/3 + 2h

4
3 b2/3 + h2 + b2/3h

4
3 + 2b

4
3 h2/3 + b2

=
√

3b
4
3 h2/3 + 3h

4
3 b2/3 + h2 + b2

=
√(

h2/3
)3 + 3

(
h2/3

)2
b2/3 + 3h2/3

(
b2/3

)2 + (b2/3
)3

Using the identity (α + β)3 = α3 + 3α2β + 3αβ2 + β3, we conclude that

L =
√(

h2/3 + b2/3
)3 =

(
h2/3 + b2/3

)3/2
.

(b) The Lagrange Condition states that the gradient vectors ∇fP and ∇gP are parallel (where P is the minimizing
point). The gradient ∇fP is orthogonal to the level curve of f passing through P , which is a circle through P centered
at (−b, −h). ∇gP is orthogonal to the level curve of g passing through P , which is the curve of the constraint xy = bh.
We conclude that the circle and the curve xy = bh, both being perpendicular to parallel vectors, are tangent at P . The
radius of the circle is the minimum value L, of f (x, y).

38. Find the maximum value of f (x, y, z) = xy + xz + yz − xyz subject to the constraint x + y + z = 1, for
x ≥ 0, y ≥ 0, z ≥ 0.

solution
Step 1. Write out the Lagrange Equations. We have ∇f = 〈y + z − 4yz, x + z − 4xz, x + y − 4xy〉 and ∇g = 〈1, 1, 1〉,
hence the Lagrange Condition ∇f = λ∇g yields the following equations:

y + z − 4yz = λ

x + z − 4xz = λ

x + y − 4xy = λ
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Step 2. Solve for x, y, and z using the constraint. The Lagrange equations imply that

x + z − 4xz = y + z − 4yz

x + y − 4xy = y + z − 4yz
⇒

x − 4xz = y − 4yz

x − 4xy = z − 4yz
(1)

We solve for x and y in terms of z. The first equation gives

x − y + 4yz − 4xz = 0

x − y − 4z(x − y) = 0 (2)

(x − y)(1 − 4z) = 0 ⇒ x = y or z = 1

4

The second equation in (1) gives:

x − z + 4yz − 4xy = 0

x − z − 4y(x − z) = 0 (3)

(x − z)(1 − 4y) = 0 ⇒ x = z or y = 1

4

We examine the possible solutions.

(1) x = y, x = z. Substituting x = y = z in the equation of the constraint x + y + z = 1 gives 3z = 1 or z = 1
3 . We

obtain the solution (
1

3
,

1

3
,

1

3

)

(2) x = y, y = 1
4 . Substituting x = y = 1

4 in the constraint x + y + z = 1 gives

1

4
+ 1

4
+ z = 1 ⇒ z = 1

2

We obtain the solution (
1

4
,

1

4
,

1

2

)

(3) z = 1
4 , x = z. Substituting z = 1

4 , x = 1
4 in the constraint gives

1

4
+ y + 1

4
= 1 ⇒ y = 1

2

We get the point (
1

4
,

1

2
,

1

4

)

(4) z = 1
4 , y = 1

4 . Substituting in the constraint gives x + 1
4 + 1

4 = 1 or x = 1
2 . We obtain the point(

1

2
,

1

4
,

1

4

)

We conclude that the critical points are

P1 =
(

1

3
,

1

3
,

1

3

)
, P2 =

(
1

4
,

1

4
,

1

2

)

P3 =
(

1

4
,

1

2
,

1

4

)
, P4 =

(
1

2
,

1

4
,

1

4

)
(4)

Step 3. Conclusions. The constraint x + y + z = 1, x ≥ 0, y ≥ 0, z ≥ 0 is the part of the plane x + y + z = 1 in the first
octant. This is a closed and bounded set in R3, hence f (which is a continuous function) has minimum and maximum value
subject to the constraint. The extreme values occur at points from (4). We evaluate f (x, y, z) = xy + xz + yz − 4xyz at
these points:

f (P1) = 1

3
· 1

3
+ 1

3
· 1

3
+ 1

3
· 1

3
− 4 · 1

3
· 1

3
· 1

3
= 3

9
− 4

27
= 5

27

f (P2) = f (P3) = f (P4) = 1

4
· 1

4
+ 1

4
· 1

2
+ 1

4
· 1

2
− 4 · 1

4
· 1

4
· 1

2
= 3

16
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We conclude that the maximum value of f subject to the constraint is

f (P2) = f (P3) = f (P4) = 3

16
.

39. Find the point lying on the intersection of the plane x + 1
2y + 1

4z = 0 and the sphere x2 + y2 + z2 = 9 with the
largest z-coordinate.

solution We will use the method of Lagrange Multipliers with two constraints here. We want to maximize f (x, y, z) =
z subject to the two surfaces. Set the first constraint as g(x, y, z) = x + 1

2y + 1
4z = 0 and the second as h(x, y, z) =

x2 + y2 + z2 − 9 = 0.

Write out the Lagrange equations. We have ∇f = 〈0, 0, 1〉, ∇g =
〈
1, 1

2 , 1
4

〉
and ∇g = 〈2x, 2y, 2z〉, hence the

Lagrange condition, ∇f = λ∇g + μ∇h yields the following equations:

〈0, 0, 1〉 = λ

〈
1,

1

2
,

1

4

〉
+ μ 〈2x, 2y, 2z〉

and

0 = λ + 2μx, 0 = 1

2
λ + 2μy, 1 = 1

4
λ + 2μz

Hence, from the first two equations we see

λ = −2μx, λ = −4μy

Therefore

−2μx = −4μy ⇒ x = 2y

since μ �= 0. Using the first constraint equation x + 1
2y + 1

4z = 0 we have

2y + 1

2
y + 1

4
z = 0 ⇒ 5

2
y + 1

4
z = 0 ⇒ y = − 1

10
z

Finally, we can substitute y = −1/10z and x = 2y = −1/5z into the second constraint equation x2 + y2 + z2 = 9 to
see (

−1

5
z

)2
+
(

− 1

10
z

)2
+ z2 = 9 ⇒ 1

25
z2 + 1

100
z2 + z2 = 9 ⇒ 4z2 + z2 + 100z2 = 900

Hence

105z2 = 900 ⇒ z2 = 900

105
= 60

7

Therefore z = ±
√

60
7 = ±2

√
15
7 . The two critical points are:

P

(
−2

5

√
15

7
, −1

5

√
15

7
, 2

√
15

7

)
, Q

(
2

5

√
15

7
,

1

5

√
15

7
, −2

√
15

7

)

The critical point with the largest z-coordinate (the maximum of f (x, y, z)) is P with z-coordinate 2
√

15
7 ≈ 2.928.

40. Find the maximum of f (x, y, z) = x + y + z subject to the two constraints x2 + y2 + z2 = 9 and 1
4x2 + 1

4y2 +
4z2 = 9.

solution We will use the method of Lagrange Multipliers with two constraints here. We want to maximize f (x, y, z) =
x + y + z subject to the two constraints. The first constraint is g(x, y, z) = x2 + y2 + z2 − 9 and the second, h(x, y, z) =
1
4x2 + 1

4y2 + 4z2 − 9.

Write out the Lagrange equations. We have ∇f = 〈1, 1, 1〉, ∇g = 〈2x, 2y, 2z〉, and ∇h =
〈

1
2x, 1

2y, 8z
〉
. Therefore

the Lagrange condition ∇f = λ∇g + μ∇h yields the following equation:

〈1, 1, 1〉 = λ 〈2x, 2y, 2z〉 + μ

〈
1

2
x,

1

2
y, 8z

〉

and

1 = 2λx + 1

2
μx, 1 = 2λy + 1

2
μy, 1 = 2λz + 8μz
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Using the first two equations and solving for λ we see:

λ = 1 − 1
2μx

2x
, λ = 1 − 1

2μy

2y

Setting these equal and solving for x and y we see

x = y

Now using the first constraint equation we have

x2 + y2 + z2 = 9 ⇒ 2y2 + z2 = 9 ⇒ z2 = 9 − 2y2

Next, using the second constraint equation we have

1

4
x2 + 1

4
y2 + 4z2 = 9 ⇒ 1

4
y2 + 1

4
y2 + 4(9 − 2y2) = 9 ⇒ 15

2
y2 = 27 ⇒ y2 = 18

5

Therefore we can conclude y = ±3
√

2
5 and, since x = y, then x = ±3

√
2
5 . Then also,

x2 + y2 + z2 = 9 ⇒ 18

5
+ 18

5
+ z2 = 9 ⇒ z2 = 11

5

Hence z = ± 3√
5

. Our critical points are

(
3

√
2

5
, 3

√
2

5
,

3√
5

)
,

(
3

√
2

5
, 3

√
2

5
, − 3√

5

)

(
−3

√
2

5
, −3

√
2

5
,

3√
5

)
,

(
−3

√
2

5
, −3

√
2

5
, − 3√

5

)

We must evaluate f (x, y, z) = x + y + z at the four critical points to determine the maximum value. But note since we
are interested in the sum of the coordinates, the maximum value is obtained when they are all positive:

f

(
3

√
2

5
, 3

√
2

5
,

3√
5

)
≈ 5.136

41. The cylinder x2 + y2 = 1 intersects the plane x + z = 1 in an ellipse. Find the point on that ellipse that is farthest
from the origin.

solution We need to use Lagrange Multipliers with two constraints here. We want to maximize the square of the

distance from the origin f (x, y, z) = x2 + y2 + z2 subject to g(x, y, z) = x2 + y2 − 1 and h(x, y, z) = x + z − 1.
Taking the gradients we have ∇f = 〈2x, 2y, 2z〉, ∇g = 〈2x, 2y, 0〉, and ∇h = 〈1, 0, 1〉. Writing the Lagrange condition
∇f = λ∇g + μ∇h we have

〈2x, 2y, 2z〉 = λ 〈2x, 2y, 0〉 + μ 〈1, 0, 1〉
and

2x = 2λx + μ, 2y = 2λy, 2z = μ

Using the second equation we see:

2y − 2λy = 0 ⇒ 2y(λ − 1) = 0

Therefore, either λ = 1 or y = 0.
If λ = 1 then this implies μ = 0 and z = 0. Using the constraint x + z = 1 then x = 1, and using the constraint

x2 + y2 = 1, then y = 0. This gives the critical point

(1, 0, 0)

If y = 0, using the constraint x2 + y2 = 1, then x = ±1. If x = 1, then z = 0, if x = −1 then z = 2. This gives the
critical points

(1, 0, 0), (−1, 0, 2)

Now we examine f (x, y, z) = x2 + y2 + z2 at the two critical points for the maximum value:

f (1, 0, 0) = 1, f (−1, 0, 2) = 5

Thus, the point farthest from the origin on this ellipse is the point (−1, 0, 2) (at
√

5 units away).
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42. Find the minimum and maximum of f (x, y, z) = y + 2z subject to two constraints, 2x + z = 4 and x2 + y2 = 1.

solution The constraint equations are:

g(x, y) = 2x + z − 4 = 0, h(x, y) = x2 + y2 − 1 = 0

We now write out the Lagrange Equations. We have, ∇f = 〈0, 1, 2〉, ∇g = 〈2, 0, 1〉, and ∇h = 〈2x, 2y, 0〉, so the
Lagrange Condition is

∇f = λ∇g + μ∇h

〈0, 1, 2〉 = λ 〈2, 0, 1〉 + μ 〈2x, 2y, 0〉 = 〈2λ + 2μx, 2μy, λ〉
From the third coordinate we get that λ = 2, which then gives us the following from the first two coordinates:

0 = 4 + 2μx

1 = 2μy

From the second equation, we see that neither μ nor y can be zero, so we can write μ = 1/2y and substitute it into the
first equation, resulting in 0 = 4 + 2(1/2y)x = 4 + x/y, or in other words, x = −4y. Plugging this into the second
constraint, we find that 16y2 + y2 = 1, so y = ±1/

√
17. Thus, our two points of interest are( −4√

17
,

1√
17

, 4 + 8√
17

)
and

(
4√
17

,
−1√

17
, 4 − 8√

17

)

The function f at the first point is 17/
√

17, and at the second point is −17/
√

17, so these must be our maximum and
minimum values, respectively.

43. Find the minimum value of f (x, y, z) = x2 + y2 + z2 subject to two constraints, x + 2y + z = 3 and x − y = 4.

solution The constraint equations are

g(x, y, z) = x + 2y + z − 3 = 0, h(x, y) = x − y − 4 = 0

Step 1. Write out the Lagrange Equations. We have ∇f = 〈2x, 2y, 2z〉, ∇g = 〈1, 2, 1〉, and ∇h = 〈1, −1, 0〉, hence the
Lagrange Condition is

∇f = λ∇g + μ∇h

〈2x, 2y, 2z〉 = λ 〈1, 2, 1〉 + μ 〈1, −1, 0〉
= 〈λ + μ, 2λ − μ, λ〉

We obtain the following equations:

2x = λ + μ

2y = 2λ − μ

2z = λ

Step 2. Solve for λ and μ. The first equation gives λ = 2x − μ. Combining with the third equation we get

2z = 2x − μ (1)

The second equation gives μ = 2λ − 2y, combining with the third equation we get μ = 4z − 2y. Substituting in (1) we
obtain

2z = 2x − (4z − 2y) = 2x − 4z + 2y

6z = 2x + 2y ⇒ z = x + y

3
(2)

Step 3. Solve for x, y, and z using the constraints. The constraints give x and y as functions of z:

x − y = 4 ⇒ y = x − 4

x + 2y + z = 3 ⇒ y = 3 − x − z

2

Combining the two equations we get

x − 4 = 3 − x − z

2
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2x − 8 = 3 − x − z

3x = 11 − z ⇒ x = 11 − z

3

We find y using y = x − 4:

y = 11 − z

3
− 4 = −1 − z

3

We substitute x and y in (2) and solve for z:

z =
11−z

3 + −1−z
3

3
= 11 − z − 1 − z

9
= 10 − 2z

9

9z = 10 − 2z

11z = 10 ⇒ z = 10

11

We find x and y:

y = −1 − z

3
= −1 − 10

11
3

= −21

33
= − 7

11

x = 11 − z

3
= 11 − 10

11
3

= 111

33
= 37

11

We obtain the solution

P =
(

37

11
, − 7

11
,

10

11

)

Step 4. Calculate the critical values. We compute f (x, y, z) = z2 + y2 + z2 at the critical point:

f (P ) =
(

37

11

)2
+
(

− 7

11

)2
+
(

10

11

)2
= 1518

121
= 138

11
≈ 12.545

As x tends to infinity, so also does f (x, y, z) tend to ∞. Therefore f has no maximum value and the given critical point
P must produce a minimum. We conclude that the minimum value of f subject to the two constraints is f (P ) = 138

11 ≈
12.545.

Further Insights and Challenges
44. Suppose that both f (x, y) and the constraint function g(x, y) are linear. Use contour maps to explain why
f (x, y) does not have a maximum subject to g(x, y) = 0 unless g = af + b for some constants a, b.

solution We denote the linear functions by

f (x, y) = Ax + By + C, g(x, y) = Dx + Ey + F

If f has a maximum value at a point P subject to g, then at this point ∇fP ‖ ∇gP . Since the gradient is normal to the
level curve of the function passing through P , the tangents to the level curves of f and g at P coincide. In our case, the
level curves of f (and of g) consist of parallel lines, hence since their tangents coincide, then these parallel contour lines
coincide. That is, the contour line f (x, y) = K is also the contour line g(x, y) = L for some K , L, or in other words,

Ax + By + C = K, Dx + Ey + F = L

Therefore,

D = aA, E = aB, F − L = a(C − K)

The function g is thus

g(x, y) = Dx + Ey + F = aAx + aBy + aC − aK + L

= a(Ax + By + C) + L − aK = af (x, y) + L − aK

Therefore, for b = L − aK we have

g(x, y) = af (x, y) + b (1)

By Theorem 1 we conclude that if g is not in the form (1), f does not have a maximum subject to g(x, y) = 0.
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45. Assumptions Matter Consider the problem of minimizing f (x, y) = x subject to g(x, y) = (x − 1)3 − y2 = 0.

(a) Show, without using calculus, that the minimum occurs at P = (1, 0).
(b) Show that the Lagrange condition ∇fP = λ∇gP is not satisfied for any value of λ.
(c) Does this contradict Theorem 1?

solution
(a) The equation of the constraint can be rewritten as

(x − 1)3 = y2 or x = y2/3 + 1

Therefore, at the points under the constraint, x ≥ 1, hence f (x, y) ≥ 1. Also at the point P = (1, 0) we have f (1, 0) = 1,
hence f (1, 0) = 1 is the minimum value of f under the constraint.

(b) We have ∇f = 〈1, 0〉 and ∇g =
〈
3(x − 1)2, −2y

〉
, hence the Lagrange Condition ∇f = λ∇g yields the following

equations:

1 = λ · 3(x − 1)2

0 = −2λy

The first equation implies that λ �= 0 and x − 1 = ± 1√
3λ

. The second equation gives y = 0. Substituting in the equation

of the constraint gives

(x − 1)3 − y2 =
( ±1√

3λ

)3
− 02 = ±1

(3λ)3/2
�= 0

We conclude that the Lagrange Condition is not satisfied by any point under the constraint.
(c) Theorem 1 is not violated since at the point P = (1, 0), ∇g = 0, whereas the Theorem is valid for points where
∇gP �= 0.

46. Marginal Utility Goods 1 and 2 are available at dollar prices of p1 per unit of good 1 and p2 per unit of good 2. A
utility function U(x1, x2) is a function representing the utility or benefit of consuming xj units of good j . The marginal
utility of the j th good is ∂U/∂xj , the rate of increase in utility per unit increase in the j th good. Prove the following
law of economics: Given a budget of L dollars, utility is maximized at the consumption level (a, b) where the ratio of
marginal utility is equal to the ratio of prices:

Marginal utility of good 1

Marginal utility of good 2
= Ux1(a, b)

Ux2(a, b)
= p1

p2

solution We must maximize the utility U(x1, x2) subject to the constraint p1x1 + p2x2 = L or g(x1, x2) = p1x1 +
p2x2 − L = 0, x1 ≥ 0, x2 ≥ 0. We have ∇U = 〈

Ux1 , Ux2

〉
and ∇g = 〈p1, p2〉, hence the Lagrange Condition

∇U = λ∇g gives the following equations:

Ux1 = λp1

Ux2 = λp2
⇒

Ux1

p1
= λ

Ux2

p2
= λ

(we assume p1, p2 > 0). Equating the two expressions for λ we get

Ux1

p1
= Ux2

p2
⇒ Ux1

Ux2

= p1

p2

That is, U(x1, x2) is maximized at the consumption level (a, b), where the following holds:

marginal utility of good 1

marginal utility of good 2
= Ux1(a, b)

Ux2(a, b)
= p1

p2

Notice that the constraint is a segment in the x1x2-plane (if p1 > 0 and p2 > 0), which is a closed and bounded set in
this plane. Hence, if U is continuous, it assumes extreme values on this segment.

x1
p1x1 + p2x2 = L

x1, x2 ≥ 0

x2
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47. Consider the utility function U(x1, x2) = x1x2 with budget constraint p1x1 + p2x2 = c.

(a) Show that the maximum of U(x1, x2) subject to the budget constraint is equal to c2/(4p1p2).

(b) Calculate the value of the Lagrange multiplier λ occurring in (a).

(c) Prove the following interpretation: λ is the rate of increase in utility per unit increase in total budget c.

solution

(a) By the earlier exercise, the utility is maximized at a point where the following equality holds:

Ux1

Ux2

= p1

p2

Since Ux1 = x2 and Ux2 = x1, we get

x2

x1
= p1

p2
⇒ x2 = p1

p2
x1

We now substitute x2 in terms of x1 in the constraint p1x1 + p2x2 = c and solve for x1. This gives

p1x1 + p2 · p1

p2
x1 = c

2p1x1 = c ⇒ x1 = c

2p1

The corresponding value of x2 is computed by x2 = p1
p2

x1:

x2 = p1

p2
· c

2p1
= c

2p2

That is, U(x1, x2) is maximized at the consumption level x1 = c
2p1

, x2 = c
2p2

. The maximum value is

U

(
c

2p1
,

c

2p2

)
= c

2p1
· c

2p2
= c2

4p1p2

(b) The Lagrange condition ∇U = λ∇g for U(x1, x2) = x1x2 and g(x1, x2) = p1x1 + p2x2 − c = 0 is

〈x2, x1〉 = λ 〈p1, p2〉 (1)

or

x2 = λp1

x1 = λp2
⇒ λ = x2

p1
= x1

p2

In part (a) we showed that at the maximizing point x1 = c
2p1

, therefore the value of λ is

λ = x1

p2
= c

2p1p2

(c) We compute dU
dc

using the Chain Rule:

dU

dc
= ∂U

∂x1
x′

1(c) + ∂U

∂x2
x′

2(c) = x2x′
1(c) + x1x′

2(c) = 〈x2, x1〉 · 〈x′
1(c), x′

2(c)
〉

Substituting in (1) we get

dU

dc
= λ 〈p1, p2〉 · 〈x′

1(c), x′
2(c)

〉 = λ
(
p1x′

1(c) + p2x′
2(c)

)
(2)

We now use the Chain Rule to differentiate the equation of the constraint p1x1 + p2x2 = c with respect to c:

p1x′
1(c) + p2x′

2(c) = 1

Substituting in (2), we get

dU

dc
= λ · 1 = λ

Using the approximation �U ≈ dU
dc

�c, we conclude that λ is the rate of increase in utility per unit increase of total
budget L.
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48. This exercise shows that the multiplier λ may be interpreted as a rate of change in general. Assume that the maximum
of f (x, y) subject to g(x, y) = c occurs at a point P . Then P depends on the value of c, so we may write P = (x(c), y(c))

and we have g(x(c), y(c)) = c.

(a) Show that

∇g(x(c), y(c)) · 〈x′(c), y′(c)
〉 = 1

Hint: Differentiate the equation g(x(c), y(c)) = c with respect to c using the Chain Rule.

(b) Use the Chain Rule and the Lagrange condition ∇fP = λ∇gP to show that

d

dc
f (x(c), y(c)) = λ

(c) Conclude that λ is the rate of increase in f per unit increase in the “budget level” c.

solution

(a) We differentiate the equation g (x(c), y(c)) = c with respect to c, using the Chain Rule. This gives

∂g

∂x
x′(c) + ∂g

∂y
y′(c) = 1

We rewrite this equality using the dot product and the definition of the gradient:〈
∂g

∂x
,
∂g

∂y

〉
· 〈x′(c), y′(c)

〉 = 1

∇g (x(c), y(c)) · 〈x′(c), y′(c)
〉 = 1

(b) We now differentiate f (x(c), y(c)) with respect to c, using the Chain Rule. We obtain

d

dc
f (x(c), y(c)) = ∂f

∂x
x′(c) + ∂f

∂y
y′(c) =

〈
∂f

∂x
,
∂f

∂y

〉
· 〈x′(c), y′(c)

〉 = ∇f · 〈x′(c), y′(c)
〉

We use the Lagrange Condition ∇f = λ∇g and the result in part (a) to write

d

dc
f (x(c), y(c)) = λ · ∇g · 〈x′(c), y′(c)

〉 = λ · 1 = λ

(c) The equality obtained in part (b) implies that λ is the rate of change in the maximum value of f (x, y), subject to the
constraint g(x, y) = c, with respect to c.

49. Let B > 0. Show that the maximum of

f (x1, . . . , xn) = x1x2 · · · xn

subject to the constraints x1 + · · · + xn = B and xj ≥ 0 for j = 1, . . . , n occurs for x1 = · · · = xn = B/n. Use this to
conclude that

(a1a2 · · · an)1/n ≤ a1 + · · · + an

n

for all positive numbers a1, . . . , an.

solution We first notice that the constraints x1 + · · · + xn = B and xj ≥ 0 for j = 1, . . . , n define a closed and
bounded set in the nth dimensional space, hence f (continuous, as a polynomial) has extreme values on this set. The
minimum value zero occurs where one of the coordinates is zero (for example, for n = 2 the constraint x1 + x2 = B,
x1 ≥ 0, x2 ≥ 0 is a triangle in the first quadrant). We need to maximize the function f (x1, . . . , xn) = x1x2 · · · xn subject
to the constraints g (x1, . . . , xn) = x1 + · · · + xn − B = 0, xj ≥ 0, j = 1, . . . , n.

Step 1. Write out the Lagrange Equations. The gradient vectors are

∇f = 〈x2x3 · · · xn, x1x3 · · · xn, . . . , x1x2 · · · xn−1
〉

∇g = 〈1, 1, . . . , 1〉
The Lagrange Condition ∇f = λ∇g yields the following equations:

x2x3 · · · xn = λ

x1x3 · · · xn = λ

x1x2 · · · xn−1 = λ
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Step 2. Solving for x1, x2, . . . , xn using the constraint. The Lagrange equations imply the following equations:

x2x3 · · · xn = x1x2 · · · xn−1

x1x3 · · · xn = x1x2 · · · xn−1

x1x2x4 · · · xn = x1x2 · · · xn−1

...

x1x2 · · · xn−2xn = x1x2 · · · xn−1

We may assume that xj �= 0 for j = 1, . . . , n, since if one of the coordinates is zero, f has the minimum value zero. We
divide each equation by its right-hand side to obtain

xn

x1
= 1

xn

x2
= 1

xn

x3
= 1

...

xn

xn−1
= 1

⇒

x1 = xn

x2 = xn

x3 = xn

...

xn−1 = xn

Substituting in the constraint x1 + · · · + xn = B and solving for xn gives

xn + xn + · · · + xn︸ ︷︷ ︸
n

= B

nxn = B ⇒ xn = B

n

Hence x1 = · · · = xn = B
n .

Step 3. Conclusions. The maximum value of f (x1, . . . , xn) = x1x2 · · · xn on the constraint x1 + · · · + xn = B, xj ≥ 0,

j = 1, . . . , n occurs at the point at which all coordinates are equal to B
n . The value of f at this point is

f

(
B

n
,
B

n
, . . . ,

B

n

)
=
(

B

n

)n

It follows that for any point (x1, . . . , xn) on the constraint, that is, for any point satisfying x1 + · · · + xn = B with xj

positive, the following holds:

f (x1, . . . , xn) ≤
(

B

n

)n

That is,

x1 · · · xn ≤
(

x1 + · · · + xn

n

)n

or

(x1 · · · xn)1/n ≤ x1 + · · · + xn

n
.

50. Let B > 0. Show that the maximum of f (x1, . . . , xn) = x1 + · · · + xn subject to x2
1 + · · · + x2

n = B2 is
√

nB.
Conclude that

|a1| + · · · + |an| ≤ √
n(a2

1 + · · · + a2
n)1/2

for all numbers a1, . . . , an.

solution First notice that the function is continuous and the constraint is a sphere centered at the origin in the nth-

dimensional space, hence f has extreme values on this set. (For n = 2, the constraint defines the circle x2 + y2 = B2).
We must maximize f (x1, . . . , xn) = x1 + · · · + xn subject to the constraint g(x1, . . . , xn) = x2

1 + · · · + x2
n − B2 = 0.

Step 1. Write out the Lagrange Equations. The gradient vectors are

∇f = 〈1, 1, . . . , 1〉 and ∇g = 〈2x1, 2x2, . . . , 2xn〉
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Hence, the Lagrange Condition ∇f = λ∇g gives the following equations:

1 = λ (2x1)

1 = λ (2x2)

...

1 = λ (2xn)

Step 2. Solve for λ in terms of x1, . . . , xn. The Lagrange equations imply that xj �= 0 for j = 1, . . . , n. Therefore we
may divide by xj to obtain

λ = 1

2x1

λ = 1

2x2

...

λ = 1

2xn

Step 3. Solving for x1, . . . , xn using the constraint. Equating the expressions for λ gives the following equations:

1

2x1
= 1

2xn

1

2x2
= 1

2xn
...

1

2xn−1
= 1

2xn

⇒

x1 = xn

x2 = xn

...

xn−1 = xn

Substituting x1, . . . , xn−1 in terms of xn in the equation of the constraint x2
1 + · · · + x2

n = B2 and solving for xn, gives

x2
n + x2

n + · · · + x2
n︸ ︷︷ ︸

n

= B2

nx2
n = B2

x2
n = B2

n
⇒ |xn| = B√

n

We conclude that |x1| = |x2| = · · · = |xn| = B√
n

. Since xj = xn for all j , the maximum value occurs when xn is

positive, and the minimum value corresponds to the negative value of xn. We conclude that the maximizing point is

x1 = x2 = · · · = xn = B√
n

Notice that the point where ∇g = 〈2x1, 2x2, . . . , 2xn〉 = 0 is the point at the origin, and this point does not lie on the
constraint.
Step 4. Conclusions. The maximum value of f (x1, . . . , xn) = x1 + · · · + xn under the constraint is

f

(
B√
n

, . . . ,
B√
n

)
= n

B√
n

= √
nB

This means that for any point under the constraint, that is, for any (x1, . . . , xn) such that x2
1 + · · · + x2

n = B2, we have

f (x1, . . . , xn) ≤ √
nB

That is,

x1 + · · · + xn ≤ √
n

√
x2

1 + · · · + x2
n (1)

Notice that if (x1, . . . , xn) is under the constraint, then (|x|1, . . . , |x|n) is also under the constraint, and the right-hand
side in (1) has the same value at these two points. Therefore, we also have

|x1| + · · · + |xn| ≤ √
n
(
x2

1 + · · · + x2
n

)1/2
.
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51. Given constants E, E1, E2, E3, consider the maximum of

S(x1, x2, x3) = x1 ln x1 + x2 ln x2 + x3 ln x3

subject to two constraints:

x1 + x2 + x3 = N, E1x1 + E2x2 + E3x3 = E

Show that there is a constant μ such that xi = A−1eμEi for i = 1, 2, 3, where A = N−1(eμE1 + eμE2 + eμE3).

solution The constraints equations are

g (x1, x2, x3) = x1 + x2 + x3 − N = 0

h (x1, x2, x3) = E1x1 + E2x2 + E3x3 − E = 0

We first find the Lagrange equations. The gradient vectors are

∇S =
〈
ln x1 + x1 · 1

x1
, ln x2 + x2 · 1

x2
, ln x3 + x3 · 1

x3

〉
= 〈1 + ln x1, 1 + ln x2, 1 + ln x3〉

∇g = 〈1, 1, 1〉 , ∇h = 〈E1, E2, E3〉
The Lagrange Condition ∇f = λ∇g + μ∇h gives the following equation:

〈1 + ln x1, 1 + ln x2, 1 + ln x3〉 = λ 〈1, 1, 1〉 + μ 〈E1, E2, E3〉 = 〈λ + μE1, λ + μE2, λ + μE3〉
We obtain the Lagrange equations:

1 + ln x1 = λ + μE1

1 + ln x2 = λ + μE2

1 + ln x3 = λ + μE3

We subtract the third equation from the other equations to obtain

ln x1 − ln x3 = μ (E1 − E3)

ln x2 − ln x3 = μ (E2 − E3)

or

ln
x1

x3
= μ (E1 − E3)

ln
x2

x3
= μ (E2 − E3)

⇒
x1 = x3eμ(E1−E3)

x2 = x3eμ(E2−E3)
(1)

Substituting x1 and x2 in the equation of the constraint g(x1, x2, x3) = 0 and solving for x3 gives

x3eμ(E1−E3) + x3eμ(E2−E3) + x3 = N

We multiply by eμE3 :

x3
(
eμE1 + eμE2 + eμE3

) = NeμE3

x3 = NeμE3

eμE1 + eμE2 + eμE3

Substituting in (1) we get

x1 = NeμE3

eμE1 + eμE2 + eμE3
· eμ(E1−E3) = NeμE1

eμE1 + eμE2 + eμE3

x2 = NeμE3

eμE1 + eμE2 + eμE3
· eμ(E2−E3) = NeμE2

eμE1 + eμE2 + eμE3

Letting A = eμE1+eμE2+eμE3
N

, we obtain

x1 = A−1eμE1 , x2 = A−1eμE2 , x3 = A−1eμE3

The value of μ is determined by the second constraint h(x1, x2, x3) = 0.



April 19, 2011

832 C H A P T E R 14 DIFFERENTIATION IN SEVERAL VARIABLES (LT CHAPTER 15)

52. Boltzmann Distribution Generalize Exercise 51 to n variables: Show that there is a constant μ such that the
maximum of

S = x1 ln x1 + · · · + xn ln xn

subject to the constraints

x1 + · · · + xn = N, E1x1 + · · · + Enxn = E

occurs for xi = A−1eμEi , where

A = N−1(eμE1 + · · · + eμEn)

This result lies at the heart of statistical mechanics. It is used to determine the distribution of velocities of gas molecules
at temperature T ; xi is the number of molecules with kinetic energy Ei ; μ = −(kT )−1, where k is Boltzmann’s constant.
The quantity S is called the entropy.

solution The constraints equations are

g (x1, . . . , xn) = x1 + · · · + xn − N

h (x1, . . . , xn) = E1x1 + · · · + Enxn − E

We find the Lagrange Equations. The gradient vectors are

∇S =
〈
ln x1 + x1 · 1

x1
, . . . , ln xn + xn · 1

xn

〉
= 〈1 + ln x1, . . . , 1 + ln xn〉

∇g = 〈1, . . . , 1〉 , ∇h = 〈E1, . . . , En〉

We write the Lagrange Condition ∇S = λ∇g + μ∇h:

〈1 + ln x1, . . . , 1 + ln xn〉 = λ 〈1, . . . , 1〉 + μ 〈E1, . . . , En〉 = 〈λ + μE1, . . . , λ + μEn〉

yielding the following Lagrange equations:

1 + ln x1 = λ + μE1

1 + ln x2 = λ + μE2

...

1 + ln xn = λ + μEn

Subtracting the ith equation from the j th equation, we

ln xi − ln xj = ln
xi

xj
= μ(Ei − Ej )

or

ln
xi

xj
= μ

(
Ei − Ej

) ⇒ xie
−μEi = xj e−μEj (1)

Let A be the common value of x−1
i

eμEi . Then

xi = A−1eμEi

The constraint x1 + · · · + xn = N gives

A−1
(
eμE1 + eμE2 + · · · + eμEn

)
= N

Therefore

A = eμE1 + eμE2 + · · · + eμEn

N

The value of μ is determined by the second constraint h(x1, . . . , xn) = 0, although it would be very difficult to calculate.



April 19, 2011

Chapter Review Exercises 833

CHAPTER REVIEW EXERCISES

1. Given f (x, y) =
√

x2 − y2

x + 3
:

(a) Sketch the domain of f .
(b) Calculate f (3, 1) and f (−5, −3).
(c) Find a point satisfying f (x, y) = 1.

solution

(a) f is defined where x2 − y2 ≥ 0 and x + 3 �= 0. We solve these two inequalities:

x2 − y2 ≥ 0 ⇒ x2 ≥ y2 ⇒ |x| ≥ |y|
x + 3 �= 0 ⇒ x �= −3

Therefore, the domain of f is the following set:

D = {(x, y) : |x| ≥ |y|, x �= −3}

x
−3

y

(b) To find f (3, 1) we substitute x = 3, y = 1 in f (x, y). We get

f (3, 1) =
√

32 − 12

3 + 3
=

√
8

6
=

√
2

3

Similarly, setting x = −5, y = −3, we get

f (−5, −3) =
√

(−5)2 − (−3)2

−5 + 3
=

√
16

−2
= −2.

(c) We must find a point (x, y) such that

f (x, y) =
√

x2 − y2

x + 3
= 1

We choose, for instance, y = 1, substitute and solve for x. This gives√
x2 − 12

x + 3
= 1

√
x2 − 1 = x + 3

x2 − 1 = (x + 3)2 = x2 + 6x + 9

6x = −10 ⇒ x = −5

3

Thus, the point
(
− 5

3 , 1
)

satisfies f
(
− 5

3 , 1
)

= 1.

2. Find the domain and range of:

(a) f (x, y, z) = √
x − y + √

y − z

(b) f (x, y) = ln(4x2 − y)

solution
(a) f (x, y, z) is defined where the differences under the root signs are nonnegative. That is, x − y ≥ 0 and y − z ≥ 0.
We solve the inequalities

x − y ≥ 0 ⇒ y ≤ x

y − z ≥ 0 ⇒ y ≥ z
⇒ z ≤ y ≤ x
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The domain of f is the following set:

D = {(x, y, z)|z ≤ y ≤ x}
The range is the set of all nonnegative numbers.

(b) f is defined when 4x2 − y > 0 or y < 4x2. The domain D =
{
(x, y) : y < 4x2

}
is shown in the figure.

x

y

y = 4x2

Since the logarithm function takes on all real values, the range of f is all real values.

3. Sketch the graph f (x, y) = x2 − y + 1 and describe its vertical and horizontal traces.

solution The graph is shown in the following figure.

x

y

z

The trace obtained by setting x = c is the line z = c2 − y + 1 or z = (c2 + 1) − y in the plane x = c. The trace obtained
by setting y = c is the parabola z = x2 − c + 1 in the plane y = c. The trace obtained by setting z = c is the parabola
y = x2 + 1 − c in the plane z = c.

4. Use a graphing utility to draw the graph of the function cos(x2 + y2)e1−xy in the domains [−1, 1] × [−1, 1],
[−2, 2] × [−2, 2], and [−3, 3] × [−3, 3], and explain its behavior.

solution The graphs of the function f (x, y) = cos(x2 + y2)e1−xy in the given domains are shown in the following
figures.

y

x

z z

y

x

z

y

x

The graph in the domain [−1, 1] × [−1, 1] shows a saddle point and two local maxima. In the domain [−2, 2] × [−2, 2]
we see two additional local minima and two maxima and in the last graph two additional maxima and two additional
minima appear. We can see that when |xy| → 0, cos(x2 + y2) is the dominant part of the function, and as xy grows, e1−xy

gains more effect. When xy → −∞, the function oscillates between ∞ and −∞, while for xy → +∞, f (x, y) → 0.
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5. Match the functions (a)–(d) with their graphs in Figure 1.

(a) f (x, y) = x2 + y

(b) f (x, y) = x2 + 4y2

(c) f (x, y) = sin(4xy)e−x2−y2

(d) f (x, y) = sin(4x)e−x2−y2

(A) (B)

z z

y

yx

x

(C) (D)

z

y

y

x

x

z

FIGURE 1

solution The function f = x2 + y matches picture (b), as can be seen by taking the x = 0 slice. The function

f = x2 + 4y2 matches picture (c), as can be seen by taking z = c slices (giving ellipses). Since sin(4xy)e−x2−y2
is

symmetric with respect to x and y, and so also is picture (d), we match sin(4xy)e−x2−y2
with (d). That leaves the third

function, sin(4x)e−x2−y2
, to match with picture (a).

6. Referring to the contour map in Figure 2:

(a) Estimate the average rate of change of elevation from A to B and from A to D.

(b) Estimate the directional derivative at A in the direction of v.

(c) What are the signs of fx and fy at D?

(d) At which of the labeled points are both fx and fy negative?

0 1 2 km
Contour interval = 50 meters

B C

D

v

A

400

650750

FIGURE 2

solution

(a) From A to B: The segment AB spans 6 level curves and the contour interval is m = 50 m, so the change of altitude
is 6 · 50 = 300 m. From the horizontal scale of contour map we see that the horizontal distance from A to B is 2 km or
2000 m. Therefore,

Average ROC from A to B = �altitude

�horizontal distance
= 300

2000
= 0.15
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From A to D: A and D lie on the same level curve, hence there is no change in altitude from A to D. Therefore,

Average ROC fromA to D = 0

�horizontal distance
= 0.

(b) We first estimate the gradient at A. We get

∂f

∂x

∣∣∣∣
A

≈ �f

�x
= 0

�x
= 0

∂f

∂y

∣∣∣∣
A

≈ �f

�y
≈ 50

200
≈ 0.25

⇒ ∇f

∣∣∣∣
A

≈ 〈0, 0.22〉

We estimate v, by v ≈
〈

4
9 , 1
〉
≈ 〈0.44, 1〉, hence the cosine of the angle between v and the gradient at A is

cos θ = 〈0, 0.25〉 · 〈0.44, 1〉
0.25 ·

√
0.442 + 1

= 0.25

0.25 · 1.093
= 0.915

Hence,

Dvf (A) = ‖∇fA‖ cos θ = 0.25 · 0.915 ≈ 0.229.

(Another method is to note that in the direction of v, we cross four contour lines in about 1000 meters; thus, the change
of f in that direction is about 4 · 50/10000 = 0.2.)
(c) At the point D we see that fx < 0 since the elevation is decreasing in the x direction, while fy > 0 since the elevation
is increasing in the y direction.
(d) At the point C we see that fx < 0 and fy < 0, the elevation is decreasing in both the x and y direction at the point C.

7. Describe the level curves of:

(a) f (x, y) = e4x−y (b) f (x, y) = ln(4x − y)

(c) f (x, y) = 3x2 − 4y2 (d) f (x, y) = x + y2

solution

(a) The level curves of f (x, y) = e4x−y are the curves e4x−y = c in the xy-plane, where c > 0. Taking ln from both
sides we get 4x − y = ln c. Therefore, the level curves are the parallel lines of slope 4, 4x − y = ln c, c > 0, in the
xy-plane.
(b) The level curves of f (x, y) = ln(4x − y) are the curves ln(4x − y) = c in the xy-plane. We rewrite it as 4x − y = ec

to obtain the parallel lines of slope 4, with negative y-intercepts.
(c) The level curves of f (x, y) = 3x2 − 4y2 are the hyperbolas 3x2 − 4y2 = c in the xy plane.
(d) The level curves of f (x, y) = x + y2 are the curves x + y2 = c or x = c − y2 in the xy-plane. These are parabolas
whose axis is the x-axis.

8. Match each function (a)–(c) with its contour graph (i)–(iii) in Figure 3:

(a) f (x, y) = xy

(b) f (x, y) = exy

(c) f (x, y) = sin(xy)

(i) (ii) (iii)

y

x

y

x

y

x

FIGURE 3

solution We find the level curves of the three functions:

(a) The level curves of f (x, y) = xy are the curves xy = c in the xy-plane, where c is any real value.
(b) The level curves of f (x, y) = exy are exy = c or xy = ln c where c > 0.
(c) The level curves of f (x, y) = sin xy are sin xy = c for |c| ≤ 1, or xy = sin−1 c + 2πk.

The contour graphs corresponding to these functions are thus

(a) → (ii)
(b) → (i)
(c) → (iii)



April 19, 2011

Chapter Review Exercises 837

Notice that the curves xy = ln c become closer and closer when c increases, while the curves xy = c are equidistant for
a certain contour interval. The contour map of (b) is in the first and third quadrants for c > 1, since then ln c > 0.

In Exercises 9–14, evaluate the limit or state that it does not exist.

9. lim
(x,y)→(1,−3)

(xy + y2)

solution The function f (x, y) = xy + y2 is continuous everywhere because it is a polynomial, therefore we evaluate
the limit using substitution:

lim
(x,y)→(1,−3)

(
xy + y2

)
= 1 · (−3) + (−3)2 = 6

10. lim
(x,y)→(1,−3)

ln(3x + y)

solution Approaching (1, −3) along the ray y = −3, x > 1 gives

lim
x→1+ ln(3x − 3) = −∞

Therefore f takes on arbitrary small values at the intersection of every disk around the point (1, −3) with the domain of
the function. This shows that lim

(x,y)→(1,−3)
ln(3x + y) does not exist.

11. lim
(x,y)→(0,0)

xy + xy2

x2 + y2

solution We evaluate the limits as (x, y) approaches the origin along the lines y = x and y = 2x:

lim
(x,y)→(0,0)

along y=x

xy + xy2

x2 + y2
= lim

x→0

x · x + x · x2

x2 + x2
= lim

x→0

x2 + x3

2x2
= lim

x→0

1 + x

2
= 1

2

lim
x→(0,0)

along y=2x

xy + xy2

x2 + y2
= lim

x→0

x · 2x + x · (2x)2

x2 + (2x)2
= lim

x→0

2x2 + 4x3

5x2
= lim

x→0

2 + 4x

5
= 2

5

Since the two limits are different, f (x, y) does not approach one limit as (x, y) → (0, 0), therefore the limit does not
exist.

12. lim
(x,y)→(0,0)

x3y2 + x2y3

x4 + y4

solution We use polar coordinates x = r cos θ , y = r sin θ . Then (x, y) → (0, 0) if and only if r =
√

x2 + y2 → 0+.
Therefore,

lim
(x,y)→(0,0)

x3y2 + x2y3

x4 + y4
= lim

r→0+
r3 cos3 θ · r2 sin2 θ + r2cos2θ · r3 sin3 θ

r4 cos4 θ + r4sin4θ

= lim
r→0+

r5
(

cos3 θ sin2 θ + cos2θ sin3 θ
)

r4
(

cos4 θ + sin4θ
)

= lim
r→0+

r
(

cos3 θ sin2 θ + cos2θ sin3 θ
)

cos4 θ + sin4 θ

= lim
r→0+ r · cos3 θ sin2 θ + cos2θ sin3 θ

cos4 θ + (1 − cos2 θ
)2

= lim
r→0+ r · cos2 θ sin2 θ(cos θ + sin θ)

2 cos4 θ − 2 cos2 θ + 1

The minimum value of the function s = 2t4 − 2t2 + 1 is 1
2 . Therefore, since | cos θ | ≤ 1 and | sin θ | ≤ 1, we find that

∣∣∣∣∣ cos2 θ sin2 θ(cos θ + sin θ)

2 cos4 θ − 2 cos2 θ + 1

∣∣∣∣∣ ≤
∣∣∣∣∣ cos2 θ sin2 θ(cos θ + sin θ)

1
2

∣∣∣∣∣ ≤ 2| cos θ + sin θ | ≤ 4
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Hence,

0 ≤
∣∣∣∣∣r cos2 θ sin2 θ(cos θ + sin θ)

2 cos4 θ − 2 cos2 θ + 1

∣∣∣∣∣ ≤ 4r

We now use the Squeeze Theorem to conclude that the limit as r → 0+ is zero, hence also the given limit is zero.

13. lim
(x,y)→(1,−3)

(2x + y)e−x+y

solution The function f (x, y) = (2x + y)e−x+y is continuous, hence we evaluate the limit using substitution:

lim
(x,y)→(1,−3)

(2x + y)e−x+y = (2 · 1 − 3)e−1−3 = −e−4

14. lim
(x,y)→(0,2)

(ex − 1)(ey − 1)

x

solution We have

lim
(x,y)→(0,2)

(
ex − 1

) (
ey − 1

)
x

= lim
x→0

ex − 1

x
lim
y→2

(
ey − 1

) =
(
e2 − 1

)
lim
x→0

ex − 1

x
(1)

By L’Hôpital’s Rules,

lim
x→0

ex − 1

x
= lim

x→0

d
dx

(ex − 1)

d
dx

(x)
= lim

x→0

ex

1
= 1 (2)

Combining (1) and (2) we conclude that

lim
(x,y)→(0,2)

(ex − 1)(ey − 1)

x
= (e2 − 1) · 1 = e2 − 1.

15. Let

f (x, y) =
⎧⎨
⎩

(xy)p

x4 + y4
(x, y) �= (0, 0)

0 (x, y) = (0, 0)

Use polar coordinates to show that f (x, y) is continuous at all (x, y) if p > 2 but is discontinuous at (0, 0) if p ≤ 2.

solution We show using the polar coordinates x = r cos θ , y = r sin θ , that the limit of f (x, y) as (x, y) → (0, 0) is
zero for p > 2. This will prove that f is continuous at the origin. Since f is a rational function with nonzero denominator
for (x, y) �= (0, 0), f is continuous there. We have

lim
(x,y)→(0,0)

f (x, y) = lim
r→0+

(r cos θ)p(r sin θ)p

(r cos θ)4 + (r sin θ)4
= lim

r→0+
r2p(cos θ sin θ)p

r4
(

cos4 θ + sin4 θ
) (1)

= lim
r→0+

r2(p−2)(cos θ sin θ)p

cos4 θ + sin4 θ

We use the following inequalities:∣∣∣cos4 θ sin4 θ

∣∣∣ ≤ 1

cos4 θ + sin4 θ =
(

cos2 θ + sin2θ
)2 − 2 cos2 θ sin2 θ = 1 − 1

2
· (2 cos θ sin θ)2

= 1 − 1

2
sin2 2θ ≥ 1 − 1

2
= 1

2

Therefore,

0 ≤
∣∣∣∣∣ r

2(p−2)(cos θ sin θ)p

cos4θ + sin4 θ

∣∣∣∣∣ ≤ r2(p−2) · 1
1
2

= 2r2(p−2)

Since p − 2 > 0, lim
r→0+ 2r2(p−2) = 0, hence by the Squeeze Theorem the limit in (1) is also zero. We conclude that f is

continuous for p > 2.
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We now show that for p < 2 the limit of f (x, y) as (x, y) → (0, 0) does not exist. We compute the limit as (x, y)

approaches the origin along the line y = x.

lim
(x,y)→(0,0)

along y=x

f (x, y) = lim
x→0

(x2)
p

x4 + x4
= lim

x→0

x2p

2x4
= lim

x→0

x2(p−2)

2
= ∞

Therefore the limit of f (x, y) as (x, y) → (0, 0) does not exist for p < 2. We now show that the limit lim
(x,y)→(0,0)

x2y2

x4+y4

does not exist for p = 2 as well. We compute the limits along the line y = 0 and y = x:

lim
(x,y)→(0,0)

along y=0

x2y2

x4 + y4
= lim

x→0

x2 · 02

x4 + 04
= lim

x→0

0

x4
= 0

lim
(x,y)→(0,0)

along y=x

x2y2

x4 + y4
= lim

x→0

x2 · x2

x4 + x4
= lim

x→0

x4

2x4
= 1

2

Since the limits along two paths are different, f (x, y) does not approach one limit as (x, y) → (0, 0). We thus showed
that if p ≤ 2, the limit lim

(x,y)→(0,0)
f (x, y) does not exist, and f is not continuous at the origin for p ≤ 2.

16. Calculate fx(1, 3) and fy(1, 3) for f (x, y) =
√

7x + y2.

solution To calculate fx(x, y) we treat y as a constant and use the Chain Rule. This gives

fx(x, y) = ∂

∂x

√
7x + y2 = 1

2
√

7x + y2

∂

∂x

(
7x + y2

)
= 7

2
√

7x + y2

We compute fy(x, y) similarly, treating x as a constant:

fy(x, y) = ∂

∂y

√
7x + y2 = 1

2
√

7x + y2

∂

∂y

(
7x + y2

)
= 2y

2
√

7x + y2
= y√

7x + y2

At the point (1, 3) we have

fx(1, 3) = 7

2
√

7 · 1 + 32
= 7

2 · 4
= 7

8

fy(1, 3) = 3√
7 · 1 + 32

= 3

4

In Exercises 17–20, compute fx and fy .

17. f (x, y) = 2x + y2

solution To find fx we treat y as a constant, and to find fy we treat x as a constant. We get

fx = ∂

∂x

(
2x + y2

)
= ∂

∂x
(2x) + ∂

∂x

(
y2
)

= 2 + 0 = 2

fy = ∂

∂y

(
2x + y2

)
= ∂

∂y
(2x) + ∂

∂y

(
y2
)

= 0 + 2y = 2y

18. f (x, y) = 4xy3

solution We compute fx , treating y as a constant:

fx = ∂

∂x
(4xy3) = 4y3 ∂

∂x
(x) = 4y3 · 1 = 4y3

We compute fy treating x as a constant:

fy = ∂

∂y
(4xy3) = 4x

∂

∂y
(y3) = 4x · 3y2 = 12xy2.
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19. f (x, y) = sin(xy)e−x−y

solution We compute fx , treating y as a constant and using the Product Rule and the Chain Rule. We get

fx = ∂

∂x

(
sin(xy)e−x−y

) = ∂

∂x
(sin(xy)) e−x−y + sin(xy)

∂

∂x
e−x−y

= cos(xy) · ye−x−y + sin(xy) · (−1)e−x−y = e−x−y (y cos(xy) − sin(xy))

We compute fy similarly, treating x as a constant. Notice that since f (y, x) = f (x, y), the partial derivative fy can be
obtained from fx by interchanging x and y. That is,

fy = e−x−y (x cos(yx) − sin(yx)) .

20. f (x, y) = ln(x2 + xy2)

solution Using the Chain Rule we obtain

fx = ∂

∂x
ln
(
x2 + xy2

)
= 1

x2 + xy2

∂

∂x

(
x2 + xy2

)
= 1

x2 + xy2
·
(

2x + y2
)

= 2x + y2

x2 + xy2

fy = ∂

∂y
ln
(
x2 + xy2

)
= 1

x2 + xy2

∂

∂y

(
x2 + xy2

)
= 1

x2 + xy2
· (2xy) = 2xy

x2 + xy2

21. Calculate fxxyz for f (x, y, z) = y sin(x + z).

solution We differentiate f twice with respect to x, once with respect to y, and finally with respect to z. This gives

fx = ∂

∂x
(y sin(x + z)) = y cos(x + z)

fxx = ∂

∂x
(y cos(x + z)) = −y sin(x + z)

fxxy = ∂

∂y
(−y sin(x + z)) = − sin(x + z)

fxxyz = ∂

∂z
(− sin(x + z)) = − cos(x + z)

22. Fix c > 0. Show that for any constants α, β, the function u(t, x) = sin(αct + β) sin(αx) satisfies the wave equation

∂2u

∂t2
= c2 ∂2u

∂x2

solution We compute the partial derivatives ut and ux using the Chain Rule:

ut = ∂

∂t
(sin(αct + β) sin(αx)) = sin(αx)

∂

∂t
sin(αct + β) = sin(αx) cos(αct + β) · αc

ux = ∂

∂x
(sin(αct + β) sin(αx)) = sin(αct + β)

∂

∂x
sin(αx) = sin(αct + β) cos(αx) · α

We find utt and uxx , differentiating ut and ux with respect to t and x respectively, we get

utt = αc sin(αx)
∂

∂t
cos(αct + β) = −α2c2 sin(αx) sin(αct + β)

uxx = α sin(αct + β)
∂

∂x
cos(αx) = −α2 sin(αct + β) sin(αx)

We see that utt = c2uxx .

23. Find an equation of the tangent plane to the graph of f (x, y) = xy2 − xy + 3x3y at P = (1, 3).

solution The tangent plane has the equation

z = f (1, 3) + fx(1, 3)(x − 1) + fy(1, 3)(y − 3) (1)

We compute the partial derivatives of f (x, y) = xy2 − xy + 3x3y:

fx(x, y) = y2 − y + 9x2y

fy(x, y) = 2xy − x + 3x3
⇒

fx(1, 3) = 32 − 3 + 9 · 12 · 3 = 33

fy(1, 3) = 2 · 1 · 3 − 1 + 3 · 13 = 8
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Also, f (1, 3) = 1 · 32 − 1 · 3 + 3 · 13 · 3 = 15. Substituting these values in (1), we obtain the following equation:

z = 15 + 33(x − 1) + 8(y − 3)

or

z = 33x + 8y − 42

24. Suppose that f (4, 4) = 3 and fx(4, 4) = fy(4, 4) = −1. Use the linear approximation to estimate f (4.1, 4) and
f (3.88, 4.03).

solution The linear approximation is

f (a + h, b + k) ≈ f (a, b) + fx(a, b)h + fy(a, b)k

We use the linear approximation at the point (4, 4). Therefore, estimating f (3.88, 4.03),

h = 3.88 − 4 = −0.12

k = 4.03 − 4 = 0.03

f (3.88, 4.03) ≈ f (4, 4) + fx(4, 4) · (−0.12) + fy(4, 4) · 0.03

f (3.88, 4.03) ≈ 3 − 1 · (−0.12) − 1 · 0.03 = 3.09

Estimating f (4.1, 4),

h = 4.1 − 4 = 0.1

k = 4 − 4 = 0

f (4.1, 4) ≈ f (4, 4) + fx(4, 4)(0.1) + fy(4, 4) · 0

f (4.1, 4) ≈ 3 − 1 · (0.1) − 1 · 0 = 2.9

We obtain the estimations f (3.88, 4.03) ≈ 3.09 and f (4.1, 4) ≈ 2.9.

25. Use a linear approximation of f (x, y, z) =
√

x2 + y2 + z to estimate
√

7.12 + 4.92 + 69.5. Compare with a calcu-
lator value.

solution The function whose value we want to approximate is

f (x, y, z) =
√

x2 + y2 + z

We will use the linear approximation at the point (7, 5, 70). Recall that the linear approximation to a surface will be:

L(x, y, z) = f (7, 5, 70) + fx(7, 5, 70)(x − 7) + fy(7, 5, 70)(y − 5) + fz(7, 5, 70)(z − 70)

We compute the partial derivatives of f :

fx(x, y, z) = 2x

2
√

x2 + y2 + z
= x√

x2 + y2 + z
⇒ fx(7, 5, 70) = 7√

72 + 52 + 70
= 7

12

fy(x, y, z) = 2y

2
√

x2 + y2 + z
= y√

x2 + y2 + z
⇒ fy(7, 5, 70) = 5√

72 + 52 + 70
= 5

12

fz(x, y, z) = 1

2
√

x2 + y2 + z
⇒ fz(7, 5, 70) = 1

2
√

72 + 52 + 70
= 1

24

Also, f (7, 5, 70) =
√

72 + 52 + 70 = 12. Substituting the values in the linear approximation equation we obtain the
following approximation:

L(x, y, z) = 12 + 7

12
(x − 7) + 5

12
(y − 5) + 1

24
(z − 70)

Now we are ready to approximate
√

7.12 + 4.92 + 69.5. That is, using the linear approximation,

L(7.1, 4.9, 69.5) = 12 + 7

12
(7.1 − 7) + 5

12
(4.9 − 5) + 1

24
(69.5 − 70)

= 12 + 7

12
· 1

10
+ 5

12
· − 1

10
+ 1

24
· −1

2

= 12 + 7

120
− 5

120
− 1

48

= 2879

240
= 11.9958333

The value obtained using a calculator is 11.996667.
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26. The plane z = 2x − y − 1 is tangent to the graph of z = f (x, y) at P = (5, 3).

(a) Determine f (5, 3), fx(5, 3), and fy(5, 3).
(b) Approximate f (5.2, 2.9).

solution
(a)

fx(x, y) = 2 ⇒ fx(5, 3) = 2 (1)

fy(x, y) = −1 ⇒ fy(5, 3) = −1 (2)

and

f (5, 3) = 2 · 5 − 3 − 1 = 6

(b) Now using the linear approximation:

L(x, y) = f (5, 3) + fx(5, 3)(x − 5) + fy(5, 3)(y − 3)

and therefore

L(5.2, 2.9) = 6 + 2(5.2 − 5) − (2.9 − 3) = 6 + 2 · 2

10
+ 1

10
= 6.5

27. Figure 4 shows the contour map of a function f (x, y) together with a path c(t) in the counterclockwise direction. The
points c(1), c(2), and c(3) are indicated on the path. Let g(t) = f (c(t)). Which of statements (i)–(iv) are true? Explain.

(i) g′(1) > 0.
(ii) g(t) has a local minimum for some 1 ≤ t ≤ 2.

(iii) g′(2) = 0.
(iv) g′(3) = 0.

c(t)

c(3)

c(2)

4

4

2
0

0
0

2
−2

−2

−4

−6

−4

c(1)

FIGURE 4

solution (ii) and (iv) are true

28. Jason earns S(h, c) = 20h
(
1 + c

100

)1.5 dollars per month at a used car lot, where h is the number of hours worked
and c is the number of cars sold. He has already worked 160 hours and sold 69 cars. Right now Jason wants to go home
but wonders how much more he might earn if he stays another 10 minutes with a customer who is considering buying a
car. Use the linear approximation to estimate how much extra money Jason will earn if he sells his 70th car during these
10 minutes.

solution We estimate the money earned in staying for 1
6 hour more and selling one more car, using the linear

approximation

�S ≈ Sh(a, b)�h + Sc(a, b)�c (1)

By the given information, a = 160, b = 69, �h = 1
6 , and �c = 1. We compute the partial derivative of the function:

S(h, c) = 20h
(

1 + c

100

)1.5

Sh(h, c) = 20
(

1 + c

100

)1.5 ⇒ Sh(160, 69) = 43.94

Sc(h, c) = 20h · 1.5
(

1 + c

100

)0.5 · 1

100
= 0.3h

(
1 + c

100

)0.5 ⇒ Sc(160, 69) = 62.4

Substituting the values in (1), we get the following approximation:

�S = Sh(160, 69) · 1

6
+ Sc(160, 69) · 1 = 43.94 · 1

6
+ 62.4 ≈ $69.72

We see that John will make approximately $69.72 more if he sells his 70th car during 10 min.
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In Exercises 29–32, compute
d

dt
f (c(t)) at the given value of t .

29. f (x, y) = x + ey , c(t) = (3t − 1, t2) at t = 2

solution By the Chain Rule for Paths we have

d

dt
f (c(t)) = ∇f · c′(t) (1)

We evaluate the gradient ∇f and c′(t):

c′(t) = 〈3, 2t〉
∇f = 〈fx, fy

〉 = 〈1, ey
〉 ⇒ ∇fc(t) =

〈
1, et2

〉
Substituting in (1) we get

d

dt
f (c(t)) =

〈
1, et2

〉
· 〈3, 2t〉 = 3 + 2tet2

At t = 2 we have

d

dt
f (c(t))

∣∣∣∣
t=2

= 3 + 2 · 2 · e22 = 3 + 4e4 ≈ 221.4.

30. f (x, y, z) = xz − y2, c(t) = (t, t3, 1 − t) at t = −2

solution We use the Chain Rule for Paths:

d

dt
f (c(t)) = ∇f c(t) · c′(t) (1)

We compute the gradient of f :

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= 〈z, −2y, x〉

On the path, x = t , y = t3, and z = 1 − t . Therefore,

∇f c(t) =
〈
1 − t, −2t3, t

〉

Also, c′(t) =
〈
1, 3t2, −1

〉
, hence by (1) we obtain

d

dt
f (c(t)) =

〈
1 − t, −2t3, t

〉
·
〈
1, 3t2, −1

〉
= 1 − t + 3t2

(
−2t3

)
− t = −6t5 − 2t + 1

Hence,

d

dt
f (c(2) = −6(2)5 − 2(2) + 1 = −6(32) − 4 + 1 = −195

31. f (x, y) = xe3y − ye3x , c(t) = (et , ln t) at t = 1

solution We use the Chain Rule for Paths:

d

dt
f (c(t)) = ∇f c(t) · c′(t) (1)

We find the ∇f at the point c(1) and compute c′(1). We get

∇f = 〈fx, fy

〉 = 〈e3y − 3ye3x, 3xe3y − e3x
〉

c(1) =
〈
e1, ln 1

〉
= 〈e, 0〉

∇fc(1) =
〈
e3·0 − 3 · 0e3e, 3ee3·0 − e3e

〉
=
〈
1, 3e − e3e

〉
(2)

c′(t) = d

dt

〈
et , ln t

〉 = 〈et , t−1
〉

⇒ c′(1) = 〈e, 1〉 (3)

Substituting (2) and (3) in (1) gives

d

dt
f (c(t))

∣∣∣∣
t=1

= ∇f c(1) · c′(1) =
〈
1, 3e − e3e

〉
· 〈e, 1〉 = e + 3e − e3e = 4e − e3e
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32. f (x, y) = tan−1 y
x , c(t) = (cos t, sin t), t = π

3

solution We use the Chain Rule for Paths. We have

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
=
〈 − y

x2

1 + ( yx )2 ,

1
x

1 + ( yx )2
〉

=
〈 −y

x2 + y2
,

x

x2 + y2

〉

On the path, x = cos t and y = sin t . Therefore,

∇f c(t) =
〈
− sin t

cos2t + sin2 t
,

cos t

cos2 t + sin2 t

〉
= 〈− sin t, cos t〉

c′(t) = 〈− sin t, cos t〉
At the point t = π

3 we have

∇f c
(

π
3

) =
〈
− sin

π

3
, cos

π

3

〉
=
〈
−

√
3

2
,

1

2

〉
and c′ (π

3

)
=
(
− sin

π

3
, cos

π

3

)
=
〈
−

√
3

2
,

1

2

〉

Therefore,

d

dt
f (c(t))

∣∣∣∣
t= π

3

= ∇fc
(

π
3

) · c′ (π

3

)
=
〈
−

√
3

2
,

1

2

〉
·
〈
−

√
3

2
,

1

2

〉
= 3

4
+ 1

4
= 1

In Exercises 33–36, compute the directional derivative at P in the direction of v.

33. f (x, y) = x3y4, P = (3, −1), v = 2i + j

solution We first normalize v to find a unit vector u in the direction of v:

u = v
‖v‖ = 2i + j√

22 + 12
= 2√

5
i + 1√

5
j

We compute the directional derivative using the following equality:

Duf (3, −1) = ∇f (3,−1) · u

The gradient vector at the given point is the following vector:

∇f = 〈fx, fy

〉 = 〈3x2y4, 4x3y3
〉

⇒ ∇f(3,−1) = 〈27, −108〉
Hence,

Duf (3, −1) = 〈27, −108〉 ·
〈

2√
5
,

1√
5

〉
= 54√

5
− 108√

5
= − 54√

5

34. f (x, y, z) = zx − xy2, P = (1, 1, 1), v = 〈2, −1, 2〉
solution We first normalize v to obtain a unit vector u in the direction of v:

u = 〈2, −1, 2〉√
22 + (−1)2 + 22

=
〈

2

3
, −1

3
,

2

3

〉

We compute the directional derivative using the following equality:

Duf (1, 1, 1) = ∇f (1,1,1) · u

The gradient vector at the point (1, 1, 1) is the following vector:

∇f = 〈fx, fy, fz

〉 = 〈z − y2, −2xy, x
〉

⇒ ∇f(1,1,1) = 〈0, −2, 1〉
Hence,

Duf (1, 1, 1) = 〈0, −2, 1〉 ·
〈

2

3
, −1

3
,

2

3

〉
= 0 + 2

3
+ 2

3
= 4

3

35. f (x, y) = ex2+y2
, P =

(√
2

2
,

√
2

2

)
, v = 〈3, −4〉

solution We normalize v to obtain a vector u in the direction of v:

u = 〈3, −4〉√
32 + (−4)2

=
〈

3

5
, −4

5

〉
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We use the following theorem:

Duf (P ) = ∇f P · u (1)

We find the gradient of f at the given point:

∇f = 〈fx, fy

〉 = 〈2xex2+y2
, 2yex2+y2

〉
= 2ex2+y2 〈x, y〉

Hence,

∇fP = 2e

(√
2

2

)2+
(√

2
2

)2 〈√
2

2
,

√
2

2

〉
= e

√
2 〈1, 1〉

Substituting in (1) we get

Duf (P ) = √
2e 〈1, 1〉 ·

〈
3

5
, −4

5

〉
= √

2e

(
3

5
− 4

5

)
= −

√
2e

5

36. f (x, y, z) = sin(xy + z), P = (0, 0, 0), v = j + k

solution We normalize v to obtain a vector u in the direction of v:

u = 1√
02 + 12 + 12

· 〈0, 1, 1〉 = 1√
2

〈0, 1, 1〉

By the Theorem on Evaluating Directional Derivatives,

Dvf (P ) = ∇fP · u (1)

We compute the gradient vector:

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= 〈y cos(xy + z), x cos(xy + z), cos(xy + z)〉

Hence,

∇fP = 〈0, 0, 1〉 .

By (1) we conclude that

Dvf (P ) = ∇fP · u = 〈0, 0, 1〉 · 1√
2

〈0, 1, 1〉 = 1√
2
.

37. Find the unit vector e at P = (0, 0, 1) pointing in the direction along which f (x, y, z) = xz + e−x2+y increases
most rapidly.

solution The gradient vector ∇fP points in the direction of maximum rate of increase of f . Therefore we need to

find a unit vector in the direction of ∇fP . We first find the gradient of f (x, y, z) = xz + e−x2+y :

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
=
〈
z − 2xe−x2+y, e−x2+y, x

〉

At the point P = (0, 0, 1) we have

∇fP = 〈1, 1, 0〉 .

We normalize ∇fP to obtain the unit vector e at P pointing in the direction of maximum increase of f :

e = ∇fP

‖∇fP ‖ =
〈

1√
2
,

1√
2
, 0

〉
.

38. Find an equation of the tangent plane at P = (0, 3, −1) to the surface with equation

zex + ez+1 = xy + y − 3

solution The surface is defined implicitly by the equation

F(x, y, z) = zex + ez+1 − xy − y + 3
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The tangent plane to the surface at the point (0, 3, −1) has the following equation:

0 = Fx(0, 3, −1)x + Fy(0, 3, −1)(y − 3) + Fz(0, 3, −1)(z + 1) (1)

We compute the partial derivatives at the given point:

Fx(x, y, z) = zex − y ⇒ Fx(0, 3, −1) = −1e0 − 3 = −4

Fy(x, y, z) = −x − 1 ⇒ Fy(0, 3, −1) = −0 − 1 = −1

Fz(x, y, z) = ex + ez+1 ⇒ Fz(0, 3, −1) = e0 + e−1+1 = 2

Substituting in (1) we obtain the following equation:

−4x − (y − 3) + 2(z + 1) = 0

−4x − y + 2z + 5 = 0

2z = 4x + y − 5 ⇒ z = 2x + 0.5y − 2.5

39. Let n �= 0 be an integer and r an arbitrary constant. Show that the tangent plane to the surface xn + yn + zn = r at
P = (a, b, c) has equation

an−1x + bn−1y + cn−1z = r

solution The tangent plane to the surface, defined implicitly by F(x, y, z) = r at a point (a, b, c) on the surface, has
the following equation:

0 = Fx(a, b, c)(x − a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) (1)

The given surface is defined by the function F(x, y, z) = xn + yn + zn. We find the partial derivative of F at a point
P = (a, b, c) on the surface:

Fx(x, y, z) = nxn−1 Fx(a, b, c) = nan−1

Fy(x, y, z) = nyn−1 ⇒ Fy(a, b, c) = nbn−1

Fz(x, y, z) = nzn−1 Fz(a, b, c) = ncn−1

Substituting in (1) we get

nan−1(x − a) + nbn−1(y − b) + ncn−1(z − c) = 0

We divide by n and simplify:

an−1x − an + bn−1y − bn + cn−1z − cn = 0

an−1x + bn−1y + cn−1z = an + bn + cn (2)

The point P = (a, b, c) lies on the surface, hence it satisfies the equation of the surface. That is,

an + bn + cn = r

Substituting in (2) we obtain the following equation of the tangent plane:

an−1x + bn−1y + cn−1z = r

40. Let f (x, y) = (x − y)ex . Use the Chain Rule to calculate ∂f/∂u and ∂f/∂v (in terms of u and v), where x = u − v

and y = u + v.

solution First we calculate the Primary Derivatives:

∂f

∂x
= ex(x − y) + ex = ex(x − y + 1),

∂f

∂y
= −ex

Since ∂x
∂u

= 1, ∂y
∂u

= 1, ∂x
∂v

= −1, and ∂y
∂v

= 1, the Chain Rule gives

∂f

∂u
= ∂f

∂x

∂x

∂u
+ ∂f

∂y

∂y

∂u
= ex(x − y + 1) · 1 − ex · 1 = ex(x − y + 1 − 1) = ex(x − y)

∂f

∂v
= ∂f

∂x

∂x

∂v
+ ∂f

∂y

∂y

∂v
= ex(x − y + 1) · (−1) − ex · 1 = ex(y − x − 2)
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We now substitute x = u − v and y = u + v to express the partial derivatives in terms of u and v. We get

∂f

∂u
= eu−v(u − v − u − v) = −2veu−v

∂f

∂v
= eu−v(u + v − u + v − 2) = 2eu−v(v − 1)

41. Let f (x, y, z) = x2y + y2z. Use the Chain Rule to calculate ∂f/∂s and ∂f/∂t (in terms of s and t), where

x = s + t, y = st, z = 2s − t

solution We compute the Primary Derivatives:

∂f

∂x
= 2xy,

∂f

∂y
= x2 + 2yz,

∂f

∂z
= y2

Since ∂x
∂s

= 1, ∂y
∂s

= t , ∂z
∂s

= 2, ∂x
∂t

= 1, ∂y
∂t

= s, and ∂z
∂t

= −1, the Chain Rule gives

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
+ ∂f

∂z

∂z

∂s
= 2xy · 1 +

(
x2 + 2yz

)
t + y2 · 2

= 2xy +
(
x2 + 2yz

)
t + 2y2

∂f

∂t
= ∂f

∂x

∂x

∂t
+ ∂f

∂y

∂y

∂t
+ ∂f

∂z

∂z

∂t
= 2xy · 1 +

(
x2 + 2yz

)
s + y2 · (−1)

= 2xy +
(
x2 + 2yz

)
s − y2

We now substitute x = s + t , y = st , and z = 2s − t to express the answer in terms of the independent variables s, t . We
get

∂f

∂s
= 2(s + t)st +

(
(s + t)2 + 2st (2s − t)

)
t + 2s2t2

= 2s2t + 2st2 +
(
s2 + 2st + t2 + 4s2t − 2st2

)
t + 2s2t2

= 3s2t + 4st2 + t3 − 2st3 + 6s2t2

∂f

∂t
= 2(s + t)st +

(
(s + t)2 + 2st (2s − t)

)
s − s2t2

= 2s2t + 2st2 +
(
s2 + 2st + t2 + 4s2t − 2st2

)
s − s2t2

= 4s2t + 3st2 + s3 + 4s3t − 3s2t2

42. Let P have spherical coordinates (ρ, θ, φ) = (2, π
4 , π

4

)
. Calculate ∂f

∂φ

∣∣∣
P

assuming that

fx(P ) = 4, fy(P ) = −3, fz(P ) = 8

Recall that x = ρ cos θ sin φ, y = ρ sin θ sin φ, z = ρ cos φ.

solution Recall the Chain Rule:

∂f

∂φ
= ∂f

∂x

∂x

∂φ
+ ∂f

∂y

∂y

∂φ
+ ∂f

∂z

∂z

∂φ

Taking partial derivatives (with respect to φ) and evaluating:

∂x

∂φ
= ρ cos θ cos φ ⇒ ∂x

∂φ

∣∣∣∣
(2,π/4,π/4)

= 1

∂y

∂φ
= ρ sin θ cos φ ⇒ ∂y

∂φ

∣∣∣∣
(2,π/4,π/4)

= 1

∂z

∂φ
= −ρ sin φ ⇒ ∂z

∂φ

∣∣∣∣
(2,π/4,π/4)

= −√
2

Hence,

∂f

∂φ

∣∣∣∣
P

= 4 · 1 − 3 · 1 − 8
√

2 = 1 − 8
√

2
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43. Let g(u, v) = f (u3 − v3, v3 − u3). Prove that

v2 ∂g

∂u
− u2 ∂g

∂v
= 0

solution We are given the function f (x, y), where x = u3 − v3 and y = v3 − u3. Using the Chain Rule we have
the following derivatives:

∂g

∂u
= ∂f

∂x

∂x

∂u
+ ∂f

∂y

∂y

∂u

∂g

∂v
= ∂f

∂x

∂x

∂v
+ ∂f

∂y

∂y

∂v
(1)

We compute the following partial derivatives:

∂x

∂u
= 3u2,

∂y

∂u
= −3u2

∂x

∂v
= −3v2,

∂y

∂v
= 3v2

Substituting in (1) we obtain

∂g

∂u
= ∂f

∂x
· 3u2 + ∂f

∂y

(
−3u2

)
= 3u2

(
∂f

∂x
− ∂f

∂y

)

∂g

∂v
= ∂f

∂x

(
−3v2

)
+ ∂f

∂y

(
3v2
)

= −3v2
(

∂f

∂x
− ∂f

∂y

)

Therefore,

v2 ∂g

∂u
+ u2 ∂g

∂v
= 3u2v2

(
∂f

∂x
− ∂f

∂y

)
− 3u2v2

(
∂f

∂x
− ∂f

∂y

)
= 0

44. Let f (x, y) = g(u), where u = x2 + y2 and g(u) is differentiable. Prove that(
∂f

∂x

)2
+
(

∂f

∂y

)2
= 4u

(
dg

du

)2

solution We use the Chain Rule and the partial derivatives ∂u
∂x

= 2x, ∂u
∂y

= 2y, to differentiate the equation
f (x, y, z) = g(u) with respect to x and to y. We get

∂f

∂x
= g′(u) · ∂u

∂x
= g′(u) · 2x

∂f

∂y
= g′(u) · ∂u

∂y
= g′(u) · 2y

Therefore, (
∂f

∂x

)2
+
(

∂f

∂y

)2
= (g′(u) · 2x

)2 + (g′(u) · 2y
)2 = 4x2g′(u)2 + 4y2g′(u)2

= 4
(
x2 + y2

)
g′(u)2 = 4ug′(u)2

Since ∂f
∂u

= g′(u), we find that

(
∂f

∂x

)2
+
(

∂f

∂y

)2
= 4u

(
∂f

∂u

)2

45. Calculate ∂z/∂x, where xez + zey = x + y.

solution The function F(x, y, z) = xez + zey − x − y = 0 defines z implicitly as a function of x and y. Using
implicit differentiation, the partial derivative of z with respect to x is

∂z

∂x
= −Fx

Fz
(1)

We compute the partial derivatives Fx and Fz:

Fx = ez − 1

Fz = xez + ey
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Substituting in (1) gives

∂z

∂x
= − ez − 1

xez + ey
.

46. Let f (x, y) = x4 − 2x2 + y2 − 6y.

(a) Find the critical points of f and use the Second Derivative Test to determine whether they are a local minima or a
local maxima.

(b) Find the minimum value of f without calculus by completing the square.

solution

(a) To find the critical points of the function f (x, y) = x4 − 2x2 + y2 − 6y we set the partial derivatives equal to zero
and solve. This gives

fx(x, y) = 4x3 − 4x = 4x
(
x2 − 1

)
= 0

fy(x, y) = 2y − 6 = 2(y − 3) = 0
⇒ x = 0, x = −1, x = 1, y = 3

The critical points are (0, 3), (−1, 3), (1, 3). We now apply the Second Derivative Test to examine the critical points. We
compute the second-order partials:

fxx(x, y) = 12x2 − 4, fyy = 2, fxy = 0

The discriminant is

D = fxxfyy − f 2
xy = 2

(
12x2 − 4

)
= 8

(
3x2 − 1

)
Substituting the critical points gives

D(0, 3) = −8 < 0 ⇒ (0, 3) is a saddle point

D(−1, 3) = 16 > 0, fxx(−1, 3) = 8 > 0 ⇒ f (−1, 3) is a local minimum

D(1, 3) = 16 > 0, fxx(1, 3) = 8 > 0 ⇒ f (1, 3) is a local minimum

(b) Computing the square in x and y, we obtain

x4 − 2x2 + y2 − 6y =
(
x2 − 1

)2 − 1 + (y − 3)2 − 9

=
(
x2 − 1

)2 + (y − 3)2 − 10

This function has a minimum when x2 − 1 = 0 and y − 3 = 0, that is, x = ±1 and y = 3. Therefore, the minimum
value is −10 obtained at the points (1, 3) and (−1, 3).

In Exercises 47–50, find the critical points of the function and analyze them using the Second Derivative Test.

47. f (x, y) = x4 − 4xy + 2y2

solution To find the critical points, we need the first-order partial derivatives and set them equal to zero to solve for
x and y:

fx(x, y) = 4x3 − 4y = 0, fy(x, y) = −4x + 4y = 0

Looking at the second equation we see x = y. Using this in the first equation, then

4x3 − 4x = 0 ⇒ 4x(x2 − 1) = 0 ⇒ x = 0, ±1

Therefore, our critical points are:

(0, 0), (1, 1), (−1, −1)

Now to find the discriminant, D, we need the second-order partial derivatives:

fxx(x, y) = 12x2, fyy(x, y) = 4, fxy(x, y) = −4

Hence,

D(x, y) = fxxfyy − f xy2 = 48x2 − 16 = 16(3x2 − 1)
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Analyzing our three critical points we see:

D(0, 0) = −16 < 0, D(1, 1) = 32 > 0, D(−1, −1) = 32 > 0

Since the discriminant for (0, 0) is negative, (0, 0) is a saddle point.
Looking at fxx(1, 1) = 12 > 0 and fxx(−1, −1) = 12 > 0 hence, the points (1, 1) and (−1, −1) are both local

minima.

48. f (x, y) = x3 + 2y3 − xy

solution We set the partial derivatives of f (x, y) = x3 + 2y3 − xy equal to zero and solve to find the critical points.
We get

fx(x, y) = 3x2 − y = 0

fy(x, y) = 6y2 − x = 0

The first equation gives y = 3x2. Substituting in the second equation we get

6 ·
(

3x2
)2 − x = 0

54x4 − x = x ·
(

54x3 − 1
)

= 0

54x3 − 1 = 0 ⇒ x1 = 0, x2 = 0.26

The corresponding y-coordinates are obtained from y = 3x2. That is,

y1 = 0, y2 = 3 · 0.262 = 0.2

There are two critical points, (0, 0) and (0.26, 0.2). We next use the Second Derivative Test to examine the critical points.
We compute the second-order partials at these points:

fxx(x, y) = 6x

fyy(x, y) = 12y

fxy(x, y) = −1

⇒
fxx(0, 0) = 0 fxx(0.26, 0.2) = 1.56

fyy(0, 0) = 0 fyy(0.26, 0.2) = 2.4

fxy(0, 0) = −1 fxy(0.26, 0.2) = −1

We compute the discriminant at the critical points:

D(0, 0) = fxx · fyy − f 2
xy = −1 < 0

D(0.26, 0.2) = fxx · fyy − f 2
xy = 1.56 · 2.4 − 1 > 0, fxx(0.26, 0.2) > 0

We conclude that (0, 0) is a saddle point, whereas at (0.26, 0.2) the function has a local minimum.

49. f (x, y) = ex+y − xe2y

solution We find the critical point by setting the partial derivatives of f (x, y) = ex+y − xe2y equal to zero and
solve. This gives

fx(x, y) = ex+y − e2y = 0

fy(x, y) = ex+y − 2xe2y = 0

The first equation gives ex+y = e2y and the second equation gives ex+y = 2xe2y . Equating the two expressions, dividing
by the nonzero function e2y , and solving for x, we obtain

e2y = 2xe2y ⇒ 1 = 2x ⇒ x = 1

2

We now substitute x = 1
2 in the first equation and solve for y, to obtain

e
1
2 +y − e2y = 0 ⇒ e

1
2 +y = e2y ⇒ 1

2
+ y = 2y ⇒ y = 1

2

There is one critical point,
(

1
2 , 1

2

)
. We examine the critical point using the Second Derivative Test. We compute the

second derivatives at this point:

fxx(x, y) = ex+y ⇒ fxx

(
1

2
,

1

2

)
= e

1
2 + 1

2 = e

fyy(x, y) = ex+y − 4xe2y ⇒ fyy

(
1

2
,

1

2

)
= e

1
2 + 1

2 − 4 · 1

2
e2· 1

2 = −e

fxy(x, y) = ex+y − 2e2y ⇒ fxy

(
1

2
,

1

2

)
= e

1
2 + 1

2 − 2e2· 1
2 = −e
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Therefore the discriminant at the critical point is

D

(
1

2
,

1

2

)
= fxxfyy − f 2

xy = e · (−e) − (−e)2 = −2e2 < 0

We conclude that
(

1
2 , 1

2

)
is a saddle point.

50. f (x, y) = sin(x + y) − 1

2
(x + y2)

solution We find the critical points by setting the partial derivatives of f (x, y) = sin(x + y) − 0.5
(
x + y2

)
equal

to zero and solve. We get

fx(x, y) = cos(x + y) − 1

2
= 0

fy(x, y) = cos(x + y) − y = 0

By the second equation y = cos(x + y). Substituting in the first equation gives y − 1
2 = 0 or y = 1

2 . We set y = 1
2 in

the first equation and solve for x, to obtain

cos

(
x + 1

2

)
− 1

2
= 0

cos

(
x + 1

2

)
= 1

2

The general solution is

x + 1

2
= ±π

3
+ 2πk ⇒ x = −1

2
± π

3
+ 2πk

The critical points are thus

Pk =
(

−1

2
+ π

3
+ 2πk,

1

2

)
, Qk =

(
−1

2
− π

3
+ 2πk,

1

2

)

We examine the critical points using the Second Derivative Test. We first compute the second-order partials at the critical
points:

fxx(x, y) = − sin(x + y) ⇒ fxx (Pk) = − sin
(π

3
+ 2πk

)
= −

√
3

2

fxx (Qk) = − sin
(
−π

3
+ 2πk

)
=

√
3

2

fyy(x, y) = − sin(x + y) − 1 ⇒ fyy (Pk) = −
√

3

2
− 1

fyy (Qk) =
√

3

2
− 1

fxy(x, y) = − sin(x + y) ⇒ fxy (Pk) = −
√

3

2

fxy (Qk) =
√

3

2

We compute the discriminant D = fxxfyy − f 2
xy at the critical points:

D (Pk) =
(

−
√

3

2

)
·
(

−
√

3

2
− 1

)
−
(

−
√

3

2

)2

=
√

3

2
> 0, fxx (Pk) = −

√
3

2
< 0

D (Qk) =
√

3

2

(√
3

2
− 1

)
−
(√

3

2

)2

= −
√

3

2
< 0

We conclude that Qk =
(
− 1

2 − π
3 + 2πk, 1

2

)
are saddle points, and at the points Pk =

(
− 1

2 + π
3 + 2πk, 1

2

)
the function

has local maxima.
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51. Prove that f (x, y) = (x + 2y)exy has no critical points.

solution We find the critical points by setting the partial derivatives of f (x, y) = (x + 2y)exy equal to zero and
solving. We get

fx(x, y) = exy + (x + 2y)yexy = exy
(

1 + xy + 2y2
)

= 0

fy(x, y) = 2exy + (x + 2y)xexy = exy
(

2 + x2 + 2xy
)

= 0

We divide the two equations by the nonzero expression exy to obtain the following equations:

1 + xy + 2y2 = 0

2 + 2xy + x2 = 0

The first equation implies that xy = −1 − 2y2. Substituting in the second equation gives

2 + 2
(
−1 − 2y2

)
+ x2 = 0

2 − 2 − 4y2 + x2 = 0

x2 = 4y2 ⇒ x = 2y or x = −2y

We substitute in the first equation and solve for y:

x = 2y x = −2y

1 + 2y2 + 2y2 = 0 1 − 2y2 + 2y2 = 0

1 + 4y2 = 0 1 = 0

y2 = − 1
4

In both cases there is no solution. We conclude that there are no solutions for fx = 0 and fy = 0, that is, there are no
critical points.

52. Find the global extrema of f (x, y) = x3 − xy − y2 + y on the square [0, 1] × [0, 1].
solution

Step 1. Examine the critical points. We set the partial derivatives of f (x, y) = x3 − xy − y2 + y equal to zero and solve
to find the critical points in the interior of the square.

fx(x, y) = 3x2 − y = 0

fy(x, y) = −x − 2y + 1 = 0

The first equation gives y = 3x2. We substitute in the second equation and solve for x.

−x − 2 · 3x2 + 1 = 0

6x2 + x − 1 = 0

x1,2 = −1 ± √
1 + 24

12
= −1 ± 5

12
⇒ x1 = −1

2
, x2 = 1

3

The corresponding y-coordinates are determined by y = 3x2. That is,

y1 = 3 ·
(

−1

2

)2
= 3

4
, y2 = 3 ·

(
1

3

)2
= 1

3

Therefore, the critical points are (
−1

2
,

3

4

)
,

(
1

3
,

1

3

)

Step 2. Find the global extrema on the boundary.

x
A = (1, 0)

B = (1, 1)
C = (0, 1)

O

y
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We consider each part of the boundary separately.

The segment OA: On this segment y = 0, 0 ≤ x ≤ 1, hence f (x, 0) = x3. The maximum value occurs at x = 1 and
the minimum value occurs at x = 0. The corresponding points are (0, 0) and (1, 0).
The segment AB: On this segment x = 1, 0 ≤ y ≤ 1, hence f (1, y) = 1 − y − y2 + y = 1 − y2.

x

y

f (1, y) = 1 − y2
1

The maximum value in the interval 0 ≤ y ≤ 1 occurs at y = 0, and the minimum value occurs at y = 1. The
corresponding points on the boundary of the square are (1, 0) and (1, 1).
The segment BC: On this segment y = 1, 0 ≤ x ≤ 1, hence f (x, 1) = x3 − x − 1 + 1 = x3 − x.

x

y

f (x, 1) = x3 − x

1

Using calculus of one variable and referring to the graph of f (x, 1), we see that the maximum value occurs at x = 0
and x = 1 and the minimum value occurs at x = 1√

3
. The corresponding points on the segment BC are

(
1√
3
, 1

)
, (0, 1), and (1, 1)

The segment OC: On this segment x = 0, 0 ≤ y ≤ 1, hence f (0, y) = −y2 + y.

x

y

f (0, y) = −y2 + y

11
2

The maximum value occurs at y = 1
2 and the minimum value occurs at y = 0 and y = 1. The corresponding points

on the segment OC are (
0,

1

2

)
, (0, 0), (0, 1)

Step 3. Conclusions. Since the global extrema occur either at critical points in the interior of the region or on the boundary
of the region, the candidates for global extrema are the following points:(

−1

2
,

3

4

)
,

(
1

3
,

1

3

)
, (0, 0), (1, 0), (1, 1), (0, 1),

(
0,

1

2

)
,

(
1√
3
, 1

)

We compute f (x, y) = x3 − xy − y2 + y at these points:

f

(
−1

2
,

3

4

)
=
(

−1

2

)3
+ 1

2
· 3

4
−
(

3

4

)2
+ 3

4
= 7

16
≈ 0.437

f

(
1

3
,

1

3

)
=
(

1

3

)3
− 1

3
· 1

3
−
(

1

3

)2
+ 1

3
= 4

27
≈ 0.148
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f (0, 0) = 0

f (1, 0) = 1

f (1, 1) = 1 − 1 − 1 + 1 = 0

f (0, 1) = −12 + 1 = 0

f

(
0,

1

2

)
= −

(
1

2

)2
+ 1

2
= 1

4

f

(
1√
3
, 1

)
=
(

1√
3

)3
− 1√

3
− 1 + 1 = −2

√
3

9
= −0.38

We conclude that the maximum value of f on the square is f (1, 0) = 1 and the minimum value is f
(

1√
3
, 1
)

= −0.38.

53. Find the global extrema of f (x, y) = 2xy − x − y on the domain {y ≤ 4, y ≥ x2}.
solution The region is shown in the figure.

−2
x

20

y
A By = 4

y = x2

Step 1. Finding the critical points. We find the critical points in the interior of the domain by setting the partial derivatives
equal to zero and solving. We get

fx = 2y − 1 = 0

fy = 2x − 1 = 0 ⇒ x = 1

2
, y = 1

2

The critical point is
(

1
2 , 1

2

)
. (It lies in the interior of the domain since 1

2 < 4 and 1
2 >

(
1
2

)2
).

Step 2. Finding the global extrema on the boundary. We consider the two parts of the boundary separately.

The parabola y = x2, −2 ≤ x ≤ 2:

f (x, x2) = 2x3 − x2 − x

x

y

−2 20 1

8

−8

On this curve, f (x, x2) = 2 · x · x2 − x − x2 = 2x3 − x2 − x. Using calculus in one variable or the graph of the
function, we see that the minimum of f (x, x2) on the interval occurs at x = −2 and the maximum at x = 2. The
corresponding points are (−2, 4) and (2, 4).
The segment AB: On this segment y = 4, −2 ≤ x ≤ 2, hence f (x, 4) = 2 · x · 4 − x − 4 = 7x − 4. The maximum
value occurs at x = 2 and the minimum value at x = −2. The corresponding points on the segment AB are (−2, 4)

and (2, 4)

Step 3. Conclusions. Since the global extrema occur either at critical points in the interior of the domain or on the
boundary of the domain, the candidates for global extrema are the following points:(

1

2
,

1

2

)
, (−2, 4), (2, 4)

We compute the values of f = 2xy − x − y at these points:

f

(
1

2
,

1

2

)
= 2 · 1

2
· 1

2
− 1

2
− 1

2
= −1

2
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f (−2, 4) = 2 · (−2) · 4 + 2 − 4 = −18

f (2, 4) = 2 · 2 · 4 − 2 − 4 = 10

We conclude that the global maximum is f (2, 4) = 10 and the global minimum is f (−2, 4) = −18.

54. Find the maximum of f (x, y, z) = xyz subject to the constraint g(x, y, z) = 2x + y + 4z = 1.

solution

Step 1. Write out the Lagrange Equations. We have ∇f = 〈yz, xz, xy〉 and ∇g = 〈2, 1, 4〉, hence the Lagrange Condition
∇f = λ∇g is

〈yz, xz, xy〉 = λ 〈2, 1, 4〉
or

yz = 2λ, xz = λ, xy = 4λ

Step 2. Solve for λ in terms of x, y, and z. The Lagrange equations imply that

λ = yz

2
, λ = xz, λ = xy

4

Step 3. Solve for x, y, and z using the constraint. Equating the expressions for λ gives the following equations:

yz

2
= xz

xy

4
= xz

⇒
z(2x − y) = 0

x(4z − y) = 0

The first equation implies that z = 0 or y = 2x. The second equation implies that x = 0 or y = 4z. We examine all
possible solutions.

(1) z = 0 and x = 0: Then substituting in the constraint 2x + y + 4z = 1 gives 2 · 0 + y + 4 · 0 = 1 or y = 1. We
obtain the point (0, 1, 0).

(2) z = 0 and y = 4z: Then y = 4 · 0 = 0. Substituting z = 0 and y = 0 in the constraint 2x + y + 4z = 1 gives

2x + 0 + 4 · 0 = 1 or x = 1
2 . We obtain the point

(
1
2 , 0, 0

)
.

(3) y = 2x and x = 0: Then y = 2 · 0 = 0. Substituting x = y = 0 in the constraint 2x + y + 4z = 1 gives

2 · 0 + 0 + 4z = 1 or z = 1
4 . The corresponding point is

(
0, 0, 1

4

)
.

(4) y = 2x, y = 4z: Then x = y
2 and z = y

4 . We substitute in the constraint 2x + y + 4z = 1 and solve for y:

2 · y

2
+ y + 4 · y

4
= 1

3y = 1 ⇒ y = 1

3

Hence, x = y
2 = 1

6 , z = y
4 = 1

12 . We obtain the point
(

1
6 , 1

3 , 1
12

)
.

Step 4. Conclusions. We evaluate f (x, y, z) = xyz at the critical points:

f (0, 1, 0) = 0 · 1 · 0 = 0

f

(
1

2
, 0, 0

)
= 1

2
· 0 · 0 = 0

f

(
1

6
,

1

3
,

1

12

)
= 1

6
· 1

3
· 1

12
= 1

216

f

(
0, 0,

1

4

)
= 0 · 0 · 1

4
= 0

We conclude that the local maximum of f subject to the constraint is

f

(
1

6
,

1

3
,

1

12

)
= 1

216
.

Notice that f does not have a global maximum on the plane 2x + y + 4z = 1 since, for all t , the point
(
−t2, 1 + 6t2, −t2

)
is on the plane and we have

lim
t→∞ f

(
−t2, 1 + 6t2, −t2

)
= lim

t→∞ t4
(

1 + 6t2
)

= ∞
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55. Use Lagrange multipliers to find the minimum and maximum values of f (x, y) = 3x − 2y on the circle x2 + y2 = 4.

solution

Step 1. Write out the Lagrange Equations. The constraint curve is g(x, y) = x2 + y2 − 4 = 0, hence ∇g = 〈2x, 2y〉
and ∇f = 〈3, −2〉. The Lagrange Condition ∇f = λ∇g is thus 〈3, −2〉 = λ 〈2x, 2y〉. That is,

3 = λ · 2x

−2 = λ · 2y

Note that λ �= 0.

Step 2. Solve for x and y using the constraint. The Lagrange equations gives

3 = λ · 2x

− 2 = λ · 2y
⇒

x = 3

2λ

y = − 1

λ

(1)

We substitute x and y in the equation of the constraint and solve for λ. We get

(
3

2λ

)2
+
(

− 1

λ

)2
= 4

9

4λ2
+ 1

λ2
= 4

1

λ2
· 13

4
= 4 ⇒ λ =

√
13

4
or λ = −

√
13

4

Substituting in (1), we obtain the points

x = 6√
13

, y = − 4√
13

x = − 6√
13

, y = 4√
13

The critical points are thus

P1 =
(

6√
13

, − 4√
13

)

P2 =
(

− 6√
13

,
4√
13

)

Step 3. Calculate the value at the critical points. We find the value of f (x, y) = 3x − 2y at the critical points:

f (P1) = 3 · 6√
13

− 2 · −4√
13

= 26√
13

f (P2) = 3 · −6√
13

− 2 · 4√
13

= −26√
13

Thus, the maximum value of f on the circle is 26√
13

, and the minimum is − 26√
13

.

56. Find the minimum value of f (x, y) = xy subject to the constraint 5x − y = 4 in two ways: using Lagrange multipliers
and setting y = 5x − 4 in f (x, y).

solution We find the minimum value of f (x, y) = xy subject to the constraint g(x, y) = 5x − y − 4 = 0 using the
Lagrange multipliers.

Step 1. Write out the Lagrange Equations. The gradient vectors are ∇f = 〈y, x〉 and ∇g = 〈5, −1〉, hence the Lagrange
Condition ∇f = λ∇g is

〈y, x〉 = λ 〈5, −1〉
〈y, x〉 = 〈5λ, −λ〉

The Lagrange Equations are thus

y = 5λ

x = −λ
⇒ λ = y

5
, λ = −x
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Step 2. Solve for x and y using the constraint. Equating the two expressions for λ gives

y

5
= −x ⇒ y = −5x

We substitute y = −5x in the equation of the constraint 5x − y = 4 and solve for x. This gives

5x − (−5x) = 4

10x = 4
⇒ x = 2

5

The y-coordinate is y = −5 · 2
5 = −2. We obtain the critical point

(
2
5 , −2

)
.

Step 3. Calculate the value at the critical point. The value of f (x, y) = xy at the critical point is

f

(
2

5
, −2

)
= 2

5
· (−2) = −4

5
(1)

This value is the minimum value of f subject to the constraint:

x

y

5x − y = 4

Note that since f (x, y) = xy is positive in the first and third quadrant, the minimum value of f subject to the constraint’s
part in the fourth quadrant is also the minimum value subject to the entire constraint. The part of the constraint in the
fourth quadrant is a closed and bounded segment, hence the minimum value of f on this segment exists, and is given in
(1).

We now find the minimum value of f (x, y) = xy subject to the constraint 5x − y = 4 using the second way. On the
constraint 5x − y = 4, we have y = 5x − 4. We substitute in the function f (x, y) = xy and then find the minimum of
the resulting one-variable function. We get

g(x) = f (x, 5x − 4) = x(5x − 4) = 5x2 − 4x

We now find the minimum value of g(x) = 5x2 − 4x in the interval −∞ < x < ∞. We find the critical points:

g′(x) = 10x − 4 = 0 ⇒ x = 2

5

The limits

lim
x→∞ g(x) = lim

x→∞
(

5x2 − 4x
)

= ∞ and lim
x→−∞ g(x) = lim

x→−∞
(

5x2 − 4x
)

= ∞

imply that g has a minimum value for −∞ < x < ∞, and it occurs at the critical point. Therefore, the minimum value of
g occurs at x = 2

5 . The corresponding y-coordinate is y = 5 · 2
5 − 4 = −2, therefore the minimum value of f (x, y) = xy

is

f

(
2

5
, −2

)
= 2

5
· (−2) = −4

5

57. Find the minimum and maximum values of f (x, y) = x2y on the ellipse 4x2 + 9y2 = 36.

solution We must find the minimum and maximum values of f (x, y) = x2y subject to the constraint g(x, y) =
4x2 + 9y2 − 36 = 0.

Step 1. Write out the Lagrange Equations. The gradient vectors are ∇f =
〈
2xy, x2

〉
and ∇g = 〈8x, 18y〉, hence the

Lagrange Condition ∇f = λ∇g gives 〈
2xy, x2

〉
= λ 〈8x, 18y〉 = 〈8λx, 18λy〉

We obtain the following Lagrange Equations:

2xy = 8λx

x2 = 18λy
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Step 2. Solve for λ in terms of x and y. If x = 0, the equation of the constraint implies that y = ±2. The points (0, 2) and
(0, −2) satisfy the Lagrange Equations for λ = 0. If x �= 0, the second Lagrange Equation implies that y �= 0. Therefore
the Lagrange Equations give

2xy = 8λx ⇒ λ = y

4

x2 = 18λy ⇒ λ = x2

18y

Step 3. Solve for x and y using the constraint. We equate the two expressions for λ to obtain

y

4
= x2

18y

18y2 = 4x2

We now substitute 4x2 = 18y2 in the equation of the constraint 4x2 + 9y2 = 36 and solve for y. This gives

18y2 + 9y2 = 36

27y2 = 36
⇒ y2 = 36

27
⇒ y1 = 2√

3
, y2 = − 2√

3

We find the x-coordinates using x2 = 9y2

2 :

x2 = 9y2

2

x2 = 9

2
· 4

3
= 6 ⇒ x1 = √

6, x2 = −√
6

We obtain the following critical points:

P1 = (0, 2), P2 = (0, −2), P3 =
(√

6,
2√
3

)

P4 =
(√

6, − 2√
3

)
, P5 =

(
−√

6,
2√
3

)
, P6 =

(
−√

6, − 2√
3

)

Step 4. Conclusions. We evaluate the function f (x, y) = x2y at the critical points:

f (P1) = 02 · 2 = 0

f (P2) = 02 · (−2) = 0

f (P3) = f (P5) = 6 · 2√
3

= 12√
3

f (P4) = f (P5) = 6 ·
(

− 2√
3

)
= − 12√

3

Since the min and max of f occur on the ellipse, it must occur at critical points. Thus, we conclude that the maximum
and minimum of f subject to the constraint are 12√

3
and − 12√

3
respectively.

58. Find the point in the first quadrant on the curve y = x + x−1 closest to the origin.

solution We need to minimize the distance d =
√

x2 + y2 subject to the constraint g(x, y) = x + 1
x − y = 0. Since

the function u2 is increasing for u ≥ 0, the distance d is minimal where the square d2 is minimal. Therefore, we minimize
the function f (x, y) = d2 = x2 + y2 subject to the constraint.

Step 1. Write out the Lagrange Equations. The gradient vectors are ∇f = 〈2x, 2y〉 and ∇g =
〈
1 − 1

x2 , −1
〉
, hence the

Lagrange Condition ∇f = λ∇g gives

〈2x, 2y〉 = λ

〈
1 − 1

x2
, −1

〉
=
〈
λ

(
1 − 1

x2

)
, −λ

〉

The Lagrange Equations are

2x = λ

(
1 − 1

x2

)

2y = −λ
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Step 2. Solve for λ in terms of x and y. The second Lagrange equation gives λ = −2y, and the first equation gives

2x = λ
x2 − 1

x2
⇒ λ = 2x3

x2 − 1

Step 3. Solve for x and y using the constraint. Equating the two expressions for λ, we get

−2y = 2x3

x2 − 1
⇒ y = x3

1 − x2

We now substitute y as a function of x in the equation of the constraint and solve for x. This gives

x3

1 − x2
= x + 1

x
= x2 + 1

x

x4 =
(

1 − x2
) (

1 + x2
)

= 1 − x4

2x4 = 1 ⇒ x = 2−1/4, x = −2−1/4

The solution in the first quadrant is x = 2−1/4 = 1
4√2

. We find the y-coordinate using y = x3

1−x2 :

y = 2−3/4

1 − 2−1/2
= 2−1/4

21/2 − 1
= 2−1/4

(
21/2 + 1

)
= 21/4 + 2−1/4 = 4√

2 + 1
4√2

We obtain the critical point:

P =
(

1
4√2

,
4√

2 + 1
4√2

)

Step 4. Conclusion.

x

P

y

Graph of y = x + 1
x , x > 0, y > 0

It is clear from the graph of y = x + 1
x that the critical point is a minimum. Therefore, the point P is the closest to the

origin on the curve y = x + 1
x in the first quadrant.

59. Find the extreme values of f (x, y, z) = x + 2y + 3z subject to the two constraints x + y + z = 1 and x2 + y2 +
z2 = 1.

solution We must find the extreme values of f (x, y, z) = x + 2y + 3z subject to the constraints g(x, y, z) =
x + y + z − 1 = 0 and h(x, y, z) = x2 + y2 + z2 − 1 = 0.

Step 1. Write out the Lagrange Equations. We have ∇f =< 1, 2, 3 >, ∇g =< 1, 1, 1 >, ∇h =< 2x, 2y, 2z >, hence
the Lagrange condition ∇f = λ∇g + μ∇h gives

< 1, 2, 3 > = λ < 1, 1, 1 > +μ < 2x, 2y, 2z >=< λ + 2μx, λ + 2μy, λ + 2μz >

or

1 = λ + 2μx

2 = λ + 2μy

3 = λ + 2μz

Step 2. Solve for λ and μ. The Lagrange Equations give

1 = λ + 2μx

2 = λ + 2μy

3 = λ + 2μz

⇒
λ=1 − 2μx

λ=2 − 2μy

λ=3 − 2μz
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Equating the three expressions for λ, we get the following equations:

1 − 2μx = 2 − 2μy

1 − 2μx = 3 − 2μz
⇒

2μ(y − x) = 1

μ(z − x) = 2

The first equation implies that μ = 1
2(y−x)

, and the second implies that μ = 2
z−x . Equating the two expressions for μ,

we get

1

2(y − x)
= 2

z − x

z − x = 4y − 4x ⇒ z = 4y − 3x

Step 3. Solve for x, y, and z using the constraints. We substitute z = 4y − 3x in the equations of the constraints and
solve to find x and y. This gives

x + y + (4y − 3x) = 1

x2 + y2 + (4y − 3x)2 = 1
⇒ y = 1 + 2x

5

10x2 + 17y2 − 24xy = 1

Substituting in the second equation and solving for x, we get

y = 1 + 2x

5

10x2 + 17

(
1 + 2x

5

)2
− 24x · 1 + 2x

5
= 1

250x2 + 17(1 + 2x)2 − 120x (1 + 2x) = 25

39x2 − 26x − 4 = 0

x1,2 = 26 ± √
1300

78

⇒ x1 = 1

3
+ 5

√
13

39
≈ 0.8, x2 = 1

3
− 5

√
13

39
≈ −0.13

We find the y-coordinates using y = 1+2x
5 .

y1 = 1 + 2 · 0.8

5
= 0.52, y2 = 1 − 2 · 0.13

5
= 0.15

Finally, we find the z-coordinate using z = 4y − 3x:

z1 = 4 · 0.52 − 3 · 0.8 = −0.32, z2 = 4 · 0.15 + 3 · 0.13 = 0.99

We obtain the critical points:

P1 = (0.8, 0.52, −0.32), P2 = (−0.13, 0.15, 0.99)

.
Step 4. Conclusions. We evaluate the function f (x, y, z) = x + 2y + 3z at the critical points:

f (P1) = 0.8 + 2 · 0.52 − 3 · 0.32 = 0.88

f (P2) = −0.13 + 2 · 0.15 + 3 · 0.99 = 3.14 (1)

The two constraints determine the common points of the unit sphere x2 + y2 + z2 = 1 and the plane x + y + z = 1.
This set is a circle that is a closed and bounded set in R3. Therefore, f has a minimum and maximum values on this set.
These extrema are given in (1).

60. Find the minimum and maximum values of f (x, y, z) = x − z on the intersection of the cylinders x2 + y2 = 1 and
x2 + z2 = 1 (Figure 5).

z

x

y

FIGURE 5
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solution Let us use the Lagrange Multipliers method with two constraints for f (x, y, z) = x − z subject to

g(x, y, z) = x2 + y2 − 1 = 0 and h(x, y, z) = x2 + z2 − 1 = 0. The Lagrange condition would be ∇f = λ∇g + μ∇h.
Noting here that we have ∇f = 〈1, 0, −1〉, ∇g = 〈2x, 2y, 0〉, and ∇h = 〈2x, 0, 2z〉. Therefore we have

〈1, 0, −1〉 = λ 〈2x, 2y, 0〉 + μ 〈2x, 0, 2z〉
yielding the equations:

1 = 2λx + 2μx, 0 = 2λy, −1 = 2μz

Next, using the second equation, we find either λ = 0 or y = 0.
If y = 0, then using the first constraint equation, x = ±1 and using the second constraint equation we find z = 0. The

derived critical points are then:

(1, 0, 0), (−1, 0, 0)

If λ = 0, then using the first equation above we see 1 = 2μx which implies

μ = 1

2x

Using the last equation above we have:

−1 = 2 · 1

2x
z ⇒ −x = z

Then using the second constraint equation, we have

2x2 = 1 ⇒ x = ± 1√
2
, z = ∓ 1√

2

Using the first constraint equation, we have

x2 + y2 = 1 ⇒ y2 = 1

2
⇒ y = ± 1√

2

We have four derived critical points here:(
1√
2
,

1√
2
, − 1√

2

)
,

(
1√
2
, − 1√

2
, − 1√

2

)
,

(
− 1√

2
,

1√
2
,

1√
2

)
,

(
− 1√

2
, − 1√

2
,

1√
2

)

Now to analyze f (x, y, z) = x − z for maximum and minimum values:

f (1, 0, 0) = 1, f (−1, 0, 0) = −1

f

(
1√
2
,

1√
2
, − 1√

2

)
= √

2, f

(
1√
2
, − 1√

2
, − 1√

2

)
= √

2

f

(
− 1√

2
,

1√
2
,

1√
2

)
= −√

2, f

(
− 1√

2
, − 1√

2
,

1√
2

)
= −√

2

Hence the maximum value of f (x, y, z) = x − z subject to the two constraints is
√

2, while the minimum value is −√
2.

61. Use Lagrange multipliers to find the dimensions of a cylindrical can with a bottom but no top, of fixed volume V

with minimum surface area.

solution We denote the radius of the cylinder by r and the height by h.

h

The volume of the cylinder is g = πr2h and the surface area is

f = 2πrh + 2πr2

We need to minimize f (r, h) = 2πrh + 2πr2 subject to the constraint g(r, h) = πr2h − V = 0.
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Step 1. Write out the Lagrange Equations. We have ∇f = 〈2πh + 4πr, 2πr〉 = 2π 〈h + 2r, r〉 and ∇g =
〈
2πhr, πr2

〉
=

π
〈
2hr, r2

〉
, hence the Lagrange Condition ∇f = λ∇g is

2π 〈h + 2r, r〉 = πλ
〈
2hr, r2

〉
or

2 〈h + 2r, r〉 = λ
〈
2hr, r2

〉
We obtain the following equations:

2(h + 2r) = 2hrλ

2r = λr2
⇒

h + 2r = hrλ

2r = λr2

Step 2. Solve for λ in terms of r and h. The equation of the constraint implies that r �= 0 and h �= 0 (we assume that
V > 0). Therefore, the Lagrange equations give

λ = h + 2r

hr
= 1

r
+ 2

h
, λ = 2

r

Step 3. Solve for r and h using the constraint. Equating the two expressions for λ gives

1

r
+ 2

h
= 2

r

2

h
= 1

r
⇒ h = 2r

We substitute h = 2r in the equation of the constraint πr2h = V and solve for r . We obtain

πr2 · 2r = V

2πr3 = V ⇒ r =
(

V

2π

)1/3

We find h using the relation h = 2r:

h = 2

(
V

2π

)1/3

The critical point is h = 2
(

V
2π

)1/3
, r =

(
V
2π

)1/3
.

Step 4. Conclusions. On the constraint πr2h = V we have h = V
πr2 and r =

√
V
πh

, hence

f

(
r,

V

πr2

)
= 2πr · V

πr2
+ 2πr2 = 2V

r
+ 2πr2

f

(√
V

πh
, h

)
= 2π

√
V

πh
h + 2π · V

πh
= 2

√
πV

√
h + 2V

h

We see that as h → 0+ or h → ∞, we have f (r, h) → ∞, and as r → 0+ or r → ∞, we have f (r, h) → ∞. Therefore,
f has a minimum value on the constraint, which occurs at the critical point. We evaluate f (r, h) = 2πrh + 2πr2 =
2π(rh + r2) at the critical point P :

f (P ) = 2π

((
V

2π

)1/3
· 2

(
V

2π

)1/3
+
(

V

2π

)2/3
)

= 2π

(
2

(
V

2π

)2/3
+
(

V

2π

)2/3
)

= 6π

(
V

2π

)2/3

We conclude that the minimum surface area is 6π
(

V
2π

)2/3
, and the dimensions of the corresponding cylinder are r =(

V
2π

)1/3
, h = 2

(
V
2π

)1/3
.

62. Find the dimensions of the box of maximum volume with its sides parallel to the coordinate planes that can be
inscribed in the ellipsoid (Figure 6)

(x

a

)2 +
(y

b

)2 +
( z

c

)2 = 1
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z

x

y

FIGURE 6

solution We denote the vertices of the box by (±x, ±y, ±z), where x ≥ 0, y ≥ 0, z ≥ 0. The volume of the box is

V (x, y, z) = 8xyz

The vertices of the box must satisfy the equation of the ellipsoid, hence,

g(x, y, z) = x2

a2
+ y2

b2
+ z2

c2
− 1 = 0, x ≥ 0, y ≥ 0, z ≥ 0.

We need to maximize V due to the constraint: g(x, y, z) = 0, x ≥ 0, y ≥ 0, z ≥ 0.

Step 1. Write out the Lagrange Equations. We have ∇V = 8 〈yz, xz, xy〉 and ∇g =
〈

2x
a2 ,

2y

b2 , 2z
c2

〉
, hence the Lagrange

Condition ∇V = λ∇g gives the following equations:

yz = λ
2x

a2

xz = λ
2y

b2

xy = λ
2z

c2

Step 2. Solve for λ in terms of x, y, and z. If x = 0, y = 0, or z = 0, the volume of the box has the minimum value zero.
We thus may assume that x �= 0, y �= 0, and z �= 0. The Lagrange equations give

λ = a2yz

2x
, λ = b2xz

2y
, λ = c2xy

2z

Step 3. Solve for x, y, and z using the constraint. Equating the three expressions for λ yields the following equations:

a2

2

yz

x
= c2

2

xy

z

b2

2

xz

y
= c2

2

xy

z

⇒
y
(
c2x2 − a2z2

)
= 0

x
(
c2y2 − b2z2

)
= 0

Since x > 0 and y > 0, these equations imply that

c2x2 − a2z2 = 0

c2y2 − b2z2 = 0
⇒

x = az

c

y = bz

c

(1)

We now substitute x and y in the equation of the constraint and solve for z. This gives

(
az
c

)2
a2

+
(

bz
c

)2

b2
+ z2

c2
= 1

z2

c2
+ z2

c2
+ z2

c2
= 1

3z2

c2
= 1 ⇒ z = c√

3

We find x and y using (1):

x = a

c

c√
3

= a√
3
, y = b

c

c√
3

= b√
3

We obtain the critical point:

P =
(

a√
3
,

b√
3
,

c√
3

)
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Step 4. Conclusions. The function V = 8xyz is a polynomial, hence it is continuous. The constraint defines a closed and
compact set in R3, hence f has extreme values on the constraint. The maximum value is obtained at the critical point P .
We find it:

V (P ) = 8
a√
3

· b√
3

· c√
3

= 8
abc

3
√

3

We conclude that the dimensions of the box of maximum volume with sides parallel to the coordinate planes, which can
be inscribed in the ellipsoid, are

x = a√
3
, y = b√

3
, z = c√

3
.

63. Given n nonzero numbers σ1, . . . , σn, show that the minimum value of

f (x1, . . . , xn) = x2
1σ 2

1 + · · · + x2
nσ 2

n

subject to x1 + · · · + xn = 1 is c, where c =
⎛
⎝ n∑

j=1

σ−2
j

⎞
⎠

−1

.

solution We must minimize the functionf (x1, . . . , xn) = x2
1σ 2

1 + · · · + x2
nσ 2

n subject to the constraintg (x1, . . . , xn) =
x1 + · · · + xn − 1 = 0.

Step 1. Write out the Lagrange Equations. We have ∇f =
〈
2σ 2

1 x1, . . . , 2σ 2
n xn

〉
and ∇g = 〈1, . . . , 1〉, hence the Lagrange

Condition ∇f = λ∇g gives the following equations:

2σ 2
i xi = λ, i = 1, . . . , n

Step 2. Solve for x1, . . . , xn using the constraint. The Lagrange equations imply the following equations:

2σ 2
i xi = 2σ 2

n xn, xi = σ 2
n

σ 2
i

xn; i = 1, . . . , n − 1

We substitute these values in the equation of the constraint x1 + · · · + xn = 1 and solve for xn. This gives

σ 2
n

σ 2
1

xn + σ 2
n

σ 2
2

xn + · · · + σ 2
n

σ 2
n−1

xn + xn = 1

σ 2
n

(
1

σ 2
1

+ 1

σ 2
2

+ · · · + 1

σ 2
n−1

+ 1

σ 2
n

)
xn = 1

σ 2
n

⎛
⎝ n∑

j=1

σ−2
j

⎞
⎠ xn = 1

Denoting c =
(∑n

j=1 σ−2
j

)−1
, we get xn = c

σ 2
n

. Using xi = σ 2
n

σ 2
i

xn we get

xi = σ 2
n

σ 2
i

· c

σ 2
n

= c

σ 2
i

We obtain the following point:

P =
(

c

σ 2
1

,
c

σ 2
2

, . . . ,
c

σ 2
n

)

Step 3. Conclusions. As xi → ∞ or xi → −∞, for one or more i’s the function f (x1, . . . , xn) tends to ∞. f is
continuous since it is a polynomial, hence f has a minimum value on the constraint. This minimum occurs at the critical
point. We find it:

f (P ) =
n∑

j=1

σ 2
j

(
c

σ 2
j

)2

=
n∑

j=1

σ 2
j
c2

σ 4
j

= c2
n∑

j=1

σ−2
j

= c2 · c−1 = c
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15.1 Integration in Two Variables (LT Section 16.1)

Preliminary Questions
1. If S8,4 is a Riemann sum for a double integral over R = [1, 5] × [2, 10] using a regular partition, what is the area of

each subrectangle? How many subrectangles are there?

solution Since the partition is regular, all subrectangles have sides of length

�x = 5 − 1

8
= 1

2
, �y = 10 − 2

4
= 2

Therefore the area of each subrectangle is �A = �x�y = 1
2 · 2 = 1, and the number of subrectangles is 8 · 4 = 32.

2. Estimate the double integral of a continuous function f over the small rectangle R = [0.9, 1.1] × [1.9, 2.1] if
f (1, 2) = 4.

solution Since we are given the value of f at one point in R only, we can only use the approximation S11 for the
integral of f over R. For S11 we have one rectangle wi th sides

�x = 1.1 − 0.9 = 0.2, �y = 2.1 − 1.9 = 0.2

Hence, the area of the rectangle is �A = �x�y = 0.2 · 0.2 = 0.04. We obtain the following approximation:∫∫
R

f dA ≈ S1,1 = f (1, 2)�A = 4 · 0.04 = 0.16

3. What is the integral of the constant function f (x, y) = 5 over the rectangle [−2, 3] × [2, 4]?
solution The integral of f over the unit square R = [−2, 3] × [2, 4] is the volume of the box of base R and height
5. That is, ∫∫

R
5 dA = 5 · Area(R) = 5 · 5 · 2 = 50

4. What is the interpretation of
∫∫

R
f (x, y) dA if f (x, y) takes on both positive and negative values on R?

solution The double integral
∫∫

R
f (x, y) dA is the signed volume between the graph z = f (x, y) for (x, y) ∈ R,

and the xy-plane. The region below the xy-plane is treated as negative volume.

5. Which of (a) or (b) is equal to
∫ 2

1

∫ 5

4
f (x, y) dy dx?

(a)
∫ 2

1

∫ 5

4
f (x, y) dx dy (b)

∫ 5

4

∫ 2

1
f (x, y) dx dy

solution The integral
∫ 2

1
∫ 5

4 f (x, y) dy dx is written with dy preceding dx, therefore the integration is first with
respect to y over the interval 4 ≤ y ≤ 5, and then with respect to x over the interval 1 ≤ x ≤ 2. By Fubini’s Theorem, we
may replace the order of integration over the corresponding intervals. Therefore the given integral is equal to (b) rather
than to (a).

6. For which of the following functions is the double integral over the rectangle in Figure 15 equal to zero? Explain
your reasoning.

(a) f (x, y) = x2y (b) f (x, y) = xy2

(c) f (x, y) = sin x (d) f (x, y) = ex

x

y

−1 1

1

FIGURE 15

865
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solution The double integral is the signed volume of the region between the graph of f (x, y) and the xy-plane over
R. In (b) and (c) the function satisfies f (−x, y) = −f (x, y), hence the region below the xy-plane, where −1 ≤ x ≤ 0
cancels with the region above the xy-plane, where 0 ≤ x ≤ 1. Therefore, the double integral is zero. In (a) and (d), the
function f (x, y) is always positive on the rectangle, so the double integral is greater than zero.

Exercises
1. Compute the Riemann sum S4,3 to estimate the double integral of f (x, y) = xy over R = [1, 3] × [1, 2.5]. Use the

regular partition and upper-right vertices of the subrectangles as sample points.

solution The rectangle R and the subrectangles are shown in the following figure:

x

y

1 1.5 2 2.5 3

1

0

1.5

2

2.5
P13 P23 P33 P43

P12 P22 P32 P42

P11 P21 P31 P41

The subrectangles have sides of length

�x = 3 − 1

4
= 0.5, �y = 2.5 − 1

3
= 0.5 ⇒ �A = 0.5 · 0.5 = 0.25

The upper right vertices are the following points:

P11 = (1.5, 1.5)

P12 = (1.5, 2)

P13 = (1.5, 2.5)

P21 = (2, 1.5)

P22 = (2, 2)

P23 = (2, 2.5)

P31 = (2.5, 1.5)

P32 = (2.5, 2)

P33 = (2.5, 2.5)

P41 = (3, 1.5)

P42 = (3, 2)

P43 = (3, 2.5)

We compute f (x, y) = xy at these points:

f (P11) = 1.5 · 1.5 = 2.25
f (P21) = 2 · 1.5 = 3
f (P31) = 2.5 · 1.5 = 3.75
f (P41) = 3 · 1.5 = 4.5

f (P12) = 1.5 · 2 = 3
f (P22) = 2 · 2 = 4
f (P32) = 2.5 · 2 = 5
f (P42) = 3 · 2 = 6

f (P13) = 3.75
f (P23) = 5
f (P33) = 6.25
f (P43) = 7.5

Hence, S4,3 is the following sum:

S4,3 =
4∑

i=1

3∑
j=1

f (Pij )�A = 0.25(2.25 + 3 + 3.75 + 4.5 + 3 + 4 + 5 + 6 + 3.75 + 5 + 6.25 + 7.5) = 13.5

2. Compute the Riemann sum with N = M = 2 to estimate the integral of
√

x + y over R = [0, 1] × [0, 1]. Use the
regular partition and midpoints of the subrectangles as sample points.

solution The rectangle R and the subintervals are shown in the following figure:

P12 P22

P11 P21

y

x
0.5 10.25 0.75

0.5

1

0.25

0.75

0

The subrectangles have sides of length �x = 1
2 = 0.5 and �y = 1

2 = 0.5 and area �A = 0.5 · 0.5 = 0.25. The
midpoints of the subrectangles are:

P11 = (0.25, 0.25), P21 = (0.75, 0.25),

P12 = (0.25, 0.75), P22 = (0.75, 0.75)
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We compute the values of f (x, y) = √
x + y at the sample points:

f (P11) = √
0.25 + 0.25 = 0.707

f (P21) = √
0.75 + 0.25 = 1

f (P12) = √
0.25 + 0.75 = 1

f (P22) = √
0.75 + 0.75 = 1.225

Hence, S22 is the following sum:

S22 =
2∑

i=1

2∑
j=1

f
(
Pij

)
�A = 0.25(0.707 + 1 + 1 + 1.225) = 0.983

In Exercises 3–6, compute the Riemann sums for the double integral
∫∫

R
f (x, y) dA, where R = [1, 4] × [1, 3], for

the grid and two choices of sample points shown in Figure 16.

x

y

1 2 3 4

3

2

1

x

y

10 0 2

(A) (B)

3 4

3

2

1

FIGURE 16

3. f (x, y) = 2x + y

solution The subrectangles have sides of length �x = 4−1
3 = 1 and �y = 3−1

2 = 1, and area �A = �x�y = 1.
We find the sample points in (A) and (B):

(A)

P11 = (1.5, 1.5) P21 = (2.5, 1.5) P31 = (3.5, 1.5)

P12 = (1.5, 2.5) P22 = (2.5, 2.5) P32 = (3.5, 2.5)

x

y

1

(A)

2 3 4

4

2

3

1

0

P12 P22 P32

P11 P21 P31

(B)

P11 = (1.5, 1.5) P21 = (2, 1) P31 = (3.5, 1.5)

P21 = (2, 3) P22 = (2.5, 2.5) P23 = (4, 3)

x

y

1

(B)

2 3 4

4

2

3

1

0

P12

P22

P32

P11

P21

P31

The Riemann Sum S32 is the following estimation of the double integral:

∫∫
R

f (x, y) dA ≈ S32 =
3∑

i=1

2∑
j=1

f
(
Pij

)
�A =

3∑
i=1

2∑
j=1

f
(
Pij

)
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We compute S32 for the two choices of sample points (A) and (B), and the following function:

f (x, y) = 2x + y

We compute f
(
Pij

)
for the sample points computed above:

(A)

f (P11) = f (1.5, 1.5) = 2 · 1.5 + 1.5 = 4.5

f (P21) = f (2.5, 1.5) = 2 · 2.5 + 1.5 = 6.5

f (P31) = f (3.5, 1.5) = 2 · 3.5 + 1.5 = 8.5

f (P12) = f (1.5, 2.5) = 2 · 1.5 + 2.5 = 5.5

f (P22) = f (2.5, 2.5) = 2 · 2.5 + 2.5 = 7.5

f (P32) = f (3.5, 2.5) = 2 · 3.5 + 2.5 = 9.5

Hence,

S32 =
3∑

i=1

2∑
j=1

f
(
Pij

)
�A = 4.5 + 6.5 + 8.5 + 5.5 + 7.5 + 9.5 = 42

(B)

f (P11) = f (1.5, 1.5) = 2 · 1.5 + 1.5 = 4.5

f (P21) = f (2, 1) = 2 · 2 + 1 = 5

f (P31) = f (3.5, 1.5) = 2 · 3.5 + 1.5 = 8.5

f (P21) = f (2, 3) = 2 · 2 + 3 = 7

f (P22) = f (2.5, 2.5) = 2 · 2.5 + 2.5 = 7.5

f (P23) = f (4, 3) = 2 · 4 + 3 = 11

Hence,

S32 =
3∑

i=1

2∑
j=1

f
(
Pij

)
�A = 4.5 + 5 + 8.5 + 7 + 7.5 + 11 = 43.5

4. f (x, y) = 7

solution In this case f
(
Pij

) = 7 for all i and j hence for the sample points in (A) and in (B) we have the same
Riemann sum, that is,

S32 =
3∑

i=1

2∑
j=1

f
(
Pij

)
�A = 6 · 7 = 42

5. f (x, y) = 4x

solution We compute the values of f at the sample points:

(A)

f (P11) = f (1.5, 1.5) = 4 · 1.5 = 6

f (P21) = f (2.5, 1.5) = 4 · 2.5 = 10

f (P31) = f (3.5, 1.5) = 4 · 3.5 = 14

f (P12) = f (1.5, 2.5) = 4 · 1.5 = 6

f (P22) = f (2.5, 2.5) = 4 · 2.5 = 10

f (P32) = f (3.5, 2.5) = 4 · 3.5 = 14

�x = 4 − 1

3
= 1, �y = 3 − 1

2
= 1

Hence �A = �x · �y = 1 and we get

S32 =
3∑

i=1

2∑
j=1

f
(
Pij

)
�A = 6 + 10 + 14 + 6 + 10 + 14 = 60
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(B)
f (P11) = f (1.5, 1.5) = 4 · 1.5 = 6

f (P21) = f (2, 1) = 4 · 2 = 8

f (P31) = f (3.5, 1.5) = 4 · 3.5 = 14

f (P12) = f (2, 3) = 4 · 2 = 8

f (P22) = f (2.5, 2.5) = 4 · 2.5 = 10

f (P32) = f (4, 3) = 4 · 4 = 16

�A = 1. Hence,

S32 =
3∑

i=1

2∑
j=1

f
(
Pij

)
�A = 6 + 8 + 14 + 8 + 10 + 16 = 62

6. f (x, y) = x − 2y

solution We compute the values of f at the sample points:
(A)

f (P11) = f (1.5, 1.5) = 1.5 − 2 · 1.5 = −1.5

f (P21) = f (2.5, 1.5) = 2.5 − 2 · 1.5 = −0.5

f (P31) = f (3.5, 1.5) = 3.5 − 2 · 1.5 = 0.5

f (P12) = f (1.5, 2.5) = 1.5 − 2 · 2.5 = −3.5

f (P22) = f (2.5, 2.5) = 2.5 − 2 · 2.5 = −2.5

f (P32) = f (3.5, 2.5) = 3.5 − 2 · 2.5 = −1.5

�x = 4 − 1

3
= 1, �y = 3 − 1

2
= 1

Hence �A = �x · �y = 1 and we get

S32 =
3∑

i=1

2∑
j=1

f
(
Pij

)
�A = −1.5 − 0.5 + 0.5 − 3.5 − 2.5 − 1.5 = −9

(B)
f (P11) = f (1.5, 1.5) = 1.5 − 2 · 1.5 = −1.5

f (P21) = f (2, 1) = 2 − 2 · 1 = 0

f (P31) = f (3.5, 1.5) = 3.5 − 2 · 1.5 = 0.5

f (P12) = f (2, 3) = 2 − 2 · 3 = −4

f (P22) = f (2.5, 2.5) = 2.5 − 2 · 2.5 = −2.5

f (P32) = f (4, 3) = 4 − 2 · 3 = −2

�A = 1, hence

S32 =
3∑

i=1

2∑
j=1

f
(
Pij

)
�A = −1.5 + 0 + 0.5 − 4 − 2.5 − 2 = −9.5

7. Let R = [0, 1] × [0, 1]. Estimate
∫∫

R
(x + y) dA by computing two different Riemann sums, each with at least six

rectangles.

solution We define the following subrectangles and sample points:

x

y

1

1 
2

1 
2

2 
3

1 
3

1

0
x

y

1

2 
3
1 
3

1

0

P12

P12

P22

P22

P23

P32

P21 P11

P11

P31
P21

P13
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The sample points defined in the two figures are:

(A)

P11 =
(

0, 1
2

)
P21 =

(
1
2 , 1

4

)
P31 = (1, 0)

P12 =
(

1
3 , 3

4

)
P22 =

(
1
2 , 1

)
P32 =

(
5
6 , 3

4

)
(B)

P11 =
(

1
2 , 1

3

)
P21 =

(
3
4 , 1

6

)
P12 =

(
0, 1

2

)
P22 =

(
1, 2

3

)
P13 =

(
1
4 , 5

6

)
P23 =

(
3
4 , 5

6

)
We compute the values of f (x, y) = x + y at the sample points:

(A)

f (P11) = f

(
0,

1

2

)
= 0 + 1

2
= 1

2

f (P21) = f

(
1

2
,

1

4

)
= 1

2
+ 1

4
= 3

4

f (P31) = f (1, 0) = 1 + 0 = 1

f (P12) = f

(
1

3
,

3

4

)
= 1

3
+ 3

4
= 13

12

f (P22) = f

(
1

2
, 1

)
= 1

2
+ 1 = 3

2

f (P32) = f

(
5

6
,

3

4

)
= 5

6
+ 3

4
= 19

12

Each subrectangle has sides of length �x = 1
3 , �y = 1

2 and area �A = �x�y = 1
3 · 1

2 = 1
6 . We obtain the following

Riemann sum:

S32 =
3∑

i=1

2∑
j=1

f
(
Pij

)
�A = 1

6

(
1

2
+ 3

4
+ 1 + 13

12
+ 3

2
+ 19

12

)
= 77

72
≈ 1.069

(B)

f (P11) = f

(
1

2
,

1

3

)
= 1

2
+ 1

3
= 5

6

f (P21) = f

(
3

4
,

1

6

)
= 3

4
+ 1

6
= 11

12

f (P12) = f

(
0,

1

2

)
= 0 + 1

2
= 1

2

f (P22) = f

(
1,

2

3

)
= 1 + 2

3
= 5

3

f (P13) = f

(
1

4
,

5

6

)
= 1

4
+ 5

6
= 13

12

f (P23) = f

(
3

4
,

5

6

)
= 3

4
+ 5

6
= 19

12

Each subrectangle has sides of length �x = 1
2 , �y = 1

3 and area �A = �x�y = 1
2 · 1

3 = 1
6 . We obtain the following

Riemann sum:

S23 =
3∑

i=1

2∑
j=1

f
(
Pij

)
�A = 1

6

(
5

6
+ 11

12
+ 1

2
+ 5

3
+ 13

12
+ 19

12

)
= 79

72
≈ 1.097

8. Evaluate
∫∫

R
4 dA, where R = [2, 5] × [4, 7].

solution The double integral is the volume of the box of base R and height 4. That is,∫∫
R

4 dA = 4 · Area(R) (1)
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The rectangle R has sides of length 5 − 2 = 3 and 7 − 4 = 3, therefore its area is 3 · 3 = 9. Hence, by (1) we get∫∫
R

4 dA = 4 · 9 = 36

9. Evaluate
∫∫

R
(15 − 3x) dA, where R = [0, 5] × [0, 3], and sketch the corresponding solid region (see Example 2).

solution This double integral is the volume V of the solid wedge underneath the graph of f (x, y) = 15 − 3x. The
triangular face of the wedge has area

A = 1

2
· 5 · 15 = 75

2

The volume of the wedge is equal to the area A times the length � = 3; that is

V = �A = 3

(
75

2

)
= 225

2

10. Evaluate
∫∫

R
(−5) dA, where R = [2, 5] × [4, 7].

solution The double integral is the signed volume of the box of base R and height −5. That is,∫∫
R

(−5) dA = −5 · Area(R) = −5 · (5 − 2) · (7 − 4) = −5 · 9 = −45

11. The following table gives the approximate height at quarter-meter intervals of a mound of gravel. Estimate the volume
of the mound by computing the average of the two Riemann sums S4,3 with lower-left and upper-right vertices of the
subrectangles as sample points.

0.75 0.1 0.2 0.2 0.15 0.1
0.5 0.2 0.3 0.5 0.4 0.2
0.25 0.15 0.2 0.4 0.3 0.2
0 0.1 0.15 0.2 0.15 0.1

y
x 0 0.25 0.5 0.75 1

solution Each subrectangle is a square of side 0.25, hence the area of each subrectangle is �A = 0.252 = 0.0625.
By the given data, the lower-left vertex sample points are:

f (P11) = f (0, 0) f (P12) = f (0, 0.25) f (P13) = f (0, 0.50)

f (P21) = f (0.25, 0) f (P22) = f (0.25, 0.25) f (P23) = f (0.25, 0.50)

f (P31) = f (0.50, 0) f (P32) = f (0.50, 0.25) f (P33) = f (0.50, 0.50)

f (P41) = f (0.75, 0) f (P42) = f (0.75, 0.25) f (P43) = f (0.75, 0.50)

The Riemann sum S4,3 that corresponds to these lower-left vertex sample points is the following sum:

S4,3 =
4∑

i=1

3∑
j=1

f
(
Pij

)
�A

= 0.0625(0.1 + 0.15 + 0.2 + 0.15 + 0.2 + 0.3 + 0.2 + 0.4 + 0.5 + 0.15 + 0.3 + 0.4) ≈ 0.190625

Now by the given data, the upper-right vertex sample points are:

f (P11) = f (0.25, 0.25) f (P12) = f (0.25, 0.50) f (P13) = f (0.25, 0.75)

f (P21) = f (0.50, 0.25) f (P22) = f (0.50, 0.50) f (P23) = f (0.50, 0.75)

f (P31) = f (0.75, 0.25) f (P32) = f (0.75, 0.50) f (P33) = f (0.75, 0.75)

f (P41) = f (1, 0.25) f (P42) = f (1, 0.50) f (P43) = f (1, 0.75)

The Riemann sum S′
43 that corresponds to these upper-right vertex sample points is the following sum:

S′
4,3 =

4∑
i=1

3∑
j=1

f
(
Pij

)
�A

= 0.0625(0.2 + 0.3 + 0.2 + 0.4 + 0.5 + 0.2 + 0.3 + 0.4 + 0.15 + 0.2 + 0.2 + 0.1) ≈ 0.196875

Taking the average of the two Riemann sums we have:

volume ≈ S4,3 + S′
4,3

2
= 0.190625 + 0.196875

2
= 0.19375
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12. Use the following table to compute a Riemann sum S3,3 for f (x, y) on the square R = [0, 1.5] × [0.5, 2]. Use the
regular partition and sample points of your choosing.

Values of f (x, y)

2 2.6 2.17 1.86 1.62 1.44
1.5 2.2 1.83 1.57 1.37 1.22
1 1.8 1.5 1.29 1.12 1
0.5 1.4 1.17 1 0.87 0.78
0 1 0.83 0.71 0.62 0.56

y
x 0 0.5 1 1.5 2

solution The subrectangles and our choice of sample points are shown in the figure:

y

x
1 20.5 1.5

1

2

0.5

1.5

0

P21

P23P13 P33

P12

P31P11

P22
P32

Each subrectangle is a square of side 0.5, hence the area of each subrectangle is �A = 0.52 = 0.25. By the given data,
the sample points are:

f (P11) = f (0.5, 1)

f (P21) = f (1, 0.5)

f (P31) = f (1.5, 1)

f (P12) = f (0, 1.5)

f (P22) = f (1, 1.5)

f (P32) = f (1, 1)

f (P13) = f (0.5, 2)

f (P23) = f (1, 2)

f (P33) = f (1.5, 2)

The Riemann sum S33 that corresponds to these sample points is the following sum:

S33 =
3∑

i=1

3∑
j=1

f
(
Pij

)
�A = 0.25(1.5 + 1 + 1.12 + 2.2 + 1.57 + 1.29 + 2.17 + 1.86 + 1.62) ≈ 3.58

13. Let SN,N be the Riemann sum for
∫ 1

0

∫ 1

0
ex3−y3

dy dx using the regular partition and the lower left-hand

vertex of each subrectangle as sample points. Use a computer algebra system to calculate SN,N for N = 25, 50, 100.

solution Using a computer algebra system, we compute SN,N to be 1.0731, 1.0783, and 1.0809.

14. Let SN,M be the Riemann sum for

∫ 4

0

∫ 2

0
ln(1 + x2 + y2) dy dx

using the regular partition and the upper right-hand vertex of each subrectangle as sample points. Use a computer algebra
system to calculate S2N,N for N = 25, 50, 100.

solution Using a computer algebra system, we compute S2N,N to be 14.632, 14.486, and 14.413.

In Exercises 15–18, use symmetry to evaluate the double integral.

15.
∫∫

R
x3 dA, R = [−4, 4] × [0, 5]

solution The double integral is the signed volume of the region between the graph of f (x, y) = x3 and the xy-plane.
However, f (x, y) takes opposite values at (x, y) and (−x, y):

f (−x, y) = (−x)3 = −x3 = −f (x, y)
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Because of symmetry, the (negative) signed volume of the region below the xy-plane where −4 ≤ x ≤ 0 cancels with
the (positive) signed volume of the region above the xy-plane where 0 ≤ x ≤ 4. The net result is∫∫

R
x3 dA = 0

16.
∫∫

R
1 dA, R = [2, 4] × [−7, 7]

solution This double integral is the signed volume of the region below the graph of f (x, y) = 1 (which is a
plane at height 1). We can view this integral as the volume of the rectangular box having height 1 over the rectangle
R = [2, 4] × [−7, 7]. The area of this rectangle is

A = (4 − 2)(7 − (−7)) = 2 · 14 = 28

Therefore, the volume of the rectangular box is∫∫
R

1 dA = 1(28) = 28

17.
∫∫

R
sin x dA, R = [0, 2π ] × [0, 2π ]

solution Since sin(π + x) = − sin x, the region between the graph and the xy-plane where π ≤ x ≤ 2π , is below
the xy-plane, and it cancels with the region above the xy-plane where 0 ≤ x ≤ π . Hence,∫∫

R
sin x dA = 0

18.
∫∫

R
(2 + x2y) dA, R = [0, 1] × [−1, 1]

solution By additivity of the Double Integral, we have

∫∫
R

(
2 + x2y

)
dA =

∫∫
R

2 dA +
∫∫

R
x2y dA (1)

We consider each of the two integrals on the right-hand side:∫∫
R

2 dA =
∫∫

R
2 · Area(R) = 2 · 1 · 2 = 4 (2)

The function f (x, y) = x2y satisfies f (x, −y) = −f (x, y). Since the double integral is the signed volume of the region
between the graph and the xy-plane, the region below the xy-plane (where −1 ≤ y ≤ 0) cancels with the region above
the xy-plane (where 0 ≤ y ≤ 1). Thus, ∫∫

R
x2y dA = 0 (3)

Combining (1), (2), and (3), we obtain ∫∫
R

(
2 + x2y

)
dA = 4 + 0 = 4

In Exercises 19–36, evaluate the iterated integral.

19.
∫ 3

1

∫ 2

0
x3y dy dx

solution We first compute the inner integral, treating x as a constant, then integrate the result with respect to x:

∫ 3

1

∫ 2

0
x3y dy dx =

∫ 3

1
x3 y2

2

∣∣∣∣2
y=0

dx =
∫ 3

1
x3

(
22

2
− 0

)
dx =

∫ 3

1
2x3 dx = x4

2

∣∣∣∣3
1

= 40
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20.
∫ 2

0

∫ 3

1
x3y dx dy

solution ∫ 2

0

∫ 3

1
x3y dxdy =

∫ 2

0
x3

(∫ 3

1
y dy

)
dx

=
∫ 2

0
x3

(
y2

2

∣∣∣∣3
1

)
dy

= 4
∫ 2

0
x3 dx

= 4 · x4

4

∣∣∣∣2
0

= 16

21.
∫ 9

4

∫ 8

−3
1 dx dy

solution ∫ 9

4

∫ 8

−3
1 dxdy =

∫ 9

4
1

(∫ 8

−3
1 dy

)
dx

=
∫ 9

4
1

(
y

∣∣∣∣8−3

)
dx

=
∫ 9

4
11 dx

= 11x

∣∣∣∣9
4

= 99 − 44 = 55

22.
∫ −1

−4

∫ 8

4
(−5) dx dy

solution ∫ −1

−4

∫ 8

4
(−5) dx dy =

∫ 1

−4

(∫ 8

4
(−5) dx

)
dy

=
∫ −1

−4

(
−5x

∣∣∣∣8
4

)
dy

=
∫ −1

−4
(−40 + 20) dy

=
∫ −1

−4
(−20) dy

= −20y

∣∣∣∣−1

−4

= 20 − (80) = −60

23.
∫ 1

−1

∫ π

0
x2 sin y dy dx

solution We first evaluate the inner integral, treating x as a constant, then integrate the result with respect to x. This
gives ∫ 1

−1

∫ π

0
x2 sin y dy dx =

∫ 1

−1
x2(− cos y)

∣∣∣∣π
y=0

dx =
∫ 1

−1
x2(− cos π + cos 0) dx

=
∫ 1

−1
x2(1 + 1) dx =

∫ 1

−1
2x2 dx = 2

3
x3
∣∣∣∣1−1

= 2

3

(
13 − (−1)3

)
= 4

3
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24.
∫ 1

−1

∫ π

0
x2 sin y dx dy

solution

∫ 1

−1

∫ π

0
x2 sin y dx dy =

∫ 1

−1
sin y

(∫ π

0
x2 dx

)
dy

=
∫ 1

−1
sin y

(
x3

3

∣∣∣∣π
0

)
dy

= π3

3

∫ 1

−1
sin y dy

= π3

3

(
− cos y

∣∣∣∣1−1

)

= π3

3
(− cos(1) + cos(−1)) = 0

25.
∫ 6

2

∫ 4

1
x2 dx dy

solution We use Iterated Integral of a Product Function to compute the integral as follows:

∫ 6

2

∫ 4

1
x2 dx dy =

∫ 6

2

∫ 4

1
x2 · 1 dx dy =

(∫ 4

1
x2 dx

)(∫ 6

2
1 dy

)
=
(

x3

3

∣∣∣∣4
1

)(
y

∣∣∣∣6
2

)

=
(

43

3
− 13

3

)
(6 − 2) = 21 · 4 = 84

26.
∫ 6

2

∫ 4

1
y2 dx dy

solution Since the integrand is a product f (x, y) = y2 · 1 we can compute the double integral as a product of integrals.
That is,

∫ 6

2

∫ 4

1
y2 dx dy =

(∫ 6

2
y2 dy

)(∫ 4

1
1 dx

)
=
(

y3

3

∣∣∣∣6
2

)(
x

∣∣∣∣4
1

)
=
(

63

3
− 23

3

)
(4 − 1) = 208

3
· 3 = 208

27.
∫ 1

0

∫ 2

0
(x + 4y3) dx dy

solution We use additivity of the double integral to write

∫ 1

0

∫ 2

0

(
x + 4y3

)
dx dy =

∫ 1

0

∫ 2

0
x dx dy +

∫ 1

0

∫ 2

0
4y3 dx dy (1)

We now compute each of the double integrals using product of iterated integrals:

∫ 1

0

∫ 2

0
x dx dy =

(∫ 2

0
x dx

)(∫ 1

0
1 dy

)
=
(

1

2
x2
∣∣∣∣2
0

)(
y

∣∣∣∣1
0

)
= 2 · 1 = 2

∫ 1

0

∫ 2

0
4y3 dx dy =

(∫ 1

0
4y3 dy

)(∫ 2

0
1 dx

)
=
(

y4
∣∣∣∣1
0

)(
x

∣∣∣∣2
0

)
= 1 · 2 = 2

Substituting in (1) gives

∫ 1

0

∫ 2

0
(x + 4y3) dx dy = 2 + 2 = 4.
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28.
∫ 2

0

∫ 2

0
(x2 − y2) dy dx

solution We first use additivity of the double integral to rewrite the integral as the sum of two double integrals. Then
we compute each of the resulting integrals as product of iterated integral. We obtain∫ 2

0

∫ 2

0

(
x2 − y2

)
dy dx =

∫ 2

0

∫ 2

0
x2 dy dx −

∫ 2

0

∫ 2

0
y2 dy dx

=
(∫ 2

0
x2 dx

)(∫ 2

0
1 dy

)
−
(∫ 2

0
y2 dy

)(∫ 2

0
1 dx

)
= 0

29.
∫ 4

0

∫ 9

0

√
x + 4y dx dy

solution We compute the inner integral, treating y as a constant. Then we evaluate the resulting integral with respect
to y: ∫ 4

0

∫ 9

0

√
x + 4y dx dy =

∫ 4

0

2

3
(x + 4y)3/2

∣∣∣∣9
x=0

dy =
∫ 4

0

2

3

(
(9 + 4y)3/2 − (4y)3/2

)
dy

= 2

3

(
2

5 · 4
(9 + 4y)5/2 − 2

5 · 4
(4y)5/2

) ∣∣∣∣4
0

= 1

15
(55 − 45) − 1

15
(35 − 0) ≈ 123.8667

30.
∫ π/4

0

∫ π/2

π/4
cos(2x + y) dy dx

solution

∫ π/4

0

∫ π/2

π/4
cos(2x + y) dy dx =

∫ π/4

0

(
sin(2x + y)

∣∣∣∣π/2

π/4

)
dx

=
∫ π/4

0
sin

(
2x + π

2

)
− sin

(
2x + π

4

)
dx

= 1

2

(
− cos

(
2x + π

2

)
+ cos

(
2x + π

4

)) ∣∣∣∣π/4

0

= 1

2

(
− cos π + cos

3π

4
+ cos

π

2
− cos

π

4

)

= 1

2

(
1 − 1√

2
+ 0 − 1√

2

)
= 1

2
− 1√

2

31.
∫ 2

1

∫ 4

0

dy dx

x + y

solution The inner integral is an iterated integral with respect to y. We evaluate it first and then compute the resulting
integral with respect to x. This gives

∫ 2

1

∫ 4

0

dy dx

x + y
=
∫ 2

1

(∫ 4

0

dy

x + y

)
dx =

∫ 2

1
ln(x + y)

∣∣∣∣4
y=0

dx =
∫ 2

1
(ln(x + 4) − ln x) dx

We use the integral formula: ∫
ln(x + a) dx = (x + a) (ln(x + a) − 1) + C

We get ∫ 2

1

∫ 4

0

dy dx

x + y
= (x + 4) (ln(x + 4) − 1) − x(ln x − 1)

∣∣∣∣2
1

= 6(ln 6 − 1) − 2(ln 2 − 1) − (5(ln 5 − 1) − (ln 1 − 1))

= 6 ln 6 − 2 ln 2 − 5 ln 5 ≈ 1.31
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32.
∫ 2

1

∫ 4

2
e3x−y dy dx

solution

∫ 2

1

∫ 4

2
e3x−y dy dx =

∫ 2

1

∫ 4

2
e3x · e−y dy dx

=
∫ 2

1
e3x dx ·

∫ 4

2
e−y dy

=
(

1

3
e3x

∣∣∣∣2
1

)
·
(

−e−y

∣∣∣∣4
2

)

= e6 − e3

3
· (e−2 − e−4) ≈ 14.953

33.
∫ 4

0

∫ 5

0

dy dx√
x + y

solution

∫ 4

0

∫ 5

0

dy dx√
x + y

=
∫ 4

0

(∫ 5

0

dy√
x + y

)
dx

=
∫ 4

0

(
2
√

x + y

∣∣∣∣5
y=0

)
dx

= 2
∫ 4

0
(
√

x + 5 − √
x) dx

= 2

(
2

3
(x + 5)3/2 − 2

3
x3/2

) ∣∣∣∣4
0

= 2

(
2

3
· 27 − 2

3
· 8

)
− 2

(
2

3
· 53/2 − 0

)

= 36 − 32

3
− 20

3

√
5 = 76

3
− 20

3

√
5 ≈ 10.426

34.
∫ 8

0

∫ 2

1

x dx dy√
x2 + y

solution

∫ 8

0

∫ 2

1

x dx dy√
x2 + y

=
∫ 8

0
y

∫ 2

1

(
x dx√
x2 + y

)
dy

=
∫ 8

0

(√
x2 + y

∣∣∣∣2
1

)
dy

=
∫ 8

0
(
√

4 + y − √
1 + y) dy

= 2

3
(4 + y)3/2 − 2

3
(1 + y)3/2

∣∣∣∣8
0

= 2

3
(123/2 − 27) − 2

3
(8 − 1)

= −68

3
+ 16

√
3 ≈ 5.047

35.
∫ 2

1

∫ 3

1

ln(xy) dy dx

y

solution

∫ 2

1

∫ 3

1

ln(xy) dy dx

y
=
∫ 2

1

(
1

2
[ln(xy)]2

∣∣∣∣3
1

)
dx
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= 1

2

∫ 2

1
[ln(3x)]2 − [ln(x)]2 dx

= 1

2

∫ 2

1
[ln(3x)]2 dx − 1

2

∫ 2

1
[ln(x)]2 dx

= 1

2

[
x(ln 3x)2

∣∣∣∣2
1

− 2
∫ 2

1
ln(3x) dx

]
− 1

2

[
x(ln x)2

∣∣∣∣2
1

− 2
∫ 2

1
ln x dx

]

= 1

2

[
2(ln 6)2 − (ln 3)2

]
−
∫ 2

1
ln(3x) dx − 1

2

[
2(ln 2)2 − 0

]
+
∫ 2

1
ln x dx

= (ln 6)2 − 1

2
(ln 3)2 −

[
x ln(3x) − x

∣∣∣∣2
1

]
− (ln 2)2 +

[
x ln x − x

∣∣∣∣2
1

]

= (ln 6)2 − 1

2
(ln 3)2 − (ln 2)2 − (2 ln 6 − 2 − ln 3 + 1) + (2 ln 2 − 2 − 0 + 1)

= (ln 6)2 − 1

2
(ln 3)2 − (ln 2)2 − 2 ln 6 + ln 3 + 1 + 2 ln 2 − 2 + 1

= (ln 6)2 − 1

2
(ln 3)2 − (ln 2)2 − 2 ln 6 + ln 3 + 2 ln 2 ≈ 1.028

36.
∫ 1

0

∫ 3

2

1

(x + 4y)3
dx dy

solution We calculate the inner integral with respect to x, then we compute the resulting integral with respect to y.
This gives

∫ 1

0

∫ 3

2

1

(x + 4y)3
dx dy =

∫ 1

0

(∫ 3

2
(x + 4y)−3 dx

)
dy =

∫ 1

0
−1

2
(x + 4y)−2

∣∣∣∣3
x=2

dy

= −1

2

∫ 1

0

(
(3 + 4y)−2 − (2 + 4y)−2

)
dy = − 1

2 · 4

(
−(3 + 4y)−1 + (2 + 4y)−1

) ∣∣∣∣1
0

= −1

8

(
1

2 + 4y
− 1

3 + 4y

) ∣∣∣∣1
0

= −1

8

((
1

6
− 1

7

)
−
(

1

2
− 1

3

))

= 1

8

(
1

7
− 1

6
+ 1

2
− 1

3

)
= 1

56

In Exercises 37–42, use Eq. (1) to evaluate the integral.

37.
∫∫

R
x

y
dA, R = [−2, 4] × [1, 3]

solution We compute the double integral as the product of two single integrals:

∫∫
R

x

y
dA =

∫ 4

−2

∫ 3

1

x

y
dy dx =

∫ 4

−2
x dx ·

∫ 3

1

1

y
dy

=
(

1

2
x2
∣∣∣∣4−2

)(
ln y

∣∣∣∣3
1

)
= 1

2
(16 − 4) · (ln 3 − ln 1)

= 6 ln 3

38.
∫∫

R
x2y dA, R = [−1, 1] × [0, 2]

solution We compute the double integral as the product of two single integrals:

∫∫
R

x2y dA =
∫ 2

0

∫ 1

−1
x2y dx dy =

(∫ 1

−1
x2 dx

)(∫ 2

0
y dy

)
=
(

1

3
x3
∣∣∣∣1−1

)(
1

2
y2
∣∣∣∣2
0

)
= 2

3
· 1

2
· 4 = 4

3
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39.
∫∫

R
cos x sin 2y dA, R = [

0, π
2

] × [
0, π

2

]
solution Since the integrand has the form f (x, y) = g(x)h(y), we may compute the double integral as the product
of two single integrals. That is,

∫∫
R

cos x sin 2y dA =
∫ π/2

0

∫ π/2

0
cos x sin 2y dx dy =

(∫ π/2

0
cos x dx

)(∫ π/2

0
sin 2y dy

)

=
(

sin x

∣∣∣∣π/2

0

)(
−1

2
cos 2y

∣∣∣∣π/2

0

)
=
(

sin
π

2
− sin 0

)(
−1

2
cos π + 1

2
cos 0

)

= (1 − 0)

(
1

2
+ 1

2

)
= 1

40.
∫∫

R
y

x + 1
dA, R = [0, 2] × [0, 4]

solution We evaluate the integral as the product of two single integrals. This can be done since the function has the
form f (x, y) = g(x)h(y).∫∫

R
y

x + 1
dA =

∫ 4

0

∫ 2

0

y

x + 1
dx dy =

(∫ 2

0

dx

x + 1

)(∫ 4

0
y dy

)

=
(

ln(x + 1)

∣∣∣∣2
0

)(
y2

2

∣∣∣∣4
0

)
= (ln 3 − ln 1)

(
42

2
− 02

2

)
= 8 ln 3 ≈ 8.79

41.
∫∫

R
ex sin y dA, R = [0, 2] × [

0, π
4

]
solution We compute the double integral as the product of two single integrals. This can be done since the integrand
has the form f (x, y) = g(x)h(y). We get

∫∫
R

ex sin y dA =
∫ π/4

0

∫ 2

0
ex sin y dx dy =

(∫ 2

0
ex dx

)(∫ π/4

0
sin y dy

)

=
(

ex

∣∣∣∣2
0

)(
− cos y

∣∣∣∣π/4

0

)
=
(
e2 − e0

) (
− cos

π

4
+ cos 0

)
=
(
e2 − 1

)(
1 −

√
2

2

)
≈ 1.87

42.
∫∫

R
e3x+4y dA, R = [0, 1] × [1, 2]

solution We can compute this double integral as the product of two single integrals:

∫∫
R

e3x+4y dA =
∫ 1

0

∫ 2

1
e3x+4y dy dx =

∫ 1

0

∫ 2

1
e3x e4y dy dx

=
∫ 1

0
e3x dx ·

∫ 2

1
e4y dy =

(
1

3
e3x

∣∣∣∣1
0

)(
1

4
e4y

∣∣∣∣2
1

)

= 1

3
(e3 − 1) · 1

4
(e8 − e1) = 1

12
(e3 − 1)(e8 − e)

43. Let f (x, y) = mxy2, where m is a constant. Find a value of m such that
∫∫

R
f (x, y) dA = 1, where R =

[0, 1] × [0, 2].
solution Since f (x, y) = mxy2 is a product of a function of x and a function of y, we may compute the double
integral as the product of two single integrals. That is,

∫ 2

0

∫ 1

0
mxy2 dx dy = m

(∫ 1

0
x dx

)(∫ 2

0
y2 dy

)
(1)

We compute each integral: ∫ 1

0
x dx = 1

2
x2
∣∣∣∣1
0

= 1

2

(
12 − 02

)
= 1

2∫ 2

0
y2 dy = 1

3
y3
∣∣∣∣2
0

= 1

3

(
23 − 03

)
= 8

3
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We substitute in (1), equate to 1 and solve the resulting equation for m. This gives

m · 1

2
· 8

3
= 1 ⇒ m = 3

4

44. Evaluate I =
∫ 3

1

∫ 1

0
yexy dy dx. You will need Integration by Parts and the formula

∫
ex(x−1 − x−2) dx = x−1ex + C

Then evaluate I again using Fubini’s Theorem to change the order of integration (that is, integrate first with respect to x).
Which method is easier?

solution We evaluate the inner integral with respect to y. Using integration by parts with dv = exy dy, u = y we
obtain ∫

yexy dy = y

x
exy −

∫
1

x
exy dy = y

x
exy − 1

x
· 1

x
exy + C = exy

x

(
y − 1

x

)
+ C

Hence,

∫ 1

0
yexy dy = exy

x

(
y − 1

x

) ∣∣∣∣1
y=0

= ex

x

(
1 − 1

x

)
− 1

x

(
0 − 1

x

)
= ex

(
x−1 − x−2

)
+ x−2

We now integrate the result with respect to x, using the given integration formula:

∫ 3

1

(
ex

(
x−1 − x−2

)
+ x−2

)
dx =

∫ 3

1
ex

(
x−1 − x−2

)
dx +

∫ 3

1
x−2 dx = x−1ex

∣∣∣∣3
1

− x−1
∣∣∣∣3
1

= e3

3
− e −

(
1

3
− 1

)
= e3

3
− e + 2

3
≈ 4.644

The double integral is thus

∫ 3

1

∫ 1

0
yexy dy dx =

∫ 3

1

(∫ 1

0
yexy dy

)
dx ≈ 4.644

Using Fubini’s Theorem, we now evaluate the double integral first with respect to x and then with respect to y (keeping
the corresponding limits of integration). We obtain

∫ 3

1

∫ 1

0
yexy dy dx =

∫ 1

0

∫ 3

1
yexy dx dy =

∫ 1

0

(∫ 3

1
yexy dx

)
dy =

∫ 1

0

(
y

y
exy

∣∣∣∣3
x=1

)
dy

=
∫ 1

0

(
e3y − ey

)
dy = 1

3
e3y − ey

∣∣∣∣1
0

=
(

1

3
e3 − e

)
−
(

1

3
e0 − e0

)

= 1

3
e3 − e −

(
1

3
− 1

)
= 1

3
e3 − e + 2

3
≈ 4.644

Obviously, integrating first with respect to x and then with respect to y makes the computation much easier than using
the reversed order.

45. Evaluate
∫ 1

0

∫ 1

0

y

1 + xy
dy dx. Hint: Change the order of integration.

solution Using Fubini’s Theorem we change the order of integration, integrating first with respect to x and then with
respect to y. This gives

∫ 1

0

∫ 1

0

y

1 + xy
dy dx =

∫ 1

0

(∫ 1

0

y

1 + xy
dx

)
dy =

∫ 1

0

(
y

∫ 1

0

dx

1 + xy

)
dy =

∫ 1

0
y · 1

y
ln(1 + xy)

∣∣∣∣1
x=0

dy

=
∫ 1

0
(ln(1 + y) − ln 1) dy =

∫ 1

0
ln(1 + y) dy = (1 + y) (ln(1 + y) − 1)

∣∣∣∣1
y=0

= 2(ln 2 − 1) − (ln 1 − 1) = 2 ln 2 − 1 ≈ 0.386
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46. Calculate a Riemann sum S3,3 on the square R = [0, 3] × [0, 3] for the function f (x, y) whose contour plot is shown
in Figure 17. Choose sample points and use the plot to find the values of f (x, y) at these points.

2
3

4
5

x

y

0 1 2 3

1

2

3

FIGURE 17 Contour plot of f (x, y).

solution Each subrectangle is a square of side length 1, hence its area is �A = 12 = 1. We choose the sample points
shown in the figure. The contour plot shows the following values of f at the sample points:

f (P11) = 2 f (P21) = 3 f (P31) = 4
f (P12) = 3 f (P22) = 4 f (P32) = 7
f (P13) = 5 f (P23) = 6 f (P33) = 10

The Riemann sum S33 is thus

S33 =
3∑

i=1

3∑
j=1

f
(
Pij

)
�A =

3∑
i=1

3∑
j=1

f
(
Pij

) · 1 = 2 + 3 + 4 + 3 + 4 + 7 + 5 + 6 + 10 = 44

47. Using Fubini’s Theorem, argue that the solid in Figure 18 has volume AL, where A is the area of the front
face of the solid.

z

x

y
ASide of area A

L

FIGURE 18

solution We denote by M the length of the other side of the rectangle in the basis of the solid. The volume of the solid
is the double integral of the function f (x, y) = g(x) over the rectangle

R = [0, M] × [0, L]

V =
∫∫

R
g(x) dA.

0

z

y

x

A

O

M

L

z = g(x)

We use Fubini’s Theorem to write the double integral as iterated integral, and then compute the resulting integral as the
product of two single integrals. This gives

V =
∫∫

R
g(x) dA =

∫ L

0

∫ M

0
g(x) dx dy =

(∫ M

0
g(x) dx

)(∫ L

0
1 dy

)
=
(∫ M

0
g(x) dx

)
· L (1)

The integral
∫M

0 g(x)dx is the area A of the region under the graph of z = g(x) over the interval 0 ≤ x ≤ M . Substituting
in (1) gives the following volume of the solid:

V =
(∫ M

0
g(x)dx

)
· L = AL
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Further Insights and Challenges

48. Prove the following extension of the Fundamental Theorem of Calculus to two variables: If
∂2F

∂x ∂y
= f (x, y), then

∫∫
R

f (x, y) dA = F(b, d) − F(a, d) − F(b, c) + F(a, c)

where R = [a, b] × [c, d].
solution By Fubini’s Theorem we get

∫∫
R

f (x, y) dx =
∫ d

c

∫ b

a

∂2F

∂x ∂y
dx dy =

∫ d

c

(∫ b

a

∂

∂x

(
∂F

∂y

)
dx

)
dy (1)

In the inner integral, y is considered as constant. Therefore, by the Fundamental Theorem of calculus (part I) for the
variable x, we have

∫ b

a

∂

∂x

(
∂F

∂y

)
dx = ∂F

∂y

∣∣∣∣
x=b

− ∂F

∂y

∣∣∣∣
x=a

= ∂F

∂y
(b, y) − ∂F

∂y
(a, y)

We substitute in (1), use additivity of the single integral and use again the Fundamental Theorem, this time for the variable
y. This gives

∫∫
R

f (x, y) dx =
∫ d

c

(
∂F

∂y
(b, y) − ∂F

∂y
(a, y)

)
dy =

∫ d

c

∂F

∂y
(b, y) dy −

∫ d

c

∂F

∂y
(a, y) dy

=
(

F(b, y)

∣∣∣∣
y=d

− F(b, y)

∣∣∣∣
y=c

)
−
(

F(a, y)

∣∣∣∣
y=d

− F(a, y)

∣∣∣∣
y=c

)

= F(b, d) − F(b, c) − F(a, d) + F(a, c)

49. Let F(x, y) = x−1exy . Show that
∂2F

∂x ∂y
= yexy and use the result of Exercise 48 to evaluate

∫∫
R

yexy dA for the

rectangle R = [1, 3] × [0, 1].
solution Differentiating F(x, y) = x−1exy with respect to y gives

∂F

∂y
= ∂

∂y

(
x−1exy

)
= x−1xexy = exy

We now differentiate ∂F
∂y

with respect to x:

∂2F

∂x ∂y
= ∂

∂x

(
exy

) = yexy

In Exercise 48 we showed that∫ d

c

∫ b

a

∂2F

∂x ∂y
dx dy = F(b, d) − F(b, c) − F(a, d) + F(a, c)

Therefore, for F(x, y) = x−1exy = exy

x we obtain

∫∫
R

yexy dA =
∫ 1

0

∫ 3

1
yexy dx dy = F(3, 1) − F(3, 0) − F(1, 1) + F(1, 0)

= e3

3
− e0

3
− e1

1
+ e0

1
= e3

3
− 1

3
− e + 1 = 4.644

50. Find a function F(x, y) satisfying
∂2F

∂x ∂y
= 6x2y and use the result of Exercise 48 to evaluate

∫∫
R

6x2y dA for the

rectangle R = [0, 1] × [0, 4].
solution We integrate ∂2F

∂x∂y
with respect to x, taking zero as the constant of integration. We get ∂F

∂y
= 6y x3

3 = 2yx3.
We now integrate with respect to y, obtaining

F(x, y) = 2 · y2

2
x3 = y2x3
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In Exercise 48 we showed that∫ d

c

∫ b

a

∂2F

∂x ∂y
dx dy = F(b, d) − F(b, c) − F(a, d) + F(a, c)

For F(x, y) = y2x3 we get

∫∫
R

6x2y dA =
∫ 4

0

∫ 1

0
6x2y dx dy = F(1, 4) − F(1, 0) − F(0, 4) + F(0, 0) = 42 · 13 − 0 − 0 + 0 = 16

51. In this exercise, we use double integration to evaluate the following improper integral for a > 0 a positive constant:

I (a) =
∫ ∞

0

e−x − e−ax

x
dx

(a) Use L’Hôpital’s Rule to show that f (x) = e−x − e−ax

x
, though not defined at x = 0, can be made continuous by

assigning the value f (0) = a − 1.

(b) Prove that |f (x)| ≤ e−x + e−ax for x > 1 (use the triangle inequality), and apply the Comparison Theorem to show
that I (a) converges.

(c) Show that I (a) =
∫ ∞

0

∫ a

1
e−xy dy dx.

(d) Prove, by interchanging the order of integration, that

I (a) = ln a − lim
T →∞

∫ a

1

e−Ty

y
dy 2

(e) Use the Comparison Theorem to show that the limit in Eq. (2) is zero. Hint: If a ≥ 1, show that e−Ty/y ≤ e−T for
y ≥ 1, and if a < 1, show that e−Ty/y ≤ e−aT /a for a ≤ y ≤ 1. Conclude that I (a) = ln a (Figure 19).

4

x

y

1 2

y = e−x − e−5x

x

FIGURE 19 The shaded region has area ln 5.

solution

(a) The function f (x) = e−x−e−ax

x , f (0) = a − 1 is continuous if limx→0 f (x) = f (0) = a − 1. We verify this limit
using L’Hôpital’s Rule:

lim
x→0

e−x − e−ax

x
= lim

x→0

−e−x + ae−ax

1
= −1 + a = a − 1

Therefore, f is continuous.

(b) We now show that the following integral converges:

I (a) =
∫ ∞

0

e−x − e−ax

x
dx (a > 0)

Since e−x − e−ax < e−x + e−ax then also e−x−e−ax

x < e−x+e−ax

x for x > 0. Therefore, if x > 1 we have

e−x − e−ax

x
<

e−x + e−ax

x
< e−x + e−ax

That is, for x > 1,

f (x) < e−x + e−ax (1)

Also, since e−ax − e−x < e−ax + e−x we have for x > 1,

e−ax − e−x

x
<

e−ax + e−x

x
< e−ax + e−x

Thus, we get

−f (x) < e−x + e−ax (2)
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Together with (1) we have

0 ≤ |f (x)| < e−x + e−ax (3)

We now show that the integral of the right hand-side converges:

∫ ∞
0

(
e−x + e−ax

)
dx = lim

R→∞

∫ R

0

(
e−x + e−ax

)
dx

= lim
R→∞

(
−e−x − e−ax

a

∣∣∣∣R
x=0

)

= lim
R→∞

(
−e−R − e−aR

a
+ e0 + e0

a

)

= lim
R→∞

(
−e−R − e−aR

a
+ 1 + 1

a

)

= 1 + 1

a

Since the integral converges, we conclude by (3) and the Comparison Test for Improper Integrals that∫ ∞
0

e−x − e−ax

x
dx

also converges for a > 0.

(c) We compute the inner integral with respect to y:∫ a

1
e−xy dy = − 1

x
e−xy

∣∣∣∣a
y=1

= − 1

x

(
e−xa − e−x·1) = e−x − e−xa

x

Therefore, ∫ ∞
0

∫ a

1
e−xy dy dx =

∫ ∞
0

(∫ a

1
e−xy dy

)
dx =

∫ ∞
0

e−x − e−xa

x
dx = I (a)

(d) By the definition of the improper integral,

I (a) = lim
T →∞

∫ T

0

∫ a

1
e−xy dy dx (4)

We compute the double integral. Using Fubini’s Theorem we may compute the iterated integral using reversed order of
integration. That is,

∫ T

0

∫ a

1
e−xy dy dx =

∫ a

1

∫ T

0
e−xy dx dy =

∫ a

1

(∫ T

0
e−xy dx

)
dy =

∫ a

1

(
− 1

y
e−xy

∣∣∣∣T
x=0

)
dy

=
∫ a

1

(
− 1

y

(
e−Ty − e−0·y)) dy =

∫ a

1

1 − e−Ty

y
dy =

∫ a

1

dy

y
−
∫ a

1

e−Ty

y
dy

= ln y

∣∣∣∣a
1

−
∫ a

1

e−Ty

y
dy = ln a − ln 1 −

∫ a

1

e−Ty

y
dy = ln a −

∫ a

1

e−Ty

y
dy

Combining with (4) we get

I (a) = ln a − lim
T →∞

∫ a

1

e−Ty

y
dy (5)

(e) We now show, using the Comparison Theorem, that

lim
T →∞

∫ a

1

e−Ty

y
dy = 0

We consider the following possible cases:

Case 1: a ≥ 1. Then in the interval of integration y ≥ 1. Also since T → ∞, we may assume that T > 0. Thus,

e−Ty

y
≤ e−T ·1

1
= e−T
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Hence,

0 ≤
∫ a

1

e−Ty

y
dy ≤

∫ a

1
e−T dy = e−T (a − 1)

By the limit lim
T →∞ e−T (a − 1) = 0 and the Squeeze Theorem we conclude that,

lim
T →∞

∫ a

1

e−Ty

y
dy = 0

Case 2: 0 < a < 1. Then, ∫ a

1

e−Ty

y
dy = −

∫ 1

a

e−Ty

y
dy

and in the interval of integration a ≤ y ≤ 1, therefore

e−Ty

y
≤ e−T a

a

(the function e−Ty

y is decreasing). Hence,

0 ≤
∫ 1

a

e−Ty

y
dy ≤

∫ 1

a

e−T a

a
dy = (1 − a)

a
e−T a

By the limit lim
T →∞

1−a
a e−T a = 0 and the Squeeze Theorem we conclude also that

lim
T →∞

∫ a

1

e−Ty

y
= − lim

T →∞

∫ 1

a

e−Ty

y
= 0

We thus showed that for all a > 0, lim
T →∞

∫ a

1

e−Ty

y
= 0. Combining with Eq. (5) obtained in part (c), we find that

I (a) = ln a.

15.2 Double Integrals over More General Regions (LT Section 16.2)

Preliminary Questions
1. .Which of the following expressions do not make sense?

(a)
∫ 1

0

∫ x

1
f (x, y) dy dx (b)

∫ 1

0

∫ y

1
f (x, y) dy dx

(c)
∫ 1

0

∫ y

x
f (x, y) dy dx (d)

∫ 1

0

∫ 1

x
f (x, y) dy dx

solution
(a) This integral is the following iterated integral:∫ 1

0

∫ x

1
f (x, y) dy dx =

∫ 1

0

(∫ x

1
f (x, y) dy

)
dx

The inner integral is a function of x and it is integrated with respect to x over the interval 0 ≤ x ≤ 1. The result is a
number. This integral makes sense.

(b) This integral is the same as ∫ 1

0

∫ y

1
f (x, y) dy dx =

∫ 1

0

(∫ y

1
f (x, y) dy

)
dx

The inner integral is an integral with respect to y, over the interval [1, y]. This does not make sense.

(c) This integral is the following iterated integral:∫ 1

0

(∫ y

x
f (x, y)

)
dy dx

The inner integral is a function of x and y and it is integrated with respect to y over the interval x ≤ y ≤ y. This does not
make sense.
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(d) This integral is the following iterated integral:

∫ 1

0

(∫ 1

x
f (x, y) dy

)
dx

The inner integral is a function of x and it is integrated with respect to x. This makes sense.

2. Draw a domain in the plane that is neither vertically nor horizontally simple.

solution The following region cannot be described in the form {a ≤ x ≤ b, α(x) ≤ y ≤ β(x)} nor in the form
{c ≤ y ≤ d, α(y) ≤ x ≤ β(y)}, hence it is neither vertically nor horizontally simple.

y

x

3. Which of the four regions in Figure 18 is the domain of integration for
∫ 0

−√
2/2

∫ √
1−x2

−x
f (x, y) dy dx?

x

y

1-1

/4
A D

B C

FIGURE 18

solution The region B is defined by the inequalities

−x ≤ y ≤
√

1 − x2, −
√

2

2
≤ x ≤ 0

To compute
∫ 0

−√
2/2

∫ √
1−x2

−x
f (x, y) dy dx, we first integrate with respect to y over the interval −x ≤ y ≤

√
1 − x2,

and then with respect to x over −
√

2
2 ≤ x ≤ 0. That is, the domain of integration is B.

y

x

B

-
2
2

y = 1 − x2

y = −x

4. Let D be the unit disk. If the maximum value of f (x, y) on D is 4, then the largest possible value of
∫∫

D
f (x, y) dA

is (choose the correct answer):

(a) 4 (b) 4π (c)
4

π

solution The area of the unit disk is π and the maximum value of f (x, y) on this region is M = 4, therefore we have,

∫∫
D

f (x, y) dx dy ≤ 4π

The correct answer is (b).
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Exercises
1. Calculate the Riemann sum for f (x, y) = x − y and the shaded domain D in Figure 19 with two choices of sample

points, • and ◦. Which do you think is a better approximation to the integral of f over D? Why?

x

y

1 2 3

4

2

3

1

0

FIGURE 19

solution The subrectangles in Figure 17 have sides of length �x = �y = 1 and area �A = 1 · 1 = 1.

(a) Sample points •. There are six sample points that lie in the domain D. We compute the values of f (x, y) = x − y at
these points:

f (1, 1) = 0,

f (2, 1) = 1,

f (1, 2) = −1,

f (2, 2) = 0,

f (1, 3) = −2,

f (2, 3) = −1

The Riemann sum is

S3,4 = (0 − 1 − 2 + 1 + 0 − 1) · 1 = −3

(b) Sample points ◦. We compute the values of f (x, y) = x − y at the eight sample points that lie in D:

f (1.5, 0.5) = 1,

f (1.5, 3.5) = −2,

f (0.5, 1.5) = −1,

f (1.5, 1.5) = 0,

f (2.5, 1.5) = 1,

f (0.5, 2.5) = −2,

f (1.5, 2.5) = −1,

f (2.5, 2.5) = 0.

The corresponding Riemann sum is thus

S34 = (1 − 1 − 2 + 0 − 1 − 2 + 1 + 0) · 1 = −4.

2. Approximate values of f (x, y) at sample points on a grid are given in Figure 20. Estimate
∫∫

D
f (x, y) dx dy for

the shaded domain by computing the Riemann sum with the given sample points.

x
1

1

−1.5

3.3

3.23.23.1

3.5
3.5

3.5

3.6

3.6

3.9

2.9

3

3

3

2

2.32.7

2.5 4.1

4

y

FIGURE 20

solution The subrectangles have sides of length �x = 0.5 and �y = 0.25, so the area is �A = 0.5 · 0.25 = 0.125.
Only nine of the sample points lie in D, hence the corresponding Riemann sum is

S5,4 = (2.5 + 3.3 + 2 + 2.3 + 3 + 3 + 2.9 + 3.5 + 3.5) · 0.125 = 3.25

3. Express the domain D in Figure 21 as both a vertically simple region and a horizontally simple region, and evaluate
the integral of f (x, y) = xy over D as an iterated integral in two ways.

x

y = 1 − x2

y

1

1

FIGURE 21
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solution The domain D can be described as a vertically simple region as follows:

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x2 (1)

Vertically simple region

x

y = 1 − x2

0 ≤ y ≤ 1 − x2

x = 0
y

1

1

x = 1

D

The domain D can also be described as a horizontally simple region. To do this, we must express x in terms of y, for
nonnegative values of x. This gives

y = 1 − x2 ⇒ x2 = 1 − y ⇒ x = √
1 − y

Horizontally simple region

x

x = 1 − y

0 ≤ x ≤ 1 − y

y = 0

y = 1

y

1

1

D

Therefore, we can describe D by the following inequalities:

0 ≤ y ≤ 1, 0 ≤ x ≤ √
1 − y (2)

We now compute the integral of f (x, y) = xy over D first using definition (1) and then using definition (2). We obtain

∫∫
D

xy dA =
∫ 1

0

∫ 1−x2

0
xy dy dx =

∫ 1

0

xy2

2

∣∣∣∣1−x2

y=0
dx =

∫ 1

0

x

2

(
(1 − x2)

2 − 02
)

dx =
∫ 1

0

x(1 − x2)
2

2
dx

= 1

2

∫ 1

0
(x − 2x3 + x5) dx = 1

2

(
x2

2
− x4

2
+ x6

6

) ∣∣∣∣1
0

= 1

2

(
1

2
− 1

2
+ 1

6

)
= 1

12

Using definition (2) gives

∫∫
D

xy dA =
∫ 1

0

∫ √
1−y

0
xy dx dy =

∫ 1

0

yx2

2

∣∣∣∣
√

1−y

x=0
dy =

∫ 1

0

y

2

((√
1 − y

)2 − 02
)

dy

=
∫ 1

0

y

2
(1 − y) dy =

∫ 1

0

(
y

2
− y2

2

)
dy = y2

4
− y3

6

∣∣∣∣1
0

= 1

4
− 1

6
= 1

12

The answers agree as expected.

4. Sketch the domain

D : 0 ≤ x ≤ 1, x2 ≤ y ≤ 4 − x2

and evaluate
∫∫

D
y dA as an iterated integral.

solution The domain D is shown in the following figure:

x

x = 1

y = 4 − x2

y = x2

y

1 20
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D is a vertically simple region and the limits of integration are

0 ≤ x ≤ 1︸ ︷︷ ︸
limits of outer

integral

x2 ≤ y ≤ 4 − x2︸ ︷︷ ︸
limits of inner

integral

We follow three steps.

Step 1. Set up the iterated integral. The iterated integral is

∫∫
D

y dA =
∫ 1

0

∫ 4−x2

x2
y dy dx.

Step 2. Evaluate the inner integral. We evaluate the inner integral with respect to y:

∫ 4−x2

x2
y dy = y2

2

∣∣∣∣y=4−x2

y=x2
= 1

2

(
(4 − x2)

2 − (x2)
2) = 1

2
(16 − 8x2 + x4 − x4) = 8 − 4x2

Step 3. Complete the computation. We integrate the resulting function with respect to x:∫∫
D

y dy =
∫ 1

0
(8 − 4x2) dx = 8x − 4

3
x3
∣∣∣∣1
0

= 8 − 4

3
= 20

3
≈ 6.67

In Exercises 5–7, compute the double integral of f (x, y) = x2y over the given shaded domain in Figure 22.

(A)

x
1 2 3 4

y

1
2

(B)

x
1 2 3 4

y

1
2

(C)

x
1 2 3 4

y

1
2

FIGURE 22

5. (A)

solution

x
1 2 3 4

y

1

2

We describe the domain D as a vertically simple region. We find the equation of the line connecting the points (0, 2) and
(4, 0).

y − 0 = 2 − 0

0 − 4
(x − 4) ⇒ y = −1

2
x + 2

Therefore the domain is described as a vertically simple region by the inequalities

0 ≤ x ≤ 4, −1

2
x + 2 ≤ y ≤ 2

We use Theorem 2 to evaluate the double integral:∫∫
D

x2y dA =
∫ 4

0

∫ 2

− x
2 +2

x2y dy dx =
∫ 4

0

x2y2

2

∣∣∣∣2
y=− x

2 +2
dx =

∫ 4

0

x2

2

(
22 −

(
−x

2
+ 2

)2
)

dx

=
∫ 4

0

(
x3 − x4

8

)
dx = x4

4
− x5

40

∣∣∣∣4
0

= 44

4
− 45

40
= 192

5
= 38.4

6. (B)

solution We describe the domain D as a horizontally simple region. We first find the equation of the line connecting
the points (0, 0) and (4, 2).

y = 1

2
x ⇒ x = 2y

Therefore, the domain of integration is described by the following inequalities:

0 ≤ y ≤ 2, 0 ≤ x ≤ 2y
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y

x

1

2

42 31

0 ≤ x ≤ 2y

We use Theorem 2 to evaluate the double integral as follows:

∫∫
D

x2y dA =
∫ 2

0

∫ 2y

0
x2y dx dy =

∫ 2

0

x3y

3

∣∣∣∣2y

x=0
dy =

∫ 2

0

y

3

(
(2y)3 − 03

)
dy =

∫ 2

0

y

3
· 8y3 dy

=
∫ 2

0

8y4

3
dy = 8

15
y5
∣∣∣∣2
0

= 256

15
≈ 17.07

7. (C)

solution The domain in (C) is a horizontally simple region, described by the inequalities

0 ≤ y ≤ 2, y ≤ x ≤ 4

y ≤ x ≤ 4

x =
 y

x
1 2 3 4

y

1

2

Using Theorem 2 we obtain the following integral:

∫∫
D

x2y dA =
∫ 2

0

∫ 4

y
x2y dx dy =

∫ 2

0

x3y

3

∣∣∣∣x=4

x=y

dy =
∫ 2

0

y

3

(
43 − y3

)
dy =

∫ 2

0

(
64y

3
− y4

3

)
dy

= 32

3
y2 − y5

15

∣∣∣∣2
0

= 32 · 22

3
− 25

15
= 608

15
≈ 40.53

8. Sketch the domain D defined by x + y ≤ 12, x ≥ 4, y ≥ 4 and compute
∫∫

D
ex+y dA.

solution The domain D = {(x, y) : x + y ≤ 12, x ≥ 4, y ≥ 4} is shown in the following figure:

x + y = 12

D

y

x

4

4

To compute the integral we described D as a vertically simple region by the following inequalities (see figure):

4 ≤ y ≤ 12 − x

y

x

4

4 8

4 ≤ x ≤ 8, 4 ≤ y ≤ 12 − x
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Using Theorem 2, we obtain the following integral:

∫∫
D

ex+y dA =
∫ 8

4

∫ 12−x

4
ex+y dy dx =

∫ 8

4
ex+y

∣∣∣∣12−x

y=4
dx =

∫ 8

4

(
ex+(12−x) − ex+4

)
dx

=
∫ 8

4

(
e12 − ex+4

)
dx = e12x − ex+4

∣∣∣∣8
4

= 8e12 − e12 −
(

4e12 − e8
)

= 3e12 + e8 ≈ 491245.3

9. Integrate f (x, y) = x over the region bounded by y = x2 and y = x + 2.

solution The domain of integration is shown in the following figure:

y = x + 2

y = x2

x

y

2

4

2−2

To find the inequalities defining the domain as a vertically simple region we first must find the x-coordinates of the two
points where the line y = x + 2 and the parabola y = x2 intersect. That is,

x + 2 = x2 ⇒ x2 − x − 2 = (x − 2)(x + 1) = 0

⇒ x1 = −1, x2 = 2

We describe the domain by the following inequalities:

−1 ≤ x ≤ 2, x2 ≤ y ≤ x + 2

x

y

2

4

2−2

x2 ≤ y ≤ x + 2

We now evaluate the integral of f (x, y) = x over the vertically simple region D:

∫∫
D

x dA =
∫ 2

−1

∫ x+2

x2
x dy dx =

∫ 2

−1
xy

∣∣∣∣x+2

y=x2
dx =

∫ 2

−1
x
(
x + 2 − x2

)
dx

=
∫ 2

−1

(
x2 + 2x − x3

)
dx = x3

3
+ x2 − x4

4

∣∣∣∣2−1
=
(

8

3
+ 4 − 4

)
−
(

−1

3
+ 1 − 1

4

)
= 2

1

4

10. Sketch the region D between y = x2 and y = x(1 − x). Express D as a simple region and calculate the integral of
f (x, y) = 2y over D.

solution The region D between y = x2 and y = x(1 − x) is shown in the following figure:

x

y

y = x2

y = x(1 − x)
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To find the inequalities for the vertically simple region D, we first compute the x-coordinate of the point where the curves
y = x2 and y = x(1 − x) intersect.

x2 = x(1 − x) ⇒ x2 = x − x2

⇒ 2x2 − x = x(2x − 1) = 0

⇒ x1 = 0, x2 = 1

2

The region D is defined by the following inequalities:

0 ≤ x ≤ 1

2
, x2 ≤ y ≤ x(1 − x)

x

y

x2 ≤ y ≤ x(1 − x)

1 
2

The double integral of f over D is computed using Theorem 2. That is,

∫∫
D

2y dA =
∫ 1/2

0

∫ x(1−x)

x2
2y dy dx =

∫ 1/2

0
y2
∣∣∣∣y=x(1−x)

y=x2
dx =

∫ 1/2

0
x2(1 − x)2 − x4 dx

=
∫ 1/2

0
x2 − 2x3 + x4 − x4 dx =

∫ 1/2

0
x2 − 2x3 dx = 1

96
≈ 0.010

11. Evaluate
∫∫

D
y

x
dA, where D is the shaded part of the semicircle of radius 2 in Figure 23.

y

x
21

FIGURE 23 y =
√

4 − x2

solution The region is defined by the following inequalities:

1 ≤ x ≤ 2, 0 ≤ y ≤
√

4 − x2

Therefore, the double integral of f over D is:

∫∫
D

y

x
dA =

∫ 2

1

∫ √
4−x2

0

y

x
dy dx

=
∫ 2

1

1

x

⎛
⎝1

2
y2
∣∣∣∣
√

4−x2

0

⎞
⎠ dx

= 1

2

∫ 2

1

1

x
(4 − x2) dx

= 1

2

∫ 2

1

4

x
− x dx

= 1

2

(
4 ln |x| − 1

2
x2
) ∣∣∣∣2

1

= 1

2
(4 ln 2 − 2) − 1

2

(
0 − 1

2

)

= 2 ln 2 − 1 + 1

4
= 2 ln 2 − 3

4
≈ 0.636



April 19, 2011

S E C T I O N 15.2 Double Integrals over More General Regions (LT SECTION 16.2) 893

12. Calculate the double integral of f (x, y) = y2 over the rhombus R in Figure 24.

R

y

4

−4

x
2−2

FIGURE 24 |x| + 1
2 |y| ≤ 1

solution Since f (x, −y) = f (x, y) and since the rhombus is symmetric with respect to the x-axis, the double integral
equals twice the integral over the upper half of the rhombus. Moreover, since f (−x, y) = f (x, y) and R is symmetric
with respect to the y-axis, the double integral over R equals twice the integral over the right half of the rhombus. Therefore,
denoting by D the part of the rhombus in the first quadrant, we have∫∫

R
y2 dA = 4

∫∫
D

y2 dA (1)

We now compute the double integral over D. We express D as a vertically simple region. The line connecting the point
(0, 4) and (2, 0) has the equation

y − 4 = 4 − 0

0 − 2
(x − 0) ⇒ y − 4 = −2x ⇒ y = 4 − 2x

Thus, D is defined by the following inequalities:

0 ≤ x ≤ 2, 0 ≤ y ≤ 4 − 2x

0 ≤ y ≤ 4 − 2x

y

x

4

2D

We now compute the integral over D using Theorem 2:

∫∫
D

y2 dA =
∫ 2

0

∫ 4−2x

0
y2 dy dx =

∫ 2

0

y3

3

∣∣∣∣4−2x

y=0
dx =

∫ 2

0

(4 − 2x)3

3
dx = (4 − 2x)4

12 · (−2)

∣∣∣∣2
0

= 0 + 44

24
= 32

3

Combining with (1) we get ∫∫
R

y2 dA = 4 · 32

3
≈ 42.67

13. Calculate the double integral of f (x, y) = x + y over the domain D = {(x, y) : x2 + y2 ≤ 4, y ≥ 0}.
solution

2

x

y

2−2

0 ≤ y ≤ 4 − x2

The domain D

The semicircle can be described as a vertically simple region, by the following inequalities:

−2 ≤ x ≤ 2, 0 ≤ y ≤
√

4 − x2
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We evaluate the double integral by the following iterated integral:

∫∫
D

(x + y) dA =
∫ 2

−2

∫ √
4−x2

0
(x + y) dy dx =

∫ 2

−2
xy + 1

2
y2
∣∣∣∣
√

4−x2

y=0
dx =

∫ 2

−2

(
x
√

4 − x2 + 1

2

(√
4 − x2

)2
)

dx

=
∫ 2

−2
x
√

4 − x2 dx + 1

2

∫ 2

−2
(4 − x2) dx =

∫ 2

−2
x
√

4 − x2 dx + 2x − x3

6

∣∣∣∣2
x=−2

=
∫ 2

−2
x
√

4 − x2 dx + 4 − 8

6
−
(

−4 − −8

6

)
=
∫ 2

−2
x
√

4 − x2 dx + 16

3

The integral of an odd function over an interval that is symmetric with respect to the origin is zero. Hence
∫ 2

−2
x
√

4 − x2 dx =
0, so we get ∫∫

D
(x + y) dA = 0 + 16

3
= 16

3
≈ 5.33

14. Integrate f (x, y) = (x + y + 1)−2 over the triangle with vertices (0, 0), (4, 0), and (0, 8).

solution

x

D

y

(4.0)0

(0,8)

0 ≤ y ≤ 8 − 2x

We describe the region D as a vertically simple region, but first we need to find the equation of the line joining the points
(4, 0) and (0, 8):

y − 8 = 8 − 0

0 − 4
(x − 0) ⇒ y − 8 = −2x

⇒ y = 8 − 2x

We obtain the following inequalities for D:

0 ≤ x ≤ 4, 0 ≤ y ≤ 8 − 2x

We now evaluate the double integral of f (x, y) = (x + y + 1)−2 over the triangle D, by the following iterated integral:

∫∫
D

f (x, y) dA =
∫ 4

0

∫ 8−2x

0
(x + y + 1)−2 dy dx =

∫ 4

0
−(x + y + 1)−1

∣∣∣∣8−2x

y=0
dx

=
∫ 4

0

(
−(x + 8 − 2x + 1)−1 + (x + 0 + 1)−1

)
dx =

∫ 4

0

(
1

x + 1
− 1

9 − x

)
dx

= ln(x + 1) + ln(9 − x)

∣∣∣∣4
0

= ln 5 + ln 5 − (ln 1 + ln 9) = 2 ln 5 − ln 9 = ln
25

9
≈ 1.02

15. Calculate the integral of f (x, y) = x over the region D bounded above by y = x(2 − x) and below by x = y(2 − y).
Hint: Apply the quadratic formula to the lower boundary curve to solve for y as a function of x.

solution The two graphs are symmetric with respect to the line y = x, thus their point of intersection is (1, 1). The
region D is shown in the following figure:

x

y

x = y(2 − y)

y = x(2 − x)

1 2

1

0

2

D
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To find the inequalities defining the region D as a vertically simple region, we first must solve the lower boundary curve
for y in terms of x. We get

x = y(2 − y) = 2y − y2

y2 − 2y + x = 0

We solve the quadratic equation in y:

y = 1 ± √
1 − x

x

y

10

1

1 − x ≤ y ≤ x(2 − x)1 − 

The domain D lies below the line y = 1, hence the appropriate solution is y = 1 − √
1 − x. We obtain the following

inequalities for D:

0 ≤ x ≤ 1, 1 − √
1 − x ≤ y ≤ x(2 − x)

We now evaluate the double integral of f (x, y) = x over D:

∫∫
D

x dA =
∫ 1

0

∫ x(2−x)

1−√
1−x

x dy dx =
∫ 1

0
xy

∣∣∣∣x(2−x)

y=1−√
1−x

dx =
∫ 1

0

(
x2(2 − x) −

(
x − x

√
1 − x

))
dx

=
∫ 1

0

(
2x2 − x3 − x + x

√
1 − x

)
dx = 2x3

3
− x4

4
− x2

2

∣∣∣∣1
0

+
∫ 1

0
x
√

1 − x dx

= − 1

12
+
∫ 1

0
x
√

1 − x dx

Using the substitution u = √
1 − x it can be shown that

∫ 1

0
x
√

1 − x dx = 4

15
. Therefore we get

∫∫
D

x dA = − 1

12
+ 4

15
= 11

60

16. Integrate f (x, y) = x over the region bounded by y = x, y = 4x − x2, and y = 0 in two ways: as a vertically
simple region and as a horizontally simple region.

solution

(a) The region D between y = x and y = 4x − x2 is a vertically simple region.

y

x
2 41 3

2

4

1

3

0

x ≤ y ≤ 4x − x2

To find the inequalities for this region, we first compute the x-coordinates of the points of intersection of the two curves,
by solving the following equation:

x = 4x − x2 ⇒ x2 − 3x = x(x − 3) = 0 ⇒ x1 = 0, x2 = 3

The region D is defined by the following inequalities:

0 ≤ x ≤ 3, x ≤ y ≤ 4x − x2
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We now compute the double integral of f (x, y) = x over D by computing the following iterated integral:

∫∫
D

f (x, y) dA =
∫ 3

0

∫ 4x−x2

x
(x) dy dx =

∫ 3

0
xy

∣∣∣∣4x−x2

y=x

dx

=
∫ 3

0
(4x2 − x3 − x2) dx

=
∫ 3

0
3x2 − x3 dx

= x3 − x4

4

∣∣∣∣3
0

= 27 − 81

4
= 27

4

(b) The region (shown in the figure) is the union of two horizontally simple regions.

A

y

x
2 41 3

2

4

1

3

0

To determine the inequalities defining this region, we first find the y-coordinate of A. In part (a) we found that the x-
coordinate of this point is x = 3, hence also y = 3. We now solve the equation of the right curve y = 4x − x2 for x in
terms of y:

y = 4x − x2

x2 − 4x + y = 0

x1,2 = 2 ± √
4 − y

In this part of the boundary x ≤ 3, hence the negative root must be taken. That is,

x = 2 − √
4 − y

We obtain the following inequalities for the domain D:

0 ≤ y ≤ 3, y ≤ x ≤ 2 + √
4 − y

The other part of the domain in question will have to be:

3 ≤ y ≤ 4, 2 − √
4 − y ≤ x ≤ 2 + √

4 − y

y

x
2 41 3

2

4

1

3

0

y ≤ x ≤ 2 + 4 − y

The double integral of f (x, y) = x can now be computed by the following iterated integral:

∫∫
D

f (x, y) dA =
∫ 3

0

∫ y

2−√
4−y

(x) dx dy +
∫ 4

3

∫ 2+√
4−y

2−√
4−y

x dx dy

=
∫ 3

0

1

2
x2
∣∣∣∣x=y

x=2−√
4−y

dy +
∫ 4

3

1

2
x2
∣∣∣∣x=2+√

4−y

x=2−√
4−y
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= 1

2

∫ 3

0

(
y2 −

(
2 − √

4 − y
)2
)

dy + 1

2

∫ 4

3
(2 + √

4 − y)2 − (2 − √
4 − y)2 dy

= 1

2

∫ 3

0

(
y2 − (4 − 4

√
4 − y + (4 − y)

)
dy + 1

2

∫ 4

3
8
√

4 − y dy

= 1

2

∫ 3

0

(
y2 − 8 + 4

√
4 − y + y

)
dy +

∫ 4

3
4
√

4 − y dy

= 1

2

(
y3

3
− 8y − 8

3
(4 − y)3/2 + 1

2
y2

) ∣∣∣∣3
0

− 8

3
(4 − y)3/2

∣∣∣∣4
3

= 1

2

(
9 − 24 − 8

3
+ 9

2
+ 64

3

)
−
(

8

3
(0 − 1)

)

= 49

12
+ 8

3
= 27

4

In Exercises 17–24, compute the double integral of f (x, y) over the domain D indicated.

17. f (x, y) = x2y; 1 ≤ x ≤ 3, x ≤ y ≤ 2x + 1

solution These inequalities describe D as a vertically simple region.

x

y

310

y = x

y = 2x + 1

x ≤ y ≤ 2x + 1

We compute the double integral of f (x, y) = x2y on D by the following iterated integral:

∫∫
D

x2y dA =
∫ 3

1

∫ 2x+1

x
x2y dy dx =

∫ 3

1

x2y2

2

∣∣∣∣2x+1

y=x

dx =
∫ 3

1

x2

2

(
(2x + 1)2 − x2

)
dx

=
∫ 3

1

(
3

2
x4 + 2x3 + x2

2

)
dx = 3

10
x5 + x4

2
+ x3

6

∣∣∣∣3
1

= 3 · 35

10
+ 34

2
+ 33

6
−
(

3

10
+ 1

2
+ 1

6

)
= 1754

15
≈ 116.93

18. f (x, y) = 1; 0 ≤ x ≤ 1, 1 ≤ y ≤ ex

solution The domain D is a vertically simple region.

x

y

1

1

0

y = ex

1 ≤ y ≤ ex

We compute the double integral of f (x, y) = 1 over D as the following iterated integral:

∫∫
D

1 dA =
∫ 1

0

∫ ex

1
1 dy dx =

∫ 1

0
y

∣∣∣∣e
x

y=1
dx =

∫ 1

0

(
ex − 1

)
dx = ex − x

∣∣∣∣1
0

= (e1 − 1) − (e0 − 0) = e1 − 1 − 1 = e − 2 ≈ 0.718
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19. f (x, y) = x; 0 ≤ x ≤ 1, 1 ≤ y ≤ ex2

solution We compute the double integral of f (x, y) = x over the vertically simple region D, as the following iterated
integral:

∫∫
D

x dA =
∫ 1

0

∫ ex2

1
x dy dx =

∫ 1

0
xy

∣∣∣∣e
x2

y=1
dx =

∫ 1

0

(
xex2 − x · 1

)
dx

=
∫ 1

0
xex2

dx −
∫ 1

0
x dx =

∫ 1

0
xex2

dx − x2

2

∣∣∣∣1
0

=
∫ 1

0
xex2

dx − 1

2
(1)

x

y

1

1

0

y = ex2

1 ≤ y ≤ ex2

The resulting integral can be computed using the substitution u = x2. The value of this integral is

∫ 1

0
xex2

dx = e − 1

2

Combining with (1) we get ∫∫
D

x dA = e − 1

2
− 1

2
= e − 2

2
≈ 0.359

20. f (x, y) = cos(2x + y); 1
2 ≤ x ≤ π

2 , 1 ≤ y ≤ 2x

solution The vertically simple region D defined by the given inequalities is shown in the figure:

x

y

π 
2

1

0

y = 2x

1 ≤ y ≤ 2x

1 
2

We compute the double integral of f (x, y) = cos(2x + y) over D as an iterated integral, as stated in Theorem 2. This
gives

∫∫
D

cos(2x + y) dA =
∫ π/2

1/2

∫ 2x

1
cos(2x + y) dy dx =

∫ π/2

1/2
sin(2x + y)

∣∣∣∣2x

y=1
dx

=
∫ π/2

1/2
(sin(2x + 2x) − sin(2x + 1)) dx =

∫ π/2

1/2
(sin(4x) − sin(2x + 1)) dx

= − cos 4x

4
+ cos(2x + 1)

2

∣∣∣∣π/2

x=1/2
= − cos 4π

2
4

+
cos

(
2π
2 + 1

)
2

−
(

− cos 2

4
+ cos 2

2

)

= −1

4
+ cos(π + 1)

2
− cos 2

4
= −0.416

21. f (x, y) = 2xy; bounded by x = y, x = y2

solution The intersection points of the graphs x = y and x = y2 are (0, 0) (1, 1). The horizontally simple region D
is shown in the figure:
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x

y

x = y
x = y2

y2 ≤ x ≤ y

1

1

We compute the double integral of f (x, y) = 2xy over D, using Theorem 2. The limits of integration are determined by
the inequalities:

0 ≤ y ≤ 1, y2 ≤ x ≤ y.

Defining D, we get

∫∫
D

2xy dA =
∫ 1

0

∫ y

y2
2xy dx dy =

∫ 1

0
x2y

∣∣∣∣y
x=y2

dy =
∫ 1

0
(y2 · y − y4 · y) dy

=
∫ 1

0
(y3 − y5) dy = y4

4
− y6

6

∣∣∣∣1
0

= 1

4
− 1

6
= 1

12

22. f (x, y) = sin x; bounded by x = 0, x = 1, y = cos x

solution These curves describe D as a vertically simple region.

x
p
2

1

0

y

y = cos x

0 ≤ y ≤ cos x

We compute the double integral of f (x, y) = sin x over D. This gives

∫∫
D

sin x dA =
∫ 1

0

∫ cos x

0
sin x dy dx =

∫ 1

0
y sin x

∣∣∣∣cos x

y=0
dx =

∫ 1

0
(cos x sin x − 0) dx

=
∫ 1

0

sin 2x

2
dx = − cos 2x

4

∣∣∣∣1
0

= −
(

cos (2) − cos 0

4

)
= − cos 2

4
+ 1

4
≈ 0.354

23. f (x, y) = ex+y ; bounded by y = x − 1, y = 12 − x for 2 ≤ y ≤ 4

solution The horizontally simple region D is shown in the figure:

y
x = 12 − y x = y + 1

x
1083 5 6.5

4

2

5.5

0

y + 1 ≤ x ≤ 12 − y

We compute the double integral of f (x, y) = ex+y over D by evaluating the following iterated integral:

∫∫
D

ex+y dA =
∫ 4

2

∫ 12−y

y+1
ex+y dx dy =

∫ 4

2
ex+y

∣∣∣∣12−y

x=y+1
dy =

∫ 4

2

(
e12−y+y − ey+1+y

)
dy

=
∫ 4

2

(
e12 − e2y+1

)
dy = e12 · y − 1

2
e2y+1

∣∣∣∣4
2

=
(

e12 · 4 − 1

2
e2·4+1

)
−
(

e12 · 2 − 1

2
e2·2+1

)

= 4e12 − 1

2
e9 − 2e12 + 1

2
e5 = 2e12 − 1

2
e9 + 1

2
e5 ≈ 321532.2
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24. f (x, y) = (x + y)−1; bounded by y = x, y = 1, y = e, x = 0

solution

x

y

x = y

0 ≤ x ≤ y
1

e

The double integral f (x, y) = (x + y)−1 over the horizontally simple region D (shown in the figure) is computed, using
Theorem 2, by the following iterated integral:

∫∫
D

f (x, y) dA =
∫ e

1

∫ y

0
(x + y)−1 dx dy =

∫ e

1
ln(x + y)

∣∣∣∣y
x=0

dy =
∫ e

1
(ln(y + y) − ln(0 + y)) dy

=
∫ e

1
(ln(2y) − ln y) dy =

∫ e

1
ln

2y

y
dy =

∫ e

1
ln 2 dy = (e − 1) · ln 2 ≈ 1.19

In Exercises 25–28, sketch the domain of integration and express as an iterated integral in the opposite order.

25.
∫ 4

0

∫ 4

x
f (x, y) dy dx

solution The limits of integration correspond to the inequalities describing the following domain D:

0 ≤ x ≤ 4, x ≤ y ≤ 4

x

y

y = x

x ≤ y ≤ 4

4

4

From the sketch of D we see that D can also be expressed as a horizontally simple region as follows:

0 ≤ y ≤ 4, 0 ≤ x ≤ y

x

y

x = y

0 ≤ x ≤ y

4

Therefore we can reverse the order of integration as follows:

∫ 4

0

∫ 4

x
f (x, y) dy dx =

∫ 4

0

∫ y

0
f (x, y) dx dy.

26.
∫ 9

4

∫ 3

√
y

f (x, y) dx dy

solution The limits of integration correspond to the inequalities describing the following horizontally simple region
D:

4 ≤ y ≤ 9,
√

y ≤ x ≤ 3
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x = y

 y ≤ x ≤ 3

y

x
4 8 92 63 71 5

4

8
9

2

6

3

7

1

5

0

The sketch of D shows that D can also be expressed as a vertically simple region. We first express the curve x = √
y in

the form y = x2.

y = x2

4 ≤ y ≤ x2

y = 4

y

x
4 8 92 63 71 5

4

8
9

2

6

3

7

1

5

0

Now we get

2 ≤ x ≤ 3, 4 ≤ y ≤ x2

We obtain the following equality:

∫ 9

4

∫ 3

√
y

f (x, y) dx dy =
∫ 3

2

∫ x2

4
f (x, y) dy dx.

27.
∫ 9

4

∫ √
y

2
f (x, y) dx dy

solution The limits of integration correspond to the following inequalities defining the horizontally simple region D:

4 ≤ y ≤ 9, 2 ≤ x ≤ √
y

x

y
x =    y

2

2 4 6 8

4

6

8

2 ≤ x ≤ y

The region D can also be expressed as a vertically simple region. We first need to write the equation of the curve x = √
y

in the form y = x2. The corresponding inequalities are

2 ≤ x ≤ 3, x2 ≤ y ≤ 9

x

y
y = x2

2

2 4 6 8

4

6

8

x2 ≤ y ≤ 9
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We now can write the iterated integral with reversed order of integration:

∫ 9

4

∫ √
y

2
f (x, y) dx dy =

∫ 3

2

∫ 9

x2
f (x, y) dy dx.

28.
∫ 1

0

∫ e

ex
f (x, y) dy dx

solution The limits of integration define a vertically simple region D by the following inequalities:

0 ≤ x ≤ 1, ex ≤ y ≤ e

x

y

1

1

y = ex

ex ≤ y ≤ e
e

This region can also be expressed as a horizontally simple region.

x

y

1

1

x = ln y

0 ≤ x ≤ ln y

e

The curve y = ex can be rewritten as x = ln y, and we obtain the following inequalities for D (see figure):

1 ≤ y ≤ e, 0 ≤ x ≤ ln y

Using this description we obtain the integral with reversed order of integration:

∫ 1

0

∫ e

ex
f (x, y) dy dx =

∫ e

1

∫ ln y

0
f (x, y) dx dy.

29. Sketch the domain D corresponding to

∫ 4

0

∫ 2

√
y

√
4x2 + 5y dx dy

Then change the order of integration and evaluate.

solution The limits of integration correspond to the following inequalities describing the domain D:

0 ≤ y ≤ 4,
√

y ≤ x ≤ 2

The horizontally simple region D is shown in the figure:

y

x
2 41 3

2

4

1

3

0

x = y

 y ≤ x ≤ 2
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The domain D can also be described as a vertically simple region. Rewriting the equation x = √
y in the form y = x2,

we define D by the following inequalities (see figure):

0 ≤ x ≤ 2, 0 ≤ y ≤ x2

y = x2

0 ≤ y ≤ x2

y

x
2 41 3

2

4

1

3

0

The corresponding iterated integral is

∫ 2

0

∫ x2

0

√
4x2 + 5y dy dx

We evaluate this integral:

∫ 2

0

∫ x2

0

√
4x2 + 5y dy dx =

∫ 2

0

(∫ x2

0

(
4x2 + 5y

)1/2
dy

)
dx

=
∫ 2

0

2

15

(
4x2 + 5y

)3/2
∣∣∣∣x

2

y=0
dx

=
∫ 2

0

(
2

15

(
4x2 + 5x2

)3/2 − 2

15

(
4x2 + 0

)3/2
)

dx

=
∫ 2

0

(
2

15

(
9x2

)3/2 − 2

15

(
4x2

)3/2
)

dx

=
∫ 2

0

18

5
x3 − 16

15
x3 dx

=
∫ 2

0

38

15
x3 dx

= 38

15
· x4

4

∣∣∣∣2
0

= 38

15
· 24

4
= 152

15
≈ 10.133

30. Change the order of integration and evaluate

∫ 1

0

∫ π/2

0
x cos(xy) dx dy

Explain the simplification achieved by changing the order.

solution The domain of integration is the rectangle defined by the following inequalities:

0 ≤ y ≤ 1, 0 ≤ x ≤ π

2

x

y

1

π 
2

By Fubini’s Theorem, the double integral of f (x, y) = x cos(xy) over the rectangle is equal to the iterated integral in
either order. Hence,

∫ 1

0

∫ π/2

0
x cos(xy) dx dy =

∫ π/2

0

∫ 1

0
x cos(xy) dy dx =

∫ π/2

0
x · 1

x
(sin xy)

∣∣∣∣1
y=0

dx =
∫ π/2

0
sin(xy)

∣∣∣∣1
y=0

dx
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=
∫ π/2

0
(sin x − sin 0) dx =

∫ π/2

0
sin x dx = − cos x

∣∣∣∣π/2

0

= −
(

cos
π

2
− cos 0

)
= −(0 − 1) = 1

Trying to integrate in the original order of integration, we obtain

∫ 1

0

∫ π/2

0
x cos(xy) dx dy =

∫ 1

0

(∫ π/2

0
x cos(xy) dx

)
dy (1)

To compute the inner integral we would have to use integration by parts, whereas the integrals involved in computing the
integral first with respect to x and then with respect to y were quite easy to compute.

31. Compute the integral of f (x, y) = (ln y)−1 over the domain D bounded by y = ex and y = e
√

x . Hint: Choose the
order of integration that enables you to evaluate the integral.

solution To express D as a horizontally simple region, we first must rewrite the equations of the curves y = ex and

y = e
√

x with x as a function of y. That is,

y = ex ⇒ x = ln y

y = e
√

x ⇒ √
x = ln y ⇒ x = ln2y

We obtain the following inequalities:

1 ≤ y ≤ e, ln2 y ≤ x ≤ ln y

x

y

1

2

e

0

y = ex

y = e x

x

y

1

2

0

x = ln y

x = ln2 y

ln2y ≤ x ≤ ln y

Using Theorem 2, we compute the double integral of f (x, y) = (ln y)−1 over D as the following iterated integral:

∫∫
D

(ln y)−1 dA =
∫ e

1

∫ ln y

ln2y
(ln y)−1 dx dy =

∫ e

1
(ln y)−1x

∣∣∣∣ln y

x=ln2y

dy =
∫ e

1
(ln y)−1

(
ln y − ln2y

)
dy

=
∫ e

1
(1 − ln y) dy =

∫ e

1
1 dy −

∫ e

1
ln y dy = y

∣∣∣∣e
1

− y(ln y − 1)

∣∣∣∣e
1

= (e − 1) − [e(0) − 1(−1)] = e − 2

32. Evaluate by changing the order of integration:
∫ 9

0

∫ √
y

0

x dx dy

(3x2 + y)1/2

solution The region of integration is bounded by:

0 ≤ y ≤ 9, 0 ≤ x ≤ √
y

which also gives the region

0 ≤ x ≤ 3, x2 ≤ y ≤ 9

So changing the order of integration gives the integral:∫ 3

0

∫ 9

x2

x dy dx

(3x2 + y)1/2

Now evaluating we get

∫ 3

0

∫ 9

x2

x dy dx

(3x2 + y)1/2
=
∫ 3

0
x

(∫ 9

x2

1

(3x2 + y)1/2
dy

)
dx

=
∫ 3

0
x

(
2(3x2 + y)1/2

∣∣∣∣9
x2

)
dx
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=
∫ 3

0
2x(3x2 + 9)1/2 − 2x(3x2 + x2)1/2 dx

=
∫ 3

0
2x(3x2 + 9)1/2 − 4x2 dx

= 2

9
(3x2 + 9)3/2 − 4

3
x3
∣∣∣∣3
0

= 2

9
(36)3/2 − 4

3
(27) − 2

9
(9)3/2 = 6

In Exercises 33–36, sketch the domain of integration. Then change the order of integration and evaluate. Explain the
simplification achieved by changing the order.

33.
∫ 1

0

∫ 1

y

sin x

x
dx dy

solution The limits of integration correspond to the following inequalities:

0 ≤ y ≤ 1, y ≤ x ≤ 1

The horizontally simple region D is shown in the figure.

x

y

x = y

y ≤ x ≤ 1

1

1

We see that D can also be described as a vertically simple region, by the following inequalities:

0 ≤ x ≤ 1, 0 ≤ y ≤ x

x

y

y = x

0 ≤ y ≤ x

1

1

We evaluate the corresponding iterated integral:

∫ 1

0

∫ x

0

sin x

x
dy dx =

∫ 1

0

sin x

x
y

∣∣∣∣x
y=0

dx =
∫ 1

0

sin x

x
(x − 0) dx =

∫ 1

0
sin x dx = − cos x

∣∣∣∣1
0

= 1 − cos 1 ≈ 0.46

Trying to integrate in reversed order we obtain a complicated integral in the inner integral. That is,

∫ 1

0

∫ 1

y

sin x

x
dx dy =

∫ 1

0

(∫ 1

y

sin x

x
dx

)
dy

Remark: f (x, y) = sin x
x is not continuous at the point (0, 0) in D. To make it continuous we need to define f (0, 0) = 1.

34.
∫ 4

0

∫ 2

√
y

√
x3 + 1 dx dy

solution The limits of integration correspond to the following inequalities describing the domain D:

0 ≤ y ≤ 4,
√

y ≤ x ≤ 2
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The domain D is a horizontally simple region, as shown in the figure.

x = y

 y ≤ x ≤ 2

y

x
2 41 3

2

4

1

3

0

From the sketch of D, we see that D can be expressed as a vertically simple region. Rewriting the equation of the curve
x = √

y as y = x2, we obtain the following inequalities for D:

0 ≤ x ≤ 2, 0 ≤ y ≤ x2

y = x2

0 ≤ y ≤ x2

y

x
2 41 3

2

4

1

3

0

The integral in reversed order of integration is thus

∫ 2

0

∫ x2

0

√
x3 + 1 dy dx =

∫ 2

0

√
x3 + 1y

∣∣∣∣x
2

y=0
dx =

∫ 2

0

√
x3 + 1

(
x2 − 0

)
dx =

∫ 2

0

√
x3 + 1 · x2 dx

This integral is easy to compute using the substitution u = x3 + 1, du = 3x2 dx. This gives

∫ 2

0

∫ x2

0

√
x3 + 1 dy dx =

∫ 2

0

√
x3 + 1 · x2 dx =

∫ 9

1

√
u · du

3
= 2

9
u3/2

∣∣∣∣9
1

= 2

9

(
93/2 − 1

) = 52

9
≈ 5.78

Trying to compute the double integral in the original order we find that the inner integral is impossible to compute:

∫ 4

0

∫ 2

√
y

√
x3 + 1 dx dy =

∫ 4

0

(∫ 2

√
y

√
x3 + 1 dx

)
dy

35.
∫ 1

0

∫ 1

y=x
xey3

dy dx

solution The limits of integration define a vertically simple region D by the following inequalities:

0 ≤ x ≤ 1, x ≤ y ≤ 1

This region can also be described as a horizontally simple region by the following inequalities (see figure):

x

y

y = x

x ≤ y ≤ 1

1

1

0 ≤ y ≤ 1, 0 ≤ x ≤ y
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We thus can rewrite the given integral in reversed order of integration as follows:

∫ 1

0

∫ y

0
xey3

dx dy =
∫ 1

0

x2

2
ey3

∣∣∣∣y
x=0

dy =
∫ 1

0
ey3

(
y2

2
− 0

)
dy =

∫ 1

0

1

2
ey3

y2 dy

x

y

x = y

0 ≤ x ≤ y

1

1

We compute this integral using the substitution u = y3, du = 3y2 dy. This gives

∫ 1

0

∫ y

0
xey3

dx dy =
∫ 1

0

1

2
ey3

y2 dy =
∫ 1

0
eu · 1

6
du = eu

6

∣∣∣∣1
0

= e − 1

6
≈ 0.286

Trying to evaluate the double integral in the original order of integration, we find that the inner integral is impossible to
compute:

∫ 1

0

∫ 1

x
xey3

dy dx =
∫ 1

0

(∫ 1

x
xey3

dy

)
dx

36.
∫ 1

0

∫ 1

y=x2/3
xey4

dy dx

solution The limits of integration define a vertically simple region D by the following inequalities:

0 ≤ x ≤ 1, x2/3 ≤ y ≤ 1

The region D shown in the figure can also be described as a horizontally simple region.

x
0

1

1

y

y = x2/3

x2/3 ≤ y ≤ 1

We rewrite the equation of the curve y = x2/3 as x = y3/2 and express the domain D as a horizontally simple region by
the following inequalities:

0 ≤ y ≤ 1, 0 ≤ x ≤ y3/2

x
0

1

1

y

x = y3/2

0 ≤ x ≤ y3/2
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The corresponding iterated integral is:

∫ 1

0

∫ y3/2

0
xey4

dx dy =
∫ 1

0

x2

2
ey4

∣∣∣∣y
3/2

x=0
dy =

∫ 1

0

(
(y3/2)

2

2
ey4 − 0

)
dy =

∫ 1

0

1

2
y3ey4

dy

=
∫ 1

0

1

8

(
d

dy
ey4

)
dy = 1

8
ey4

∣∣∣∣1
0

= 1

8

(
e1 − e0

)
= 1

8
(e − 1) ≈ 0.215

Trying to evaluate the original integral we find that the inner integral is impossible to evaluate:

∫ 1

0

∫ 1

x2/3
xey4

dy dx =
∫ 1

0

(∫ 1

x2/3
xey4

dy

)
dx

37. Sketch the domain D where 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, and x or y is greater than 1. Then compute
∫∫

D
ex+y dA.

solution The domain D within the square 0 ≤ x, y ≤ 2 is shown in the figure.

y

x
1 2

D2

D1

D

1

2

0

We denote the unit square 0 ≤ x, y ≤ 1 and the square 0 ≤ x, y ≤ 2 by D1 and D2 respectively. Then D2 is the union of
D1 and D, and these two domains do not overlap except on the boundary of D1. Therefore, by properties of the double
integral, we have ∫∫

D2

ex+ydA =
∫∫

D1

ex+ydA +
∫∫

D
ex+ydA

Hence,

∫∫
D

ex+ydA =
∫∫

D2

ex+y dA −
∫∫

D1

ex+y dA =
∫ 2

0

∫ 2

0
ex+y dx dy −

∫ 1

0

∫ 1

0
ex+y dx dy

=
∫ 2

0
ex+y

∣∣∣∣2
x=0

dy −
∫ 1

0
ex+y

∣∣∣∣1
x=0

dy =
∫ 2

0
(e2+y − ey) dy −

∫ 1

0
(e1+y − ey) dy

= e2+y − ey

∣∣∣∣2
y=0

− (e1+y − ey)

∣∣∣∣1
y=0

= e4 − e2 − (e2 − e0) −
(
e2 − e − (e − e0)

)

= e4 − 3e2 + 2e ≈ 37.87

38. Calculate
∫∫

D
ex dA, where D is bounded by the lines y = x + 1, y = x, x = 0, and x = 1.

solution This region is a vertically simple region

D : 0 ≤ x ≤ 1, x ≤ y ≤ x + 1

So that

∫
D

ex dA =
∫ 1

0

∫ x+1

x
ex dy dx =

∫ 1

0
yex

∣∣∣∣x+1

x

dx

=
∫ 1

0
ex(x + 1 − x) dx =

∫ 1

0
ex dx = ex

∣∣∣∣1
0

= e − 1
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In Exercises 39–42, calculate the double integral of f (x, y) over the triangle indicated in Figure 25.

x
1 2 3 4 5

4
3
2
1

y

(A)

x
1 2 3 4 5

4
3
2
1

y

(B)

x
1 2 3 4 5

4
3
2
1

y

(C)

x
1 2 3 4 5

4
5 5

3
2
1

y

(D)

FIGURE 25

39. f (x, y) = ex2
, (A)

solution The equations of the lines OA and OB are y = 3
4x and y = 1

4x, respectively. Therefore, the triangle may
be expressed as a vertically simple region by the following inequalities:

0 ≤ x ≤ 4,
x

4
≤ y ≤ 3x

4

x

y

2

2 4

4
A

B

x ≤ y ≤    x1 
4

3 
4

The double integral of f (x, y) = ex2
over the triangle is the following iterated integral:

∫ 4

0

∫ 3x/4

x/4
ex2

dy dx =
∫ 4

0
yex2

∣∣∣∣3x/4

y=x/4
dx

=
∫ 4

0
ex2

(
3x

4
− x

4

)
dx

= 1

2

∫ 4

0
xex2

dx

= 1

4
ex2

∣∣∣∣4
0

= 1

4
(e16 − 1)

40. f (x, y) = 1 − 2x, (B)

solution The equations of the lines OA and OB are y = 3x
2 and y = 3x

5 , respectively. We describe the triangle as

a horizontally simple region. The equations y = 3x
2 and y = 3x

5 can be written as x = 2y
3 and x = 5y

3 , therefore the
inequalities defining the triangle are

0 ≤ y ≤ 3,
2

3
y ≤ x ≤ 5

3
y

y

x

A B

2 4

2

4

0

≤ x ≤ 5y
3

2y
3
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We now compute the double integral of f (x, y) = 1 − 2x over the triangle by evaluating the following iterated integral:

∫ 3

0

∫ 5y/3

2y/3
(1 − 2x) dx dy =

∫ 3

0
x − x2

∣∣∣∣5y/3

y=2y/3
dy =

∫ 3

0

((
5y

3
− 25y2

9

)
−
(

2y

3
− 4y2

9

))
dy

=
∫ 3

0

(
y − 7

3
y2
)

dy = y2

2
− 7y3

9

∣∣∣∣3
0

= 9

2
− 7 · 33

9
= −16.5

41. f (x, y) = x

y2
, (C)

solution To find the inequalities defining the triangle as a horizontally simple region, we first find the inequalities of
the lines AB and BC:

x

y

2

2 4

4

A C

B

y − 1 ≤ x ≤ 7 − y

AB: y − 2 = 4 − 2

3 − 1
(x − 1) ⇒ y − 2 = x − 1 ⇒ x = y − 1

BC: y − 2 = 4 − 2

3 − 5
(x − 5) ⇒ y − 2 = 5 − x ⇒ x = 7 − y

We obtain the following inequalities for the triangle:

2 ≤ y ≤ 4, y − 1 ≤ x ≤ 7 − y

The double integral of f (x, y) = x
y2 over the triangle is the following iterated integral:

∫ 4

2

∫ 7−y

y−1

x

y2
dx dy =

∫ 4

2

x2

2y2

∣∣∣∣7−y

x=y−1
dy =

∫ 4

2

(7 − y)2 − (y − 1)2

2y2
dy =

∫ 4

2

(
24

y2
− 6

y

)
dy

= −24

y
− 6 ln y

∣∣∣∣4
2

= −24

4
− 6 ln 4 −

(
−24

2
− 6 ln 2

)
= 6 − 6 ln 2 = 1.84

42. f (x, y) = x + 1, (D)

solution

y

x
2 41 3 5

2

3

5

1

4

0

This triangle is not a simple region, therefore we decompose it into two vertically simple regions D1 and D2, shown in
the figure.
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y

x
2 41 3 5

2

1

3

5

4

0

A

B

CD1

D2

By properties of the double integral, the double integral of f (x, y) = x + 1 over the given triangle D is the following
sum: ∫∫

D
x + 1 dA =

∫∫
D1

x + 1 dA +
∫∫

D2

x + 1 dA (1)

To describe D1 and D2 as vertically simple regions we first must find the equations of the lines AB, AC, BC:

AB: y − 1 = 5 − 1

3 − 1
(x − 1) ⇒ y − 1 = 2(x − 1) ⇒ y = 2x − 1

AC: y − 1 = 3 − 1

5 − 1
(x − 1) ⇒ y − 1 = 1

2
(x − 1) ⇒ y = 1

2
x + 1

2

BC: y − 3 = 5 − 3

3 − 5
(x − 5) ⇒ y − 3 = −(x − 5) ⇒ y = −x + 8

We obtain the following inequalities for D1 and D2:

D1 D2

1 ≤ x ≤ 3 3 ≤ x ≤ 5

1
2x + 1

2 ≤ y ≤ 2x − 1 1
2x + 1

2 ≤ y ≤ −x + 8

We compute the double integral of f over D1 and D2:∫∫
D1

(x + 1) dA =
∫ 3

1

∫ 2x−1

x+1
2

(x + 1) dy dx

=
∫ 3

1
(x + 1)

(
y

∣∣∣∣2x−1

x+1
2

)
dx

=
∫ 3

1
(x + 1)

(
2x − 1 − x + 1

2

)
dx

=
∫ 3

1

(
3

2
x2 − 3

2

)
dx

= 1

2
x3 − 3

2
x

∣∣∣∣3
1

= 10

The double integral of f over D2 is∫∫
D2

(x + 1) dA =
∫ 5

3

∫ −x+8

x+1
2

(x + 1) dy dx

=
∫ 5

3
(x + 1)

(
y

∣∣∣∣−x+8

x+1
2

)
dx

=
∫ 5

3
(x + 1)

(
−x + 8 − x + 1

2

)
dx

=
∫ 5

3
−3

2
x2 + 6x + 15

2
x dx

= −1

2
x3 + 3x2 + 15

2
x

∣∣∣∣5
3

=
(

−125

2
+ 75 + 75

2

)
−
(

−27

2
+ 27 + 45

2

)
= 14
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Finally we substitute the results above to obtain the following solution:∫∫
D

(x + 1) dA =
∫∫

D1

(x + 1) dA +
∫∫

D2

(x + 1) dA = 10 + 14 = 24

43. Calculate the double integral of f (x, y) = sin y

y
over the region D in Figure 26.

D

y y = x

2

1

x

x
2

y =

FIGURE 26

solution To describe D as a horizontally simple region, we rewrite the equations of the lines with x as a function of
y, that is, x = y and x = 2y. The inequalities for D are

1 ≤ y ≤ 2, y ≤ x ≤ 2y

x

y

D

x = y

x = 2y

1

2

We now compute the double integral of f (x, y) = sin y
y over D by the following iterated integral:

∫∫
D

sin y

y
dA =

∫ 2

1

∫ 2y

y

sin y

y
dx dy =

∫ 2

1

sin y

y
x

∣∣∣∣2y

x=y

dy =
∫ 2

1

sin y

y
(2y − y) dy

=
∫ 2

1

sin y

y
· y dy =

∫ 2

1
sin y dy = − cos y

∣∣∣∣2
1

= cos 1 − cos 2 ≈ 0.956

44. Evaluate
∫∫

D
x dA for D in Figure 27.

y

2

1

x

D

FIGURE 27

solution We compute the integral using decomposition of a domain into smaller domains. We denote by D2 and D1
the right semicircles of radius 2 and 1, respectively.

y

x
D1

y

x

D2

y

x

D
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Then D2 is the union of D1 and D, which do not overlap except on a boundary curve. Therefore,∫∫
D2

x dA =
∫∫

D1

x dA +
∫∫

D
x dA

or ∫∫
D

x dA =
∫∫

D2

x dA −
∫∫

D1

x dA (1)

To express D1 and D2 as horizontally simple regions, we write the equations of the circles in the form x =
√

1 − y2 and
x =

√
4 − y2, respectively. The equations describing the regions D1 and D2 are

0 ≤ x ≤ 4 − y2

y

2

−2

x

D2

−2 ≤ y ≤ 2, −1 ≤ y ≤ 1,

0 ≤ x ≤
√

4 − y2 0 ≤ x ≤
√

1 − y2

D2 D1

We compute the double integrals over D2:

∫∫
D2

x dA =
∫ 2

−2

∫ √
4−y2

0
x dx dy =

∫ 2

−2

x2

2

∣∣∣∣
√

4−y2

x=0
dy =

∫ 2

−2

(√
4 − y2

)2 − 02

2
dy =

∫ 2

−2

(
2 − y2

2

)
dy

=
∫ 2

0
(4 − y2) dy = 4y − y3

3

∣∣∣∣2
0

= 8 − 8

3
= 16

3
(2)

0 ≤ x ≤ 1 − y2

y

1

1

x
D1

The integral over D1 is

∫∫
D1

x dA =
∫ 1

−1

∫ √
1−y2

0
x dx dy =

∫ 1

−1

x2

2

∣∣∣∣
√

1−y2

x=0
dy =

∫ 1

−1

(√
1 − y2

)2 − 02

2
dy =

∫ 1

−1

(
1

2
− y2

2

)
dy

=
∫ 1

0
(1 − y2) dy = y − y3

3

∣∣∣∣1
0

= 1 − 1

3
= 2

3
(3)

We now combine (1), (2), and (3) to obtain the following solution:

∫∫
D

x dA = 16

3
− 2

3
= 14

3
≈ 4.67

45. Find the volume of the region bounded by z = 40 − 10y, z = 0, y = 0, y = 4 − x2.

solution The volume of the region is the double integral of f (x, y) = 40 − 10y over the domain D in the xy-plane

between the curves y = 0 and y = 4 − x2. This is a vertically simple region described by the inequalities:

−2 ≤ x ≤ 2, 0 ≤ y ≤ 4 − x2
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We compute the double integral as the following iterated integral:

V =
∫∫

D
40 − 10y dA =

∫ 2

−2

∫ 4−x2

0
(40 − 10y) dy dx

=
∫ 2

−2

(
40y − 5y2

∣∣∣∣4−x2

0

)
dx

=
∫ 2

−2
40(4 − x2) − 5(4 − x2)2 dx =

∫ 2

−2
160 − 40x2 − 5(16 − 8x2 + x4) dx

=
∫ 2

−2
80 − 5x4 dx = 80x − x5

∣∣∣∣2−2

= (160 − 32) − (−160 + 32) = 256

46. Find the volume of the region enclosed by z = 1 − y2 and z = y2 − 1 for 0 ≤ x ≤ 2.

solution

x
z

y

The volume of the region is the double integral of f (y, z) = 2 over the domain D in the yz-plane between the curves
z = 1 − y2 and z = y2 − 1.

y

z

D

z = 1 − y2

z = y2 − 1

1−1

This domain is the vertically simple region described by the inequalities

−1 ≤ y ≤ 1, y2 − 1 ≤ z ≤ 1 − y2

We compute the double integral as the following iterated integral:

V =
∫∫

D
2 dA =

∫ 1

−1

∫ 1−y2

y2−1
2 dz dy =

∫ 1

−1
2z

∣∣∣∣1−y2

z=y2−1
dy =

∫ 1

−1
2
(
(1 − y2) − (y2 − 1)

)
dy

=
∫ 1

−1
(4 − 4y2) dy =

∫ 1

0
(8 − 8y2) dy = 8y − 8

3
y3
∣∣∣∣1
0

= 8 − 8

3
= 16

3
≈ 5.33

47. Calculate the average value of f (x, y) = ex+y on the square [0, 1] × [0, 1].
solution

y

x
1

1

0

D
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Since the area of the square D is 1, the average value of f (x, y) = ex+y on D is the following value:

f = 1

Area(D)

∫∫
D

f (x, y) dA = 1

1

∫ 1

0

∫ 1

0
ex+y dx dy =

∫ 1

0
ex+y

∣∣∣∣1
x=0

dy =
∫ 1

0

(
e1+y − e0+y

)
dy

=
∫ 1

0

(
e1+y − ey

)
dy = e1+y − ey

∣∣∣∣1
0

=
(
e2 − e

)
−
(
e1 − e0

)
= e2 − 2e + 1 ≈ 2.95

48. Calculate the average height above the x-axis of a point in the region 0 ≤ x ≤ 1, 0 ≤ y ≤ x2.

solution The height of the point (x, y) in the region D above the x-axis is f (x, y) = y. Therefore, the average height
is the following value:

H = 1

Area(D)

∫∫
D

y dA (1)

We first compute the integral. The region D is a vertically simple region defined by the inequalities

0 ≤ x ≤ 1, 0 ≤ y ≤ x2

x

D

y

y = x2

1

Therefore,

∫∫
D

y dA =
∫ 1

0

∫ x2

0
y dy dx =

∫ 1

0

1

2
y2
∣∣∣∣x

2

y=0
dx =

∫ 1

0

1

2

(
x4 − 0

)
dx =

∫ 1

0

1

2
x4 dx = x5

10

∣∣∣∣1
0

= 1

10
(2)

We compute the area of D using the formula for the area as a double integral:

Area(D) =
∫∫

D
1 dA =

∫ 1

0

∫ x2

0
dy dx =

∫ 1

0
y

∣∣∣∣x
2

y=0
dx =

∫ 1

0
x2 dx = x3

3

∣∣∣∣1
0

= 1

3
(3)

Substituting (2) and (3) in (1) we obtain

H = 1
1
3

· 1

10
= 3

10

49. Find the average height of the “ceiling” in Figure 28 defined by z = y2 sin x for 0 ≤ x ≤ π , 0 ≤ y ≤ 1.

z

y

x

1

FIGURE 28

solution

y

x

1

0

D
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The average height is

H = 1

Area(D)

∫∫
D

y2 sin x dA = 1

π · 1

∫ 1

0

∫ π

0
y2 sin x dx dy = 1

π

∫ 1

0
y2(− cos x)

∣∣∣∣π
x=0

dy

= 1

π

∫ 1

0
y2(− cos π + cos 0) dy = 1

π

∫ 1

0
2y2 dy = 1

π
· 2

3
y3
∣∣∣∣1
0

= 2

3π

50. Calculate the average value of the x-coordinate of a point on the semicircle x2 + y2 ≤ R2, x ≥ 0. What is the
average value of the y-coordinate?

solution The average value of the x-coordinates of a point on the semicircle D is

x = 1

Area(D)

∫∫
D

x dA

x

y

The area of the semicircle is πR2

2 . To compute the double integral, we identify the inequalities defining D as a horizontally
simple region:

−R ≤ y ≤ R, 0 ≤ x ≤
√

R2 − y2

x

R

R

−R

y

0 ≤ x ≤   R2 − y2

Therefore,

x = 1
πR2

2

∫ R

−R

∫ √
R2−y2

0
x dx dy = 2

πR2

∫ R

−R

x2

2

∣∣∣∣
√

R2−y2

x=0
dy = 2

πR2

∫ R

−R

(√
R2 − y2

)2 − 02

2
dy

= 1

πR2

∫ R

−R

(
R2 − y2

)
dy = 2

πR2

∫ R

0

(
R2 − y2

)
dy = 2

πR2

(
R2y − y3

3

) ∣∣∣∣R
y=0

= 2

πR2

(
R3 − R3

3

)
= 2

πR2
· 2R3

3
= 4R

3π

The average value of the x-coordinate is x = 4R
3π

. The average value of the y-coordinate is

y = 1

Area(D)

∫∫
D

y dA = 1
πR2

2

∫ R

−R

∫ √
R2−y2

0
y dx dy = 2

πR2

∫ R

−R
yx

∣∣∣∣
√

R2−y2

x=0
dy

= 2

πR2

∫ R

−R
y

(√
R2 − y2 − 0

)
dy = 2

πR2

∫ R

−R
y

√
R2 − y2 dy = 0

(The integral of an odd function over a symmetric interval with respect to the x-axis is zero). The average value of the
y-coordinate is y = 0.

Remark: Since the region is symmetric with respect to the x-axis, we expect the average value of y to be zero.
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51. What is the average value of the linear function

f (x, y) = mx + ny + p

on the ellipse
(x

a

)2 +
(y

b

)2 ≤ 1? Argue by symmetry rather than calculation.

solution The average value of the linear function f (x, y) = mx + ny + p over the ellipse D is

f = 1

Area(D)

∫∫
D

f (x, y) dA = 1

Area(D)

∫∫
D

(mx + ny + p) dA

= m · 1

Area(D)

∫∫
D

x dA︸ ︷︷ ︸
I1

+ n · 1

Area(D)

∫∫
D

y dA︸ ︷︷ ︸
I2

+ 1

Area(D)

∫∫
D

p dA (1)

I1 and I2 are the average values of the x and y coordinates of a point in the region enclosed by the ellipse. This region is
symmetric with respect to the y-axis, hence I1 = 0. It is also symmetric with respect to the x-axis, hence I2 = 0. We use
the formula ∫∫

D
p dA = p · Area(D)

to conclude by (1) that

f = m · 0 + n · 0 + 1

Area(D)
· p · Area(D) = p

52. Find the average square distance from the origin to a point in the domain D in Figure 29.

1 3

(x, y)

x = y2 + 1
y

1

x

FIGURE 29

solution The square distance from the origin to a point (x, y) is given by the following function:

f (x, y) = (x − 0)2 + (y − 0)2 = x2 + y2

1 3

(x, y)

x = y2 + 1

y

x

The domain D is a horizontally simple region described by the inequalities (see figure)

−√
2 ≤ y ≤ √

2, y2 + 1 ≤ x ≤ 3

2

2−

1 3

y2 + 1 ≤ x ≤ 3

y

x

The average value of f in D is

f = 1

Area(D)

∫∫
D

(
x2 + y2

)
dA (1)
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We first compute the integral:

∫∫
D

(
x2 + y2

)
dA =

∫ √
2

−√
2

∫ 3

y2+1

(
x2 + y2

)
dx dy =

∫ √
2

−√
2

x3

3
+ y2x

∣∣∣∣3
x=y2+1

dy

=
∫ √

2

−√
2

(
9 + 3y2 −

(
(y2 + 1)

3

3
+ y2(y2 + 1)

))
dy

=
∫ √

2

−√
2

(
−y6

3
− 2y4 + y2 + 26

3

)
dy =

∫ √
2

0

(
−2y6

3
− 4y4 + 2y2 + 52

3

)
dy

= −2y7

21
− 4

5
y5 + 2

3
y3 + 52

3
y

∣∣∣∣
√

2

0
= −

2
(√

2
)7

21
−

4
(√

2
)5

5
+

2
(√

2
)3

3
+ 52

√
2

3

= −16
√

2

21
− 16

√
2

5
+ 4

√
2

3
+ 52

√
2

3
= 1544

105

√
2 (2)

We compute the area of D:

Area(D) =
∫∫

D
1 dA =

∫ √
2

−√
2

∫ 3

y2+1
1 dx dy =

∫ √
2

−√
2
x

∣∣∣∣3
x=y2+1

dy =
∫ √

2

−√
2

(
3 − (y2 + 1)

)
dy

=
∫ √

2

−√
2
(2 − y2) dy =

∫ √
2

0
(4 − 2y2) dy = 4y − 2

3
y3
∣∣∣∣
√

2

0
= 4

√
2 − 2

3

(√
2
)3 = 8

3

√
2 (3)

Substituting (2) and (3) into (1), we obtain the following solution:

f = 1

8
√

2
3

· 1544

105

√
2 = 3 · 1544

√
2

8
√

2 · 105
= 193

35
≈ 5.51

53. Let D be the rectangle 0 ≤ x ≤ 2, − 1
8 ≤ y ≤ 1

8 , and let f (x, y) =
√

x3 + 1. Prove that

∫∫
D

f (x, y) dA ≤ 3

2

solution Recall that we can write

∫∫
D

f (x, y) dA ≤ M · Area(D)

where M is a constant such that f (x, y) ≤ M . We can see that Area(D) = 2(1/4) = 1/2. So it remains to show that
there is some constant M so that f (x, y) ≤ M . Consider the following:

x ≤ 2 ⇒ x3 + 1 ≤ 0 ⇒
√

x3 + 1 ≤ 3

Thus we can let M = 3. So then we have∫∫
D

f (x, y) dA ≤ M · Area(D) ⇒
∫∫

D

√
x3 + 1 dA ≤ 3 · 1

2
= 3

2

54. (a) Use the inequality 0 ≤ sin x ≤ x for x ≥ 0 to show that

∫ 1

0

∫ 1

0
sin(xy) dx dy ≤ 1

4

(b) Use a computer algebra system to evaluate the double integral to three decimal places.

solution Since sin(xy) ≤ xy, we get that

∫ 1

0

∫ 1

0
sin(xy) dx dy ≤

∫ 1

0

∫ 1

0
xy dx dy =

∫ 1

0

y

2
dy = 1

4

Using a CAS, we find that the double integral is approximately 0.240.
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55. Prove the inequality
∫∫

D
dA

4 + x2 + y2
≤ π , where D is the disk x2 + y2 ≤ 4.

solution The function f (x, y) = 1
4+x2+y2 satisfies

f (x, y) = 1

4 + x2 + y2
≤ 1

4

Also, the area of the disk is

Area(D) = π · 22 = 4π

Therefore, by Theorem 3, we have ∫∫
D

dA

4 + x2 + y2
≤ 1

4
· 4π = π.

56. Let D be the domain bounded by y = x2 + 1 and y = 2. Prove the inequality

4

3
≤
∫∫

D
(x2 + y2)dA ≤ 20

3

solution Recall that we can write:

m · Area(D) ≤
∫∫

D
f (x, y) dA ≤ M · Area(D)

where m and M are constants such that m ≤ f (x, y) ≤ M .
First let us compute the area of the domain, D:

Area =
∫ 1

−1

∫ 2

x2+1
1 dy dx =

∫ 1

−1
2 − (x2 + 1) dy dx

=
∫ 1

−1
1 − x2 dy dx = x − 1

3
x3
∣∣∣∣1−1

=
(

1 − 1

3

)
−
(

−1 + 1

3

)
= 4

3

Then we must bound f (x, y) = x2 + y2 by constants (above and below). We know that −1 ≤ x ≤ 1 and the largest x2

can be is 1 and the smallest x2 can be is 0. The largest y can be is 2 and the smallest y can be is 0. Therefore,

(−1)2 + 02 ≤ x2 + y2 ≤ 12 + 22 ⇒ 1 ≤ x2 + y2 ≤ 5

Putting this all together for the inequality we see

m · Area(D) ≤
∫∫

D
f (x, y) dA ≤ M · Area(D) ⇒ 4

3
≤
∫∫

f (x, y) dA ≤ 5 · 4

3
= 20

3

57. Let f be the average of f (x, y) = xy2 on D = [0, 1] × [0, 4]. Find a point P ∈ D such that f (P ) = f (the existence
of such a point is guaranteed by the Mean Value Theorem for Double Integrals).

solution We first compute the average f of f (x, y) = xy2 on D.

x

D

y

4

0 1

f is

f = 1

Area(D)

∫∫
D

xy2 dA = 1

4 · 1

∫ 1

0

∫ 4

0
xy2 dy dx = 1

4

∫ 1

0

xy3

3

∣∣∣∣4
y=0

dx

= 1

4

∫ 1

0

(
x · 43

3
− x · 03

3

)
dx =

∫ 1

0

16x

3
dx = 8x2

3

∣∣∣∣1
0

= 8

3
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We now must find a point P = (a, b) in D such that

f (P ) = ab2 = 8

3

We choose b = 2, obtaining

a · 22 = 8

3
⇒ a = 2

3

The point P =
(

2
3 , 2

)
in the rectangle D satisfies

f (P ) = f = 8

3

58. Verify the Mean Value Theorem for Double Integrals for f (x, y) = ex−y on the triangle bounded by y = 0, x = 1,
and y = x.

solution

0 ≤ y ≤ x

y
y = x

x
1

1
(1, 1)

0

We must find a point P = (a, b) in the triangle D such that∫∫
D

ex−y dA = ea−b · 1

2
(1)

(The area of the triangle is 1·1
2 = 1

2 .) We first compute the double integral. The inequalities defining D as a vertically
simple region are

0 ≤ x ≤ 1, 0 ≤ y ≤ x (2)

Therefore,∫∫
D

ex−y dA =
∫ 1

0

∫ x

0
ex−y dy dx =

∫ 1

0
−ex−y

∣∣∣∣x
y=0

dx =
∫ 1

0
−(ex−x − ex−0) dx =

∫ 1

0
(ex − 1) dx

= ex − x

∣∣∣∣1
0

= (e1 − 1) − (e0 − 0) = e − 2

Substituting in (1) we get

e − 2 = ea−b · 1

2
or ea−b = 2e − 4

or

a − b = ln(2e − 4) ⇒ b = a − ln(2e − 4)

We choose a = 0.5 and find b:

b = 0.5 − ln(2e − 4) ≈ 0.138

The point (a, b) = (0.5, 0.138) satisfies the inequalities (2), hence it lies in D. This point satisfies∫∫
D

ex−y dA = ea−bArea(D)

In Exercises 59 and 60, use (11) to estimate the double integral.

59. The following table lists the areas of the subdomains Dj of the domain D in Figure 30 and the values of a function

f (x, y) at sample points Pj ∈ Dj . Estimate
∫∫

D
f (x, y) dA.
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j 1 2 3 4 5 6

Area(Dj ) 1.2 1.1 1.4 0.6 1.2 0.8
f (Pj ) 9 9.1 9.3 9.1 8.9 8.8

Domain D

D1

D2

D3

D4

D5

D6

FIGURE 30

solution By Eq. (11) we have

∫∫
D

f (x, y) dA ≈
6∑

j=1

f
(
Pj

)
Area

(Dj

)

Substituting the data given in the table, we obtain∫∫
D

f (x, y) dA ≈ 9 · 1.2 + 9.1 · 1.1 + 9.3 · 1.4 + 9.1 · 0.6 + 8.9 · 1.2 + 8.8 · 0.8 = 57.01

Thus, ∫∫
D

f (x, y) dA ≈ 57.01

60. The domain D between the circles of radii 5 and 5.2 in the first quadrant in Figure 31 is divided into six subdomains
of angular width �θ = π

12 , and the values of a function f (x, y) at sample points are given. Compute the area of the

subdomains and estimate
∫∫

D
f (x, y) dA.

x
5 5.2

2.5

2.4

2.2

2
1.7

1.5

y

12
Δ   =

FIGURE 31

solution The area of a sector of angular width θ in a circle of radius R is R2θ
2 . Hence, the area of each subdomain is

the following difference:

Area
(Dj

) = (5.2)2 · π
12

2
− 52 · π

12
2

= 2.04 · π
12

2
= 0.085π

We now use Eq. (11) and the given values at sample points to estimate the double integral:

∫∫
D

f (x, y) dA ≈
6∑

j=1

f
(
Pj

)
Area

(Dj

) = 0.085π(2.5 + 2.4 + 2.2 + 2 + 1.7 + 1.5) = 1.0455π ≈ 3.285

61. According to Eq. (3), the area of a domain D is equal to
∫∫

D
1 dA. Prove that if D is the region between two curves

y = g1(x) and y = g2(x) with g2(x) ≤ g1(x) for a ≤ x ≤ b, then

∫∫
D

1 dA =
∫ b

a
(g1(x) − g2(x)) dx

solution The region D is defined by the inequalities
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a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)

x

y

y = β(x)

y = α(x)

a b

We compute the double integral of f (x, y) = 1 on D, using Theorem 2, by evaluating the following iterated integral:

∫
D

1 dA =
∫ b

a

∫ g2(x)

g1(x)
1 dy dx =

∫ b

a

(∫ g2(x)

g1(x)
1 dy

)
dx =

∫ b

a
y

∣∣∣∣g2(x)

y=g1(x)

dx =
∫ b

a
(g2(x) − g1(x)) dx

Further Insights and Challenges
62. Let D be a closed connected domain and let P, Q ∈ D. The Intermediate Value Theorem (IVT) states that if f is
continuous on D, then f (x, y) takes on every value between f (P ) and f (Q) at some point in D.

(a) Show, by constructing a counterexample, that the IVT is false if D is not connected.
(b) Prove the IVT as follows: Let c(t) be a path such that c(0) = P and c(1) = Q (such a path exists because D is
connected). Apply the IVT in one variable to the composite function f (c(t)).

solution

(a) Let D be the union of the disc D1 of radius 1
2 centered at the origin, and the disc D2 of radius 1

2 centered at (1, 1).

Obviously D is not connected. We define a function f (x, y) on D as follows:

f (x, y) =
{

1 (x, y) ∈ D1

2 (x, y) ∈ D2

f is continuous on D, but it does not take on any value between 1 and 2.
(b) Let D be a closed connected domain and f (x, y) a continuous function on D. Suppose that f (P ) = a and f (Q) = b

where P , Q ∈ D, and a < c < b. We show that f takes on the value c at a point in D. Since D is connected, there is a
curve γ (t) = (x(t), y(t)) lying entirely in D, such that γ (0) = P and γ (1) = Q. We consider the function

g(t) = f (x(t), y(t)), 0 ≤ t ≤ 1

The composition g(t) is continuous on the segment 0 ≤ t ≤ 1, and c is an intermediate value of g on this segment (since
g(0) = a < c < b = g(1)). Therefore, by the IVT, there exists t0 ∈ (0, 1) such that g(t0) = c. The curve γ (t) lies in D,
hence the point R = γ (t0) = (x(t0), y(t0)) is in D and the following holds:

f (R) = f (x(t0), y(t0)) = g(t0) = c.

63. Use the fact that a continuous function on a closed domain D attains both a minimum value m and a maximum value
M , together with Theorem 3, to prove that the average value f lies between m and M . Then use the IVT in Exercise 62
to prove the Mean Value Theorem for Double Integrals.

solution Suppose that f (x, y) is continuous and D is closed, bounded, and connected. By Theorem 3 in Chapter 15.7
(“Existence of Global Extrema”), f (x, y) takes on a minimum value (call it m) at some point (xm, ym) and a maximum
value (call it M) at some point (xM, yM) in the domain D. Now, by Theorem 3,

m Area(D) ≤
∫∫

D
f (x, y) dA ≤ M Area(D)

which can be restated as

m ≤ 1

Area(D)

∫∫
D

f (x, y) dA ≤ M

By the IVT in two variables (stated and proved in the previous problem), f (x, y) takes on every value between m

and M at some point in D. In particular, f must take on the value 1
Area(D)

∫∫
D f (x, y) dA at some point P . So,

f (P ) = 1
Area(D)

∫∫
D f (x, y) dA, which is rewritten as

f (P ) Area(D) =
∫∫

D
f (x, y) dA
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64. Let f (y) be a function of y alone and set G(t) =
∫ t

0

∫ x

0
f (y) dy dx.

(a) Use the Fundamental Theorem of Calculus to prove that G′′(t) = f (t).

(b) Show, by changing the order in the double integral, that G(t) =
∫ t

0
(t − y)f (y) dy. This shows that the “second

antiderivative” of f (y) can be expressed as a single integral.

solution

(a) Let H(x) = ∫ x
0 f (y) dy. Then G(t) = ∫ t

0 H(x) dx, and by the FTC we have

G′(t) = d

dt

∫ t

0
H(x) dx = H(t) =

∫ t

0
f (y) dy

We again use the FTC to differentiate G′(t). This gives

G′′(t) = d

dt

∫ t

0
f (y) dy = f (t)

(b) For a fixed t , the domain of integration is described by the following inequalities:

0 ≤ x ≤ t, 0 ≤ y ≤ x

x
t

y

y = x

0 ≤ y ≤ x

We describe the domain as a horizontally simple region by the inequalities

0 ≤ y ≤ t, y ≤ x ≤ t

x
t

t

y

x = y

y ≤ x ≤ t

Then, the iterated integral for G(t) can be computed in reverse order of integration as follows:

G(t) =
∫ t

0

∫ t

y
f (y) dx dy =

∫ t

0
f (y)x

∣∣∣∣t
x=y

dy =
∫ t

0
f (y)(t − y) dy =

∫ t

0
(t − y)f (y) dy

We, thus showed that

G(t) =
∫ t

0
(t − y)f (y) dy

15.3 Triple Integrals (LT Section 16.3)

Preliminary Questions

1. Which of (a)–(c) is not equal to
∫ 1

0

∫ 4

3

∫ 7

6
f (x, y, z) dz dy dx?

(a)
∫ 7

6

∫ 1

0

∫ 4

3
f (x, y, z) dy dx dz

(b)
∫ 4

3

∫ 1

0

∫ 7

6
f (x, y, z) dz dx dy

(c)
∫ 1

0

∫ 4

3

∫ 7

6
f (x, y, z) dx dz dy
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solution The given integral, I , is a triple integral of f over the box B = [0, 1] × [3, 4] × [6, 7]. In (a) the limits of
integration are 0 ≤ x ≤ 1, 3 ≤ y ≤ 4, 6 ≤ z ≤ 7, hence this integral is equal to I . In (b) the limits of integration are
0 ≤ x ≤ 1, 3 ≤ y ≤ 4, 6 ≤ z ≤ 7, hence it is also equal to I . In (c) the limits of integration are 6 ≤ x ≤ 7, 0 ≤ y ≤ 1,
3 ≤ z ≤ 4. This is the triple integral of f over the box [6, 7] × [0, 1] × [3, 4], which is different from B. Therefore, the
triple integral is usually unequal to I .

2. Which of the following is not a meaningful triple integral?

(a)
∫ 1

0

∫ x

0

∫ 2x+y

x+y
ex+y+z dz dy dx

(b)
∫ 1

0

∫ z

0

∫ 2x+y

x+y
ex+y+z dz dy dx

solution

(a) The limits of integration determine the following inequalities:

0 ≤ x ≤ 1, 0 ≤ y ≤ x, x + y ≤ z ≤ 2x + y

The integration is over the simple region W , which lies between the planes z = x + y and z = 2x + y over the domain
D1 = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x} in the xy-plane.

x

y

y = x

1

10

D1

Thus, the integral represents a meaningful triple integral.

(b) Note that the inner integral is with respect to z, but then the middle integral has limits from 0 to z! This makes no
sense.

3. Describe the projection of the region of integration W onto the xy-plane:

(a)
∫ 1

0

∫ x

0

∫ x2+y2

0
f (x, y, z) dz dy dx

(b)
∫ 1

0

∫ √
1−x2

0

∫ 4

2
f (x, y, z) dz dy dx

solution

(a) The region of integration is defined by the limits of integration, yielding the following inequalities:

0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ x2 + y2

W is the region between the paraboloid z = x2 + y2 and the xy-plane which is above the triangle D =
{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x} in the xy-plane. This triangle is the projection of W onto the xy-plane.

x

y

y = x

1

10

D

(b) The inequalities determined by the limits of integration are

0 ≤ x ≤ 1, 0 ≤ y ≤
√

1 − x2, 2 ≤ z ≤ 4

This is the region between the planes z = 2 and z = 4, which is above the region D ={
(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤

√
1 − x2

}
in the xy-plane. The projection D of W onto the xy-plane is the part of the unit

disk in the first quadrant.
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x

y

1

10

D

Exercises
In Exercises 1–8, evaluate

∫∫∫
B

f (x, y, z) dV for the specified function f and box B.

1. f (x, y, z) = z4; 2 ≤ x ≤ 8, 0 ≤ y ≤ 5, 0 ≤ z ≤ 1

solution We write the triple integral as an iterated integral and compute it to obtain

∫∫∫
B

z4 dV =
∫ 8

2

∫ 5

0

∫ 1

0
z4 dz dy dx =

∫ 8

2

∫ 5

0

(∫ 1

0
z4 dz

)
dy dx =

∫ 8

2

∫ 5

0

1

5
z5
∣∣∣∣1
z=0

dy dx

=
∫ 8

2

∫ 5

0

1

5
dy dx = 1

5

∫ 8

2

∫ 5

0
dy dx = 1

5
· 6 · 5 = 6

2. f (x, y, z) = xz2; [−2, 3] × [1, 3] × [1, 4]
solution The box [−2, 3] × [1, 3] × [1, 4] corresponds to the inequalities −2 ≤ x ≤ 3, 1 ≤ y ≤ 3, 1 ≤ z ≤ 4. We
write the integral as an iterated integral in any order we choose, and evaluate the inner, middle, and outer integral one
after the other. This gives

∫∫
B

xz2 dV =
∫ 3

−2

∫ 3

1

∫ 4

1
xz2 dz dy dx =

∫ 3

−2

∫ 3

1

(∫ 4

1
xz2 dz

)
dy dx =

∫ 3

−2

∫ 3

1

xz3

3

∣∣∣∣4
z=1

dy dx

=
∫ 3

−2

∫ 3

1

x(43 − 13)

3
dy dx =

∫ 3

−2

(∫ 3

1
21x dy

)
dx =

∫ 3

−2
21xy

∣∣∣∣3
y=1

dx

=
∫ 3

−2
42x dx = 21x2

∣∣∣∣3−2
= 21(9 − 4) = 105

Alternatively, we can use the form f (x, y, z) = xz2 = h(x)g(y)l(z) to compute the triple integral as the product:

∫∫
B

xz2 dV =
∫ 3

−2

∫ 3

1

∫ 4

1
xz2 dz dy dx =

(∫ 3

−2
x dx

)(∫ 3

1
1 dy

)(∫ 4

1
z2 dz

)

=
(

x2

2

∣∣∣∣3−2

)(
y

∣∣∣∣3
1

)(
z3

3

∣∣∣∣4
1

)
= 5

2
· 2 ·

(
43 − 13

)
3

= 5 · 21 = 105

3. f (x, y, z) = xey−2z; 0 ≤ x ≤ 2, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1

solution We write the triple integral as an iterated integral. Since f (x, y, z) = xey · e−2z, we may evaluate the
iterated integral as the product of three single integrals. We get

∫∫∫
B

xey−2z dV =
∫ 2

0

∫ 1

0

∫ 1

0
xey−2z dz dy dx =

(∫ 2

0
x dx

)(∫ 1

0
ey dy

)(∫ 1

0
e−2z dz

)

=
(

1

2
x2
∣∣∣∣2
0

)(
ey

∣∣∣∣1
0

)(
−1

2
e−2z

∣∣∣∣1
0

)
= 2(e − 1) · −1

2
(e−2 − 1) = (e − 1)(1 − e−2)
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4. f (x, y, z) = x

(y + z)2
; [0, 2] × [2, 4] × [−1, 1]

solution We write the triple integral as an iterated integral in any order we choose, and then evaluate the resulting
integrals successively. We get:

∫∫∫
B

f (x, y, z) dx =
∫ 1

−1

∫ 4

2

∫ 2

0

x

(y + z)2
dx dy dz =

∫ 1

−1

∫ 4

2

(∫ 2

0

x

(y + z)2
dx

)
dy dz

=
∫ 1

−1

∫ 4

2

(
1

(y + z)2

∫ 2

0
x dx

)
dy dz =

∫ 1

−1

∫ 4

2

1

(y + z)2

x2

2

∣∣∣∣2
x=0

dy dz

=
∫ 1

−1

∫ 4

2

2

(y + z)2
dy dz =

∫ 1

−1

(∫ 4

2

2

(y + z)2
dy

)
dz

=
∫ 1

−1

−2

y + z

∣∣∣∣4
y=2

dz =
∫ 1

−1

( −2

4 + z
+ 2

2 + z

)
dz = −2 ln(4 + z) + 2 ln(2 + z)

∣∣∣∣1
z=−1

= −2 ln 5 + 2 ln 3 − (−2 ln 3 + 2 ln 1) = −2 ln 5 + 4 ln 3 = ln
34

52
≈ 1.176

5. f (x, y, z) = (x − y)(y − z); [0, 1] × [0, 3] × [0, 3]
solution We write the triple integral as an iterated integral and evaluate the inner, middle, and outer integrals succes-
sively. This gives

∫∫∫
B

(x − y)(y − z) dV =
∫ 1

0

∫ 3

0

∫ 3

0
(x − y)(y − z) dz dy dx =

∫ 1

0

∫ 3

0

(∫ 3

0
(x − y)(y − z) dz

)
dy dx

=
∫ 1

0

∫ 3

0
(x − y)

(
yz − 1

2
z2
) ∣∣∣∣3

z=0
dy dx =

∫ 1

0

∫ 3

0
(x − y)

(
3y − 9

2

)
dy dx

=
∫ 1

0

∫ 3

0

((
3x + 9

2

)
y − 9

2
x − 3y2

)
dy dx =

∫ 1

0

(
3

2
x + 9

4

)
y2 − 9

2
xy − y3

∣∣∣∣3
y=0

dx

=
∫ 1

0

((
3

2
x + 9

4

)
· 9 − 9

2
x · 3 − 27

)
dx =

∫ 1

0
−27

4
dx = −27

4
= −6.75

6. f (x, y, z) = z

x
; 1 ≤ x ≤ 3, 0 ≤ y ≤ 2, 0 ≤ z ≤ 4

solution We write the triple integral as an iterated integral and evaluate it using iterated integral of a product function.
We get

∫∫∫
B

f (x, y, z) dV =
∫ 3

1

∫ 2

0

∫ 4

0

z

x
dz dy dx =

(∫ 4

0
z dz

)(∫ 2

0
1 dy

)(∫ 3

1

1

x
dx

)

=
(

1

2
z2
∣∣∣∣4
0

)(
y

∣∣∣∣2
0

)(
ln x

∣∣∣∣3
1

)
= 8 · 2 · (ln 3 − ln 1) = 16 ln 3

7. f (x, y, z) = (x + z)3; [0, a] × [0, b] × [0, c]
solution We write the triple integral as an iterated integral and evaluate it to obtain

∫∫∫
B

f (x, y, z) dV =
∫ a

0

∫ b

0

∫ c

0
(x + z)3 dz dy dx =

∫ a

0

∫ b

0

(x + z)4

4

∣∣∣∣c
z=0

dy dx

=
∫ a

0

∫ b

0

(
(x + c)4

4
− x4

4

)
dy dx =

∫ a

0

(x + c)4 − x4

4
y

∣∣∣∣b
y=0

dx

=
∫ a

0

b

4

[
(x + c)4 − x4

]
dx = b

4

[
(x + c)5

5
− x5

5

] ∣∣∣∣a
x=0

= b

4

(a + c)5 − a5 − c5

5
= b

20

[
(a + c)5 − a5 − c5

]
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8. f (x, y, z) = (x + y − z)2; [0, a] × [0, b] × [0, c]
solution We evaluate the triple integral using Theorem 1. This gives

∫∫∫
B

f (x, y, z) dV =
∫ a

0

∫ b

0

∫ c

0
(x + y − z)2 dz dy dx =

∫ a

0

∫ b

0

(
− (x + y − z)3

3

∣∣∣∣c
z=0

)
dy dx

=
∫ a

0

∫ b

0
− (x + y − c)3

3
+ (x + y)3

3
dy dx

=
∫ a

0

(
− (x + y − c)4

12
+ (x + y)4

12

∣∣∣∣b
y=0

)
dx

=
∫ a

0
− (x + b − c)4

12
+ (x + b)4

12
+ (x − c)4

12
− x4

12
dx

= − (x + b − c)5

60
+ (x + b)5

60
+ (x − c)5

60
− x5

60

∣∣∣∣a
x=0

= − (a + b − c)5

60
+ (a + b)5

60
+ (a − c)5

60
− a5

60
+ (b − c)5

60
− b5

60
+ (−c)5

60

In Exercises 9–14, evaluate
∫∫∫

W
f (x, y, z) dV for the function f and region W specified.

9. f (x, y, z) = x + y; W : y ≤ z ≤ x, 0 ≤ y ≤ x, 0 ≤ x ≤ 1

solution W is the region between the planes z = y and z = x lying over the triangle D in the xy-plane defined by
the inequalities 0 ≤ y ≤ x, 0 ≤ x ≤ 1.

x

y

y = x

1

10

D

We compute the integral, using Theorem 2, by evaluating the following iterated integral:

∫∫∫
W

(x + y) dV =
∫∫

D

(∫ x

y
(x + y) dz

)
dA =

∫∫
D

(x + y)z

∣∣∣∣x
z=y

dA =
∫∫

D
(x + y)(x − y) dA

=
∫∫

D

(
x2 − y2

)
dA =

∫ 1

0

∫ x

0

(
x2 − y2

)
dy dx =

∫ 1

0

(∫ x

0

(
x2 − y2

)
dy

)
dx

=
∫ 1

0
x2y − y3

3

∣∣∣∣x
y=0

dx =
∫ 1

0

2x3

3
dx = 2

12
x4
∣∣∣∣1
0

= 1

6

10. f (x, y, z) = ex+y+z; W : 0 ≤ z ≤ 1, 0 ≤ y ≤ x, 0 ≤ x ≤ 1

solution W is the region between the planes z = 0 and z = 1 lying over the triangle D in the xy-plane described in
Exercise 9.

y
y = x

x
1

1

0

D
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We compute the triple integral as the following iterated integral:∫∫∫
W

ex+y+z dV =
∫∫

D

(∫ 1

0
ex+y+z dz

)
dA =

∫∫
D

ex+y+z

∣∣∣∣1
z=0

dA

=
∫∫

D
(ex+y+1 − ex+y) dA =

∫ 1

0

∫ x

0
(ex+y+1 − ex+y) dy dx

=
∫ 1

0

(∫ x

0
(ex+y+1 − ex+y) dy

)
dx =

∫ 1

0
ex+y+1 − ex+y

∣∣∣∣x
y=0

dx

=
∫ 1

0

(
e2x+1 − e2x − ex+1 + ex

)
dx = 1

2
e2x+1 − 1

2
e2x − ex+1 + ex

∣∣∣∣1
0

= 1

2
e3 − 1

2
e2 − e2 + e −

(
1

2
e − 1

2
e0 − e + e0

)

= 1

2
e3 − 3

2
e2 + 3

2
e − 1

2
= 1

2
(e3 − 3e2 + 3e − 1)

11. f (x, y, z) = xyz; W : 0 ≤ z ≤ 1, 0 ≤ y ≤
√

1 − x2, 0 ≤ x ≤ 1

solution W is the region between the planes z = 0 and z = 1, lying over the part D of the disk in the first quadrant.

x

y

1

10

D

y =   1 −x2

Using Theorem 2, we compute the triple integral as the following iterated integral:∫∫∫
W

xyz dV =
∫∫

D

(∫ 1

0
xyz dz

)
dA =

∫∫
D

xyz2

2

∣∣∣∣1
z=0

dA =
∫∫

D
xy

2
dA

=
∫ 1

0

⎛
⎝∫

√
1−x2

0

xy

2
dy

⎞
⎠ dx =

∫ 1

0

xy2

4

∣∣∣∣
√

1−x2

y=0
dx =

∫ 1

0

x(1 − x2)

4
dx

=
∫ 1

0

x − x3

4
dx = x2

8
− x4

16

∣∣∣∣1
0

= 1

8
− 1

16
= 1

16

12. f (x, y, z) = x; W : x2 + y2 ≤ z ≤ 4

solution Here, W is the upper half of the solid cone underneath the plane z = 4. First we must determine the projection
D of W onto the xy-plane. First considering the intersection of the cone and the plane z = 4 we have:

x2 + y2 = 4

which is a circle centered at the origin with radius 2. The projection into the xy-plane is still x2 + y2 = 4.
The triple integral can be written as the following iterated integral:∫∫∫

W
x dV =

∫∫
D

(∫ 4

x2+y2
x dz

)
dA =

∫∫
D

xz

∣∣∣∣4
z=x2+y2

dA

=
∫∫

D
x(4 − x2 − y2) dA =

∫ 2π

0

∫ 2

0
r cos θ(4 − r2 cos2 θ − r2 sin2 θ)r dr dθ

=
∫ 2π

0

∫ 2

0
4r2 cos θ − r4 cos θ dr dθ

=
∫ 2π

0

4

3
r3 cos θ − 1

5
r5 cos θ

∣∣∣∣2
0
dθ

=
∫ 2π

0

64

15
cos θ dθ = 64

15
sin θ

∣∣∣∣2π

0
= 0
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13. f (x, y, z) = ez; W : x + y + z ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0

solution Notice that W is the tetrahedron under the plane x + y + z = 1 above the first quadrant.

z

y

x

1

1

1

First, we must determine the projection D of W onto the xy-plane. The intersection of the plane x + y + z = 1 with the
xy-plane is obtained by solving

x + y + z = 1

z = 0
⇒ x + y = 1

Therefore, the projection D of W onto the xy-plane is the triangle enclosed by the line x + y = 1 and the positive axes.

y

x
1

1

0

D

x = 1 − y

The region W is the region between the planes z = 1 − x − y and z = 0, lying above the triangle D in the xy-plane. The
triple integral can be written as the following iterated integral:

∫∫∫
W

ez dV =
∫∫

D

(∫ 1−x−y

0
ez dz

)
dA =

∫∫
D

ez

∣∣∣∣1−x−y

z=0
dA

=
∫∫

D

(
e1−x−y − 1

)
dA

=
∫ 1

0

(∫ 1−y

0

(
e1−x−y − 1

)
dx

)
dy =

∫ 1

0
−e1−x−y − x

∣∣∣∣1−y

x=0
dy

=
∫ 1

0
−e1−1+y−y − (1 − y) + e1−y dy

=
∫ 1

0
e1−y + y − 2 dy = −e1−y + 1

2
y2 − 2y

∣∣∣∣1
y=0

= −1 + 1

2
− 2 −

(
−e1

)
= e − 5

2

14. f (x, y, z) = z; W : x2 ≤ y ≤ 2, 0 ≤ x ≤ 1, x − y ≤ z ≤ x + y

solution The triple integral can be written as the following iterated integral:

∫∫∫
W

z dV =
∫ 1

0

∫ 2

x2

∫ x+y

x−y
z dz dy dx =

∫ 1

0

∫ 2

x2

1

2
z2
∣∣∣∣x+y

z=x−y

dy dx

= 1

2

∫ 1

0

∫ 2

x2
(x + y)2 − (x − y)2 dy dx = 1

2

∫ 1

0

∫ 2

x2
4xy dy dx

=
∫ 1

0
xy2

∣∣∣∣2
y=x2

dx =
∫ 1

0
4x − x5 dx

= 2x2 − 1

6
x6
∣∣∣∣1
0

= 2 − 1

6
= 11

6
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15. Calculate the integral of f (x, y, z) = z over the region W in Figure 10 below the hemisphere of radius 3 and lying
over the triangle D in the xy-plane bounded by x = 1, y = 0, and x = y.

x

y

z

1

W

1

D

3

3

x2 + y2 + z2 = 9

FIGURE 10

solution

x

y

z

1

1

3

3

The upper surface is the hemisphere z =
√

9 − x2 − y2 and the lower surface is the xy-plane z = 0. The projection of V
onto the xy-plane is the triangle D shown in the figure.

y
y = x

x
1

1

0

D

We compute the triple integral as the following iterated integral:

∫∫∫
V

z dV =
∫∫

D

(∫ √
9−x2−y2

0
z dz

)
dA =

∫∫
D

z2

2

∣∣∣∣
√

9−x2−y2

0
dA =

∫∫
D

9 − x2 − y2

2
dA

=
∫ 1

0

(∫ x

0

9 − x2 − y2

2
dy

)
dx =

∫ 1

0

9y − x2y − y3

3
2

∣∣∣∣x
y=0

dx =
∫ 1

0

(
9x

2
− 2x3

3

)
dx

= 9x2

4
− x4

6

∣∣∣∣1
0

= 2
1

12

16. Calculate the integral of f (x, y, z) = e2z over the tetrahedron W in Figure 11.

6

4
4

z

y

x

FIGURE 11
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solution We first must find the equation of the upper surface, which is the plane through the points A = (4, 0, 0),
B = (0, 4, 0), and C = (0, 0, 6).

C = (0, 0, 6)

B = (0, 4, 0)
A = (4, 0, 0)

z

y

x

A vector normal to the plane is the following cross product:

n = −→
AB × −→

AC = 〈−4, 4, 0〉 × 〈−4, 0, 6〉 =
∣∣∣∣∣∣

i j k
−4 4 0
−4 0 6

∣∣∣∣∣∣ = 24i + 24j + 16k = 8 (3i + 3j + 2k)

The equation of the plane with normal 3i + 3j + 2k passing through A = (4, 0, 0) is

3(x − 4) + 3y + 2z = 0

3x + 3y + 2z = 12 ⇒ z = 6 − 3

2
x − 3

2
y

Thus, the tetrahedron V lies between the planes z = 6 − 3x
2 − 3y

2 and z = 0. The projection D of V onto the xy-plane is
the triangle enclosed by the line AB and the positive axes. We compute the equation of the line AB:

y − 0 = 4 − 0

0 − 4
(x − 4) ⇒ y = −x + 4

x

D

y

40

4

y = −x + 4

We now compute the triple integral of f over V as the following iterated integral:

∫∫∫
V

e2z dV =
∫∫

D

(∫ 6− 3x
2 − 3y

2

0
e2z dz

)
dA = 1

2

∫∫
D

e2z

∣∣∣∣6− 3x
2 − 3y

2

z=0
dA

= 1

2

∫∫
D

e12−3x−3y − 1 dA = 1

2

∫ 4

0

∫ 4−x

0
e12−3x−3y − 1 dy dx

= 1

2

∫ 4

0
−1

3
e12−3x−3y − y

∣∣∣∣4−x

y=0
dx = 1

2

∫ 4

0
−1

3
e12−3x−3(4−x) − (4 − x) + 1

3
e12−3x dx

= 1

2

∫ 4

0
x − 13

3
+ 1

3
e12−3x dx = 1

2

(
1

2
x2 − 13

3
x − 1

9
e12−3x

) ∣∣∣∣4
0

= 1

2

(
8 − 52

3
− 1

9

)
− 1

2

(
−1

9
e12

)
= 1

18
e12 − 85

18
≈ 9037

17. Integrate f (x, y, z) = x over the region in the first octant (x ≥ 0, y ≥ 0, z ≥ 0) above z = y2 and below
z = 8 − 2x2 − y2.

solution We first find the projection of the region W onto the xy-plane. We find the curve of intersection between the
upper and lower surfaces, by solving the following equation for x, y ≥ 0:

8 − 2x2 − y2 = y2 ⇒ y2 = 4 − x2 ⇒ y =
√

4 − x2, x ≥ 0

The projection D of W onto the xy-plane is the region bounded by the circle x2 + y2 = 4 and the positive axes.
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x

D

y

20

2

y =   4 − x2 

We now compute the triple integral over W by evaluating the following iterated integral:

∫∫∫
W

x dV =
∫∫

D

(∫ 8−2x2−y2

y2
x dz

)
dA =

∫∫
D

xz

∣∣∣∣8−2x2−y2

z=y2
dA

=
∫∫

D
x(8 − 2x2 − y2 − y2) dA =

∫∫
D

8x − 2x3 − 2xy2 dA

=
∫ 2

0

∫ √
4−x2

0
8x − 2x3 − 2xy2 dy dx =

∫ 2

0
8xy − 2x3y − x2y2

∣∣∣∣
√

4−x2

y=0
dx

=
∫ 2

0
8x
√

4 − x2 dx −
∫ 2

0
2x3

√
4 − x2 dx −

∫ 2

0
x2(4 − x2) dx

= 8
∫ 2

0
x
√

4 − x2 dx − 2
∫ 2

0
x3
√

4 − x2 dx −
∫ 2

0
4x2 − x4 dx

The first and third integrals are easily computing using u-substitution and term by term integration, respectively. The
second integral requires a clever u-substitution, let u = 4 − x2, then du = −2x dx and x2 = 4 − u. Using this
information we see

−2
∫ 2

0
x3
√

4 − x2 dx = −2
∫ 2

0
x · x2

√
4 − x2 dx

=
∫ 0

u=4
(4 − u)

√
u du

=
∫ 0

4
4
√

u − u3/2 du

= 8

3
u3/2 − 2

5
u5/2

∣∣∣∣0
u=4

= −
(

64

3
− 64

5

)
= −128

15

Hence, ∫∫∫
W

x dV = 8
∫ 2

0
x
√

4 − x2 dx − 2
∫ 2

0
x3
√

4 − x2 dx −
∫ 2

0
4x2 − x4 dx

= 8
∫ 2

0
x
√

4 − x2 dx − 128

15
−
∫ 2

0
4x2 − x4 dx

= 8 · −1

3
(4 − x2)3/2

∣∣∣∣2
0

− 128

15
−
(

4

3
x3 − 1

5
x5
∣∣∣∣2
0

)

= −8

3
(0 − 8) − 128

15
−
(

32

3
− 32

5

)
= 128

15

18. Compute the integral of f (x, y, z) = y2 over the region within the cylinder x2 + y2 = 4 where 0 ≤ z ≤ y.

solution

x

y

z
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The upper surface is the plane z = y and the lower surface is the plane z = 0. The region of integration, W , projects onto
the domain D bounded by the semicircle and the x-axis.

2

2

4

4−4 −2

16 − x2y =

y

x

The triple integral of f over W is equal to the following iterated integral:

∫∫∫
W

f (x, y, z) dx =
∫∫

D

(∫ y

0
y2 dz

)
dA =

∫∫
D

y2z

∣∣∣∣y
z=0

dA

=
∫∫

D
y3 dA =

∫ 4

−4

∫ √
16−x2

0
y3 dy dx

=
∫ 4

−4

y4

4

∣∣∣∣
√

16−x2

y=0
dx = 1

4

∫ 4

−4
(16 − x2)2 dx

= 1

4

∫ 4

−4
256 − 32x2 + x4 dx = 256x − 32

3
x3 + 1

5
x5
∣∣∣∣4−4

= 1

4

(
256 · 4 − 32

3
· 64 − 1024

5

)
− 1

4

(
256 · −4 + 32

3
· 64 − 1024

5

)

= 4096

15
≈ 273.067

19. Find the triple integral of the function z over the ramp in Figure 12. Here, z is the height above the ground.

3

4

1

FIGURE 12

solution We place the coordinate axes as shown in the figure:

3

4

y

1

x

z

A B

O

The upper surface is the plane passing through the points O = (0, 0, 0), A = (3, 0, 0), and B = (3, 4, 1). We find a
normal to this plane and then determine the equation of the plane. We get

−→
OA × −→

AB = 〈3, 0, 0〉 × 〈0, 4, 1〉 =
∣∣∣∣∣∣

i j k
3 0 0
0 4 1

∣∣∣∣∣∣ = −3j + 12k = 3 (−j + 4k)

The plane is orthogonal to the vector 〈0, −1, 4〉 and passes through the origin, hence the equation of the plane is

0 · x − y + 4z = 0 ⇒ z = y

4

The projection of the region of integration W onto the xy-plane is the rectangle D defined by

0 ≤ x ≤ 3, 0 ≤ y ≤ 4.
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We now compute the triple integral of f over W , as the following iterated integral:

∫∫∫
W

z dV =
∫∫

D

(∫ y/4

0
z dz

)
dA =

∫∫
D

z2

2

∣∣∣∣y/4

z=0
dA =

∫∫
D

y2

32
dA =

∫ 4

0

(∫ 3

0

y2

32
dx

)
dy

=
∫ 4

0

y2x

32

∣∣∣∣3
x=0

dy =
∫ 4

0

3y2

32
dy = y3

32

∣∣∣∣4
0

= 43

32
= 2

20. Find the volume of the solid in R3 bounded by y = x2, x = y2, z = x + y + 5, and z = 0.

solution The solid W is shown in the following figure:

x

y

z

The upper surface is the plane z = x + y + 5 and the lower surface is the plane z = 0. The projection of W onto the
xy-plane is the region in the first quadrant enclosed by the curves y = x2 and x = y2.

x

D

y

10

1

y = x2

x = y2

We use the formula for the volume as a triple integral to write

Volume(W) =
∫∫∫

W
1 dV

The triple integral is equal to the following iterated integral:

Volume(W) =
∫∫∫

W
1 dV =

∫∫
D

(∫ x+y+5

0
1 dz

)
dA =

∫∫
D

z

∣∣∣∣x+y+5

z=0
dA

=
∫∫

D
(x + y + 5) dA =

∫ 1

0

(∫ √
x

x2
(x + y + 5) dy

)
dx =

∫ 1

0
xy + y2

2
+ 5y

∣∣∣∣
√

x

y=x2
dx

=
∫ 1

0

(
x
√

x + x

2
+ 5

√
x −

(
x3 + x4

2
+ 5x2

))
dx

=
∫ 1

0

(
−x4

2
− x3 − 5x2 + x3/2 + x

2
+ 5x1/2

)
dx

= −x5

10
− x4

4
− 5x3

3
+ 2

5
x5/2 + x2

4
+ 10

3
x3/2

∣∣∣∣1
0

= − 1

10
− 1

4
− 5

3
+ 2

5
+ 1

4
+ 10

3
= 59

30
= 1

29

30
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21. Find the volume of the solid in the octant x ≥ 0, y ≥ 0, z ≥ 0 bounded by x + y + z = 1 and x + y + 2z = 1.

solution The solid W is shown in the figure:

x

y

z

The upper and lower surfaces are the planes x + y + z = 1 (or z = 1 − x − y) and x + y + 2z = 1 (or z = 1−x−y
2 ),

respectively. The projection of W onto the xy-plane is the triangle enclosed by the line AB : y = 1 − x and the positive
x and y-axes.

y

x
1

1

0

D

y = 1 − x

Using the volume of a solid as a triple integral, we have

Volume(W) =
∫∫∫

W
1 dV =

∫∫
D

(∫ 1−x−y

(1−x−y)/2
1 dz

)
dA =

∫∫
D

z

∣∣∣∣1−x−y

z=(1−x−y)/2
dA

=
∫∫

D

(
(1 − x − y) − 1 − x − y

2

)
dA =

∫∫
D

1 − x − y

2
dA

=
∫ 1

0

(∫ 1−x

0

1 − x − y

2
dy

)
dx =

∫ 1

0

y − xy − y2

2
2

∣∣∣∣1−x

y=0
dx

=
∫ 1

0

1 − x − x(1 − x) − (1−x)2

2
2

dx = 1

2

∫ 1

0

(
x2

2
− x + 1

2

)
dx

= 1

2

(
x3

6
− x2

2
+ 1

2
x

) ∣∣∣∣1
0

= 1

2

(
1

6
− 1

2
+ 1

2

)
= 1

12

22. Calculate
∫∫∫

W
y dV , where W is the region above z = x2 + y2 and below z = 5, and bounded by y = 0 and

y = 1.

solution The region W is shown in the figure:

y

z

x
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The upper surface is the plane z = 5 and the lower surface is the paraboloid z = x2 + y2. The projection of W onto the
xy-plane is the part of the disk x2 + y2 ≤ 5 between the lines y = 0 and y = 1.

x
D

1

x2 + y2 = 5

y

31−1−3

5

5

The triple integral of f (x, y, z) = y over W is equal to the following iterated integral:

∫∫∫
W

y dV =
∫∫

D

(∫ 5

x2+y2
y dz

)
dA =

∫∫
D

yz

∣∣∣∣5
z=x2+y2

dA =
∫∫

D
y
(

5 − x2 − y2
)

dA

=
∫ 1

0

(∫ √
5−y2

−√
5−y2

y
(

5 − x2 − y2
)

dx

)
dy = 2

∫ 1

0
y

(
5x − x3

3
− y2x

) ∣∣∣∣
√

5−y2

x=0
dy

= 2
∫ 1

0
y

((
5 − y2

)
x − x3

3

) ∣∣∣∣
√

5−y2

x=0
dy = 2

∫ 1

0
y

((
5 − y2

)3/2 − 1

3

(
5 − y2

)3/2
)

dy

=
∫ 1

0

4

3

(
5 − y2

)3/2
y dy (1)

We compute the integral using the substitution u = 5 − y2, du = −2y dy:∫∫∫
W

y dV =
∫ 1

0

4

3

(
5 − y2

)3/2
y dy =

∫ 4

5
−2

3
u3/2 du =

∫ 5

4

2

3
u3/2 du = 4

15
u5/2

∣∣∣∣5
4

= 4

15

(
55/2 − 45/2

)
≈ 6.37

23. Evaluate
∫∫∫

W
xz dV , where W is the domain bounded by the elliptic cylinder

x2

4
+ y2

9
= 1 and the sphere

x2 + y2 + z2 = 16 in the first octant x ≥ 0, y ≥ 0, z ≥ 0 (Figure 13).

z

x2 + y2 + z2 = 16 

y

x

(   )x
2 (   )y

3
2
 +

2
 = 1

FIGURE 13

solution

z

y

x

The upper surface is the sphere x2 + y2 + z2 = 16, or z =
√

16 − x2 − y2, and the lower surface is the xy-plane, z = 0.
The projection of W onto the xy-plane is the region in the first quadrant bounded by the ellipse (x/2)2 + (y/3)2 = 1, or

y = 3
2

√
4 − x2.



April 19, 2011

S E C T I O N 15.3 Triple Integrals (LT SECTION 16.3) 937

y

x
21 3

3

2

1

0

D
y = 4 − x23

2

Therefore, the triple integral over W is equal to the following iterated integral:

∫∫∫
W

xz dV =
∫∫

D

(∫ √
16−x2−y2

0
xz dz

)
dA =

∫∫
D

1

2
xz2

∣∣∣∣
√

16−x2−y2

z=0
dA

= 1

2

∫∫
D

x(16 − x2 − y2) dA = 1

2

∫ 2

0

∫ 3
2

√
4−x2

0
16x − x3 − xy2 dy dx

= 1

2

∫ 2

0
16xy − x3y − 1

3
xy3

∣∣∣∣
3
2

√
4−x2

y=0

= 1

2

∫ 2

0
24x

√
4 − x2 − 3

2
x3
√

4 − x2 − 9

8
x(4 − x2)3/2 dx

= 12
∫ 2

0
x
√

4 − x2 dx − 3

4

∫ 2

0
x3
√

4 − x2 dx − 9

16

∫ 2

0
x(4 − x2)3/2 dx

The first and third integrals are simple u-substitution problems. For the second integral, let us use u = 4 − x2 and thus
du = −2x dx and x2 = 4 − u. Thus, we can write

−3

4

∫ 2

0
x3
√

4 − x2 dx = −3

4

∫ 2

0
x · x2

√
4 − x2 dx

= 3

8

∫ 0

u=4
(4 − u)

√
u du

= 3

8

∫ 0

4
4u1/2 − u3/2 du

= 3

8

(
8

3
u3/2 − 2

5
u5/2

∣∣∣∣0
u=4

)

= −3

8

(
64

3
− 64

5

)
= −16

5

Therefore we have:∫∫∫
W

xz dV = 12
∫ 2

0
x
√

4 − x2 dx − 3

4

∫ 2

0
x3
√

4 − x2 dx − 9

16

∫ 2

0
x(4 − x2)3/2

= 12
∫ 2

0
x
√

4 − x2 dx − 16

5
− 9

16

∫ 2

0
x(4 − x2)3/2 dx

= −6 · 2

3

(
(4 − x2)3/2

∣∣∣∣2
0

)
− 16

5
+ 9

32
· 2

5

(
(4 − x2)5/2

∣∣∣∣2
0

)

= −4 (0 − 8) − 16

5
+ 9

80
(0 − 32) = 126

5
24. Describe the domain of integration and evaluate:

∫ 3

0

∫ √
9−x2

0

∫ √
9−x2−y2

0
xy dz dy dx

solution The domain of integration W is defined by the following inequalities:

0 ≤ x ≤ 3, 0 ≤ y ≤
√

9 − x2, 0 ≤ z ≤
√

9 − x2 − y2
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This domain is the simple region in which the upper surface is the hemisphere of radius 3, z =
√

9 − x2 − y2, and the
lower surface is the plane z = 0. The projection D of W onto the xy-plane is defined by the inequalities

0 ≤ x ≤ 3, 0 ≤ y ≤
√

9 − x2

y

x
3

3

0

D

D is the part of the disk of radius 3 that lies in the first quadrant. We conclude that W is the part of the ball of radius 3 in
the first octant. We evaluate the triple integral as the following iterated integral:

∫∫∫
W

xy dV =
∫∫

D

(∫ √
9−x2−y2

0
xy dz

)
=
∫∫

D
xyz

∣∣∣∣
√

9−x2−y2

z=0
dA =

∫∫
D

xy

√
9 − x2 − y2 dA

=
∫ 3

0

⎛
⎝x

∫ √
9−x2

0

√
9 − x2 − y2 · y dy

⎞
⎠ dx (1)

We evaluate the inner integral using the substitution u = 9 − x2 − y2, du = −2y dy. The upper limit of integration is
u = 9 − x2 − (9 − x2) = 0 and the lower limit is u = 9 − x2 − 02 = 9 − x2. Therefore,

∫ √
9−x2

0

√
9 − x2 − y2 · y dy =

∫ 0

9−x2
u1/2

(
−du

2

)
= 1

2

∫ 9−x2

0
u1/2 du

= 1

3
u3/2

∣∣∣∣9−x2

u=0
= (9 − x2)

3/2

3

We substitute in (1) and use the substitution u = 9 − x2, du = −2x dx to compute the resulting integral:

∫∫∫
W

xy dV =
∫ 3

0

1

3
x(9 − x2)

3/2
dx =

∫ 0

9

1

3
u3/2

(
du

−2

)
= −

∫ 0

9

1

6
u3/2 du

= 1

6
· 2

5
u5/2

∣∣∣∣9
0

= 1

15
· 95/2 = 35

15
= 243

15
= 16.2

25. Describe the domain of integration of the following integral:

∫ 2

−2

∫ √
4−z2

−
√

4−z2

∫ √
5−x2−z2

1
f (x, y, z) dy dx dz

solution The domain of integration of W is defined by the following inequalities:

−2 ≤ z ≤ 2, −
√

4 − z2 ≤ x ≤
√

4 − z2, 1 ≤ y ≤
√

5 − x2 − z2

This region is bounded by the plane y = 1 and the sphere y2 = 5 − x2 − z2 or x2 + y2 + z2 = 5, lying over the disk
x2 + z2 ≤ 4 in the xz-plane. This is the central cylinder oriented along the y-axis of radius 2 inside a sphere of radius√

5.

26. Let W be the region below the paraboloid

x2 + y2 = z − 2

that lies above the part of the plane x + y + z = 1 in the first octant (x ≥ 0, y ≥ 0, z ≥ 0). Express∫∫∫
W

f (x, y, z) dV

as an iterated integral (for an arbitrary function f ).
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solution The region of integration is shown in the figure:

z

x

y

The upper surface is z = 2 + x2 + y2 and the lower surface is the plane z = 1 − x − y. The projection D of W into the
xy-plane is the triangle enclosed by the line y = 1 − x (found by setting z = 0 in the equation x + y + z = 1) and the
positive x and y axes.

y

x
1

1

0

D

y = 1 − x

Therefore, the triple integral over W is equal to the following iterated integral:

∫∫∫
W

f (x, y, z) dV =
∫∫

D

(∫ 2+x2+y2

1−x−y
f (x, y, z) dz

)
dA =

∫ 1

0

∫ 1−x

0

∫ 2+x2+y2

1−x−y
f (x, y, z) dz dy dx

27. In Example 5, we expressed a triple integral as an iterated integral in the three orders

dz dy dx, dx dz dy, and dy dz dx

Write this integral in the three other orders:

dz dx dy, dx dy dz, and dy dx dz

solution In Example 5 we considered the triple integral
∫∫∫

W
xyz2 dV , where W is the region bounded by

z = 4 − y2, z = 0, y = 2x, x = 0.

We now write the triple integral as an iterated integral in the orders dz dx dy, dx dy dz, and dy dx dz.

• dz dx dy: The upper surface z = 4 − y2 projects onto the xy-plane on the triangle defined by the lines y = 2,
y = 2x, and x = 0.

x

D
1

2

y

1

x = y
2

We express the line y = 2x as x = y
2 and write the triple integral as

∫∫∫
W

xyz2 dV =
∫∫

D

(∫ 4−y2

0
xyz2 dz

)
dA =

∫ 2

0

∫ y/2

0

∫ 4−y2

0
xyz2 dz dx dy
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• dx dy dz: The projection of W onto the yz-plane is the domain T (see Example 5) defined by the inequalities

T : 0 ≤ y ≤ 2, 0 ≤ z ≤ 4 − y2

y

z

z = 4 − y2

2

This region can also be expressed as

0 ≤ z ≤ 4, 0 ≤ y ≤ √
4 − z

z

y

4
4 − zy =

4 − z0 ≤ y ≤

As explained in Example 5, the region W consists of all points lying between T and the “left-face” y = 2x, or
x = y

2 . Therefore, we obtain the following inequalities for W:

0 ≤ z ≤ 4, 0 ≤ y ≤ √
4 − z, 0 ≤ x ≤ 1

2
y

This yields the following iterated integral:

∫∫∫
W

xyz2 dV =
∫∫

T

(∫ y/2

0
xyz2 dx

)
dA =

∫ 4

0

∫ √
4−z

0

∫ y/2

0
xyz2 dx dy dz

• dy dx dz: As explained in Example 5, the projection of W onto the xz-plane is determined by the inequalities

S : 0 ≤ x ≤ 1, 0 ≤ z ≤ 4 − 4x2

x

S

z

1

z = 4 − 4x2

This region can also be described if we write x as a function of z:

z = 4 − 4x2 ⇒ 4x2 = 4 − z ⇒ x =
√

1 − z

4

x

z

4

0 ≤ x ≤ z
4

1 −
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This gives the following inequalities of S:

S : 0 ≤ z ≤ 4, 0 ≤ x ≤
√

1 − z

4

The upper surface z = 4 − y2 can be described by y = √
4 − z, hence the limits of y are 2x ≤ y ≤ √

4 − z. We
obtain the following iterated integral:

∫∫∫
W

xyz2 dV =
∫∫

S

(∫ √
4−z

2x
xyz2 dy

)
dA =

∫ 4

0

∫ √
1− z

4

0

∫ √
4−z

2x
xyz2 dy dx dz

28. Let W be the region bounded by

y + z = 2, 2x = y, x = 0, and z = 0

(Figure 14). Express and evaluate the triple integral of f (x, y, z) = z by projecting W onto the:

(a) xy-plane (b) yz-plane (c) xz-plane

y

z

x
1 2

2
Upper face
y + z = 2

2x = y

FIGURE 14

solution

(a)

y

z

x
1 2

2
Upper face
y + z = 2

2x = y

The upper face z = 2 − y intersects the first quadrant of the xy-plane (z = 0) in the line y = 2. Therefore the projection
of W onto the xy-plane is the triangle D defined by

D : 0 ≤ x ≤ 1, 2x ≤ y ≤ 2

y

x
21

2

1

0

y = 2x
D

Therefore, W is the following region:

0 ≤ x ≤ 1, 2x ≤ y ≤ 2, 0 ≤ z ≤ 2 − y
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We obtain the following iterated integral:

∫∫∫
W

z dV =
∫ 1

0

∫ 2

2x

∫ 2−y

0
z dz dy dx =

∫ 1

0

∫ 2

2x

1

2
z2
∣∣∣∣2−y

z=0
dy dx

= 1

2

∫ 1

0

∫ 2

2x
(2 − y)2 dy dx = 1

2

∫ 1

0
−1

3
(2 − y)3

∣∣∣∣2
2x

dx

= −1

6

∫ 1

0
−(2 − 2x)3 dx = 1

6
· −1

8
(2 − 2x)4

∣∣∣∣1
0

= − 1

48
(0) + 1

48
· 16 = 1

3

(b) The projection of W onto the yz-plane is the triangle defined by the line y + z = 2 and the positive y and z axes.

z

y
21

2

1

0

y + z = 2

T

That is,

T : 0 ≤ y ≤ 2, 0 ≤ z ≤ 2 − y

The region W consists of all points lying between T and the “left-face” y = 2x. Therefore, W is defined by the following
inequalities:

W : 0 ≤ y ≤ 2, 0 ≤ z ≤ 2 − y, 0 ≤ x ≤ y

2

We obtain the following iterated integral:

∫∫∫
W

z dV =
∫ 2

0

∫ 2−y

0

∫ y/2

0
z dx dz dy =

∫ 2

0

∫ 2−y

0
xz

∣∣∣∣y/2

x=0
dz dy

=
∫ 2

0

∫ 2−y

0

1

2
yz dz dy = 1

2

∫ 2

0

1

2
yz2

∣∣∣∣2−y

z=0
dy

= 1

4

∫ 2

0
y(2 − y)2 dy = 1

4

∫ 2

0
4y − 4y2 + y3 dy

= 1

4

(
2y2 − 4

3
y3 − 1

4
y4
∣∣∣∣2
0

)
= 1

4

(
8 − 4

3
· 8 + 4

)
= 1

3

(c) We first find the points on the intersection of the faces 2x − y = 0 and y + z = 2. These are the points (x, 2x, 2 − 2x).
Therefore, the projection of this intersection onto the xz-plane consists of the points (x, 0, 2 − 2x). That is, the projection
of W onto the xz-plane is the triangles defined by the line z = 2 − 2x and the positive x and z axes.

z

x
21

2

1

0

z = 2 − 2x

S

The corresponding inequalities are

S : 0 ≤ x ≤ 1, 0 ≤ z ≤ 2 − 2x
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The limits for y are 2x ≤ y ≤ 2 − z, where y = 2 − z is obtained from the equation y + z = 2 of the upper face. We
obtain the following iterated integral:∫∫∫

W
z dV =

∫ 1

0

∫ 2−2x

0

∫ 2−z

2x
z dy dz dx =

∫ 1

0

∫ 2−2x

0
yz

∣∣∣∣2−z

y=2x

dz dx

=
∫ 1

0

∫ 2−2x

0
(2 − z)z − 2xz dz dx =

∫ 1

0

∫ 2−2x

0
2z − z2 − 2xz dz dx

=
∫ 1

0
z2 − 1

3
z3 − xz2

∣∣∣∣2−2x

z=0
dx =

∫ 1

0
(2 − 2x)2 − 1

3
(2 − 2x)3 − x(2 − 2x)2 dx

=
∫ 1

0

4

3
− 4x − 4

3
x3 + 4x2 dx = 4

3
x − 2x2 − 1

3
x3 + 4

3
x3
∣∣∣∣1
0

= 4

3
− 2 − 1

3
+ 4

3
= 1

3

The three answers agree as expected.

29. Let

W = {
(x, y, z) :

√
x2 + y2 ≤ z ≤ 1

}
(see Figure 15). Express

∫∫∫
W

f (x, y, z) dV as an iterated integral in the order dz dy dx (for an arbitrary function f ).

y

x

z

z = x2 + y2

1

FIGURE 15

solution To express the triple integral as an iterated integral in order dz dy dx, we must find the projection of W onto

the xy-plane. The upper circle is
√

x2 + y2 = 1 or x2 + y2 = 1, hence the projection of W onto the xy plane is the disk

D : x2 + y2 ≤ 1

x

y

x2 + y2 = 1

− 1 − x2 ≤ y ≤ 1 − x2

−1 1

The upper surface is the plane z = 1 and the lower surface is z =
√

x2 + y2, therefore the triple integral over W is equal
to the following iterated integral:

∫∫∫
W

f (x, y, z) dV =
∫∫

D

(∫ 1
√

x2+y2
f (x, y, z) dz

)
dA =

∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ 1
√

x2+y2
f (x, y, z) dz dy dx

30. Repeat Exercise 29 for the order dx dy dz.

solution To express the triple integral as an iterated integral in order dx dy dz, we must find the projection of W
onto the yz-plane. The points on the surface z =

√
x2 + y2 are

(
x, y,

√
x2 + y2

)
, hence the projection on the yz-plane

consists of the points (0, y, |y|), that is, z = |y|.



April 19, 2011

944 C H A P T E R 15 MULTIPLE INTEGRATION (LT CHAPTER 16)

x

z

T

z = yz = −y

Therefore, the projection of W onto the yz-plane is the triangle defined by the lines z = |y| and z = 1. The region W
consists of all points lying between T and the surface z =

√
x2 + y2, or x = ±

√
z2 − y2. W can be described by the

inequalities

0 ≤ z ≤ 1

−z ≤ y ≤ z

−
√

z2 − y2 ≤ x ≤
√

z2 − y2

The triple integral is equal to the following iterated integral:

∫∫∫
W

f (x, y, z) dV =
∫ 1

0

∫ z

−z

∫ √
z2−y2

−√
z2−y2

f (x, y, z) dx dy dz.

31. Let W be the region bounded by z = 1 − y2, y = x2, and the planes z = 0, y = 1. Calculate the volume of W as a
triple integral in the order dz dy dx.

solution dz dy dx:

The projection of W onto the xy-plane is the region D bounded by the curve y = x2 and the line y = 1. The region
W consists of all points lying between D and the cylinder z = 1 − y2.

1

1

−1

y

x

D y = x2

Therefore, W can be described by the following inequalities:

−1 ≤ x ≤ 1, x2 ≤ y ≤ 1, 0 ≤ z ≤ 1 − y2

−1

1
y

z

x

1

1

We use the formula for the volume as a triple integral, write the triple integral as an iterated integral, and compute it. We
obtain

Volume(W) =
∫∫∫

W
1 dV =

∫ 1

−1

∫ 1

x2

∫ 1−y2

0
1 dz dy dx =

∫ 1

−1

∫ 1

x2
z

∣∣∣∣1−y2

z=0
dy dx

=
∫ 1

−1

∫ 1

x2

(
1 − y2

)
dy dx =

∫ 1

−1
y − y3

3

∣∣∣∣1
y=x2

dx =
∫ 1

−1

(
1 − 1

3
−
(

x2 − x6

3

))
dx

= 2
∫ 1

0

(
x6

3
− x2 + 2

3

)
dx = 2

(
x7

21
− x3

3
+ 2x

3

) ∣∣∣∣1
0

= 2

(
1

21
− 1

3
+ 2

3

)
= 16

21
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32. Calculate the volume of the region W in Exercise 31 as a triple integral in the following orders:

(a) dx dz dy (b) dy dz dx

solution dx dz dy:

The projection of W onto the yz-plane is the region T in the first quadrant bounded by the curve z = 1 − y2.

y

z = 1 − y2

z

1

1

T

The region W consists of all points lying between T and the faces y = x2 or x = ±√
y. Therefore, W is described by

the following inequalities:

0 ≤ y ≤ 1, 0 ≤ z ≤ 1 − y2, −√
y ≤ x ≤ √

y

We obtain the following iterated integral:

Volume(W) =
∫ 1

0

∫ 1−y2

0

∫ √
y

−√
y

1 · dx dz dy =
∫ 1

0

∫ 1−y2

0
x

∣∣∣∣
√

y

x=−√
y

dz dy =
∫ 1

0

∫ 1−y2

0
2
√

ydz dy

=
∫ 1

0
2
√

yz

∣∣∣∣1−y2

z=0
dy =

∫ 1

0
2
√

y
(

1 − y2
)

dy =
∫ 1

0

(
2y1/2 − 2y5/2

)
dy

= 4

3
y3/2 − 4

7
y7/2

∣∣∣∣1
0

= 4

3
− 4

7
= 16

21

dy dz dx:
To find the projection of W onto the xz-plane we first must find the points Q that lie on both cylinders y = x2 and

z = 1 − y2.

−1

y

z

x

1 1

1 z = 1 − y2

y = x2

At these points y = x2 and z = 1 − y2, hence z = 1 − (x2)
2 = 1 − x4. Therefore, Q = (x, x2, 1 − x4). The projection

onto the xz-plane are the points (x, 0, 1 − x4), that is, the curve z = 1 − x4.

1

1−1

z

x

z = 1 − x4

S

The region W consists of all points between the cylinders y = x2 and z = 1 − y2, or y = √
1 − z. Therefore, W can be

described by the following inequalities:

−1 ≤ x ≤ 1, 0 ≤ z ≤ 1 − x4, x2 ≤ y ≤ √
1 − z

We obtain the following integral:

Volume(W) =
∫ 1

−1

∫ 1−x4

0

∫ √
1−z

x2
dy dz dx =

∫ 1

−1

∫ 1−x4

0
y

∣∣∣∣
√

1−z

x2
dz dx

=
∫ 1

−1

∫ 1−x4

0

(√
1 − z − x2

)
dz dx =

∫ 1

−1

(
−2

3
(1 − z)3/2 − x2z

) ∣∣∣∣1−x4

z=0
dx
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=
∫ 1

−1

(
−2

3

(
1 −

(
1 − x4

))3/2 − x2
(

1 − x4
)

+ 2

3

)
dx

=
∫ 1

−1

(
−2x6

3
− x2 + x6 + 2

3

)
dx = 2

∫ 1

0

(
x6

3
− x2 + 2

3

)
dx

= 2

(
x7

21
− x3

3
+ 2x

3

) ∣∣∣∣1
0

= 2

(
1

21
− 1

3
+ 2

3

)
= 16

21

(The three answers agree as expected.)

In Exercises 33–36, compute the average value of f (x, y, z) over the region W .

33. f (x, y, z) = xy sin(πz); W = [0, 1] × [0, 1] × [0, 1]
solution The volume of the cube is V = 1, hence the average of f over the cube is the following value:

f =
∫∫∫

W
xy sin(πz) dV =

∫ 1

0

∫ 1

0

∫ 1

0
xy sin(πz) dx dy dz

=
∫ 1

0

∫ 1

0

1

2
x2y sin(πz)

∣∣∣∣1
x=0

dy dz =
∫ 1

0

∫ 1

0

1

2
y sin(πz) dy dz

=
∫ 1

0

y2

4
sin(πz)

∣∣∣∣1
y=0

dz =
∫ 1

0

1

4
sin(πz) dz = − 1

4π
cos(πz)

∣∣∣∣1
0

= − 1

4π
(cos π − cos 0) = − 1

4π
(−1 − 1) = 1

2π

34. f (x, y, z) = xyz; W = [0, 1] × [0, 1] × [0, 1]
solution This solid is a tetrahedron with vertices (0, 0, 0), (1, 0, 0), (1, 1, 0), and (1, 1, 1) and volume 1/6. The
equation of the plane that forms this tetrahedron is y + z = 0. Therefore, the average of f over the tetrahedron is the
following value:

f = 1

V

∫∫∫
W

xyz dV = 6
∫ 1

0

∫ x

0

∫ −y

0
xyz dz dy dx

= 6
∫ 1

0

∫ x

0

1

2
xyz2

∣∣∣∣
−y

z=0
dy dx = 3

∫ 1

0

∫ x

0
xy(−y)2dy dx

= 3
∫ 1

0

∫ x

0
xy3dy dx = 3

4

∫ 1

0
xy4

∣∣∣∣
x

y=0
dx

= 3

4

∫ 1

0
x5dx = 1

8

(
x6
∣∣∣∣
1

0

)
= 1

8

35. f (x, y, z) = ey ; W : 0 ≤ y ≤ 1 − x2, 0 ≤ z ≤ x

solution First we must calculate the volume of W . We will use the symmetry of y = 1 − x2 to write:

V =
∫∫∫

W
1 dV = 2

∫ 1

0

∫ 1−x2

0

∫ x

0
1 dz dy dx

= 2
∫ 1

0

∫ 1−x2

0
z

∣∣∣∣x
z=0

dy dx = 2
∫ 1

0

∫ 1−x2

0
x dy dx

= 2
∫ 1

0
xy

∣∣∣∣1−x2

y=0
dx = 2

∫ 1

0
x(1 − x2) dx

= 2
∫ 1

0
x − x3 dx = x2 − 1

2
x4
∣∣∣∣1
0

= 1

2

Now we can compute the average value for f (x, y, z) = ey :

f = 1

V

∫∫∫
W

ey dV = 2 · 1

1/2

∫ 1

0

∫ 1−x2

0

∫ x

0
ey dz dy dx
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= 4
∫ 1

0

∫ 1−x2

0
zey

∣∣∣∣x
z=0

dy dx = 4
∫ 1

0

∫ 1−x2

0
xey dy dx

= 4
∫ 1

0
xey

∣∣∣∣1−x2

y=0
dx = 4

∫ 1

0
xe1−x2 − x dx

= 4

(
−1

2
e1−x2 − 1

2
x2
) ∣∣∣∣1

0
=
(
−2e0 − 2

)
−
(
−2e1 − 0

)
= 2e − 4

36. f (x, y, z) = x2 + y2 + z2; W bounded by the planes 2y + z = 1, x = 0, x = 1, z = 0, and y = 0.

solution The prism W bounded by the planes 2y + z = 1, x = 0, x = 1, z = 0, and y = 0 is shown in the figure:

y

z

x

The average of f over W is

f = 1

V

∫∫∫
W

f (x, y, z) dV (1)

where V = Volume(W). The projection of W onto the xy-plane is the rectangle

D : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

2

y

x

D

1

1
2

The region W consists of all points lying between the upper plane z = 1 − 2y and the lower plane z = 0. The volume of
the prism is

V =
1
2 · 1

2
· 1 = 1

4
.

We compute the triple integral (1) using an iterated integral. That is,

f = 1
1
4

∫ 1

0

∫ 1/2

0

∫ 1−2y

0

(
x2 + y2 + z2

)
dz dy dx = 4

∫ 1

0

∫ 1/2

0

(
x2 + y2

)
z + z3

3

∣∣∣∣1−2y

z=0
dy dx

= 4
∫ 1

0

∫ 1/2

0

((
x2 + y2

)
(1 − 2y) + (1 − 2y)3

3

)
dy dx

= 4
∫ 1

0

∫ 1/2

0

(
x2 − 2x2y + y2 − 2y3 + (1 − 2y)3

3

)
dy dx

= 4
∫ 1

0
x2y − x2y2 + y3

3
− y4

2
− (1 − 2y)4

24

∣∣∣∣1/2

y=0
dx

= 4
∫ 1

0

(
x2

4
+ 5

96

)
dx = 4

(
x3

12
+ 5x

96

∣∣∣∣1
0

)
= 13

24

The average value is f = 13
24 .
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In Exercises 37 and 38, let I =
∫ 1

0

∫ 1

0

∫ 1

0
f (x, y, z) dV and let SN,N,N be the Riemann sum approximation

SN,N,N = 1

N3

N∑
i=1

N∑
j=1

N∑
k=1

f

(
i

N
,

j

N
,

k

N

)

37. Calculate SN,N,N for f (x, y, z) = ex2−y−z for N = 10, 20, 30. Then evaluate I and find an N such that
SN,N,N approximates I to two decimal places.

solution Using a CAS, we get SN,N,N ≈ 0.561, 0.572, and 0.576 for N = 10, 20, and 30, respectively. We get
I ≈ 0.584, and using N = 100 we get SN,N,N ≈ 0.582, accurate to two decimal places.

38. Calculate SN,N,N for f (x, y, z) = sin(xyz) for N = 10, 20, 30. Then use a computer algebra system to
calculate I numerically and estimate the error |I − SN,N,N |.
solution Using a CAS, we get SN,N,N ≈ 0.162, 0.141, and 0.135 for N = 10, 20, and 30, respectively. We get
I ≈ 0.122, giving an error of 0.040, 0.019, and 0.013, respectively.

Further Insights and Challenges
39. Use Integration by Parts to verify Eq. (7).

solution If Cn = ∫ π/2
−π/2 cosn θ dθ , we use integration by parts to show that

Cn =
(

n − 1

n

)
Cn−2.

We use integration by parts with u = cosn−1 θ and V ′ = cos θ . Hence, u′ = (n − 1) cosn−2 θ(− sin θ) and v = sin θ .
Thus,

Cn =
∫ π/2

−π/2
cosn θ dθ =

∫ π/2

−π/2
cosn−1 θ cos θ dθ = cosn−1 θ sin θ

∣∣∣∣π/2

θ=−π/2
+
∫ π/2

−π/2
(n − 1) cosn−2 θsin2θ dθ

= cosn−1 π

2
sin

π

2
− cosn+1

(
−π

2

)
sin

(
−π

2

)
+ (n − 1)

∫ π/2

−π/2
cosn−2 θ sin2θ dθ

= 0 + (n − 1)

∫ π/2

−π/2
cosn−2 θ

(
1 − cos2 θ

)
dθ = (n − 1)

∫ π/2

−π/2
cosn−2 θ dθ − (n − 1)

∫ π/2

−π/2
cosn θ dθ

= (n − 1)Cn−2 − (n − 1)Cn

We obtain the following equality:

Cn = (n − 1)Cn−2 − (n − 1)Cn

or

Cn + (n − 1)Cn = (n − 1)Cn−2

nCn = (n − 1)Cn−2

Cn = n − 1

n
Cn−2

40. Compute the volume An of the unit ball in Rn for n = 8, 9, 10. Show that Cn ≤ 1 for n ≥ 6 and use this to prove
that of all unit balls, the five-dimensional ball has the largest volume. Can you explain why An tends to 0 as n → ∞?

solution We use the following formulas:

A2m = πm

m! , A2m+1 = 2m+1πm

1 · 3 · 5 · · · (2m + 1)

We get

A8 = A2·4 = π4

4! = π4

24
≈ 4.06

A9 = A2·4+1 = 24+1π4

1 · 3 · 5 · 7 · 9
= 32π4

945
≈ 3.3

A10 = A2·5 = π5

5! = π5

120
≈ 2.55
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We now show that Cn < 1 for n ≥ 6. We first compute C6, using the formula Cn = n−1
n Cn−2 successively and the value

C0 = π . This gives

C6 = 6 − 1

6
C4 = 5

6
· 4 − 1

4
C2 = 5

8
· 2 − 1

2
C0 = 5π

16
≈ 0.98 < 1

C7 = 7 − 1

7
C5 = 6

7
· 4

5
· C3 = 24

35
· 2

3
C1 = 16

35
C1

C1 =
∫ π/2

−π/2
cos θ dθ = sin θ

∣∣∣∣π/2

−π/2
= 2

Hence,

C7 = 16

35
· 2 = 32

35
< 1

Thus, Cn < 1 for n = 6 and 7. We now assume that Ck < 1 for all k, 6 ≤ k ≤ n, for some n ≥ 7. We show that Cn+1 < 1.

Cn+1 = (n + 1) − 1

n + 1
C(n+1)−2 = n

n + 1
Cn−1

By the assumption, n − 1 ≥ 6, and so Cn−1 < 1. Therefore,

Cn+1 = n

n + 1
Cn−1 < Cn−1 < 1 ⇒ Cn+1 < 1

We thus proved by mathematical induction that Cn < 1 for all n ≥ 6. We now show that of all unit balls, the five-
dimensional ball has the largest volume. The volume of the n-dimensional unit ball is

An = An−1Cn

Since An−1 > 0, and for n ≥ 6, Cn < 1, we have

An < An−1 for n ≥ 6 (1)

Therefore {An}∞n=5 is a decreasing sequence, and we have

An < A5 for n ≥ 6 (2)

Combining (1) and (2) gives

An < A5 = 8π2

15
≈ 5.26 for n ≥ 6 (3)

We compute A1, . . . , A5:

A1 = A0C1 = 1 · 2 = 2

A2 = A1C2 = 2 · π

2
= π ≈ 3.14

A3 = A2C3 = π · 4

3
= 4π

3
≈ 4.19

A4 = A3C4 = 4π

3
· 3π

8
= π2

2
≈ 4.93

A5 = A4C5 = π2

2
· 16

15
= 8π2

15
≈ 5.26

The maximum value is A5. Combining with (3) we conclude that the five-dimensional ball has the largest volume. By
the closed formulas for A2m and A2m+1, it follows that these sequences tend to zero as n → ∞ (factorials grow faster
than exponentials). Therefore, the sequence {An} also tends to zero as n → ∞.

15.4 Integration in Polar, Cylindrical, and Spherical Coordinates
(LT Section 16.4)

Preliminary Questions
1. Which of the following represent the integral of f (x, y) = x2 + y2 over the unit circle?

(a)
∫ 1

0

∫ 2π

0
r2 dr dθ (b)

∫ 2π

0

∫ 1

0
r2 dr dθ

(c)
∫ 1

0

∫ 2π

0
r3 dr dθ (d)

∫ 2π

0

∫ 1

0
r3 dr dθ
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solution The unit circle is described in polar coordinates by the inequalities

0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1

Using double integral in polar coordinates, we have

∫∫
D

f (x, y) dA =
∫ 2π

0

∫ 1

0

(
(r cos θ)2 + (r sin θ)2

)
r dr dθ =

∫ 2π

0

∫ 1

0
r2

(
cos2 θ + sin2 θ

)
r dr dθ

=
∫ 2π

0

∫ 1

0
r3 dr dθ

Therefore (d) is the correct answer.

2. What are the limits of integration in
∫∫∫

f (r, θ, z)r dr dθ dz if the integration extends over the following regions?

(a) x2 + y2 ≤ 4, −1 ≤ z ≤ 2

(b) Lower hemisphere of the sphere of radius 2, center at origin

solution

(a) This is a cylinder of radius 2. In the given region the z coordinate is changing between the values −1 and 2, and the
angle θ is changing between the values θ = 0 and 2π . Therefore the region is described by the inequalities

−1 ≤ z ≤ 2, 0 ≤ θ < 2π, 0 ≤ r ≤ 2

Using triple integral in cylindrical coordinates gives

∫ 2

−1

∫ 2π

0

∫ 2

0
f (P ) r dr dθ dz

(b) The sphere of radius 2 is x2 + y2 + z2 = r2 + z2 = 4, or r =
√

4 − z2.

y2

z

x

In the lower hemisphere we have −2 ≤ z ≤ 0 and 0 ≤ θ < 2π . Therefore, it has the description

−2 ≤ z ≤ 0, 0 ≤ θ < 2π, 0 ≤ r ≤
√

4 − z2

We obtain the following integral in cylindrical coordinates:

∫ 0

−2

∫ 2π

0

∫ √
4−z2

0
r dr dθ dz

3. What are the limits of integration in ∫∫∫
f (ρ, φ, θ)ρ2 sin φ dρ dφ dθ

if the integration extends over the following spherical regions centered at the origin?

(a) Sphere of radius 4

(b) Region between the spheres of radii 4 and 5

(c) Lower hemisphere of the sphere of radius 2

solution

(a) In the sphere of radius 4, θ varies from 0 to 2π , φ varies from 0 to π , and ρ varies from 0 to 4. Using triple integral
in spherical coordinates, we obtain the following integral:

∫ 2π

0

∫ π

0

∫ 4

0
f (P )ρ2 sin φ dρ dφ dθ
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(b) In the region between the spheres of radii 4 and 5, ρ varies from 4 to 5, φ varies from 0 to π , and θ varies from 0 to
2π . We obtain the following integral: ∫ 2π

0

∫ π

0

∫ 5

4
f (P )ρ2 sin φ dρ dφ dθ

(c) The inequalities in spherical coordinates for the lower hemisphere of radius 2 are

0 ≤ θ ≤ 2π,
π

2
≤ φ ≤ π, 0 ≤ ρ ≤ 2

Therefore we obtain the following integral:∫ 2π

0

∫ π

π/2

∫ 2

0
f (P )ρ2 sin φ dρ dφ dθ.

4. An ordinary rectangle of sides �x and �y has area �x �y, no matter where it is located in the plane. However, the
area of a polar rectangle of sides �r and �θ depends on its distance from the origin. How is this difference reflected in
the Change of Variables Formula for polar coordinates?

solution The area �A of a small polar rectangle is

�A = 1

2
(r + �r)2�θ − 1

2
r2�θ = r (�r�θ) + 1

2
(�r)2�θ ≈ r (�r�θ)

y

Δ

Δr

ΔA

x

r

The factor r , due to the distance of the polar rectangle from the origin, appears in dA = r dr dθ , in the Change of Variables
formula.

Exercises
In Exercises 1–6, sketch the region D indicated and integrate f (x, y) over D using polar coordinates.

1. f (x, y) =
√

x2 + y2, x2 + y2 ≤ 2

solution The domain D is the disk of radius
√

2 shown in the figure:

x

y

2

The inequalities defining D in polar coordinates are

0 ≤ θ ≤ 2π, 0 ≤ r ≤ √
2

We describe f (x, y) =
√

x2 + y2 in polar coordinates:

f (x, y) =
√

x2 + y2 =
√

r2 = r

Using change of variables in polar coordinates, we get

∫∫
D

√
x2 + y2 dA =

∫ 2π

0

∫ √
2

0
r · r dr dθ =

∫ 2π

0

∫ √
2

0
r2 dr dθ =

∫ 2π

0

r3

3

∣∣∣∣
√

2

r=0
dθ

=
∫ 2π

0

(√
2
)3

3
dθ = 2

√
2

3
θ

∣∣∣∣2π

0
= 4

√
2π

3
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2. f (x, y) = x2 + y2; 1 ≤ x2 + y2 ≤ 4

solution The domain D is shown in the figure:

y

x

D

21

The inequalities defining D in polar coordinates are

0 ≤ θ ≤ 2π, 1 ≤ r ≤ 2

We describe f in polar coordinates:

f (x, y) = x2 + y2 = r2

Using change of variables in polar coordinates gives

∫∫
D

(
x2 + y2

)
dA =

∫ 2π

0

∫ 2

1
r2 · r dr dθ =

∫ 2π

0

∫ 2

1
r3 dr dθ =

∫ 2π

0

r4

4

∣∣∣∣2
r=1

dθ

=
∫ 2π

0

(
24

4
− 1

4

)
dθ = 2π · 3

3

4
= 15π

2

3. f (x, y) = xy; x ≥ 0, y ≥ 0, x2 + y2 ≤ 4

solution The domain D is the quarter circle of radius 2 in the first quadrant.

x

D

y

20

2

It is described by the inequalities

0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 2

We write f in polar coordinates:

f (x, y) = xy = (r cos θ)(r sin θ) = r2 cos θ sin θ = 1

2
r2 sin 2θ

Using change of variables in polar coordinates gives

∫∫
D

xy dA =
∫ π/2

0

∫ 2

0

(
1

2
r2 sin 2θ

)
r dr dθ =

∫ π/2

0

∫ 2

0

1

2
r3 sin 2θ dr dθ =

∫ π/2

0

1

2
· r4

4
sin 2θ

∣∣∣∣2
r=0

dθ

=
∫ π/2

0
2 sin 2θ dθ = − cos 2θ

∣∣∣∣π/2

0
= −(cos π − cos 0) = 2
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4. f (x, y) = y(x2 + y2)3; y ≥ 0, x2 + y2 ≤ 1

solution The region D is the upper half of the unit circle, shown in the figure:

D

x

y

1−1

1

2

In this region, θ varies from 0 to π , and r varies from 0 to 1. Therefore, D is described by the inequalities

0 ≤ θ ≤ π, 0 ≤ r ≤ 1

We write f in polar coordinates:

f (x, y) = y(x2 + y2)
3 = (r sin θ)(r2)

3 = r7 sin θ

Using change of variables in polar coordinates, we get

∫∫
D

y
(
x2 + y2

)3
dA =

∫ π

0

∫ 1

0

(
r7 sin θ

)
r dr dθ =

∫ π

0

∫ 1

0
r8 sin θ dr dθ =

∫ π

0

r9

9
sin θ

∣∣∣∣1
r=0

dθ

=
∫ π

0

1

9
sin θ dθ = −1

9
cos θ

∣∣∣∣π
0

= −1

9
(cos π − cos 0) = 2

9

5. f (x, y) = y(x2 + y2)−1; y ≥ 1
2 , x2 + y2 ≤ 1

solution The region D is the part of the unit circle lying above the line y = 1
2 .

x

y

1

1 
2

(−     ,    )3
2

1 
2 (     ,    )3

2
1 
2

The angle α in the figure is

α = tan−1
1
2√
3

2

= tan−1 1√
3

= π

6

Therefore, θ varies between π
6 and π − π

6 = 5π
6 . The horizontal line y = 1

2 has polar equation r sin θ = 1
2 or r = 1

2 csc θ .

The circle of radius 1 centered at the origin has polar equation r = 1. Therefore, r varies between 1
2 csc θ and 1. The

inequalities describing D in polar coordinates are thus

π

6
≤ θ ≤ 5π

6
,

1

2
csc θ ≤ r ≤ 1

x

y

1

1 
2

csc    ≤ r ≤ 11 
2

We write f in polar coordinates:

f (x, y) = y(x2 + y2)
−1 = (r sin θ)(r2)

−1 = r−1 sin θ
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Using change of variables in polar coordinates, we obtain

∫∫
D

y(x2 + y2)
−1

dA =
∫ 5π/6

π/6

∫ 1

1
2 csc θ

r−1 sin θ r dr dθ =
∫ 5π/6

π/6

∫ 1

1
2 csc θ

sin θ dr dθ

=
∫ 5π/6

π/6
r sin θ

∣∣∣∣1
r= 1

2 csc θ

dθ =
∫ 5π/6

π/6

(
sin θ − 1

2
sin θ csc θ

)
dθ

=
∫ 5π/6

π/6

(
sin θ − 1

2

)
dθ = − cos θ − θ

2

∣∣∣∣5π/6

π/6
= − cos

5π

6
− 5π

12
−
(
− cos

π

6
− π

12

)

=
√

3

2
− π

3
+

√
3

2
= √

3 − π

3
≈ 0.685

6. f (x, y) = ex2+y2
; x2 + y2 ≤ R

solution The region D is the circle of radius
√

R.

y

x
R

R

The inequalities describing D in polar coordinates are

0 ≤ θ ≤ 2π, 0 ≤ r ≤ √
R

We write f in polar coordinates as f (x, y) = ex2+y2 = er2
, and use change of variables in polar coordinates to obtain

∫∫
D

ex2+y2
dA =

∫ 2π

0

∫ √
R

0
er2

r dr dθ =
∫ 2π

0

(∫ √
R

0
er2

r dr

)
dθ (1)

We compute the inner integral using the substitution u = er2
, du = 2rer2

dr . We get

∫ √
R

0
er2

r dr =
∫ eR

1

1

2
du = 1

2
u

∣∣∣∣e
R

1
= 1

2

(
eR − 1

)

Substituting in (1) gives

∫∫
D

ex2+y2
dA =

∫ 2π

0

1

2
(eR − 1) dθ = 1

2
(eR − 1)θ

∣∣∣∣2π

0
= π(eR − 1)

In Exercises 7–14, sketch the region of integration and evaluate by changing to polar coordinates.

7.
∫ 2

−2

∫ √
4−x2

0
(x2 + y2) dy dx

solution The domain D is described by the inequalities

D : −2 ≤ x ≤ 2, 0 ≤ y ≤
√

4 − x2

That is, D is the semicircle x2 + y2 ≤ 4, 0 ≤ y.

x

D

y

2−2
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We describe D in polar coordinates:

D : 0 ≤ θ ≤ π, 0 ≤ r ≤ 2

The function f in polar coordinates is f (x, y) = x2 + y2 = r2. We use the Change of Variables Formula to write

∫ 2

−2

∫ √
4−x2

0

(
x2 + y2

)
dy dx =

∫ π

0

∫ 2

0
r2 · r dr dθ =

∫ π

0

∫ 2

0
r3 dr dθ =

∫ π

0

r4

4

∣∣∣∣2
r=0

dθ =
∫ π

0

24

4
dθ = 4π

8.
∫ 3

0

∫ √
9−y2

0

√
x2 + y2 dx dy

solution The region D is defined by the following inequalities:

0 ≤ y ≤ 3, 0 ≤ x ≤
√

9 − y2

y

x
1 2

1

2

0 3 4

3

4

D

We see that D is the quarter of the circle x2 + y2 = 9, x ≥ 0, y ≥ 0. We describe D in polar coordinates by the following
inequalities:

0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 3

The function in polar coordinates is f (x, y) =
√

x2 + y2 = r . Using change of variables we get

∫ 3

0

∫ √
9−y2

0

√
x2 + y2 dx dy =

∫ π/2

0

∫ 3

0
r · rdr dθ =

∫ π/2

0

∫ 3

0
r2 dr dθ

=
∫ π/2

0

r3

3

∣∣∣∣3
0
dθ =

∫ π/2

0
9 dθ = 9 · π

2
= 4.5π

9.
∫ 1/2

0

∫ √
1−x2

√
3x

x dy dx

solution The region of integration is described by the inequalities

0 ≤ x ≤ 1

2
,

√
3x ≤ y ≤

√
1 − x2

D is the circular sector shown in the figure.

x

D

y

0

1

1 
2

π 
3

3xy =

1 − x2y =

The ray y = √
3x in the first quadrant has the polar equation

r sin θ = √
3r cos θ ⇒ tan θ = √

3 ⇒ θ = π

3
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Therefore, D lies in the angular sector π
3 ≤ θ ≤ π

2 . Also, the circle y =
√

1 − x2 has the polar equation r = 1, hence D
can be described by the inequalities

π

3
≤ θ ≤ π

2
, 0 ≤ r ≤ 1

We use change of variables to obtain

∫ 1/2

0

∫ √
1−x2

√
3x

x dy dx =
∫ π/2

π/3

∫ 1

0
r(cos θ)r dr dθ =

∫ π/2

π/3

∫ 1

0
r2 cos θ dr dθ =

∫ π/2

π/3

r3 cos θ

3

∣∣∣∣1
r=0

dθ

=
∫ π/2

π/3

cos θ

3
dθ = sin θ

3

∣∣∣∣π/2

π/3
= 1

3

(
sin

π

2
− sin

π

3

)
= 1

3

(
1 −

√
3

2

)
≈ 0.045

10.
∫ 4

0

∫ √
16−x2

0
tan−1 y

x
dy dx

solution We note that this is an integral over the quarter circle of radius 4 in the first quadrant. Using the standard
polar coordinates, we get:

∫ 4

0

∫ √
16−x2

0
tan−1 y

x
dy dx =

∫ π/2

0

∫ 4

0
tan−1 r sin θ

r cos θ
r dr dθ =

∫ π/2

0

∫ 4

0
tan−1 tan θ r dr dθ

=
∫ π/2

0

∫ 4

0
θ r dr dθ = 1

2
r2
∣∣∣∣4
0

· 1

2
θ2
∣∣∣∣π/2

0
= π2

11.
∫ 5

0

∫ y

0
x dx dy

solution

∫ 5

0

∫ y

0
x dx dy =

∫ π/2

π/4

∫ 5/ sin θ

r=0
r2 cos θ dr dθ =

∫ π/2

π/4

1

3
r3 cos θ

∣∣∣∣5/ sin θ

r=0
dθ

= 1

3

∫ π/2

π/4

125

sin3 θ
cos θ dθ = 125

3

∫ π/2

π/4

cos θ

sin3 θ
dθ

= −125

6

1

sin2 θ

∣∣∣∣π/2

π/4
= −125

6
(1 − 2) = 125

6

12.
∫ 2

0

∫ √
3x

x
y dy dx

solution The region is determined by the inequalities

D : 0 ≤ x ≤ 2, x ≤ y ≤ √
3x

y

x
2

y = x

y = 3x D

The rays y = x and y = √
3x in the first quadrant have polar equations θ = π

4 and θ = π
3 , respectively, hence the region

lies in the angular sector π
4 ≤ θ ≤ π

3 . The line x = 2 has polar equation r cos θ = 2 or r = 2 sec θ . Therefore, the
inequalities describing D in polar equations are

D : π

4
≤ θ ≤ π

3
, 0 ≤ r ≤ 2 sec θ
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Using change of variables we have

∫ 2

0

∫ √
3x

x
y dy dx =

∫ π/3

π/4

∫ 2 sec θ

0
(r sin θ)r dr dθ =

∫ π/3

π/4

∫ 2 sec θ

0
r2 sin θ dr dθ

=
∫ π/3

π/4

r3 sin θ

3

∣∣∣∣2 sec θ

r=0
dθ =

∫ π/3

π/4

8 sec3 θ sin θ

3
dθ =

∫ π/3

π/4

8

3

sin θ

cos3 θ
dθ

We compute the integral using the substitution u = cos θ , du = − sin θ dθ . We get

∫ 2

0

∫ √
3x

x
y dy dx =

∫ 1/2

1/
√

2

8

3
u−3(−du) =

∫ 1/
√

2

1/2

8

3
u−3 du = −4

3
u−2

∣∣∣∣1/
√

2

1/2
= −4

3
(2 − 4) = 8

3

13.
∫ 2

−1

∫ √
4−x2

0
(x2 + y2) dy dx

solution The domain D, shown in the figure, is described by the inequalities

−1 ≤ x ≤ 2, 0 ≤ y ≤
√

4 − x2

y = 4 − x2

D

x

y

2−1

We denote by D1 and D2 the triangle and the circular sections, respectively, shown in the figure.

A = (−1, 3)

x

y

2−1

2
3

D2
D1

By properties of integrals we have∫∫
D

(
x2 + y2

)
dA =

∫∫
D1

(
x2 + y2

)
dA +

∫∫
D2

(
x2 + y2

)
dA (1)

We compute each integral separately, starting with D1. The vertical line x = −1 has polar equation r cos θ = −1 or
r = − sec θ . The ray OA has polar equation θ = 2π

3 . Therefore D1 is described by

2π

3
≤ θ ≤ π, 0 ≤ r ≤ − sec θ

Using change of variables gives

∫∫
D1

(
x2 + y2

)
dA =

∫ π

2π/3

∫ − sec θ

0
r2 · r dr dθ =

∫ π

2π/3

∫ − sec θ

0
r3 dr dθ

=
∫ π

2π/3

r4

4

∣∣∣∣− sec θ

r=0
dθ =

∫ π

2π/3

sec4 θ

4
dθ = 1

4

∫ π

2π/3
sec4 θ dθ (2)

We compute the integral (we use substitution u = tan θ for the second integral):

∫ π

2π/3

1

cos4 θ
dθ =

∫ π

2π/3

sin2 θ + cos2 θ

cos4 θ
dθ =

∫ π

2π/3

dθ

cos2 θ
+
∫ π

2π/3
tan2 θ · 1

cos2 θ
dθ

= tan θ

∣∣∣∣π
θ=2π/3

+
∫ 0

−√
3
u2 du = tan π − tan

2π

3
+ u3

3

∣∣∣∣0−√
3

= √
3 + 3

√
3

3
= 2

√
3

Hence, by (2) we get

∫∫
D1

(
x2 + y2

)
dA =

√
3

2
(3)
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D2 is described by the inequalities

0 ≤ θ ≤ 2π

3
, 0 ≤ r ≤ 2

Hence,

∫∫
D2

(
x2 + y2

)
dA =

∫ 2π/3

0

∫ 2

0
r2 · r dr dθ =

∫ 2π/3

0

∫ 2

0
r3 dr dθ

=
∫ 2π/3

0

r4

4

∣∣∣∣2
r=0

dθ =
∫ 2π/3

0
4 dθ = 4 · θ

∣∣∣∣2π/3

0
= 8π

3
(4)

Combining (1), (3) and (4) we obtain the following solution:

∫∫
D

(
x2 + y2

)
dA =

√
3

2
+ 8π

3
≈ 9.24

14.
∫ 2

1

∫ √
2x−x2

0

1√
x2 + y2

dy dx

solution The region is described by the inequalities

1 ≤ x ≤ 2, 0 ≤ y ≤
√

2x − x2

x

D

y

21

2x − x2y =

We first describe D in polar coordinates. The region lies in the angular sector 0 ≤ θ ≤ π
4 . The circle y =

√
2x − x2 or

(x − 1)2 + y2 = 1, y ≥ 0 (obtained by completing the square) is the circle of radius 1 and center (1, 0). Its polar equation
is r = 2 cos θ . The polar equation of the line x = 1 is r cos θ = 1 or r = sec θ .

x

y

2

(1, 1)

1

sec    ≤ r ≤ 2 cos

π
4

Therefore, D has the following description:

0 ≤ θ ≤ π

4
, sec θ ≤ r ≤ 2 cos θ

Using change of variables we get

∫ 2

1

∫ √
2x−x2

0

dy dx√
x2 + y2

=
∫ π/4

0

∫ 2 cos θ

sec θ

1

r
· r dr dθ =

∫ π/4

0

∫ 2 cos θ

sec θ
dr dθ =

∫ π/4

0
r

∣∣∣∣2 cos θ

r=sec θ

dθ

=
∫ π/4

0
(2 cos θ − sec θ) dθ = 2 sin θ

∣∣∣∣π/4

0
− ln(sec θ + tan θ)

∣∣∣∣π/4

0

= 2 sin
π

4
−
(

ln
(

sec
π

4
+ tan

π

4

)
− ln 1

)
= 2 ·

√
2

2
− ln

(√
2 + 1

)
= √

2 − ln
(

1 + √
2
)

≈ 0.533
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In Exercises 15–20, calculate the integral over the given region by changing to polar coordinates.

15. f (x, y) = (x2 + y2)−2; x2 + y2 ≤ 2, x ≥ 1

solution The region D lies in the angular sector

−π

4
≤ θ ≤ π

4

x

y

(1, 1)

(−1, 1)

1

π
4

2

sec    ≤ r ≤ 2

The vertical line x = 1 has polar equation r cos θ = 1 or r = sec θ . The circle x2 + y2 = 2 has polar equation r = √
2.

Therefore, D has the following description:

−π

4
≤ θ ≤ π

4
, sec θ ≤ r ≤ √

2

The function in polar coordinates is

f (x, y) = (x2 + y2)
−2 = (r2)

−2 = r−4.

Using change of variables we obtain

∫∫
D

(
x2 + y2

)−2
dA =

∫ π/4

−π/4

∫ √
2

sec θ
r−4r dr dθ =

∫ π/4

−π/4

∫ √
2

sec θ
r−3 dr dθ =

∫ π/4

−π/4

r−2

−2

∣∣∣∣
√

2

sec θ

dθ

=
∫ π/4

−π/4

(
1

2sec2θ
− 1

4

)
dθ = 2

∫ π/4

0

(
1

2
cos2θ − 1

4

)
dθ

=
(

θ

2
+ sin 2θ

4

) ∣∣∣∣π/4

0
− θ

2

∣∣∣∣π/4

0
= π

8
+ 1

4
− π

8
= 1

4

16. f (x, y) = x; 2 ≤ x2 + y2 ≤ 4

solution D is the annulus shown in the figure.

y

x
2 2

The inequalities describing D in polar coordinates are

0 ≤ θ ≤ 2π,
√

2 ≤ r ≤ 2

The function is f (x, y) = x = r cos θ , therefore using change of variables gives

∫∫
D

x dA =
∫ 2π

0

∫ 2

√
2
(r cos θ)r dr dθ =

∫ 2π

0

∫ 2

√
2
r2 cos θ dr dθ =

∫ 2π

0

r3 cos θ

3

∣∣∣∣2
r=√

2
dθ

=
∫ 2π

0

8 − 2
√

2

3
cos θ dθ = 8 − 2

√
2

3
sin θ

∣∣∣∣2π

0
= 0
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17. f (x, y) = |xy|; x2 + y2 ≤ 1

solution The unit disk is described in polar coordinates by

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1

x

x2 + y2 ≤ 1

y

The function is f (x, y) = |xy| = |r cos θ · r sin θ | = 1
2 r2| sin 2θ |. Using change of variables we obtain

∫∫
D

|xy| dA =
∫ 2π

0

∫ 1

0

1

2
r2| sin 2θ | · r dr dθ =

∫ 2π

0

∫ 1

0

1

2
r3| sin 2θ | dr dθ

=
∫ 2π

0

r4

8
| sin 2θ |

∣∣∣∣1
r=0

dθ =
∫ 2π

0

1

8
| sin 2θ | dθ (1)

The signs of sin 2θ in the interval of integration are

For 0 ≤ θ ≤ π
2 or π ≤ θ ≤ 3π

2 , sin 2θ ≥ 0, hence | sin 2θ | = sin 2θ .

For π
2 ≤ θ ≤ π or 3π

2 ≤ θ ≤ 2π , sin 2θ ≤ 0, hence | sin 2θ | = − sin 2θ .

Therefore, by (1) we get

∫∫
D

|xy| dA =
∫ π/2

0

1

8
sin 2θ dθ −

∫ π

π/2

1

8
sin 2θ dθ +

∫ 3π/2

π

1

8
sin 2θ dθ −

∫ 2π

3π/2

1

8
sin 2θ dθ

= − 1

16
cos 2θ

∣∣∣∣π/2

0
+ 1

16
cos 2θ

∣∣∣∣π
π/2

− 1

16
cos 2θ

∣∣∣∣3π/2

π

+ 1

16
cos 2θ

∣∣∣∣2π

3π/2

= − 1

16
(cos π − 1) + 1

16
(cos 2π − cos π) − 1

16
(cos 3π − cos 2π) + 1

16
(cos 4π − cos 3π)

= 2

16
+ 2

16
+ 2

16
+ 2

16
= 1

2

That is, ∫∫
D

|xy| dA = 1

2

18. f (x, y) = (x2 + y2)−3/2; x2 + y2 ≤ 1, x + y ≥ 1

solution The domain D is shown in the figure.

y

x
1

1

D

Step 1. Describe D and f in polar coordinates. In D, the angle θ is changing from 0 to π
2 . The circle x2 + y2 = 1 has

polar equation r = 1. The line x + y = 1 has the following polar equation:

r cos θ + r sin θ = 1 ⇒ r = 1

cos θ + sin θ
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Therefore, the polar inequalities describing the region D are

D : 0 ≤ θ ≤ π

2
,

1

cos θ + sin θ
≤ r ≤ 1

y

x
1

1
cos + sin

1 ≤ r ≤ 1

The function f in polar coordinates is

f (x, y) = (x2 + y2)
−3/2 = (r2)

−3/2 = r−3

Step 2. Change variables in the Integral and Evaluate. Using the Change of Variables Formula we get∫∫
D

(
x2 + y2

)−3/2
dA =

∫ π/2

0

∫ 1

1
cos θ+sin θ

r−3 · r dr dθ =
∫ π/2

0

∫ 1

1
cos θ+sin θ

r−2 dr dθ

=
∫ π/2

0
−1

r

∣∣∣∣1
r= 1

cos θ+sin θ

dθ =
∫ π/2

0
(−1 + cos θ + sin θ) dθ

= −θ + sin θ − cos θ

∣∣∣∣π/2

0
=
(
−π

2
+ sin

π

2
− cos

π

2

)
− (0 + 0 − 1)

= 2 − π

2
≈ 0.43

19. f (x, y) = x − y; x2 + y2 ≤ 1, x + y ≥ 1

solution As shown in Exercise 24, the region D is described by the following inequalities:

D : 0 ≤ θ ≤ π

2
,

1

cos θ + sin θ
≤ r ≤ 1

x

x + y = 1

x2 + y2 = 1

y

The function in polar coordinates is

f (x, y) = x − y = r cos θ − r sin θ = r(cos θ − sin θ)

Using the Change of Variables Formula we get∫∫
D

(x − y) dA =
∫ π/2

0

∫ 1

1
cos θ+sin θ

r(cos θ − sin θ)r dr dθ =
∫ π/2

0

∫ 1

1
cos θ+sin θ

r2(cos θ − sin θ) dr dθ

=
∫ π/2

0

r3(cos θ − sin θ)

3

∣∣∣∣1
r= 1

cos θ+sin θ

dθ =
∫ π/2

0

cos θ − sin θ

3

(
1 − 1

(cos θ + sin θ)3

)
dθ

=
∫ π/2

0

cos θ − sin θ

3
dθ − 1

3

∫ π/2

0

cos θ − sin θ

(cos θ + sin θ)3
dθ (1)

We compute the two integrals:∫ π/2

0

cos θ − sin θ

3
dθ = sin θ + cos θ

3

∣∣∣∣π/2

0
= (1 + 0) − (0 + 1)

3
= 0 (2)
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To compute the second integral we will use u-substitution and let u = sin θ + cos θ :∫ π/2

0

cos θ − sin θ

(cos θ + sin θ)3
dθ =

∫ 1

u=1
u−3 du = 0 (3)

Combining (1), (2), and (3) we conclude that ∫∫
D

(x − y) dA = 0

20. f (x, y) = y; x2 + y2 ≤ 1, (x − 1)2 + y2 ≤ 1

solution D is the common region of the two circles shown in the figure.

x2 + y2 = 1 (x − 1)2 + y2 = 1

−2

y

x
2

2

−2

D

To evaluate the integral we decompose D into three regions D1, D2, and D3 shown in the figure. Thus,∫∫
D

y dA =
∫∫

D1

y dA +
∫∫

D2

y dA +
∫∫

D3

y dA (1)

We compute each integral separately.

x2 + y2 = 1
(x − 1)2 + y2 = 1

−1

1

−1

, )( 3
2

1
2

, − )( 3
2

1
2

x
1

y

D1

D2

D3

D1: The domain D1 lies in the angular sector −π
3 ≤ θ ≤ π

3 (where π
3 = tan−1

√
3

2
1
2

= tan−1
√

3). The circle x2 + y2 = 1

has polar equation r = 1, therefore D1 has the following definition:

D1 : −π

3
≤ θ ≤ π

3
, 0 ≤ r ≤ 1

0 ≤ r ≤ 1

−1

1

−1

x
1

y

D1

−
3

3

We use change of variables in the integral to write∫∫
D1

y dA =
∫ π/3

−π/3

∫ 1

0
(r sin θ)r dr dθ =

∫ π/3

−π/3

∫ 1

0
r2 sin θ dr dθ =

∫ π/3

−π/3

r3 sin θ

3

∣∣∣∣1
r=0

dθ

=
∫ π/3

−π/3

sin θ

3
dθ = − cos θ

3

∣∣∣∣π/3

−π/3
= 0 (2)

D2: The angle θ is changing in D2 from π
3 to π

2 . The circle (x − 1)2 + y2 = 1 has polar equation r = 2 cos θ . Therefore,
D2 has the following description:

D2 : π

3
≤ θ ≤ π

2
, 0 ≤ r ≤ 2 cos θ
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D2

y

x
1

1

0 ≤ r ≤ 2cos

3
2

Using the Change of Variables Formula gives∫∫
D2

y dA =
∫ π/2

π/3

∫ 2 cos θ

0
(r sin θ)r dr dθ =

∫ π/2

π/3

∫ 2 cos θ

0
r2 sin θ dr dθ

=
∫ π/2

π/3

r3 sin θ

3

∣∣∣∣2 cos θ

r=0
dθ =

∫ π/2

π/3

8

3
cos3 θ sin θ dθ

We compute the integral using the substitution u = cos θ , du = − sin θ dθ :∫∫
D2

y dA =
∫ 0

1/2

8

3
u3(−du) =

∫ 1/2

0

8

3
u3 du = 2

3
u4
∣∣∣∣1/2

0
= 1

24
(3)

D3: The domain D3 has the following description:

D3 : −π

2
≤ θ ≤ −π

3
, 0 ≤ r ≤ 2 cos θ

D3

−1

y

x
1

0 ≤ r ≤ 2cos

−
3−

2

We obtain the integral (the inner integral was computed previously)∫∫
D3

y dA =
∫ −π/3

−π/2

∫ 2 cos θ

0
(r sin θ)r dr dθ =

∫ −π/3

−π/2

(∫ 2 cos θ

0
r2 sin θ dr

)
dθ =

∫ −π/3

−π/2

8

3
cos3 θ sin θ dθ

We use the substitution ω = −θ and the integral computed previously to obtain∫∫
D3

y dA =
∫ π/3

π/2

8

3
cos3 ω(sin −ω)(−dω) = −

∫ π/2

π/3

8

3
cos3 ω sin ω dω = − 1

24
(4)

Finally, we combine (1), (2), (3), and (4) to obtain the following solution:∫∫
D

y dA = 0 + 1

24
− 1

24
= 0

Remark: The integral is zero since the average value of the y-coordinates of the points in D is zero (D is symmetric with
respect to the x-axis).

21. Find the volume of the wedge-shaped region (Figure 17) contained in the cylinder x2 + y2 = 9, bounded above by
the plane z = x and below by the xy-plane.

z = x

y

z

x

FIGURE 17
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solution

Step 1. Express W in cylindrical coordinates. W is bounded above by the plane z = x and below by z = 0, therefore
0 ≤ z ≤ x, in particular x ≥ 0. Hence, W projects onto the semicircle D in the xy-plane of radius 3, where x ≥ 0.

x

D

y

3

3

In polar coordinates,

D : −π

2
≤ θ ≤ π

2
, 0 ≤ r ≤ 3

The upper surface is z = x = r cos θ and the lower surface is z = 0. Therefore,

W : −π

2
≤ θ ≤ π

2
, 0 ≤ r ≤ 3, 0 ≤ z ≤ r cos θ

Step 2. Set up an integral in cylindrical coordinates and evaluate. The volume of W is the triple integral
∫∫∫

W
1 dV .

Using change of variables in cylindrical coordinates gives

∫∫∫
W

1 dV =
∫ π/2

−π/2

∫ 3

0

∫ r cos θ

0
r dz dr dθ =

∫ π/2

−π/2

∫ 3

0
rz

∣∣∣∣r cos θ

z=0
dr dθ =

∫ π/2

−π/2

∫ 3

0
r2 cos θ dr dθ

=
∫ π/2

−π/2

r3

3
cos θ

∣∣∣∣3
r=0

dθ =
∫ π/2

−π/2
9 cos θ dθ = 9 sin θ

∣∣∣∣π/2

−π/2
= 9

(
sin

π

2
− sin

(
−π

2

))
= 18

22. Let W be the region above the sphere x2 + y2 + z2 = 6 and below the paraboloid z = 4 − x2 − y2.

(a) Show that the projection of W on the xy-plane is the disk x2 + y2 ≤ 2 (Figure 18).

(b) Compute the volume of W using polar coordinates.

z

z = 4 − x2 − y2

y

x

4

W

2

6
2

x2 + y2 + z2 = 6

FIGURE 18

solution

(a) We find the intersection of the sphere x2 + y2 + z2 = 6 and the paraboloid z = 4 − x2 − y2. The equation
z = 4 − x2 − y2 implies x2 + y2 = 4 − z. Substituting in x2 + y2 + z2 = 6 and solving for z gives

4 − z + z2 = 6 ⇒ z2 − z − 2 = (z − 2)(z + 1) = 0

⇒ z = 2, z = −1

We omit the negative solution z = −1, since in W , z ≥ 0. Substituting z = 2 in z = 4 − x2 − y2, we get

2 = 4 − x2 − y2 ⇒ x2 + y2 = 2

That is, the projection of W on the xy-plane is the disk x2 + y2 ≤ 2.
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(b) Using part (a) we obtain the following inequalities for D:

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ √
2

The upper boundary is the surface z = 4 − x2 − y2 or z = 4 − r2. The lower boundary is the sphere x2 + y2 + z2 = 6,

r2 + z2 = 6, or z =
√

6 − r2. Therefore, the inequalities describing W in cylindrical coordinates are

0 ≤ θ ≤ 2π, 0 ≤ r ≤ √
2,

√
6 − r2 ≤ z ≤ 4 − r2

We use the volume as a triple integral and the change of variables in cylindrical coordinates to obtain

V =
∫∫∫

W
1 dV =

∫ 2π

0

∫ √
2

0

∫ 4−r2

√
6−r2

r dz dr dθ =
∫ 2π

0

∫ √
2

0
r · z

∣∣∣∣4−r2

z=
√

6−r2
dr dθ

=
∫ 2π

0

∫ √
2

0

(
4 − r2 −

√
6 − r2

)
r dr dθ =

∫ 2π

0

∫ √
2

0

(
4r − r3 − r

√
6 − r2

)
dr dθ (1)

We compute the inner integral. Using the substitution u =
√

6 − r2, du = − r
u dr for the second integral, we get

∫ √
2

0
(4r − r3) dr = 2r2 − r4

4

∣∣∣∣
√

2

0
= 4 − 1 = 3

∫ √
2

0
r
√

6 − r2 dr =
∫ 2

√
6
−u2 du =

∫ √
6

2
u2 du = u3

3

∣∣∣∣
√

6

2
= 2

√
6 − 8

3

Hence,

∫ √
2

0

(
4r − r3 − r

√
6 − r2

)
dr = 3 −

(
2
√

6 − 8

3

)
= 17

3
− 2

√
6 ≈ 0.77

Substituting in (1) we obtain

V =
∫ 2π

0
0.77 dθ = 1.54π ≈ 4.84

23. Evaluate
∫∫

D

√
x2 + y2 dA, where D is the domain in Figure 19. Hint: Find the equation of the inner circle in polar

coordinates and treat the right and left parts of the region separately.

2
x

y

FIGURE 19

solution We denote by D1 and D2 the regions enclosed by the circles x2 + y2 = 4 and (x − 1)2 + y2 = 1. Therefore,∫∫
D

√
x2 + y2 dx dy =

∫∫
D1

√
x2 + y2 dx dy −

∫∫
D2

√
x2 + y2 dx dy (1)

We compute the integrals on the right hand-side.

D1:

D1

−2

−2

2

2
x

y

x2 + y2 = 4
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The circle x2 + y2 = 4 has polar equation r = 2, therefore D1 is determined by the following inequalities:

D1 : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2

The function in polar coordinates is f (x, y) =
√

x2 + y2 = r . Using change of variables in the integral gives∫∫
D1

√
x2 + y2 dx dy =

∫ 2π

0

∫ 2

0
r · r dr dθ =

∫ 2π

0

∫ 2

0
r2 dr dθ =

∫ 2π

0

r3

3

∣∣∣∣2
r=0

dθ =
∫ 2π

0

8

3
dθ = 16π

3
(2)

D2:

D2
1 2

x

y

   ≤ r ≤ 2 cos

(x − 1)2 + y2 = 1

π 
2

−

π 
2

D2 lies in the angular sector −π
2 ≤ θ ≤ π

2 . We find the polar equation of the circle (x − 1)2 + y2 = 1:

(x − 1)2 + y2 = x2 − 2x + 1 + y2 = x2 + y2 − 2x + 1 = 1 ⇒ x2 + y2 = 2x

⇒ r2 = 2r cos θ

⇒ r = 2 cos θ

Thus, the domain D2 is defined by the following inequalities:

D2 : −π

2
≤ θ ≤ π

2
, 0 ≤ r ≤ 2 cos θ

We use the change of variables in the integral and integration table to obtain∫∫
D2

√
x2 + y2 dx dy =

∫ π/2

−π/2

∫ 2 cos θ

0
r · r dr dθ =

∫ π/2

−π/2

∫ 2 cos θ

0
r2 dr dθ =

∫ π/2

−π/2

∫ 2 cos θ

0

r3

3

∣∣∣∣2 cos θ

r=0
dθ

=
∫ π/2

−π/2

8 cos3 θ

3
dθ = 2

∫ π/2

0

8 cos3 θ

3
dθ = 16

3

(
cos2 θ sin θ

3
+ 2

3
sin θ

) ∣∣∣∣π/2

θ=0

= 16

3
· 2

3
sin

π

2
= 32

9
(3)

Substituting (2) and (3) in (1), we obtain the following solution:∫∫
D

√
x2 + y2 dx dy = 16π

3
− 32

9
= 48π − 32

9
≈ 13.2.

Remark: The integral can also be evaluated using the hint as the sum of∫
D∗

∫∫ √
x2 + y2 dA and

∫
D∗∗

∫∫ √
x2 + y2 dA

where D∗ is the left semicircle x2 + y2 = 4 and D∗ is the right part of D. Since

D∗: π

2
≤ θ ≤ 3π

2
, 0 ≤ r ≤ 2

D∗∗: −π

2
≤ θ ≤ π

2
, 2 cos θ ≤ r ≤ 2

D*

D**

1

1

−1

−1−2

−2

2

2
x

y

2 cos    ≤ r ≤ 2
≤ r ≤ 2
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we get ∫∫
D

√
x2 + y2 dA =

∫ 3π/2

π/2

∫ 2

0
r2 dr dθ +

∫ π/2

−π/2

∫ 2

2 cos θ
r2 dr dθ

Obviously, computing the integrals leads to the same result.

24. Evaluate
∫∫

D
x

√
x2 + y2 dA, where D is the shaded region enclosed by the lemniscate curve r2 = sin 2θ in

Figure 20.

r2 = sin 2θ

x
0.5

0.5

y

FIGURE 20

solution In D, the angle θ varies between 0 and π
2 , and r varies between 0 and

√
sin 2θ . Therefore D has the following

description:

D : 0 ≤ θ ≤ π

2
, 0 ≤ r ≤ √

sin 2θ

r2 = sin 2

x
0.5 1

0.5

1

y

The function in polar coordinates is f (x, y) = x
√

x2 + y2 = r cos θ · r = r2 cos θ . Therefore, using the Change of
Variables Formula we have∫∫

D
x

√
x2 + y2 dA =

∫ π/2

0

∫ √
sin 2θ

0
r2 cos θ · r dr dθ =

∫ π/2

0

∫ √
sin 2θ

0
r3 cos θ dr dθ

=
∫ π/2

0

r4 cos θ

4

∣∣∣∣
√

sin 2θ

r=0
dθ =

∫ π/2

0

sin2 2θ cos θ

4
dθ =

∫ π/2

0
sin2 θ cos3 θ dθ

=
∫ π/2

0
sin2 θ(1 − sin2 θ) cos θ dθ =

∫ π/2

0
(sin2 θ − sin4 θ) cos θ dθ

= 1

3
sin3 θ − 1

5
sin5 θ

∣∣∣∣π/2

0
= 1

3
− 1

5
= 2

15

25. Let W be the region between the paraboloids z = x2 + y2 and z = 8 − x2 − y2.

(a) Describe W in cylindrical coordinates.
(b) Use cylindrical coordinates to compute the volume of W .

solution
(a)

y

z

x
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The paraboloids z = x2 + y2 and z = 8 − (x2 + y2) have the polar equations z = r2 and z = 8 − r2, respectively. We
find the curve of intersection by solving

8 − r2 = r2 ⇒ 2r2 = 8 ⇒ r = 2

Therefore, the projection D of W onto the xy-plane is the region enclosed by the circle r = 2, and D has the following
description:

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2

The upper and lower boundaries of W are z = 8 − r2 and z = r2, respectively. Hence,

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2, r2 ≤ z ≤ 8 − r2

(b) Using change of variables in cylindrical coordinates, we get

Volume(W) =
∫∫∫

W
1 dV =

∫ 2π

0

∫ 2

0

∫ 8−r2

r2
r dz dr dθ =

∫ 2π

0

∫ 2

0
rz

∣∣∣∣8−r2

z=r2
dr dθ =

∫ 2π

0

∫ 2

0
r
(

8 − 2r2
)

dr dθ

=
∫ 2π

0

∫ 2

0

(
8r − 2r3

)
dr dθ =

∫ 2π

0
4r2 − r4

2

∣∣∣∣2
r=0

dθ =
∫ 2π

0
8 dθ = 16π

26. Use cylindrical coordinates to calculate the integral of the function f (x, y, z) = z over the region above the disk
x2 + y2 = 1 in the xy-plane and below the surface z = 4 + x2 + y2.

solution

z

y

x

1

4

The upper boundary is the surface z = 4 + r2, and the lower boundary is the xy-plane z = 0. The projection D onto the
xy-plane is the region x2 + y2 ≤ 1, having the polar description

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1

Therefore, the inequalities for W in cylindrical coordinates are

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, 0 ≤ z ≤ 4 + r2

Using cylindrical coordinates we obtain the following integral:

∫∫∫
W

z dV =
∫ 2π

0

∫ 1

0

∫ 4+r2

0
zr dz dr dθ =

∫ 2π

0

∫ 1

0

z2r

2

∣∣∣∣4+r2

z=0
dr dθ =

∫ 2π

0

∫ 1

0

(4 + r2)
2
r

2
dr dθ (1)

We compute the inner integral using the substitution u = 4 + r2, du = 2r dr:

∫ 1

0

(4 + r2)
2
r

2
dr =

∫ 5

4

u2

2
· du

2
=
∫ 5

4

u2

4
du = u3

12

∣∣∣∣5
4

= 61

12
.

Substituting in (1) gives

∫∫∫
W

z dV =
∫ 2π

0

61

12
dθ = 61

12
θ

∣∣∣∣2π

0
= 61

12
· 2π = 61π

6
≈ 31.94
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In Exercises 27–32, use cylindrical coordinates to calculate
∫∫∫

W
f (x, y, z) dV for the given function and region.

27. f (x, y, z) = x2 + y2; x2 + y2 ≤ 9, 0 ≤ z ≤ 5

solution The projection of W onto the xy-plane is the region inside the circle x2 + y2 = 9. In polar coordinates,

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3

The upper and lower boundaries are the planes z = 5 and z = 0, respectively. Therefore, W has the following description
in cylindrical coordinates:

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3, 0 ≤ z ≤ 5

The integral in cylindrical coordinates is thus∫∫∫
W

(x2 + y2) dV =
∫ 2π

0

∫ 3

0

∫ 5

0
r2 · r dz dr dθ =

∫ 2π

0

∫ 3

0

∫ 5

0
r3 dz dr dθ

=
(∫ 2π

0
1 dθ

)(∫ 3

0
r3 dr

)(∫ 5

0
1 dz

)
= 2π · 5 · r4

4

∣∣∣∣3
0

= 5 · 34π

2
≈ 636.17

28. f (x, y, z) = xz; x2 + y2 ≤ 1, x ≥ 0, 0 ≤ z ≤ 2

solution

x

y

1

D

1

−1

W projects onto the semicircle D in the xy-plane of radius 1, where x ≥ 0. In polar coordinates we have

D : −π

2
≤ θ ≤ π

2
, 0 ≤ r ≤ 1

The upper and lower boundaries of W are the planes z = 2 and z = 0, respectively; therefore, W has the following
description in cylindrical coordinates:

W : −π

2
≤ θ ≤ π

2
, 0 ≤ r ≤ 1, 0 ≤ z ≤ 2

The function in cylindrical coordinates is

f (x, y, z) = xz = (r cos θ)z = zr cos θ

We obtain the following integral:∫∫∫
W

xz dV =
∫ π/2

−π/2

∫ 1

0

∫ 2

0
zr cos θ · r dz dr dθ =

∫ π/2

−π/2

∫ 1

0

∫ 2

0
zr2 cos θ dz dr dθ

=
(∫ π/2

−π/2
cos θ dθ

)(∫ 1

0
r2 dr

)(∫ 2

0
z dz

)
=
(

sin θ

∣∣∣∣π/2

−π/2

)(
r3

3

∣∣∣∣1
0

)(
z2

2

∣∣∣∣2
0

)
= 2 · 1

3
· 2 = 4

3

29. f (x, y, z) = y; x2 + y2 ≤ 1, x ≥ 0, y ≥ 0, 0 ≤ z ≤ 2

solution

x

y

10

1
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The projection of W onto the xy-plane is the quarter of the unit circle in the first quadrant. It is defined by the following
polar equations:

D : 0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 1

The upper and lower boundaries of W are the planes z = 2 and z = 0, respectively; hence, W has the following definition:

W : 0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 1, 0 ≤ z ≤ 2

The function is f (x, y, z) = y = r sin θ . The integral in cylindrical coordinates is thus

∫∫∫
W

y dV =
∫ π/2

0

∫ 1

0

∫ 2

0
(r sin θ)r dz dr dθ =

∫ π/2

0

∫ 1

0

∫ 2

0
r2 sin θ dz dr dθ

=
(∫ π/2

0
sin θ dθ

)(∫ 1

0
r2 dr

)(∫ 2

0
1 dz

)
=
(

− cos θ

∣∣∣∣π/2

0

)(
r3

3

∣∣∣∣1
0

)(
z

∣∣∣∣2
0

)
= 1 · 1

3
· 2 = 2

3

30. f (x, y, z) = z
√

x2 + y2; x2 + y2 ≤ z ≤ 8 − (x2 + y2)

solution

2
1

0

−2
−1

0

x

z

2
1

0

−2
−1

y

4

6

8

2

W is the region enclosed by the upper surface z = 8 − (x2 + y2) = 8 − r2 and the lower surface z = x2 + y2 = r2, that
is, r2 ≤ z ≤ 8 − r2. To find the projection D of W onto the xy-plane, we first find the curve of intersection of z = 8 − r2

and z = r2 by solving the equation

8 − r2 = r2 ⇒ 8 = 2r2 ⇒ r2 = 4 ⇒ r = 2

We conclude that D is the region in the xy-plane enclosed by the circle of radius 2:

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2

D

−1−2
x

y

1 2

1

2

−2

−1

The inequalities describing W in cylindrical coordinates are thus

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2, r2 ≤ z ≤ 8 − r2

The function in cylindrical coordinates is

f (x, y, z) = z

√
x2 + y2 = zr

We obtain the following integral:

∫∫∫
W

z

√
x2 + y2 dA =

∫ 2π

0

∫ 2

0

∫ 8−r2

r2
zr · r dz dr dθ =

∫ 2π

0

∫ 2

0

∫ 8−r2

r2
zr2 dz dr dθ



April 19, 2011

S E C T I O N 15.4 Integration in Polar, Cylindrical, and Spherical Coordinates (LT SECTION 16.4) 971

=
∫ 2π

0

∫ 2

0

z2r2

2

∣∣∣∣8−r2

z=r2
dr dθ =

∫ 2π

0

∫ 2

0

r2
(
(8 − r2)

2 − r4
)

2
dr dθ

=
∫ 2π

0

∫ 2

0
8r2(4 − r2) dr dθ =

(∫ 2π

0
8 dθ

)(∫ 2

0

(
4r2 − r4

)
dr

)

= 16π ·
(

4r3

3
− r5

5

∣∣∣∣2
0

)
= 1024

15
π ≈ 214.47

31. f (x, y, z) = z; x2 + y2 ≤ z ≤ 9

solution

y

z

9

3−3

x

The upper boundary of W is the plane z = 9, and the lower boundary is z = x2 + y2 = r2. Therefore, r2 ≤ z ≤ 9. The
projection D onto the xy-plane is the circle x2 + y2 = 9 or r = 3. That is,

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3

The inequalities defining W in cylindrical coordinates are thus

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3, r2 ≤ z ≤ 9

Therefore, we obtain the following integral:

∫∫∫
W

z dV =
∫ 2π

0

∫ 3

0

∫ 9

r2
zr dz dr dθ =

∫ 2π

0

∫ 3

0

z2r

2

∣∣∣∣9
z=r2

dr dθ =
∫ 2π

0

∫ 3

0

r(81 − r4)

2
dr dθ

=
∫ 2π

0

∫ 3

0

81r − r5

2
dr dθ =

∫ 2π

0

81r2

4
− r6

12

∣∣∣∣3
0
dθ =

∫ 2π

0
121.5 dθ = 243π

32. f (x, y, z) = z; 0 ≤ z ≤ x2 + y2 ≤ 9

solution

z

y

x

3

−3

The condition 0 ≤ z ≤ x2 + y2 = r2 tells us that the upper surface is z = r2 and the lower surface is z = 0. Also,
x2 + y2 ≤ 9 or r ≤ 3, hence the projection of W onto the xy-plane is the region inside the circle r = 3. That is,

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3

And W is determined by

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3, 0 ≤ z ≤ r2
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−1−3
x

y

1 2 3−2

1

2

3

−3

−1

−2

Therefore, we obtain the following integral in cylindrical coordinates:

∫∫∫
W

z dV =
∫ 2π

0

∫ 3

0

∫ r2

0
z · r dz dr dθ =

∫ 2π

0

∫ 3

0

z2r

2

∣∣∣∣r
2

z=0
dr dθ =

∫ 2π

0

∫ 3

0

r5

2
dr dθ

=
∫ 2π

0

r6

12

∣∣∣∣3
0
dθ =

∫ 2π

0

729

12
dθ = 729

12
· 2π = 121.5π

In Exercises 33–36, express the triple integral in cylindrical coordinates.

33.
∫ 1

−1

∫ y=
√

1−x2

y=−
√

1−x2

∫ 4

z=0
f (x, y, z) dz dy dx

solution The region of integration is determined by the limits of integration. That is,

W : −1 ≤ x ≤ 1, −
√

1 − x2 ≤ y ≤
√

1 − x2, 0 ≤ z ≤ 4

Therefore the projection of W onto the xy-plane is the disk x2 + y2 ≤ 1. This region has the following definition in polar
coordinates:

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1

D

x

y = 1 − x2

y = − 1 − x2

y

1−1

D

The upper and lower boundaries of W are the planes z = 4 and z = 0, respectively. Hence,

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, 0 ≤ z ≤ 4

Using change of variables in cylindrical coordinates, we get the integral

∫ 2π

0

∫ 1

0

∫ 4

0
f (r cos θ, r sin θ, z)r dz dr dθ

34.
∫ 1

0

∫ y=
√

1−x2

y=−
√

1−x2

∫ 4

z=0
f (x, y, z) dz dy dx

solution The region of integration is determined by the limits of integration. That is,

W : 0 ≤ x ≤ 1, −
√

1 − x2 ≤ y ≤
√

1 − x2 , 0 ≤ z ≤ 4

Thus, the projection D of W onto the xy-plane is the semicircle x2 + y2 = 1, where 0 ≤ x ≤ 1. This region is described
by the polar inequalities

D : −π

2
≤ θ ≤ π

2
, 0 ≤ r ≤ 1
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x

D

y

1

1 − x2y =

1 − x2y = −

The upper and lower boundaries of W are the planes z = 4 and z = 0, respectively. Hence,

W : −π

2
≤ θ ≤ π

2
, 0 ≤ r ≤ 1, 0 ≤ z ≤ 4

The integral in cylindrical coordinates is thus

∫ π/2

−π/2

∫ 1

0

∫ 4

0
f (r cos θ, r sin θ, z)r dz dr dθ

35.
∫ 1

−1

∫ y=
√

1−x2

y=0

∫ x2+y2

z=0
f (x, y, z) dz dy dx

solution The inequalities defining the region of integration are

W : −1 ≤ x ≤ 1, 0 ≤ y ≤
√

1 − x2, 0 ≤ z ≤ x2 + y2

y = 1 − x2

D

x

y

1−1

1

The projection of W onto the xy-plane is the semicircle x2 + y2 = 1, where −1 ≤ x ≤ 1. This domain is defined by the
polar inequalities

D : 0 ≤ θ ≤ π, 0 ≤ r ≤ 1

The lower surface is z = 0 and upper surface is z = x2 + y2 = r2, hence W has the following description in cylindrical
coordinates:

W : 0 ≤ θ ≤ π, 0 ≤ r ≤ 1, 0 ≤ z ≤ r2

We obtain the following integral:

∫ π

0

∫ 1

0

∫ r2

0
f (r cos θ, r sin θ, z)r dz dr dθ

36.
∫ 2

0

∫ y=
√

2x−x2

y=0

∫ √
x2+y2

z=0
f (x, y, z) dz dy dx

solution The inequalities defining the region of integration are

W : 0 ≤ x ≤ 2, 0 ≤ y ≤
√

2x − x2, 0 ≤ z ≤
√

x2 + y2

The curve y =
√

2x − x2 is the semicircle of radius 1 centered at (1, 0), where y ≥ 0. We find the polar equation of the
semicircle:

r sin θ =
√

2r cos θ − r2 cos2 θ

r2 sin2 θ = 2r cos θ − r2 cos2 θ

r2(sin2 θ + cos2 θ) = 2r cos θ

r2 = 2r cos θ ⇒ r = 2 cos θ and 0 ≤ θ ≤ π

2
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x

D

y

21

r = 2 cos

Therefore the projection of W onto the xy-plane is defined by the polar inequalities

D : 0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 2 cos θ

The lower boundary of W is the plane z = 0 and the upper boundary is z =
√

x2 + y2 = r , hence W has the following
cylindrical definition:

W : 0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 2 cos θ, 0 ≤ z ≤ r

The integral in cylindrical coordinates is∫ π/2

0

∫ 2 cos θ

0

∫ r

0
f (r cos θ, r sin θ, z)r dz dr dθ

37. Find the equation of the right-circular cone in Figure 21 in cylindrical coordinates and compute its volume.

y

H

x

z

FIGURE 21

solution To find the equation of the surface we use proportion in similar triangles.

y

x

z

H

z

This gives

z

H
= r

R
⇒ z = H

R
r

The volume of the right circular cone is

V =
∫∫∫

W
1 dV

The projection of W onto the xy-plane is the region x2 + y2 ≤ R2, or in polar coordinates,

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ R

x

y

D

R
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The upper and lower boundaries are the surfaces z = H and z = H
R

r , respectively. Hence W is determined by the
following cylindrical inequalities:

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ R,
H

R
r ≤ z ≤ H

We compute the volume using the following integral:

V =
∫∫∫

W
1 dv =

∫ 2π

0

∫ R

0

∫ H

H
R

r
r dz dr dθ =

∫ 2π

0

∫ R

0
rz

∣∣∣∣H
z= Hr

R

dr dθ =
∫ 2π

0

∫ R

0
r

(
H − Hr

R

)
dr dθ

=
∫ 2π

0

∫ R

0

(
rH − r2H

R

)
dr dθ =

∫ 2π

0

r2H

2
− r3H

3R

∣∣∣∣R
r=0

dθ =
∫ 2π

0

R2H

6
dθ = R2H

6
· 2π = πR2H

3

38. Use cylindrical coordinates to integrate f (x, y, z) = z over the intersection of the hemisphere x2 + y2 + z2 = 4,
z ≥ 0, and the cylinder x2 + y2 = 1.

solution

x

z

y

The region of integration projects onto the circle D of radius 1 in the xy-plane.

x

y

D

In polar coordinates,

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1

The upper boundary of W is the sphere

x2 + y2 + z2 = 4 or z =
√

4 − (x2 + y2) =
√

4 − r2

and the lower boundary is z = −
√

4 − r2. Therefore,

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, −
√

4 − r2 ≤ z ≤
√

4 − r2

We obtain the following integral in cylindrical coordinates:

∫∫∫
W

z dV =
∫ 2π

0

∫ 1

0

∫ √
4−r2

−
√

4−r2
zr dz dr dθ =

∫ 2π

0

∫ 1

0

z2r

2

∣∣∣∣
√

4−r2

z=−
√

4−r2
dr dθ =

∫ 2π

0

∫ 1

0
0 dr dθ = 0

This should not surprise us since W is symmetric with respect to z = 0 and f is antisymmetric.

39. Use cylindrical coordinates to calculate the volume of the solid obtained by removing a central cylinder of radius b

from a sphere of radius a where b < a.

solution Firstly, the equation of the sphere having radius a is

x2 + y2 + z2 = a2 ⇒ r2 + z2 = a2
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in cylindrical coordinates. Next, the equation of the cylinder with radius b that is being removed from the sphere is

x2 + y2 = b2 ⇒ r2 = b2 ⇒ r = b

in cylindrical coordinates. Thus the region that is remaining can be described by the following inequalities in cylindrical
coordinates:

0 ≤ θ ≤ 2π, 0 ≤ r ≤ b, −
√

a2 − r2 ≤ z ≤
√

a2 − r2

Thus the volume can be computed:

V =
∫∫∫

W
1 dV =

∫∫∫
W

r dz dr dθ

= 2
∫ 2π

0

∫ a

b

∫ √
a2−r2

0
r dz dr dθ

= 2
∫ 2π

0

∫ a

b
rz

∣∣∣∣
√

a2−r2

z=0
dr dθ

= 2
∫ 2

0
π

∫ a

b
r
√

a2 − r2 dr dθ

= 2
∫ 2π

0
−1

2
· 2

3

(
a2 − r2)3/2

∣∣∣∣a
r=b

dθ

= 2

3

∫ 2π

0

(
a2 − b2)3/2

dθ = 2

3

(
a2 − b2)3/2 · θ

∣∣∣∣2π

θ=0

= 4

3
π
(
a2 − b2)3/2

40. Find the volume of the region in Figure 22.

z = 8 − x2 − y2

z = x2 + y2

x

y

z

FIGURE 22

solution

x

z

y

We first must identify the domain of integration in the xy-plane. To do this we equate the equations of the two surfaces.
That is,

x2 + y2 = 8 − x2 − y2 ⇒ 2(x2 + y2) = 8 ⇒ x2 + y2 = 4
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y

z

D

2

Therefore, the domain of integration is

D =
{
(x, y); x2 + y2 ≤ 4

}

The double integrals
∫∫

D
(x2 + y2) dA and

∫∫
D

(8 − x2 − y2) dA give the volumes of the regions bounded by the

graphs of z = x2 + y2 and z = 8 − x2 − y2, respectively, and the xy-plane over the region D. Therefore, the volume of
the required region is the difference between these two integrals (see figure). That is,

V =
∫∫

D
(8 − x2 − y2) dA −

∫∫
D

(x2 + y2) dA =
∫∫

D

(
(8 − x2 − y2) − (x2 + y2)

)
dA

or

V =
∫∫

D
(8 − 2x2 − 2y2) dA

To compute the double integral we first notice that, since the function f (x, y) = 8 − 2x2 − 2y2 satisfies f (x, −y) =
f (x, y) and f (−x, y) = f (x, y), and the circle D is symmetric with respect to the x and y axes, the double integral over
D is four times the integral over the part D1 of the circle in the first quadrant. That is,

V = 4
∫∫

D1

(8 − 2x2 − 2y2) dA

D1 is the vertically simple region described by the inequalities

0 ≤ x ≤ 2, 0 ≤ y ≤
√

4 − x2

x

y

D1

2

0 ≤ y ≤    4 − x2

Since this is a portion of a circle, using cylindrical coordinates we can write this vertically simple region using the
inequalities:

0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 2

V = 4
∫∫

D1

(8 − 2x2 − 2y2) dA = 4
∫ π/2

0

∫ 2

0
(8 − 2r2)r dr dθ

= 4
∫ π/2

0

∫ 2

0
8r − 2r3 dr dθ = 4

∫ π/2

0
4r2 − 1

2
r4
∣∣∣∣2
0
dθ

= 4
∫ π/2

0
8 dθ = 32 · π

2
= 16π

So the volume is 16π .
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In Exercises 41–46, use spherical coordinates to calculate the triple integral of f (x, y, z) over the given region.

41. f (x, y, z) = y; x2 + y2 + z2 ≤ 1, x, y, z ≤ 0

solution

x

D

y

−1

−1

The region inside the unit sphere in the octant x, y, z ≤ 0 is defined by the inequalities

W : π ≤ θ ≤ 3π

2
,

π

2
≤ φ ≤ π, 0 ≤ ρ ≤ 1

The function in spherical coordinates is f (x, y, z) = y = ρ sin θ sin φ. Using a triple integral in spherical coordinates,
we obtain

∫∫∫
W

y dV =
∫ 3π/2

π

∫ π

π/2

∫ 1

0
(ρ sin θ sin φ)ρ2 sin φ dρ dφ dθ =

∫ 3π/2

π

∫ π

π/2

∫ 1

0
ρ3 sin θ sin2 φ dρ dφ dθ

=
(∫ 3π/2

π
sin θ dθ

)(∫ π

π/2
sin2 φ dφ

)(∫ 1

0
ρ3dρ

)
=
(

− cos θ

∣∣∣∣3π/2

π

)(
θ

2
− sin 2θ

4

∣∣∣∣π
π/2

)(
ρ4

4

∣∣∣∣1
0

)

= (−1) ·
(π

2
− π

4

)
· 1

4
= − π

16

42. f (x, y, z) = ρ−3; 2 ≤ x2 + y2 + z2 ≤ 4

solution

y

x

z

The lower and upper boundaries of W are the spheres x2 + y2 + z2 = 2 and x2 + y2 + z2 = 4. Therefore, ρ varies from√
2 to 2, φ varies from 0 to π , and θ varies from 0 to 2π .

x

D

y

22

That is, W is defined by the inequalities

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π,
√

2 ≤ ρ ≤ 2
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The triple integral in spherical coordinates is thus∫∫∫
W

f (x, y, z) dV =
∫ 2π

0

∫ π

0

∫ 2

√
2
ρ−3ρ2 sin φ dρ dφ dθ =

∫ 2π

0

∫ π

0

∫ 2

√
2
ρ−1 sin φ dρ dφ dθ

=
(∫ 2π

0
1 dθ

)(∫ π

0
sin φ dφ

)(∫ 2

√
2
ρ−1 dρ

)
=
(

θ

∣∣∣∣2π

0

)(
− cos φ

∣∣∣∣π
0

)(
ln ρ

∣∣∣∣2√
2

)

= 2π · 2 ·
(

ln 2 − 1

2
ln 2

)
= 2π ln 2

43. f (x, y, z) = x2 + y2; ρ ≤ 1

solution W is the region inside the unit sphere, therefore it is described by the following inequalities:

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, 0 ≤ ρ ≤ 1

The function in spherical coordinates is

f (x, y, z) = x2 + y2 = (ρ cos θ sin φ)2 + (ρ sin θ sin φ)2

= ρ2 sin2 φ
(

cos2 θ + sin2 θ
)

= ρ2 sin2 φ

Using triple integrals in spherical coordinates we get∫∫∫
W

(x2 + y2) dV =
∫ 2π

0

∫ π

0

∫ 1

0
(ρ2 sin2 φ)ρ2 sin φ dρ dφ dθ

=
∫ 2π

0

∫ π

0

∫ 1

0
ρ4 sin3 φ dρ dφ dθ =

(∫ 2π

0
1 dθ

)(∫ π

0
sin3 φ dφ

)(∫ 1

0
ρ4dρ

)

=
(

θ

∣∣∣∣2π

0

)(
− sin2 θ cos θ

3
− 2

3
cos θ

∣∣∣∣π
0

)(
ρ5

5

∣∣∣∣1
0

)
= 2π ·

(
2

3
+ 2

3

)
· 1

5
= 8π

15

44. f (x, y, z) = 1; x2 + y2 + z2 ≤ 4z, z ≥
√

x2 + y2

solution The inequality x2 + y2 + z2 ≤ 4z can be rewritten as

x2 + y2 + z2 − 4z ≤ 0 ⇒ x2 + y2 + (z − 2)2 ≤ 4

This inequality defines the region inside the sphere of radius 2 centered at (0, 0, 2). Therefore, W is the region inside the
sphere, above the cone z =

√
x2 + y2.

x y

z

We write the equation of the sphere x2 + y2 + z2 = 4z in spherical coordinates:

(ρ cos θ sin φ)2 + (ρ sin θ sin φ)2 + (ρ cos φ)2 = 4ρ cos φ

ρ2 sin2 φ
(

cos2 θ + sin2 θ
)

+ ρ2 cos2 φ = 4ρ cos φ

ρ2 sin2 φ + ρ2 cos2 φ = 4ρ cos φ

ρ2 = 4ρ cos φ

ρ = 4 cos φ

We write the equation of the cone z =
√

x2 + y2 in spherical coordinates:

ρ cos φ =
√

(ρ cos θ sin φ)2 + (ρ sin θ sin φ)2 =
√

ρ2 sin2 φ = ρ sin φ
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or

tan φ = 1 ⇒ φ = π

4

z

π 
4

π 
4

= 0

=

The spherical inequalities for W are thus

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

4
, 0 ≤ ρ ≤ 4 cos φ

We obtain the following integral:

∫∫∫
W

1 dV =
∫ 2π

0

∫ π/4

0

∫ 4 cos φ

0
ρ2 sin φ dρ dφ dθ =

∫ 2π

0

∫ π/4

0

ρ3 sin φ

3

∣∣∣∣4 cos φ

ρ=0
dφ dθ

=
∫ 2π

0

∫ π/4

0

64 cos3 φ sin φ

3
dφ dθ =

(∫ 2π

0

64

3
dθ

)(∫ π/4

0
cos3 φ sin φ dφ

)

= 128π

3

∫ π/4

0
cos3 φ sin φ dφ

We compute the integral using the substitution u = cos φ, du = − sin φ dφ:

∫∫∫
W

1 dV = 128π

3

∫ 1/
√

2

1
u3(−du) = 128π

3

∫ 1

1/
√

2
u3 du = 128π

3
· u4

4

∣∣∣∣1
1/

√
2

= 8π

45. f (x, y, z) =
√

x2 + y2 + z2; x2 + y2 + z2 ≤ 2z

solution We rewrite the inequality for the region using spherical coordinates:

ρ2 ≤ 2ρ cos φ ⇒ ρ ≤ 2 cos φ

Completing the square in x2 + y2 + z2 = 2z, we see that this is the equation of the sphere of radius 1 centered at (0, 0, 1).
That is,

x2 + y2 + z − 2z = 0

x2 + y2 + (z − 1)2 = 1

z

y

x

1

2

1

W is the region inside the sphere, hence θ varies from 0 to 2π , and φ varies from 0 to π
2 . The inequalities describing W

in spherical coordinates are thus

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

2
, 0 ≤ ρ ≤ 2 cos φ

The function in spherical coordinates is

f (x, y, z) =
√

x2 + y2 + z2 = ρ.
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We obtain the following integral:

I =
∫ 2π

0

∫ π/2

0

∫ 2 cos φ

0
ρ · ρ2 sin φ dρ dφ dθ =

∫ 2π

0

∫ π/2

0

∫ 2 cos φ

0
ρ3 sin φ dρ dφ dθ

=
∫ 2π

0

∫ π/2

0

ρ4 sin φ

4

∣∣∣∣2 cos φ

ρ=0
dφ dθ =

∫ 2π

0

∫ π/2

0

16 cos4 φ sin φ

4
dφ dθ

=
(∫ 2π

0
4 dθ

)(∫ π/2

0
cos4 φ sin φ dφ

)
= 8π

∫ π/2

0
cos4 φ sin φ dφ

We compute the integral using the substitution u = cos φ, du = − sin φ dφ. We obtain

I = 8π

∫ 0

1
u4(−du) = 8π

∫ 1

0
u4 du = 8π

u5

5

∣∣∣∣1
0

= 8π

5

46. f (x, y, z) = ρ; x2 + y2 + z2 ≤ 4, z ≤ 1, x ≥ 0

solution

1

2
−2

z

y

x

W is the region inside the sphere of radius 2, below the plane z = 1 and above and below the right xy-plane. The equation
of the sphere x2 + y2 + z2 = 4 in spherical coordinates is ρ = 2, and the equation of the plane z = 1 is,

ρ cos φ = 1 ⇒ ρ = 1

cos φ
(1)

To evaluate the triple integral we let W1 be the region inside the sphere above the plane z = 1 for x ≥ 0, and W2 be the
region enclosed by the sphere, for x ≥ 0.

D

x

y

2

Thus, ∫∫∫
W

f (x, y, z) dV =
∫∫∫

W2

f (x, y, z) dV −
∫∫∫

W1

f (x, y, z) dV

Setting ρ = 2 in (1) gives

2 = 1

cos φ
⇒ cos φ = 1

2
⇒ φ = π

3

W1

y

x

z

p
3
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Therefore, we obtain the following definition:

W1 : −π

2
≤ θ ≤ π

2
, 0 ≤ φ ≤ π

3
,

1

cos φ
≤ ρ ≤ 2

W2 : −π

2
≤ θ ≤ π

2
, 0 ≤ φ ≤ π, 0 ≤ ρ ≤ 2

We compute the integral over W1:

∫∫∫
W1

f (x, y, z) dV =
∫ π/2

−π/2

∫ π/3

0

∫ 2

1/ cos φ
ρ · ρ2 sin φ dρ dφ dθ =

∫ π/2

−π/2

∫ π/3

0

∫ 2

1/ cos φ
ρ3 sin φ dρ dφ dθ

=
∫ π/2

−π/2

∫ π/3

0

ρ4 sin φ

4

∣∣∣∣2
ρ= 1

cos φ

dφ dθ =
∫ π/2

−π/2

∫ π/3

0

(
4 sin φ − sin φ

4 cos4 φ

)
dφ dθ

=
(∫ π/2

−π/2
dθ

)(∫ π/3

0

(
4 sin φ − sin φ

4 cos4 φ

))
dφ

= π

∫ π/3

0
4 sin φ dφ − π

∫ π/3

0

sin φ

4 cos4 φ
dφ (2)

We compute the second integral using the substitution u = cos θ , du = − sin φ dφ, and the first using an integration
formula. We get

∫ π/3

0
4 sin φ dφ = −4 cos φ

∣∣∣∣π/3

0
= −4

(
1

2
− 1

)
= 2

∫ π/3

0

sin φ

4 cos4 φ
dφ =

∫ 1/2

1

1

4u4
(−du) =

∫ 1

1/2

u−4

4
du = u−3

−12

∣∣∣∣1
1/2

= 7

12

Substituting the integrals in (2) we get∫∫∫
W1

f (x, y, z) dV = 2π − 7π

12
= 17π

12
(3)

We compute the integral over W2:

∫∫∫
W2

f (x, y, z) dV =
∫ π/2

−π/2

∫ π

0

∫ 2

0
ρ · ρ2 sin φ dρ dφ dθ =

∫ π/2

−π/2

∫ π

0

∫ 2

0
ρ3 sin φ dρ dφ dθ

=
(∫ π/2

−π/2
1 dθ

)(∫ π

0
sin φ dφ

)(∫ 2

0
ρ3dρ

)
= π ·

(
− cos φ

∣∣∣∣π
0

)(
ρ4

4

∣∣∣∣2
0

)

= π · 2 · 4 = 8π (4)

We now substitute (3) and (4) in (1) to obtain the following solution:∫∫∫
W

f (x, y, z) dV = 8π − 17π

12
= 79π

12

47. Use spherical coordinates to evaluate the triple integral of f (x, y, z) = z over the region

0 ≤ θ ≤ π

3
, 0 ≤ φ ≤ π

2
, 1 ≤ ρ ≤ 2

solution The function in spherical coordinates is f (x, y, z) = z = ρ cos φ. Using triple integral in spherical coordi-
nates gives

∫∫∫
W

z dV =
∫ π/3

0

∫ π/2

0

∫ 2

1
(ρ cos φ)ρ2 sin φ dρ dφ dθ =

∫ π/3

0

∫ π/2

0

∫ 2

1
ρ3 cos φ sin φ dρ dφ dθ

=
(∫ π/3

0
1 dθ

)(∫ π/2

0

1

2
sin 2φ dφ

)(∫ 2

1
ρ3dρ

)

= π

3
·
(

−1

4
cos 2φ

) ∣∣∣∣π/2

0
·
(

ρ4

4

∣∣∣∣2
1

)
= π

3
· 1

2
·
(

4 − 1

4

)
= 5

8
π
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48. Find the volume of the region lying above the cone φ = φ0 and below the sphere ρ = R.

solution

y

x

z

The region is described by the following inequalities in spherical coordinates:

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ φ0, 0 ≤ ρ ≤ R

We compute the volume V of W using triple integrals in spherical coordinates:

V =
∫∫∫

W
1 dV =

∫ 2π

0

∫ φ0

0

∫ R

0
ρ2 sin φ dρ dφ dθ =

(∫ 2π

0
1 dθ

)(∫ φ0

0
sin φ dφ

)(∫ R

0
ρ2dρ

)

=
(

θ

∣∣∣∣2π

0

)(
− cos φ

∣∣∣∣φ0

0

)(
ρ3

3

∣∣∣∣R
0

)
= 2π (1 − cos φ0) · R3

3
= 2πR3 (1 − cos φ0)

3

49. Calculate the integral of

f (x, y, z) = z(x2 + y2 + z2)−3/2

over the part of the ball x2 + y2 + z2 ≤ 16 defined by z ≥ 2.

solution

z

y

x

The equation of the sphere in spherical coordinates is ρ2 = 16 or ρ = 4.

x

y

D

4

We write the equation of the plane z = 2 in spherical coordinates:

ρ cos φ = 2 ⇒ ρ = 2

cos φ

To compute the interval of φ, we must find the value of φ corresponding to ρ = 4 on the plane z = 2. We get

4 = 2

cos φ
⇒ cos φ = 1

2
⇒ φ = π

3

Therefore, φ is changing from 0 to π
3 , θ is changing from 0 to 2π , and ρ is changing from 2

cos φ to 4. We obtain the
following description for W:

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

3
,

2

cos φ
≤ ρ ≤ 4
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The function is

f (x, y, z) = z(x2 + y2 + z2)
−3/2 = ρ cos φ · (ρ2)

−3/2 = ρ−2 cos φ

We use triple integrals in spherical coordinates to write

∫∫∫
W

f (x, y, z) dV =
∫ 2π

0

∫ π/3

0

∫ 4

2/ cos φ
(ρ−2 cos φ)ρ2 sin φ dρ dφ dθ =

∫ 2π

0

∫ π/3

0

∫ 4

2/ cos φ

sin 2φ

2
dρ dφ dθ

=
∫ 2π

0

∫ π/3

0

sin 2φ

2
ρ

∣∣∣∣4
ρ= 2

cos φ

dφ dθ =
∫ 2π

0

∫ π/3

0

(
2 sin 2φ − sin 2φ

2
· 2

cos φ

)
dφ dθ

=
∫ 2π

0

∫ π/3

0
(2 sin 2φ − 2 sin φ) dφ dθ = 2π ·

(
− cos 2φ + 2 cos φ

∣∣∣∣π/3

φ=0

)

= 2π ·
(

− cos
2π

3
+ 2 cos

π

3
+ 1 − 2

)
= π

50. Calculate the volume of the cone in Figure 21 using spherical coordinates.

solution

y

H

R

z

f0

x

First, we write the equation of the upper plane z = H in spherical coordinates:

ρ cos φ = H ⇒ ρ = H

cos φ

To write the equation of the circular cone, we must find the angle φ0 in terms of R and H . That is,

tan φ0 = R

H
⇒ φ0 = tan−1 R

H

Therefore, the equation of the lower surface (the circular cone) is φ = tan−1 R
H

. We now write the inequalities for the
region W:

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ tan−1 R

H
, 0 ≤ ρ ≤ H

cos φ

D

x

y

R

D

0 ≤ ≤ 2

We compute the volume of W using a triple integral in spherical coordinates. We get

V =
∫∫∫

W
1 dv =

∫ 2π

0

∫ tan−1 R
H

0

∫ H/ cos φ

0
ρ2 sin φ dρ dφ dθ =

∫ 2π

0

∫ tan−1 R
H

0

ρ3 sin φ

3

∣∣∣∣H/ cos φ

ρ=0
dφ dθ

=
∫ 2π

0

∫ tan−1 R
H

0

H 3 sin φ

3 cos3 φ
dφ dθ =

(∫ 2π

0

H 3

3
dθ

)(∫ tan−1 R
H

0

sin φ

cos3 φ
dφ

)
= 2πH 3

3

∫ tan−1 R
H

0

sin φ

cos3 φ
dφ
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We compute the integral using the substitution u = cos φ, du = − sin φ dφ. We get

V = 2πH 3

3

∫ cos
(

tan−1 R
H

)
1

u−3(−du) = 2πH 3

3

∫ 1

cos
(

tan−1 R
H

) u−3 du = 2πH 3

3

u−2

−2

∣∣∣∣1
cos

(
tan−1 R

H

)

= πH 3

3

⎛
⎝ 1

cos2
(

tan−1 R
H

) − 1

⎞
⎠ (1)

H
H2 + R2

R

R
H

f0 = tan−1

Using the triangle shown in the figure, we see that

cos

(
tan−1 R

H

)
= H√

H 2 + R2
⇒ cos2

(
tan−1 R

H

)
= H 2

H 2 + R2
⇒ 1

cos2
(

tan−1 R
H

) = 1 + R2

H 2

Substituting in (1) gives

V = πH 3

3

(
1 + R2

H 2
− 1

)
= πH 3

3
· R2

H 2
= πR2H

3

51. Calculate the volume of the sphere x2 + y2 + z2 = a2, using both spherical and cylindrical coordinates.

solution Spherical coordinates: In the entire sphere of radius a, we have

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, 0 ≤ ρ ≤ a

Using triple integral in spherical coordinates we get

V =
∫∫∫

W
1 dV =

∫ 2π

0

∫ π

0

∫ a

0
ρ2 sin φ dρ dφ dθ =

(∫ a

0
ρ2dρ

)(∫ π

0
sin φ dφ

)(∫ 2π

0
1 dθ

)

=
(

ρ3

3

∣∣∣∣a
0

)(
− cos φ

∣∣∣∣π
0

)(
θ

∣∣∣∣2π

0

)
= a3

3
· 2 · 2π = 4πa3

3

Cylindrical coordinates: The projection of W onto the xy-plane is the circle of radius a, that is,

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ a

The upper surface is z =
√

a2 − (x2 + y2) =
√

a2 − r2 and the lower surface is z = −
√

a2 − r2. Therefore, W has the
following description in cylindrical coordinates:

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ a, −
√

a2 − r2 ≤ z ≤
√

a2 − r2

We obtain the following integral:

V =
∫ 2π

0

∫ a

0

∫ √
a2−r2

−
√

a2−r2
r dz dr dθ =

∫ 2π

0

∫ a

0
rz

∣∣∣∣
√

a2−r2

z=−
√

a2−r2
dr dθ =

∫ 2π

0

∫ a

0
2r
√

a2 − r2 dr dθ (1)

We compute the inner integral using the substitution u =
√

a2 − r2, du = − r
u dr . We get

∫ a

0
2r
√

a2 − r2 dr =
∫ 0

a
−2u2 du =

∫ a

0
2u2 du = 2u3

3

∣∣∣∣a
0

= 2a3

3

Substituting in (1) gives

V =
∫ 2π

0

2a3

3
dθ = 2a3

3
θ

∣∣∣∣2π

0
= 2a3

3
· 2π = 4πa3

3
.
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52. Let W be the region within the cylinder x2 + y2 = 2 between z = 0 and the cone z =
√

x2 + y2. Calculate the
integral of f (x, y, z) = x2 + y2 over W , using both spherical and cylindrical coordinates.

solution Spherical coordinates:

2
1

0

−2
−1

0

x

z

2
1

0
−1

−2

y

1

0.5

We write the equation of the cylinder x2 + y2 = 2 in spherical coordinates:

2 = (ρ cos θ sin φ)2 + (ρ sin θ sin φ)2 = ρ2 sin2 φ
(

cos2 θ + sin2 θ
)

2 = ρ2 sin2 φ ⇒ ρ =
√

2

sin φ

We write the equation of the cone z =
√

x2 + y2 in spherical coordinates:

ρ cos φ =
√

(ρ cos θ sin φ)2 + (ρ sin θ sin φ)2 =
√

ρ2 sin2 φ
(

cos2 θ + sin2 θ
)

= ρ sin φ

or

tan φ = 1 ⇒ φ = π

4

Therefore the region W is described by the following inequalities:

0 ≤ θ ≤ 2π,
π

4
≤ φ ≤ π

2
, 0 ≤ ρ ≤

√
2

sin φ

The function is

f (x, y, z) = x2 + y2 = (ρ cos θ sin φ)2 + (ρ sin θ sin φ)2 = ρ2 sin2 φ

We obtain the following integral:

∫∫∫
W

(x2 + y2) dV =
∫ 2π

0

∫ π/2

π/4

∫ √
2/ sin φ

0

(
ρ2 sin2 φ

)
ρ2 sin φ dρ dφ dθ

=
∫ 2π

0

∫ π/2

π/4

∫ √
2/ sin φ

0
ρ4 sin3 φ dρ dφ dθ =

∫ 2π

0

∫ π/2

π/4

ρ5 sin3 φ

5

∣∣∣∣
√

2/ sin φ

ρ=0
dφ dθ

=
∫ 2π

0

∫ π/2

π/4

4
√

2
sin5 φ

· sin3 φ

5
dφ dθ =

∫ 2π

0

∫ π/2

π/4

4
√

2

5
· 1

sin2 φ
dφ dθ

=
(∫ 2π

0

4
√

2

5
dθ

)(∫ π/2

π/4

1

sin2 φ
dφ

)
=
(

4
√

2

5
θ

∣∣∣∣2π

0

)(
− cot θ

∣∣∣∣π/2

π/4

)

= 4
√

2

5
· 2π · 1 = 8π

√
2

5

Cylindrical coordinates: The region of integration has the following definition in cylindrical coordinates:

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ √
2, 0 ≤ z ≤

√
x2 + y2 = r

The function in cylindrical coordinates is f (x, y, z) = x2 + y2 = r2. Using triple integrals in cylindrical coordinates,
we obtain∫∫∫

W
(x2 + y2) dV =

∫ 2π

0

∫ √
2

0

∫ r

0
r2 · r dz dr dθ =

∫ 2π

0

∫ √
2

0

∫ r

0
r3 dz dr dθ
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=
∫ 2π

0

∫ √
2

0
r3z

∣∣∣∣r
z=0

dr dθ =
∫ 2π

0

∫ √
2

0
r4 dr dθ =

(∫ 2π

0
1 dθ

)(∫ √
2

0
r4 dr

)

=
(

θ

∣∣∣∣2π

0

)⎛
⎝ r5

5

∣∣∣∣
√

2

0

⎞
⎠ = 2π · 4

√
2

5
= 8

√
2π

5

53. Bell-Shaped Curve One of the key results in calculus is the computation of the area under the bell-shaped curve
(Figure 23):

I =
∫ ∞
−∞

e−x2
dx

This integral appears throughout engineering, physics, and statistics, and although e−x2
does not have an elementary

antiderivative, we can compute I using multiple integration.

(a) Show that I2 = J , where J is the improper double integral

J =
∫ ∞
−∞

∫ ∞
−∞

e−x2−y2
dx dy

Hint: Use Fubini’s Theorem and e−x2−y2 = e−x2
e−y2

.

(b) Evaluate J in polar coordinates.

(c) Prove that I = √
π .

21−2 −1
x

y

1

FIGURE 23 The bell-shaped curve y = e−x2
.

solution

(a) We must show that I2 = J . Firstly, consider the following:

I2 = I · I =
∫ ∞
−∞

e−x2
dx ·

∫ ∞
−∞

e−y2
dy =

∫ ∞
−∞

e−x2 · e−y2
dx dy =

∫ ∞
−∞

e−x2−y2
dx dy

This works because each integral after the first equals sign is independent of the other.

(b) The improper integral over the xy-plane can be computed as the limit as R → ∞ of the double integrals over the
disk. DR is defined by

DR : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ R

x

y

R

DR

That is,

J = lim
R→∞

∫∫
DR

e−(x2+y2) dx dy (1)

We compute the double integral using polar coordinates. The function is f (x, y) = e−(x2+y2) = e−r2
, hence

∫∫
DR

e−(x2+y2) dx dy =
∫ 2π

0

∫ R

0
e−r2

r dr dθ =
(∫ 2π

0
1 dθ

)(∫ R

0
e−r2

r dr

)
= 2π

∫ R

0
e−r2

r dr
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We compute the integral using the substitution u = r2, du = 2r dr . We get

∫∫
DR

e−(x2+y2) dx dy = 2π

∫ R2

0
e−u du

2
= π

∫ R2

0
e−u du = π(−e−u)

∣∣∣∣R
2

0
= π(1 − e−R2

) (2)

Combining (1) and (2), we get

J = lim
R→∞

(
π
(
1 − e−R2)) = π

On the other hand, using the Iterated Integral of a Product Function, we get

π = J =
∫ ∞
−∞

∫ ∞
−∞

e−x2−y2
dx dy =

∫ ∞
−∞

∫ ∞
−∞

e−x2 · e−y2
dx dy

=
(∫ ∞

−∞
e−x2

dx

)(∫ ∞
−∞

e−y2
dy

)
= I2

(c) That is,

I2 = π ⇒ I = √
π

Further Insights and Challenges
54. An Improper Multiple Integral Show that a triple integral of (x2 + y2 + z2 + 1)−2 over all of R3 is equal to π2.
This is an improper integral, so integrate first over ρ ≤ R and let R → ∞.

solution The triple integral I over R3 can be computed as the limit as R → ∞ of the triple integral over the balls of
radius R. These balls have the following definition in spherical coordinates:

DR : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, 0 ≤ ρ ≤ R

The function in spherical coordinates is f (x, y, z) = (x2 + y2 + z2 + 1)
−2 = (ρ2 + 1)

−2
. We obtain the following

integral:

IR =
∫∫∫

WR

(x2 + y2 + z2 + 1)
−2

dV =
∫ 2π

0

∫ π

0

∫ R

0
(1 + ρ2)

−2 · ρ2 sin φ dρ dφ dθ

=
(∫ 2π

0
1 dθ

)(∫ π

0
sin φ dφ

)(∫ R

0
(1 + ρ2)

−2
ρ2dρ

)
= 2π ·

(
− cos φ

∣∣∣∣π
0

)∫ R

0
(1 + ρ2)

−2
ρ2dρ

= 4π

∫ R

0
(1 + ρ2)

−2
ρ2dρ

We compute the integral using the trigonometric substitution ρ = tan u, dρ = 1
cos2 u

du. Therefore, 1 + ρ2 = 1 + tan2 u =
1

cos2 u
, and we obtain

IR = 4π

∫ tan−1 R

0

(
1

cos2 u

)−2
tan2 u · 1

cos2 u
du = 4π

∫ tan−1 R

0
tan2 u cos2 u du

= 4π

∫ tan−1 R

0
sin2 u du = 4π

(
u

2
− sin 2u

4

∣∣∣∣tan−1 R

0

)
= 4π

(
tan−1 R

2
− sin 2(tan−1 R)

4

)

We now let R → ∞. Using the limit limR→∞ tan−1 R = π
2 , we obtain

IR = 4π lim
R→∞

(
tan−1 R

2
− sin 2(tan−1 R)

4

)
= 4π

(
π

4
− sin

(
2 · π

2

)
4

)
= 4π

(π

4
− 0

)
= π2

55. Prove the formula ∫∫
D

ln r dA = −π

2

swhere r =
√

x2 + y2 and D is the unit disk x2 + y2 ≤ 1. This is an improper integral since ln r is not defined at (0, 0),
so integrate first over the annulus a ≤ r ≤ 1 where 0 < a < 1, and let a → 0.
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solution

ε

Dε

1

y

x

The improper integral I is computed by the limit as a → 0+ of the integrals over the annulus Da defined by

Da : 0 ≤ θ ≤ 2π, a ≤ r ≤ 1

Using double integrals in polar coordinates and integration by parts, we get

Ia =
∫ 2π

0

∫ 1

a
(ln r) · r dr dθ = 2π

∫ 1

a
r ln r dr = 2π

(
r2 ln r

2
− r2

4

∣∣∣∣1
a

)

= 2π

(
ln 1

2
− 1

4
− a2 ln a

2
+ a2

4

)
= π

2

(
a2 − 2a2 ln a − 1

)

We now compute the limit of Ia as a → 0+. We use L’Hôpital’s rule to obtain

I = lim
a→0+

π

2
(a2 − 2a2 ln a − 1) = −π

2
− π lim

a→0+ a2 ln a = −π

2
− π lim

a→0+
ln a

a−2

= −π

2
− π lim

a→0+
a−1

−2a−3
= −π

2
+ π

2
lim

a→0+ a2 = −π

2

56. Recall that the improper integral
∫ 1

0
x−a dx converges if and only if a < 1. For which values of a does

∫∫
D

r−a dA

converge, where r =
√

x2 + y2 and D is the unit disk x2 + y2 ≤ 1?

solution The improper integral I =
∫∫

D
r−a dA is computed as the limit ε → 0+ of the double integrals over the

annulus Dε defined by

Dε : 0 ≤ θ ≤ 2π, ε ≤ r ≤ 1

DE

E x

y

1

We compute the integral over Da using double integral in polar coordinates. We obtain

∫∫
Dε

(√
x2 + y2

)−a

dA =
∫ 2π

0

∫ 1

ε
r−a · r dr dθ = 2π

∫ 1

ε
r1−a dr

Therefore,

I = lim
ε→0+ 2π

∫ 1

ε
r1−a dr = 2π

∫ 1

0
r1−a dr = 2π

∫ 1

0
r−(a−1) dr

This integral converges only if a − 1 < 1, or a < 2.
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15.5 Applications of Multiple Integrals (LT Section 16.5)

Preliminary Questions
1. What is the mass density ρ(x, y, z) of a solid of volume 5 m3 with uniform mass density and total mass 25 kg?

solution Here, recall that

total mass =
∫∫∫

W
ρ(x, y, z) dV

Since we are told that the solid has volume 5, and ρ(x, y, z) is uniform (i.e. constant, let ρ(x, y, z) = ρ), we can write:

25 =
∫∫∫

W
ρ(x, y, z) dV = ρ · V (W) = 5ρ, ⇒ ρ = 5 kg/m3

2. A domain D in R2 with uniform mass density is symmetric with respect to the y-axis. Which of the following are
true?

(a) xCM = 0 (b) yCM = 0 (c) Ix = 0 (d) Iy = 0

solution Here, the x-coordinate of the center of mass, xCM = 0 (a) since xCM = My

M
and My = ∫∫

D xρ(x, y) dA.
Since ρ(x, y) = ρ(−x, y), then we see that (−x)ρ(−x, y) = −xρ(x, y) and My is an integral of an odd function over a
symmetric region, hence My = 0.

3. If p(x, y) is the joint probability density function of random variables X and Y , what does the double integral of
p(x, y) over [0, 1] × [0, 1] represent? What does the integral of p(x, y) over the triangle bounded by x = 0, y = 0, and
x + y = 1 represent?

solution The double integral of p(x, y) over [0, 1] × [0, 1] represents the probability that both X and Y are between
0 and 1. The integral of p(x, y) over the triangle bounded by x = 0, y = 0, and x + y = 1 represents the probability that
both X and Y are nonnegative and X + Y ≤ 1.

Exercises
1. Find the total mass of the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 assuming a mass density of

ρ(x, y) = x2 + y2

solution

y

x
1

1

0

The total mass M is obtained by integrating the mass density ρ(x, y) = x2 + y2 over the square D in the xy-plane. This
gives

M =
∫∫

D
ρ(x, y) dA =

∫ 1

0

∫ 1

0

(
x2 + y2

)
dx dy =

∫ 1

0

x3

3
+ y2x

∣∣∣∣1
x=0

dy

=
∫ 1

0

(
1

3
+ y2 − 0

)
dy =

∫ 1

0

(
1

3
+ y2

)
dy = y

3
+ y3

3

∣∣∣∣1
0

= 1

3
+ 1

3
= 2

3

2. Calculate the total mass of a plate bounded by y = 0 and y = x−1 for 1 ≤ x ≤ 4 (in meters) assuming a mass
density of ρ(x, y) = y/x kg/m2.

solution The total mass M of the plate is obtained by computing the double integral of mass density ρ(x, y) = y
x

over the region D shown in the figure.



April 19, 2011

S E C T I O N 15.5 Applications of Multiple Integrals (LT SECTION 16.5) 991

x
D

y

y = x−1

41

D is a vertically simple region defined by the following inequalities:

1 ≤ x ≤ 4, 0 ≤ y ≤ x−1

x

y

0 ≤ y ≤ x−1

41

We compute the double integral using Theorem 2. That is,

M =
∫∫

D
ρ(x, y) dA =

∫ 4

1

∫ x−1

0

y

x
dy dx =

∫ 4

1

y2

2x

∣∣∣∣x
−1

y=0
dx =

∫ 4

1

(
x−1

)2 − 02

2x
dx =

∫ 4

1

1

2
x−3 dx

= −1

4
x−2

∣∣∣∣4
x=1

= −1

4
(4−2 − 1−2) = 15

64

3. Find the total charge in the region under the graph of y = 4e−x2/2 for 0 ≤ x ≤ 10 (in centimeters) assuming a
charge density of ρ(x, y) = 10−6xy coulombs per square centimeter.

solution The total charge C of the region is obtained by computing the double integral of charge density ρ(x, y) =
10−6xy over the region defined by the inequalities

0 ≤ x ≤ 10, 0 ≤ y ≤ 4e−x2/2

Therefore, we compute the double integral

C =
∫∫

D
ρ(x, y) dA =

∫ 10

0

∫ 4e−x2/2

0
10−6xy dy dx = 10−6

∫ 10

0

⎛
⎝1

2
xy2

∣∣∣∣4e−x2/2

y=0

⎞
⎠ dx

= 1

2
· 10−6

∫ 10

0
16xe−x2

dx = −4 · 10−6
∫ 10

0
e−x2

(−2x dx) = −4 · 10−6

(
e−x2

∣∣∣∣10

0

)

= −4 · 10−6
(
e−102 − 1

)
= 1

250,000

(
1 − e−100

)
4. Find the total population within a 4-kilometer radius of the city center (located at the origin) assuming a population

density of ρ(x, y) = 2000(x2 + y2)−0.2 people per square kilometer.

solution The total population P of the region is obtained by computing the double integral of population density

ρ(x, y) = 2000(x2 + y2)−0.2 over the region defined by the inequalities:

0 ≤ x2 + y2 ≤ 16

We can think of this region with polar coordinates and write:

x = 4 cos θ, y = 4 sin θ, 0 ≤ r ≤ 4, 0 ≤ θ ≤ 2π

Transforming with this information we compute the double integral:

∫∫
D

ρ(x, y) dA =
∫∫

D
2000(x2 + y2)−0.2 dA =

∫ 2π

0

∫ 4

0
2000(r2)−0.2 · r dr dθ

= 2000
∫ 2π

0

∫ 4

0
r0.6 dr dθ = 2000

∫ 2π

0

1

1.6
r1.6

∣∣∣∣4
0
dθ
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= 2000

1.6
· 41.6

∫ 2π

0
1 dθ = 2500π · 41.6 ≈ 72,175

5. Find the total population within the sector 2|x| ≤ y ≤ 8 assuming a population density of ρ(x, y) = 100e−0.1y

people per square kilometer.

solution The total population P of the region is obtained by computing the double integral of population density

ρ(x, y) = 100e−0.1y over the region defined by the inequality 2|x| ≤ y ≤ 8. This means the region can be split into two
vertically simple regions described by the inequalities:

0 ≤ x ≤ 4, 2x ≤ y ≤ 8

and

−4 ≤ x ≤ 4, −2x ≤ y ≤ 8

Now to compute the double integral:∫∫
D

ρ(x, y) dA =
∫∫

D1

ρ(x, y) dA +
∫∫

D2

ρ(x, y) dA

∫∫
D1

ρ(x, y) dA +
∫∫

D2

ρ(x, y) dA =
∫ 4

0

∫ 8

2x
100e−0.1y dy dx +

∫ 0

−4

∫ 8

−2x
100e−0.1y dy dx

=
∫ 4

0

100

−0.1
e−0.1y

∣∣∣∣8
y=2x

dx +
∫ 0

−4

100

−0.1
e−0.1y

∣∣∣∣8
y=−2x

dx

= −1000
∫ 4

0
e−0.8 − e−0.2x dx − 1000

∫ 0

−4
e−0.8 − e0.2x dx

= −1000

(
e−0.8x + 5e−0.2x

∣∣∣∣4
0

)
− 1000

(
e−0.8x − 5e0.2x

∣∣∣∣0−4

)

= −1000
(

4e−0.8 + 5e−0.8 − 5
)

− 1000
(
−5 + 4e−0.8 + 5e−0.8

)
= −1000

(
18e−0.8 − 10

)
≈ 1912

6. Find the total mass of the solid region W defined by x ≥ 0, y ≥ 0, x2 + y2 ≤ 4, and x ≤ z ≤ 32 − x (in centimeters)
assuming a mass density of ρ(x, y, z) = 6y g/cm3.

solution To find the total mass of this solid region, we will think of it using cylindrical coordinates:

0 ≤ r ≤ 2, r cos θ ≤ z ≤ 32 − r cos θ

and the mass density is:

ρ(x, y, z) = 6y ⇒ ρ(r cos θ, r sin θ, z) = 6r sin θ

Since we are given x ≥ 0 and y ≥ 0, then we know

0 ≤ θ ≤ π

2

Therefore, the total mass can be computed:∫∫∫
W

ρ(r cos θ, r sin θ, z) dV =
∫ π/2

θ=0

∫ 2

r=0

∫ z=32−r cos θ

z=r cos θ
(6r sin θ)r dz dr dθ

= 6
∫ π/2

0

∫ 2

0

∫ 32−r cos θ

r cos θ
r2 sin θ dz dr dθ

= 6
∫ π/2

0

∫ 2

0
r2 sin θ

(
z

∣∣∣∣32−r cos θ

r cos θ

)
dr dθ

= 6
∫ π/2

0

∫ 2

0
r2 sin θ (32 − 2r cos θ) dr dθ

= 6
∫ π/2

0

∫ 2

0
32r2 sin θ − 2r3 sin θ cos θ dr dθ
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= 6
∫ π/2

0

32

3
r3 sin θ − 1

2
r4 sin θ cos θ

∣∣∣∣2
0
dθ

= 6
∫ π/2

0

256

3
sin θ − 8 sin θ cos θ dθ

= 6

(
−256

3
cos θ − 4 sin2 θ

) ∣∣∣∣π/2

0

= 6

(
−4 + 256

3

)
= 488

7. Calculate the total charge of the solid ball x2 + y2 + z2 ≤ 5 (in centimeters) assuming a charge density (in coulombs
per cubic centimeter) of

ρ(x, y, z) = (3 · 10−8)(x2 + y2 + z2)1/2

solution To calculate total charge, first we consider the solid ball in spherical coordinates:

x2 + y2 + z2 ≤ 5 ⇒ 0 ≤ ρ ≤ √
5, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

And the charge density function too, let us rename it R(x, y, z):

R(x, y, z) = (3 · 10−8)(x2 + y2 + z2)1/2 ⇒ R(ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ) = (3 · 10−8)ρ

Then integrating to compute the total charge we have:

∫ 2π

0

∫ π

0

∫ √
5

0
(3 · 10−8)ρ · ρ2 sin φ dρ dφ dθ = 3 · 10−8

∫ 2π

0

∫ π

0

∫ √
5

0
ρ3 sin φ dρ dφ dθ

= 3 · 10−8
∫ 2π

0

∫ π

0
sin φ

(
1

4
ρ4
∣∣∣∣
√

5

0

)
dφ dθ = 3 · 10−8 · 25

4

∫ 2π

0

∫ π

0
sin φ dφ dθ

= 3 · 10−8 · 25

4

∫ 2π

0
− cos φ

∣∣∣∣π
0

dθ = 3 · 10−8 · 25

4

∫ 2π

0
2 dθ = 3 · 10−8 · 25π

≈ 2.356 · 10−6

8. Compute the total mass of the plate in Figure 10 assuming a mass density of f (x, y) = x2/(x2 + y2) g/cm2.

x
10

y

3

FIGURE 10

solution The total mass of the plate is

M =
∫∫

D
x2

x2 + y2
dA

We compute the integral using polar coordinates.

Step 1. Describe D and f in polar coordinates. The region D lies in the angular sector 0 ≤ θ ≤ π
3 .

x
10

(10, 10 3)

y

3
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The vertical line x = 10 has polar equation r cos θ = 10 or r = 10 sec θ . The circle is of radius r =
√

102 + (10
√

3)
2 =

20, hence its polar equation is r = 20. A ray of angle θ intersects D for r between 10 sec θ and 20. Therefore, D has the
following description in polar coordinates:

0 ≤ θ ≤ π

3
, 10 sec θ ≤ r ≤ 20

x
10

y

10 sec ≤ r ≤ 20

The function f can be rewritten as

f (x, y) = x2

x2 + y2
= r2 cos2 θ

r2
= cos2 θ

Step 2. Change variables in the integral and evaluate. The Change of Variables Formula gives

M =
∫∫

D
x2

x2 + y2
dA =

∫ π/3

0

∫ 20

10 sec θ
cos2 θ · r drdθ =

∫ π/3

0

r2 cos2 θ

2

∣∣∣∣20

r=10 sec θ

dθ

=
∫ π/3

0

cos2 θ

2

(
400 − 100 sec2 θ

)
dθ =

∫ π/3

0
200 cos2 θ − 50 dθ

= 100
∫ π/3

0
1 + cos 2θ dθ − 50

∫ π/3

0
dθ = 100

(
θ + 1

2
sin 2θ

∣∣∣∣π/3

0

)
− 50π

3

= 100

(
π

3
+ 1

2
sin

2π

3

)
− 50π

3
= 50π

3
+ 25

√
3 ≈ 95.661

9. Assume that the density of the atmosphere as a function of altitude h (in km) above sea level is ρ(h) = ae−bh

kg/km3, where a = 1.225 × 109 and b = 0.13. Calculate the total mass of the atmosphere contained in the cone-shaped
region

√
x2 + y2 ≤ h ≤ 3.

solution First we must consider the given cone in cylindrical coordinates:

√
x2 + y2 ≤ z ≤ 3 ⇒ r ≤ z ≤ 3

while

0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π

And the density function as well:

ρ(x, y, z) = ae−bz ⇒ ρ(r cos θ, r sin θ, z) = ae−bz

Now to compute the total mass of the atmosphere in question:

∫ θ=2π

0

∫ 3

r=0

∫ 3

z=r
ae−bz · r dz dr dθ =

∫ 2π

0

∫ 3

0

∫ 3

r
r(ae−bz) dz dr dθ

=
∫ 2π

0

∫ 3

0
r

(
−1

b
ae−bz

∣∣∣∣3
z=r

)
dr dθ

= −a

b

∫ 2π

0

∫ 3

0
re−3b − re−br dr dθ

= −a

b

∫ 2π

0

1

2
r2e−3b

∣∣∣∣3
0

−
(

−1

b
re−br − 1

b2
e−br

∣∣∣∣3
0

)
dθ

= −a

b
· 2π

(
9

2
e−3b + 3

b
e−3b + 1

b2
e−3b − 1

b2

)
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Now, since a = 1.225 × 109 and b = 0.13 we have that the total mass is

−a

b
· 2π

(
9

2
e−3b + 3

b
e−3b + 1

b2
e−3b − 1

b2

)
≈ 2.593 × 1010

10. Calculate the total charge on a plate D in the shape of the ellipse with the polar equation

r2 =
(

1

6
sin2 θ + 1

9
cos2 θ

)−1

with the disk x2 + y2 ≤ 1 removed (Figure 11) assuming a charge density of ρ(r, θ) = 3r−4 C/cm2.

6

x

y

1 3

FIGURE 11

solution We first describe the region in polar coordinates. The circle x2 + y2 = 1 has the polar equation r = 1, and

the ellipse has the polar equation r =
(

1
6 sin2 θ + 1

9 cos2 θ
)−1/2

.

6

x

y

1 3

0 ≤ r ≤ ( )−
+sin21

6
cos21

9

1
2

The angle θ is changing between 0 and 2π , therefore the polar inequalities for the region are

D : 0 ≤ θ ≤ 2π, 1 ≤ r ≤
(

1

6
sin2 θ + 1

9
cos2 θ

)−1/2

Using the Double Integral in Polar Coordinates, we obtain the following iterated integral for the total charge on the plate:

Q =
∫ 2π

0

∫ (
sin2 θ

6 + cos2 θ
9

)−1/2

1
3r−4 · r dr dθ =

∫ 2π

0

∫ (
sin2 θ

6 + cos2 θ
9

)−1/2

1
3r−3 dr dθ

=
∫ 2π

0

−3r−2

2

∣∣∣∣
(

sin2 θ
6 + cos2 θ

9

)−1/2

r=1
dθ =

∫ 2π

0
−3

2

(
sin2 θ

6
+ cos2 θ

9
− 1

)
dθ

= −3

2

∫ 2π

0

2 + sin2 θ

18
− 1 dθ = −3

2

∫ 2π

0

1

18
sin2 θ − 8

9
dθ

= −3

2

(
1

36
θ − 1

36
sin θ cos θ − 8

9
θ

) ∣∣∣∣2π

0

= −3

2

(
π

18
− 16π

9

)
= 3

2
· 31

18
π = 31

12
π

In Exercises 11–14, find the centroid of the given region.

11. Region bounded by y = 1 − x2 and y = 0

solution First we will compute the area of the region:

Area(D) =
∫ 1

−1

∫ 1−x2

0
dy dx =

∫ 1

−1
1 − x2 dx = x − 1

3
x3
∣∣∣∣1−1

= 1 − 1

3
−
(

−1 + 1

3

)
= 4

3
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It is clear from symmetry that x = 0, and

y = 1

Area(D)

∫∫
D

y dA = 3

4

∫ 1

−1

∫ 1−x2

0
y dy dx

= 3

4

∫ 1

−1

1

2
y2
∣∣∣∣1−x2

0
dx = 3

8

∫ 1

−1
(1 − x2)2 dx

= 3

8

∫ 1

−1
1 − 2x2 + x4 dx = 3

8

(
x − 2

3
x3 + 1

5
x5
) ∣∣∣∣1−1

= 3

8

(
1 − 2

3
+ 1

5

)
− 3

8

(
−1 + 2

3
− 1

5

)
= 2

5

The centroid has coordinates (x, y) =
(

0,
2

5

)
.

12. Region bounded by y2 = x + 4 and x = 4

solution First we compute the area of the region. Note that when x = 4, y = ±√
8 = ±2

√
2, so that

Area(D) =
∫ 2

√
2

−2
√

2

∫ 4

y2−4
1 dx dy =

∫ 2
√

2

−2
√

2
8 − y2 dy =

(
8y − 1

3
y3
) ∣∣∣∣2

√
2

−2
√

2
= 64

3

√
2

Since the region is symmetric around the x-axis, it is clear that y = 0, and

x = 1

Area(D)

∫∫
D

x dA = 3

64
√

2

∫ 2
√

2

−2
√

2

∫ 4

y2−4
x dx dy

= 3

64
√

2

∫ 2
√

2

−2
√

2

1

2
x2
∣∣∣∣4
y2−4

dy = 3

64
√

2
· 1

2

∫ 2
√

2

−2
√

2
16 − (y2 − 4)2 dy

= 3

128
√

2

∫ 2
√

2

−2
√

2
8y2 − y4 dy = 3

128
√

2

⎛
⎝8

3
y3 − 1

5
y5
∣∣∣∣2

√
2

−2
√

2

⎞
⎠

= 3

128
√

2

(
128

√
2

3
− 128

√
2

5
+ 128

√
2

3
− 128

√
2

5

)

= 3

128
√

2
· 512

√
2

15
= 4

5

The centroid has coordinates (x, y) =
(

4

5
, 0

)
.

13. Quarter circle x2 + y2 ≤ R2, x ≥ 0, y ≥ 0

solution

x

D

y

R0

R

The centroid P = (x, y) has the following coordinates:

x = 1

Area(D)

∫∫
D

x dA = 4

πR2

∫∫
D

x dA

y = 1

Area(D)

∫∫
D

y dA = 4

πR2

∫∫
D

y dA

We compute the integrals using polar coordinates. The domain D is described in polar coordinates by the inequalities

D : 0 ≤ θ ≤ π

2
, 0 ≤ r ≤ R
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The functions are x = r cos θ and y = r sin θ , respectively. Using the Change of Variables Formula gives

x = 4

πR2

∫ π/2

0

∫ R

0
r cos θ · r dr dθ = 4

πR2

∫ π/2

0

∫ R

0
r2 cos θ dr dθ = 4

πR2

∫ π/2

0

r3 cos θ

3

∣∣∣∣R
r=0

dθ

= 4

πR2

∫ π/2

0

R3 cos θ

3
dθ = 4R

3π
sin θ

∣∣∣∣π/2

0
= 4R

3π

(
sin

π

2
− sin 0

)
= 4R

3π

And,

y = 4

πR2

∫ π/2

0

∫ R

0
r sin θ · r dr dθ = 4

πR2

∫ π/2

0

∫ R

0
r2 sin θ dr dθ = 4

πR2

∫ π/2

0

r3 sin θ

3

∣∣∣∣R
r=0

dθ

= 4

πR2

∫ π/2

0

R3 sin θ

3
dθ = 4R

3π
(− cos θ)

∣∣∣∣π/2

0
= 4R

3π

(
− cos

π

2
+ cos 0

)
= 4R

3π

Notice that we can use the symmetry of D with respect to x and y to conclude that y = x, and save the computation of

y. We obtain the centroid P =
(

4R
3π

, 4R
3π

)
.

14. Infinite lamina bounded by the x- and y-axes and the graph of y = e−x

solution The area of this region is

A =
∫ ∞

0
e−x dx = (−e−x

) ∣∣∣∣∞
0

= 1

Using integration by parts, we have

x = 1

A

∫∫
D

x dA =
∫ ∞

0

∫ e−x

0
x dy dx =

∫ ∞
0

xe−x dx = (−xe−x
) ∣∣∣∣∞

0
+
∫ ∞

0
e−x dx

= 0 −
(

−e−x

∣∣∣∣∞
0

)
= 1

and

y = 1

A

∫∫
D

y dA =
∫ ∞

0

∫ e−x

0
y dy dx =

∫ ∞
0

(
1

2
y2
) ∣∣∣∣e

−x

0
dx

=
∫ ∞

0

1

2
e−2x dx =

(
−1

4
e−2x

) ∣∣∣∣∞
0

= 1

4

and therefore the centroid is (x, y) =
(

1,
1

4

)
.

15. Use a computer algebra system to compute numerically the centroid of the shaded region in Figure 12

bounded by r2 = cos 2θ for x ≥ 0.

−1
x

y

r2 = cos 2θ

1

0.4

−0.4

FIGURE 12

solution Using symmetry, it is easy to see y = 0. Also, computing the area of the region,

Area = 2 · 1

2

∫ π/4

−π/4
r2 dθ =

∫ π/4

−π/4
cos 2θ dθ = 1

2
sin 2θ

∣∣∣∣π/4

−π/4
= 1

and we will compute x as

x = 1

A

∫∫
D

x dA =
∫ π/4

θ=−π/4

∫ √
cos 2θ

r=0
r cos θ · r dr dθ =

√
2

16
π ≈ 0.278

Therefore, we have that the centroid is (x, y) = (
√

2π/16, 0).
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16. Show that the centroid of the sector in Figure 13 has y-coordinate

y =
(

2R

3

)(
sin θ

θ

)

x

y

R

(0, y)

FIGURE 13

solution

x

D

R

y

(0, y)

The y-coordinate of the centroid of the sector D is the average value of the y-coordinate of a point in the sector. That is,

y = 1

Area(D)

∫∫
D

y dA

The sector is symmetric with respect to the y-axis, and the integrand f (x, y) = y satisfies f (−x, y) = f (x, y), hence the
double integral over D is twice the integral over the right half D1 of the sector. Also Area(D) = 2Area (D1), therefore

y = 1

Area (D1)

∫∫
D1

y dA (1)

We now find the inequalities describing D1 as a vertically simple region.

x

D1

A

RR sin

y

(cot   ) x ≤ y ≤   R2 − x2

0

B

The circle bounding the region has the equation y =
√

R2 − x2 and the line OB has the equation y = (cot θ)x. We
obtain the following inequalities for D1:

0 ≤ x ≤ R sin θ, (cot θ)x ≤ y ≤
√

R2 − x2

Hence,

∫∫
D1

y dA =
∫ R sin θ

0

∫ √
R2−x2

(cot θ)x
y dy dx =

∫ R sin θ

0

y2

2

∣∣∣∣
√

R2−x2

y=(cot θ)x

dx =
∫ R sin θ

0

R2 − x2 − (cot θ)2x2

2
dx

=
∫ R sin θ

0

(
R2

2
− x2

2sin2θ

)
dx = R2

2
x − x3

6 sin2θ

∣∣∣∣R sin θ

x=0
= R3 sin θ

2
− R3sin3θ

6 sin2θ
= R3 sin θ

3
(2)

The area of the sector D1 is

Area (D1) = R2θ

2
(3)

Substituting (2) and (3) in (1), we obtain the following solution:

y = 1
R2θ

2

· R3 sin θ

3
= 2R3 sin θ

3R2θ
=
(

2R

3

)(
sin θ

θ

)
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In Exercises 17–19, find the centroid of the given solid region.

17. Hemisphere x2 + y2 + z2 ≤ R2, z ≥ 0

solution First we need to find the volume of the solid in question. It is a hemisphere, so using geometry, we have

Volume = 1

2
· 4

3
πR3 = 2πR3

3

The centroid is the point P with the following coordinates:

x = 1

V

∫∫∫
W

x dV, y = 1

V

∫∫∫
W

y dV, z = 1

V

∫∫∫
W

z dV

By symmetry, it is clear that x = y = 0, and using spherical coordinates,

z = 1

V

∫∫∫
region

z dV = 3

2πR3

∫ 2π

0

∫ π/2

0

∫ R

0
ρ cos φ · ρ2 sin φ dρ dφ dθ

= 3

2πR3

∫ 2π

0

∫ π/2

0

∫ R

0
ρ3 cos φ sin φ dρ dφ dθ

= 3

2πR3

∫ 2π

0
1 dθ ·

∫ π/2

0
cos φ sin φ dφ ·

∫ R

0
ρ3 dρ

= 3

2πR3
· 2π

(
1

2
sin2 φ

∣∣∣∣π/2

0

)(
1

4
ρ4
∣∣∣∣R
0

)
= 3

2πR3
· 2π · 1

2
· 1

4
R4 = 3R

8

Therefore, the coordinates of the centroid of a hemisphere having radius R, are (0, 0, 3R/8).

18. Region bounded by the xy-plane, the cylinder x2 + y2 = R2, and the plane x/R + z/H = 1, where R > 0 and
H > 0

solution First to find the volume of this solid. The first equation lends itself well to cylindrical coordinates:

x2 + y2 = R2 ⇒ r = R, 0 ≤ θ ≤ 2π

and

x

R
+ z

H
= 1 ⇒ z = H

(
1 − x

R

)
= H

(
1 − r cos θ

R

)

The volume is:

V =
∫ 2π

0

∫ R

0

∫ H(1−r cos θ/R)

0
1 dz dr dθ =

∫ 2π

0

∫ R

0
H

(
1 − r cos θ

R

)
dr dθ

= H

∫ 2π

0
r − 1

2
· r2 cos θ

R

∣∣∣∣R
r=0

dθ = H

∫ 2π

0
R − 1

2
R cos θ dθ

= H

(
Rθ − 1

2
R sin θ

∣∣∣∣2π

0

)
= 2πHR

Now to compute the coordinates of the centroid:

x = 1

V

∫∫∫
W

x dV = 1

2πHR

∫ 2π

0

∫ R

0

∫ H(1−r cos θ/R)

0
r cos θ dz dr dθ

= 1

2πHR

∫ 2π

0

∫ R

0
r cos θ · z

∣∣∣∣H(1−r cos θ/R)

0
dr dθ = H

2πHR

∫ 2π

0

∫ R

0
r cos θ

(
1 − r cos θ

R

)
dr dθ

= 1

2πR

∫ 2π

0

∫ R

0
r cos θ − 1

R
r2 cos2 θ dr dθ = 1

2πR

∫ 2π

0

1

2
r2 cos θ − 1

3R
r3 cos2 θ

∣∣∣∣R
0

dθ

= 1

2πR

∫ 2π

0

1

2
R2 cos θ − R2

6
(1 + cos 2θ) dθ

= 1

2πR

(
1

2
R2 sin θ − R2

6

(
θ + 1

2
sin 2θ

) ∣∣∣∣2π

0

)
= 1

2πR
· −R2

6
(2π) = −R

6



April 19, 2011

1000 C H A P T E R 15 MULTIPLE INTEGRATION (LT CHAPTER 16)

y = 1

V

∫∫∫
W

y dV = 1

2πHR

∫ 2π

0

∫ R

0

∫ H(1−r cos θ/R)

0
r sin θ dz dr dθ

= 1

2πHR

∫ 2π

0

∫ R

0
r sin θ · z

∣∣∣∣H(1−r cos θ/R)

0
dr dθ = H

2πHR

∫ 2π

0

∫ R

0
r sin θ

(
1 − r cos θ

R

)
dr dθ

= 1

2πR

∫ 2π

0

∫ R

0
r sin θ − 1

R
r2 sin θ cos θ dr dθ = 1

2πR

∫ 2π

0

1

2
r2 sin θ − 1

3R
r3 sin θ cos θ

∣∣∣∣R
0

dθ

= 1

2πR

∫ 2π

0

1

2
R2 sin θ − R2

3
sin θ cos θ dθ = 1

2πR

(
−1

2
R2 cos θ − R2

6
sin2 θ

∣∣∣∣2π

0

)
= 0

z = 1

V

∫∫∫
W

z dV = 1

2πHR

∫ 2π

0

∫ R

0

∫ H(1−r cos θ/R)

0
z dz dr dθ

= 1

2πHR

∫ 2π

0

∫ R

0

1

2
z2
∣∣∣∣H(1−r cos θ/R)

0
dr dθ = H 2

4πHR

∫ 2π

0

∫ R

0

(
1 − r cos θ

R

)2
dr dθ

= H

4πR

∫ 2π

0

∫ R

0
1 − 2r cos θ

R
+ r2 cos2 θ

R2
dr dθ = H

4πR

∫ 2π

0
r − r2 cos θ

R
+ r3 cos2 θ

3R2

∣∣∣∣R
0

dθ

= H

4πR

∫ 2π

0
R − R cos θ + 1

6
R(1 + cos 2θ) dθ = H

4πR

(
Rθ − R sin θ + 1

6
R

(
θ + 1

2
sin 2θ

) ∣∣∣∣2π

0

)

= H

4πR

(
2πR + 1

3
πR

)

= H

4πR
· 7πR

3
= 7

12
H

The coordinates of the centroid are (−R/6, 0, 7H/12).

19. The “ice cream cone” region W bounded, in spherical coordinates, by the cone φ = π/3 and the sphere ρ = 2

solution First we must find the volume of this solid:

V =
∫ 2π

θ=0

∫ π/3

φ=0

∫ 2

ρ=0
ρ2 sin φ dρ dφ dθ

= 2π

(∫ π/3

0
sin φ dφ

)(∫ 2

0
ρ2 dρ

)
= 2π · 8

3

(
− cos φ

∣∣∣∣π/3

0

)

= 16π

3
· 1

2
= 8π

3

And now compute the coordinates of the centroid. By symmetry, it is clear that x = y = 0.

z = 1

V

∫∫∫
W

z dV = 3

8π

∫ 2π

θ=0

∫ π/3

φ=0

∫ 2

ρ=0
ρ cos φ · ρ2 sin φ dρ dφ dθ

= 3

8π

∫ 2π

0
dθ ·

∫ π/3

0
cos φ sin φ dφ ·

∫ 2

0
ρ3 dρ

= 3

8π
· 2π ·

(
1

2
sin2 φ

∣∣∣∣π/3

0

)(
1

4
ρ4
∣∣∣∣2
0

)
= 3

4

(
1

2
· 3

4

)
(4) = 9

8

The coordinates of the centroid are (0, 0, 9/8).

20. Show that the z-coordinate of the centroid of the tetrahedron bounded by the coordinate planes and the plane

x

a
+ y

b
+ z

c
= 1

in Figure 14 is z = c/4. Conclude by symmetry that the centroid is (a/4, b/4, c/4).
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c

z

y

x

b
a

FIGURE 14

solution First we must find the volume of the tetrahedron. Solving the equation of the plane for z we get:

z = c − c

a
x − c

b
y

and the projection into the xy-plane is:

y = b − b

a
x

Hence, volume can be computed:

V olume =
∫∫∫

W
1 dV =

∫ a

x=0

∫ b− b
a
x

y=0

∫ c− c
a
x− c

b
y

z=0
1 dz dy dx

=
∫ a

0

∫ b− b
a
x

0
z

∣∣∣∣c−
c
a
x− c

b
y

0
dy dx =

∫ a

0

∫ b− b
a
x

0
c − c

a
x − c

b
y dy dx

=
∫ a

0
cy − c

a
xy − c

2b
y2
∣∣∣∣b− b

a
x

0
dx

=
∫ a

0
c

(
b − b

a
x

)
− c

a
x

(
b − b

a
x

)
− c

2b

(
b − b

a
x

)2
dx

=
∫ a

0

bc

2
− bc

a
x + bc

2a2
x2 dx

= bc

2
x − bc

2a
x2 + bc

6a2
x3
∣∣∣∣a
0

= abc

2
− abc

2
+ abc

6
= abc

6

Now to find z, the z-coordinate of the centroid:

z = 1

V

∫∫∫
W

1 dV = 6

abc

∫ a

x=0

∫ b− b
a
x

y=0

∫ c− c
a
x− c

b
y

z=0
z dz dy dx

= 3

abc

∫ a

x=0

∫ b− b
a
x

y=0
z2
∣∣∣∣c−

c
a
x− c

b
y

z=0
dy dx

= 3

abc

∫ a

0

∫ b− b
a
x

0

(
c − c

a
x − c

b
y
)2

dy dx

= 3

abc

∫ a

0

∫ b− b
a
x

0
c2 − 2c2

a
x − 2c2

b
y + 2c2

ab
xy + c2

a2
x2 + c2

b2
y2 dy dx

= 3

abc

∫ a

0
c2y − 2c2

a
xy − c2

b
y2 + c2

ab
xy2 + c2

a2
x2y + c2

3b2
y3
∣∣∣∣b− b

a
x

0
dx

= 3

abc

∫ a

0
c2

(
b − b

a
x

)
− 2c2

a
x

(
b − b

a
x

)
− c2

b

(
b − b

a
x

)2

+ c2

ab
x

(
b − b

a
x

)2
+ c2

a2
x2

(
b − b

a
x

)
+ c2

3b2

(
b − b

a
x

)3
dx



April 19, 2011

1002 C H A P T E R 15 MULTIPLE INTEGRATION (LT CHAPTER 16)

= 3

abc

∫ a

0

bc2

3
− bc2

a
x + bc2

a2
x2 − bc2

3a3
x3 dx

= 3

abc

(
bc2

3
x − bc2

2a
x2 + bc2

3a2
x3 − bc2

12a3
x4
∣∣∣∣a
0

)

= 3

abc

(
abc2

3
− abc2

2
+ abc2

3
− abc2

12

)

= 3

abc
· abc2

12
= c

4

Then, using symmetry, we can conclude x = a/4 and y = b/4, therefore, the coordinates of the centroid are
(a/4, b/4, c/4).

21. Find the centroid of the region W lying above the sphere x2 + y2 + z2 = 6 and below the paraboloid z = 4 − x2 − y2

(Figure 15).

z

z = 4 − x2 − y2

y

x

4

W

2

6
2

x2 + y2 + z2 = 6

FIGURE 15

solution The centroid is the point P with the following coordinates:

x = 1

V

∫∫∫
W

x dV, y = 1

V

∫∫∫
W

y dV, z = 1

V

∫∫∫
W

z dV

In a previous section we showed that the volume of the region is V = 1.54π . We also showed that D has the following
definition in cylindrical coordinates:

0 ≤ θ ≤ 2π, 0 ≤ r ≤ √
2,

√
6 − r2 ≤ z ≤ 4 − r2

Using this information we compute the coordinates of the centroid by the following integrals:

x = 1

1.54π

∫ 2π

0

∫ √
2

0

∫ 4−r2

√
6−r2

(r cos θ)r dz dr dθ = 1

1.54π

∫ 2π

0

∫ √
2

0
r2 cos θz

∣∣∣∣4−r2

z=
√

6−r2
dr dθ

= 1

1.54π

∫ 2π

0

∫ √
2

0
r2 cos θ

(
4 − r2 −

√
6 − r2

)
dr dθ

= 1

1.54π

∫ 2π

0
cos θ

∫ √
2

0

(
4r2 − r4 − r2

√
6 − r2

)
dr dθ (1)

We denote the inner integral by a and compute the second integral to obtain

x = 1

1.54π

∫ 2π

0
cos θ · a dθ = 1

1.54π
a sin θ

∣∣∣∣2π

0
= 0

The value x = 0 is the result of the symmetry of W with respect to the yz-plane. Similarly, since W is symmetric with
respect to the xz-plane, the average value of the y-coordinate is zero.
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y = 0:

x

z

y

We compute the z-coordinate of the centroid:

z = 1

1.54π

∫ 2π

0

∫ √
2

0

∫ 4−r2

√
6−r2

zr dz dr dθ = 1

1.54π

∫ 2π

0

∫ √
2

0

z2r

2

∣∣∣∣4−r2

z=
√

6−r2
dr dθ

= 1

1.54π

∫ 2π

0

∫ √
2

0

r

2

(
(4 − r2)

2 −
(√

6 − r2
)2
)

dr dθ

= 1

2 · 1.54π

∫ 2π

0

∫ √
2

0
(r5 − 7r3 + 10r) dr dθ

= 1

3.08π

∫ 2π

0

r6

6
− 7r4

4
+ 5r2

∣∣∣∣
√

2

r=0
dθ = 1

3.08π
· 13

3
· 2π ≈ 2.81

Therefore the centroid of W is

P = (0, 0, 2.81).

22. Let R > 0 and H > 0, and let W be the upper half of the ellipsoid x2 + y2 + (Rz/H)2 = R2 where z ≥ 0
(Figure 16). Find the centroid of W and show that it depends on the height H but not on the radius R.

y
R

x

R

H

z

FIGURE 16 Upper half of ellipsoid x2 + y2 + (Rz/H)2 = R2, z ≥ 0.

solution By symmetry, it is clear that the x and y-coordinates of the centroid are both zero. To find the z-coordinate,
we first compute the volume. Using cylindrical coordinates, the equation of the ellipsoid is

z =
√

H 2

R2
(R2 − x2 − y2) = H

R

√
R2 − r2

so that

M =
∫ 2π

0

∫ R

0

∫ H
R

√
R2−r2

0
r dz dr dθ = 2π

H

R

∫ R

0
r
√

R2 − r2 dr

= 2π
H

R
·
(

−1

3
(R2 − r2)3/2

) ∣∣∣∣R
0

= 2π
H

R
·
(

1

3
R3

)
= 2

3
πHR2
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and the z-moment is

Mxy =
∫∫∫

E
z dV =

∫ 2π

0

∫ R

0

∫ H
R

√
R2−r2

0
zr dz dr dθ = 2π

∫ R

0

1

2
rz2

∣∣∣∣
H
R

√
R2−r2

0
dr

= π
H 2

R2

∫ R

0
R2r − r3 dr = π

H 2

R2

(
1

2
R2r2 − 1

4
r4
) ∣∣∣∣R

0
= π

H 2

R2

(
1

2
R4 − 1

4
R4

)

= 1

4
πH 2R2

Thus the z-coordinate of the centroid is

Mxy

M
= 1

4
πH 2R2 · 3

2πHR2
= 3

8
H

which depends on H but not on R.

In Exercises 23–26, find the center of mass of the region with the given mass density ρ.

23. Region bounded by y = 4 − x, x = 0, y = 0; ρ(x, y) = x

solution The mass of the region is

M =
∫ 4

0

∫ 4−x

0
x dy dx =

∫ 4

0
xy

∣∣∣∣4−x

0
dx =

∫ 4

0
4x − x2 dx = 2x2 − 1

3
x3
∣∣∣∣4
0

= 32 − 64

3
= 32

3

and we have

Mx =
∫ 4

0

∫ 4−x

0
yx dy dx =

∫ 4

0

1

2
xy2

∣∣∣∣4−x

0
dx = 1

2

∫ 4

0
16x − 8x2 + x3 dx

= 1

2

(
8x2 − 8

3
x3 + 1

4
x4
) ∣∣∣∣4

0
= 1

2

(
128 − 512

3
+ 64

)
= 32

3

and

My =
∫ 4

0

∫ 4−x

0
x2 dy dx =

∫ 4

0
x2y

∣∣∣∣4−x

0
dx =

∫ 4

0
4x2 − x3 dx

=
(

4

3
x3 − 1

4
x4
) ∣∣∣∣4

0
= 256

3
− 64 = 64

3

and thus the center of mass is (
My

M
,
Mx

M

)
=
(

64

3
· 3

32
,

32

3
· 3

32

)
= (2, 1)

24. Region bounded by y2 = x + 4 and x = 0; ρ(x, y) = |y|
solution Solving for x gives x = y2 − 4. Now, the mass of the region is

M =
∫ 2

−2

∫ 0

y2−4
|y| dx dy = 2

∫ 2

0

∫ 0

y2−4
y dx dy = 2

∫ 2

0
yx

∣∣∣∣0
y2−4

dy

= 2
∫ 2

0
4y − y3 dy = 2

(
2y2 − 1

4
y4
) ∣∣∣∣2

0
= 2(8 − 4) = 8

and

My =
∫∫

D
xρ(x, y) dA =

∫ 2

−2

∫ 0

y2−4
x|y| dx dy = 2

∫ 2

0

∫ 0

y2−4
xy dx dy

= 2
∫ 2

0
y · 1

2
x2
∣∣∣∣0
y2−4

dy = −
∫ 2

0
y(y2 − 4)2 dy

= −1

2

∫ 0

−4
u2 du = −1

6
u3
∣∣∣∣0−4

= −32

3
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Clearly Mx = 0 by symmetry, since both the region and the density are symmetric around the x-axis. Thus the center of
mass is (

My

M
,
Mx

M

)
=
(

−32

3
· 1

8
, 0

)
=
(

−4

3
, 0

)

25. Region |x| + |y| ≤ 1; ρ(x, y) = (x + 1)(y + 1)

solution For x ≤ 0, the region is defined by −1 ≤ x ≤ 0 and −1 − x ≤ y ≤ 1 + x; for x ≥ 0, it is parameterized by
0 ≤ x ≤ 1 and −1 + x ≤ y ≤ 1 − x. The mass of the region is thus

M =
∫ 0

−1

∫ 1+x

−1−x
(x + 1)(y + 1) dy dx +

∫ 1

0

∫ 1−x

x−1
(x + 1)(y + 1) dy dx

= 1

2

(∫ 0

−1
(x + 1)(y + 1)2

∣∣∣∣1+x

y=−1−x

dx +
∫ 1

0
(x + 1)(y + 1)2

∣∣∣∣1−x

y=x−1
dx

)

= 1

2

(∫ 0

−1
(x + 1)((x + 2)2 − (−x)2) dx +

∫ 1

0
(x + 1)((2 − x)2 − x2) dx

)

= 1

2

(∫ 0

−1
4(x + 1)2 dx +

∫ 1

0
4(1 − x2) dx

)

= 2

((
1

3
(x + 1)3

) ∣∣∣∣0−1
+
(

x − 1

3
x3
) ∣∣∣∣1

0

)
= 2

(
1

3
+
(

1 − 1

3

))
= 2

We have

Mx =
∫ 0

−1

∫ 1+x

−1−x
y(x + 1)(y + 1) dy dx +

∫ 1

0

∫ 1−x

x−1
y(x + 1)(y + 1) dy dx

=
∫ 0

−1

∫ 1+x

−1−x
(x + 1)(y2 + y) dy dx +

∫ 1

0

∫ 1−x

x−1
(x + 1)(y2 + y) dy dx

=
∫ 0

−1
(x + 1)

(
1

3
y3 + 1

2
y2
) ∣∣∣∣1+x

y=−1−x

dx +
∫ 1

0
(x + 1)

(
1

3
y3 + 1

2
y2
) ∣∣∣∣1−x

y=x−1
dx

=
∫ 0

−1
(x + 1)

(
2

3
+ 2x + 2x2 + 2

3
x3
)

dx +
∫ 1

0
(x + 1)

(
2

3
− 2x + 2x2 − 2

3
x3
)

dx

=
∫ 0

−1

2

3
x4 + 8

3
x3 + 4x2 + 8

3
x + 2

3
dx +

∫ 1

0
−2

3
x4 + 4

3
x3 − 4

3
x + 2

3
dx

=
(

2

15
x5 + 2

3
x4 + 4

3
x3 + 4

3
x2 + 2

3
x

) ∣∣∣∣0−1
+
(

− 2

15
x5 + 1

3
x4 − 2

3
x3 + 2

3
x

) ∣∣∣∣1
0

= 2

15
+ 1

5
= 1

3

Since the region and the density function are symmetric in x and y, we must have also My = Mx = 1
3 . Then the center

of mass is (
My

M
,
Mx

M

)
=
(

1

3
· 1

2
,

1

3
· 1

2

)
=
(

1

6
,

1

6

)

26. Semicircle x2 + y2 ≤ R2, y ≥ 0; ρ(x, y) = y

solution

D

x

y

R−R
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The center of mass has the following coordinates:

xCM = 1

M

∫∫
D

xρ dA = 1

M

∫∫
D

xy dA

yCM = 1

M

∫∫
D

yρ dA = 1

M

∫∫
D

y2 dA

We compute the integrals using polar coordinates. The semicircle D has the following description:

0 ≤ θ ≤ π, 0 ≤ r ≤ R

We first compute the total mass M . Using the Change of Variables Formula we get

M =
∫∫

D
ρ(x, y, z) dA =

∫∫
D

y dA =
∫ π

0

∫ R

0
r sin θ · r dr dθ =

∫ π

0

∫ R

0
r2 sin θ dr dθ

=
∫ π

0

r3 sin θ

3

∣∣∣∣R
r=0

dθ =
∫ π

0

R3 sin θ

3
dθ = −R3 cos θ

3

∣∣∣∣π
0

= −R3

3
(cos π − cos 0) = 2R3

3

We compute xCM:

xCM = 1

M

∫∫
D

xy dA = 3

2R3

∫ π

0

∫ R

0
(r cos θ)(r sin θ) · r dr dθ = 3

2R3

∫ π

0

∫ R

0

r3 sin 2θ

2
dr dθ

= 3

2R3

∫ π

0

r4 sin 2θ

8

∣∣∣∣R
r=0

dθ = 3

2R3
· R4

8

∫ π

0
sin 2θ dθ = 3R

16
· − cos 2θ

2

∣∣∣∣π
θ=0

= −3R

32
(cos 2π − cos 0) = 0

We compute yCM:

yCM = 1

M

∫∫
D

y2 dA = 3

2R3

∫ π

0

∫ R

0
r2 sin2 θ · r dr dθ = 3

2R3

∫ π

0

∫ R

0
r3 sin2 θ dr dθ

= 3

2R3

∫ π

0

r4 sin2 θ

4

∣∣∣∣R
r=0

dθ = 3

2R3
· R4

4

∫ π

0
sin2 θ dθ = 3R

8

(
θ

2
− sin 2θ

4

) ∣∣∣∣π
0

= 3R

8
· π

2
= 3πR

16

We obtain the following center of mass: (
0,

3πR

16

)

27. Find the z-coordinate of the center of mass of the first octant of the unit sphere with mass density ρ(x, y, z) = y

(Figure 17).

1
1

x

z

y

FIGURE 17

solution We use spherical coordinates:

x = ρ cos θ sin φ, y = ρ sin θ sin φ, z = ρ cos φ

dV = ρ2 sin φ dρ dφ dθ

The octant W is defined by 0 ≤ θ ≤ π
2 , 0 ≤ φ ≤ π

2 , 0 ≤ ρ ≤ 1, so we have

Mxy =
∫∫∫

W
z ρ(x, y, z) dV =

∫ π/2

θ=0

∫ π/2

φ=0

∫ 1

ρ=0
(ρ cos φ)(ρ sin θ sin φ) ρ2 sin φ dρ dφ dθ
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=
( ∫ π/2

θ=0
sin θ dθ

)( ∫ π/2

φ=0
cos φ sin2 φ dφ

)( ∫ 1

ρ=0
ρ4 dρ

)

= (1)

(
1

3
sin3 φ

∣∣∣π/2

0

)(
1

5

)
= 1

15

The total mass M of W is equal to the integral of the mass density ρ(x, y, z):

M =
∫∫∫

W
ρ(x, y, z) dV =

∫ π/2

θ=0

∫ π/2

φ=0

∫ 1

ρ=0
(ρ sin θ sin φ) ρ2 sin φ dρ dφ dθ

=
( ∫ π/2

θ=0
sin θ dθ

)( ∫ π/2

φ=0
sin2 φ dφ

)( ∫ 1

ρ=0
ρ3 dρ

)
= (1)

(π

4

)
(

1

4
) = π

16

We conclude that

zCM = 1

M

∫∫∫
W

z ρ(x, y, z) dV = 1/15

π/16
= 16

15π
≈ 0.34

28. Find the center of mass of a cylinder of radius 2 and height 4 and mass density e−z, where z is the height above the
base.

solution

z

y
2

x

The center of mass is the point with the following coordinates:

xCM = 1

M

∫∫∫
W

xe−z dV, yCM = 1

M

∫∫∫
W

ye−z dV, zCM = 1

M

∫∫∫
W

ze−z dV

y

x
D

Since W is symmetric with respect to the z axis, and the functions xe−z and ye−z are odd with respect to the variables
x and y, respectively, we have

xCM = yCM = 0

We need only to find zCM. We first compute the mass M by the triple integral

M =
∫∫∫

W
e−z dV

To evaluate the integral we use cylindrical coordinates. The region W is described by the inequalities

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2, 0 ≤ z ≤ 4

Using triple integrals in cylindrical coordinates, we obtain

M =
∫ 2π

0

∫ 2

0

∫ 4

0
e−zr dz dr dθ =

(∫ 2π

0
1 dθ

)(∫ 2

0
r dr

)(∫ 4

0
e−z dz

)

= 2π ·
(

r2

2

∣∣∣∣2
0

)(
−e−z

∣∣∣∣4
0

)
= 2π · 2 · (1 − e−4) = 4π(1 − e−4) ≈ 12.34
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We compute zCM:

zCM = 1

12.34

∫ 2π

0

∫ 2

0

∫ 4

0
ze−zr dz dr dθ = 0.08

(∫ 2π

0
dθ

)(∫ 2

0
r dr

)(∫ 4

0
ze−z dz

)

= 0.08 · 2π · 2
∫ 4

0
ze−z dz = 0.32π

∫ 4

0
ze−z dz

We compute the integral using integration by parts:

zCM = 0.32π

(
−ze−z

∣∣∣∣4
0

− e−z

∣∣∣∣4
0

)
= −0.32πe−z(1 + z)

∣∣∣∣4
0

= 0.32π(1 − 5e−4) = 0.91

The center of mass is the point (0, 0, 0.91).

29. Let R be the rectangle [−a, a] × [b, −b] with uniform density and total mass M . Calculate:

(a) The mass density ρ of R
(b) Ix and I0

(c) The radius of gyration about the x-axis

solution

(a) The mass density is simply the mass per unit area since the density is uniform; this is

M

4ab

(b) We have

Ix =
∫∫

R
y2ρ(x, y) dA = M

4ab

∫ a

−a

∫ b

−b
y2 dy dx = 2aM

4ab

∫ b

−b
y2 dy

= M

2b
· 1

3
y3
∣∣∣∣b−b

= 1

3
Mb2

and

I0 =
∫∫

R
(x2 + y2)ρ(x, y) dA = M

4ab

∫ a

−a

∫ b

−b
x2 + y2 dy dx = M

4ab

∫ a

−a
x2y + 1

3
y3
∣∣∣∣b−b

dx

= 2M

4ab

∫ a

−a
x2b + 1

3
b3 dx = M

2ab

(
b

3
x3 + b3

3
x

) ∣∣∣∣a−a

= M

2ab

(
2

3
ba3 + 2

3
b3a

)
= 1

3
M(a2 + b2)

(c) The radius of gyration about the x-axis is defined to be

√
Ix

M
=
√

Mb2

3
· 1

M
= b√

3

30. Calculate Ix and I0 for the rectangle in Exercise 29 assuming a mass density of ρ(x, y) = x.

solution

Ix =
∫∫

R
y2ρ(x, y) dA =

∫ b

−b

∫ a

−a
xy2 dx dy =

(∫ b

−b
y2 dy

)
·
(∫ a

−a
x dx

)
= 0

since x is an odd function. Also

I0 =
∫∫

R
(x2 + y2)ρ(x, y) dA =

∫ b

−b

∫ a

−a
x3 + y2x dx dy = 0

since the integrand is an odd function of x.
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31. Calculate I0 and Ix for the disk D defined by x2 + y2 ≤ 16 (in meters), with total mass 1000 kg and uniform mass
density. Hint: Calculate I0 first and observe that I0 = 2Ix . Express your answer in the correct units.

solution Note that the area of the disk is πr2 = 16π so that the mass density is

ρ(x, y) = 1000

16π
= 125

2π

Then using polar coordinates we have

I0 =
∫∫

D
(x2 + y2)

125

2π
dA = 125

2π

∫ 4

0

∫ 2π

0
r2 · r dθ dr = 125 · 1

4
r4
∣∣∣∣4
0

= 125 · 64 = 8000 kg-m2

Since both the region and the mass density are symmetric in x and y, we have Ix = Iy . But then I0 = Ix + Iy = 2Ix so
that

Ix = 4000 kg-m2

32. Calculate Ix and Iy for the half-disk x2 + y2 ≤ R2, x ≥ 0 (in meters), of total mass M kg and uniform mass density.

solution This is quite similar to the preceding exercise. The area of the disk is πR2, so that its mass density is

ρ(x, y) = M

πR2

Using polar coordinates,

I0 =
∫∫

D
(x2 + y2)ρ(x, y) dA = M

πR2

∫ R

0

∫ 2π

0
r2 · r dθ dr = M

πR2
· 2π

∫ R

0
r3 dr = 2M

R2
· 1

4
r4
∣∣∣∣R
0

= 1

2
MR2

Since both the region and the mass density are symmetric in x and y, we have Ix = Iy . But then I0 = Ix + Iy = 2Ix , so
that

Ix = 1

4
MR2

In Exercises 33–36, let D be the triangular domain bounded by the coordinate axes and the line y = 3 − x, with mass
density ρ(x, y) = y. Compute the given quantities.

33. Total mass

solution The total mass is simply

∫∫
D

ρ(x, y) dA =
∫ 3

0

∫ 3−x

0
y dy dx = 1

2

∫ 3

0
y2
∣∣∣∣3−x

0
dx = 1

2

∫ 3

0
(3 − x)2 dx = −1

6
(3 − x)3

∣∣∣∣3
0

= 27

6
= 9

2

34. Center of Mass

solution We have

Mx =
∫∫

D
yρ(x, y) dA =

∫ 3

0

∫ 3−x

0
y2 dy dx = 1

3

∫ 3

0
(3 − x)3 dx = − 1

12
(3 − x)4

∣∣∣∣3
0

= 1

12
· 81 = 27

4

and

My =
∫∫

D
xρ(x, y) dA =

∫ 3

0

∫ 3−x

0
xy dy dx = 1

2

∫ 3

0
xy2

∣∣∣∣3−x

0
dx

= 1

2

∫ 3

0
9x − 6x2 + x3 dx = 1

2

(
9

2
x2 − 2x3 + 1

4
x4
) ∣∣∣∣3

0
= 1

2

(
81

2
− 54 + 81

4

)
= 27

8

so that the center of mass is (
My

M
,
Mx

M

)
=
(

27

8
· 2

9
,

27

4
· 2

9

)
=
(

3

4
,

3

2

)
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35. Ix

solution

Ix =
∫∫

D
y2ρ(x, y) dA =

∫ 3

0

∫ 3−x

0
y3 dy dx = 1

4

∫ 3

0
(3 − x)4 dx

= − 1

20
(3 − x)5

∣∣∣∣3
0

= 1

20
35 = 243

20

36. I0

solution

I0 =
∫∫

D
(x2 + y2)ρ(x, y) dA =

∫ 3

0

∫ 3−x

0
(x2 + y2)y dy dx

=
∫ 3

0

∫ 3−x

0
x2y + y3 dy dx =

∫ 3

0

1

2
x2y2 + 1

4
y4
∣∣∣∣3−x

0
dx

=
∫ 3

0

1

2
x2(3 − x)2 + 1

4
(3 − x)4 dx

=
∫ 3

0

9

2
x2 − 3x3 + 1

2
x4 + 1

4
(3 − x)4 dx

=
(

3

2
x3 − 3

4
x4 + 1

10
x5 − 1

20
(3 − x)5

) ∣∣∣∣3
0

= 81

5

In Exercises 37–40, let D be the domain between the line y = bx/a and the parabola y = bx2/a2 where a, b > 0.
Assume the mass density is ρ(x, y) = xy. Compute the given quantities.

37. Centroid

solution The curves intersect at x = 0 and at x = a. The area is

A =
∫∫

D
1 dA =

∫ a

0

∫ bx/a

bx2/a2
1 dy dx =

∫ a

0

bx

a
− bx2

a2
dx

=
(

bx2

2a
− bx3

3a2

) ∣∣∣∣a
0

= ab

2
− ab

3
= ab

6

Then

x = 1

A

∫∫
D

x dA = 6

ab

∫ a

0

∫ bx/a

bx2/a2
x dy dx = 6

ab

∫ a

0
x

(
bx

a
− bx2

a2

)
dx

= 6

ab

∫ a

0

b

a
x2 − b

a2
x3 dx = 6

ab

(
b

3a
a3 − b

4a2
a4
)

= 6

ab

(
a2b

3
− a2b

4

)
= a

2

and

y = 1

A

∫∫
D

y dA = 6

ab

∫ a

0

∫ bx/a

bx2/a2
y dy dx = 6

2ab

∫ a

0
y2
∣∣∣∣bx/a

bx2/a2
dx

= 3

ab

∫ a

0

b2

a2
x2 − b2

a4
x4 dx = 3

ab

(
b2

3a2
x3 − b2

5a4
x5

) ∣∣∣∣a
0

= 3

ab

(
ab2

3
− ab2

5

)
= 2b

5
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38. Center of Mass

solution The curves intersect at x = 0 and at x = a, so the mass is

M =
∫∫

D
ρ(x, y) dA =

∫ a

0

∫ bx/a

bx2/a2
xy dy dx = 1

2

∫ a

0
xy2

∣∣∣∣bx/a

bx2/a2
dx

= 1

2

∫ a

0
x

(
b2x2

a2
− b2x4

a4

)
dx = b2

2a4

∫ a

0
a2x3 − x5 dx

= b2

2a4

(
a2

4
x4 − 1

6
x6

) ∣∣∣∣a
0

= b2

2a4

(
a6

3
− a6

4

)
= a2b2

24

We also have

Mx =
∫∫

D
yρ(x, y) dA =

∫ a

0

∫ bx/a

bx2/a2
xy2 dy dx = 1

3

∫ a

0
xy3

∣∣∣∣bx/a

bx2/a2
dx

= 1

3

∫ a

0
x

(
b3x3

a3
− b3x6

a6

)
dx = b3

3a6

∫ a

0
a3x4 − x7 dx

= b3

3a6

(
a3

5
x5 − 1

8
x8

) ∣∣∣∣a
0

= b3

3a6

(
a8

5
− a8

8

)
= a2b3

40

and

My =
∫∫

D
xρ(x, y) dA =

∫ a

0

∫ bx/a

bx2/a2
x2y dy dx = 1

2

∫ a

0
x2y2

∣∣∣∣bx/a

bx2/a2
dx

= 1

2

∫ a

0
x2

(
b2x2

a2
− b2x4

a4

)
dx = b2

2a4

∫ a

0
a2x4 − x6 dx

= b2

2a4

(
a2

5
x5 − 1

7
x7

) ∣∣∣∣a
0

= b2

2a4

(
a7

5
− a7

7

)
= a3b2

35

so that the center of mass is at(
My

M
,
Mx

M

)
=
(

a3b2

35
· 24

a2b2
,
a2b3

40
· 24

a2b2

)
=
(

24

35
a,

3

5
b

)

39. Ix

solution The curves intersect at x = 0 and at x = a, so

Ix =
∫∫

D
y2ρ(x, y) dA =

∫ a

0

∫ bx/a

bx2/a2
xy3 dy dx = 1

4

∫ a

0
xy4

∣∣∣∣bx/a

bx2/a2
dx

= 1

4

∫ a

0
x

(
b4

a4
x4 − b4

a8
x8

)
dx = b4

4a8

∫ a

0
a4x5 − x9 dx

= b4

4a8

(
a4

6
x6 − 1

10
x10

) ∣∣∣∣a
0

= b4

4a8

(
a10

6
− a10

10

)
= a2b4

60

40. I0

solution The curves intersect at x = 0 and at x = a. We computed Ix in the previous exercise, so we will compute
Iy and add the two to get I0:

Iy =
∫∫

D
x2ρ(x, y) dA =

∫ a

0

∫ bx/a

bx2/a2
x3y dy dx = 1

2

∫ a

0
x3y2

∣∣∣∣bx/a

bx2/a2
dx

= 1

2

∫ a

0
x3

(
b2

a2
x2 − b2

a4
x4

)
dx = b2

2a4

∫ a

0
a2x5 − x7 dx

= b2

2a4

(
a2

6
x6 − 1

8
x8

) ∣∣∣∣a
0

= b2

2a4

(
a8

6
− a8

8

)
= a4b2

48
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Thus

I0 = Ix + Iy = a2b4

60
+ a4b2

48
= a2b2 5a2 + 4b2

240

41. Calculate the moment of inertia Ix of the disk D defined by x2 + y2 ≤ R2 (in meters) with total mass M kg. How
much kinetic energy (in joules) is required to rotate the disk about the x-axis with angular velocity 10 rad/s?

solution The area of the disk is πR2, so its mass density is

ρ(x, y) = M

πR2

We compute Ix using polar coordinates:

Ix =
∫∫

D
y2ρ(x, y) dA = M

πR2

∫ 2π

0

∫ R

0
(r sin θ)2r dr dθ = M

πR2

∫ 2π

0

∫ R

0
r3 sin2 θ dr dθ

= M

πR2

(∫ 2π

0
sin2 θ dθ

)(∫ R

0
r3 dr

)

= M

πR2
· π · R4

4
= 1

4
MR2

It follows that the kinetic energy required to rotate the disk about the x-axis with angular velocity 10 rad/s is

1

2
Ixω2 = 1

8
MR2 · 100 = 25

2
MR2 joules

42. Calculate the moment of inertia Iz of the box W = [−a, a] × [−a, a] × [0, H ] assuming that W has total mass M .

solution The volume of the region is 2a · 2a · H = 4a2H , so that the mass density is

ρ = ρ(x, y, z) = M

4a2H

Then

Iz =
∫∫

W
(x2 + y2)ρ(x, y, z) dA = M

4a2H

∫ a

−a

∫ a

−a

∫ H

0
x2 + y2 dz dy dx

= M

4a2H
H

∫ a

−a

∫ a

−a
x2 + y2 dy dx = M

4a2

∫ a

−a

(
x2y + 1

3
y3
) ∣∣∣∣a−a

dx

= 2M

4a2

∫ a

−a
ax2 + a3

3
dx = M

2a2

(
a

3
x3 + a3

3
x

) ∣∣∣∣a−a

= M

2a2

(
2a4

3
+ 2a4

3

)
= 2

3
Ma2

43. Show that the moment of inertia of a sphere of radius R of total mass M with uniform mass density about any axis
passing through the center of the sphere is 2

5MR2. Note that the mass density of the sphere is ρ = M/
( 4

3πR3).
solution Since the sphere is symmetric under an arbitrary rotation, and since the mass density is uniform, it follows
that the moments of inertia of the sphere about all axes passing through its center are equal. Thus it suffices to prove the
result for an arbitrary axis; we choose the z-axis. Then, using spherical coordinates, we have

Iz =
∫∫∫

S
(x2 + y2)ρ(x, y, z) dA

= 3M

4πR3

∫ 2π

0

∫ π

0

∫ R

0
((r cos θ sin φ)2 + (r sin θ sin φ)2)r2 sin φ dr dθ dφ

= 3M

4πR3

∫ 2π

0

∫ π

0

∫ R

0
r4 sin3 φ dr dθ dφ = 3M

4πR3
· 2π

(∫ π

0
sin3 φ dφ

)(∫ R

0
r4 dr

)

= 3M

2R3
· 4

3
· 1

5
R5 = 2

5
MR2
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44. Use the result of Exercise 43 to calculate the radius of gyration of a uniform sphere of radius R about any axis through
the center of the sphere.

solution From the referenced exercise, we know that the moment of inertia of the sphere around the given axis a is

Ia = 2

5
MR2

so that the radius of gyration about a is

rg =
√

Ia

M
=
√

2

5
MR2 · 1

M
=

√
10

5
R

In Exercises 45 and 46, prove the formula for the right circular cylinder in Figure 18.

R

H

y

x

z

FIGURE 18

45. Iz = 1
2MR2

solution Assuming the cylinder has uniform mass density 1, and using cylindrical coordinates, we have

Iz =
∫∫∫

C
(x2 + y2)ρ(x, y, z) dA =

∫ R

0

∫ 2π

0

∫ H/2

−H/2
r2 · r dz dθ dr

= 2πH

∫ R

0
r3 dr = 1

2
πR4H

But the volume of the cylinder, which is equal to its mass, is πR2H , so that

Iz = 1

2
πR4H = 1

2
MR2

46. Ix = 1
4MR2 + 1

12MH 2

solution Assuming the cylinder has uniform mass density 1, and using cylindrical coordinates, we have

Ix =
∫∫∫

C
(y2 + z2)ρ(x, y, z) dA =

∫ R

0

∫ 2π

0

∫ H/2

−H/2
(r2 sin2 θ + z2)r dz dθ dr

=
∫ R

0

∫ 2π

0

(
r3z sin2 θ + 1

3
rz3

) ∣∣∣∣H/2

−H/2
dθ dr =

∫ R

0

∫ 2π

0
Hr3 sin2 θ + 1

12
H 3r dθ dr

=
∫ R

0
πHr3 + 2π

12
H 3r dr = 1

4
πHR4 + 1

12
πH 3R2

The volume of the cylinder, which is equal to its mass, is πR2H ; substituting, we get

Ix = 1

4
πHR4 + 1

12
πH 3R2 = 1

4
MR2 + 1

12
MH 2

47. The yo-yo in Figure 19 is made up of two disks of radius r = 3 cm and an axle of radius b = 1 cm. Each disk has
mass M1 = 20 g, and the axle has mass M2 = 5 g.

(a) Use the result of Exercise 45 to calculate the moment of inertia I of the yo-yo with respect to the axis of symmetry.
Note that I is the sum of the moments of the three components of the yo-yo.

(b) The yo-yo is released and falls to the end of a 100-cm string, where it spins with angular velocity ω. The total mass of
the yo-yo is m = 45 g, so the potential energy lost is PE = mgh = (45)(980)100 g-cm2/s2. Find ω under the assumption
that one-third of this potential energy is converted into rotational kinetic energy.
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Axle of radius b

r

FIGURE 19

solution

(a) If the figure is rotated by 90◦, it looks like three right circular cylinders oriented as in Exercise 45. The moment of
inertia of each of the disks around the axis of rotation is thus

1

2
MR2 = 1

2
· 20 · 32 = 90 g-cm2

and the moment of inertia of the axle around the axis of rotation is

1

2
MR2 = 1

2
· 5 · 12 = 5

2
g-cm2

Thus the total moment of inertia of the yo-yo around its axis of rotation is

2 · 90 + 5

2
= 182.5 g-cm2

(b) If one third of the potential energy is converted to kinetic energy, then

1

3
· 45 · 980 · 100 = 1

2
· 182.5 · ω2 g-cm2

so that

ω =
√

2

3
· 45 · 980 · 100

182.5
≈ 127 radians/sec = 127

2π
≈ 20.2 rotations/sec

48. Calculate Iz for the solid region W inside the hyperboloid x2 + y2 = z2 + 1 between z = 0 and z = 1.

solution We have

Iz =
∫∫∫

W
(x2 + y2)ρ(x, y, z) dA =

∫ 1

0

∫ 2π

0

∫ √
z2+1

0
r3 dr dθ dz = 1

4

∫ 1

0

∫ 2π

0
r4
∣∣∣∣
√

z2+1

0
dθ dz

= 1

4

∫ 1

0

∫ 2π

0
(z2 + 1)2 dθ dz = π

2

∫ 1

0
z4 + 2z2 + 1 dz

= π

2

(
1

5
z5 + 2

3
z2 + z

) ∣∣∣∣1
0

= 14

15
π

49. Calculate P(0 ≤ X ≤ 2; 1 ≤ Y ≤ 2), where X and Y have joint probability density function

p(x, y) =
{

1
72 (2xy + 2x + y) if 0 ≤ x ≤ 4 and 0 ≤ y ≤ 2

0 otherwise

solution The region 0 ≤ X ≤ 2; 1 ≤ Y ≤ 2 falls into the region where p(x, y) is defined by the first line of the given
formula, so that

P(0 ≤ X ≤ 2; 1 ≤ Y ≤ 2) =
∫ 2

0

∫ 2

1

1

72
(2xy + 2x + y) dy dx = 1

72

∫ 2

0

(
xy2 + 2xy + 1

2
y2
) ∣∣∣∣2

1
dx

= 1

72

∫ 2

0
5x + 3

2
dx = 1

72

(
5

2
x2 + 3

2
x

) ∣∣∣∣2
0

= 1

72
· 13 = 13

72
≈ 0.18
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50. Calculate the probability that X + Y ≤ 2 for random variables with joint probability density function as in Exercise 49.

solution Note that p(x, y) = 0 if either x or y is negative, so that X + Y ≤ 2 corresponds to the region of integration
0 ≤ x ≤ 2 and 0 ≤ y ≤ 2 − x. Thus

P(X + Y ≤ 2) =
∫ 2

0

∫ 2−x

0

1

72
(2xy + 2x + y) dy dx = 1

72

∫ 2

0

(
xy2 + 2xy + 1

2
y2
) ∣∣∣∣2−x

0
dx

= 1

72

∫ 2

0
x(2 − x)2 + 2x(2 − x) + 1

2
(2 − x)2 dx

= 1

72

∫ 2

0
x3 − 4x2 + 4x + 4x − 2x2 + 2 − 2x + 1

2
x2 dx

= 1

72

∫ 2

0
x3 − 11

2
x2 + 6x + 2 dx = 1

72

(
1

4
x4 − 11

6
x3 + 3x2 + 2x

) ∣∣∣∣2
0

= 1

72

(
4 − 11

6
· 8 + 12 + 4

)
= 2

27
≈ 0.074

51. The lifetime (in months) of two components in a certain device are random variables X and Y that have joint probability
distribution function

p(x, y) =
{

1
9216 (48 − 2x − y) if x ≥ 0, y ≥ 0, 2x + y ≤ 48

0 otherwise

Calculate the probability that both components function for at least 12 months without failing. Note that p(x, y) is nonzero
only within the triangle bounded by the coordinate axes and the line 2x + y = 48 shown in Figure 20.

2x + y = 48

x (months)
12 24

Region where x ≥ 12, y ≥ 12

and 2x + y ≤ 48

36

24

12

48

y (months)

FIGURE 20

solution Both components function for at least 12 months without failing if X + Y ≥ 12; however, we must also
have 2X + Y ≤ 48. Then the region of integration is the shaded triangle in the figure; the lower left corner of that triangle
is (12, 12). One of the remaining vertices is the intersection of x = 12 and 2x + y = 48; solving for y we have y = 24,
so the point is (12, 24). The other vertex is the intersection of y = 12 and 2x + y = 48; solving for x gives x = 18, so
the point is (18, 12). The region of integration is then 12 ≤ x ≤ 18 and 12 ≤ y ≤ 48 − 2x. Thus the probability is

P(X ≥ 12, Y ≥ 12) =
∫ 18

12

∫ 48−2x

12

1

9216
(48 − 2x − y) dy dx

= 1

9216

∫ 18

12

(
48y − 2xy − 1

2
y2
) ∣∣∣∣48−2x

12
dx

= 1

9216

∫ 18

12
1800 − 96x − 2x(36 − 2x) − 1

2
(48 − 2x)2 dx

= 1

9216

(
1800x − 48x2 − 36x2 + 4

3
x3 + 1

12
(48 − 2x)3

) ∣∣∣∣18

12

= 144

9216
= 1

64
= .015625

52. Find a constant C such that

p(x, y) =
{
Cxy if 0 ≤ x and 0 ≤ y ≤ 1 − x

0 otherwise

is a joint probability density function. Then calculate

(a) P
(
X ≤ 1

2 ; Y ≤ 1
4

)
(b) P(X ≥ Y )
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solution In order for p(x, y) to be a joint probability density function, we must have

1 =
∫ 1

0

∫ 1−x

0
p(x, y) =

∫ 1

0

∫ 1−x

0
Cxy dy dx = C

2

∫ 1

0
xy2

∣∣∣∣1−x

0
dx

= C

2

∫ 1

0
x(1 − x)2 dx = C

2

∫ 1

0
x − 2x2 + x3 dx = C

2

(
1

2
− 2

3
+ 1

4

)
= C

24

so that C = 24.

(a)

P

(
X ≤ 1

2
; Y ≤ 1

4

)
=
∫ 1/2

0

∫ 1/4

0
24xy dy dx = 24

(∫ 1/2

0
x dx

)(∫ 1/4

0
y dy

)

= 24 · 1

8
· 1

32
= 3

32
= 0.09375

(b) The probability density function is nonzero only for 0 ≤ y ≤ 1 − x; in addition, X ≥ Y means that y ≤ x. The
region of integration is then the region below both the lines y = x and y = 1 − x for y ≥ 0; this is the triangle with
vertices (0, 0), (1, 0), and (1/2, 1/2). Integrating first in the x direction gives:

P(X ≥ Y ) =
∫ 1/2

0

∫ 1−y

y
24xy dx dy =

∫ 1/2

0
12x2y

∣∣∣∣1−y

x=y

dy

=
∫ 1/2

0
12y((1 − y)2 − y2) dy =

∫ 1/2

0
12y − 24y2 dy = (6y2 − 8y3)

∣∣∣∣1/2

0

= 3

2
− 1 = 1

2

53. Find a constant C such that

p(x, y) =
{
Cy if 0 ≤ x ≤ 1 and x2 ≤ y ≤ x

0 otherwise

is a joint probability density function. Then calculate the probability that Y ≥ X3/2.

solution p(x, y) is a joint probability density function if

1 =
∫ 1

0

∫ x

x2
p(x, y) dy dx =

∫ 1

0

∫ x

x2
Cy dy dx

= C

2

∫ 1

0
y2
∣∣∣∣x
x2

dx = C

2

∫ 1

0
x2 − x4 dx = C

15

so that we must have C = 15. Now, for 0 ≤ x ≤ 1 we have x2 ≤ x3/2 ≤ x, so that

P(Y ≥ X3/2) =
∫ 1

0

∫ x

x3/2
15y dy dx = 15

2

∫ 1

0
y2
∣∣∣∣x
x3/2

dx

= 15

2

∫ 1

0
x2 − x3 dx = 15

2

(
1

3
− 1

4

)
= 15

24
= 5

8
= 0.375

54. Numbers X and Y between 0 and 1 are chosen randomly. The joint probability density is p(x, y) = 1 if 0 ≤ x ≤ 1
and 0 ≤ y ≤ 1, and p(x, y) = 0 otherwise. Calculate the probability P that the product XY is at least 1

2 .

solution Since the probability density function is 1, the probability P is the integral of 1 over the region W = {(x, y) :
0 ≤ x ≤ 1, 0 ≤ y ≤ 1, xy ≥ 1

2 }, which is just the area of W . Now, W is the area bounded the curves y = 1
2x

and y = 1

for 0 ≤ x ≤ 1. Since these curves cross at x = 1
2 , the area is simply

P =
∫ 1

1/2
1 − 1

2x
dx =

(
x − 1

2
ln x

) ∣∣∣∣1
1/2

= 1 − 1

2
+ 1

2
ln

1

2
= 1

2
(1 − ln 2)

55. According to quantum mechanics, the x- and y-coordinates of a particle confined to the region R = [0, 1] × [0, 1]
are random variables with joint probability density function

p(x, y) =
{
C sin2(2π�x) sin2(2πny) if (x, y) ∈ R
0 otherwise

The integers � and n determine the energy of the particle, and C is a constant.
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(a) Find the constant C.

(b) Calculate the probability that a particle with � = 2, n = 3 lies in the region
[
0, 1

4

] × [
0, 1

8

]
.

solution
(a) We have

∫ 1

0

∫ 1

0
C sin2(2π�x) sin2(2πny) dx dy = C

(∫ 1

0
sin2(2π�x)2 dx

)(∫ 1

0
sin2(2πny)2 dy

)

Now, since � is an integer, using the substitution u = 2π�x, du = 2π� dx, we have

∫ 1

0
sin2(2π�x) dx = 1

2π�

∫ 2π�

0
sin2 u du = 1

2π�

(
1

2
u − 1

2
sin u cos u

) ∣∣∣∣2π�

0

= 1

2π�

(
π� − 1

2
sin(2π�) cos(2π�) + 1

2
sin 0 cos 0

)
= 1

2

and the same is true of
∫ 1

0 sin2(2πny) dy. Thus the value of the entire integral is C 1
2 · 1

2 = C
4 . In order for this to be a

joint probability density function, then, we must have C = 4.

(b) We compute

∫ 1/4

0

∫ 1/8

0
4 sin2(2π · 2x) sin2(2π · 3y) dy dx = 4

(∫ 1/4

0
sin2(4πx) dx

)(∫ 1/8

0
sin2(6πy) dy

)

= 4

(
1

4π

∫ π

0
sin2 u du

)(
1

6π

∫ 3π/4

0
sin2 v dv

)

= 4

(
1

4π
· π

2

)(
1

6π
·
(

3π

8
+ 1

4

))

= 4

(
1

8

)(
1

16
+ 1

24π

)
= 1

32
+ 1

48π
≈ 0.03788

56. The wave function for the 1s state of an electron in the hydrogen atom is

ψ1s(ρ) = 1√
πa3

0

e−ρ/a0

where a0 is the Bohr radius. The probability of finding the electron in a region W of R3 is equal to∫∫∫
W

p(x, y, z) dV

where, in spherical coordinates,

p(ρ) = |ψ1s(ρ)|2

Use integration in spherical coordinates to show that the probability of finding the electron at a distance greater than the
Bohr radius is equal to 5/e2 ≈ 0.677. The Bohr radius is a0 = 5.3 × 10−11 m, but this value is not needed.

solution According to the problem statement, the probability of finding the electron at a distance greater than the

Bohr radius is the probability of finding it in the region W of R3 with ρ ≥ a0 in spherical coordinates. This probability is

∫∫∫
W

p(x, y, z) dV =
∫ ∞
a0

∫ 2π

0

∫ π

0

⎛
⎜⎝ 1√

πa3
0

e−ρ/a0

⎞
⎟⎠

2

· ρ2 sin φ dφ dθ dρ

=
∫ ∞
a0

∫ 2π

0

⎛
⎜⎝ 1√

πa3
0

e−ρ/a0

⎞
⎟⎠

2

· ρ2 · (− cos φ)

∣∣∣∣π
0

dθ dρ

= 2
∫ ∞
a0

∫ 2π

0

⎛
⎜⎝ 1√

πa3
0

e−ρ/a0

⎞
⎟⎠

2

· ρ2 dθ dρ

= 4π · 1

πa3
0

∫ ∞
a0

ρ2e−2ρ/a0 dρ
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Using integration by parts twice, we continue

∫∫∫
W

p(x, y, z) dV = 4

a3
0

(
−a0

2
ρ2e−2ρ/a0

∣∣∣∣∞
a0

+ a0

∫ ∞
a0

ρe−2ρ/a0 dρ

)

= 4

a3
0

(
a3

0
2

e−2 + a0

(
−a0

2
ρe−2ρ/a0

∣∣∣∣∞
a0

+ a0

∫ ∞
a0

e−2ρ/a0 dρ

))

= 4

a3
0

(
a3

0
2

e−2 + a3
0
2

e−2 − a0

(
a2

0
4

e−2ρ/a0

) ∣∣∣∣∞
a0

)

= 4

a3
0

(
a3

0e−2 + a3
0
4

e−2

)
= 4

a3
0

(
5

4
a3

0e−2
)

= 5e−2 ≈ 0.68

57. According to Coulomb’s Law, the force between two electric charges of magnitude q1 and q2 separated by

a distance r is kq1q2/r2 (k is a negative constant). Let F be the net force on a charged particle P of charge Q coulombs
located d centimeters above the center of a circular disk of radius R with a uniform charge distribution of density ρ C/m2

(Figure 21). By symmetry, F acts in the vertical direction.

(a) Let R be a small polar rectangle of size �r × �θ located at distance r . Show that R exerts a force on P whose
vertical component is (

kρQd

(r2 + d2)3/2

)
r �r �θ

(b) Explain why F is equal to the following double integral, and evaluate:

F = kρQd

∫ 2π

0

∫ R

0

r dr dθ

(r2 + d2)3/2

R

d
Charged plate

Δr

Δ

P

FIGURE 21

solution

(a) The area of the small polar rectangle R is

�A = 1

2
(r + �r)2�θ − 1

2
r2�θ = r(�r�θ) + 1

2
�r2�θ ≈ r(�r�θ)

Therefore, the charge on R is q1 = ρr(�r�θ). The distance between P and R is, by the Pythagorean Law,
√

r2 + d2.

r2 + d2 d

Δr
rΔ

P

ΔA

Therefore, the magnitude of the force between P and R is

kq1q2(√
r2 + d2

)2
= k (ρr�r�θ) Q

r2 + d2
= kρQ

r2 + d2
r�r�θ
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The vertical component of this force is obtained by multiplying the force by cos α = d√
r2+d2

. That is,

Fvert = kρQ

r2 + d2
· d√

r2 + d2
r�r�θ = kρQd

(r2 + d2)
3/2

r�r�θ

(b) Since F acts in the vertical direction, it is approximated by the Riemann sum of the forces Fvert in part (a), over the
polar rectangles. This Riemann sum approximates F in higher precision if we let �θ → 0 and �r → 0. The result is the
double integral of kρQd

(r2+d2)
3/2 over the disk. The disk is determined by 0 ≤ θ ≤ 2π and 0 ≤ r ≤ R. Therefore we get

F =
∫ R

0

∫ 2π

0

kρQd

(r2 + d2)3/2
r dr dθ = 2πkρQd

∫ R

0

∫ 2π

0

r dr dθ

(r2 + d2)3/2

Using the u-substitution of u = r2 + d2, du = 2r dr , we continue

F = 2πkρQd

∫ R

0

r dr

(r2 + d2)3/2
= 2πkρQd · 1

2

∫ R2+d2

d2
u−3/2 du = −πkρQdu−1/2

∣∣∣∣R
2+d2

d2

= πkρQd

(
1

d
− 1√

R2 + d2

)

58. Let D be the annular region

−π

2
≤ θ ≤ π

2
, a ≤ r ≤ b

where b > a > 0. Assume that D has a uniform charge distribution of ρ C/m2. Let F be the net force on a charged
particle of charge Q coulombs located at the origin (by symmetry, F acts along the x-axis).

(a) Argue as in Exercise 57 to show that

F = kρQ

∫ π/2

θ=−π/2

∫ b

r=a

(
cos θ

r2

)
r dr dθ

(b) Compute F .

solution As in Exercise 57, let R be a small polar rectangle of size �r × �θ located at distance r (a ≤ r ≤ b) from the
origin and at an angle θ to the x-axis. As before, its area is approximately r�r�θ , so the charge on R is q1 = ρr�r�θ .
The distance between P , at the origin, and R is r , so the magnitude of the force between P and R is

F = kq1q2

r2
= kρQ

r2
r�r�θ = kρQ

r2
r�r�θ

Now, since the force acts along the x-axis, we want the horizontal component of F ; this is just

Fhoriz = F cos θ = kρQ
cos θ

r2
r�r�θ

Then F is approximated by the Riemann sum of the forces Fhoriz over the polar rectangles. As �r → 0, �θ → 0,
this becomes the double integral of kρQ cos θ

r2 r over the half-annulus. Since the region is determined by a ≤ r ≤ b and
−π/2 ≤ θ ≤ π/2, we hve

F = kρQ

∫ b

a

∫ π/2

−π/2

cos θ

r2
r dθ dr = 2kρQ

∫ b

a

1

r
dr = 2kρQ ln

(
b

a

)

Further Insights and Challenges
59. Let D be the domain in Figure 22. Assume that D is symmetric with respect to the y-axis; that is, both g1(x) and
g2(x) are even functions.

(a) Prove that the centroid lies on the y-axis—that is, that x = 0.
(b) Show that if the mass density satisfies ρ(−x, y) = ρ(x, y), then My = 0 and xCM = 0.

y = g2(x)

y = g1(x)

x
a−a

y

FIGURE 22
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solution

(a) Assume D has area A. Then the x coordinate of the centroid is

x = 1

A

∫∫
D

x dA = 1

A

∫ a

−a

∫ g2(x)

g1(x)
x dy dx = 1

A

∫ a

−a
x(g2(x) − g1(x)) dx

Since g1 and g2 are both even functions, x(g2(x) − g1(x)) is an odd function, so its integral over a region symmetric
about the x-axis is zero. Thus x = 0.

(b) Let R(x, y) be an antiderivative of ρ(x, y) with respect to y, i.e. R(x, y) = ∫
ρ(x, y) dy. Note that

R(−x, y) =
∫

ρ(−x, y) dy =
∫

ρ(x, y) dy = R(x, y)

so that R is an even function with respect to x. Now, we have

My

∫∫
D

xρ(x, y) dA =
∫ a

−a

∫ g2(x)

g1(x)
xρ(x, y) dy dx =

∫ a

−a
x(R(x, g2(x)) − R(x, g1(x)) dx

Since g1, g2, and R are all even functions of x, we have

R(−x, g2(−x)) − R(−x, g1(−x)) = R(−x, g2(x)) − R(−x, g1(x)) = R(x, g2(x)) − R(x, g1(x))

so that the second factor in the integrand is an even function of x. But x is an odd function of x, so their product is odd.
It follows that the integral over the range −a ≤ x ≤ a is zero. Thus My = xCM = 0.

60. Pappus’s Theorem Let A be the area of the region D between two graphs y = g1(x) and y = g2(x) over the
interval [a, b], where g2(x) ≥ g1(x) ≥ 0. Prove Pappus’s Theorem: The volume of the solid obtained by revolving D
about the x-axis is V = 2πAy, where y is the y-coordinate of the centroid of D (the average of the y-coordinate). Hint:
Show that

Ay =
∫ b

x=a

∫ g2(x)

y=g1(x)
y dy dx

solution Using the washer method, the volume of the solid of revolution about the x axis is

V =
∫ b

a
π(g2(x)2 − g1(x)2) dx

Now, we have by definition

Ay =
∫∫

D
y dA =

∫ b

a

∫ g2(x)

g1(x)
y dy dx = 1

2

∫ b

a
y2
∣∣∣∣g2(x)

g1(x)

dx = 1

2

∫ b

a
g2(x)2 − g1(x)2 dx

so that

2πAy = 2π · 1

2

∫ b

a
g2(x)2 − g1(x)2 dx =

∫ b

a
π(g2(x)2 − g1(x)2) dx = V

61. Use Pappus’s Theorem in Exercise 60 to show that the torus obtained by revolving a circle of radius b centered at
(0, a) about the x-axis (where b < a) has volume V = 2π2ab2.

solution The centroid of the circle is obviously at the center, (0, a), and the area of the circle is πb2, so that by Pappus’
theorem,

V = 2ππb2a = 2πab2

62. Use Pappus’s Theorem to compute y for the upper half of the disk x2 + y2 ≤ a2, y ≥ 0. Hint: The disk revolved
about the x-axis is a sphere.

solution Since the disk revolved about the x-axis is a sphere of radius a, it has volume 4
3πa3. The area of the upper

half of the disk is 1
2πa2. Thus by Pappus’ theorem,

4

3
πa3 = 2π · 1

2
πa2 · y

Solving for y gives

y = 4a

3π
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63. Parallel-Axis Theorem Let W be a region in R3 with center of mass at the origin. Let Iz be the moment of inertia
of W about the z-axis, and let Ih be the moment of inertia about the vertical axis through a point P = (a, b, 0), where

h =
√

a2 + b2. By definition,

Ih =
∫∫∫

W
((x − a)2 + (y − b)2)ρ(x, y, z) dV

Prove the Parallel-Axis Theorem: Ih = Iz + Mh2.

solution We have

Ih − Iz =
∫∫∫

W
((x − a)2 + (y − b)2)ρ(x, y, z) dV −

∫∫∫
W

(x2 + y2)ρ(x, y, z) dV

=
∫∫∫

W
(−2ax + a2 − 2by + b2)ρ(x, y, z) dV

= (a2 + b2)

∫∫∫
W

ρ(x, y, z) dV − 2a

∫∫∫
W

xρ(x, y, z) dV − 2b

∫∫∫
W

yρ(x, y, z) dV

= (a2 + b2)M − 2aMyz − 2bMxz = Mh2

since the last two terms are zero because the center of mass of W is at the origin.

64. Let W be a cylinder of radius 10 cm and height 20 cm, with total mass M = 500 g. Use the Parallel-Axis Theorem
(Exercise 63) and the result of Exercise 45 to calculate the moment of inertia of W about an axis that is parallel to and at
a distance of 30 cm from the cylinder’s axis of symmetry.

solution For this cylinder, using Exercise 45, we see that the moment of inertia about the cylinder’s axis of symmetry
is

Isymm = 1

2
MR2 = 1

2
· 500 · 100 = 25,000 g-cm2

Since the axis we are considering is at a distance of 30 cm from the axis of symmetry, the Parallel-Axis theorem tells us
that

I = Isymm + Mh2 = 25000 + 500 · 900 = 475,000 g-cm2

15.6 Change of Variables (LT Section 16.6)

Preliminary Questions
1. Which of the following maps is linear?

(a) (uv, v) (b) (u + v, u) (c) (3, eu)

solution

(a) This map is not linear since it does not satisfy the linearity property:

�(2u, 2v) = (2u · 2v, 2v) = (4uv, 2v) = 2(2uv, v)

2�(u, v) = 2(uv, v) ⇒ �(2u, 2v) �= 2�(u, v)

(b) This map is linear since it has the form �(u, v) = (Au + Cv, Bu + Dv) where A = C = 1, B = 1, D = 0.

(c) This map is not linear since it does not satisfy the linearity properties. For example,

�(2u, 2v) = (3, e2u)

2�(u, v) = 2(3, eu)
⇒ �(2u, 2v) �= 2�(u, v)

2. Suppose that � is a linear map such that �(2, 0) = (4, 0) and �(0, 3) = (−3, 9). Find the images of:

(a) �(1, 0) (b) �(1, 1) (c) �(2, 1)

solution We denote the linear map by �(u, v) = (Au + Cv, Bu + Dv). By the given information we have

�(2, 0) = (A · 2 + C · 0, B · 2 + D · 0) = (2A, 2B) = (4, 0)

�(0, 3) = (A · 0 + C · 3, B · 0 + D · 3) = (3C, 3D) = (−3, 9)
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Therefore,

2A = 4

2B = 0

3C = −3

3D = 9

⇒ A = 2, B = 0, C = −1, D = 3

The linear map is thus

�(u, v) = (2u − v, 3v)

We now compute the images:

(a) �(1, 0) = (2 · 1 − 0, 3 · 0) = (2, 0)

(b) �(1, 1) = (2 · 1 − 1, 3 · 1) = (1, 3)

(c) �(2, 1) = (2 · 2 − 1, 3 · 1) = (3, 3)

3. What is the area of �(R) if R is a rectangle of area 9 and � is a mapping whose Jacobian has constant value 4?

solution

v

u

y

x

ΦD0 = R D = Φ(R)

The areas of D0 = �(R) and D = R are the following integrals:

Area(R) = 9 =
∫∫

D0

1 du dv

Area(�(R)) =
∫∫

D
1 dx dy

Using the Change of Variables Formula, we have

Area (�(R)) =
∫∫

D
1 dx dy =

∫∫
D0

1|Jac�| du dv =
∫∫

D0

4 du dv = 4
∫∫

D0

1 du dv = 4 · 9 = 36

The area of �(R) is 36.

4. Estimate the area of �(R), where R = [1, 1.2] × [3, 3.1] and � is a mapping such that Jac(�)(1, 3) = 3.

solution

v

u

y

x

Φ
R

Φ(R)

3.1

3

1 1.2

We use the following estimation:

Area (�(R)) ≈ |Jac (�) (P )|Area(R)

The area of the rectangle R is

Area(R) = 0.2 · 0.1 = 0.02

We choose the sample point P = (1, 3) in R to obtain the following estimation:

Area (�(R)) ≈ |Jac (�) (1, 3)|Area(R) = 3 · 0.02 = 0.06
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Exercises
1. Determine the image under �(u, v) = (2u, u + v) of the following sets:

(a) The u- and v-axes

(b) The rectangle R = [0, 5] × [0, 7]
(c) The line segment joining (1, 2) and (5, 3)

(d) The triangle with vertices (0, 1), (1, 0), and (1, 1)

solution

(a) The image of the u-axis is obtained by substituting v = 0 in �(u, v) = (2u, u + v). That is,

�(u, 0) = (2u, u + 0) = (2u, u).

The image of the u-axis is the set of points (x, y) = (2u, u), which is the line y = 1
2x in the xy-plane. The image of the

v-axis is obtained by substituting u = 0 in �(u, v) = (2u, u + v). That is,

�(0, v) = (0, 0 + v) = (0, v).

Therefore, the image of the v-axis is the set (x, y) = (0, v), which is the vertical line x = 0 (the y-axis).

(b) Since � is a linear map, the segment through points P and Q is mapped to the segment through �(P ) and �(Q).
We thus must find the images of the vertices of R:

�(0, 0) = (2 · 0, 0 + 0) = (0, 0)

�(5, 0) = (2 · 5, 5 + 0) = (10, 5)

�(5, 7) = (2 · 5, 5 + 7) = (10, 12)

�(0, 7) = (2 · 0, 0 + 7) = (0, 7)

v

u

R

(0, 7)

(0, 0) (5, 0)

(5, 7)

The image of R is the parallelogram with vertices (0, 0), (10, 5), (10, 12), and (0, 7) in the xy-plane.

y

x

(0, 7)

(0, 0)

(10, 5)

(10, 12)

(c) We compute the images of the endpoints of the segment:

�(1, 2) = (2 · 1, 1 + 2) = (2, 3)

�(5, 3) = (2 · 5, 5 + 3) = (10, 8)

v

u
(1, 2)

(5, 3)

y

x

(10, 8)

(2, 3)

The image is the segment in the xy-plane joining the points (2, 3) and (10, 8).
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(d) Since � is linear, the image of the triangle is the triangle whose vertices are the images of the vertices of the triangle.
We compute these images:

�(0, 1) = (2 · 0, 0 + 1) = (0, 1)

�(1, 0) = (2 · 1, 1 + 0) = (2, 1)

�(1, 1) = (2 · 1, 1 + 1) = (2, 2)

Therefore the image is the triangle in the xy-plane whose vertices are at the points (0, 1), (2, 1), and (2, 2).

2. Describe [in the form y = f (x)] the images of the lines u = c and v = c under the mapping �(u, v) = (u/v, u2 − v2).

solution The image of the vertical line u = c is the set of points

(x, y) = �(c, v) =
( c

v
, c2 − v2

)
.

That is, x = c
v and y = c2 − v2. We substitute v = c

x in the equation for y to obtain

y = c2 − c2

x2
= c2

(
1 − 1

x2

)

The image of the horizontal line v = c is the set of points

(x, y) = �(u, c) =
(u

c
, u2 − c2

)
.

That is, x = u
c and y = u2 − c2. Substituting u = cx in the equation for y gives the parabola

y = c2x2 − c2 = c2(x2 − 1).

3. Let �(u, v) = (u2, v). Is � one-to-one? If not, determine a domain on which � is one-to-one. Find the image under
� of:

(a) The u- and v-axes
(b) The rectangle R = [−1, 1] × [−1, 1]
(c) The line segment joining (0, 0) and (1, 1)

(d) The triangle with vertices (0, 0), (0, 1), and (1, 1)

solution � is not one-to-one since for any u �= 0, (u, v) and (−u, v) are two different points with the same image.
However, � is one-to-one on the domain {(u, v) : u ≥ 0} and on the domain {(u, v) : u ≤ 0}.
(a) The image of the u-axis is the set of the points

(x, y) = �(u, 0) = (u2, 0) ⇒ x = u2, y = 0

That is, the positive x-axis, including the origin. The image of the v-axis is the set of the following points:

(x, y) = �(0, v) = (02, v) = (0, v) ⇒ x = 0, y = v

That is, the line x = 0, which is the y-axis.
(b) The rectangle R is defined by

|u| ≤ 1, |v| ≤ 1

v

u

R

C1

−1

−1 1

BA

D

Since x = u2 and y = v, we have u = ±√
x and v = y (depending on our choice of domain). Therefore, the inequalities

for x and y are

| ± √
x| ≤ 1, |y| ≤ 1

or

0 ≤ x ≤ 1 and − 1 ≤ y ≤ 1.

We conclude that the image of R in the xy-plane is the rectangle [0, 1] × [−1, 1].
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y

x

1

−1 Φ(R)

1

(c) The line segment joining the points (0, 0) and (1, 1) in the uv-plane is defined by

0 ≤ u ≤ 1, v = u.

Substituting u = √
x and v = y, we get

0 ≤ √
x ≤ 1, y = √

x

or

0 ≤ x ≤ 1, y = √
x

v

u

(1, 1)

(0, 0)

y

x

Φ

The image is the curve y = √
x for 0 ≤ x ≤ 1.

(d) We identify the image of the sides of the triangle OAB.

The image of OA: This segment is defined by u = 0 and 0 ≤ v ≤ 1. That is,

±√
x = 0 and 0 ≤ y ≤ 1

or

x = 0, 0 ≤ y ≤ 1.

v

u

B = (1, 1)
A = (0, 1)

This is the segment joining the points (0, 0) and (0, 1) in the xy-plane.
The image of AB: This segment is defined by 0 ≤ u ≤ 1 and v = 1. That is,

0 ≤ √
x ≤ 1, y = 1

or

0 ≤ x ≤ 1, y = 1.

This is the segment joining the points (0, 1) and (1, 1) in the xy-plane.
The image of OB: In part (c) we showed that the image of the segment is the curve y = √

x, 0 ≤ x ≤ 1.

Therefore, the image of the triangle is the region shown in the figure:

(1, 1)

(0, 0)

(0, 1)

y

x

y = x
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4. Let �(u, v) = (eu, eu+v).

(a) Is � one-to-one? What is the image of �?

(b) Describe the images of the vertical lines u = c and the horizontal lines v = c.

solution
(a) Suppose that �(u1, v1) = �(u2, v2). We show that (u1, v1) = (u2, v2), hence � is one-to-one. We have(

eu1 , eu1+v1
) = (

eu2 , eu2+v2
) ⇒ eu1 = eu2 ⇒ u1 = u2

and

eu1+v1 = eu2+v2 ⇒ u1 + v1 = u2 + v2 ⇒ v1 = v2

We find the image of �. The image of the exponent function is (0, ∞). Since u and v can take any value, the points
(eu, eu+v) are all the points (x, y) where x > 0 and y > 0; that is, the image of � is the first quadrant of the xy-plane,
with the axes excluded.

(b) The image of the vertical line u = c is the set of the following points:

(x, y) = �(c, v) = (ec, ec+v) ⇒ x = ec, y = evx ⇒ x = ec, y > 0

That is, the image is the ray x = ec, y > 0 in the xy-plane.

u

Φ

x
c ec

y

The image of the horizontal line v = c is the set of the points

(x, y) = �(u, c) = (eu, eu+c) ⇒ x = eu, y = ecx ⇒ y = ecx, x > 0

Since u can take any value, x can take any positive value, and hence the image is the ray y = ecx, x > 0.

u

Φ

x

c

y = ecxy

In Exercises 5–12, let �(u, v) = (2u + v, 5u + 3v) be a map from the uv-plane to the xy-plane.

5. Show that the image of the horizontal line v = c is the line y = 5
2x + 1

2 c. What is the image (in slope-intercept form)
of the vertical line u = c?

solution The image of the horizontal line v = c is the set of the following points:

(x, y) = �(u, c) = (2u + c, 5u + 3c) ⇒ x = 2u + c, y = 5u + 3c

The first equation implies u = x−c
2 . Substituting in the second equation gives

y = 5
(x − c)

2
+ 3c = 5x

2
+ c

2

Therefore, the image of the line v = c is the line y = 5x
2 + c

2 in the xy-plane.
The image of the vertical line u = c is the set of the following points:

(x, y) = �(c, v) = (2c + v, 5c + 3v) ⇒ x = 2c + v, y = 5c + 3v

By the first equation, v = x − 2c. Substituting in the second equation gives

y = 5c + 3(x − 2c) = 5c + 3x − 6c = 3x − c

Therefore, the image of the line u = c is the line y = 3x − c in the xy-plane.
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6. Describe the image of the line through the points (u, v) = (1, 1) and (u, v) = (1, −1) under � in slope-intercept
form.

solution

1

1−1

−1

1

1
Φ

x

y

u

u = 1 y = 3x − 1

The line is the vertical line u = 1 in the uv-plane. The image of the line under the linear map �(u, v) = (2u + v, 5u + 3v)

is the line through the images of the points (u, v) = (1, 1) and (u, v) = (1, −1). We find these images:

�(1, 1) = (2 · 1 + 1, 5 · 1 + 3 · 1) = (3, 8)

�(1, −1) = (2 · 1 − 1, 5 · 1 − 3) = (1, 2)

We find the slope-intercept form of the equation of the line in the xy-plane, through the points (3, 8) and (1, 2):

y − 2 = 8 − 2

3 − 1
(x − 1) = 3(x − 1) ⇒ y = 3x − 1

7. Describe the image of the line v = 4u under � in slope-intercept form.

solution We choose any two points on the line v = 4u, for example (u, v) = (1, 4) and (u, v) = (0, 0). By a property
of linear maps, the image of the line v = 4u under the linear map �(u, v) = (2u + v, 5u + 3v) is the line in the xy-plane
through the points �(1, 4) and �(0, 0). We find these points:

�(0, 0) = (2 · 0 + 0, 5 · 0 + 3 · 0) = (0, 0)

�(1, 4) = (2 · 1 + 4, 5 · 1 + 3 · 4) = (6, 17)

We now find the slope-intercept equation of the line in the xy-plane through the points (0, 0) and (6, 17):

y − 0 = 17 − 0

6 − 0
(x − 0) ⇒ y = 17

6
x

8. Show that � maps the line v = mu to the line of slope (5 + 3m)/(2 + m) through the origin in the xy-plane.

solution The points (0, 0) and (1, m) lie on the line v = mu. The images of these points under the map �(u, v) =
(2u + v, 5u + 3v) are

�(0, 0) = (2 · 0 + 0, 5 · 0 + 3 · 0) = (0, 0)

�(1, m) = (2 · 1 + m, 5 · 1 + 3m) = (2 + m, 5 + 3m)

By properties of linear maps, the image of the line v = mu under the linear map � is a line through the points (0, 0) and
(2 + m, 5 + 3m). The slope of this line is

(5 + 3m) − 0

(2 + m) − 0
= 5 + 3m

2 + m
.

9. Show that the inverse of � is

�−1(x, y) = (3x − y, −5x + 2y)

Hint: Show that �(�−1(x, y)) = (x, y) and �−1(�(u, v)) = (u, v).

solution By the definition of the inverse map, we must show that the given maps �−1(x, y) = (3x − y, −5x + 2y)

and �(u, v) = (2u + v, 5u + 3v) satisfy �
(
�−1(x, y)

)
= (x, y) and �−1 (�(u, v)) = (u, v). We have

�
(
�−1(x, y)

)
= �(3x − y, −5x + 2y) = (2(3x − y) + (−5x + 2y), 5(3x − y) + 3(−5x + 2y)) = (x, y)

�−1 (�(u, v)) = �−1(2u + v, 5u + 3v) = (3(2u + v) − (5u + 3v), −5(2u + v) + 2(5u + 3v)) = (u, v)

We conclude that �−1 is the inverse of �.

10. Use the inverse in Exercise 9 to find:

(a) A point in the uv-plane mapping to (2, 1)

(b) A segment in the uv-plane mapping to the segment joining (−2, 1) and (3, 4)
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solution

(a) The inverse of �(u, v) is �−1(x, y) = (3x − y, −5x + 2y). Therefore, the point in the uv-plane mapping to (2, 1)

in the xy-plane is �−1(2, 1). We find it:

(u, v) = �−1(2, 1) = (3 · 2 − 1, −5 · 2 + 2 · 1) = (5, −8)

(b) The segment we need to find is the image of the segment joining the points (−2, 1) and (3, 4) in the xy-plane, under
the inverse map �−1(x, y) = (3x − y, −5x + 2y). By properties of linear maps, this image is the segment in the uv-plane
joining the points �−1(−2, 1) and �−1(3, 4). We find these points:

�−1(−2, 1) = (3 · (−2) − 1, −5 · (−2) + 2 · 1) = (−7, 12)

�−1(3, 4) = (3 · 3 − 4, −5 · 3 + 2 · 4) = (5, −7)

Therefore, the segment in the uv-plane mapping to the given segment under � is the segment joining the points (−7, 12)

and (5, −7) in the uv-plane.

(−7, 12)

(−2, 1)

(5, −7)

(3, 4)

Φ

Φ−1 x

y

u

11. Calculate Jac(�) = ∂(x, y)

∂(u, v)
.

solution The Jacobian of the linear mapping �(u, v) = (2u + v, 5u + 3v) is the following determinant:

Jac(�) = ∂(x, y)

∂(u, v)
=
∣∣∣∣ 2 1

5 3

∣∣∣∣ = 2 · 3 − 5 · 1 = 1

12. Calculate Jac(�−1) = ∂(u, v)

∂(x, y)
.

solution We use the formula for the Jacobian of the inverse map, and the result of Exercise 11 to obtain

Jac(�−1) =
(

Jac(�)−1
)

= 1−1 = 1

In Exercises 13–18, compute the Jacobian (at the point, if indicated).

13. �(u, v) = (3u + 4v, u − 2v)

solution Using the Jacobian of linear mappings we get

Jac(�) = ∂(x, y)

∂(u, v)
=
∣∣∣∣ 3 4

1 −2

∣∣∣∣ = 3 · (−2) − 1 · 4 = −10

14. �(r, s) = (rs, r + s)

solution We have x = rs and y = r + s, therefore,

Jac(�) = ∂(x, y)

∂(r, s)
=

∣∣∣∣∣∣∣∣
∂x

∂r

∂x

∂s

∂y

∂r

∂y

∂s

∣∣∣∣∣∣∣∣
=
∣∣∣∣ s r

1 1

∣∣∣∣ = s · 1 − r · 1 = s − r

15. �(r, t) = (r sin t, r − cos t), (r, t) = (1, π)

solution We have x = r sin t and y = r − cos t . Therefore,

Jac(�) = ∂(x, y)

∂(r, t)
=

∣∣∣∣∣∣∣∣
∂x

∂r

∂x

∂t

∂y

∂r

∂y

∂t

∣∣∣∣∣∣∣∣
=
∣∣∣∣ sin t r cos t

1 sin t

∣∣∣∣ = sin2 t − r cos t

At the point (r, t) = (1, π) we get

Jac(�)(1, π) = sin2 π − 1 · cos π = 0 − 1 · (−1) = 1
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16. �(u, v) = (v ln u, u2v−1), (u, v) = (1, 2)

solution We have x = v ln u and y = u2v−1. Therefore,

Jac(�) = ∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
v

u
ln u

2u

v

−u2

v2

∣∣∣∣∣∣∣ = −u

v
− 2u

v
ln u = −u

v
(1 + 2 ln u)

At the point (u, v) = (1, 2) we get:

Jac(�)(1, 2) = −1

2
(1 + 2 ln 1) = −1

2

17. �(r, θ) = (r cos θ, r sin θ), (r, θ) = (
4, π

6

)
solution Since x = r cos θ and y = r sin θ , the Jacobian of � is the following determinant:

Jac(�) = ∂(x, y)

∂(r, θ)
=

∣∣∣∣∣∣∣∣
∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ

∣∣∣∣∣∣∣∣
=
∣∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣∣
= r cos2 θ + r sin2 θ = r(cos2 θ + sin2 θ) = r · 1 = r

At the point (r, θ) = (4, π/6) we get:

Jac(�)(4, π/6) = 4

18. �(u, v) = (uev, eu)

solution We have x = uev and y = eu, hence the Jacobian of � is the following determinant:

Jac(�) = ∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
=
∣∣∣∣ ev uev

eu 0

∣∣∣∣ = ev · 0 − uev · eu = −ueu+v

19. Find a linear mapping � that maps [0, 1] × [0, 1] to the parallelogram in the xy-plane spanned by the vectors 〈2, 3〉
and 〈4, 1〉.
solution

v

u

y

x

Φ

(0, 0) (1, 0)

(4, 1)

(0, 1)
(2, 3)

We denote the linear map by

�(u, v) = (Au + Cv, Bu + Dv) (1)

The image of the unit square R = [0, 1] × [0, 1] under the linear map is the parallelogram whose vertices are the images
of the vertices of R. Two of vertices of the given parallelogram are (2, 3) and (4, 1). To find A, B, C, and D it suffices
to determine four equations. Therefore, we ask that (notice that for linear maps �(0, 0) = (0, 0))

�(0, 1) = (2, 3), �(1, 0) = (4, 1)

We substitute in (1) and solve for A, B, C, and D:

(A · 0 + C · 1, B · 0 + D · 1) = (C, D) = (2, 3)

(A · 1 + C · 0, B · 1 + D · 0) = (A, B) = (4, 1)
⇒

C = 2, D = 3

A = 4, B = 1

Substituting in (1) we obtain the following map:

�(u, v) = (4u + 2v, u + 3v).



April 19, 2011

1030 C H A P T E R 15 MULTIPLE INTEGRATION (LT CHAPTER 16)

20. Find a linear mapping � that maps [0, 1] × [0, 1] to the parallelogram in the xy-plane spanned by the vectors 〈−2, 5〉
and 〈1, 7〉.
solution

Φ

(0, 0) (1, 0)

(0, 1)
(−2, 5)

−2

(1, 7)

x

y

u
1

We denote the linear map by

�(u, v) = (Au + Cv, Bu + Dv) (1)

By properties of linear mapping, the images of the vertices of the unit square in the uv-plane are the vertices of the
parallelogram in the xy-plane. Since we need four equations to determine A, B, C, and D, we ask that (notice that for
any linear map, �(0, 0) = (0, 0))

�(0, 1) = (−2, 5), �(1, 0) = (1, 7)

We substitute in (1) and solve for A, B, C, and D:

�(0, 1) = (A · 0 + C · 1, B · 0 + D · 1) = (C, D) = (−2, 5) ⇒ C = −2, D = 5

�(1, 0) = (A · 1 + C · 0, B · 1 + D · 0) = (A, B) = (1, 7) ⇒ A = 1, B = 7

We substitute in (1) to obtain the following map:

�(u, v) = (u − 2v, 7u + 5v)

21. Let D be the parallelogram in Figure 13. Apply the Change of Variables Formula to the map �(u, v) = (5u + 3v, u +
4v) to evaluate

∫∫
D

xy dx dy as an integral over D0 = [0, 1] × [0, 1].

y

x

D

(5, 1)

(3, 4)

FIGURE 13

solution

v

u

D
D0

y

x

Φ

1

(5, 1)

1

(3, 4)

We express f (x, y) = xy in terms of u and v. Since x = 5u + 3v and y = u + 4v, we have

f (x, y) = xy = (5u + 3v)(u + 4v) = 5u2 + 12v2 + 23uv

The Jacobian of the linear map �(u, v) = (5u + 3v, u + 4v) is

Jac(�) = ∂(x, y)

∂(u, v)
=
∣∣∣∣ 5 3

1 4

∣∣∣∣ = 20 − 3 = 17
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Applying the Change of Variables Formula we get

∫∫
D

xy dA =
∫∫

D0

f (x, y)

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv =
∫ 1

0

∫ 1

0
(5u2 + 12v2 + 23uv) · 17 du dv

= 17
∫ 1

0

5u3

3
+ 12v2u + 23u2v

2

∣∣∣∣1
u=0

dv = 17
∫ 1

0

(
5

3
+ 12v2 + 23v

2

)
dv

= 17

(
5v

3
+ 4v3 + 23v2

4

∣∣∣∣1
0

)
= 17

(
5

3
+ 4 + 23

4

)
= 2329

12
≈ 194.08

22. Let �(u, v) = (u − uv, uv).

(a) Show that the image of the horizontal line v = c is y = c

1 − c
x if c �= 1, and is the y-axis if c = 1.

(b) Determine the images of vertical lines in the uv-plane.

(c) Compute the Jacobian of �.

(d) Observe that by the formula for the area of a triangle, the region D in Figure 14 has area 1
2 (b2 − a2). Compute this

area again, using the Change of Variables Formula applied to �.

(e) Calculate
∫∫

D
xy dx dy.

D

x

y

a b

a

b

FIGURE 14

solution

(a) The image of the horizontal line v = c in the (u, v)-plane is the set of the following points:

(x, y) = �(u, c) = (u − uc, uc) ⇒ x = u − uc, y = uc

Substituting u = y
c (for c �= 0) in x = u − uc gives x = y

c − y
c · c, x = y

c − y, or y = cx
1−c

(for c �= 1). The image of
v = 0 (the u-axis) is

(x, y) = �(u, 0) = (u, 0) ⇒ y = 0

The image of v = 1 is

(x, y) = �(u, 1) = (0, u) ⇒ x = 0

We conclude that

The image of the line v = c is the line y = cx
1−c

for c �= 1, and the image of the line v = 1 is the y-axis.
The image of the vertical line u = c is the set of the following points:

(x, y) = �(c, v) = (c − cv, cv) ⇒ x = c − cv, y = cv

Therefore, for c �= 0 we have v = y
c and x = c − c · y

c = c − y or y = c − x.

The image of the vertical line u = 0 (the v-axis) is

(x, y) = �(0, v) = (0, 0)

We conclude that the image of the line u = c is the line y = c − x if c �= 0, and the image of the line u = 0 is the point
at the origin of the xy-plane.

(b) Since x = u − uv and y = uv, the Jacobian of � is the following determinant:

Jac(�) = ∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
=
∣∣∣∣ 1 − v −u

v u

∣∣∣∣ = (1 − v)u + uv = u



April 19, 2011

1032 C H A P T E R 15 MULTIPLE INTEGRATION (LT CHAPTER 16)

(c)

y

y = b − x

y = a − x

ba

Φ
1

u x

D

a b

a

b

D0

The area of D is the following determinant:

Area(D) =
∫∫

D
1 dA (1)

We compute this integral using the Change of Variables Formula with the mapping �(u, v) = (u − uv, uv). By part (a)
the lines y = b − x and y = a − x are the images of the lines u = b and u = a, respectively, in the uv-plane. Also
the lines y = 0 and x = 0 are the images of the lines v = 0 and v = 1, respectively. Therefore, D is the image of the
rectangle D0 in the uv-plane shown in the figure. We compute the integral (1) using the Change of Variables Formula and
the Jacobian computed in part (b). We get

Area(D) =
∫∫

D
1 dA =

∫∫
D0

1|Jac�| du dv =
∫ b

a

∫ 1

0
u dv du =

(∫ b

a
u du

)(∫ 1

0
dv

)
=
(

u2

2

∣∣∣∣b
a

)
= b2 − a2

2

(d) The function expressed in the new variables u and v is

f (x, y) = xy = (u − uv)uv = u2v − u2v2

Using the Change of Variables Formula and the Jacobian obtained in part (b) we get

∫∫
D

xy dA =
∫∫

D0

(u2v − u2v2)u du dv =
∫ b

a

∫ 1

0
(u3v − u3v2) dv du =

∫ b

a

u3v2

2
− u3v3

3

∣∣∣∣1
v=0

du

=
∫ b

a

(
u3

2
− u3

3

)
du =

∫ b

a

u3

6
du = u4

24

∣∣∣∣b
a

= b4 − a4

24

23. Let �(u, v) = (3u + v, u − 2v). Use the Jacobian to determine the area of �(R) for:

(a) R = [0, 3] × [0, 5] (b) R = [2, 5] × [1, 7]
solution The Jacobian of the linear map �(u, v) = (3u + v, u − 2v) is the following determinant:

Jac� = ∂(x, y)

∂(u, v)
=
∣∣∣∣ 3 1

1 −2

∣∣∣∣ = −6 − 1 = −7

By properties of linear maps, we have

Area (�(R)) = |Jac�|Area(R) = 7 · Area(R)

(a) The area of the rectangle R = [0, 3] × [0, 5] is 3 · 5 = 15, therefore the area of �(R) is

Area (�(R)) = 7 · 15 = 105

(b) The area of the rectangle R = [2, 5] × [1, 7] is 3 · 6 = 18 hence the area of �(R) is

Area (�(R)) = 7 · 18 = 126.

24. Find a linear map T that maps [0, 1] × [0, 1] to the parallelogram P in the xy-plane with vertices (0, 0), (2, 2), (1, 4),
(3, 6). Then calculate the double integral of e2x−y over P via change of variables.

solution

T
P

(1, 0)

(0, 1)

(1, 4)

x

y

u

(2, 2)

R
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By properties of linear maps, the vertices of the square R = [0, 1] × [0, 1] are mapped to the vertices of the parallelogram
P . Denoting the linear map by T (u, v) = (Au + Cv, Bu + Dv), we ask that

T (0, 1) = (1, 4), T (1, 0) = (2, 2)

We substitute the points in T (u, v) and solve for A, B, C, D to obtain

T (0, 1) = (A · 0 + C · 1, B · 0 + D · 1) = (C, D) = (1, 4) ⇒ C = 1, D = 4

T (1, 0) = (A · 1 + C · 0, B · 1 + D · 0) = (A, B) = (2, 2) ⇒ A = 2, B = 2

We obtain the following map:

T (u, v) = (2u + v, 2u + 4v)

We now compute the integral
∫∫

P
e2x−y dA using change of variables. We express f (x, y) = e2x−y in terms of the

new variables u and v. Since x = 2u + v and y = 2u + 4v, we obtain

f (x, y) = e2(2u+v)−(2u+4v) = e2u−2v

The Jacobian of linear map T is

Jac(T ) = ∂(x, y)

∂(u, v)
=
∣∣∣∣ 2 1

2 4

∣∣∣∣ = 2 · 4 − 2 · 1 = 6

Using the Change of Variables Formula, we get

∫∫
P

e2x−y dA =
∫∫

R
e2u−2v |Jac(T )| du dv =

∫ 1

0

∫ 1

0
e2u−2v · 6 du dv = 6

∫ 1

0

∫ 1

0
e2u · e−2v du dv

= 6

(∫ 1

0
e2u du

)(∫ 1

0
e−2v dv

)
= 6

(
e2u

2

∣∣∣∣1
0

)
·
(

e−2v

−2

∣∣∣∣1
0

)

= −3

2
(e2 − 1)(e−2 − 1) = 3

2
(e2 − 1)(1 − e−2) = 3

2
(e2 + e−2 − 2)

25. With � as in Example 3, use the Change of Variables Formula to compute the area of the image of [1, 4] × [1, 4].

solution Let R represent the rectangle [1, 4] × [1, 4]. We proceed as follows. Jac(�) is easily calculated as

Jac(T ) = ∂(x, y)

∂(u, v)
=
∣∣∣∣ 1/v −u/v2

v u

∣∣∣∣ = 2u/v

Now, the area is given by the Change of Variables Formula as

∫∫
�(R)

1 dA =
∫∫

R
1|Jac(�)| du dv =

∫∫
R

1|2u/v| du dv =
∫ 4

1

∫ 4

1
2u/v du dv

=
∫ 4

1
2u du ·

∫ 4

1

1

v
dv = (16 − 1)(ln 4 − ln 1) = 15 ln 4

In Exercises 26–28, let R0 = [0, 1] × [0, 1] be the unit square. The translate of a map �0(u, v) = (φ(u, v), ψ(u, v)) is
a map

�(u, v) = (a + φ(u, v), b + ψ(u, v))

where a, b are constants. Observe that the map �0 in Figure 15 maps R0 to the parallelogram P0 and that the translate

�1(u, v) = (2 + 4u + 2v, 1 + u + 3v)

maps R0 to P1.
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u

1

1

(4, 1)

(6, 4)
(2, 3)

(6, 2)

(2, 1)

(8, 5)
(4, 4)

x

y

G0(u, v) = (4u + 2v, u + 3v)

u

1

1
x

y

G1(u, v) = (2 + 4u + 2v, 1 + u + 3v)

(3, 2)
(−1, 1)

(1, 4)

x

y

(6, 3)

(2, 2)

(4, 5)

x

y

0

0

2

0

1

3

v

v

FIGURE 15

26. Find translates �2 and �3 of the mapping �0 in Figure 15 that map the unit square R0 to the parallelograms P2
and P3.

solution The parallelogram P2 is obtained by translating P0 two units upward and two units to the left. Therefore
the translate that maps the unit square R0 to P2 is

�2(u, v) = (2 + 4u + 2v, 2 + u + 3v)

The parallelogram P3 is obtained by translating P0 one unit upward and one unit to the left.

(3, 2)

(−1, 1)

(1, 4)

P3

x

y

Therefore, the translate that maps R0 to P2 is

�3(u, v) = (−1 + 4u + 2v, 1 + u + 3v)

27. Sketch the parallelogram P with vertices (1, 1), (2, 4), (3, 6), (4, 9) and find the translate of a linear mapping that
maps R0 to P .

solution The parallelogram P is shown in the figure:

P

y

x

(4, 9)

(3, 6)

(1, 1)

(2, 4)

We first translate the parallelogram P one unit to the left and one unit downward to obtain a parallelogram P0 with a
vertex at the origin.
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v

u

R0

P0

y

x

Φ0

(0, 0) (1, 0)

(2, 5)

(0, 1)

(1, 3)

We find a linear map �0(u, v) = (Au + Cv, Bu + Dv) that maps R0 to P0:

�0(0, 1) = (1, 3) ⇒ (C, D) = (1, 3) ⇒ C = 1, D = 3

�0(1, 0) = (2, 5) ⇒ (A, B) = (2, 5) ⇒ A = 2, B = 5

Therefore,

�0(u, v) = (2u + v, 5u + 3v)

Now we can determine the translate � of �0 that maps R0 to P . Since P is obtained by translating P0 one unit upward
and one unit to the right, the map � is the following translate of �0:

�(u, v) = (1 + 2u + v, 1 + 5u + 3v)

28. Find the translate of a linear mapping that maps R0 to the parallelogram spanned by the vectors 〈3, 9〉 and 〈−4, 6〉
based at (4, 2).

solution The parallelogram P spanned by 〈3, 9〉 and 〈−4, 6〉 based at (4, 2) is shown in the figure:

(0, 8)

(4, 2)

(7, 11)
P

x

y

We first translate P four units to the left and two units downward, so that the base (4, 2) is moved to the origin. The
translated parallelogram P0 is shown in the figure:

Φ0

(1, 0)

(0, 1) (−4, 6)

(3, 9)

x

y

u

R0

P0

We find a linear map �0(u, v) = (Au + Cv, Bu + Dv) that maps R0 to P0. We demand that

�(1, 0) = (A, B) = (3, 9) ⇒ A = 3, B = 9

�(0, 1) = (C, D) = (−4, 6) ⇒ C = −4, D = 6

Therefore,

�0(u, v) = (3u − 4v, 9u + 6v)

Since P is obtained by translating P0 four units to the right and two units upward, the translate of �0 that maps R0 to P
is

�(u, v) = (4 + 3u − 4v, 2 + 9u + 6v)
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29. Let D = �(R), where �(u, v) = (u2, u + v) and R = [1, 2] × [0, 6]. Calculate
∫∫

D
y dx dy. Note: It is not

necessary to describe D.

solution

v

u

y

x

Φ
R

Φ(R)

6

1 2

Changing variables, we have ∫∫
D

y dA =
∫∫

R
(u + v)

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv (1)

We compute the Jacobian of �. Since x = u2 and y = u + v, we have

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
=
∣∣∣∣ 2u 0

1 1

∣∣∣∣ = 2u

We substitute in (1) and compute the resulting integral:

∫∫
D

y dA =
∫ 6

0

∫ 2

1
(u + v) · 2u du dv =

∫ 6

0

∫ 2

1
(2u2 + 2uv) du dv =

∫ 6

0

2u3

3
+ u2v

∣∣∣∣2
u=1

dv

=
∫ 6

0

((
16

3
+ 4v

)
−
(

2

3
+ v

))
dv =

∫ 6

0

(
3v + 14

3

)
dv = 3

2
v2 + 14

3
v

∣∣∣∣6
0

= 82

30. Let D be the image of R = [1, 4] × [1, 4] under the map �(u, v) = (u2/v, v2/u).

(a) Compute Jac(�).

(b) Sketch D.

(c) Use the Change of Variables Formula to compute Area(D) and
∫∫

D
f (x, y) dx dy, where f (x, y) = x + y.

solution

(a) Since x = u2

v and y = v2

u , the Jacobian of � is the following determinant:

Jac(�) = ∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

2u

v
−u2

v2

− v2

u2

2v

u

∣∣∣∣∣∣∣∣∣
= 2u

v
· 2v

u
− u2

v2
· v2

u2
= 3

(b) In the rectangle R, we have 1 ≤ x ≤ 4 and 1 ≤ y ≤ 4. Therefore, the image D is defined by the following inequalities:

D : 1 ≤ u2

v
≤ 4 and 1 ≤ v2

u
≤ 4

The domain D is shown in the figure:

u

D

u2
= 1 u2

= 4

u

2
= 4

u

2
= 1
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(c) Since x = u2

v and y = v2

u , the function in the new variables is

f (x, y) =
(

u2

v

)2

+
(

v2

u

)2

= u4

v2
+ v4

u2

Using change of variables, we get

∫∫
D

f (x, y) dA =
∫∫

R

(
u4

v2
+ v4

u2

) ∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv =
∫ 4

1

∫ 4

1

(
u4

v2
+ v4

u2

)
· 3 du dv = 3

∫ 4

1

(
u5

5v2
− v4

u

) ∣∣∣∣4
u=1

dv

= 3
∫ 4

1

((
1024

5v2
− v4

4

)
−
(

1

5v2
− v4

))
dv = 3

∫ 4

1

(
1023

5v2
+ 3v4

4

)
dv

= 3069

5

(
− 1

v

)
+ 9v5

20

∣∣∣∣4
1

=
(

−3069

20
+ 2304

5

)
−
(

−3069

5
+ 9

20

)
= 920.7

31. Compute
∫∫

D
(x + 3y) dx dy, where D is the shaded region in Figure 16. Hint: Use the map �(u, v) = (u − 2v, v).

6 10

x + 2y = 10

x + 2y = 6

1

3

5

y

x

FIGURE 16

solution The boundary of D is defined by the lines x + 2y = 6, x + 2y = 10, y = 1, and y = 3.

y

x
x + 2y = 6

x + 2y = 10

D2

4

4 8

Therefore, D is mapped to a rectangle D0 in the uv-plane under the map

u = x + 2y, v = y (1)

or

(u, v) = �−1(x, y) = (x + 2y, y)

Since D is defined by the inequalities 6 ≤ x + 2y ≤ 10 and 1 ≤ y ≤ 3, the corresponding domain in the uv-plane is the
rectangle

D0 : 6 ≤ u ≤ 10, 1 ≤ v ≤ 3

y

x

D
2

4

4 8

y

x

D0
2

4

4 8

Φ
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To find �(u, v) we must solve the equations (1) for x and y in terms of u and v. We obtain

u = x + 2y

v = y
⇒ x = u − 2v

y = v
⇒ �(u, v) = (u − 2v, v)

We compute the Jacobian of the linear mapping �:

Jac(�) = ∂(x, y)

∂(u, v)
=
∣∣∣∣ 1 −2

0 1

∣∣∣∣ = 1 · 1 + 2 · 0 = 1

The function f (x, y) = x + 3y expressed in terms of the new variables u and v is

f (x, y) = u − 2v + 3v = u + v

We now use the Change of Variables Formula to compute the required integral. We get∫∫
D

f (x, y) dx dy =
∫∫

D0

(u + v)

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv =
∫ 3

1

∫ 10

6
(u + v) · 1 du dv

=
∫ 3

1

u2

2
+ vu

∣∣∣∣10

u=6
dv =

∫ 3

1
((50 + 10v) − (18 + 6v)) dv

=
∫ 3

1
(32 + 4v) dv = 32v + 2v2

∣∣∣∣3
1

= (96 + 18) − (32 + 2) = 80

32. Use the map �(u, v) =
(

u

v + 1
,

uv

v + 1

)
to compute

∫∫
D

(x + y) dx dy

where D is the shaded region in Figure 17.

D

63

y = 2x y = x

1

3

6

y

x

FIGURE 17

solution

D

63

y + x = 3

y + x = 6

y
x

= 2 y
x

= 1

1

3

6

y

x

We first identify the region D0 in the uv-plane, mapped to D under �. The equations of the lines defining the boundary
of D can be rewritten as

y

x
= 2,

y

x
= 1, y + x = 3, y + x = 6.

Therefore, D is defined by the inequalities

1 ≤ y

x
≤ 2, 3 ≤ y + x ≤ 6

Since x = u
v+1 and y = uv

v+1 , we have

y

x
=

uv
v+1
u

v+1
= v and y + x = uv

v + 1
+ u

v + 1
= u(v + 1)

v + 1
= u

Therefore, the corresponding domain D0 in the uv-plane is the rectangle

D0 : 1 ≤ v ≤ 2, 3 ≤ u ≤ 6
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y

Φ

u x

D0

D

63

1

3

6

63

1
2

We express the function f (x, y) = x + y in terms of u and v:

f (x, y) = uv

v + 1
+ u

v + 1
= uv + u

v + 1
= u(v + 1)

v + 1
= u

We compute the Jacobian of �. Since x = u
v+1 and y = uv

v+1 , we have

∂x

∂u
= 1

v + 1
,

∂x

∂v
= − u

(v + 1)2
,

∂y

∂u
= v

v + 1
,

∂y

∂v
= u(v + 1) − uv · 1

(v + 1)2
= u

(v + 1)2

Therefore,

Jac(�) = ∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
1

v + 1
− u

(v + 1)2

v

v + 1

u

(v + 1)2

∣∣∣∣∣∣∣∣
= 1

v + 1
· u

(v + 1)2
+ u

(v + 1)2
· v

v + 1

= u + uv

(v + 1)3
= u(1 + v)

(v + 1)3
= u

(1 + v)2

Now we can apply the Change of Variables Formula to compute the integral:

∫∫
D

(x + y) dx dy =
∫∫

D0

u · u

(1 + v)2
du dv =

∫ 2

1

∫ 6

3
u2 · 1

(1 + v)2
du dv

=
(∫ 2

1

1

(1 + v)2
dv

)(∫ 6

3
u2 du

)
=
(

− 1

1 + v

∣∣∣∣2
1

)(
u3

3

∣∣∣∣6
3

)

=
(

−1

3
+ 1

2

)(
216

3
− 27

3

)
= 63

6
= 10.5

33. Show that T (u, v) = (u2 − v2, 2uv) maps the triangle D0 = {(u, v) : 0 ≤ v ≤ u ≤ 1} to the domain D bounded by
x = 0, y = 0, and y2 = 4 − 4x. Use T to evaluate∫∫

D

√
x2 + y2 dx dy

solution We show that the boundary of D0 is mapped to the boundary of D.

y

x

D

2

1

v

u

D0

1

T y2 = 4 − 4xv = u

We have

x = u2 − v2 and y = 2uv

The line v = u is mapped to the following set:

(x, y) = (u2 − u2, 2u2) = (0, 2u2) ⇒ x = 0, y ≥ 0
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That is, the image of the line u = v is the positive y-axis. The line v = 0 is mapped to the following set:

(x, y) = (u2, 0) ⇒ x = u2, y = 0 ⇒ y = 0, x ≥ 0

Thus, the line v = 0 is mapped to the positive x-axis. We now show that the vertical line u = 1 is mapped to the curve
y2 + 4x = 4. The image of the line u = 1 is the following set:

(x, y) = (1 − v2, 2v) ⇒ x = 1 − v2, y = 2v

We substitute v = y
2 in the equation x = 1 − v2 to obtain

x = 1 −
(y

2

)2 = 1 − y2

4
⇒ 4x = 4 − y2 ⇒ y2 + 4x = 4

Since the boundary of D0 is mapped to the boundary of D, we conclude that the domain D0 is mapped by T to the domain

D in the xy-plane. We now compute the integral
∫∫

D

√
x2 + y2 dx dy. We express the function f (x, y) =

√
x2 + y2

in terms of the new variables u and v:

f (x, y) =
√

(u2 − v2)
2 + (2uv)2 =

√
u4 − 2u2v2 + v4 + 4u2v2

=
√

u4 + 2u2v2 + v4 =
√

(u2 + v2)
2 = u2 + v2

We compute the Jacobian of T :

Jac(T ) = ∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
=
∣∣∣∣ 2u −2v

2v 2u

∣∣∣∣ = 4u2 + 4v2 = 4(u2 + v2)

v

u

D0

1

0 ≤ v ≤ u

Using the Change of Variables Formula gives

∫∫
D

√
x2 + y2 dx dy =

∫∫
D0

(u2 + v2) · 4(u2 + v2) du dv = 4
∫ 1

0

∫ u

0
(u4 + 2u2v2 + v4) dv du

= 4
∫ 1

0
u4v + 2

3
u2v3 + v5

5

∣∣∣∣u
v=0

du = 4
∫ 1

0

(
u5 + 2

3
u5 + u5

5

)
du

= 4
∫ 1

0

28

15
u5 du = 112

15
· u6

6

∣∣∣∣1
0

= 56

45

34. Find a mapping � that maps the disk u2 + v2 ≤ 1 onto the interior of the ellipse
(x

a

)2 +
(y

b

)2 ≤ 1. Then use the

Change of Variables Formula to prove that the area of the ellipse is πab.

solution We define the following mapping:

x = au, y = bv

or

(x, y) = �(u, v) = (au, bv)

Then, u2 + v2 ≤ 1 if and only if
(
x
a

)2 + ( y
b

)2 ≤ 1. Hence � maps the disk u2 + v2 ≤ 1 onto the interior of the ellipse(
x
a

)2 + ( y
b

)2 ≤ 1.
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y

Φ
u x

DD0

u2 + 2 ≤ 1 )2
 ≤ 1)2

 + (( y
b

x
a

We find the Jacobian of �:

Jac(�) =

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
=
∣∣∣∣ a 0

0 b

∣∣∣∣ = ab

We compute the area of D using the Change of Variables Formula (notice the area of the disk D0 is π ):

Area(D) =
∫∫

D
1 dx dy =

∫∫
D0

1 ·
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv =
∫∫

D0

ab du dv

= ab

∫∫
D0

1 du dv = abArea (D0) = abπ

35. Calculate
∫∫

D
e9x2+4y2

dx dy, where D is the interior of the ellipse
(x

2

)2 +
(y

3

)2 ≤ 1.

solution We define a map that maps the unit disk u2 + v2 ≤ 1 onto the interior of the ellipse. That is,

x = 2u, y = 3v ⇒ �(u, v) = (2u, 3v)

Since
(
x
2

)2 + ( y
3

)2 ≤ 1 if and only if u2 + v2 ≤ 1, � is the map we need.

v

u

y

x
D0

D

1 2

3

u2 + v2 ≤ 1

Φ

2
 +       

2
 ≤ 1(    )x 

2 (    )y 
3

We express the function f (x, y) = e9x2+4y2
in terms of u and v:

f (x, y) = e9(2u)2+4(3v)2 = e36u2+36v2 = e36(u2+v2)

We compute the Jacobian of �:

Jac(�) =

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
=
∣∣∣∣ 2 0

0 3

∣∣∣∣ = 6

Using the Change of Variables Formula gives∫∫
D

e9x2+4y2
dA =

∫∫
D0

e36(u2+v2) · 6 du dv

We compute the integral using polar coordinates u = r cos θ , v = r sin θ :

∫∫
D

e9x2+4y2
dA =

∫ 2π

0

∫ 1

0
6e36r2 · r dr dθ =

(
6
∫ 2π

0
dθ

)(∫ 1

0
e36r2

r dr

)

= 12π
e36r2

72

∣∣∣∣1
r=0

= 12π(e36 − 1)

72
= π(e36 − 1)

6
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36. Compute the area of the region enclosed by the ellipse x2 + 2xy + 2y2 − 4y = 8 as an integral in the variables
u = x + y, v = y − 2.

solution We complete the square to rewrite the equation of the boundary of the region as follows:

x2 + 2xy + 2y2 − 4y = (x2 + 2xy + y2) + y2 − 4y = (x + y)2 + (y − 2)2 − 4 = 8

⇒ (x + y)2 + (y − 2)2 = 12

We use the following mapping:

u = x + y, v = y − 2 ⇒ x = u − v − 2, y = v + 2

or

�(u, v) = (u − v − 2, v + 2)

Then (x + y)2 + (y − 2)2 ≤ 12 if and only if u2 + v2 ≤ 12, hence � maps the disc of radius
√

12 centered at (0, 0) in
the uv-plane to the given region D.

y

Φ
u x

D

D0

The Jacobian of � is

Jac(�) =
∣∣∣∣ 1 −1

0 1

∣∣∣∣ = 1

Using the Change of Variables Formula and the area of the disk, Area (D0) = 12π , we get

Area(D) =
∫∫

D
1 dx dy =

∫∫
D0

1 · |Jac�| du dv =
∫∫

D0

du dv = Area (D0) = 12π

37. Sketch the domain D bounded by y = x2, y = 1
2x2, and y = x. Use a change of variables with the map x = uv,

y = u2 to calculate ∫∫
D

y−1 dx dy

This is an improper integral since f (x, y) = y−1 is undefined at (0, 0), but it becomes proper after changing variables.

solution The domain D is shown in the figure.

y

x

y = x

y = x2

D

y =    x21 
2

We must identify the domain D0 in the uv-plane. Notice that � is one-to-one, where u ≥ 0 (or u ≤ 0), since in D, x ≥ 0,
so it also follows by x = uv that v ≥ 0. Therefore, we search the domain D0 in the first quadrant of the uv-plane. To do
this, we examine the curves that are mapped to the curves defining the boundary of D. We examine each curve separately.

y = x2: Since x = uv and y = u2 we get

u2 = (uv)2 ⇒ 1 = v2 ⇒ v = 1

y = 1
2x2:

u2 = 1

2
(uv)2 ⇒ 1 = 1

2
v2 ⇒ v2 = 2 ⇒ v = √

2
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y = x: u2 = uv ⇒ v = u. The region D0 is the region in the first quadrant of the uv-plane enclosed by the
curves v = 1, v = √

2, and v = u.

v

u

u = v

D0

2

1

We now use change of variables to compute the integral
∫∫

D
y−1 dx dy. The function in terms of the new variables is

f (x, y) = u−2. We compute the Jacobian of �(u, v) = (x, y) = (uv, u2):

Jac(�) =

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
=
∣∣∣∣ v u

2u 0

∣∣∣∣ = −2u2

Using the Change of Variables Formula gives

∫∫
D

y−1 dx dy =
∫∫

D0

u−2 · 2u2 du dv =
∫ √

2

1

∫ v

0
2 du dv =

∫ √
2

1
2u

∣∣∣∣v
u=0

dv =
∫ √

2

1
2v dv = v2

∣∣∣∣
√

2

1
= 2 − 1 = 1

38. Find an appropriate change of variables to evaluate∫∫
R

(x + y)2ex2−y2
dx dy

where R is the square with vertices (1, 0), (0, 1), (−1, 0), (0, −1).

solution

(−1, 0) (1, 0)

(0, 1)

(0, −1)

y

x
R

We first find a linear map �(u, v) that maps the unit square D0 in the uv-plane to the square R1 in the xy-plane, obtained
by translating R one unit to the right.

Φ

(1, 0)0

(0, 1)

u

D0

(2, 0)

(1, 1)

(1, −1)

y

x
R1

Let us use u = x + y and v = x − y then

x = u + v

2
, y = u − v

2

Therefore, �(u, v) = (x + y, x − y) =
(

u + v

2
,
u − v

2

)
. This transformation maps the square R1 to the square defined

by u = ±1 and v = ±1.

We use the change of variables x = u + v

2
, y = u − v

2
to compute the integral

∫∫
R

(x + y)2ex2−y2
dx dy. The

function expressed in the new variables u and v is

f (u, v) =
(

u + v

2
+ u − v

2

)2
e1/4((u+v)2−(u−v)2) = u2euv
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We compute the Jacobian of �:

Jac(�) =

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
=
∣∣∣∣ 1/2 1/2

1/2 −1/2

∣∣∣∣ = −1

2

Using the Change of Variables Formula gives

I =
∫∫

R
(x + y)2ex2−y2

dx dy =
∫∫

D0

u2euv · 1

2
dv du

= 1

2

∫ 1

−1

∫ 1

−1
u2euv dv du = 1

2

∫ 1

−1
u2 · 1

u
euv

∣∣∣∣1
v=−1

du

= 1

2

∫ 1

−1
ueu − ue−u du = 1

2

∫ 1

−1
ueu du − 1

2

∫ 1

−1
ue−u du

= 1

2

(
ueu − eu

∣∣∣∣1−1

)
− 1

2

(
−ue−u − e−u

∣∣∣∣1−1

)

= 1

2
(e − e) − 1

2
(−e−1 − e−1) −

[
1

2
(−e−1 − e−1) − 1

2
(e − e)

]

= 1

e
+ 1

e
= 2

e

39. Let � be the inverse of the map F(x, y) = (xy, x2y) from the xy-plane to the uv-plane. Let D be the domain in
Figure 18. Show, by applying the Change of Variables Formula to the inverse � = F−1, that∫∫

D
exy dx dy =

∫ 20

10

∫ 40

20
euv−1 dv du

and evaluate this result. Hint: See Example 8.

x2y = 20

1

10

20

x2y = 40

xy = 20

xy = 10

32 4

y

x
65

FIGURE 18

solution The domain D is defined by the inequalities

D : 10 ≤ xy ≤ 20, 20 ≤ x2y ≤ 40

x2y = 20

1

x2y = 40

xy = 20

xy = 10

2 4

y

x

D

Since u = xy and v = x2y, the image D0 of D (in the uv-plane) under F is the rectangle

D0 : 10 ≤ u ≤ 20, 20 ≤ v ≤ 40

v

u

D0 = T(D)

40

20

10 20
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The function expressed in the new variables is

f (x, y) = exy = eu

To find the Jacobian of the inverse � of F , we use the formula for the Jacobian of the inverse mapping. That is,

∂(x, y)

∂(u, v)
=
(

∂(u, v)

∂(x, y)

)−1

We find the Jacobian of F . Since u = xy and v = x2y, we have

Jac(F ) =

∣∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣
=
∣∣∣∣ y x

2xy x2

∣∣∣∣ = yx2 − 2x2y = −x2y

Hence,

Jac(�) = − 1

x2y

We now compute the double integral
∫∫

D
exy dA using the Change of Variables Formula. Since y > 0 in D, we have

|Jac(�)| = | − 1
x2y

| = 1
x2y

= v−1. Therefore,

∫∫
D

exy dA =
∫∫

D0

euv−1 dv du =
∫ 20

10

∫ 40

20
euv−1 dv du =

(∫ 20

10
eu du

)(∫ 40

20
v−1 dv

)

= eu

∣∣∣∣20

10
· ln v

∣∣∣∣40

20
= (e20 − e10) (ln(40) − ln(20)) = (e20 − e10) ln 2

40. Sketch the domain

D = {(x, y) : 1 ≤ x + y ≤ 4, −4 ≤ y − 2x ≤ 1}
(a) Let F be the map u = x + y, v = y − 2x from the xy-plane to the uv-plane, and let � be its inverse. Use Eq. (14)
to compute Jac(�).

(b) Compute
∫∫

D
ex+y dx dy using the Change of Variables Formula with the map �. Hint: It is not necessary to solve

for � explicitly.

solution The domain D = {(x, y) : 1 ≤ x + y ≤ 4, −4 ≤ y − 2x ≤ 1} is shown in the figure.

D

41

1

4

x + y = 1

y − 2x = 1

y − 2x = −4

x + y = 4

y

x

(a) By Eq. (??), the Jacobian of the inverse map � is the reciprocal of the Jacobian of F . We compute the Jacobian of
the linear mapping F :

Jac(F ) =

∣∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣
=
∣∣∣∣ 1 1

−2 1

∣∣∣∣ = 1 + 2 = 3

Therefore,

Jac(�) = (Jac(F ))−1 = 1

3
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(b) We first must identify the region of integration D0 in the uv-plane. The region D is defined by the inequalities

D : 1 ≤ x + y ≤ 4, −4 ≤ y − 2x ≤ 1

Since u = x + y and v = y − 2x, the image of D under F is the following rectangle:

D0 : 1 ≤ u ≤ 4, −4 ≤ v ≤ 1

u

D0

41

1

−4

The function expressed in the new variables is f (x, y) = ex+y = eu. We now compute the integral
∫∫

D
ex+y dA using

change of variables with the map �. We obtain

∫∫
D

ex+y dA =
∫∫

D0

eu|Jac(�)| du dv =
∫ 1

−4

∫ 4

1
eu · 1

3
du dv =

(∫ 1

−4

1

3
dv

)(∫ 4

1
eu du

)

=
(

1

3
v

∣∣∣∣1−4

)(
eu

∣∣∣∣4
1

)
= 5

3
(e4 − e)

41. Let I =
∫∫

D
(x2 − y2) dx dy, where

D = {(x, y) : 2 ≤ xy ≤ 4, 0 ≤ x − y ≤ 3, x ≥ 0, y ≥ 0}
(a) Show that the mapping u = xy, v = x − y maps D to the rectangle R = [2, 4] × [0, 3].
(b) Compute ∂(x, y)/∂(u, v) by first computing ∂(u, v)/∂(x, y).

(c) Use the Change of Variables Formula to show that I is equal to the integral of f (u, v) = v over R and evaluate.

solution

(a) The domain D is defined by the inequalities

D : 2 ≤ xy ≤ 4, 0 ≤ x − y ≤ 3, x ≥ 0, y ≥ 0

y

x

xy = 4

xy = 2

x − y = 3

x − y = 0

D

Since u = xy and v = x − y, the image of D under this mapping is the rectangle defined by

D0 : 2 ≤ u ≤ 4, 0 ≤ v ≤ 3

That is, D0 = [2, 4] × [0, 3].
(b) We compute the Jacobian ∂(u,v)

∂(x,y)
and then use the formula for the Jacobian of the inverse mapping to compute ∂(x,y)

∂(u,v)
.

Since u = xy and v = x − y, we have

∂(u, v)

∂(x, y)
=

∣∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣
=
∣∣∣∣ y x

1 −1

∣∣∣∣ = −y − x = −(x + y)
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Therefore,

∂(x, y)

∂(u, v)
=
(

∂(u, v)

∂(x, y)

)−1
= − 1

x + y

(c) In D, x ≥ 0 and y ≥ 0, hence
∣∣∣ ∂(x,y)
∂(u,v)

∣∣∣ = 1
x+y . Using the change of variable formula gives:

I =
∫∫

D0

(x2 − y2) · 1

x + y
du dv =

∫∫
D0

(x − y) du dv =
∫ 3

0

∫ 4

2
v du dv

=
(∫ 3

0
v dv

)(∫ 4

2
du

)
=
(

v2

2

∣∣∣∣3
0

)(
u

∣∣∣∣4
2

)
= 9

2
· 2 = 9

42. Derive formula (5) in Section 15.4 for integration in cylindrical coordinates from the general Change of Variables
Formula.

solution The cylindrical coordinates are

x = r cos θ, y = r sin θ, z = z

Suppose that a region W in the (x, y, z)-space is the image of a region W0 in the (θ, r, z)-space defined by

W0 : θ1 ≤ θ ≤ θ2, α(θ) ≤ r ≤ β(θ), z1(r, θ) ≤ z ≤ z2(r, θ)

Then by the change of variables formula, we have

∫∫∫
W

f (x, y, z) dV =
∫∫∫

W0

f (r cos θ, r sin θ, z)

∣∣∣∣∂(x, y, z)

∂(r, θ, z)

∣∣∣∣ dz dr dθ

We compute the Jacobian:

∂(x, y, z)

∂(r, θ, z)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂r

∂x

∂θ

∂x

∂z

∂y

∂r

∂y

∂θ

∂y

∂z

∂z

∂r

∂z

∂θ

∂z

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣∣∣∣

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣ = cos θ

∣∣∣∣ r cos θ 0
0 1

∣∣∣∣ + r sin θ

∣∣∣∣ sin θ 0
0 1

∣∣∣∣ + 0

= cos θ(r cos θ − 0) + r sin θ(sin θ − 0) = r cos2 θ + r sin2 θ = r

Thus,

∫∫∫
W

f (x, y, z) dv =
∫ θ2

θ1

∫ β(θ)

α(θ)

∫ z2(r,θ)

z1(r,θ)
f (r cos θ, r sin θ, z) · r dz dr dθ

43. Derive formula (9) in Section 15.4 for integration in spherical coordinates from the general Change of Variables
Formula.

solution The spherical coordinates are

x = ρ cos θ sin φ, y = ρ sin θ sin φ, z = ρ cos φ

Suppose that a region W in the (x, y, z)-plane is the image of a region W0 in the (θ, φ, ρ)-space defined by:

W0 : θ1 ≤ θ ≤ θ2, φ1 ≤ φ ≤ φ2, ρ1(θ, φ) ≤ ρ ≤ ρ2(θ, φ) (1)

Then, by the Change of Variables Formula, we have

∫∫∫
W

f (x, y, z) =
∫∫∫

W0

f (ρ cos θ sin φ, ρ sin θ sin φ, ρ cos φ) =
∣∣∣∣ ∂(x, y, z)

∂(θ, φ, ρ)

∣∣∣∣ dρ dφ dθ (2)
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We compute the Jacobian:

∂(x, y, z)

∂(θ, φ, ρ)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂θ

∂x

∂φ

∂x

∂ρ

∂y

∂θ

∂y

∂φ

∂y

∂ρ

∂z

∂θ

∂z

∂φ

∂z

∂ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣∣∣∣

−ρ sin θ sin φ ρ cos θ cos φ cos θ sin φ

ρ cos θ sin φ ρ sin θ cos φ sin θ sin φ

0 −ρ sin φ cos φ

∣∣∣∣∣∣

= −ρ sin θ sin φ

∣∣∣∣ ρ sin θ cos φ sin θ sin φ

−ρ sin φ cos φ

∣∣∣∣ − ρ cos θ cos φ

∣∣∣∣ ρ cos θ sin φ sin θ sin φ

0 cos φ

∣∣∣∣
+ cos θ sin φ

∣∣∣∣ ρ cos θ sin φ ρ sin θ cos φ

0 −ρ sin φ

∣∣∣∣
= −ρ sin θ sin φ(ρ sin θ cos2 φ + ρ sin θ sin2 φ) − ρ cos θ cos φ(ρ cos θ cos φ sin φ − 0)

+ cos θ sin φ(−ρ2 cos θ sin2 φ − 0)

= −ρ2 sin2 θ sin φ(cos2 φ + sin2 φ) − ρ2 cos2 θ cos2 φ sin φ − ρ2 cos2 θ sin3 φ

= −ρ2 sin2 θ sin φ − ρ2 cos2 θ cos2 φ sin φ − ρ2 cos2 θ sin3 φ

= −ρ2 sin φ(sin2 θ + cos2 θ cos2 φ + cos2 θ sin2 φ)

= −ρ2 sin φ
(

sin2 θ + cos2 θ(cos2 φ + sin2 φ)
)

= −ρ2 sin φ(sin2 θ + cos2 θ) = −ρ2 sin φ

Since 0 ≤ φ ≤ π , we have sin φ ≥ 0. Therefore,∣∣∣∣ ∂(x, y, z)

∂ (θ, φ, ρ)

∣∣∣∣ = ρ2 sin φ (3)

Combining (1), (2), and (3) gives

∫∫∫
W

f (x, y, z) dv =
∫ θ2

θ1

∫ φ2

φ1

∫ ρ2(θ,φ)

ρ1(θ,φ)
f (ρ cos θ sin φ, ρ sin θ sin φ, ρ cos φ)ρ2 sin φ dρ dφ dθ

44. Use the Change of Variables Formula in three variables to prove that the volume of the ellipsoid
(x

a

)2 +
(y

b

)2 +( z

c

)2 = 1 is equal to abc × the volume of the unit sphere.

solution We define a map �(u, v, w) that maps the interior of the unit ball W0 in the (u, v, w)-space onto the interior
of the ellipsoid W . We define

x = au

y = bv

z = cw

⇒ �(u, v, w) = (au, bv, cw)

Then,
(
x
a

)2 + ( y
b

)2 + (
z
c

)2 ≤ 1 if and only if u2 + v2 + w2 ≤ 1. Therefore, � is the map we need. Using the Change of
Variables Formula gives

Volume(W) =
∫∫∫

W
1 dv =

∫∫∫
W0

1

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ du dv dw (1)

We compute the Jacobian:

∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣∣∣∣

a 0 0
0 b 0
0 0 c

∣∣∣∣∣∣ = a

∣∣∣∣ b 0
0 c

∣∣∣∣ + 0 + 0 = abc

We substitute in (1) and compute the integral:

Volume(W) =
∫∫∫

W0

abc du dv dw = abc

∫∫∫
W0

du dv dw = abc · 4

3
π.
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Further Insights and Challenges
45. Use the map

x = sin u

cos v
, y = sin v

cos u

to evaluate the integral ∫ 1

0

∫ 1

0

dx dy

1 − x2y2

This is an improper integral since the integrand is infinite if x = ±1, y = ±1, but applying the Change of Variables
Formula shows that the result is finite.

solution We express the function f (x, y) = 1
1−x2y2 in terms of the new variables u and v:

1 − x2y2 = 1 − sin2 u

cos2 v

sin2 v

cos2 u
= 1 −

(
sin u

cos u

)2
·
(

sin v

cos v

)2
= 1 − tan2 u tan2 v

Hence,

f (x, y) = 1

1 − tan2 u tan2 v

We compute the Jacobian of the mapping:

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
cos u

cos v

sin u sin v

cos2 v

sin v sin u

cos2 u

cos v

cos u

∣∣∣∣∣∣∣∣
= cos u

cos v
· cos v

cos u
− sin u sin v

cos2 v
· sin v sin u

cos2 u

= 1 − sin2 u

cos2 u
· sin2 v

cos2 v
= 1 − tan2 u tan2 v

Now, since 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, we have 0 ≤ sin u
cos v · sin v

cos u ≤ 1 or 0 ≤ tan u tan v ≤ 1. Therefore, 0 ≤
tan2 u tan2 v ≤ 1, hence ∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ = 1 − tan2 u tan2 v

We now identify a domain D0 in the uv-plane that is mapped by � onto D and � is one-to-one on D0.

y

x

D

(1, 0)

(0, 1)

We examine each segment on the boundary of D separately.

y = 0:

sin v

cos u
= 0 ⇒ sin v = 0 ⇒ v = πk

x = 0:

sin u

cos v
= 0 ⇒ sin u = 0 ⇒ u = πk

y = 1:

sin v

cos u
= 1 ⇒ sin v = cos u ⇒ v + u = π

2
+ 2πk or v − u = π

2
+ 2πk (1)

x = 1:

sin u

cos v
= 1 ⇒ sin u = cos v ⇒ v + u = π

2
+ 2πk or u − v = π

2
+ 2πk (2)
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One of the possible regions D0 is obtained by choosing k = 0 in all solutions. We get

v = 0, u = 0,
(
v + u = π

2
or v − u = π

2

)
,

(
u + v = π

2
or u − v = π

2

)
The corresponding regions are:

v

u

I

π 
2

π 
2

π 
2

v + u =

v

u

II

π 
2

π 
2

v − u =

π 
2

−

v

u

III

π 
2

π 
2

u − v =

π 
2

−

In II, x = sin u
cos v < 0 and in III y = sin v

cos u < 0, therefore these regions are not mapped to the unit square in the xy-plane.
The appropriate region is I.

v

u

D0

π 
2

π 
2

0

We now use the Change of Variables Formula and the result obtained previously to obtain the following integral:∫ 1

0

∫ 1

0

dx dy

1 − x2y2
=
∫∫

D0

1

1 − tan2 u tan2 v
· (1 − tan2 u tan2 v) du dv

=
∫∫

D0

1 du dv = Area(D0) =
π
2 · π

2
2

= π2

8

46. Verify properties (1) and (2) for linear functions and show that any map satisfying these two properties is linear.

solution Let �(u, v) = (Au + Cv, Bu + Dv) be a linear function. We show that property (1) is satisfied:

�(u + u′, v + v′) = (
A(u + u′) + C(v + v′), B(u + u′) + D(v + v′)

)
= (

(Au + Cv) + (Au′ + Cv′), (Bu + Dv) + (Bu′ + Dv′)
)

= (Au + Cv, Bu + Dv) + (Au′ + Cv′, Bu′ + Dv′)
= �(u, v) + �(u′, v′)

We now verify property (2):

�(cu, cv) = (A(cu) + C(cv), B(cu) + D(cv)) = (cAu + cCv, cBu + cDv)

= c(Au + Cv, Bu + Dv) = c�(u, v)

We now suppose that �(u, v) is defined for all u and v and satisfies properties (1) and (2). We show that � is linear. We
denote the following values:

�(1, 0) = (A, B), �(0, 1) = (C, D) (1)

We write

(u, v) = (u · 1 + v · 0, u · 0 + v · 1)

Using property (1) gives

�(u, v) = φ(u · 1 + v · 0, u · 0 + v · 1) = φ(u · 1, u · 0) + φ(v · 0, v · 1)

We now use property (2) and equation (3) to write

�(u, v) = uφ(1, 0) + vφ(0, 1) = u(A, B) + v(C, D) = (Au, Bu) + (Cv, Dv) = (Au + Cv, Bu + Dv)

Hence � is linear.
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47. Let P and Q be points in R2. Show that a linear map �(u, v) = (Au + Cv, Bu + Dv) maps the segment joining P

and Q to the segment joining �(P ) to �(Q). Hint: The segment joining P and Q has parametrization

(1 − t)
−→
OP + t

−−→
OQ for 0 ≤ t ≤ 1

solution First let P(x0, y0) and Q(x1, y1) so that we see if

r(0) = −→
OP = (x0, y0), r(1) = −−→

OQ = (x1, y1)

Then using the linear map we see:

�(x0, y0) = (Ax0 + Cy0, Bx0 + Dy0) = �(P )

and

�(x1, y1) = (Ax1 + Cy1, Bx1 + Dy1) = �(Q)

Hence this linear map take the endpoints P and Q to the new endpoints �(P ) and �(Q). Now to determine the line
segment mapping, consider the following:

�(r(t)) = �((1 − t)
−→
OP + t

−−→
OQ) = �((1 − t)x0 + tx1, (1 − t)y0 + ty1)

= (A((1 − t)x0 + tx1) + C((1 − t)y0 + ty1), B((1 − t)x0 + tx1 + D((1 − t)y0 + ty1))

= ((1 − t)Ax0 + t (Ax1) + (1 − t)Cy0 + t (Cy1), (1 − t)Bx0 + t (Bx1) + (1 − t)Dy0 + t (Dy1))

= ((1 − t)(Ax0 + Cy0) + t (Ax1 + Cy1), (1 − t)(Bx0 + Dy0) + t (Bx1 + Dy1))

= (1 − t)(Ax0 + Cy0, Bx0 + Dy0) + t (Ax1 + Cy1, Bx1 + Dy1)

= (1 − t)�(P ) + t�(Q)

This is a parameterization for the line segment joining �(P ) and �(Q). Therefore, the linear map maps the line segment
joining P and Q to the line segment joining �(P ) and �(Q).

48. Let � be a linear map. Prove Eq. (6) in the following steps.

(a) For any set D in the uv-plane and any vector u, let D + u be the set obtained by translating all points in D by u. By
linearity, � maps D + u to the translate �(D) + �(u) [Figure 19(C)]. Therefore, if Eq. (6) holds for D, it also holds for
D + u.

(b) In the text, we verified Eq. (6) for the unit rectangle. Use linearity to show that Eq. (6) also holds for all rectangles
with vertex at the origin and sides parallel to the axes. Then argue that it also holds for each triangular half of such a
rectangle, as in Figure 19(A).

(c) Figure 19(B) shows that the area of a parallelogram is a difference of the areas of rectangles and triangles covered
by steps (a) and (b). Use this to prove Eq. (6) for arbitrary parallelograms.

G G(u)u

(A) (B)
u

(C)

u x

y

 + u

G(   )

G(   ) + G(u)

FIGURE 19

solution We must show that if � is a linear map, then

Area (�(D)) = |Jac (�) |Area(D) (1)

(a) For any vector v ∈ D, v + u is in D + u. We show that �(v + u) is in �(D) + �(u). By linearity, we have

�(v + u) = �(v) + �(u)

Since v ∈ D, �(v) ∈ �(D), hence �(v) + �(u) ∈ �(D) + �(u). Therefore, � maps D + u to �(D) + �(u).
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(b) Let D be the rectangle D = [0, a] × [0, b] in the uv-plane, and �(D) be the image of D under the linear mapping �:

�(u, v) = (Au + Cv, Bu + Dv)

Suppose that a > 0, b > 0, and AD > BC. For other cases, the proof is similar. To determine �(D), we compute the
images of the vertices (0, b) and (a, 0) of D:

�(0, b) = (A · 0 + Cb, B · 0 + Db) = (Cb, Db)

�(a, 0) = (Aa + C · 0, B · a + D · 0) = (Aa, Ba)

v

u

D

y

x

Φ

0 (a, 0)

(Cb, Db)

(Aa, Ba)

Φ(D)

(0, b)

Therefore, �(D) is the parallelogram spanned by the vectors 〈Cb, Db〉 and 〈Aa, Ba〉.
y

x

E(Cb, Db)

F(Aa, Ba)

HG

Φ(D)

The area of the parallelogram is

2
(
Stri(OEG) + Stra(GEFH) − Stri(OFH)

) = 2

(
EG · OG

2
+ (EG + FH)GH

2
− FH · OH

2

)

= 2

(
Db · Cb

2
+ (Db + Ba)(Aa − Cb)

2
− Ba · Aa

2

)

= DCb2 + ADab − DCb2 + ABa2 − BCab − ABa2

= ab(AD − BC)

That is,

Area (�(D)) = (AD − BC)ab

Since |Jac(�)| = AD − BC and Area(D) = ab, we get

Area (�(D)) = |Jac (�) |Area(D).

Now, let D1 be a triangular half of the parallelogram D. Then, �(D1) is a triangular half of the parallelogram �(D).
Using the result above, we have

Area�(D1) = 1

2
Area�(D) = 1

2
· |Jac(�)|Area(D) = |Jac(�)|Area(D)

2
= |Jac(�)|Area(D1)

(c) By part (a), if we show that Eq. (4) holds for parallelograms with vertex at the origin, it holds for all other parallelograms
(since each parallelogram can be translated to a parallelogram with a vertex at the origin). We consider a parallelogram
with a vertex at the origin, and inscribe it in a rectangle D∗ ; as shown in the figure:

v

u

D*

C0

D
T1

T3

T4

T2

D1

D2

BA
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We denote the triangles and rectangles as shown in the figure. By parts (a) and (b), it follows that Eq. (4) holds for each
one of the rectangles and triangles. That is,

Area�(D∗) = |Jac(�)|Area(D∗)

Area�(Di ) = |Jac(�)|Area(Di ), i = 1, 2

Area�(Ti) = |Jac(�)|Area(Ti), i = 1, 2, 3, 4 (2)

Since

2∑
i=1

Area�(Di ) +
4∑

i=1

Area�(Ti) + Area�(D) = Area�(D∗)

we have by (1),

|Jac(�)|
⎛
⎝ 2∑

i=1

Area (Di ) +
4∑

i=1

Area(Ti)

⎞
⎠ + Area�(D) = |Jac�|Area(D∗)

Translating sides gives

|Jac(�)|
⎛
⎝Area(D∗) −

2∑
i=1

Area(Di ) −
4∑

i=1

Area(Ti)

⎞
⎠ = Area�(D)

But the difference in the brackets on the left-hand side is the area of the parallelogram D. Therefore, we get

|Jac(�)|Area(D) = Area�(D)

We thus showed that Eq. (4) holds for D.

49. The product of 2 × 2 matrices A and B is the matrix AB defined by

(
a b

c d

)
︸ ︷︷ ︸

A

(
a′ b′
c′ d ′

)
︸ ︷︷ ︸

B

=
(

aa′ + bc′ ab′ + bd ′
ca′ + dc′ cb′ + dd ′

)
︸ ︷︷ ︸

AB

The (i, j)-entry of A is the dot product of the ith row of A and the j th column of B. Prove that det(AB) = det(A) det(B).

solution The determinants of A and B are

det(A) =
∣∣∣∣ a b

c d

∣∣∣∣ = ad − bc,

det(B) =
∣∣∣∣ a′ b′

c′ d ′
∣∣∣∣ = a′d ′ − b′c′ (1)

We now compute the determinant of AB:

det(AB) =
∣∣∣∣ aa′ + bc′ ab′ + bd ′

ca′ + dc′ cb′ + dd ′
∣∣∣∣ = (aa′ + bc′)(cb′ + dd ′) − (ab′ + bd ′)(ca′ + dc′)

= aa′cb′ + aa′dd ′ + bc′cb′ + bc′dd ′ − ab′ca′ − ab′dc′ − bd ′ca′ − bd ′dc′

= (aa′dd ′ − bd ′ca′) + (bc′cb′ − ab′dc′) = a′d ′(ad − bc) − b′c′(ad − bc)

= (ad − bc)(a′d ′ − b′c′) (2)

We combine (1) and (2) to conclude

det(AB) = det(A) det(B).

50. Let �1 : D1 → D2 and �2 : D2 → D3 be C1 maps, and let �2 ◦ �1 : D1 → D3 be the composite map. Use the
Multivariable Chain Rule and Exercise 49 to show that

Jac(�2 ◦ �1) = Jac(�2)Jac(�1)
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solution

D1 D2
D3

u

v

Φ1 Φ2

Φ = Φ2 × Φ1

x

y

ω

z

Let � = �2 ◦ �1. We have

Jac(�1) =

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
(1)

Jac(�2) =

∣∣∣∣∣∣∣∣
∂ω

∂x

∂ω

∂y

∂z

∂x

∂z

∂y

∣∣∣∣∣∣∣∣
(2)

Jac(�) =

∣∣∣∣∣∣∣∣
∂ω

∂u

∂ω

∂v

∂z

∂u

∂z

∂v

∣∣∣∣∣∣∣∣
(3)

We use the multivariable Chain Rule to write

∂ω

∂u
= ∂ω

∂x

∂x

∂u
+ ∂ω

∂y

∂y

∂u
,

∂z

∂u
= ∂z

∂x

∂x

∂u
+ ∂z

∂y

∂y

∂u

∂ω

∂v
= ∂ω

∂x

∂x

∂v
+ ∂ω

∂y

∂y

∂v
,

∂z

∂v
= ∂z

∂x

∂x

∂v
+ ∂z

∂y

∂y

∂v

Substituting in (3) we obtain

Jac(�) =

∣∣∣∣∣∣∣∣
∂ω

∂x

∂x

∂u
+ ∂ω

∂y

∂y

∂u

∂ω

∂x

∂x

∂v
+ ∂ω

∂y

∂y

∂v

∂z

∂x

∂x

∂u
+ ∂z

∂y

∂y

∂u

∂z

∂x

∂x

∂v
+ ∂z

∂y

∂y

∂v

∣∣∣∣∣∣∣∣
We now use the definition of the product of two matrices, given in Exercise 49, equalities (1) and (2), and the equality
proved in Exercise 49, to write

Jac(�) =

∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

∂ω

∂x

∂ω

∂y

∂z

∂x

∂z

∂y

⎞
⎟⎟⎠
⎛
⎜⎜⎝

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∂ω

∂x

∂ω

∂y

∂z

∂x

∂z

∂y

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
= Jac(�2)Jac(�1)

That is,

Jac(�2 ◦ �1) = Jac(�2)Jac(�1)

51. Use Exercise 50 to prove that

Jac(�−1) = Jac(�)−1

Hint: Verify that Jac(I ) = 1, where I is the identity map I (u, v) = (u, v).

solution Since �−1 (�(u, v)) = (u, v), we have (�−1 ◦ �)(u, v) = (u, v). Therefore, �−1 ◦ � = I . Using Exercise
50, we have

Jac(I ) = Jac(�−1 ◦ �) = Jac(�−1)Jac(�) (1)

The Jacobian of the linear map I (u, v) = (u, v) = (1 · u + 0 · v, 0 · u + 1 · v) is

Jac(I ) =
∣∣∣∣ 1 0

0 1

∣∣∣∣ = 1 · 1 − 0 · 0 = 1



April 19, 2011

S E C T I O N 15.6 Change of Variables (LT SECTION 16.6) 1055

Substituting in (1) gives

1 = Jac(�−1)Jac(�)

or

Jac(�−1) = (Jac(�))−1.

52. Let (x, y) be the centroid of a domain D. For λ > 0, let λD be the dilate of D, defined by

λD = {(λx, λy) : (x, y) ∈ D}

Use the Change of Variables Formula to prove that the centroid of λD is (λx, λy).

solution The centroid of D has the following coordinates, where S = Area(D):

x = 1

S

∫∫
D

x dx dy, y = 1

S

∫∫
D

y dx dy (1)

The centroid of λD is the following point:

u = 1

Area(λD)

∫∫
λD

u du dv, v = 1

Area(λD)

∫∫
λD

v du dv (2)

We compute the double integrals in (2) using change of variables with the following mapping:

u = λx, v = λy

D
λD

x

y

(u, v) = (λx, λy)

u

v

0 0

Therefore (u, v) ∈ λD if and only if (x, y) ∈ D, hence the image of λD under this mapping is the domain D in the
xy-plane. The Jacobian of the linear mapping (u, v) = (λx + 0y, 0x + λy) is

∂(u, v)

∂(x, y)
=
∣∣∣∣ λ 0

0 λ

∣∣∣∣ = λ2

We compute the integrals:

∫∫
λD

u du dv =
∫∫

D
λx · λ2 dx dy = λ3

∫∫
D

x dx dy = λ3Sx

∫∫
λD

v du dv =
∫∫

D
λy · λ2 dx dy = λ3

∫∫
D

y dx dy = λ3Sy

Substituting in (2) gives

u = λ3S

Area(λD)
x, v = λ3S

Area(λD)
y (3)

We now compute the area of λD using the same mapping:

Area(λD) =
∫∫

λD
1 du dv =

∫∫
D

λ2 dx dy = λ2
∫∫

D
dx dy = λ2Area(D) = λ2S

Substituting in (3), we obtain the following centroid of λD:

u = λ3Sx

λ2S
= λx, v = λ3Sy

λ2S
= λy

The centroid of λD is (λx, λy).
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CHAPTER REVIEW EXERCISES

1. Calculate the Riemann sum S2,3 for
∫ 4

1

∫ 6

2
x2y dx dy using two choices of sample points:

(a) Lower-left vertex

(b) Midpoint of rectangle

Then calculate the exact value of the double integral.

solution

(a) The rectangle [2, 6] × [1, 3] is divided into 2 × 3 subrectangles. The lower-left vertices of the subrectangles are

P11 = (2, 1) P21 = (2, 2) P31 = (2, 3)

P12 = (3, 1) P22 = (3, 2) P32 = (3, 3)

Also �x = 6−2
2 = 2, �y = 4−1

3 = 1, hence �A = 2 · 1 = 2. The Riemann sum S3,4 is the following sum:

S2,3 = 2
(

22 · 1 + 22 · 2 + 22 · 3 + 32 · 1 + 32 · 2 + 32 · 3
)

= 2 (4 + 8 + 12 + 9 + 18 + 27) = 156

(b) The midpoints of the subrectangles are

P11 = (3, 3/2) P21 = (3, 5/2) P31 = (3, 7/2)

P12 = (5, 3/2) P22 = (5, 5/2) P32 = (5, 7/2)

Also �x = 2, �y = 1, hence �A = 2 · 1 = 2. The Riemann sum S2,3 is

S2,3 = 2

(
32 · 3

2
+ 32 · 5

2
+ 32 · 7

2
+ 52 · 3

2
+ 52 · 5

2
+ 52 · 7

2

)

= 2

(
27

2
+ 45

2
+ 63

2
+ 75

2
+ 125

2
+ 175

2

)

= 510

We compute the exact value of the double integral, using an iterated integral of a product function. We get

∫ 4

1

∫ 6

2
x2y dx dy =

(∫ 4

1
y dy

)(∫ 6

2
x2 dx

)
=
(

y2

2

∣∣∣∣4
1

)(
x3

3

∣∣∣∣6
2

)

= 16 − 1

2
· 216 − 8

3
= 3120

6
= 520

2. Let SN,N be the Riemann sum for
∫ 1

0

∫ 1

0
cos(xy) dx dy using midpoints as sample points.

(a) Calculate S4,4.

(b) Use a computer algebra system to calculate SN,N for N = 10, 50, 100.

solution

(a) The midpoints of the 16 subrectangles are

P11 = (0.125, 0.125) P21 = (0.375, 0.125)

P31 = (0.625, 0.125) P41 = (0.875, 0.125)

P12 = (0.125, 0.375) P22 = (0.375, 0.375)

P32 = (0.625, 0.375) P42 = (0.875, 0.375)

P13 = (0.125, 0.625) P23 = (0.375, 0.625)

P33 = (0.625, 0.625) P43 = (0.875, 0.625)

P14 = (0.125, 0.875) P24 = (0.375, 0.875)

P34 = (0.625, 0.875) P44 = (0.875, 0.875)
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y

x
0.5 10.25 0.75

0.375 0.8750.125 0.625

0.5

1

0.25

0.75

0

Also �x = �y = 0.25, hence �A = 0.0625. The Riemann Sum S4,4 is

S4,4 = 0.0625 ·
(

cos 0.1252 + 2 cos(0.125 · 0.375) + 2 cos(0.125 · 0.625) + 2 cos(0.125 · 0.875)

+ cos(0.3752) + 2 cos(0.375 · 0.625) + 2 cos(0.375 · 0.875) + cos(0.6252)

+ 2 cos(0.625 · 0.875) + cos(0.8752)
)

= 0.947644

(b) The subrectangles on the rectangle [0, 1] × [0, 1] have sides of length �x = �y = 1
N

and area �A = 1
N2 .

N − 1
N

y

x
10

1

i − 1
N

j − 1
N

i
N

j
N

2
N

1
N

1
N

2
N

N − 1
N

)2i − 1
2N

2j − 1
2N

Pij = ( ,

The midpoints are Pij =
(

2i−1
2N

,
2j−1
2N

)
for i, j = 1, . . . , N . The corresponding Riemann sum is

SN,N = 1

N2

N∑
i=1

N∑
j=1

cos

(
2i − 1

2N
· 2j − 1

2N

)

We compute the sums for N = 10, 50, and 100 using a CAS:

S10,10 = 0.946334, S50,50 = 0.946093, S100,100 = 0.946086

3. Let D be the shaded domain in Figure 1.

D

x
0.5 1 1.5 2

0.5

1

1.5

2

y

FIGURE 1

Estimate
∫∫

D
xy dA by the Riemann sum whose sample points are the midpoints of the squares in the grid.

solution The subrectangles have sides of length �x = �y = 0.5 and area �A = 0.52 = 0.25. Of sixteen sample
points only ten lie in D. The sample points that lie in D are

(0.75, 0.75), (0.75, 1.25), (0.75, 1.75), (1.25, 0.25), (1.25, 0.75),

(1.25, 1.25), (1.25, 1.75), (1.75, 0.25), (1.75, 0.75), (1.75, 1.25)
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D

x
0.5 1 1.5 2

0.25 0.75 1.25 1.75

0.5

1

1.5

2

0.25

0.75

1.25

1.75

y

The Riemann sum S44 is thus

S44 = 0.25 (f (0.75, 0.75) + f (0.75, 1.25) + f (0.75, 1.75) + f (1.25, 0.25) + f (1.25, 0.75)

+ f (1.25, 1.25) + f (1.25, 1.75) + f (1.75, 0.25) + f (1.75, 0.75) + f (1.75, 1.25))

= 0.25
(

0.752 + 0.75 · 1.25 + 0.75 · 1.75 + 1.25 · 0.25 + 1.25 · 0.75 + 1.252

+ 1.25 · 1.75 + 1.75 · 0.25 + 1.75 · 0.75 + 1.75 · 1.25)

= 0.25 · 11.75 = 2.9375

4. Explain the following:

(a)
∫ 1

−1

∫ 1

−1
sin(xy) dx dy = 0 (b)

∫ 1

−1

∫ 1

−1
cos(xy) dx dy > 0

solution
(a) The double integral is the signed volume of the region between the graph of f (x, y) and the xy-plane.

−1 1

1

−1

y

x

Region of integration

The function f (x, y) = sin(xy) satisfies f (−x, y) = sin(−xy) = − sin(xy) = −f (x, y), hence the region left of the
y-axis cancels with the region to the right of the y-axis. Therefore the double integral is zero.
(b) The function f (x, y) = cos(xy) satisfies f (−x, y) = f (x, −y) = f (−x, −y) = f (x, y), hence∫ 1

−1

∫ 1

−1
cos(xy) dx = 4

∫ 1

0

∫ 1

0
cos(xy) dx.

Since 0 ≤ xy ≤ 1 for the square [0, 1] × [0, 1], we have cos xy > 0, and the double integral is positive.

t

u

u = cos t

1

1

0

u = cos t

In Exercises 5–8, evaluate the iterated integral.

5.
∫ 2

0

∫ 5

3
y(x − y) dx dy

solution First we evaluate the inner integral treating y as a constant:

∫ 5

3
y(x − y) dx = y

(
x2

2
− yx

) ∣∣∣∣5
x=3

= y

((
25

2
− 5y

)
−
(

9

2
− 3y

))
= y(8 − 2y) = 8y − 2y2
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Now we integrate this result with respect to y:

∫ 2

0
(8y − 2y2) dy = 4y2 − 2

3
y3
∣∣∣∣2
0

= 16 − 16

3
= 32

3

Therefore, ∫ 2

0

∫ 5

3
y(x − y) dx dy = 32

3
.

6.
∫ 0

1/2

∫ π/6

0
e2y sin 3x dx dy

solution We use an iterated integral of a product function to compute the double integral as the product of two single
integrals. That is,

∫ 0

1/2

∫ π/6

0
e2y sin 3x dx dy =

(∫ 0

1/2
e2y dy

)(∫ π/6

0
sin 3x dx

)
=
(

1

2
e2y

∣∣∣∣0
1/2

)(
−1

3
cos 3x

∣∣∣∣π/6

0

)

= 1

2
(1 − e) ·

(
−1

3

)(
cos

π

2
− cos 0

)
= 1

6
(1 − e)

7.
∫ π/3

0

∫ π/6

0
sin(x + y) dx dy

solution We compute the inner integral treating y as a constant:

∫ π/6

0
sin(x + y) dx = − cos(x + y)

∣∣∣∣π/6

x=0
= − cos

(π

6
+ y

)
+ cos y = cos y − cos

(
y + π

6

)

We now integrate the result with respect to y:

∫ π/3

0

∫ π/6

0
sin(x + y) dx dy =

∫ π/3

0

(
cos y − cos

(
y + π

6

))
dy = sin y − sin

(
y + π

6

) ∣∣∣∣π/3

0

= sin
π

3
− sin

(π

3
+ π

6

)
−
(

sin 0 − sin
π

6

)
=

√
3

2
− 1 + 1

2
=

√
3 − 1

2

8.
∫ 2

1

∫ 2

1

y dx dy

x + y2

solution We compute the inner integral with respect to x, then compute the outer integral of the result with respect to
y. We obtain

∫ 2

1

y

x + y2
dx = y ln(x + y2)

∣∣∣∣2
x=1

= y ln(2 + y2) − y ln(1 + y2)

∫ 2

1

∫ 2

1

y

x + y2
dx dy =

∫ 2

1

(
y ln(2 + y2) − y ln(1 + y2)

)
dy =

∫ 2

1
y ln(2 + y2) dy −

∫ 2

1
y ln(1 + y2) dy

We compute the integrals using the substitutions u = 2 + y2, du = 2y dy, and V = 1 + y2, dV = 2y dy, respectively.
We get

∫ 2

1

∫ 2

1

y

x + y2
dx dy = 1

2

∫ 6

3
ln u du − 1

2

∫ 5

2
ln V dV = 1

2
u(ln u − 1)

∣∣∣∣6
3

− 1

2
V (ln V − 1)

∣∣∣∣5
2

= 1

2
· 6(ln 6 − 1) − 1

2
· 3(ln 3 − 1) − 1

2
· 5(ln 5 − 1) + 1

2
· 2(ln 2 − 1)

= 3 ln 6 − 3

2
ln 3 − 5

2
ln 5 + ln 2 ≈ 0.396912

In Exercises 9–14, sketch the domain D and calculate
∫∫

D
f (x, y) dA.

9. D = {0 ≤ x ≤ 4, 0 ≤ y ≤ x}, f (x, y) = cos y

solution The domain D is shown in the figure:
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x

D

y

y = x

4

2

42

We compute the double integral, considering D as a vertically simple region. We describe D by the inequalities

0 ≤ x ≤ 4, 0 ≤ y ≤ x.

We now write the double integral as an iterated integral and compute:

∫∫
D

cos y dA =
∫ 4

0

∫ x

0
cos y dy dx =

∫ 4

0
sin y

∣∣∣∣x
y=0

dx

=
∫ 4

0
(sin x − sin 0)dx =

∫ 4

0
sin x dx = − cos x

∣∣∣∣4
0

= 1 − cos 4

10. D = {0 ≤ x ≤ 2, 0 ≤ y ≤ 2x − x2}, f (x, y) = √
xy

solution The limits of the inner integral are 0 ≤ y ≤ 2x − x2, and the limits of outer integral are 0 ≤ x ≤ 2.

D

x

0 ≤ y ≤ 2x − x2

y

2

The region is vertically simple and the double integral is computed by the following iterated integral:

∫∫
D

√
xy dA =

∫ 2

0

∫ 2x−x2

0

√
xy dy dx =

∫ 2

0

√
xy2

2

∣∣∣∣2x−x2

y=0
dx =

∫ 2

0

√
x(2x − x2)

2

2
dx

=
∫ 2

0

(
2x5/2 − 2x7/2 + 1

2
x9/2

)
dx = 4

7
x7/2 − 4

9
x9/2 + 1

11
x11/2

∣∣∣∣2
0

= 4

7
· 27/2 − 4

9
· 29/2 + 1

11
· 211/2 = 256

√
2

693

11. D = {0 ≤ x ≤ 1, 1 − x ≤ y ≤ 2 − x}, f (x, y) = ex+2y

solution

x

y

y = 2 − x

1 − x ≤ y ≤ 2 − x

y = 1 − x

1

D is a vertically simple region, hence the double integral over D is the following iterated integral:

∫∫
D

ex+2y dA =
∫ 1

0

∫ 2−x

1−x
ex+2y dy dx =

∫ 1

0

1

2
ex+2y

∣∣∣∣2−x

y=1−x

dx =
∫ 1

0

(
1

2
ex+2(2−x) − 1

2
ex+2(1−x)

)
dx
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=
∫ 1

0

(
1

2
e4−x − 1

2
e2−x

)
dx = −1

2
e4−x + 1

2
e2−x

∣∣∣∣1
0

= −1

2
e3 + 1

2
e + 1

2
e4 − 1

2
e2

= 1

2
e(e3 − e2 − e + 1) = 1

2
e(e + 1)(e − 1)2

12. D = {1 ≤ x ≤ 2, 0 ≤ y ≤ 1/x}, f (x, y) = cos(xy)

solution

0

1

x
1 2

y

1
x

0 ≤ y ≤

The region is vertically simple, hence the double integral is computed by the following iterated integral:

∫∫
D

cos(xy) dA =
∫ 2

1

∫ 1/x

0
cos(xy) dy dx =

∫ 2

1

1

x
sin(xy)

∣∣∣∣1/x

y=0
dx =

∫ 2

1

1

x

(
sin

(
x · 1

x

)
− sin 0

)
dx

=
∫ 2

1

1

x
sin 1 dx = (sin 1) ln x

∣∣∣∣2
1

= (sin 1)(ln 2 − ln 1) = (sin 1) ln 2

13. D = {0 ≤ y ≤ 1, 0.5y2 ≤ x ≤ y2}, f (x, y) = ye1+x

solution

x

y

0.5y2 ≤ x ≤ y2

1

The region is horizontally simple, hence the double integral is equal to the following iterated integral:

∫∫
D

ye1+x dA =
∫ 1

0

∫ y2

0.5y2
ye1+x dx dy =

∫ 1

0
ye1+x

∣∣∣∣y
2

x=0.5y2
dy

=
∫ 1

0
y
(
e1+y2 − e1+0.5y2

)
dy =

∫ 1

0
ye1+y2

dy −
∫ 1

0
ye1+0.5y2

dy

We compute the integrals using the substitutions u = 1 + y2, du = 2y dy, and v = 1 + 0.5y2, dv = y dy, respectively.
We get

∫∫
D

ye1+x dA = 1

2

∫ 2

1
eu du −

∫ 1.5

1
evdv = 1

2
eu

∣∣∣∣2
1

− ev

∣∣∣∣1.5

1
= 1

2
(e2 − e) − (e3/2 − e)

= 1

2
e2 + 1

2
e − e3/2 = 0.5(e2 − 2e1.5 + e)



April 19, 2011

1062 C H A P T E R 15 MULTIPLE INTEGRATION (LT CHAPTER 16)

14. D = {1 ≤ y ≤ e, y ≤ x ≤ 2y}, f (x, y) = ln(x + y)

solution

x

y

y ≤ x ≤ 2y

1

e

0

The region is horizontally simple. We compute the double integral by the following iterated integral:

∫∫
D

ln(x + y) dA =
∫ e

1

∫ 2y

y
ln(x + y) dx dy =

∫ e

1
(x + y) (ln(x + y) − 1)

∣∣∣∣2y

x=y

dy

=
∫ e

1
(3y(ln 3y − 1) − 2y(ln 2y − 1)) dy =

∫ e

1
(3y ln 3y − 2y ln 2y − y) dy

=
∫ e

1
y ln

27y3

4y2
dy −

∫ e

1
y dy =

∫ e

1
y ln

27y

4
dy − y2

2

∣∣∣∣e
1

=
∫ e

1
y ln

27y

4
dy − 0.5(e2 − 1) (1)

We compute the integral using the substitution u = 27y
4 , du = 27

4 dy and the integration formula:

∫
u ln u du = u2

2

(
ln u − 1

2

)
+ C

We get

∫ e

1
y ln

27y

4
dy =

∫ 27e/4

27/4

4

27
u ln u · 4

27
du =

(
4

27

)2 ∫ 27e/4

27/4
u ln u du =

(
4

27

)2
· 1

2
u2

(
ln u − 1

2

) ∣∣∣∣27e/4

27/4

=
(

4

27

)2
· 1

2

((
27

4

)2
e2

(
ln

27e

4
− 1

2

)
−
(

27

4

)2 (
ln

27

4
− 1

2

))

= 1

2

(
e2

(
ln

27

4
+ 1

2

)
−
(

ln
27

4
− 1

2

))

Substituting in (1) we obtain the following solution:

∫∫
D

ln(x + y) dA = 0.5

(
e2

(
ln

27

4
+ 1

2

)
−
(

ln
27

4
− 1

2

)
− (e2 − 1)

)

= 0.5

((
ln

(
27

4

)
− 0.5

)
e2 −

(
ln

(
27

4

)
− 1.5

))
≈ 5

15. Express
∫ 3

−3

∫ 9−x2

0
f (x, y) dy dx as an iterated integral in the order dx dy.

solution The limits of integration correspond to the inequalities describing the domain D:

−3 ≤ x ≤ 3, 0 ≤ y ≤ 9 − x2.

A quick sketch verifies that this is the region under the upper part of the parabola y = 9 − x2, that is, the part that is above
the x-axis. Therefore, the double integral can be rewritten as the following sum:

∫ 3

−3

∫ 9−x2

0
f (x, y) dy dx =

∫ 9

0

∫ √
9−y

−√
9−y

f (x, y) dx dy
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16. Let W be the region bounded by the planes y = z, 2y + z = 3, and z = 0 for 0 ≤ x ≤ 4.

(a) Express the triple integral
∫∫∫

W
f (x, y, z) dV as an iterated integral in the order dy dz dx (project W onto the

yz-plane).

(b) Evaluate the triple integral for f (x, y, z) = 1.

(c) Compute the volume of W using geometry and check that the result coincides with the answer to (b).

solution The region W is the prism shown in the figure:

y

z

x 1
2 2

1

The projection of W onto the yz-plane is the triangle determined by the lines z = y, 2y + z = 3 (or z = 3 − 2y), and the
y-axis.

z = 3 − 2yz = y
T

y

z

1

1

(a) First to express this triple integral as an iterated integral in the order dy dz dx:

∫∫∫
W

f (x, y, z) dV =
∫ 4

x=0

∫ 1

z=0

∫ 3/2−1/2z

y=z
f (x, y, z) dy dz dx

(b) Now evaluate this integral for f (x, y, z) = 1:

∫ 4

x=0

∫ 1

z=0

∫ 3/2−1/2z

y=z
1 dy dz dx =

∫ 4

0

∫ 1

0
y

∣∣∣∣3/2−1/2z

y=z

dz dx

=
∫ 4

0

∫ 1

0

3

2
− 1

2
z − z dz dx

=
∫ 4

0

∫ 1

0

3

2
− 3

2
z dz dx

=
∫ 4

0

3

2
z − 3

4
z2
∣∣∣∣1
0
dx

=
∫ 4

0

(
3

2
− 3

4

)
dx

= 3

4

∫ 4

0
dx = 3

17. Let D be the domain between y = x and y = √
x. Calculate

∫∫
D

xy dA as an iterated integral in the order dx dy

and dy dx.

solution In the order dx dy: The inequalities describing D as a horizontally simple region are obtained by first

rewriting the equations of the curves with x as a function of y, that is, x = y and x = y2, respectively. The points of
intersection are found solving the equation

y = y2 ⇒ y(1 − y) = 0 ⇒ y = 0, y = 1

We obtain the following inequalities for D (see figure):

D : 0 ≤ y ≤ 1, y2 ≤ x ≤ y
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x

y

1

1

0

y2 ≤ x ≤ y

We now compute the double integral as the following iterated integral:

∫∫
D

xy dA =
∫ 1

0

∫ y

y2
xy dx dy =

∫ 1

0

x2y

2

∣∣∣∣x=y

x=y2
dy =

∫ 1

0

(
y · y2

2
− y4 · y

2

)
dy

=
∫ 1

0

(
y3

2
− y5

2

)
dy = y4

8
− y6

12

∣∣∣∣1
0

= 1

8
− 1

12
= 1

24

In the order dy dx: D is described as a vertically simple region by the following inequalities (see figure):

D : 0 ≤ x ≤ 1, x ≤ y ≤ √
x

x

y

1

1

0

x ≤ y ≤ x

The corresponding iterated integral is

∫∫
D

xy dA =
∫ 1

0

∫ √
x

x
xy dy dx =

∫ 1

0

xy2

2

∣∣∣∣
√

x

y=x

dx =
∫ 1

0

(
x · x

2
− x · x2

2

)
dx

=
∫ 1

0

(
x2

2
− x3

2

)
dx = x3

6
− x4

8

∣∣∣∣1
0

= 1

6
− 1

8
= 1

24

18. Find the double integral of f (x, y) = x3y over the region between the curves y = x2 and y = x(1 − x).

solution The region D is a vertically simple region defined by the inequalities

0 ≤ x ≤ 1

2
, x2 ≤ y ≤ x(1 − x)

We obtain the following integral:

∫ 1/2

0

∫ x(1−x)

x2
x3y dy dx =

∫ 1/2

0

x3y2

2

∣∣∣∣x(1−x)

y=x2
dx =

∫ 1/2

0

(
x3 · x2(1 − x)2

2
− x3 · x4

2

)
dx

=
∫ 1/2

0

(
x5

2
− x6

)
dx = x6

12
− x7

7

∣∣∣∣1/2

0
=

(
1
2

)6

12
−

(
1
2

)7

7
= 1

42
·
(

1

2

)7
= 1

5376

19. Change the order of integration and evaluate
∫ 9

0

∫ √
y

0

x dx dy

(x2 + y)1/2
.

solution The region here is described by the inequalities:

0 ≤ x ≤ √
y, 0 ≤ y ≤ 9

This region can also be described by writing these inequalities:

0 ≤ x ≤ 3, x2 ≤ y ≤ 9
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Hence, changing the order of integration and evaluating we get:

∫ 9

0

∫ √
y

0

x√
x2 + y

dx dy =
∫ 3

0

∫ 9

x2

x√
x2 + y

dy dx =
∫ 3

0
x

(
2
√

x2 + y

∣∣∣∣9
x2

)
dx

= 2
∫ 3

0
x
√

x2 + 9 − x
√

x2 + x2 dx = 2
∫ 3

0
x
√

x2 + 9 − x2
√

2 dx

= 2

(
1

3
(x2 + 9)3/2 −

√
2

3
x3
∣∣∣∣3
0

)

= 2

3
· 183/2 − 2

√
2

3
· 27 − 2 · 1

3
· 93/2

= 36
√

2 − 18
√

2 − 18 = 18
√

2 − 18

20. Verify directly that ∫ 3

2

∫ 2

0

dy dx

1 + x − y
=
∫ 2

0

∫ 3

2

dx dy

1 + x − y

solution We compute the two iterated integrals:

I1 =
∫ 3

2

∫ 2

0

dy dx

1 + x − y
=
∫ 3

2

(∫ 2

0

dy

1 + x − y

)
dx =

∫ 3

2
− ln(1 + x − y)

∣∣∣∣2
y=0

dx

=
∫ 3

2
(− ln(1 + x − 2) + ln(1 + x − 0)) dx =

∫ 3

2
(ln(1 + x) − ln(x − 1)) dx

= (1 + x) (ln(1 + x) − 1) − (x − 1) (ln(x − 1) − 1)

∣∣∣∣3
2

= 4(ln 4 − 1) − 2(ln 2 − 1) − (3(ln 3 − 1) − (ln 1 − 1)) = 6 ln 2 − 3 ln 3

I2 =
∫ 2

0

∫ 3

2

dx dy

1 + x − y
=
∫ 2

0

(∫ 3

2

dx

1 + x − y

)
dy =

∫ 2

0
ln(1 + x − y)

∣∣∣∣3
x=2

dy

=
∫ 2

0
(ln(1 + 3 − y) − ln(1 + 2 − y)) dy =

∫ 2

0
(ln(4 − y) − ln(3 − y)) dy

=
∫ 0

−2
(ln(4 + u) − ln(3 + u)) du = (4 + u) (ln(4 + u) − 1) − (3 + u) (ln(3 + u) − 1)

∣∣∣∣0
u=−2

= 4(ln 4 − 1) − 3(ln 3 − 1) − (2(ln 2 − 1) − (ln 1 − 1)) = 4 ln 4 − 3 ln 3 − 2 ln 2 = 6 ln 2 − 3 ln 3

The two integrals are equal.

21. Prove the formula ∫ 1

0

∫ y

0
f (x) dx dy =

∫ 1

0
(1 − x)f (x) dx

Then use it to calculate
∫ 1

0

∫ y

0

sin x

1 − x
dx dy.

solution The region of integration of the double integral
∫ 1

0
∫ y

0 f (x) dx dy is described as horizontally simple by the
inequalities

0 ≤ y ≤ 1, 0 ≤ x ≤ y

x

y

1

1

0

y = x

0 ≤ x ≤ y
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The region can also be described as a vertically simple region, by the inequalities

0 ≤ x ≤ 1, x ≤ y ≤ 1

x

y

1

1

0

y = x

x ≤ y ≤ 1

Therefore,

∫ 1

0

∫ y

0
f (x) dx dy =

∫ 1

0

∫ 1

x
f (x) dy dx =

∫ 1

0
f (x)y

∣∣∣∣1
y=x

dx =
∫ 1

0
f (x)(1 − x) dx

We use the formula with f (x) = sin x
1−x

. We get

∫ 1

0

∫ y

0

sin x

1 − x
dx dy =

∫ 1

0
(1 − x) · sin x

1 − x
dx =

∫ 1

0
sin x dx = − cos x

∣∣∣∣1
0

= 1 − cos 1

22. Rewrite
∫ 1

0

∫ √
1−y2

−√
1−y2

y dx dy

(1 + x2 + y2)
2

by interchanging the order of integration, and evaluate.

solution This integral gets simpler if we change the order of integration. We first identify the region D by the limits
of integration. That is,

D : 0 ≤ y ≤ 1, −
√

1 − y2 ≤ x ≤
√

1 − y2

x

y

1 − y2 ≤ x ≤− 1 − y2

The semicircle x2 + y2 = 1, y ≥ 0 can be rewritten as y =
√

1 − x2. The inequalities describing D as a vertically simple
region are thus

D : −1 ≤ x ≤ 1, 0 ≤ y ≤
√

1 − x2

x

y

0 ≤ y ≤ 1 − x2

We obtain the following iterated integral:

∫∫
D

y

(1 + x2 + y2)
2

dx dy =
∫ 1

−1

∫ √
1−x2

0

y

(1 + x2 + y2)
2

dy dx (1)

We compute the inner integral with respect to y, using the substitution u = 1 + x2 + y2, du = 2y dy (x is considered as
a constant). This gives

∫ √
1−x2

0

y dy

(1 + x2 + y2)
2

=
∫ 2

1+x2

1
2 du

u2
= − 1

2u

∣∣∣∣2
1+x2

= −1

4
+ 1

2(1 + x2)
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We compute the outer integral in (1):

∫∫
D

y

(1 + x2 + y2)
dx dy =

∫ 1

−1

(
−1

4
+ 1

2(1 + x2)

)
dx =

∫ 1

0

(
−1

2
+ 1

1 + x2

)
dx

= −x

2
+ tan−1 x

∣∣∣∣1
0

=
(

−1

2
+ tan−1 1

)
− 0 = −1

2
+ π

4
= π

4
− 1

2

23. Use cylindrical coordinates to compute the volume of the region defined by 4 − x2 − y2 ≤ z ≤ 10 − 4x2 − 4y2.

solution

y

z

We first find the projection of W onto the xy-plane. The intersection curve of the upper and lower boundaries of W is
obtained by solving

10 − 4x2 − 4y2 = 4 − x2 − y2

6 = 3(x2 + y2) ⇒ x2 + y2 = 2

Therefore, the projection of W onto the xy-plane is the circle x2 + y2 ≤ 2. The upper surface is z = 10 − 4(x2 + y2)

or z = 10 − 4r2 and the lower surface is z = 4 − (x2 + y2) = 4 − r2. Therefore, the inequalities for W in cylindrical
coordinates are

0 ≤ θ ≤ 2π, 0 ≤ r ≤ √
2, 4 − r2 ≤ z ≤ 10 − 4r2

We use the volume as a triple integral and change of variables in cylindrical coordinates to write

V = Volume(W) =
∫∫∫

W
1 dV =

∫ 2π

0

∫ √
2

0

∫ 10−4r2

4−r2
r dz dr dθ =

∫ 2π

0

∫ √
2

0
rz

∣∣∣∣10−4r2

z=4−r2
dr dθ

=
∫ 2π

0

∫ √
2

0
r
(

10 − 4r2 −
(

4 − r2
))

dr dθ =
∫ 2π

0

∫ √
2

0

(
6r − 3r3

)
dr dθ

=
∫ 2π

0
3r2 − 3

4
r4
∣∣∣∣
√

2

r=0
dθ =

∫ 2π

0
(6 − 3) dθ = 6π

24. Evaluate
∫∫

D
x dA, where D is the shaded domain in Figure 2.

2

x

y

2 4

r = 2(1 + cos   )

D

FIGURE 2

solution The domain D is defined by the inequalities

0 ≤ θ ≤ π, 0 ≤ r ≤ 2(1 + cos θ).

Notice that the value of θ at the origin is found by solving r = 2(1 + cos θ) = 0 for 0 ≤ θ ≤ 2π , that is, θ = π .
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2

x

y

2 4

r = 2(1 + cos   )

D

0 ≤ r ≤
 2(1 + cos   

)

Using Double Integral in Polar Coordinates gives

∫
D

xdA =
∫ π

0

∫ 2(1+cos θ)

0
r cos θ · r dr dθ =

∫ π

0

∫ 2(1+cos θ)

0
r2 cos θ dr dθ

=
∫ π

0

r3 cos θ

3

∣∣∣∣2(1+cos θ)

r=0
dθ =

∫ π

0

8(1 + cos θ)3 cos θ

3
dθ

=
∫ π

0

8

3
(cos θ + 3 cos2 θ + 3 cos3 θ + cos4 θ) dθ

= 8

3

∫ π

0
cos θ dθ + 8

∫ π

0
cos2 θ dθ + 8

∫ π

0
cos3 θ dθ + 8

3

∫ π

0
cos4 θ dθ = 5π

25. Find the volume of the region between the graph of the function f (x, y) = 1 − (x2 + y2) and the xy-plane.

solution

2

−2

x y

z

2

1

0

−2

−1

2

1

0

−1

−1
−2

1
0

The intersection of the surface z = 1 − (x2 + y2) with the xy-plane is obtained by setting z = 0. That is, 1 − (x2 + y2) = 0
or x2 + y2 = 1. Therefore, the projection of the solid onto the xy-plane is the disk x2 + y2 ≤ 1. We describe the disk as
a vertically simple region:

D : −1 ≤ x ≤ 1, −
√

1 − x2 ≤ y ≤
√

1 − x2

x

− 1 − x2 ≤ y ≤ 1 − x2
y

1−1

D

The volume V is the double integral of z = 1 − (x2 + y2) over D. That is,

V =
∫∫

D

(
1 − (x2 + y2)

)
dA =

∫ 2π

0

∫ 1

0
(1 − r2) r dr dθ = 2π

∫ 1

0
(r − r3) dr = π/2

26. Evaluate
∫ 3

0

∫ 4

1

∫ 4

2
(x3 + y2 + z) dx dy dz.

solution We evaluate to obtain

∫ 3

0

∫ 4

1

∫ 4

2
(x3 + y2 + z) dx dy dz =

∫ 3

0

∫ 4

1

(
x4

4
+ y2x + zx

) ∣∣∣∣4
x=2

dy dz
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=
∫ 3

0

∫ 4

1

((
44

4
+ 4y2 + 4z

)
−
(

16

4
+ 2y2 + 2z

))
dy dz

=
∫ 3

0

∫ 4

1

(
60 + 2y2 + 2z

)
dy dz =

∫ 3

0
60y + 2

3
y3 + 2yz

∣∣∣∣4
y=1

dz

=
∫ 3

0

(
240 + 128

3
+ 8z

)
−
(

60 + 2

3
+ 2z

)
dz

=
∫ 3

0
222 + 6z dz = 222z + 3z2

∣∣∣∣3
0

= 666 + 27 = 693

27. Calculate
∫∫∫

B
(xy + z) dV , where

B = {
0 ≤ x ≤ 2, 0 ≤ y ≤ 1, 1 ≤ z ≤ 3

}
as an iterated integral in two different ways.

solution The triple integral over the box may be evaluated in any order. For instance,

∫∫∫
B

(xy + z) dV =
∫ 2

0

∫ 1

0

∫ 3

1
(xy + z) dz dy dx =

∫ 1

0

∫ 2

0

∫ 3

1
(xy + z) dz dx dy

=
∫ 3

1

∫ 2

0

∫ 1

0
(xy + z) dy dx dz

We compute the integral in two of the possible orders:

∫∫∫
B

(xy + z) dV =
∫ 2

0

∫ 1

0

∫ 3

1
(xy + z) dz dy dx =

∫ 2

0

∫ 1

0
xyz + z2

2

∣∣∣∣3
z=1

dy dx

=
∫ 2

0

∫ 1

0

((
3xy + 9

2

)
−
(

xy + 1

2

))
dy dx =

∫ 2

0

∫ 1

0
(2xy + 4) dy dx

=
∫ 2

0
xy2 + 4y

∣∣∣∣1
y=0

dx =
∫ 2

0
(x + 4) dx = x2

2
+ 4x

∣∣∣∣2
0

= 4

2
+ 8 = 10

∫∫∫
B

(xy + z) dV =
∫ 1

0

∫ 2

0

∫ 3

1
(xy + z) dz dx dy =

∫ 1

0

∫ 2

0
xyz + z2

2

∣∣∣∣3
z=1

dx dy

=
∫ 1

0

∫ 2

0

((
3xy + 9

2

)
−
(

xy + 1

2

))
dx dy =

∫ 1

0

∫ 2

0
(2xy + 4) dx dy

=
∫ 1

0
x2y + 4x

∣∣∣∣2
x=0

dy =
∫ 1

0
(4y + 8) dy = 2y2 + 8y

∣∣∣∣1
0

= 2 + 8 = 10

28. Calculate
∫∫∫

W
xyz dV , where

W = {
0 ≤ x ≤ 1, x ≤ y ≤ 1, x ≤ z ≤ x + y

}

solution

x

y

1

1

0

y = x

D
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W is the region between the two planes z = x and z = x + y lying over the triangle D, defined by 0 ≤ x ≤ 1, x ≤ y ≤ 1.
Therefore, the triple integral is equal to the following iterated integral:

∫∫∫
W

xyz dV =
∫ 1

0

∫ 1

x

∫ x+y

x
xyz dz dy dx =

∫ 1

0

∫ 1

x

xyz2

2

∣∣∣∣x+y

z=x

dy dx =
∫ 1

0

∫ 1

x

(xy

2

) (
(x + y)2 − x2

)
dy dx

=
∫ 1

0

∫ 1

x

(
x2y2 + xy3

2

)
dy dx =

∫ 1

0

x2y3

3
+ xy4

8

∣∣∣∣1
y=x

dx

=
∫ 1

0

(
x2

3
+ x

8
−
(

x5

3
+ x5

8

))
dx =

∫ 1

0

(
−11x5

24
+ x2

3
+ x

8

)
dx

= −11x6

144
+ x3

9
+ x2

16

∣∣∣∣1
0

= − 11

144
+ 1

9
+ 1

16
= 7

72

29. Evaluate I =
∫ 1

−1

∫ √
1−x2

0

∫ 1

0
(x + y + z) dz dy dx.

solution We compute the triple integral:

I1 =
∫ 1

−1

∫ √
1−x2

0

∫ 1

0
(x + y + z) dz dy dx =

∫ 1

−1

∫ √
1−x2

0
(x + y)z + z2

2

∣∣∣∣1
y=0

dy dx

=
∫ 1

−1

∫ √
1−x2

0

(
x + y + 1

2

)
dy dx =

∫ 1

−1

(
x + 1

2

)
y + y2

2

∣∣∣∣
√

1−x2

y=0
dx

=
∫ 1

−1

(
x + 1

2

)√
1 − x2 + 1 − x2

2
dx =

∫ 1

−1
x
√

1 − x2 dx +
∫ 1

−1

1

2

√
1 − x2 dx +

∫ 1

−1

1 − x2

2
dx (1)

The first integral is zero since the integrand is an odd function. Therefore, using Integration Formulas we get

I1 =
∫ 1

0

√
1 − x2 dx +

∫ 1

0
(1 − x2) dx = x

2

√
1 − x2 + 1

2
sin−1 x

∣∣∣∣1
0

+
(

x − x3

3

) ∣∣∣∣1
0

= 1

2
sin−1 1 + 2

3
= π

4
+ 2

3

30. Describe a region whose volume is equal to:

(a)
∫ 2π

0

∫ π/2

0

∫ 9

4
ρ2 sin φ dρ dφ dθ

(b)
∫ 1

−2

∫ π/4

π/3

∫ 2

0
r dr dθ dz

(c)
∫ 2π

0

∫ 3

0

∫ 0

−
√

9−r2
r dz dr dθ

solution
(a) The limits of integration correspond to the inequalities in spherical coordinates, describing the region

4 ≤ ρ ≤ 9, 0 ≤ φ ≤ π

2
, 0 ≤ θ ≤ 2π

This is, the region between the upper hemispheres of radii 4 and 9.

y

x

z

9

9

9

4

4
4

4 9

y

x
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(b) The limits of integration correspond to the inequalities in cylindrical coordinates, describing the region W:

0 ≤ r ≤ 2,
π

4
≤ θ ≤ π

3
, −2 ≤ z ≤ 1.

The projection of W onto the xy-plane is the sector D shown in the figure.

y

x
21

W is the region above and below D, which is between the planes z = −2 and z = 1.

1

1

−2

x

y
z

(c) The limits of integration correspond to the inequalities in cylindrical coordinates, describing the region W ,

0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3, −
√

9 − r2 ≤ z ≤ 0.

The projection D of W onto the (x, y)-plane is the disk of radius 3. The lower surface is z = −
√

9 − r2 =
−
√

9 − (x2 + y2), which is the lower hemisphere x2 + y2 + z2 = 9. Therefore, W is the lower half of the ball of
radius 3 centered at the origin.

y

x
3

D

31. Find the volume of the solid contained in the cylinder x2 + y2 = 1 below the curve z = (x + y)2 and above the
curve z = −(x − y)2.

solution

y

z

x

We rewrite the equations of the surfaces using cylindrical coordinates:

z = (x + y)2 = x2 + y2 + 2xy = r2 + 2(r cos θ)(r sin θ) = r2(1 + sin 2θ)

z = −(x − y)2 = −(x2 + y2 − 2xy) = −(r2 − 2r2 cos θ sin θ) = −r2(1 − sin 2θ)
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The projection of the solid onto the xy-plane is the unit disk. Therefore, the solid is described by the following inequalities:

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, −r2(1 − sin 2θ) ≤ z ≤ r2(1 + sin 2θ)

Expressing the volume as a triple integral and converting the triple integral to cylindrical coordinates, we get

V = Volume(W) =
∫∫∫

W
1 dv =

∫ 2π

0

∫ 1

0

∫ r2(1+sin 2θ)

−r2(1−sin 2θ)
r dz dr dθ

=
∫ 2π

0

∫ 1

0
rz

∣∣∣∣r
2(1+sin 2θ)

z=−r2(1−sin 2θ)

dr dθ =
∫ 2π

0

∫ 1

0
r
(
r2(1 + sin 2θ) + r2(1 − sin 2θ)

)
dr dθ

=
∫ 2π

0

∫ 1

0
r3 · 2 dr dθ =

(∫ 2π

0
2dθ

)(∫ 1

0
r3 dr

)
= 4π · r4

4

∣∣∣∣1
0

= π

32. Use polar coordinates to evaluate
∫∫

D
x dA, where D is the shaded region between the two circles of radius 1 in

Figure 3.

x

y

1

1

FIGURE 3

solution

x

y

r = 2sin

r = 1

D

1 ≤ r ≤ 2sin

To describe D in polar coordinates, we first find the polar equations of the circles.

• x2 + y2 = 1: r = 1

• x2 + (y − 1)2 = 1:

1 = (r cos θ)2 + (r sin θ − 1)2 = r2 cos2 θ + r2 sin2 θ − 2r sin θ + 1

= r2(cos2 θ + sin2 θ) − 2r sin θ + 1 = r2 − 2r sin θ + 1

or

r2 − 2r sin θ = 0 ⇒ r2 = 2r sin θ ⇒ r = 2 sin θ

To find the interval for θ , we notice that the two circles intersect at the points
(√

3
2 , 1

2

)
and

(
−

√
3

2 , 1
2

)
. Hence,

θ0 = tan−1
1
2√
3

2

= tan−1 1√
3

= π

6

θ1 = π − π

6
= 5π

6
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x

y

0

1 , )( 3
2

1
2

, )(− 3
2

1
2

We are now able to write the polar inequalities for D:

D : π

6
≤ θ ≤ 5π

6
, 1 ≤ r ≤ 2 sin θ

The function is x = r cos θ . Converting to polar coordinates, we get

∫∫
D

x dA =
∫ 5π/6

π/6

∫ 2 sin θ

1
(r cos θ)r dr dθ =

∫ 5π/6

π/6

∫ 2 sin θ

1
r2 cos θ dr dθ =

∫ 5π/6

π/6

r3 cos θ

3

∣∣∣∣2 sin θ

r=1
dθ

=
∫ 5π/6

π/6

8sin3θ cos θ − cos θ

3
dθ = 8

3

∫ 5π/6

π/6
sin3 θ cos θ dθ − 1

3

∫ 5π/6

π/6
cos θ dθ

= 8

3

∫ 5π/6

π/6
sin3 θ cos θ dθ − 1

3
sin θ

∣∣∣∣5π/6

θ= π
6

= 8

3

∫ 5π/6

π/6
sin3 θ cos θ dθ

We use Integration Formulas to obtain

∫∫
D

x dA = 8

3

sin4 θ

4

∣∣∣∣5π/6

π/6
= 8

12

((
1

2

)4
−
(

1

2

)4
)

= 0

Notice that since the region D is symmetric with respect to the y-axis, we expect the integral
∫∫

D x dA to be zero.

33. Use polar coordinates to calculate
∫∫

D

√
x2 + y2 dA, where D is the region in the first quadrant bounded by the

spiral r = θ , the circle r = 1, and the x-axis.

solution The region of integration, shown in the figure, has the following description in polar coordinates:

D : 0 ≤ θ ≤ 1, θ ≤ r ≤ 1

x

y

The function is f (x, y) =
√

x2 + y2 = r . We convert the double integral to polar coordinates and compute to obtain

∫∫
D

√
x2 + y2 dA =

∫ 1

0

∫ 1

θ
r · r dr dθ =

∫ 1

0

∫ 1

θ
r2 dr dθ =

∫ 1

0

r3

3

∣∣∣∣1
r=θ

dθ

=
∫ 1

0

(
1

3
− θ3

3

)
dθ = θ

3
− θ4

12

∣∣∣∣1
0

= 1

3
− 1

12
= 1

4

34. Calculate
∫∫

D
sin(x2 + y2) dA, where

D =
{π

2
≤ x2 + y2 ≤ π

}
solution The annulus D is defined by the following inequalities in polar coordinates:

D : 0 ≤ θ ≤ 2π,

√
π

2
≤ r ≤ √

π
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x

y

D

2

The function in polar coordinates is f (x, y) = sin(x2 + y2) = sin(r2). We convert the double integral to polar coordinates
and evaluate to obtain

∫∫
D

sin(x2 + y2) dA =
∫ 2π

0

∫ √
π√

π
2

sin(r2)r dr dθ =
(∫ 2π

0
dθ

)⎛
⎝∫ √

π√
π
2

sin(r2)r dr

⎞
⎠

= 2π

∫ √
π√

π
2

sin(r2)r dr

We evaluate the integral using the substitution u = r2, du = 2r dr:

∫∫
D

sin(x2 + y2) dA = 2π

∫ π

π/2
sin u · du

2
= π(− cos u)

∣∣∣∣π
u=π/2

= π(1 + 0) = π

35. Express in cylindrical coordinates and evaluate:

∫ 1

0

∫ √
1−x2

0

∫ √
x2+y2

0
z dz dy dx

solution We evaluate the integral by converting it to cylindrical coordinates. The projection of the region of integration
onto the xy-plane, as defined by the limits of integration, is

D : 0 ≤ x ≤ 1, 0 ≤ y ≤
√

1 − x2

x

D

y

1

That is, D is the part of the disk x2 + y2 ≤ 1 in the first quadrant. The inequalities defining D in polar coordinates are

D : 0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 1

The upper surface is z =
√

x2 + y2 = r and the lower surface is z = 0. Therefore, the inequalities defining the region of
integration in cylindrical coordinates are

W : 0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 1, 0 ≤ z ≤ r

Converting the double integral to cylindrical coordinates gives

I =
∫ π/2

0

∫ 1

0

∫ r

0
zr dz dr dθ =

∫ π/2

0

∫ 1

0

z2r

2

∣∣∣∣r
z=0

dr dθ =
∫ π/2

0

∫ 1

0

r3

2
dr dθ

=
(∫ π/2

0
dθ

)(∫ 1

0

r3

2
dr

)
= π

2
· r4

8

∣∣∣∣1
0

= π

16
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36. Use spherical coordinates to calculate the triple integral of f (x, y, z) = x2 + y2 + z2 over the region

1 ≤ x2 + y2 + z2 ≤ 4

solution The region of integration is the region enclosed by the spheres x2 + y2 + z2 = 1 or ρ = 1, and x2 + y2 +
z2 = 4 or ρ = 2. In this region, θ is changing between 0 and 2π , and φ is changing between 0 and π . Therefore, W is
described by the following inequalities:

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, 1 ≤ ρ ≤ 2

The function is f (x, y, z) = x2 + y2 + z2 = ρ2. Using triple integrals in spherical coordinates we get

∫∫∫
W

(x2 + y2 + z2) dV =
∫ 2π

0

∫ π

0

∫ 2

1
ρ2 · ρ2 sin φ dρ dφ dθ =

∫ 2π

0

∫ π

0

∫ 2

1
ρ4 sin φ dρ dφ dθ

=
(∫ 2π

0
dθ

)(∫ π

0
sin φ

)(∫ 2

1
ρ4dρ

)
= 2π · (− cos φ)

∣∣∣∣π
0

·
(

ρ5

5

∣∣∣∣2
1

)

= 2π · 2 · (25 − 1)

5
= 124π

5

37. Convert to spherical coordinates and evaluate:

∫ 2

−2

∫ √
4−x2

−
√

4−x2

∫ √
4−x2−y2

0
e−(x2+y2+z2)

3/2
dz dy dx

solution The region of integration as defined by the limits of integration is

W : −2 ≤ x ≤ 2, −
√

4 − x2 ≤ y ≤
√

4 − x2, 0 ≤ z ≤
√

4 − x2 − y2

That is, W is the region enclosed by the sphere x2 + y2 + z2 = 4 and the xy-plane. We see that the region of integration
is the upper half-ball x2 + y2 + z2 ≤ 4, hence the inequalities defining W in spherical coordinates are

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

2
, 0 ≤ ρ ≤ 2

x

D

y

2−2

4 − x2y =

4 − x2y = −

The function is f (x, y, z) = e−(x2+y2+z2)
3/2 = e−(ρ2)

3/2 = e−ρ3
, therefore the integral in spherical coordinates is

I =
∫ 2π

0

∫ π/2

0

∫ 2

0
e−ρ3

ρ2 sin φ dρ dφ dθ =
(∫ 2π

0
dθ

)(∫ π/2

0
sin φ dφ

)(∫ 2

0
e−ρ3

ρ2dρ

)

= 2π

(
− cos φ

∣∣∣∣π/2

0

)∫ 2

0
e−ρ3

ρ2dρ = 2π

∫ 2

0
e−ρ3

ρ2dρ

We compute the integral using the substitution u = ρ3, du = 3ρ2dρ. We get

I = 2π

∫ 8

0
e−u du

3
= 2π

3
(−e−u)

∣∣∣∣8
0

= 2π

3
(−e−8 + 1) =

2π
(
−1 + e8

)
3e8
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38. Find the average value of f (x, y, z) = xy2z3 on the box [0, 1] × [0, 2] × [0, 3].
solution The volume of the box is V = 1 · 2 · 3 = 6, hence the average value of f (x, y, z) = xy2z3 on the box B is

f = 1

V

∫∫∫
B

f (x, y, z) dV = 1

6

∫ 1

0

∫ 2

0

∫ 3

0
xy2z3 dz dy dx = 1

6

(∫ 1

0
x dx

)(∫ 2

0
y2 dy

)(∫ 3

0
z3 dz

)

= 1

6
·
(

x2

2

∣∣∣∣1
0

)(
y3

3

∣∣∣∣2
0

)(
z4

4

∣∣∣∣3
0

)
= 1

6
· 1

2
· 8

3
· 81

4
= 4.5

39. Let W be the ball of radius R in R3 centered at the origin, and let P = (0, 0, R) be the North Pole. Let dP (x, y, z)

be the distance from P to (x, y, z). Show that the average value of dP over the sphere W is equal to d = 6R/5. Hint:
Show that

d = 1
4
3πR3

∫ 2π

θ=0

∫ R

ρ=0

∫ π

φ=0
ρ2 sin φ

√
R2 + ρ2 − 2ρR cos φ dφ dρ dθ

and evaluate.

solution We know that the volume of the ball is 4
3πR3.

In spherical coordinates, the distance from P to a point on the ball is

√
(x − 0)2 + (y − 0)2 + (z − R)2 =

√
ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ + (ρ cos φ − R)2

=
√

ρ2 sin2 φ(cos2 θ + sin2 θ) + ρ2 cos2 φ − 2ρR cos φ + R2

=
√

ρ2 sin2 φ + ρ2 cos2 φ − 2ρR cos φ + R2

=
√

ρ2(sin2 φ + cos2 φ) − 2ρR cos φ + R2

=
√

R2 + ρ2 − 2ρR cos φ

Now, to write the average value of dP we have:

dP = 1
4
3πR3

∫ 2π

θ=0

∫ R

ρ=0

∫ π

φ=0
ρ2 sin φ

√
R2 + ρ2 − 2ρR cos φ dφ dρ dθ

Using substitution, and the fact that 0 ≤ ρ ≤ R,

∫ π

φ=0
sin φ

√
R2 + ρ2 − 2ρR cos φ dφ = 2ρ

3R
(R2 + ρ2 − 2ρR cos φ)3/2

∣∣∣π
0

= 2ρ

3R

(
(R + ρ3) − (R − ρ)3

)
= 2ρ

3R
(ρ3 + 3R2ρ)

Now integrate with respect to θ and ρ:

dP = 1
4
3πR3

∫ 2π

0

∫ R

0
ρ2 · 2ρ

3R
(ρ3 + 3R2ρ) dρ dθ

= 3

4πR3
· 2

3R

∫ 2π

0

∫ R

0
ρ3(ρ3 + 3R2ρ) dρ dθ

= 1

2πR4

∫ 2π

0

∫ R

0
ρ6 + 3R2ρ4 dρ dθ

= 1

2πR4

∫ 2π

0

1

7
ρ7 + 3

5
R2ρ5

∣∣∣∣R
0

dθ

= 1

2πR4

∫ 2π

0

1

7
R7 + 3

5
R7 dθ

= 1

2πR4

(
26

35
R7

)
· 2π = 26

35
R3

to get 8πR4/5. Dividing by the volume of the sphere gives us 6R/5
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40. Express the average value of f (x, y) = exy over the ellipse
x2

2
+ y2 = 1 as an iterated integral, and evaluate

numerically using a computer algebra system.

solution

x

y

1

− 22

1 −       ≤ y ≤− x2 
2

1 −      x2 
2

The area of the ellipse x2

a2 + y2

b2 = 1 is πab, hence the area of the given ellipse is

Area(D) = π · √
2 · 1 = π

√
2

The average value of f (x, y) = exy inside the ellipse is

f = 1

π
√

2

∫∫
D

exy dA (1)

D is described as a vertically simple region by the inequalities

D : −√
2 ≤ x ≤ √

2, −
√

1 − x2

2
≤ y ≤

√
1 − x2

2

Therefore, the double integral (1) is equal to the following iterated integral, which we compute using a CAS:

f = 1

π
√

2

∫ √
2

−√
2

∫ √
1− x2

2

−
√

1− x2
2

exy dy dx ≈ 1.0421

41. Use cylindrical coordinates to find the mass of the solid bounded by z = 8 − x2 − y2 and z = x2 + y2, assuming a
mass density of f (x, y, z) = (x2 + y2)1/2.

solution The mass of the solid W is the following integral:

M =
∫∫∫

W
(x2 + y2)

1/2
dV

x

z

y

The projection of W on the xy-plane is obtained by equating the equations of the two surfaces:

8 − x2 − y2 = x2 + y2

2(x2 + y2) = 8
⇒ x2 + y2 = 4

We conclude that the projection is the disk D : x2 + y2 ≤ 4.
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x

D

y

2

Therefore, W is described by

W : x2 + y2 ≤ z ≤ 8 − (x2 + y2), (x, y) ∈ D
Thus,

M =
∫∫

D

∫ 8−(x2+y2)

x2+y2
(x2 + y2)

1/2
dz dx dy

We convert the integral to cylindrical coordinates. The inequalities for W are

0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, r2 ≤ z ≤ 8 − r2.

Also, (x2 + y2)
1/2 = r , hence we obtain the following integral:

M =
∫ 2

0

∫ 2π

0

∫ 8−r2

r2
r · r dz dθ dr =

∫ 2

0

∫ 2π

0

∫ 8−r2

r2
r2 dz dθ dr =

∫ 2

0

∫ 2π

0
r2z

∣∣∣∣8−r2

z=r2
dθ dr

=
∫ 2

0

∫ 2π

0
r2(8 − r2 − r2) dθ dr =

∫ 2

0

∫ 2π

0
(8r2 − 2r4) dθ dr =

(∫ 2π

0
1 dθ

)(∫ 2

0
(8r2 − 2r4) dr

)

= 2π

(
8r3

3
− 2

5
r5
∣∣∣∣2
0

)
= 256

15
π ≈ 53.62

42. Let W be the portion of the half-cylinder x2 + y2 ≤ 4, x ≥ 0 such that 0 ≤ z ≤ 3y. Use cylindrical coordinates to
compute the mass of W if the mass density is ρ(x, y, z) = z2.

solution Since 0 ≤ z ≤ 3y, we have y ≥ 0. Also x ≥ 0, hence W projects onto the quarter circle D in the xy-plane
of radius 2, where x ≥ 0 and y ≥ 0. In polar coordinates,

D : 0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 2

D

y

x
21

2

1

0

The upper boundary of W is the plane z = 3y = 3r sin θ and the lower boundary is z = 0. Hence,

W : 0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 2, 0 ≤ z ≤ 3r sin θ

Using cylindrical coordinates, the total mass is the following integral:

M =
∫∫∫

W
z2 dv =

∫ π/2

0

∫ 2

0

∫ 3r sin θ

0
z2r dz dr dθ =

∫ π/2

0

∫ 2

0

z3r

3

∣∣∣∣3r sin θ

z=0
dr dθ

=
∫ π/2

0

∫ 2

0

r(3r sin θ)3

3
dr dθ =

∫ π/2

0

∫ 2

0
9r4 sin3 θ dr dθ

=
(∫ π/2

0
sin3 θ dθ

)(∫ 2

0
9r4 dr

)
=
(∫ π/2

0
sin3 θ dθ

)
9r5

5

∣∣∣∣2
r=0

= 288

5

∫ π/2

0
sin3 θ dθ
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We compute the integral using an integration table to obtain

M = 288

5

(
− sin2 θ cos θ

3
− 2

3
cos θ

) ∣∣∣∣π/2

θ=0
= 288

5

(
0 −

(
−2

3

))
= 288

5
· 2

3
= 38.4

43. Use cylindrical coordinates to find the mass of a cylinder of radius 4 and height 10 if the mass density at a point is
equal to the square of the distance from the cylinder’s central axis.

solution

z

y

x

4

10

The mass density is ρ(x, y, z) = x2 + y2 = r2, hence the mass of the cylinder is

M =
∫∫∫

W
(x2 + y2) dV

The region W is described using cylindrical coordinates by the following inequalities:

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 4, 0 ≤ z ≤ 10

D

−4
x

y

4

4

−4

Thus,

M =
∫∫∫

W
(x2 + y2) dV =

∫ 2π

0

∫ 4

0

∫ 10

0
r2 · r dz dr dθ =

∫ 2π

0

∫ 4

0

∫ 10

0
r3 dz dr dθ =

∫ 2π

0

∫ 4

0
r3z

∣∣∣∣10

z=0
dr dθ

=
∫ 2π

0

∫ 4

0
r3 · 10 dr dθ =

∫ 2π

0

10r4

4

∣∣∣∣4
r=0

dθ =
∫ 2π

0
640 dθ = 640 · 2π = 1280π

44. Find the centroid of the region W bounded, in spherical coordinates, by φ = φ0 and the sphere ρ = R.

solution The centroid is the point P = (x, y, z), where

x = 1

V

∫∫∫
W

x dV, y = 1

V

∫∫∫
W

y dV, z = 1

V

∫∫∫
W

z dV (1)

We first compute the volume V of W . The region W has the following definition in spherical coordinates:

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ φ0, 0 ≤ ρ ≤ R

z

y

R

x

0
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Hence,

V =
∫∫∫

W
1 dV =

∫ 2π

0

∫ φ0

0

∫ R

0
ρ2 sin φ dρ dφ dθ =

(∫ 2π

0
1 dθ

)(∫ φ0

0
sin φ dφ

)(∫ R

0
ρ2dρ

)

= 2π ·
(

− cos φ

∣∣∣∣φ0

0

)(
ρ3

3

∣∣∣∣R
0

)
= 2π · (1 − cos φ0) · R3

3
= 2πR3(1 − cos φ0)

3
(2)

Since the region D is symmetric with respect to the z-axis, its centroid lies on the z-axis. That is, x = y = 0. To compute
z, we evaluate the following integral:

∫∫∫
W

z dV =
∫ 2π

0

∫ φ0

0

∫ R

0
(ρ cos φ)ρ2 sin φ dρ dφ dθ =

∫ 2π

0

∫ φ0

0

∫ R

0
ρ3 · sin 2φ

2
dρ dφ dθ

=
(∫ 2π

0
1 dθ

)(∫ φ0

0

sin 2φ

2
dφ

)(∫ R

0
ρ3 dρ

)
= 2π ·

(
− cos 2φ

4

∣∣∣∣φ0

0

)(
ρ4

4

∣∣∣∣R
0

)

= 2π · 1 − cos 2φ

4
· R4

4
= R4(1 − cos 2φ0)π

8

Combining with (1) and (2) gives

z = 3

2πR3(1 − cos φ0)
· R4(1 − cos 2φ0)π

8
= 3R(1 − cos 2φ0)

16(1 − cos φ0)

The centroid is thus

P =
(

0, 0,
3R(1 − cos 2φ0)

16(1 − cos φ0)

)
.

45. Find the centroid of the solid bounded by the xy-plane, the cylinder x2 + y2 = R2, and the plane x/R + z/H = 1.

solution First to find the volume of this solid. The first equation lends itself well to cylindrical coordinates:

x2 + y2 = R2 ⇒ r = R, 0 ≤ θ ≤ 2π

and

x

R
+ z

H
= 1 ⇒ z = H

(
1 − x

R

)
= H

(
1 − r cos θ

R

)

The volume is:

V olume =
∫ 2π

0

∫ R

0

∫ H(1−r cos θ/R)

0
1 dz dr dθ

=
∫ 2π

0

∫ R

0
H

(
1 − r cos θ

R

)
dr dθ

= H

∫ 2π

0
r − 1

2
· r2 cos θ

R

∣∣∣∣R
r=0

dθ

= H

∫ 2π

0
R − 1

2
R cos θ dθ

= H

(
Rθ − 1

2
R sin θ

∣∣∣∣2π

0

)

= 2πHR

Now to compute the coordinates of the centroid:

x = 1

V

∫∫∫
W

x dV = 1

2πHR

∫ 2π

0

∫ R

0

∫ H(1−r cos θ/R)

0
r cos θ dz dr dθ

= 1

2πHR

∫ 2π

0

∫ R

0
r cos θ · z

∣∣∣∣H(1−r cos θ/R)

0
dr dθ

= H

2πHR

∫ 2π

0

∫ R

0
r cos θ

(
1 − r cos θ

R

)
dr dθ
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= 1

2πR

∫ 2π

0

∫ R

0
r cos θ − 1

R
r2 cos2 θ dr dθ

= 1

2πR

∫ 2π

0

1

2
r2 cos θ − 1

3R
r3 cos2 θ

∣∣∣∣R
0

dθ

= 1

2πR

∫ 2π

0

1

2
R2 cos θ − R2

6
(1 + cos 2θ) dθ

= 1

2πR

(
1

2
R2 sin θ − R2

6

(
θ + 1

2
sin 2θ

) ∣∣∣∣2π

0

)
= 1

2πR
· −R2

6
(2π) = −R

6

y = 1

V

∫∫∫
W

y dV = 1

2πHR

∫ 2π

0

∫ R

0

∫ H(1−r cos θ/R)

0
r sin θ dz dr dθ

= 1

2πHR

∫ 2π

0

∫ R

0
r sin θ · z

∣∣∣∣H(1−r cos θ/R)

0
dr dθ

= H

2πHR

∫ 2π

0

∫ R

0
r sin θ

(
1 − r cos θ

R

)
dr dθ

= 1

2πR

∫ 2π

0

∫ R

0
r sin θ − 1

R
r2 sin θ cos θ dr dθ

= 1

2πR

∫ 2π

0

1

2
r2 sin θ − 1

3R
r3 sin θ cos θ

∣∣∣∣R
0

dθ

= 1

2πR

∫ 2π

0

1

2
R2 sin θ − R2

3
sin θ cos θ dθ

= 1

2πR

(
−1

2
R2 cos θ − R2

6
sin2 θ

∣∣∣∣2π

0

)
= 0

z = 1

V

∫∫∫
W

z dV = 1

2πHR

∫ 2π

0

∫ R

0

∫ H(1−r cos θ/R)

0
z dz dr dθ

= 1

2πHR

∫ 2π

0

∫ R

0

1

2
z2
∣∣∣∣H(1−r cos θ/R)

0
dr dθ

= H 2

4πHR

∫ 2π

0

∫ R

0

(
1 − r cos θ

R

)2
dr dθ

= H

4πR

∫ 2π

0

∫ R

0
1 − 2r cos θ

R
+ r2 cos2 θ

R2
dr dθ

= H

4πR

∫ 2π

0
r − r2 cos θ

R
+ r3 cos2 θ

3R2

∣∣∣∣R
0

dθ

= H

4πR

∫ 2π

0
R − R cos θ + 1

6
R(1 + cos 2θ) dθ

= H

4πR

(
Rθ − R sin θ + 1

6
R

(
θ + 1

2
sin 2θ

) ∣∣∣∣2π

0

)

= H

4πR

(
2πR + 1

3
πR

)
= H

4πR
· 7πR

3
= 7

12
H

The coordinates of the centroid are (−R/6, 0, 7H/12).

46. Using cylindrical coordinates, prove that the centroid of a right circular cone of height h and radius R is located at
height h

4 on the central axis.

solution The volume of the cone is V = πR2h
3 , therefore the coordinates of the centroid are

x = 3

πR2h

∫∫∫
W

x dV, y = 3

πR2h

∫∫∫
W

y dV, z = 3

πR2h

∫∫∫
W

z dV
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y

h

R

x

z

Since the cone W is symmetric with respect to the z-axis, its centroid lies on the z-axis. That is,

x = y = 0

y

x
R

D

Thus we need to find the z-coordinate. The projection of W on to the xy-plane is the disk x2 + y2 ≤ R2, or in polar
coordinates,

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ R

The upper surface is the plane z = h. To find the equation of the lower surface we use proportion in similar triangles (see
figure).

y

h

R

x

z

We get

r

R
= z

h
⇒ z = rh

R

The inequalities defining W in cylindrical coordinates are thus

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ R,
rh

R
≤ z ≤ h

We now compute z using Triple Integral in Cylindrical coordinates:

z = 3

πR2h

∫ 2π

0

∫ R

0

∫ h

rh
R

zr dz dr dθ = 3

πR2h

∫ 2π

0

∫ R

0

z2r

2

∣∣∣∣h
z= rh

R

dr dθ

= 3

2πR2h

∫ 2π

0

∫ R

0

(
h2r − h2r3

R2

)
dr dθ = 3

2πR2h

∫ 2π

0

h2r2

2
− h2r4

4R2

∣∣∣∣R
r=0

dθ

= 3

2πR2h

∫ 2π

0

(
h2R2

2
− h2R4

4R2

)
dθ = 3

2πR2h
· 2π

(
h2R2

2
− h2R2

4

)
= 3h

4
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Therefore the centroid is the following point: (
0, 0,

3h

4

)
.

That is, the height (measured from the base) is h
4 .

47. Find the centroid of solid (A) in Figure 4 defined by x2 + y2 ≤ R2, 0 ≤ z ≤ H , and π
6 ≤ θ ≤ 2π , where θ is the

polar angle of (x, y).

1

(A) (B)

R

H 2

1

π

6

FIGURE 4

solution Since the mass distribution is uniform, we may assume that ρ(x, y, z) = 1, hence the center of mass is

xCM = 1

V

∫∫∫
W

x dV, yCM = 1

V

∫∫∫
W

y dV, zCM = 1

V

∫∫∫
W

z dV

The inequalities describing W in cylindrical coordinates are

W : 0 ≤ θ ≤ π

6
, 0 ≤ r ≤ R, 0 ≤ z ≤ H

x
R

y

6

The entire cylinder has a total volume πR2H . The region W has the fraction (2π − π
6 )/(2π) of this total volume, so

V = (2π − π
6 )

2π
(πR2H) = 11πR2H

12

We use cylindrical coordinates to compute the triple integrals:

xCM = 1

V

∫ 2π

π/6

∫ R

0

∫ H

0
(r cos θ)r dz dr dθ = 12

11πR2H

(∫ 2π

π/6
cos θ dθ

)(∫ R

0
r2 dr

)(∫ H

0
dz

)

= 12

11πR2H

(
−1

2

)(
R3

3

)
(H) = − 2R

11π

yCM = 1

V

∫ 2π

π/6

∫ R

0

∫ H

0
(r sin θ)r dzdrdθ = 12

11πR2H

(∫ 2π

π/6
sin θ dθ

)(∫ R

0
r2 dr

)(∫ H

0
dz

)

= 12

11πR2H

(
−2 + √

3

2

)(
R3

3

)
(H) = 2R

11π
(
√

3 − 2)

zCM = 1

V

∫ 2π

π/6

∫ R

0

∫ H

0
zr dz dr dθ = 12

11πR2H

(∫ 2π

π/6
dθ

)(∫ R

0
r dr

)(∫ H

0
z dz

)

= 12

11πR2H

(
11π

6

)(
R2

2

)(
H 2

2

)
= H

2

Therefore, the center of mass is the following point:(
− 2R

11π
,

2R

11π
(
√

3 − 2),
H

2

)
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48. Calculate the coordinate yCM of the centroid of solid (B) in Figure 4 defined by x2 + y2 ≤ 1 and 0 ≤ z ≤ 1
2y + 3

2 .

solution Notice that our picture here is slightly different from the one in the book; we’ve arranged our picture so that
the top slopes down in the positive y direction. Since the mass distribution is uniform, we may assume that ρ(x, y, z) = 1,
hence the center of mass is

xCM = 1

V

∫∫∫
W

x dV, yCM = 1

V

∫∫∫
W

y dV, zCM = 1

V

∫∫∫
W

z dV

(0, −1, 2)

1, 0,

y

z

x

1

−1

(0, 1, 1)

(      ,    )3
2

We first must find the equation of the upper plane. This plane is passing through the points (0, −1, 2), (0, 1, 1), and(
1, 0, 3

2

)
, hence it has the equation y + 2z = 3 or z = 3−y

2 = 3−r sin θ
2 .

x

y

1

1

0 ≤ ≤ 2π

The region W has the following definition in cylindrical coordinates:

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, 0 ≤ z ≤ 3 − r sin θ

2

We first find the volume of W:

V =
∫∫∫

W
1 dV =

∫ 2π

0

∫ 1

0

∫ (3−r sin θ)/2

0
r dz dr dθ =

∫ 2π

0

∫ 1

0
rz

∣∣∣∣(3−r sin θ)/2

0
dr dθ

=
∫ 2π

0

∫ 1

0
r

3 − r sin θ

2
dr dθ =

∫ 2π

0

∫ 1

0

(
3r

2
− r2

2
sin θ

)
dr dθ =

∫ 2π

0

3r2

4
− r3 sin θ

6

∣∣∣∣1
r=0

dθ

=
∫ 2π

0

(
3

4
− sin θ

6

)
dθ = 3

4
θ + cos θ

6

∣∣∣∣2π

0
= 3π

2
+ 1

6
− 1

6
= 3π

2

V = 3π
2 : Since the region is symmetric with respect to the yz-plane, we have

xCM = 1

V

∫∫∫
W

x dV = 0

We compute yCM:

yCM = 2

3π

∫ 2π

0

∫ 1

0

∫ (3−r sin θ)/2

0
(r sin θ)r dz dr dθ = 2

3π

∫ 2π

0

∫ 1

0

∫ (3−r sin θ)/2

0
r2 sin θ dz dr dθ

= 2

3π

∫ 2π

0

∫ 1

0
r2 sin θ

(
3 − r sin θ

2

)
dr dθ = 2

3π

∫ 2π

0

∫ 1

0

(
3r2 sin θ

2
− r3 sin2 θ

2

)
dr dθ

= 2

3π

∫ 2π

0

(
3 sin θ

2

r3

3
− r4 sin2 θ

8

∣∣∣∣1
r=0

)
dθ = 2

3π

∫ 2π

0

(
sin θ

2
− sin2 θ

8

)
dθ

= 1

3π

∫ 2π

0
sin θ dθ − 1

12π

∫ 2π

0
sin2 θ dθ = − 1

12π

(
θ

2
− sin 2θ

4

∣∣∣∣2π

θ=0

)
= − 1

12π
· π = − 1

12
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Finally we find zCM:

zCM = 2

3π

∫ 2π

0

∫ 1

0

∫ (3−r sin θ)/2

0
zr dz dr dθ = 2

3π

∫ 2π

0

∫ 1

0

z2r

2

∣∣∣∣(3−r sin θ)/2

z=0
dr dθ

= 2

3π

∫ 2π

0

∫ 1

0

r

2

(
3 − r sin θ

2

)2
dr dθ = 2

8 · 3π

∫ 2π

0

∫ 1

0

(
r3 sin2 θ − 6r2 sin θ + 9r

)
dr dθ

= 1

12π

∫ 2π

0

r4 sin2 θ

4
− 2r3 sin θ + 9

2
r2
∣∣∣∣1
0
dθ = 1

12π

∫ 2π

0

(
sin2 θ

4
− 2 sin θ + 9

2

)
dθ

= 1

48π

∫ 2π

0
sin2 θ dθ − 1

6π

∫ 2π

0
sin θ dθ + 9

24π

∫ 2π

0
dθ = 1

48π

(
θ

2
− sin 2θ

4

∣∣∣∣2π

0

)
− 0 + 9

24π
· 2π

= 1

48
+ 3

4
= 37

48

The center of mass is the following point:

(
0, − 1

12
,

37

48

)

If you had arranged the axes differently, you could have computed the answer as
(

0, 1
12 , 37

48

)
(depending on orientation).

49. Find the center of mass of the cylinder x2 + y2 = 1 for 0 ≤ z ≤ 1, assuming a mass density of ρ(x, y, z) = z.

solution By symmetry, we can note that the center of mass lies on the z-axis.

z

y

x

The coordinates of the center of mass are defined as,

xCM =
∫∫∫

W x
(
x2 + y2

)
dV

M

yCM =
∫∫∫

W y
(
x2 + y2

)
dV

M
(1)

zCM =
∫∫∫

W z
(
x2 + y2

)
dV

M

where M is the total mass of W . The cylinder W is defined by the inequalities

−1 ≤ x ≤ 1, −
√

1 − x2 ≤ y ≤
√

1 − x2, 0 ≤ z ≤ 1

D

x

− 1 − x2 ≤ y ≤ 1 − x2
y

1−1

D
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We compute the total mass of W:

M =
∫∫∫

W
z dV =

∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ 1

0
z dz dy dx =

∫ 1

−1

∫ √
1−x2

−
√

1−x2

1

2
z2
∣∣∣∣1
z=0

dy dx

= 1

2

∫ 1

−1

∫ √
1−x2

−
√

1−x2
1 dy dx =

∫ 1

−1

∫ √
1−x2

0
1 dy dx =

∫ 1

−1
y

∣∣∣∣
√

1−x2

y=0
dx

=
∫ 1

−1

√
1 − x2 dx

This integral is the area of a half of the unit circle, hence the total mass is

∫ 1

−1

√
1 − x2 dx = π

2
= M

We now compute the numerators in (1). Using (2), we get

∫∫∫
W

xz dV =
∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ 1

0
xz dz dy dx =

∫ 1

−1

∫ √
1−x2

−
√

1−x2

1

2
xz2

∣∣∣∣1
z=0

dy dx

= 2
∫ 1

−1

∫ √
1−x2

0

1

2
x dy dx =

∫ 1

−1
xy

∣∣∣∣
√

1−x2

y=0
dx

=
∫ 1

−1
x
√

1 − x2 dx = −2

3
(1 − x2)3/2

∣∣∣∣1−1
= 0 (2)

Now to compute the next numerator:

∫∫∫
W

yz dV =
∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ 1

0
yz dz dy dx =

∫ 1

−1

∫ √
1−x2

−
√

1−x2

1

2
yz2

∣∣∣∣1
z=0

dy dx

= 2
∫ 1

−1

∫ √
1−x2

0

1

2
y dy dx =

∫ 1

−1

1

2
y2
∣∣∣∣
√

1−x2

y=0
dx

=
∫ 1

−1
(1 − x2) dx =

(
x − x3

) ∣∣∣∣1−1
= 0 (3)

Thus far we have: ∫∫∫
W

yz dV =
∫∫∫

W
xz dV = 0 (4)

We compute the numerator of zCM in (1):

∫∫∫
W

z · z dV =
∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ 1

0
z2 dz dy dx =

∫ 1

−1

∫ √
1−x2

−
√

1−x2

1

3
z3
∣∣∣∣1
z=0

dy dx

=
∫ 1

−1

∫ √
1−x2

−
√

1−x2

1

3
dy dx =

∫ 1

−1

∫ √
1−x2

0

2

3
dy dx

=
∫ 1

−1

2

3
y

∣∣∣∣
√

1−x2

0
dx

= 2

3

∫ 1

−1

√
1 − x2 dx

This is 2/3 times half of the area of the circle, centered at the origin, having radius 1, so the integral is 1/3π .
Finally, we substitute M = π

2 and the computed integrals for (1) to obtain the following solution:

(xCM, yCM, zCM) =
(

0, 0,

π
3
π
2

)
=
(

0, 0,
2

3

)
.
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50. Find the center of mass of the sector of central angle 2θ0 (symmetric with respect to the y-axis) in Figure 5, assuming
that the mass density is ρ(x, y) = x2.

x

y

1−1

2θ0

FIGURE 5

solution Since the region is symmetric with respect to the y-axis, the x-coordinate of the center of mass is zero, hence
the center of mass is located on the y-axis. We first compute the mass:

M =
∫∫

ρ dA =
∫ 1

0

∫ π/2+θ0

π/2−θ0

r2 cos2 α · r dr dα = 1

4
r4
∣∣∣∣1
0

·
[

α

2
+ sin 2α

4

] ∣∣∣∣π/2+θ0

π/2−θ0

= 1

4

[
θ0 + 1

4
(sin(π + 2θ0) − sin(π − 2θ0))

]
= 1

4

[
θ0 + 1

4
(− sin(2θ0) − sin(2θ0))

]

= 1

4

[
θ0 − 1

2
sin(2θ0)

]

We now compute yCM.

x

y

1−1

2

We obtain the integral

yCM = 1

M

∫ 1

0

∫ π/2+θ0

π
2 −θ0

r sin α · r2 cos2 α · r dα dr = 1

M

1

5
r5
∣∣∣∣1
0

·
[−1

3
cos3 α

] ∣∣∣∣π/2+θ0

π/2−θ0

= 1

15M

[
cos3(π/2 − θ0) − cos3(π/2 + θ0)

]
= 1

15M

[
sin3(θ0) + sin3(θ0)

]
= 2 sin3(θ0)

15M

Substituting in the previous value for the mass M , we obtain

yCM = 8 sin3 θ0

15(θ0 − 1
2 sin 2θ0)

51. Find the center of mass of the first octant of the ball x2 + y2 + z2 = 1, assuming a mass density of ρ(x, y, z) = x.

solution
(a) The solid is the part of the unit sphere in the first octant. The inequalities defining the projection of the solid onto the
xy-plane are

D : 0 ≤ y ≤ 1, 0 ≤ x ≤
√

1 − y2

x

y

1

1

1 − y20 ≤ x ≤

W is the region bounded by D and the sphere z =
√

1 − x2 − y2, hence W is defined by the inequalities

W : 0 ≤ y ≤ 1, 0 ≤ x ≤
√

1 − y2, 0 ≤ z ≤
√

1 − x2 − y2 (1)
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We first must compute the mass of the solid. Using the mass as a triple integral, we have

M =
∫ 1

0

∫ √
1−y2

0

∫ √
1−x2−y2

0
x dz dx dy =

∫ 1

0

∫ √
1−y2

0
xz

∣∣∣∣
√

1−x2−y2

z=0
dx dy

=
∫ 1

0

∫ √
1−y2

0
x

√
1 − x2 − y2 dx dy

We compute the inner integral using the substitution u =
√

1 − x2 − y2, du = − x
u dx, or x dx = −u du. We get

∫ √
1−y2

0
x

√
1 − x2 − y2 dx =

∫ 0
√

1−y2
u(−u du) =

∫ √
1−y2

0
u2 du = u3

3

∣∣∣∣
√

1−y2

0
= (1 − y2)

3/2

3
(2)

We substitute in (2) and compute the resulting integral substituting y = sin t , dy = cos t dt :

M =
∫ 1

0

(1 − y2)
3/2

3
dy = 1

3

∫ π/2

0
(1 − sin2 t)

3/2
cos t dt = 1

3

∫ π/2

0
cos4 t dt

= 1

3

(
cos3 t sin t

4
+ 3

4

(
t

2
+ sin 2t

4

) ∣∣∣∣π/2

0

)
= 1

4
· π

4
= π

16

That is, M = π
16 . We now find the coordinates of the center of mass. To compute xCM we use the definition of D as a

vertically simple region to obtain a simpler integral. That is, we write the inequalities for W as

W : 0 ≤ x ≤ 1, 0 ≤ y ≤
√

1 − x2, 0 ≤ z ≤
√

1 − x2 − y2 (3)

Thus,

xCM = 1

M

∫∫∫
W

xρ dV = 16

π

∫ 1

0

∫ √
1−x2

0

∫ √
1−x2−y2

0
x2 dz dy dx = 16

π

∫ 1

0

∫ √
1−x2

0
x2z

∣∣∣∣
√

1−x2−y2

z=0
dy dx

= 16

π

∫ 1

0

∫ √
1−x2

0
x2
√

1 − x2 − y2 dy dx = 16

π

∫ 1

0
x2

⎛
⎝∫

√
1−x2

0

√
1 − x2 − y2 dy

⎞
⎠ dx (4)

We compute the inner integral using Integration Formulas:

∫ √
1−x2

0

√
1 − x2 − y2 dy = y

2

√
1 − x2 − y2 + 1 − x2

2
sin−1 y√

1 − x2

∣∣∣∣
√

1−x2

y=0

= 1 − x2

2
sin−1 1 = 1 − x2

2
· π

2
= π

4
(1 − x2)

Substituting in (4) gives

xCM = 16

π

∫ 1

0
x2 · π

4
(1 − x2) dx = 4

∫ 1

0
(x2 − x4) dx = 4

(
x3

3
− x5

5

) ∣∣∣∣1
0

= 4

(
1

3
− 1

5

)
= 8

15

(b) We compute the y-coordinate of the center of mass, using (1):

yCM = 1

M

∫∫∫
W

yρ dV = 16

π

∫ 1

0

∫ √
1−y2

0

∫ √
1−x2−y2

0
yx dz dx dy = 16

π

∫ 1

0

∫ √
1−y2

0
yxz

∣∣∣∣
√

1−x2−y2

z=0
dx dy

= 16

π

∫ 1

0

∫ √
1−y2

0
yx

√
1 − x2 − y2 dx dy = 16

π

∫ 1

0
y

(∫ √
1−y2

0
x

√
1 − x2 − y2 dx

)
dy

The inner integral was computed in (2), therefore,

yCM = 16

π

∫ 1

0
y · (1 − y2)

3/2

3
dy = 16

3π

∫ 1

0
y(1 − y2)

3/2
dy

We compute the integral using the substitution u = 1 − y2, du = −2y dy. We get

yCM = 16

3π

∫ 0

1
u3/2 ·

(
−du

2

)
= 8

3π

∫ 1

0
u3/2 du = 8

3π
· 2

5
· u5/2

∣∣∣∣1
0

= 16

15π
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Finally we find the z-coordinate of the center of mass, using (1):

zCM = 1

M

∫∫∫
W

zρ dV = 16

π

∫ 1

0

∫ √
1−y2

0

∫ √
1−x2−y2

0
zx dz dx dy = 16

π

∫ 1

0

∫ √
1−y2

0

z2x

2

∣∣∣∣
√

1−x2−y2

z=0
dx dy

= 16

π

∫ 1

0

∫ √
1−y2

0

x

2
(1 − x2 − y2) dx dy = 8

π

∫ 1

0

∫ √
1−y2

0
(x − x3 − xy2) dx dy

= 8

π

∫ 1

0

x2

2
− x4

4
− x2y2

2

∣∣∣∣
√

1−y2

x=0
dy = 8

π

∫ 1

0

(
1 − y2

2
− (1 − y2)

2

4
− (1 − y2)y2

2

)
dy

= 2

π

∫ 1

0
(y4 − 2y2 + 1) dy = 2

π

(
y5

5
− 2y3

3
+ y

) ∣∣∣∣1
y=0

= 2

π

(
1

5
− 2

3
+ 1

)
= 16

15π

The center mass is the following point:

P =
(

8

15
,

16

15π
,

16

15π

)
.

52. Find a constant C such that

p(x, y) =
{
C(4x − y + 3) if 0 ≤ x ≤ 2 and 0 ≤ y ≤ 3
0 otherwise

is a probability distribution and calculate P(X ≤ 1; Y ≤ 2).

solution For p(x, y) to be a probability distribution, we need:

∫ 2

x=0

∫ 3

y=0
p(x, y) dy dx = 1

Solving we see:

∫ 2

x=0

∫ 3

y=0
p(x, y) dy dx =

∫ 2

0

∫ 3

0
C(4x − y + 3) dy dx

= C

∫ 2

0

∫ 3

0
4x − y + 3 dy dx = C

∫ 2

0
4xy − 1

2
y2 + 3y

∣∣∣∣3
0
dx

= C

∫ 2

0
12x − 9

2
+ 9 dx = C

∫ 2

0
12 + 9

2
dx

= C

(
6x2 + 9

2
x

) ∣∣∣∣2
0

= C (24 + 9) = 33C

Therefore we have C = 1/33.
Now to compute P(X ≤ 1; Y ≤ 2) we have to write

∫ 1

0

∫ 2

0

1

33
(4x − y + 3) dy dx = 1

33

∫ 1

0
4xy − 1

2
y2 + 3y

∣∣∣∣2
0
dx

= 1

33

∫ 1

0
8x − 2 + 6 dx = 1

33

(
4x2 + 4x

) ∣∣∣∣1
0

= 8

33

53. Calculate P(3X + 2Y ≥ 6) for the probability density in Exercise 52.

solution Previously we found p(x, y) = 1
33 (4x − y + 3). Then using P(3X + 2Y ≥ 6) we want to find 1 − P(3X +

2Y ≤ 6). Hence we need to integrate the following:

P(3X + 2Y ≤ 6) =
∫ 2

x=0

∫ 3−3/2x

y=0

1

33
(4x − y + 3) dy dx

= 1

33

∫ 2

0
4xy − 1

2
y2 + 3y

∣∣∣∣3−3/2x

0
dx

= 1

33

∫ 2

0
4x

(
3 − 3

2
x

)
− 1

2

(
3 − 3

2
x

)2
+ 3

(
3 − 3

2
x

)
dx
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= 1

33

∫ 2

0
−57

8
x2 + 12x + 9

2
dx

= 1

33

(
−57

24
x3 + 6x2 + 9

2
x

) ∣∣∣∣2
0

= 1

33
(−19 + 24 + 9) = 14

33

Thus we have:

P(3X + 2Y ≥ 6) = 1 − P(3X + 2Y ≤ 6) = 1 − 14

33
= 19

33

54. The lifetimes X and Y (in years) of two machine components have joint probability density

p(x, y) =
{

6
125 (5 − x − y) if 0 ≤ x ≤ 5 − y and 0 ≤ y ≤ 5

0 otherwise

What is the probability that both components are still functioning after 2 years?

solution This problem asks for P(X ≥ 2; Y ≥ 2). We will find P(X ≥ 2; Y ≥ 2) using the following inequalities
on x and y:

2 ≤ x ≤ 5 − y, 2 ≤ y ≤ 5

P(X ≥ 2; Y ≥ 2) =
∫ 5

y=2

∫ 5−y

x=2
p(x, y) dx dy = 6

125

∫ 5

y=2

∫ 5−y

x=2
5 − x − y dx dy

= 6

125

∫ 5

2
5x − 1

2
x2 − xy

∣∣∣∣5−y

2
dy

= 6

125

∫ 5

2
5(5 − y) − 1

2
(5 − y)2 − (5 − y)y − [10 − 2 − 2y] dy

= 6

125

∫ 5

2

9

2
− 3y + 1

2
y2 dy

= 6

125

(
9

2
y − 3

2
y2 + 1

6
y3
) ∣∣∣∣5

2

= 6

125

(
45

2
− 75

2
+ 125

6

)
− 6

125

(
9 − 6 + 4

3

)
= 9

125

Hence,

P(X ≥ 2; Y ≥ 2) = 9

125

55. An insurance company issues two kinds of policies A and B. Let X be the time until the next claim of type A is filed,
and let Y be the time (in days) until the next claim of type B is filed. The random variables have joint probability density

p(x, y) = 12e−4x−3y

Find the probability that X ≤ Y .

solution We must compute

P(X ≤ Y ) =
∫ ∞
x=0

∫ ∞
y=x

p(x, y) dy dx

Now evaluating we get:

P(X ≤ Y ) =
∫ ∞
x=0

∫ ∞
y=x

12e−4x−3y dy dx = 12
∫ ∞

0

∫ ∞
x

e−4xe−3y dy dx

= 12
∫ ∞

0
e−4x

(
−1

3
e−3y

) ∣∣∣∣∞
x

dx = −4
∫ ∞

0
e−4x

(
lim

t→∞ e−3t − e−3x

)
dx

= 4
∫ ∞

0
e−4x · e−3x dx = 4

∫ ∞
0

e−7x dx

= −4

7

(
e−7x

) ∣∣∣∣∞
0

= −4

7
lim

t→∞
(
e−7t − 1

)
= 4

7



April 19, 2011

Chapter Review Exercises 1091

56. Compute the Jacobian of the map

�(r, s) = (
er cosh(s), er sinh(s)

)
solution We have x = er cosh(s) and y = er sinh(s). Therefore,

Jac(G) = ∂(x, y)

∂(r, s)
=

∣∣∣∣∣∣∣∣
∂x

∂r

∂x

∂s

∂y

∂r

∂y

∂s

∣∣∣∣∣∣∣∣
=
∣∣∣∣ er cosh(s) er sinh(s)

er sinh(s) er cosh(s)

∣∣∣∣
= e2r cosh2(s) − e2r sinh2(s) = e2r (cosh2(s) − sinh2(s)) = e2r

57. Find a linear mapping �(u, v) that maps the unit square to the parallelogram in the xy-plane spanned by the vectors
〈3, −1〉 and 〈1, 4〉. Then, use the Jacobian to find the area of the image of the rectangle R = [0, 4] × [0, 3] under �.

solution We denote the linear map by

G(u, v) = (Au + Cv, Bu + Dv) (1)

Φ

(0, 0) (1, 0)

(0, 1)

u

(1, 4)

x

y

(3, −1)

(0, 0)

The image of the unit square is the quadrangle whose vertices are the images of the vertices of the square. Therefore we
ask that

G(0, 0) = (A · 0 + C · 0, B · 0 + D · 0) = (0, 0)

G(1, 0) = (A · 1 + C · 0, B · 1 + D · 0) = (3, −1)

G(0, 1) = (A · 0 + C · 1, B · 0 + D · 1) = (1, 4)

⇒
(0, 0) = (0, 0)

(A, B) = (3,−1)

(C, D) = (1, 4)

These equations imply that A = 3, B = −1, C = 1, and D = 4. Substituting in (1) we obtain the following map:

G(u, v) = (3u + v, −u + 4v)

The area of the rectangle R = [0, 4] × [0, 3] is 4 · 3 = 12, therefore the transformed area is

Area = |Jac(G)| · 12

The Jacobian of the linear map G is

Jac (G) =
∣∣∣∣ A C

B D

∣∣∣∣ =
∣∣∣∣ 3 1

−1 4

∣∣∣∣ = 12 − (−1) = 13

Therefore,

Area = 13 · 12 = 156.

58. Use the map

�(u, v) =
(

u + v

2
,
u − v

2

)

to compute
∫∫

R
(
(x − y) sin(x + y)

)2
dx dy, where R is the square with vertices (π, 0), (2π, π), (π, 2π), and (0, π).

solution We express f (x, y) = ((x − y) sin(x + y))2 in terms of u and v. Since x = u+v
2 and y = u−v

2 , we have

x − y = v and x + y = u. Hence, f (x, y) = v2 sin2 u. We find the Jacobian of the linear transformation:

Jac(G) =
∣∣∣∣∣

1
2

1
2

1
2 − 1

2

∣∣∣∣∣ = −1

4
− 1

4
= −1

2
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R
R0

x

y

u

v

Φ

(π, 0)

(π, 2π)

(2π, π)

(π, π) (3π, π)

(π, −π) (3π, −π)

(0, π)

To compute the vertices of the quadrangle R mapped by � onto R, we first find the inverse of � by solving the following
equations for u, v in terms of x and y:

x = u + v

2

y = u − v

2

⇒
u + v = 2x

u − v = 2y
⇒ u = x + y, v = x − y

Hence,

�−1(x, y) = (x + y, x − y)

We now compute the vertices of P as the following images:

G−1(π, 0) = (π, π)

G−1(2π, π) = (3π, π)

G−1(π, 2π) = (3π, −π)

G−1(0, π) = (π, −π)

Finally, we apply the change of variable formula to compute the integral:

∫∫
R

(x − y)2sin2(x + y) dx dy =
∫∫

R0

v2sin2u|Jac(G)| du dv = 1

2

∫ 3π

π

∫ π

−π
v2sin2u dv du

= 1

2

(∫ 3π

π
(sin2 u) du

)(∫ π

−π
v2 dv

)
=
(

u

4
− sin 2u

8

∣∣∣∣3π

π

)(
v3

3

∣∣∣∣π−π

)

=
(

3π

4
− π

4

)
· 2π3

3
= π4

3

59. Let D be the shaded region in Figure 6, and let F be the map

u = y + x2, v = y − x3

(a) Show that F maps D to a rectangle R in the uv-plane.

(b) Apply Eq. (7) in Section 15.6 with P = (1, 7) to estimate Area(D).

D

x

y

y = 9 − x2

y = 8 − x2

y = x3 + 6 y = x3 + 5

1

9
8
7
6
5

P = (1, 7)

FIGURE 6

solution

(a) Note that the appropriate map should be u = y + x2 rather than u = −y + x2. We examine the images of the
boundary curves of D under the map (u, v) = �(x, y) = (x2 + y, y − x3). The curves y = x3 + 6 and y = x3 + 5 can
be rewritten as y − x3 = 6 and y − x3 = 5. Since v = y − x3, these curves are mapped to the horizontal lines v = 6
and v = 5, respectively. The curves y = 8 − x2 and y = 9 − x2 can be rewritten as y + x2 = 8 and y + x2 = 9. Since
u = y + x2, these curves are mapped to the vertical lines u = 8 and u = 9, respectively. We conclude that D is mapped
to the rectangle R = [8, 9] × [5, 6] in the (u, v)-plane.
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u
98

6
5

R

(b) We use Eq. (5) in section 16.5, where this time � is a mapping from the (x, y)-plane to the (u, v)-plane, and P = (1, 7)

is a point in D:

Area�(D) ≈ |Jac(�)(P )|Area(D)

Φ

P

u

R

x

y

D

Here, Area�(D) = Area(R) = 12 = 1, therefore we get

1 ≈ |Jac(�)(P )|Area(D)

or

Area(D) ≈ |Jac(�)(P )|−1 (1)

We compute the Jacobian of �(x, y) = (u, v) = (y + x2, y − x3) at P = (1, 7):

Jac(�) =

∣∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣
=
∣∣∣∣ 2x 1

−3x2 1

∣∣∣∣ = 2x + 3x2 ⇒ Jac(�)(P ) = 2 · 1 + 3 · 72 = 149

Combining with (1) gives

Area(D) ≈ (149)−1 = 1

149
.

60. Calculate the integral of f (x, y) = e3x−2y over the parallelogram in Figure 7.

x

y

(5, 1)

(1, 3)
(6, 4)

D

FIGURE 7

solution The equation of the boundary lines are y = 1
5x, y = 1

5x + 14
5 , y = 3x, and y = 3x − 14. These equations

may be written as

x − 5y = 0, x − 5y = −14, 3x − y = 0, 3x − y = 14

x

y

(5, 1)

(1, 3)
(6, 4)

D
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We define the following map:

�−1(x, y) = (u, v) = (x − 5y, 3x − y)

�−1 maps the boundary lines to the lines u = 0, u = −14, v = 0, and v = 14 in the (u, v)-plane. Therefore the image
of D under �−1 is the rectangle R = [−14, 0] × [0, 14] in the (u, v)-plane. Using the Change of variables Formula, we
have ∫∫

D
f (x, y) dx dy =

∫∫
R

f (x(u, v), y(u, v)) |Jac(�)| du dv (1)

x u

y

D

R

−14

Φ−1

Φ

v

14

0

We compute the inverse � of �−1 by solving the equations u = x − 5y, v = 3x − y for x, y in terms of u, v. We get

u = x − 5y

v = 3x − y
⇒ x = −u + 5v

14
, y = −3u + v

14

Therefore the function f (x, y) = e3x−2y in terms of u and v is

f (x(u, v), y(u, v)) = e
3
(−u+5v

14

)
−2

(−3u+v
14

)
= e

3u+13v
14 (2)

The Jacobian of �(u, v) = (x, y) =
(−u+5v

14 , −3u+v
14

)
is

Jac(�) =

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
− 1

14

5

14

− 3

14

1

14

∣∣∣∣∣∣∣∣
= 1

14
(3)

Substituting (2) and (3) in (1) gives

∫∫
D

e3x−2y dx dy =
∫ 14

0

∫ 0

−14
e

3u+13v
14 · 1

14
du dv = 1

14

∫ 14

0

∫ 0

−14
e

3u
14 · e

13v
14 du dv

= 1

14

(∫ 0

−14
e

3u
14 du

)(∫ 14

0
e

13v
14 dv

)
= 1

14

(
14

3
e

3u
14

∣∣∣∣0
u=−14

)(
14

13
e

13v
14

∣∣∣∣14

v=0

)

= 1

3
(1 − e−3) · 14

13
(e13 − 1) = 14

39
(1 − e−3)(e13 − 1)

61. Sketch the region D bounded by the curves y = 2/x, y = 1/(2x), y = 2x, y = x/2 in the first quadrant. Let F be
the map u = xy, v = y/x from the xy-plane to the uv-plane.

(a) Find the image of D under F .

(b) Let � = F−1. Show that |Jac(�)| = 1

2|v| .

(c) Apply the Change of Variables Formula to prove the formula

∫∫
D

f
(y

x

)
dx dy = 3

4

∫ 2

1/2

f (v) dv

v

(d) Apply (c) to evaluate
∫∫

D
yey/x

x
dx dy.
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solution

(a) The region D is shown in the figure:

D

x

y
y = 2x

1 2

1

2
y = x

2

y = 1
2x

y = 2
x

We rewrite the equations of the boundary curves as xy = 2, xy = 1
2 , y

x = 2, and y
x = 1

2 . These curves are mapped by

� to the lines u = 2, u = 1
2 , v = 2, and v = 1

2 . Therefore, the image of D is the rectangle R =
[

1
2 , 2

]
×
[

1
2 , 2

]
in the

(u, v)-plane.

R

u
2

2

1
2

1
2

(b) We use the Jacobian of the inverse map:

Jac(F−1) = (Jac(F ))−1

We compute the Jacobian of F(x, y) = (u, v) = (
xy,

y
x

)
:

Jac(F ) =

∣∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣
=
∣∣∣∣∣∣

y x

− y

x2

1

x

∣∣∣∣∣∣ = y

x
+ yx

x2
= 2y

x
= 2v

(Note that everything is positive, so we don’t need absolute values!) Thus,

Jac(F−1) = (Jac(F ))−1 = 1

2v
= 1

|2v| .

(c) The general change of variables formula is∫∫
D

f (x, y) dA =
∫∫

R
f (x(u, v), y(u, v)) |Jac(F−1)(u, v)| du dv

Here, f
( y
x

) = f (v), R =
[

1
2 , 2

]
×
[

1
2 , 2

]
in the (u, v)-plane and |Jac(F−1)(u, v)| = | 1

2v
| = 1

2v
(v > 0 in R).

Therefore, we have

∫∫
D

f
(y

x

)
dA =

∫ 2

1/2

∫ 2

1/2
f (v) · 1

2v
du dv =

(∫ 2

1/2
1 du

)(∫ 2

1/2

f (v)

2v
dv

)
= 3

4

∫ 2

1/2

f (v)

v
dv

(d) We use part (c) with f
( y
x

) = y
x · ey/x . We have f (v) = v · ev , hence

∫∫
D

yey/x

x
dx dy = 3

4

∫ 2

1/2

vev

v
dv = 3

4

∫ 2

1/2
ev dv = 3

4
ev

∣∣∣∣2
1/2

= 3

4
(e2 − e1/2) = 3

4

(
e2 − √

e
)
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16 LINE AND SURFACE
INTEGRALS

16.1 Vector Fields (LT Section 17.1)

Preliminary Questions
1. Which of the following is a unit vector field in the plane?

(a) F = 〈y, x〉

(b) F =
〈

y√
x2 + y2

,
x√

x2 + y2

〉

(c) F =
〈

y

x2 + y2
,

x

x2 + y2

〉

solution

(a) The length of the vector 〈y, x〉 is

‖〈y, x〉‖ =
√

y2 + x2

This value is not 1 for all points, hence it is not a unit vector field.

(b) We have

∥∥∥∥∥
〈

y√
x2 + y2

,
x√

x2 + y2

〉∥∥∥∥∥ =
√√√√( y√

x2 + y2

)2

+
(

x√
x2 + y2

)2

=
√

y2

x2 + y2
+ x2

x2 + y2
=
√

y2 + x2

x2 + y2
= 1

Hence the field is a unit vector field, for (x, y) �= (0, 0).

(c) We compute the length of the vector:

∥∥∥∥
〈

y

x2 + y2
,

x

x2 + y2

〉∥∥∥∥ =
√(

y

x2 + y2

)2
+
(

x

x2 + y2

)2
=
√√√√ y2 + x2(

x2 + y2
)2 =

√
1

x2 + y2

Since the length is not identically 1, the field is not a unit vector field.

2. Sketch an example of a nonconstant vector field in the plane in which each vector is parallel to 〈1, 1〉.
solution The non-constant vector 〈x, x〉 is parallel to the vector 〈1, 1〉.

y

x

3. Show that the vector field F = 〈−z, 0, x〉 is orthogonal to the position vector
−→
OP at each point P . Give an example

of another vector field with this property.

solution The position vector at P = (x, y, z) is 〈x, y, z〉. We must show that the following dot product is zero:

〈x, y, z〉 · 〈−z, 0, x〉 = x · (−z) + y · 0 + z · x = 0

1096
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Therefore, the vector field F = 〈−z, 0, x〉 is orthogonal to the position vector. Another vector field with this property is
F = 〈0, −z, y〉, since

〈0, −z, y〉 · 〈x, y, z〉 = 0 · x + (−z) · y + y · z = 0

4. Give an example of a potential function for 〈yz, xz, xy〉 other than f (x, y, z) = xyz.

solution Since any two potential functions of a gradient vector field differ by a constant, a potential function for the
given field other than V (x, y, z) = xyz is, for instance, V1(x, y, z) = xyz + 1.

Exercises
1. Compute and sketch the vector assigned to the points P = (1, 2) and Q = (−1, −1) by the vector field F = 〈x2, x

〉
.

solution The vector assigned to P = (1, 2) is obtained by substituting x = 1 in F, that is,

F(1, 2) = 〈12, 1〉 = 〈1, 1〉

Similarly,

F(−1, −1) = 〈(−1)2, −1
〉 = 〈1, −1〉

x
1

1

−1

y

F(P) = 〈1, 1〉

F(Q) = 〈1, −1〉

2. Compute and sketch the vector assigned to the points P = (1, 2) and Q = (−1, −1) by the vector field F = 〈−y, x〉.
solution To find the vector assigned to the point P = (1, 2), we substitute x = 1, y = 2 in F = 〈−y, x〉, obtaining

F(P ) = 〈−2, 1〉

Similarly, the vector assigned to Q = (−1, −1) is

F(Q) = 〈−(−1), −1〉 = 〈1, −1〉

1

1

2

3

2 3
x

−1−2−3

−3

−2

−1

y

F(Q) = 〈1, −1〉 

F(P) = 〈−2, 1〉 

3. Compute and sketch the vector assigned to the points P = (0, 1, 1) and Q = (2, 1, 0) by the vector field F =〈
xy, z2, x

〉
.

solution To find the vector assigned to the point P = (0, 1, 1), we substitute x = 0, y = 1, z = 1 in F = 〈xy, z2, x〉.
We get

F(P ) = 〈0 · 1, 12, 0〉 = 〈0, 1, 0〉
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Similarly, F(Q) is obtained by substituting x = 2, y = 1, z = 0 in F. That is,

F(Q) = 〈2 · 1, 02, 2〉 = 〈2, 0, 2〉

F(P) = 〈0, 1, 0〉F(Q) = 〈2, 0, 2〉

y

x

z

4. Compute the vector assigned to the points P = (1, 1, 0) and Q = (2, 1, 2) by the vector fields er ,
er

r
, and

er

r2
.

solution The unit radial vector is

er =
〈x
r
,
y

r
,
z

r

〉

Hence,

er

r
=
〈

x

r2
,

y

r2
,

z

r2

〉
and

er

r2
=
〈

x

r3
,

y

r3
,

z

r3

〉
.

For P = (1, 1, 0) we have r =
√

12 + 12 + 02 = √
2, and for Q = (2, 1, 2) we have r =

√
22 + 12 + 22 = 3. Therefore,

er (P ) =
〈

1√
2
,

1√
2
,

0√
2

〉
=
〈

1√
2
,

1√
2
, 0

〉

er (Q) =
〈

2

3
,

1

3
,

2

3

〉

er

r
(P ) =

〈
1

2
,

1

2
,

0

2

〉
=
〈

1

2
,

1

2
, 0

〉

er

r
(Q) =

〈
2

9
,

1

9
,

2

9

〉

er

r2
(P ) =

〈
1

2
√

2
,

1

2
√

2
,

0

2
√

2

〉
=
〈

1

2
√

2
,

1

2
√

2
, 0

〉

er

r2
(Q) =

〈
2

27
,

1

27
,

2

27

〉

In Exercises 5–12, sketch the following planar vector fields by drawing the vectors attached to points with integer
coordinates in the rectangle −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. Instead of drawing the vectors with their true lengths, scale them
if necessary to avoid overlap.

5. F = 〈1, 0〉
solution The constant vector field 〈1, 0〉 is shown in the figure:

−2

−1

−3

1

2

3

y

x
−2−3 −1 1 2 3
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6. F = 〈1, 1〉
solution We sketch the graph of the constant vector field F(x, y) = 〈1, 1〉:

y

x

7. F = xi

solution The vector field F(x, y) = xi = (x, 0) is sketched in the following figure:

y

x

8. F = yi

solution

2.0
1.5

1.0

0.5

0

−0.5

−1.0

−1.5

−2.0

−2.0 −1.0 0 1.0 2.0

y

x

9. F = 〈0, x〉
solution We sketch the vector field F(x, y) = 〈0, x〉:

y

x

10. F = x2i + yj

solution The graph of the vector field F(x, y) = x2i + yj is shown in the following figure:
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y

x

11. F =
〈

x

x2 + y2
,

y

x2 + y2

〉
solution

y

x

12. F =
〈

−y√
x2 + y2

,
x√

x2 + y2

〉

solution

2.0
1.5

1.0

0.5

0

−0.5

−1.0

−1.5

−2.0

−2.0 −1.0 0 1.0 2.0

y

x

In Exercises 13–16, match each of the following planar vector fields with the corresponding plot in Figure 10.

x

y

(B)

(C) (D)

−2 20

2

0

(A)

−2

x

y

−2 20

2

0

−2

x

y

−2 20

2

0

−2

x

y

−2 20

2

0

−2

FIGURE 10
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13. F = 〈2, x〉
solution The x coordinate of the vector field 〈2, x〉 is always 2. This matches only with Plot (D).

14. F = 〈2x + 2, y〉
solution We compute the images of the point (0, 2), for instance, and identify the corresponding graph accordingly:

F(x, y) = 〈2x + 2, y〉 ⇒ F(0, 2) = 〈2, 2〉 ⇒ Plot(C)

15. F = 〈y, cos x〉
solution We compute the images of the point (0, 2), for instance, and identify the corresponding graph accordingly:

F(x, y) = 〈y, cos x〉 ⇒ F(0, 2) = 〈2, 1〉 ⇒ Plot(B)

16. F = 〈x + y, x − y〉
solution We compute the images of the point (0, 2), for instance, and identify the corresponding graph accordingly:

F(x, y) = 〈x + y, x − y〉 ⇒ F(0, 2) = 〈2, −2〉 ⇒ Plot(A)

In Exercises 17–20, match each three-dimensional vector field with the corresponding plot in Figure 11.

(A) (B)

(C) (D)

FIGURE 11

17. F = 〈1, 1, 1〉
solution The constant vector field 〈1, 1, 1〉 is shown in plot (C).

18. F = 〈x, 0, z〉
solution This vector field is shown in (A) (by process of elimination).

19. F = 〈x, y, z〉
solution 〈x, y, z〉 is shown in plot (B). Note that the vectors are pointing away from the origin and are of increasing
magnitude.

20. F = er

solution The unit radial vector field is shown in plot (D), as these vectors are radial and of uniform length.

21. Find (by inspection) a potential function for F = 〈x, 0〉 and prove that G = 〈y, 0〉 is not conservative.

solution For f (x, y) = 1
2x2 we have ∇f = 〈x, 0〉.

∂G1

∂y
= 1 �= ∂G2

∂x
= 0

Thus G is not conservative.
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22. Prove that F = 〈yz, xz, y〉 is not conservative.

solution

∂F2

∂z
= x �= ∂F3

∂y
= 1

Thus F is not conservative.

In Exercises 23–26, find a potential function for the vector field F by inspection.

23. F = 〈x, y〉
solution We must find a function ϕ(x, y) such that ∂ϕ

∂x
= x and ∂ϕ

∂y
= y. We choose the following function:

ϕ(x, y) = 1

2
x2 + 1

2
y2.

24. F = 〈yexy, xexy
〉

solution The function ϕ(x, y) = exy satisfies ∂ϕ
∂x

= yexy and ∂ϕ
∂y

= xexy , hence ϕ is a potential function for the
given vector field.

25. F = 〈yz2, xz2, 2xyz
〉

solution We choose a function ϕ(x, y, z) such that

∂ϕ

∂x
= yz2,

∂ϕ

∂y
= xz2,

∂ϕ

∂z
= xyz

The function ϕ(x, y, z) = xyz2 is a potential function for the given field.

26. F = 〈2xzex2
, 0, ex2 〉

solution The function ϕ(x, y, z) = zex2
satisfies ∂ϕ

∂y
= 0, ∂ϕ

∂x
= 2xzex2

and ∂ϕ
∂z

= ex2
, hence ϕ is a potential

function for the given vector field.

27. Find potential functions for F = er

r3
and G = er

r4
in R3. Hint: See Example 6.

solution We use the gradient of r , ∇r = er , and the Chain Rule for Gradients to write

∇
(

−1

2
r−2

)
= r−3∇r = r−3er = er

r3
= F

∇
(

−1

3
r−3

)
= r−4∇r = r−4er = er

r4
= G

Therefore ϕ1(r) = − 1
2r2 and ϕ2(r) = − 1

3r3 are potential functions for F and G, respectively.

28. Show that F = 〈3, 1, 2〉 is conservative. Then prove more generally that any constant vector field F = 〈a, b, c〉 is
conservative.

solution F = ∇ϕ for ϕ(x, y, z) = 3x + y + 2z. Further for F = 〈a, b, c〉, F = ∇ϕ for ϕ(x, y, z) = ax + by + cz.

29. Let ϕ = ln r , where r =
√

x2 + y2. Express ∇ϕ in terms of the unit radial vector er in R2.

solution Since r = (x2 + y2 + z2)
1/2

, we have ϕ = ln (x2 + y2 + z2)
1/2 = 1

2 ln(x2 + y2 + z2). We compute the
partial derivatives:

∂ϕ

∂x
= 1

2

2x

x2 + y2 + z2
= x

r2

∂ϕ

∂y
= 1

2

2y

x2 + y2 + z2
= y

r2

∂ϕ

∂z
= 1

2

2z

x2 + y2 + z2
= z

r2

Therefore, the gradient of ϕ is the following vector:

∇ϕ =
〈
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

〉
=
〈

x

r2
,

y

r2
,

z

r2

〉
= 1

r

〈x
r
,
y

r
,
z

r

〉
= er

r
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30. For P = (a, b), we define the unit radial vector field based at P :

eP = 〈x − a, y − b〉√
(x − a)2 + (y − b)2

(a) Verify that eP is a unit vector field.
(b) Calculate eP (1, 1) for P = (3, 2).
(c) Find a potential function for eP .

solution
(a)

eP · eP = (x − a)2 + (y − b)2(√
(x − a)2 + (y − b)2

)2
= 1

(b)

e(3,2)(1, 1) = 〈1 − 3, 1 − 2〉√
(1 − 3)2 + (1 − 2)2

= 〈−2, −1〉√
5

(c) Let ϕ(x, y) =
√

(x − a)2 + (y − b)2. Then,

∇ϕ = 1

2
((x − a)2 + (y − b)2)−1/2 〈2(x − a), 2(y − b)〉 = eP

31. Which of (A) or (B) in Figure 12 is the contour plot of a potential function for the vector field F? Recall that the
gradient vectors are perpendicular to the level curves.

(A) (B)

y

x x

x

y

y

FIGURE 12

solution By the equality ∇ϕ = F and since the gradient vectors are perpendicular to the level curves, it follows that
the vectors F are perpendicular to the corresponding level curves of ϕ. This property is satisfied in (B) and not satisfied
in (A). Therefore (B) is the contour plot of ϕ.

32. Which of (A) or (B) in Figure 13 is the contour plot of a potential function for the vector field F?

(A) (B)

FIGURE 13
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solution Since ∇ϕ = F, F is perpendicular to the level curves of ϕ, as seen in both the contour plots (A) and (B). The

plot of F shows that F has the form F = 〈f (x), 0〉 for an increasing function f (x). Therefore, ∂ϕ
∂x

= f (x) is increasing,
implying that the rate of change of ϕ with respect to x is increasing. Hence, the density of the vertical lines is greater in
the direction of growing x. We conclude that (A) is the contour plot of ϕ.

33. Match each of these descriptions with a vector field in Figure 14:

(a) The gravitational field created by two planets of equal mass located at P and Q.

(b) The electrostatic field created by two equal and opposite charges located at P and Q (representing the force on a
negative test charge; opposite charges attract and like charges repel).

(C)

(A) (B)

QPQP

P Q

FIGURE 14

solution

(a) There will be an equilibrium point half way between the two planets. The vector field should pull objects near one
planet toward that planet. (C)

(b) A test charge at the midpoint between the two charges will be drawn by one, and repelled by the other. Therefore no
equilibrium. (B)

34. In this exercise, we show that the vector field F in Figure 15 is not conservative. Explain the following
statements:

(a) If a potential function V for F exists, then the level curves of V must be vertical lines.

(b) If a potential function V for F exists, then the level curves of V must grow farther apart as y increases.

(c) Explain why (a) and (b) are incompatible, and hence V cannot exist.

x

y

0.5 1 1.5 2

1

FIGURE 15

solution

(a) If V is a potential function for F, then ∇V = F. Therefore, F is orthogonal to the level curves of V . The plot shows
that the vectors F(x, y) are horizontal, hence the level curves of V are vertical lines.

(b) As indicated by the graph of the vector field F = 〈F1, F2〉, F2 = 0 and F1 is decreasing as y increases. Since F = ∂V
∂x

,

it follows that ∂V
∂x

is decreasing as y increases, or the rate of change of V with respect to x is decreasing as y increases.
Therefore, as y increases, the level curves of V are getting farther apart.

(c) By (a), the level curves of V are vertical lines, hence the distance between any two level curves is constant rather
than increasing with y as concluded in (b).
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Further Insights and Challenges
35. Show that any vector field of the form

F = 〈f (x), g(y), h(z)〉
has a potential function. Assume that f , g, and h are continuous.

solution Let F(x), G(y), and H(z) be antiderivatives of f (x), g(y), and h(z), respectively. That is, F ′(x) = f (x),
G′(y) = g(y), and H ′(y) = h(z). We define the function

ϕ(x, y, z) = F(x) + G(y) + H(z)

Then,

∂ϕ

∂x
= F ′(x) = f (x),

∂ϕ

∂x
= G′(y) = g(y),

∂ϕ

∂z
= H ′(z) = h(z)

Therefore, ∇ϕ = F, or ϕ is a potential function for F.

36. Let D be a disk in R2. This exercise shows that if

∇V (x, y) = 0

for all (x, y) in D, then V is constant. Consider points P = (a, b), Q = (c, d) and R = (c, b) as in Figure 16.

(a) Use single-variable calculus to show that V is constant along the segments PR and RQ.

(b) Conclude that V (P ) = V (Q) for any two points P, Q ∈ D.

x

y

Disk D

P = (a, b)

R = (c, b)

Q = (c, d)

FIGURE 16

solution Given any two points P = (a, b) and Q = (c, d) in D, we must show that

V (P ) = V (Q)

We consider the point R = (c, b) and the segments PR and
−→
RQ. (We assume that (c, b) is in D; if not, just use R′ = (a, d).)

x

y

D

P = (a, b)

R = (c, b)

Q = (c, d)

Since ∂V
∂x

(x, y) = 0 in D, in particular ∂V
∂x

(x, b) = 0 for a ≤ x ≤ c. Therefore, for a ≤ x ≤ c we have

V (x, b) =
∫ x

a

∂V

∂u
(u, b) du + V (a, b) =

∫ x

a
0 du + V (a, b) = k + V (a, b)

Substituting x = a determines k = 0. Hence,

V (x, b) = V (a, b) for a ≤ x ≤ c

In particular,

V (c, b) = V (a, b) ⇒ V (R) = V (P ) (1)
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Similarly, since ∂V
∂y

(x, y) = 0 in D, we have ∂V
∂y

(c, y) = 0 for b ≤ y ≤ d. Therefore for b ≤ y ≤ d we have

V (c, y) =
∫ y

b

∂V

∂v
(c, v) dv + V (c, b) =

∫ y

b
0 dv + V (c, b) = k + V (c, b)

Substituting y = b gives V (c, b) = k + V (c, b) or k = 0. Therefore,

V (c, y) = V (c, b) for b ≤ y ≤ d

In particular,

V (c, d) = V (c, b) ⇒ V (Q) = V (R) (2)

Combining (1) and (2) we obtain the desired equality V (P ) = V (Q). Since P and Q are any two points in D, we conclude
that V is constant on D.

16.2 Line Integrals (LT Section 17.2)

Preliminary Questions
1. What is the line integral of the constant function f (x, y, z) = 10 over a curve C of length 5?

solution Since the length of C is the line integral
∫
C 1 ds = 5, we have∫

C
10 ds = 10

∫
C

1 ds = 10 · 5 = 50

2. Which of the following have a zero line integral over the vertical segment from (0, 0) to (0, 1)?

(a) f (x, y) = x (b) f (x, y) = y

(c) F = 〈x, 0〉 (d) F = 〈y, 0〉
(e) F = 〈0, x〉 (f) F = 〈0, y〉
solution The vertical segment from (0, 0) to (0, 1) has the parametrization

c(t) = (0, t), 0 ≤ t ≤ 1

Therefore, c′(t) = 〈0, 1〉 and ‖c′(t)‖ = 1. The line integrals are thus computed by

∫
C

f (x, y) ds =
∫ 1

0
f (c(t)) ‖c′(t)‖ dt (1)

∫
C

F · ds =
∫ 1

0
F (c(t)) · c′(t) dt (2)

(a) We have f (c(t)) = x = 0. Therefore by (1) the line integral is zero.

(b) By (1), the line integral is

∫
C

f (x, y) ds =
∫ 1

0
t · 1 dt = 1

2
t2
∣∣∣∣1
0

= 1

2
�= 0

(c) This vector line integral is computed using (2). Since F (c(t)) = 〈x, 0〉 = 〈0, 0〉, the vector line integral is zero.

(d) By (2) we have

∫
C

F · ds =
∫ 1

0
〈t, 0〉 · 〈0, 1〉 dt =

∫ 1

0
0 dt = 0

(e) The vector integral is computed using (2). Since F (c(t)) = 〈0, x〉 = 〈0, 0〉, the line integral is zero.

(f) For this vector field we have

∫
C

F · ds =
∫ 1

0
F (c(t)) · c′(t) dt =

∫ 1

0
〈0, t〉 · 〈0, 1〉 dt =

∫ 1

0
t dt = t2

2

∣∣∣∣1
0

= 1

2
�= 0

So, we conclude that (a), (c), (d), and (e) have an integral of zero.

3. State whether each statement is true or false. If the statement is false, give the correct statement.

(a) The scalar line integral does not depend on how you parametrize the curve.

(b) If you reverse the orientation of the curve, neither the vector line integral nor the scalar line integral changes sign.
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solution

(a) True: It can be shown that any two parametrizations of the curve yield the same value for the scalar line integral,
hence the statement is true.

(b) False: For the definition of the scalar line integral, there is no need to specify a direction along the path, hence
reversing the orientation of the curve does not change the sign of the integral. However, reversing the orientation of the
curve changes the sign of the vector line integral.

4. Suppose that C has length 5. What is the value of
∫
C

F · ds if:

(a) F(P ) is normal to C at all points P on C?

(b) F(P ) is a unit vector pointing in the negative direction along the curve?

solution

(a) The vector line integral is the integral of the tangential component of the vector field along the curve. Since F(P ) is
normal to C at all points P on C, the tangential component is zero, hence the line integral

∫
C F · ds is zero.

(b) In this case we have

F(P ) · T(P ) = T(P ) · T(P ) = ‖T(P )‖2 = 1

Therefore, ∫
C

F · ds =
∫
C
(F · T) ds =

∫
C

1 ds = Length of C = 5.

Exercises
1. Let f (x, y, z) = x + yz, and let C be the line segment from P = (0, 0, 0) to (6, 2, 2).

(a) Calculate f (c(t)) and ds = ‖c′(t)‖ dt for the parametrization c(t) = (6t, 2t, 2t) for 0 ≤ t ≤ 1.

(b) Evaluate
∫
C

f (x, y, z) ds.

solution

(a) We substitute x = 6t , y = 2t , z = 2t in the function f (x, y, z) = x + yz to find f (c(t)):

f (c(t)) = 6t + (2t)(2t) = 6t + 4t2

We differentiate the vector c(t) and compute the length of the derivative vector:

c′(t) = d

dt
〈6t, 2t, 2t〉 = 〈6, 2, 2〉 ⇒ c′(t) =

√
62 + 22 + 22 = √

44 = 2
√

11

Hence,

ds = ‖c′(t)‖ dt = 2
√

11 dt

(b) Computing the scalar line integral, we obtain

∫
C

f (x, y, z) ds =
∫ 1

0
f (c(t)) ‖c′(t)‖ dt =

∫ 1

0
(6t + 4t2) · 2

√
11 dt

= 2
√

11

(
3t2 + 4

3
t3
) ∣∣∣∣1

0
= 2

√
11

(
3 + 4

3

)
= 26

√
11

3

2. Repeat Exercise 1 with the parametrization c(t) = (3t2, t2, t2) for 0 ≤ t ≤ √
2.

solution

(a) We substitute x = 3t2, y = t2, z = t2 in the function f (x, y, z) = x + yz to find f (c(t)):

f (c(t)) = 3t2 + (t2)(t2) = 3t2 + t4

We differentiate the vector c(t) and compute the length of the derivative vector:

c′(t) = d

dt

〈
3t2, t2, t2

〉
= 〈6t, 2t, 2t〉 ⇒ c′(t) =

√
(6t)2 + (2t)2 + (2t)2 =

√
44t2 = 2

√
11t

Hence,

ds = ‖c′(t)‖ dt = 2
√

11t dt
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(b) Computing the scalar line integral, we obtain

∫
C

f (x, y, z) ds =
∫ √

2

0
(3t2 + t4) · 2

√
11t dt = 2

√
11
∫ √

2

0
(3t3 + t5) dt

= 2
√

11

(
3t4

4
+ t6

6

) ∣∣∣∣
√

2

0
= 2

√
11

(
3 + 8

6

)
= 26

√
11

3

3. Let F = 〈y2, x2〉, and let C be the curve y = x−1 for 1 ≤ x ≤ 2, oriented from left to right.

(a) Calculate F(c(t)) and ds = c′(t) dt for the parametrization of C given by c(t) = (t, t−1).

(b) Calculate the dot product F(c(t)) · c′(t) dt and evaluate
∫
C

F · ds.

solution

(a) We calculate F (c(t)) by substituting x = t , y = t−1 in F =
〈
y2, x2

〉
. We get

F(c(t)) = 〈(t−1)
2
, t2〉 = 〈t−2, t2〉

We compute c′(t):

c′(t) = d

dt

〈
t, t−1〉 = 〈1, −t−2〉 ⇒ ds = 〈1, −t−2〉 dt

x
1 2

y

(b) We compute the dot product:

F(c(t)) · c′(t) = 〈t−2, t2〉 · 〈1, −t−2〉 = t−2 · 1 + t2 · (−t−2) = t−2 − 1

Computing the vector line integral, we obtain∫
C

F · ds =
∫ 2

1
F (c(t)) · c′(t) dt =

∫ 2

1
(t−2 − 1) dt = −t−1 − t

∣∣∣∣2
1

=
(

−1

2
− 2

)
− (−1 − 1) = −1

2

4. Let F = 〈z2, x, y
〉

and let C be the path c(t) = 〈3 + 5t2, 3 − t2, t
〉

for 0 ≤ t ≤ 2.

(a) Calculate F(c(t)) and ds = c′(t) dt .

(b) Calculate the dot product F(c(t)) · c′(t) dt and evaluate
∫
C

F · ds.

solution

(a) We compute F (c(t)) by substituting x = 3 + 5t2, y = 3 − t2, z = t in F = 〈z2, x, y
〉
. We get

F (c(t)) = 〈t2, 3 + 5t2, 3 − t2〉
We differentiate c(t):

c′(t) = d

dt

〈
3 + 5t2, 3 − t2, t

〉
= 〈10t, −2t, 1〉 ⇒ ds = 〈10t, −2t, 1〉 dt

(b) We compute the dot product:

F (c(t)) · c′(t) dt =
〈
t2, 3 + 5t2, 3 − t2

〉
· 〈10t, −2t, 1〉 dt

=
(
t2 · 10t + (3 + 5t2)(−2t) + (3 − t2) · 1

)
dt

= (10t3 − 6t − 10t3 + 3 − t2) dt = (−t2 − 6t + 3) dt

Computing the vector line integral gives∫
C

F · ds =
∫ 2

0
F (c(t)) · c′(t) dt =

∫ 2

0
(−t2 − 6t + 3) dt = − t3

3
− 3t2 + 3t

∣∣∣∣2
0

= −26

3
= −8

2

3
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In Exercises 5–8, compute the integral of the scalar function or vector field over c(t) = (cos t, sin t, t) for 0 ≤ t ≤ π .

5. f (x, y, z) = x2 + y2 + z2

solution

Step 1. Compute ‖c′(t)‖. We differentiate c(t):

c′(t) = d

dt
〈cos t, sin t, t〉 = 〈− sin t, cos t, 1〉

Hence,

‖c′(t)‖ =
√

(− sin t)2 + cos2 t + 12 =
√

sin2 t + cos2 t + 1 = √
2

ds = ‖c′(t)‖ dt = √
2 dt

Step 2. Write out f (c(t)). We substitute x = cos t , y = sin t , z = t in f (x, y, z) = x2 + y2 + z2 to obtain

f (c(t)) = cos2 t + sin2 t + t2 = 1 + t2

Step 3. Compute the line integral. Using the Theorem on Scalar Line Integrals we obtain

∫
C
(x2 + y2 + z2) ds =

∫ π

0
f (c(t)) ‖c′(t)‖ dt =

∫ π

0
(1 + t2)

√
2 dt = √

2

(
t + t3

3

) ∣∣∣∣π
0

= √
2

(
π + π3

3

)

6. f (x, y, z) = xy + z

solution

Step 1. Compute ‖c′(t)‖. We differentiate c(t):

c′(t) = d

dt
〈cos t, sin t, t〉 = 〈− sin t, cos t, 1〉

Hence,

‖c′(t)‖ =
√

(− sin t)2 + cos2 t + 12 =
√

sin2 t + cos2 t + 1 = √
2

ds = ‖c′(t)‖ dt = √
2 dt

Step 2. Write out f (c(t)). We substitute x = cos t , y = sin t , z = t in f (x, y, z) = xy + z to obtain

f (c(t)) = cos t sin t + t

Step 3. Compute the line integral. Using the Theorem on Scalar Line Integrals we obtain

∫
C
(xy + z) ds =

∫ π

0
(cos t sin t + t)

√
2 dt = √

2

(
sin2 t

2
+ t2

2

) ∣∣∣∣π
0

= √
2
π2

2
= π2

√
2

7. F = 〈x, y, z〉
solution

Step 1. Calculate the integrand. We write out the vectors:

c(t) = (cos t, sin t, t)

F (c(t)) = 〈x, y, z〉 = 〈cos t, sin t, t〉
c′(t) = 〈− sin t, cos t, 1〉

The integrand is the dot product:

F (c(t)) · c′(t) = 〈cos t, sin t, t〉 · 〈− sin t, cos t, 1〉 = − cos t sin t + sin t cos t + t = t

Step 2. Evaluate the integral. We use the Theorem on Vector Line Integrals to evaluate the integral:

∫
C

F ds =
∫ π

0
F (c(t)) · c′(t) dt =

∫ π

0
t dt = 1

2
t2
∣∣∣∣π
0

= π2

2
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8. F = 〈xy, 2, z3〉
solution

Step 1. Calculate the integrand. We write out the vectors:

c(t) = (cos t, sin t, t)

c′(t) = (− sin t, cos t, 1)

F (c(t)) =
〈
cos t sin t, 2, t3

〉
The integrand is the dot product:

F (c(t)) · c′(t) =
〈
cos t sin t, 2, t3

〉
· 〈− sin t, cos t, 1〉 = − cos t sin2 t + 2 cos t + t3

Step 2. Evaluate the integral. We have∫
C

Fds =
∫ π

0
F (c(t)) · c′(t) dt =

∫ π

0

(
− cos t sin2 t + 2 cos t + t3

)
dt

= −
∫ π

0
cos t sin2 t dt + 2

∫ π

0
cos t dt +

∫ π

0
t3 dt

Since
∫ π

0 cos t dt = 0 and
∫ π

0 cos t sin2 t = 0,

∫
C

F ds =
∫ π

0
t3 dt = t4

4

∣∣∣∣π
0

= π4

4

In Exercises 9–16, compute
∫
C

f ds for the curve specified.

9. f (x, y) = √
1 + 9xy, y = x3 for 0 ≤ x ≤ 1

solution The curve is parametrized by c(t) =
(
t, t3

)
for 0 ≤ t ≤ 1

Step 1. Compute ‖c′(t)‖. We have

c′(t) = d

dt

〈
t, t3

〉
=
〈
1, 3t2

〉
⇒ ‖c′(t)‖ =

√
1 + 9t4

Step 2. Write out f (c(t)). We substitute x = t , y = t3 in f (x, y) = √
1 + 9xy to obtain

f (c(t)) =
√

1 + 9t · t3 =
√

1 + 9t4

Step 3. Compute the line integral. We use the Theorem on Scalar Line Integrals to write

∫
C

f (x, y) ds =
∫ 1

0
f (c(t)) ‖c′(t)‖ dt =

∫ 1

0

√
1 + 9t4

√
1 + 9t4 dt =

∫ 1

0

(
1 + 9t4

)
dt

= t + 9t5

5

∣∣∣∣1
0

= 14

5
= 2.8

10. f (x, y) = y3

x7 , y = 1
4x4 for 1 ≤ x ≤ 2

solution We parametrize the curve by c(t) =
〈
t, t4

4

〉
for 1 ≤ t ≤ 2.

Step 1. Compute ‖c′(t)‖. We have

c′(t) = d

dt

〈
t,

t4

4

〉
=
〈
1, t3

〉
⇒ ‖c′(t)‖ =

√
1 + t6

Step 2. Write out f (c(t)). We substitute x = t , y = t4

4 in f (x, y) = y3

x7 to obtain:

f (c(t)) =
(

t4

4

)3

t7 = t5

64
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Step 3. Compute the line integral. We have

∫
C

f (x, y) ds =
∫ 2

1
f (c(t)) ‖c′(t)‖ dt =

∫ 2

1

t5

64

√
1 + t6 dt

We substitute u = 1 + t6, du = 6t5 dt :

∫
C

f (x, y) ds = 1

384

∫ 65

2

√
u du = 1

384

2

3
u3/2

∣∣∣∣65

2
= 1

576
(653/2 − 23/2) ≈ 0.9049

11. f (x, y, z) = z2, c(t) = (2t, 3t, 4t) for 0 ≤ t ≤ 2

solution

Step 1. Compute ‖c′(t)‖ We have

c′(t) = d

dt
〈2t, 3t, 4t〉 = 〈2, 3, 4〉 ⇒ ‖c′(t)‖ =

√
22 + 32 + 42 = √

29

Step 2. Write out f (c(t)) We substitute z = 4t in f (x, y, z) = z2 to obtain:

f (c(t)) = 16t2

Step 3. Compute the line integral. By the Theorem on Scalar Line Integrals we have

∫
C

f (x, y, z) ds =
∫ 2

0
f (c(t)) ‖c′(t)‖ dt =

∫ 2

0
16t2 · √

29 dt = √
29 · 16

3
t3
∣∣∣∣2
0

= 128
√

29

3
≈ 229.8

12. f (x, y, z) = 3x − 2y + z, c(t) = (2 + t, 2 − t, 2t)

for −2 ≤ t ≤ 1

solution

Step 1. Compute ‖c′(t)‖. We differentiate c(t) = (2 + t, 2 − t, 2t) and compute the length of the derivative vector:

c′(t) = (1, −1, 2) ⇒ ‖c′(t)‖ =
√

12 + (−1)2 + 22 = √
6

Step 2. Write out f (c(t)). We substitute x = 2 + t, y = 2 − t, z = 2t in f (x, y, z) = 3x − 2y + z to obtain:

f (c(t)) = 3(2 + t) − 2(2 − t) + 2t = 7t + 2

Step 3. Compute the line integral. We have

∫
C

f (x, y, z) ds =
∫ 1

−2
f (c(t)) ‖c′(t)‖ dt =

∫ 1

−2
(7t + 2)

√
6 dt = √

6

(
7t2

2
+ 2t

) ∣∣∣∣1−2

= √
6

((
7

2
+ 2

)
−
(

28

2
− 4

))
= −9

√
6

2

13. f (x, y, z) = xez2
, piecewise linear path from (0, 0, 1) to (0, 2, 0) to (1, 1, 1)

solution Let C1 be the segment joining the points (0, 0, 1) and (0, 2, 0) and C2 be the segment joining the points
(0, 2, 0) and (1, 1, 1). We parametrize C1 and C2 by the following parametrization:

C1 : c1(t) = (0, 2t, 1 − t), 0 ≤ t ≤ 1

C2 : c2(t) = (t, 2 − t, t), 0 ≤ t ≤ 1

For C = C1 + C1 we have ∫
C

f (x, y, z) ds =
∫
C1

f (x, y, z) ds +
∫
C2

f (x, y, z) ds (1)

We compute the integrals on the right hand side.

• The integral over C1: We have

c′
1(t) = d

dt
〈0, 2t, 1 − t〉 = 〈0, 2, −1〉 ⇒ ‖c′

1(t)‖ = √
0 + 4 + 1 = √

5

f (c(t)) = xez2 = 0 · e(1−t)2 = 0
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Hence, ∫
C1

f (x, y, z) ds =
∫ 1

0
f (c1(t)) ‖c′

1(t)‖ dt =
∫ 1

0
0 dt = 0 (2)

• The integral over C2: We have

c′
2(t) = d

dt
〈t, 2 − t, t〉 = 〈1, −1, 1〉 ⇒ ‖c′

2(t)‖ = √
1 + 1 + 1 = √

3

f (c2(t)) = xez2 = tet2

Hence, ∫
C2

f (x, y, z) ds =
∫ 1

0
tet2√

3 dt (3)

Using the substitution u = t2 we find that∫
C2

f (x, y, z) ds =
∫ 1

0

√
3

2
eu du =

√
3

2
(e − 1) ≈ 1.488

Hence, ∫
C

f (x, y, z) ds ≈ 1.488

14. f (x, y, z) = x2z, c(t) = (et ,
√

2t, e−t ) for 0 ≤ t ≤ 1

solution
Step 1. Compute ‖c′(t)‖. We have

c′(t) = d

dt

〈
et ,

√
2t, e−t

〉
=
〈
et ,

√
2, −e−t

〉
Hence,

‖c′(t)‖ =
√(

et
)2 +

(√
2
)2 + (−e−t

)2 =
√

e2t + 2 + e−2t =
√(

et + e−t
)2 = et + e−t

Step 2. Write out f (c(t)). We substitute x = et , y = √
2t , z = e−t in f (x, y, z) = x2z to obtain

f (c(t)) = e2t · e−t = et

Step 3. Compute the integral. We use the Theorem on Scalar Line Integral to obtain the following integral:∫
C

f (x, y, z) ds =
∫ 1

0
f (c(t)) ‖c′(t)‖ dt =

∫ 1

0
et
(
et + e−t

)
dt =

∫ 1

0

(
e2t + 1

)
dt

= 1

2
e2t + t

∣∣∣∣1
0

=
(

1

2
e2 + 1

)
−
(

1

2

)
= 1

2

(
e2 + 1

)

15. f (x, y, z) = 2x2 + 8z, c(t) = (et , t2, t), 0 ≤ t ≤ 1

solution
Step 1. Compute ‖c′(t)‖.

c′(t) = d

dt

〈
et , t2, t

〉
= 〈et , 2t, 1

〉 ⇒ ‖c′(t)‖ =
√

e2t + 4t2 + 1

Step 2. Write out f (c(t)). We substitute x = et , y = t2, z = t in f (x, y, z) = 2x2 + 8z to obtain:

f (c(t)) = 2e2t + 8t

Step 3. Compute the line integral. We have∫
C

f (x, y, z) ds =
∫ 1

0
f (c(t)) ‖c′(t)‖ dt =

∫ 1

0
(2e2t + 8t)

√
e2t + 4t2 + 1 dt

We compute the integral using the substitution u = e2t + 4t2 + 1, du = 2e2t + 8t dt . We get:

∫
C

f (x, y, z) ds =
∫ e2+5

2
u1/2 du = 2

3
u3/2

∣∣∣∣e
2+5

2
= 2

3

(
(e2 + 5)

3/2 − 23/2
)
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16. f (x, y, z) = 6xz − 2y2, c(t) =
(

t,
t2
√

2
,
t3

3

)
, 0 ≤ t ≤ 2

solution

Step 1. Compute ‖c′(t)‖.

c′(t) = d

dt

〈
t,

t2
√

2
,
t3

3

〉
=
〈
1,

√
2t, t2

〉

⇒ ‖c′(t)‖ =
√

12 + (
√

2t)2 + (t2)2 =
√

1 + 2t2 + t4 =
√

(1 + t2)2 = 1 + t2

Step 2. Write out f (c(t)). We substitute x = t , y = t2
√

2
, z = t3

3
in f (x, y, z) = 6xz − 2y2 to obtain:

f (c(t)) = 6t

(
t3

3

)
− 2

(
t2
√

2

)2

= 2t4 − t4 = t4

Step 3. Compute the line integral. We have

∫
C

f (x, y, z) ds =
∫ 2

0
f (c(t)) ‖c′(t)‖ dt =

∫ 2

0
t4(1 + t2) dt =

∫ 2

0
t4 + t6 dt

= t5

5
+ t7

7

∣∣∣∣2
0

= 32

5
+ 128

7
= 864

35

17. Calculate
∫
C

1 ds, where the curve C is parametrized by c(t) = (4t, −3t, 12t) for 2 ≤ t ≤ 5. What does this integral

represent?

solution Compute ‖c′(t)‖.

c′(t) = d

dt
< 4t, −3t, 12t >=< 4, −3, 12 > ⇒ ‖c′(t)‖ =

√
42 + (−3)2 + (12)2 = 13

Compute the line integral. We have

∫
C

1 ds =
∫ 5

2
‖c′(t)‖ dt =

∫ 5

2
13 dt = 13(5 − 2) = 39

This represents the distance from the point (8, −6, 24) to the point (20, −15, 60).

18. Calculate
∫
C

1 ds, where the curve C is parametrized by c(t) = (et ,
√

2t, e−t ) for 0 ≤ t ≤ 2.

solution Compute ‖c′(t)‖.

c′(t) = d

dt
< et ,

√
2t, e−t >=< et ,

√
2, −e−t >

⇒ ‖c′(t)‖ =
√

(et )2 + (
√

2)2 + (−e−t )2 =
√

e2t + 2 + e−2t =
√

(et + e−t )2 = et + e−t

Compute the line integral. We have

∫
C

1 ds =
∫ 2

0
‖c′(t)‖ dt =

∫ 2

0
et + e−t dt = et − e−t

∣∣∣∣2
0

= e2 − e−2

In Exercises 19–26, compute
∫
C

F · ds for the oriented curve specified.

19. F = 〈x2, xy
〉
, line segment from (0, 0) to (2, 2)

solution The oriented line segment is parametrized by

c(t) = (t, t), t varies from 0 to 2.

Therefore,

F (c(t)) =
〈
x2, xy

〉
=
〈
t2, t · t

〉
=
〈
t2, t2

〉
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c′(t) = d

dt
〈t, t〉 = 〈1, 1〉

The integrand is the dot product:

F (c(t)) · c′(t) =
〈
t2, t2

〉
· 〈1, 1〉 = t2 + t2 = 2t2

We now use the Theorem on vector line integral to compute
∫
C F · ds:

∫
C

F · ds =
∫ 2

0
F (c(t)) · c′(t) dt =

∫ 2

0
2t2 dt = 2t3

3

∣∣∣∣2
0

= 16

3

20. F = 〈4, y〉, quarter circle x2 + y2 = 1 with x ≤ 0, y ≤ 0, oriented counterclockwise

solution

x

y

The oriented path is parametrized by:

c(t) = (cos t, sin t), π ≤ t ≤ 3π

2

We compute the integrand:

F (c(t)) = 〈4, sin t〉
c′(t) = 〈− sin t, cos t〉

F (c(t)) · c′(t) = 〈4, sin t〉 · 〈− sin t, cos t〉 = −4 sin t + sin t cos t = −4 sin t + 1

2
sin 2t

The vector line integral is the following integral:

∫
C

F · ds =
∫ 3π/2

π
F (c(t)) · c′(t) dt =

∫ 3π/2

π

(
−4 sin t + 1

2
sin 2t

)
dt = 4 cos t − 1

4
cos 2t

∣∣∣∣3π/2

π

=
(

4 cos
3π

2
− 1

4
cos 3π

)
−
(

4 cos π − 1

4
cos 2π

)
= 1

4
+ 4 + 1

4
= 4.5

21. F = 〈x2, xy
〉
, part of circle x2 + y2 = 9 with x ≤ 0, y ≥ 0, oriented clockwise

solution

3
x

y

The oriented path is parametrized by

c(t) = (−3 cos t, 3 sin t); t is changing from 0 to
π

2
.

Note: c(0) = (−3, 0) and c
(
π
2

) = (0, 3). cos t and sin t are both positive in this range, so x = −3 cos t ≤ 0 and
y = 3 sin t ≥ 0. We compute the integrand:

F (c(t)) =
〈
x2, xy

〉
=
〈
9 cos2 t, −9 cos t sin t

〉
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c′(t) = 〈3 sin t, 3 cos t〉
F (c(t)) · c′(t) =

〈
9 cos2 t, −9 cos t sin t

〉
· 〈3 sin t, 3 cos t〉 = 27 cos2 t sin t − 27 cos2 t sin t = 0

Hence,

∫
C

F · ds =
∫ π

2

0
F (c(t)) · c′(t) dt =

∫ π
2

0
0 dt = 0

22. F = 〈ey−x, e2x
〉
, piecewise linear path from (1, 1) to (2, 2) to (0, 2)

solution Let C1 be the linear path from (1, 1) to (2, 2), C2 the linear path from (2, 2) to (0, 2) and

C = C1 + C2

We use the following parametrizations:

• C1 : c1(t) = (t, t) t is changing from t = 1 to t = 2

• C2 : c2(t) = (t, 2) t is changing from t = 2 to t = 0

x

y

(0, 2) (2, 2)

(1, 1)
C1

C2

By properties of line integrals, ∫
C

F · ds =
∫
C1

F · ds +
∫
C2

F · ds (1)

We compute each integral on the right-hand side:

• The integral over C1:

F (c1(t)) =
〈
ey−x, e2x

〉
=
〈
et−t , e2t

〉
=
〈
1, e2t

〉
c′

1(t) = 〈1, 1〉
F (c1(t)) · c′

1(t) =
〈
1, e2t

〉
· 〈1, 1〉 = 1 + e2t

Hence,

∫
C1

F · ds =
∫ 2

1

(
1 + e2t

)
dt = t + 1

2
e2t

∣∣∣∣2
1

=
(

2 + 1

2
e4
)

−
(

1 + 1

2
e2
)

= 1 + 1

2
e4 − 1

2
e2 (2)

• The integral over C2:

F (c2(t)) =
〈
ey−x, e2x

〉
=
〈
e2−t , e2t

〉
c′

2(t) = 〈1, 0〉
F (c2(t)) · c′

2(t) =
〈
e2−t , e2t

〉
· 〈1, 0〉 = e2−t · 1 + e2t · 0 = e2−t

Hence,

∫
C2

F · ds =
∫ 0

2
F (c2(t)) · c′

2(t) dt =
∫ 0

2
e2−t dt = −e2−t

∣∣∣∣0
2

= −e2−0 + e2−2 = −e2 + 1 (3)

We combine (1), (2), and (3) to obtain the following solution:

∫
C

F · ds =
(

1 + 1

2
e4 − 1

2
e2
)

+
(
−e2 + 1

)
= 1

2
e4 − 3

2
e2 + 2
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23. F = 〈3zy−1, 4x, −y
〉
, c(t) = (et , et , t) for −1 ≤ t ≤ 1

solution

Step 1. Calculate the integrand. We write out the vectors and compute the integrand:

c(t) = (et , et , t
)

F (c(t)) =
〈
3zy−1, 4x, −y

〉
= 〈3te−t , 4et , −et

〉
c′(t) = 〈et , et , 1

〉
The integrand is the dot product:

F (c(t)) · c′(t) = 〈3te−t , 4et , −et
〉 · 〈et , et , 1

〉 = 3te−t · et + 4et · et − et · 1 = 3t + 4e2t − et

Step 2. Evaluate the integral. The vector line integral is:

∫
C

F · ds =
∫ 1

−1
F (c(t)) · c′(t) dt =

∫ 1

−1

(
3t + 4e2t − et

)
dt = 0 +

∫ 1

−1

(
4e2t − et

)
dt = 2e2t − et

∣∣∣∣1−1

=
(

2e2 − e
)

−
(

2e−2 − e−1
)

= 2
(
e2 − e−2

)
−
(
e − e−1

)
≈ 12.157

24. F =
〈 −y

(x2 + y2)2
,

x

(x2 + y2)2

〉
, circle of radius R with center at the origin oriented counterclockwise

solution

R
x

y

The path has the following parametrization:

c(t) = 〈R cos t, R sin t〉 , 0 ≤ t ≤ 2π

Step 1. Calculate the integrand. Since x2 + y2 = R2 on the circle, we have

F(c(t)) =
〈 −y

(x2 + y2)2
,

x

(x2 + y2)2

〉
=
〈−R sin t

R4
,
R cos t

R4

〉
= 1

R3
〈− sin t, cos t〉

c′(t) = d

dt
〈R cos t, R sin t〉 = R〈− sin t, cos t〉

The integrand is the dot product:

F(c(t)) · c′(t) = 1

R3
〈− sin t, cos t〉 · R〈− sin t, cos t〉 = 1

R2
(cos2 t + sin2 t) = 1

R2

Step 2. Evaluate the integral. We obtain the following integral:

∫
C

F · ds =
∫ 2π

0
F(c(t)) · c′(t) dt =

∫ 2π

0

dt

R2
= 2π

R2

25. F =
〈

1

y3 + 1
,

1

z + 1
, 1

〉
, c(t) = (t3, 2, t2) for 0 ≤ t ≤ 1

solution

Step 1. Calculate the integrand. We have

c(t) =
(
t3, 2, t2

)

F (c(t)) =
〈

1

y3 + 1
,

1

z + 1
, 1

〉
=
〈

1

23 + 1
,

1

t2 + 1
, 1

〉
=
〈

1

9
,

1

t2 + 1
, 1

〉
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c′(t) =
〈
3t2, 0, 2t

〉
Hence,

F (c(t)) · c′(t) =
〈

1

9
,

1

t2 + 1
, 1

〉
·
〈
3t2, 0, 2t

〉
= 3t2

9
+ 0 + 2t

Step 2. Evaluate the integral. Using the Theorem on vector line integrals we obtain:∫
C

F · ds =
∫ 1

0
F (c(t)) · c′(t) dt =

∫ 1

0

t2

3
dt +

∫ 1

0
2t dt

= t3

9

∣∣∣∣1
0

+ t2
∣∣∣∣1
0

= 10

9

26. F =
〈
z3, yz, x

〉
, quarter of the circle of radius 2 in the yz-plane with center at the origin where y ≥ 0 and z ≥ 0,

oriented clockwise when viewed from the positive x-axis

solution

z

y

x

The oriented path has the following parametrization:

c(t) = (0, 2 cos t, 2 sin t)

t is changing from π
2 to 0.

Step 1. Calculate the integrand. We write out the vectors and compute the integrand:

c(t) = (0, 2 cos t, 2 sin t)

F (c(t)) =
〈
z3, yz, x

〉
=
〈
8 sin3 t, 4 cos t sin t, 0

〉
c′(t) = 〈0, −2 sin t, 2 cos t〉

The integrand is the dot product:

F (c(t)) · c′(t) =
〈
8 sin3t, 4 cos t sin t, 0

〉
· 〈0, −2 sin t, 2 cos t〉 = −8 cos t sin2 t

Step 2. Evaluate the integral. We obtain the following vector line integral:

∫
C

F · ds =
∫ 0

π
2

F (c(t)) · c′(t) dt =
∫ 0

π
2

−8 cos t sin2 t dt =
∫ π

2

0
8 sin2 t cos t dt = 8

(
sin3t

3

∣∣∣∣
π
2

0

)
= 8

3

In Exercises 27–32, evaluate the line integral.

27.
∫
C

y dx − x dy, parabola y = x2 for 0 ≤ x ≤ 2

solution
Step 1. Calculate the integrand.

c(t) = (t, t2)

F (c(t)) = 〈y, −x〉 =
〈
t2, −t

〉
c′(t) = 〈1, 2t〉

The integrand is the dot product

F (c(t)) · c′(t) =
〈
t2, −t

〉
· 〈1, 2t〉 = t2 − 2t2 = −t2
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Step 2. ∫
C

y dx − x dy =
∫ 2

0
−t2 dt = − t3

3

∣∣∣∣2
0

= −8

3

28.
∫
C

y dx + z dy + x dz, c(t) = (2 + t−1, t3, t2) for 0 ≤ t ≤ 1

solution
Step 1. Calculate the integrand.

c(t) = (2 + t−1, t3, t2)

F (c(t)) = 〈y, z, x〉 =
〈
t3, t2, 2 + t−1

〉
c′(t) =

〈
−t−2, 3t2, 2t

〉
The integrand is the dot product

F (c(t)) · c′(t) =
〈
t3, t2, 2 + t−1

〉
·
〈
−t−2, 3t2, 2t

〉
= (t3)(−t−2) + t2(3t2) + (2 + t−1)2t = 3t4 + 3t + 2

Step 2. ∫
C

y dx + z dy + x dz =
∫ 1

0
3t4 + 3t + 2 dt = 3t5

5
+ 3t2

2
+ 2t

∣∣∣∣1
0

= 41

10

29.
∫
C
(x − y) dx + (y − z) dy + z dz, line segment from (0, 0, 0) to (1, 4, 4)

solution The oriented line segment from (0, 0, 0) to (1, 4, 4) has the parametrization:

c(t) = (t, 4t, 4t), 0 ≤ t ≤ 1

Step 1. Calculate the integrand. We have

F (c(t)) = 〈x − y, y − z, z〉 = 〈t − 4t, 4t − 4t, 4t〉 = 〈−3t, 0, 4t〉

c′(t) = d

dt
〈t, 4t, 4t〉 = 〈1, 4, 4〉

The integrand is the dot product:

F (c(t)) · c′(t) = 〈−3t, 0, 4t〉 · 〈1, 4, 4〉 = −3t · 1 + 0 · 4 + 4t · 4 = 13t

Step 2. Evaluate the integral. The vector line integral is:∫
C

F · ds =
∫ 1

0
F (c(t)) · c′(t) dt =

∫ 1

0
13t dt = 13

2
t2
∣∣∣∣1
0

= 6.5

30.
∫
C

z dx + x2 dy + y dz, c(t) = (cos t, tan t, t) for 0 ≤ t ≤ π
4

solution
Step 1. Calculate the integrand.

c(t) = (cos t, tan t, t)

F (c(t)) =
〈
z, x2, y

〉
=
〈
t, cos2 t, tan t

〉
c′(t) =

〈
− sin t, sec2 t, 1

〉
The integrand is the dot product

F (c(t)) · c′(t) =
〈
t, cos2 t, tan t

〉
·
〈
− sin t, sec2 t, 1

〉
= t (− sin t) + cos2 t sec2 t + tan t = −t sin t + 1 + tan t

Step 2. ∫
C

y dx + z dy + x dz =
∫ π

4

0
−t sin t + 1 + tan t dt

= t cos t − sin t + t − ln(cos t)

∣∣∣∣
π
4

0
= π

√
2

8
−

√
2

2
+ π

4
+ 1

2
ln(2)
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31.
∫
C

−y dx + x dy

x2 + y2
, segment from (1, 0) to (0, 1).

solution
Step 1. Calculate the integrand.

c(t) = (1 − t, t) (0 ≤ t ≤ 1)

F (c(t)) = 1

x2 + y2
〈−y, x〉 = 1

(1 − t)2 + t2
〈−t, 1 − t〉

c′(t) = 〈−1, 1〉
The integrand is the dot product

F (c(t)) · c′(t) = 1

(1 − t)2 + t2
〈−t, 1 − t〉 · 〈−1, 1〉 = t + 1 − t

(1 − t)2 + t2
= 1

2t2 − 2t + 1

Step 2. ∫
C

−y dx + x dy

x2 + y2
=
∫ 1

0

dt

2t2 − 2t + 1
= 1

2

∫ 1

0

dt(
t − 1

2

)2 + 1
4

We use the trigonometric substitution t = 1
2 + 1

2 tan θ ⇒ dt = 1
2 sec2 θ dθ .

= 1

2

∫ π
4

− π
4

1
2 sec2 θ dθ

1
4 (tan2 θ + 1)

=
∫ π

4

− π
4

dθ = π

2

32.
∫
C

y2 dx + z2 dy + (1 − x2) dz, quarter of the circle of radius 1 in the xz-plane with center at the origin in the

quadrant x ≥ 0, z ≤ 0, oriented counterclockwise when viewed from the positive y-axis.

solution
Step 1. Calculate the integrand.

c(t) = (cos t, 0, sin t)

(
3π

2
≤ t ≤ 2π

)

F (c(t)) =
〈
y2, z2, 1 − x2

〉
=
〈
02, sin2 t, 1 − cos2 t

〉
=
〈
0, sin2 t, sin2 t

〉
c′(t) = 〈− sin t, 0, cos t〉

The integrand is the dot product

F (c(t)) · c′(t) =
〈
0, sin2 t, sin2 t

〉
· 〈− sin t, 0, cos t〉

= sin2 t cos t

Step 2. ∫
C

y2 dx + z2 dy + (1 − x2) dz =
∫ 2π

3π
2

sin2 t cos t dt

= sin3 t

3

∣∣∣∣2π

3π
2

= 1

3
(0 − (−1)3) = 1

3

33. Let f (x, y, z) = x−1yz, and let C be the curve parametrized by c(t) = (ln t, t, t2) for 2 ≤ t ≤ 4. Use a

computer algebra system to calculate
∫
C

f (x, y, z) ds to four decimal places.

solution Note that c′(t) = 〈1/t, 1, 2t〉, so ‖c′(t)‖ =
√

1/t2 + 1 + 4t2. Our line integral is

∫ 4

2
f (ln t, t, t2)

√
1/t2 + 1 + 4t2 dt,

which we calculate to be 339.5587.
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34. Use a CAS to calculate
∫
C
〈
ex−y, ex+y

〉 · ds to four decimal places, where C is the curve y = sin x for

0 ≤ x ≤ π , oriented from left to right.

solution Using the parameterization c(t) = 〈t, sin t〉, our integral becomes
∫ π

0

〈
et−sin t , et+sin t

〉
· 〈1, cos t〉 dt ,

which is calculated to be −4.5088.

In Exercises 35 and 36, calculate the line integral of F = 〈ez, ex−y, ey
〉

over the given path.

35. The blue path from P to Q in Figure 14

P = (0, 0, 0)

(0, 0, 1)

(0, 1, 1)

Q = (−1, 1, 1)

FIGURE 14

solution

C1

C2

C3

P = (0, 0, 0)

R = (0, 0, 1)

S = (0, 1, 1)

Q = (−1, 1, 1)

Let C1, C2, C3 denote the oriented segments from P to R, from R to S and S to Q respectively. These paths have the
following parametrizations (see figure):

C1 : c1(t) = (0, 0, t) 0 ≤ t ≤ 1

C2 : c2(t) = (0, t, 1) 0 ≤ t ≤ 1

C3 : c3(t) = (−t, 1, 1) 0 ≤ t ≤ 1

⇒
c′

1(t) = 〈0, 0, 1〉
c′

2(t) = 〈0, 1, 0〉
c′

3(t) = 〈−1, 0, 0〉
Since C = C1 + C2 + C3 we have ∫

C
F · ds =

∫
C1

F · ds +
∫
C2

F · ds +
∫
C3

F · ds (1)

We compute each integral on the right hand side separately.∫
C1

F · ds =
∫ 1

0
F (c1(t)) · c′

1(t) dt =
∫ 1

0

〈
et , e0−0, e0

〉
· 〈0, 0, 1〉 dt =

∫ 1

0
1 dt = 1

∫
C2

F · ds =
∫ 1

0
F (c2(t)) · c′

2(t) dt =
∫ 1

0

〈
e1, e0−t , et

〉
· 〈0, 1, 0〉 dt =

∫ 1

0
e−t dt = −e−t

∣∣∣∣1
0

= 1 − e−1

∫
C3

F · ds =
∫ 1

0
F (c3(t)) · c′

3(t) dt =
∫ 1

0

〈
e1, et−1, e1

〉
· 〈−1, 0, 0〉 dt =

∫ 1

0
−e dt = −e

Substituting these integrals in (1) gives∫
C

F · ds = 1 + (1 − e−1) − e = 2 − e−1 − e

36. The closed path ABCA in Figure 15

z

y
x

C = (0, 0, 6)

B = (0, 4, 0)A = (2, 0, 0)

FIGURE 15
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solution

z

y
x

C = (0, 0, 6)

B = (0, 4, 0)A = (2, 0, 0)
C1

C2C3

We denote by C1, C2, C3 the oriented segments from A to B, from B to C and from C to A. We parametrize these paths
by,

C1:c1(t) = (1 − t)(2, 0, 0) + t (0, 4, 0) = (2 − 2t, 4t, 0), 0 ≤ t ≤ 1

C2:c2(t) = (1 − t)(0, 4, 0) + t (0, 0, 6) = (0, 4 − 4t, 6t), 0 ≤ t ≤ 1

C3:c3(t) = (1 − t)(0, 0, 6) + t (2, 0, 0) = (2t, 0, 6 − 6t), 0 ≤ t ≤ 1

⇒
c′

1(t) = 〈−2, 4, 0〉
c′

2(t) = 〈0, −4, 6〉
c′

3(t) = 〈2, 0, −6〉
Since C = C1 + C2 + C3 we have,

∫
C

F · ds =
3∑

i=1

∫
Ci

F · ds (1)

We compute the integrals on the right-hand side:∫
C1

F · ds =
∫ 〈

e0, e2−6t , e4t
〉
· 〈−2, 4, 0〉 dt =

∫ 1

0

〈
1, e2−6t , e4t

〉
· 〈−2, 4, 0〉 dt

=
∫ 1

0

(
−2 + 4e2−6t

)
dt = −2t − 2

3
e2−6t

∣∣∣∣1
0

= 2

3
e2 − 2

3
e−4 − 2

∫
C2

F · ds =
∫ 1

0

〈
e6t , e−4+4t , e4−4t

〉
· 〈0, −4, 6〉 dt =

∫ 1

0

(
−4e−4+4t + 6e4−4t

)
dt

= −e−4+4t − 3

2
e4−4t

∣∣∣∣1
0

= 3

2
e4 + e−4 − 5

2∫
C3

F · ds =
∫ 1

0

〈
e6−6t , e2t , e0

〉
· 〈2, 0, −6〉 dt =

∫ 1

0

(
2e6−6t − 6

)
dt

= −1

3
e6−6t − 6t

∣∣∣∣1
0

= 1

3
e6 − 19

3

We substitute these values in (1) to obtain the solution:∫
C

F · ds =
(

2

3
e2 − 2

3
e−4 − 2

)
+
(

3

2
e4 + e−4 − 5

2

)
+
(

1

3
e6 − 19

3

)

= 1

3
e6 + 3

2
e4 + 2

3
e2 − 65

6
+ 1

3
e−4

In Exercises 37 and 38, C is the path from P to Q in Figure 16 that traces C1, C2, and C3 in the orientation indicated,
and F is a vector field such that ∫

C
F · ds = 5,

∫
C1

F · ds = 8,

∫
C3

F · ds = 8

x

y

P

Q

C1

C3

C2

FIGURE 16
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37. Determine:

(a)
∫
−C3

F · ds (b)
∫
C2

F · ds (c)
∫
−C1−C3

F · ds

solution

x

y

P

Q

C1

C3

C2

(a) If the orientation of the path is reversed, the line integral changes sign, thus:

∫
−C3

F · ds = −
∫
C3

F · ds = −8

(b) By additivity of line integrals, we have

∫
C

F · ds =
∫
C1

F · ds +
∫
C2

F · ds +
∫
C3

F · ds

Substituting the given values we obtain

5 = 8 +
∫
C2

F · ds + 8

or ∫
C2

F · ds = 5 − 16 = −11

(c) Using properties of line integrals gives

∫
−C1−C3

F · ds =
∫
−C1

F · ds +
∫
−C3

F · ds = −
∫
C1

F · ds −
∫
C3

F · ds = −8 − 8 = −16

38. Find the value of
∫
C′

F · ds, where C′ is the path that traverses the loop C2 four times in the clockwise direction.

solution Using additivity and the integral over the curve with the reversed orientation, the line integral of F over the
path that traverses the loop C2 four times in the clockwise direction is:

4
∫
−C2

F · ds = 4 ·
(

−
∫
C2

F · ds
)

= −4
∫
C2

F · ds = −4 · (−11) = 44

39. The values of a function f (x, y, z) and vector field F(x, y, z) are given at six sample points along the path ABC in
Figure 17. Estimate the line integrals of f and F along ABC.

Point f (x, y, z) F(x, y, z)(
1, 1

6 , 0
)

3 〈1, 0, 2〉(
1, 1

2 , 0
)

3.3 〈1, 1, 3〉(
1, 5

6 , 0
)

3.6 〈2, 1, 5〉(
1, 1, 1

6

)
4.2 〈3, 2, 4〉(

1, 1, 1
2

)
4.5 〈3, 3, 3〉(

1, 1, 5
6

)
4.2 〈5, 3, 3〉
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A = (1, 0, 0)

B = (1, 1, 0)

C = (1, 1, 1)

z

y

x

FIGURE 17

solution

A = (1, 0, 0)

P1 = (1, 1/6, 0) P3 = (1, 5/6, 0)

P6 = (1, 1, 5/6)

P4 = (1, 1, 1/6)

P5 = (1, 1, 1/2)

P2 = (1, 1/2, 0)

2/6 2/6
4/6

4/6
B = (1, 1, 0)

C = (1, 1, 1)

z

y

x

We write the integrals as sum of integrals and estimate each integral by a Riemann Sum. That is,

∫
ABC

f (x, y, z) ds =
∫
AB

f (x, y, z) ds +
∫
BC

f (x, y, z) ds ≈
3∑

i=1

f (Pi) �si +
6∑

i=4

f (Pi)�si (1)

∫
ABC

F · ds =
∫
AB

F · ds +
∫
BC

F · ds =
∫
AB

(F · T)ds +
∫
BC

(F · T)ds

On AB, the unit tangent vector is T = 〈0, 1, 0〉, hence F · T = F2. On BC, the unit tangent vector is T = 〈0, 0, 1〉, hence
F · T = F3. Therefore,

∫
ABC

F ds =
∫
AB

F1 ds +
∫
BC

F3 ds ≈
3∑

i=1

F1 (Pi) �si +
6∑

i=4

F3 (Pi) �si (2)

We consider the partitions of AB and BC to three subarcs with equal length �si = 1
3 , therefore (1) and (2) give

∫
ABC

f (x, y, z) ds ≈ 1

3
(f (P1) + f (P2) + f (P3) + f (P4) + f (P5) + f (P6))

∫
ABC

F ds ≈ 1

3
(F2 (P1) + F2 (P2) + F2 (P3) + F3 (P4) + F3 (P5) + F3 (P6))

We now substitute the values of the functions at the sample points to obtain the following approximations:

∫
ABC

f (x, y, z) ds ≈ 1

3
(3 + 3.3 + 3.6 + 4.2 + 4.5 + 4.2) = 7.6

∫
ABC

F · ds ≈ 1

3
(0 + 1 + 1 + 4 + 3 + 3) = 4

40. Estimate the line integrals of f (x, y) and F(x, y) along the quarter circle (oriented counterclockwise) in Figure 18
using the values at the three sample points along each path.

Point f (x, y) F(x, y)

A 1 〈1, 2〉
B −2 〈1, 3〉
C 4 〈−2, 4〉
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x

y

C

B

A

1
2

FIGURE 18

solution We estimate the line integral of f (x, y) along the quarter circle C by the Riemann sum:

∫
C

f (x, y) ds ≈ f (A)�s1 + f (B)�s2 + f (C)�s3

We consider the partition of C to three arcs with equal length �si = π
12 . Using the values of f at the sample points, we

get

∫
C

f (x, y)ds ≈ π

12
(1 − 2 + 4) = π

4

To estimate the vector line integral
∫
C F · ds we use the parametrization

C : c(t) = 1

2
(cos t, sin t), 0 ≤ t ≤ π

2

Then,

c′(t) = 1

2
(− sin t, cos t)

x

y

C

B

A

t3 = 5p
12

t2 = 3p
12

t1 = p
12

The partition points correspond to t1 = π
12 , t2 = 3π

12 , t3 = 5π
12 . By the theorem on vector line integrals, we have

∫
C

F · T ds =
∫ π/2

0
F (c(t)) · c′(t) dt

We estimate the integral using the Riemann sum, corresponding to the partition of the interval 0 ≤ t ≤ π
2 to three intervals

with equal length �t = π
6 . We get

∫
C

F · T ds = π

6

(
F (c(t1)) · c′(t1) + F (c(t2)) · c′(t2) + F (c(t3)) · c′(t3)

)

= π

6

(
F(A) · c′ ( π

12

)
+ F(B) · c′

(
3π

12

)
+ F(C) · c′

(
5π

12

))

= π

6

(
〈1, 2〉 · 1

2

〈
− sin

π

12
, cos

π

12

〉
+ 〈1, 3〉 · 1

2

〈
− sin

π

4
, cos

π

4

〉
+ 〈−2, 4〉 · 1

2

〈
− sin

5π

12
, cos

5π

12

〉)

= π

12

(
− sin

π

12
+ 2 cos

π

12
− sin

π

4
+ 3 cos

π

4
+ 2 sin

5π

12
+ 4 cos

5π

12

)
= 0.505π
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41. Determine whether the line integrals of the vector fields around the circle (oriented counterclockwise) in Figure 19
are positive, negative, or zero.

(A) (B)

(C)

FIGURE 19

solution The vector line integral of F is the integral of the tangential component of F along the curve. The positive
direction of a curve is counterclockwise.

T

T

T

For the vector field in (A), the line integral around the circle is zero because the contribution of the negative tangential
components from the upper part of the circle is the same as the contribution of the positive tangential components from
the lower part. For the vector in (B) the contribution of the negative tangential component appear to dominate over the
positive contribution, hence the line integral is negative. In (C), the vector field is orthogonal to the unit tangent vector at
each point, hence the line integral is zero.

42. Determine whether the line integrals of the vector fields along the oriented curves in Figure 20 are positive or negative.

(A) (B) (C)

FIGURE 20

solution

(A) Positive: The direction of the path is initially perpendicular to the vector field, becoming more and more oriented
along the vector field.

(B) Positive: The path is oriented along the vector field when the vectors have a large magnitude. A short section of the
path near the end is oriented against the vector field, but the magnitude of these vectors is small. The negative contribution
of this section should not cancel out the earlier, strongly positive section.

(C) Positive: As before, the vector field has larger magnitude vectors in the section where the path is oriented along the
vector field than the section where it is oriented against the vector field.
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43. Calculate the total mass of a circular piece of wire of radius 4 cm centered at the origin whose mass density is
ρ(x, y) = x2 g/cm.

solution The total mass is the following integral:

M =
∫
C

x2 ds

We use the following parametrization of the wire:

c(t) = (4 cos t, 4 sin t), 0 ≤ t ≤ 2π

Hence,

c′(t) = 〈−4 sin t, 4 cos t〉 ⇒ ‖c′(t)‖ =
√

(−4 sin t)2 + (4 cos t)2 = 4

We compute the line integral using the Theorem on Scalar Line Integrals. We get

M =
∫ 2π

0
ρ (c(t)) ‖c′(t)‖ dt =

∫ 2π

0
(4 cos t)2 · 4 dt

= 64
∫ 2π

0
cos2 t dt = 64

(
t

2
+ sin 2t

4

) ∣∣∣∣2π

0
= 64 · 2π

2
= 64πg

44. Calculate the total mass of a metal tube in the helical shape c(t) = (cos t, sin t, t2) (distance in centimeters) for
0 ≤ t ≤ 2π if the mass density is ρ(x, y, z) = √

z g/cm.

solution The total mass is the following integral:

M =
∫
C

√
z ds

We have

c′(t) = d

dt

〈
cos t, sin t, t2

〉
= 〈− sin t, cos t, 2t〉

Hence,

‖c′(t)‖ =
√

(− sin t)2 + (cos t)2 + (2t)2 =
√

1 + 4t2

Using the Theorem on Scalar Line Integrals, we get

M =
∫
C

√
z ds =

∫ 2π

0
ρ (c(t)) ‖c′(t)‖ dt =

∫ 2π

0

√
t2
√

1 + 4t2 dt =
∫ 2π

0
t
√

1 + 4t2 dt

We compute the integral using the substitution u = 1 + 4t2, du = 8t dt . This gives

M =
∫ 1+16π2

1

u1/2

8
du = u3/2

12

∣∣∣∣1+16π2

1
= 1

12

((
1 + 16π2

)3/2 − 1

)
≈ 166.86 g

45. Find the total charge on the curve y = x4/3 for 1 ≤ x ≤ 8 (in cm) assuming a charge density of ρ(x, y) = x/y (in
units of 10−6 C/cm).

solution We parametrize the curve by c(t) = (t, t
4
3 ) (1 ≤ t ≤ 8). Then

c′(t) =
〈
1,

4

3
t

1
3

〉
⇒ ‖c′(t)‖ =

√
1 + 16

9
t

2
3

ρ(c(t)) = x

y
= t

t
4
3

Therefore the total charge will be∫
C

x

y
ds =

∫ 8

1

t

t
4
3

√
1 + 16

9
t

2
3 dt =

∫ 8

1

√
1 + 16

9
t

2
3 t− 1

3 dt

Using the substitution u = 1 + 16
9 t

2
3 ⇒ du = 32

27 t− 1
3 dt , we calculate the total charge as

∫ 73
9

25
9

√
u

27

32
du = 27

32
· 2

3
u

3
2

∣∣∣∣
73
9

25
9

= 1

48

(
73

3
2 − 25

3
2

)
≈ 10.39

Thus the total charge is 10.39 × 10−6 C.
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46. Find the total charge on the curve c(t) = (sin t, cos t, sin2 t) in centimeters for 0 ≤ t ≤ π
8 assuming a charge density

of ρ(x, y, z) = xy(y2 − z) (in units of 10−6 C/cm).

solution Using the trigonometric identities sin 2t = 2 sin t cos t and cos 2t = cos2 t − sin2 t , we first calculate the
integrand

c′(t) = 〈cos t, − sin t, 2 sin t cos t〉 = 〈cos t, − sin t, sin 2t〉

‖c′(t)‖ =
√

cos2 t + sin2 t + sin2 2t =
√

1 + sin2 2t

ρ(c(t)) = xy(y2 − z) = sin t cos t (cos2 t − sin2 t) = 1

2
sin 2t cos 2t

Total charge is thus,

∫
C

xy(y2 − z) ds =
∫ π

8

0

1

2
sin 2t cos 2t

√
1 + sin2 2t dt

Using the substitution u = 1 + sin2 2t ⇒ du = 4 sin 2t cos 2t dt , we have u(0) = 1 + sin 0 = 1 and u(π
8 ) =

1 + sin2(2 π
8 ) = 3

2 . Thus,

∫
C

xy(y2 − z) ds =
∫ 3

2

1

√
u

1

8
du = 1

8
· 2

3
u

3
2

∣∣∣∣
3
2

1
= 1

12

⎛
⎝(3

2

) 3
2 − 1

⎞
⎠ ≈ 0.0698

Thus the total charge is 0.0698 × 10−6 C.

In Exercises 47–50, use Eq. (6) to compute the electric potential V (P ) at the point P for the given charge density (in
units of 10−6 C).

47. Calculate V (P ) at P = (0, 0, 12) if the electric charge is distributed along the quarter circle of radius 4 centered at
the origin with charge density ρ(x, y, z) = xy.

solution We parametrize the curve by c(t) = (4 cos t, 4 sin t, 0), (0 ≤ t ≤ π
2 ). Then c′(t) = (−4 sin t, 4 cos t, 0) ⇒

‖c′(t)‖ = 4. The distance from the point (0, 0, 12) to c(t) is

rP (t) =
√

(0 − 4 cos t)2 + (0 − 4 sin t)2 + (12 − 0)2 = √
16 + 144 = 4

√
10

while the charge density along the curve is

ρ(c(t)) = xy = 4 cos t 4 sin t = 16 sin t cos t = 8 sin 2t

Therefore

V (P ) = k

∫
C

ρ

rP
ds = k

∫ π
2

0

8 sin 2t

4
√

10
4 dt = 8k√

10
· − cos 2t

2

∣∣∣∣
π
2

0

= 4k√
10

(− cos π + cos 0) = 8k√
10

Thus the electric potential is 8k√
10

× 10−6 C ≈ 22743.1 volts

48. Calculate V (P ) at the origin P = (0, 0) if the negative charge is distributed along y = x2 for 1 ≤ x ≤ 2 with charge

density ρ(x, y) = −y
√

x2 + 1.

solution A parametrization for the curve is c(t) = (t, t2) (1 ≤ t ≤ 2). Then

c′(t) = 〈1, 2t〉 ⇒ ‖c′(t)‖ =
√

1 + 4t2

The charge density along the curve is

ρ(c(t)) = −y
√

x2 + 1 = −t2
√

t2 + 1

The distance from the origin to c(t) is

rP (t) =
√

(t − 0)2 + (t2 − 0)2 =
√

t2 + t4 = |t |
√

1 + t2

Therefore,

V (P ) = k

∫
C

ρ

rP
ds = k

∫ 2

1

−t2
√

t2 + 1

|t |
√

1 + t2

√
1 + 4t2 dt = −k

∫ 2

1
t
√

1 + 4t2 dt
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Using the substitution u = 4t2 + 1 ⇒ du = 8t dt , we have

V (P ) = −k

8

∫ 17

5

√
u du = −k

8
· 2

3
u

3
2

∣∣∣∣17

5
= − k

12

(
17

3
2 − 5

3
2

)
Thus the electric potential is − k

12

(
17

3
2 − 5

3
2

)
× 10−6 C ≈ −44135 volts

49. Calculate V (P ) at P = (2, 0, 2) if the negative charge is distributed along the y-axis for 1 ≤ y ≤ 3 with charge
density ρ(x, y, z) = −y.

solution A parametrization for the curve is c(t) = (0, t, 0) (1 ≤ t ≤ 3). Then c′(t) = 〈0, 1, 0〉 ⇒ ‖c′(t)‖ = 1,
and the charge density along the curve is ρ(c(t)) = −y = −t . The distance from the origin to c(t) is

rP (t) =
√

(2 − 0)2 + (0 − t)2 + (2 − 0)2 =
√

8 + t2

Therefore,

V (P ) = k

∫
C

ρ

rP
ds = k

∫ 3

1

−t√
8 + t2

· 1 dt

Using the substitution u = 8 + t2 ⇒ du = 2t dt , we have

V (P ) = −k

∫ 17

9
u− 1

2
1

2
du = −k

2
· 2u

1
2

∣∣∣∣17

9
= −k

2

(
17

1
2 − 9

1
2

)

Thus the electric potential is − k
2

(
17

1
2 − 9

1
2

)
× 10−6 C ≈ −10097 volts

50. Calculate V (P ) at the origin P = (0, 0) if the electric charge is distributed along y = x−1 for 1
2 ≤ x ≤ 2 with

charge density ρ(x, y) = x3y.

solution A parametrization for the curve is c(t) = (t, t−1) ( 1
2 ≤ t ≤ 2). Then

c′(t) =
〈
1, −t−2

〉
⇒ ‖c′(t)‖ =

√
1 + t−4 = 1

t2

√
1 + t4

The charge density along the curve is

ρ(c(t)) = x3y = t3t−1 = t2

The distance from the origin to c(t) is

rP (t) =
√

(t − 0)2 + (t−1 − 0)2 =
√

t2 + t−2 = 1

|t |
√

1 + t4

Therefore,

V (P ) = k

∫
C

ρ

rP
ds = k

∫ 2

1
2

t2

1
|t |
√

1 + t4

1

t2

√
1 + t4 dt = k

∫ 2

1
2

t dt

= k · t2

2

∣∣∣∣21
2

= k

2

(
4 − 1

4

)
= 15k

8

Thus the electric potential is 15k
8 × 10−6 C ≈ 16856 volts

51. Calculate the work done by a field F = 〈x + y, x − y〉 when an object moves from (0, 0) to (1, 1) along each of the
paths y = x2 and x = y2.

solution We calculate the work done by F = 〈x + y, x − y〉 along the path y = x2 from (0, 0) to (1, 1). We use the
parametrization:

c1(t) = (t, t2), 0 ≤ t ≤ 1

We have

F (c1(t)) =
〈
t + t2, t − t2

〉
c′

1(t) = 〈1, 2t〉
F (c(t)) · c′(t) =

〈
t + t2, t − t2

〉
· 〈1, 2t〉 = t + t2 + 2t2 − 2t3 = −2t3 + 3t2 + t
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The work is the following line integral:

W =
∫
C1

F · ds =
∫ 1

0
F (c1(t)) · c′

1(t) dt =
∫ 1

0

(
−2t3 + 3t2 + t

)
dt = −1

2
t4 + t3 + 1

2
t2
∣∣∣∣1
0

= 1

We now compute the work along the path x = y2. We parametrize the path by:

c2(t) = (t2, t), 0 ≤ t ≤ 1

Then

F (c2(t)) =
〈
t2 + t, t2 − t

〉
c′

2(t) = 〈2t, 1〉
F (c2(t)) · c′

2(t) =
〈
t2 + t, t2 − t

〉
· 〈2t, 1〉 = 2t3 + 2t2 + t2 − t = 2t3 + 3t2 − t

The work is the line integral

W =
∫
C2

F · ds =
∫ 1

0
F (c2(t)) · c′

2(t) dt =
∫ 1

0

(
2t3 + 3t2 − t

)
dt = 1

2
t4 + t3 − 1

2
t2
∣∣∣∣1
0

= 1

2
+ 1 − 1

2
= 1

We obtain the same work along the two paths.

52. Calculate the work done by the force field F = 〈x, y, z〉 along the path (cos t, sin t, t) for 0 ≤ t ≤ 3π .

solution The work done by the force field F is the line integral:

W =
∫
C

F · ds

We compute the integrand:

F (c(t)) = 〈x, y, z〉 = 〈cos t, sin t, t〉

c′(t) = d

dt
〈cos t, sin t, t〉 = 〈− sin t, cos t, 1〉

F (c(t)) · c′(t) = 〈cos t, sin t, t〉 · 〈− sin t, cos t, 1〉 = − cos t sin t + sin t cos t + t = t

We obtain the following integral:

W =
∫ 3π

0
F (c(t)) · c′(t) dt =

∫ 3π

0
t dt = t2

2

∣∣∣∣3π

0
= 9π2

2

53. Figure 21 shows a force field F.

(a) Over which of the two paths, ADC or ABC, does F perform less work?
(b) If you have to work against F to move an object from C to A, which of the paths, CBA or CDA, requires less work?

x

y

A

B

D

C

FIGURE 21

solution

(a) Since x is constant on AB and DC, F(x, y) = 〈x, x〉 is also constant on these segments.

a1 a2
x

y

A

B

l l

l

l

D

C
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Let a1 and a2 denote the constant values of x on the segments AB and DC respectively, and l denote the lengths of these
segments. By Exercise 55 we have∫

AB
F · ds = 〈a1, a1〉 · 〈0, l〉 = a1 · 0 + a1 · l = a1l

∫
DC

F · ds = 〈a2, a2〉 · 〈0, l〉 = a2 · 0 + a2 · l = a2l

Since a1 < a2 we have
∫
AB F · ds <

∫
DC F · ds.

(b) We compute the integral over BC. This segment is parametrized by:

c(t) = (a1 + lt, b) , 0 ≤ t ≤ 1.

Hence,

F (c(t)) = 〈x, x〉 = 〈a1 + lt, a1 + lt〉 , c′(t) = 〈l, 0〉
F (c(t)) · c′(t) = 〈a1 + lt, a1 + lt〉 · 〈l, 0〉 = a1l + l2t

Thus,

∫
BC

F · ds =
∫ 1

0

(
a1l + l2t

)
dt = a1lt + l2t2

2

∣∣∣∣1
t=0

= a1l + l2

2

We see that the line integral does not depend on b, therefore,∫
AD

F · ds =
∫
BC

F · ds (1)

In part (a) we showed that: ∫
AB

F · ds <

∫
DC

F · ds (2)

Combining (1) and (2) gives:∫
ABC

F · ds =
∫
AB

F · ds +
∫
BC

F · ds <

∫
DC

F · ds +
∫
AD

F · ds =
∫
ADC

F · ds

54. Verify that the work performed along the segment PQ by the constant vector field F = 〈2, −1, 4〉 is equal to F · −→
PQ

in these cases:

(a) P = (0, 0, 0), Q = (4, 3, 5)

(b) P = (3, 2, 3), Q = (4, 8, 12)

solution

(a) The segment PQ, where P = (0, 0, 0) and Q = (4, 3, 5) has the parametrization,

c(t) = (4t, 3t, 5t), 0 ≤ t ≤ 1

Therefore, c′(t) = 〈4, 3, 5〉 and we obtain the following integral:

∫
C

F · ds =
∫ 1

0
F (c(t)) · c′(t) dt =

∫ 1

0
〈2, −1, 4〉 · 〈4, 3, 5〉 dt =

∫ 1

0
25 dt = 25

This equals F · −→
PQ = 〈2, −1, 4〉 · 〈4, 3, 5〉 = 25.

(b) The segment PQ, where P = (3, 2, 3) and Q = (4, 8, 12) has the parametrization,

c(t) = (3 + t, 2 + 6t, 3 + 9t), 0 ≤ t ≤ 1

Therefore, c′(t) = 〈1, 6, 9〉 and we obtain the line integral

∫
C

F · ds =
∫ 1

0
F (c(t)) · c′(t) dt =

∫ 1

0
〈2, −1, 4〉 · 〈1, 6, 9〉 dt =

∫ 1

0
32 dt = 32

Note that
−→
PQ = 〈1, 6, 9〉, so F · −→

PQ = 〈2, −1, 4〉 · 〈1, 6, 9〉 = 32.
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55. Show that work performed by a constant force field F over any path C from P to Q is equal to F · −→
PQ.

solution We denote by c(t) = (x(t), y(t), c(t)), t0 ≤ t ≤ t1 a parametrization of the oriented path from P to Q (then
c (t0) = P and c (t1) = Q). Let F = 〈a, b, c〉 be a constant vector field. Then,

F (c(t)) · c′(t) = 〈a, b, c〉 · 〈x′(t), y′(t), z′(t)
〉 = ax′(t) + by′(t) + cz′(t)

The vector line integral is, thus,∫
C

F · ds =
∫ t1

t0

F (c(t)) · c′(t) dt =
∫ t1

t0

(
ax′(t) + by′(t) + cz′(t)

)
dt

= a

∫ t1

t0

x′(t) dt + b

∫ t1

t0

y′(t) dt + c

∫ t1

t0

z′(t) dt = ax(t)
∣∣t1
t=t0

+ by(t)

∣∣∣∣t1
t=t0

+ cz(t)

∣∣∣∣t1
t=t0

= a (x (t1) − x (t0)) + b (y (t1) − y (t0)) + c (z (t1) − z (t0))

= 〈a, b, c〉 · 〈x (t1) − x (t0) , y (t1) − y (t0) , z (t1) − z (t0)〉
Since P = 〈x (t0) , y (t0) , z (t0)〉 and Q = 〈x (t1) , y (t1) , z (t1)〉 we conclude that,∫

C
F · ds = 〈a, b, c〉 · −→

PQ = F · −→
PQ.

56. Note that a curve C in polar form r = f (θ) is parametrized by c(θ) = (f (θ) cos θ, f (θ) sin θ)) because the x- and
y-coordinates are given by x = r cos θ and y = r sin θ .

(a) Show that ‖c′(θ)‖ =
√

f (θ)2 + f ′(θ)2.

(b) Evaluate
∫
C

(x − y)2 ds, where C is the semicircle in Figure 22 with polar equation r = 2 cos θ , 0 ≤ θ ≤ π
2 .

x
21

1

y

FIGURE 22 Semicircle r = 2 cos θ .

solution

(a) Finding the magnitude of the tangent vector

c(θ) = 〈f (θ) cos(θ), f (θ) sin(θ)〉
⇒ c′(θ) = 〈f ′(θ) cos(θ) − f (θ) sin(θ), f ′(θ) sin(θ) + f (θ) cos(θ)

〉
⇒ ‖c′(θ)‖2 = (f ′(θ) cos(θ) − f (θ) sin(θ))2 + (f ′(θ) sin(θ) + f (θ) cos(θ))2

= (f ′(θ))2 cos2(θ) − 2f ′(θ)f (θ) cos(θ) sin(θ) + (f (θ))2 sin2(θ)

+(f ′(θ))2 sin2(θ) + 2f ′(θ)f (θ) cos(θ) sin(θ) + (f (θ))2 cos2(θ)

= (f ′(θ))2 + (f (θ))2

⇒ ‖c′(θ)‖ =
√

(f ′(θ))2 + (f (θ))2

(b) Using the previous part we have f (θ) = 2 cos(θ) and f ′(θ) = −2 sin(θ). And so

‖c′(θ)‖ =
√

(2 cos(θ))2 + (−2 sin(θ))2 = 2

We have that x = f (θ) cos(θ) = 2 cos(θ) cos(θ) and y = f (θ) sin(θ) = 2 cos(θ) sin(θ). Integrating,

∫
C
(x − y)2 ds =

∫ π
2

0
(2 cos2(θ) − 2 cos(θ) sin(θ))22 dθ

= 8
∫ π

2

0
cos4(θ) − 2 cos3(θ) sin(θ) + sin2(θ) cos2(θ) dθ

= 8
∫ π

2

0
cos4(θ) − 2 cos3(θ) sin(θ) + (1 − cos2(θ)) cos2(θ) dθ
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= 8
∫ π

2

0
cos2(θ) − 2 cos3(θ) sin(θ) dθ

= 8
∫ π

2

0

(
1 + cos(2θ)

2

)
dθ − 16

∫ π
2

0
cos3(θ) sin(θ) dθ

= 4θ + 2 sin(2θ)

∣∣∣∣
π
2

0
+ 4 cos4(θ)

∣∣∣∣
π
2

0
= 2π − 4

57. Charge is distributed along the spiral with polar equation r = θ for 0 ≤ θ ≤ 2π . The charge density is ρ(r, θ) = r

(assume distance is in centimeters and charge in units of 10−6 C/cm). Use the result of Exercise 56(a) to compute the
total charge.

solution Following Exercise 56(a), f (θ) = θ , and f ′(θ) = 1. Thus ‖c′(θ)‖ =
√

θ2 + 1. The total charge will be

∫
C

ρ ds =
∫ 2π

0
θ
√

θ2 + 1 dθ

Substituting u = θ2 + 1 ⇒ du = 2θ dθ , we have

∫
C

ρ ds =
∫ 4π2+1

1

√
u

1

2
du = 1

2
· 2

3
u

3
2

∣∣∣∣4π2+1

1

= 1

2

(
(4π2 + 1)

3
2 − 1

)
≈ 85.5

Thus the total charge is 85.5 × 10−6 C.

In Exercises 58–61, let F be the vortex field (so-called because it swirls around the origin as in Figure 23):

F =
〈 −y

x2 + y2
,

x

x2 + y2

〉

x

y

FIGURE 23 Vortex field F =
〈 −y

x2 + y2
,

x

x2 + y2

〉
.

58. Calculate I =
∫
C

F · ds, where C is the circle of radius 2 centered at the origin. Verify that I changes sign when C is

oriented in the clockwise direction.

solution

(a)

2
x

y

P

The circle of radius 2 oriented counterclockwise has the parametrization:

c(t) = (2 cos t, 2 sin t), 0 ≤ t ≤ 2π

Hence,

F (c(t)) =
〈 −2 sin t

4 cos2 t + 4 sin2 t
,

2 cos t

4 cos2 t + 4 sin2 t

〉
= 1

2
〈− sin t, cos t〉
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c′(t) = 〈−2 sin t, 2 cos t〉

Therefore, the integrand is the dot product,

F (c(t)) · c′(t) = 1

2
〈− sin t, cos t〉 · 〈−2 sin t, 2 cos t〉 = sin2 t + cos2 t = 1

We obtain the following integral:

∫
C

F · ds =
∫ 2π

0
F (c(t)) · c′(t) dt =

∫ 2π

0
1 dt = 2π

(b) When C is oriented in the clockwise direction, the parameter t is changing from 2π to 0, therefore, the line integral
is,

∫
C

F · ds =
∫ 0

2π
F (c(t)) · c′(t) dt = −

∫ 2π

0
1 dt = −2π

2
x

y

59. Show that the value of
∫
CR

F · ds, where CR is the circle of radius R centered at the origin and oriented counterclock-

wise, does not depend on R.

solution We parametrize CR by:

c(t) = (R cos t, R sin t), 0 ≤ t < 2π.

x
R

y

Step 1. Calculate the integrand:

F (c(t)) =
〈
− y

x2 + y2
,

x

x2 + y2

〉
=
〈
−R sin t

R2
,
R cos t

R2

〉
= 1

R
〈− sin t, cos t〉

c′(t) = d

dt
〈R cos t, R sin t〉 = 〈−R sin t, R cos t〉 = R 〈− sin t, cos t〉

The integrand is the dot product:

F (c(t)) · c′(t) = 1

R
〈− sin t, cos t〉 · R 〈− sin t, cos t〉 = sin2 t + cos2 t = 1

Step 2. Evaluate the integral.

∫
C

F · ds =
∫ 2π

0
F (c(t)) · c′(t) dt =

∫ 2π

0
1 dt = 2π
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60. Let a > 0, b < c. Show that the integral of F along the segment [Figure 24(A)] from P = (a, b) to Q = (a, c) is
equal to the angle � POQ.

(A) (B)

a

c

b

y

Q = (a, c)

P = (a, b)

xx

y
r = f (θ)

θ2
θ

θ1

FIGURE 24

solution Note that the points P and Q are on the vertical line x = a. Now, a nice parametrization of this line would
be c(t) = 〈a, b + (c − b)t〉 for t from 0 to 1, with c′(t) = 〈0, c − b〉. We find that:

F (c(t)) · c′(t) = a(c − b)

a2 + (b + (c − b)t)2

and so our integral becomes:

∫ 1

0
F (c(t)) · c′(t) dt =

∫ 1

0

a(c − b)

a2 + (b + (c − b)t)2
dt = a

∫ c

b

du

a2 + u2
du

where the last integral was done with the substitution u = b + (c − b)t . This gives us:

∫ 1

0
F (c(t)) · c′(t) dt = tan−1 u

a

∣∣∣∣c
b

= tan−1 c

a
− tan−1 b

a

Of course, tan−1 c
a − tan−1 b

a is just the angle � POQ.

61. LetC be a curve in polar form r = f (θ) for θ1 ≤ θ ≤ θ2 [Figure 24(B)], parametrized by c(θ) = (f (θ) cos θ, f (θ) sin θ))

as in Exercise 56.

(a) Show that the vortex field in polar coordinates is written F = r−1 〈− sin θ, cos θ〉.
(b) Show that F · c′(θ) dθ = dθ .

(c) Show that
∫
C

F · ds = θ2 − θ1.

solution

(a) Letting x = r cos(θ) and y = r sin(θ) we have

F =
〈 −y

x2 + y2
,

x

x2 + y2

〉
=
〈 −r sin(θ)

(r cos(θ))2 + (r sin(θ))2
,

r cos(θ)

(r cos(θ))2 + (r sin(θ))2

〉

= r

r2

〈 − sin(θ)

cos2(θ) + sin2(θ)
,

cos(θ)

cos2(θ) + sin2(θ)

〉
= r−1 〈− sin θ, cos θ〉

(b) From the solution to Exercise 56(a) we have

c′(θ) = 〈f ′(θ) cos(θ) − f (θ) sin(θ), f ′(θ) sin(θ) + f (θ) cos(θ)
〉

Substituting r = f (θ) into the previous part, we have

F · c′(θ) dθ = 1

f (θ)
〈− sin(θ), cos(θ)〉 · 〈f ′(θ) cos(θ) − f (θ) sin(θ), f ′(θ) sin(θ) + f (θ) cos(θ)

〉
dθ

= 1

f (θ)
(−f ′(θ) sin(θ) cos(θ) + f (θ) sin2(θ) + f ′(θ) cos(θ) sin(θ) + f (θ) cos2(θ)) dθ

= 1

f (θ)
f (θ)(sin2(θ) + cos2(θ)) dθ = dθ

(c)

∫
C

F · ds =
∫ θ2

θ1

F · c′(θ) dθ =
∫ θ2

θ1

dθ = θ2 − θ1
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In Exercises 62–65, use Eq. (10) to calculate the flux of the vector field across the curve specified.

62. F = 〈−y, x〉; upper half of the unit circle, oriented clockwise

solution The curve is parametrized by c(t) = (− cos t, sin t) (0 ≤ t ≤ π). Then

c′(t) = 〈sin t, cos t〉
F(c(t)) = 〈−y, x〉 = 〈− sin t, − cos t〉

Therefore the flux is ∫
C

F1 dy − F2 dx =
∫ π

0
(− sin t)(cos t) − (− cos t)(sin t) dt = 0

63. F =
〈
x2, y2

〉
; segment from (3, 0) to (0, 3), oriented upward

solution The curve is parametrized by c(t) = (3 − t, t) (0 ≤ t ≤ 3) ⇒ c′(t) = 〈−1, 1〉. Then

F(c(t)) =
〈
x2, y2

〉
=
〈
(3 − t)2, t2

〉
Therefore the flux is ∫

C
F1 dy − F2 dx =

∫ 3

0
(3 − t)2(1) − (t2)(−1) dt

=
∫ 3

0
2t2 − 6t + 9 dt = 2t3

3
− 3t2 + 9t

∣∣∣∣3
0

= 18

64. v =
〈

x + 1

(x + 1)2 + y2
,

y

(x + 1)2 + y2

〉
; segment 1 ≤ y ≤ 4 along the y-axis, oriented upward

solution The curve is parametrized by c(t) = (0, t) (1 ≤ t ≤ 4) ⇒ c′(t) = 〈0, 1〉. Then

v(c(t)) =
〈

x + 1

(x + 1)2 + y2
,

y

(x + 1)2 + y2

〉
=
〈

1

1 + t2
,

t

1 + t2

〉

Therefore the flux is∫
C

v1 dy − v2 dx =
∫ 4

1

(
1

1 + t2

)
(1) −

(
t

1 + t2

)
(0) dt = tan−1 t

∣∣∣∣4
1

= tan−1(4) − tan−1(1)

65. v = 〈ey, 2x − 1
〉
; parabola y = x2 for 0 ≤ x ≤ 1, oriented left to right

solution The curve is parametrized by c(t) = (t, t2) (0 ≤ t ≤ 1) ⇒ c′(t) = 〈1, 2t〉. Then

v(c(t)) = 〈ey, 2x − 1
〉 = 〈et2

, 2t − 1
〉

Therefore the flux is∫
C

v1 dy − v2 dx =
∫ 1

0

(
et2
)

(2t) − (2t − 1)(1) dt = et2 − t2 + t

∣∣∣∣1
0

= e − 1

66. Let I =
∫
C

f (x, y, z) ds. Assume that f (x, y, z) ≥ m for some number m and all points (x, y, z) on C.

Which of the following conclusions is correct? Explain.

(a) I ≥ m

(b) I ≥ mL, where L is the length of C
solution Since f (c(t)) ≥ m for all points on C , also f (c(t)) ‖c′(t)‖ ≥ m‖c′(t)‖. By properties of integrals we have

I =
∫ b

a
f (c(t)) · ‖c′(t)‖ dt ≥

∫ b

a
m‖c′(t)‖ dt = m

∫ b

a
‖c′(t)‖ dt

Since L = ∫ b
a ‖c′(t)‖ dt , we get:

I ≥ mL

Therefore conclusion (b) is correct.
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Further Insights and Challenges
67. Let F = 〈x, 0〉. Prove that if C is any path from (a, b) to (c, d), then∫

C
F · ds = 1

2
(c2 − a2)

solution

(a, b)

(c, d)

C

We denote the parametrization of the path by,

c(t) = (x(t), y(t)) , t0 ≤ t ≤ t1, c (t0) = (a, b), c (t1) = (c, d)

By the Theorem on vector line integrals we have,∫
c

F · ds =
∫ t1

t0

F (c(t)) · c′(t) dt =
∫ t1

t0

〈x(t), 0〉 · 〈x′(t), y′(t)
〉
dt =

∫ t1

t0

x(t)x′(t) dt

We use the hint to compute the integral, obtaining∫
c

F · ds = 1

2
x(t)2

∣∣∣∣t1
t0

= 1

2

(
x(t1)2 − x(t0)2

)
= 1

2

(
c2 − a2

)

Proof of the hint: By the Chain Rule for differentiation we have

d

dt
f 2(t) = 2f (t)f ′(t) ⇒ f (t)f ′(t) = 1

2

d

dt
f 2(t)

Applying the Fundamental Theorem of calculus we obtain∫ t1

t0

f (t)f ′(t) dt = 1

2

∫ t1

t0

d

dt

(
f 2(t)

)
dt = 1

2

(
f 2 (t1) − f 2 (t0)

)

Alternatively we can evaluate the integral
∫

f (t)f ′(t) dt using the substitution u = f (t), du = f ′(t) dt . We get∫
f (t)f ′(t) dt =

∫
u du = 1

2
u2 + c = 1

2
f 2(t) + c.

68. Let F = 〈y, x〉. Prove that if C is any path from (a, b) to (c, d), then∫
C

F · ds = cd − ab

solution

(a, b)

(c, d)

c

We denote a parametrization of the path by:

c(t) = (x(t), y(t)) , t0 ≤ t ≤ t1

c (t0) = (a, b), c (t1) = (c, d)

By the Theorem on vector line integrals we have∫
c

F · ds =
∫ t1

t0

F (c(t)) · c′(t) dt =
∫ t1

t0

〈y(t), x(t)〉 · 〈x′(t), y′(t)
〉
dt
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=
∫ t1

t0

(
y(t)x′(t) + x(t)y′(t)

)
dt =

∫ t1

t0

d

dt
(x(t)y(t)) dt

The last equality follows from the Product Rule for differentiation. We now use the Fundamental Theorem of Calculus to
obtain: ∫

c
F · ds = x(t)y(t)

∣∣∣∣t1
t=t0

= x (t1) y (t1) − x (t0) y (t0) = cd − ab

69. We wish to define the average value Av(f ) of a continuous function f along a curve C of length L. Divide C into N

consecutive arcs C1, . . . , CN , each of length L/N , and let Pi be a sample point in Ci (Figure 25). The sum

1

N

∑
i=1

f (Pi)

may be considered an approximation to Av(f ), so we define

Av(f ) = lim
N→∞

1

N

∑
i=1

f (Pi)

Prove that

Av(f ) = 1

L

∫
C

f (x, y, z) ds 11

Hint: Show that
L

N

∑
i=1

f (Pi) is a Riemann sum approximation to the line integral of f along C.

x

y

P1
P2

Pi Ci

PN

Curve C

FIGURE 25

solution The Riemann sum approximation to the line integral is:

N∑
i=1

f (Pi) �Si

If the consecutive arcs C1, ..., C2 have equal lengths L
N

, the corresponding Riemann sum is,

N∑
i=1

f (Pi) · L

N
= L

N

N∑
i=1

f (Pi)

We let N → ∞,

∫
C

f (x, y, z) ds = lim
N→∞

L

N

N∑
i=1

f (Pi) = L lim
N→∞

1

N

N∑
i=1

f (Pi) = LAv(f )

That is,

Av(f ) = 1

L

∫
C

f (x, y, z) ds.

70. Use Eq. (11) to calculate the average value of f (x, y) = x − y along the segment from P = (2, 1) to Q = (5, 5).

solution We can parametrize this line segment by

c(t) = (2 + 3t, 1 + 4t), 0 ≤ t ≤ 1

Therefore,

c′(t) = 〈3, 4〉 ⇒ ‖c′(t)‖ = √
9 + 16 = 5
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We compute the length of the curve,

L =
∫ 1

0
‖c′(t)‖ dt =

∫ 1

0
5 dt = 5

Thus, using our values for x and y given above, we find that

Av(f ) = 1

L

∫
C

x − y dt = 1

5

∫ 1

0
(2 + 3t) − (1 + 4t) dt = 1

5

∫ 1

0
1 − t dt = 1

10

71. Use Eq. (11) to calculate the average value of f (x, y) = x along the curve y = x2 for 0 ≤ x ≤ 1.

solution The average value is

Av(f ) = 1

L

∫
c
x ds (1)

We parametrize the curve by the parametrization,

c(t) =
(
t, t2

)
, 0 ≤ t ≤ 1.

Hence,

c′(t) = 〈1, 2t〉 ⇒ ‖c′(t)‖ =
√

1 + 4t2

We first must calculate the length of the path. That is,

L =
∫

c
‖c′(t)‖ dt =

∫ 1

0

√
1 + 4t2 dt = 1

2
t
√

1 + 4t2 + 1

4
ln
(

2t +
√

1 + 4t2
) ∣∣∣∣1

0

=
√

5

2
+ 1

4
ln
(

2 + √
5
)

=
2
√

5 + ln
(

2 + √
5
)

4

We compute the line integral in (1):

∫
c
x ds =

∫ 1

0
t‖c′(t)‖ dt =

∫ 1

0
t
√

1 + 4t2 dt

We compute the integral using the substitution u = 1 + 4t2, du = 8t dt .

∫
c
x ds =

∫ 1

0

√
1 + 4t2 · t dt =

∫ 5

1
u1/2 · du

8

= 1

8
· 2

3
u

3
2

∣∣∣∣5
1

= 1

12

(
5

3
2 − 1

)

Combining gives the following solution:

Av(f ) = 4

2
√

5 + ln
(

2 + √
5
) · 5

3
2 − 1

12
= 5

√
5 − 1(

6
√

5 + 3 ln
(

2 + √
5
))

72. The temperature (in degrees centigrade) at a point P on a circular wire of radius 2 cm centered at the origin is equal
to the square of the distance from P to P0 = (2, 0). Compute the average temperature along the wire.

solution

x

y

P0 = (2, 0)

P = (x, y)
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The temperature at a point P(x, y) on the wire is given by the function,

T (x, y) = (x − 2)2 + y2

The length of the wire is the length of the circle of radius 2, L = 2π · 2 = 4π . Therefore, the average temperature along
the wire is,

Av(T ) = 1

L

∫
C

T ds = 1

4π

∫
C

(
(x − 2)2 + y2

)
ds

To compute the line integral, we parametrize the circle by:

c(t) = (2 cos t, 2 sin t), 0 ≤ t ≤ 2π.

Then,

c(t) = 〈−2 sin t, 2 cos t〉 ⇒ ‖c′(t)‖ =
√

4 sin2 t + 4 cos2 t = 2

We express T in terms of the parameter:

T (c(t)) = (x − 2)2 + y2 = (2 cos t − 2)2 + (2 sin t)2 = 4 cos2 t − 8 cos t + 4 + 4 sin2 t

= 4
(

cos2 + sin2 t
)

+ 4 − 8 cos t = 8(1 − cos t)

We obtain the integral,

Av(T ) = 1

4π

∫ 2π

0
T (c(t)) ‖c′(t)‖ dt = 1

4π

∫ 2π

0
16(1 − cos t) dt = 4

π

(
t − sin t

∣∣∣∣2π

0

)
= 4 · 2π

π
= 8

73. The value of a scalar line integral does not depend on the choice of parametrization (because it is defined without
reference to a parametrization). Prove this directly. That is, suppose that c1(t) and c(t) are two parametrizations such that
c1(t) = c(ϕ(t)), where ϕ(t) is an increasing function. Use the Change of Variables Formula to verify that

∫ d

c
f (c1(t))‖c′

1(t)‖ dt =
∫ b

a
f (c(t))‖c′(t)‖ dt

where a = ϕ(c) and b = ϕ(d).

solution We compute the integral
∫ b
a f (c(t)) ‖c′(t)‖ dt using the substitution t = ϕ(u), a = ϕ(c), b = ϕ(d). We

get:

∫ b

a
f (c1(t)) ‖c′(t)‖ dt =

∫ ϕ−1(b)

ϕ−1(a)
f (c (ϕ(t))) ‖c′ (ϕ(t)) ‖ϕ′(u) du (1)

Since ϕ is an increasing function, ϕ′(u) > 0 for all u, therefore:

∥∥c′ (ϕ(u))
∥∥ϕ′(u) = ∥∥c′ (ϕ(u)) ϕ′(u)

∥∥ (2)

By the Chain Rule for vector valued functions, we have,

d

du
c (ϕ(u)) = ϕ′(u)c′ (ϕ(u)) (3)

Combining (2) and (3) gives:

∥∥c′ (ϕ(u))
∥∥ϕ′(u) =

∥∥∥∥ d

du
c (ϕ(u))

∥∥∥∥ =
∥∥∥∥ d

du
c1(u)

∥∥∥∥ = ‖c′
1(u)‖ (4)

We substitute (4) in (1) to obtain:

∫ b

a
f (c(t)) ‖c′(t)‖ dt =

∫ d

c
f (c1(u)) ‖c′

1(u)‖ du =
∫ d

c
f (c1(t)) ‖c′

1(t)‖ dt

The last step is simply replacing the dummy variable of integration u by t .
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16.3 Conservative Vector Fields (LT Section 17.3)

Preliminary Questions
1. The following statement is false. If F is a gradient vector field, then the line integral of F along every curve is zero.

Which single word must be added to make it true?

solution The missing word is “closed” (curve). The line integral of a gradient vector field along every closed curve
is zero.

2. Which of the following statements are true for all vector fields, and which are true only for conservative vector fields?

(a) The line integral along a path from P to Q does not depend on which path is chosen.

(b) The line integral over an oriented curve C does not depend on how C is parametrized.

(c) The line integral around a closed curve is zero.

(d) The line integral changes sign if the orientation is reversed.

(e) The line integral is equal to the difference of a potential function at the two endpoints.

(f) The line integral is equal to the integral of the tangential component along the curve.

(g) The cross-partials of the components are equal.

solution

(a) This statement is true only for conservative vector fields.

(b) This statement is true for all vector fields.

(c) This statement holds only for conservative vector fields.

(d) This is a property of all vector fields.

(e) Only conservative vector fields have a potential function, and the line integral is computed by using the potential
function as stated.

(f) All vector fields’ line integrals share this property.

(g) The cross-partial of the components of a conservative field are equal. For other fields, the cross-partial of the compo-
nents may or may not equal.

3. Let F be a vector field on an open, connected domain D. Which of the following statements are always true, and
which are true under additional hypotheses on D?

(a) If F has a potential function, then F is conservative.

(b) If F is conservative, then the cross-partials of F are equal.

(c) If the cross-partials of F are equal, then F is conservative.

solution

(a) This statement is always true, since every gradient vector field is conservative.

(b) If F is conservative on a connected domain D, then F has a potential function D and consequently the cross partials
of F are equal in D.

(c) If the cross partials of F are equal in a simply-connected region D, then F is a gradient vector field in D.

4. Let C, D, and E be the oriented curves in Figure 16 and let F = ∇V be a gradient vector field such that
∫
C

F · ds = 4.

What are the values of the following integrals?

(a)
∫
D

F · ds (b)
∫
E

F · ds

x

y

P

C

D

E

Q

FIGURE 16

solution Since F is a gradient vector field the integrals over closed paths are zero. Therefore, by the equivalent
conditions for path independence we have:

(a)
∫
D F · ds = ∫C F · ds = 4

(b)
∫
E F · ds = ∫−C F · ds = − ∫C F · ds = −4
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Exercises
1. Let V (x, y, z) = xy sin(yz) and F = ∇V . Evaluate

∫
c

F · ds, where c is any path from (0, 0, 0) to (1, 1, π).

solution By the Fundamental Theorem for Gradient Vector Fields, we have:∫
c
∇V · ds = V (1, 1, π) − V (0, 0, 0) = 1 · 1 sin π − 0 = 0

2. Let F = 〈x−1z, y−1z, log(xy)
〉
.

(a) Verify that F = ∇V , where V (x, y, z) = z ln(xy).

(b) Evaluate
∫

c
F · ds, where c(t) = 〈et , e2t , t2〉 for 1 ≤ t ≤ 3.

(c) Evaluate
∫

c
F · ds for any path c from P = ( 1

2 , 4, 2) to Q = (2, 2, 3) contained in the region x > 0, y > 0.

(d) Why is it necessary to specify that the path lie in the region where x and y are positive?

solution

(a)

∂V

∂x
= z

1

xy
y = x−1z = F1

∂V

∂y
= z

1

xy
x = y−1z = F2

∂V

∂z
= ln(xy) = F3

(b) c(1) = (e, e2, 1), while c(3) = (e3, e6, 9). Therefore,∫
c

F · ds = V (e3, e6, 9) − V (e, e2, 1) = 9 ln(e3 · e6) − ln(e · e2) = 78

(c) ∫
c

F · ds = V (2, 2, 3) − V

(
1

2
, 4, 2

)
= 3 ln(2 · 2) − 2 ln

(
1

2
· 4

)
= 4 ln(2)

(d) F is not defined for x = 0 or y = 0. A continuous path which leaves the region x > 0, y > 0 would necessarily cross
one of these lines where the line integral is not defined.

In Exercises 3–6, verify that F = ∇V and evaluate the line integral of F over the given path.

3. F = 〈3, 6y〉, V (x, y, z) = 3x + 3y2; c(t) = (t, 2t−1) for 1 ≤ t ≤ 4

solution The gradient of V = 3x + 3y2 is:

∇V =
〈
∂V

∂x
,
∂V

∂y

〉
= 〈3, 6y〉 = F

Using the Fundamental Theorem for Gradient Vector Fields, we have:∫
c

F · ds = V (c(4)) − V (c(1)) = V

(
4,

1

2

)
− V (1, 2) =

(
3 · 4 + 3 · 1

4

)
− (3 · 1 + 3 · 4) = −9

4

4. F = 〈cos y, −x sin y
〉
, V (x, y) = x cos y; upper half of the unit circle centered at the origin, oriented counterclockwise

solution

(a) Verifying that F = ∇V ,

∂V

∂x
= cos y = F1,

∂V

∂y
= x(− sin y) = F2

(b) ∫
c

F · ds = V (−1, 0) − V (1, 0) = −1 cos(0) − 1 cos(0) = −2



April 19, 2011

1142 C H A P T E R 16 LINE AND SURFACE INTEGRALS (LT CHAPTER 17)

5. F = yezi + xezj + xyezk, V (x, y, z) = xyez; c(t) = (t2, t3, t − 1) for 1 ≤ t ≤ 2

solution We verify that F is the gradient of V :

∇V =
〈
∂V

∂x
,
∂V

∂y
,
∂V

∂z

〉
= 〈yez, xez, xyez

〉 = F

We use the Fundamental Theorem for Gradient Vectors with the initial point c(1) = (1, 1, 0) and terminal point c(2) =
(4, 8, 1), to obtain: ∫

c
F · ds = V (4, 8, 1) − V (1, 1, 0) = 32e − 1

6. F = z

x
i + j + ln xk, V (x, y, z) = y + z ln x;

circle (x − 4)2 + y2 = 1 in the clockwise direction

solution

(a) Verifying that F = ∇V ,

∂V

∂x
= z

x
= F1,

∂V

∂y
= 1 = F2,

∂V

∂z
= ln x = F3

(b) Since c is closed curve, ∫
c

F · ds = 0

In Exercises 7–16, find a potential function for F or determine that F is not conservative.

7. F = 〈z, 1, x〉
solution We check whether the vector field F = 〈z, 1, x〉 satisfies the cross partials condition:

∂F1

∂y
= ∂

∂y
(z) = 0

∂F2

∂x
= ∂

∂x
(1) = 0

⇒ ∂F1

∂y
= ∂F2

∂x

∂F2

∂z
= ∂

∂z
(1) = 0

∂F3

∂y
= ∂

∂y
(x) = 0

⇒ ∂F2

∂z
= ∂F3

∂y

∂F3

∂x
= ∂

∂x
(x) = 1

∂F1

∂z
= ∂

∂z
(z) = 1

⇒ ∂F3

∂x
= ∂F1

∂z

F satisfies the cross partials condition everywhere. Hence, F is conservative. We find a potential function V (x, y, z).

Step 1. Use the condition ∂V
∂x

= F1. V is an antiderivative of F1 = z when y and z are fixed, therefore:

V (x, y, z) =
∫

z dx = zx + g(y, z) (1)

Step 2. Use the condition ∂V
∂y

= F2. By (1) we have:

∂

∂y
(zx + g(y, z)) = 1

gy(y, z) = 1

Integrating with respect to y, while holding z fixed, gives:

g(y, z) =
∫

1 dy = y + h(z)

We substitute in (1) to obtain:

V (x, y, z) = zx + y + h(z) (2)
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Step 3. Use the condition ∂V
∂z

= F3. Using (2) we get:

∂

∂z
(zx + y + h(z)) = x

x + h′(z) = x

h′(z) = 0 ⇒ h(z) = c

Substituting in (2) gives the following potential functions:

V (x, y, z) = zx + y + c.

One of the potential functions is obtained by choosing c = 0:

V (x, y, z) = zx + y

8. F = xj + yk

solution Since ∂F1
∂y

= ∂
∂y

(0) = 0 and ∂F2
∂x

= ∂
∂x

(x) = 1, we have ∂F1
∂y

�= ∂F2
∂x

. Therefore F does not satisfy the
cross-partials condition, hence F is not conservative.

9. F = y2i + (2xy + ez)j + yezk

solution We examine whether F satisfies the cross partials condition:

∂F1

∂y
= ∂

∂y

(
y2
)

= 2y

∂F2

∂x
= ∂

∂x

(
2xy + ez

) = 2y

⇒ ∂F1

∂y
= ∂F2

∂x

∂F2

∂z
= ∂

∂z

(
2xy + ez

) = ez

∂F3

∂y
= ∂

∂y

(
yez
) = ez

⇒ ∂F2

∂z
= ∂F3

∂y

∂F3

∂x
= ∂

∂x

(
yez
) = 0

∂F1

∂z
= ∂

∂z

(
y2
)

= 0

⇒ ∂F3

∂x
= ∂F1

∂z

We see that F satisfies the cross partials condition everywhere, hence F is conservative. We find a potential function
for F.

Step 1. Use the condition ∂V
∂x

= F1. V is an antiderivative of F1 = y2 when y and z are fixed. Hence:

V (x, y, z) =
∫

y2 dx = y2x + g(y, z) (1)

Step 2. Use the condition ∂V
∂y

= F2. By (1) we have:

∂

∂y

(
y2x + g(y, z)

)
= 2xy + ez

2yx + gy(y, z) = 2xy + ez ⇒ gy(y, z) = ez

We integrate with respect to y, holding z fixed:

g(y, z) =
∫

ez dy = ezy + h(z)

Substituting in (1) gives:

V (x, y, z) = y2x + ezy + h(z) (2)

Step 3. Use the condition ∂V
∂z

= F3. By (2), we get:

∂

∂z

(
y2x + ezy + h(z)

)
= yez

ezy + h′(z) = yez ⇒ h′(z) = 0
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Therefore h(z) = c. Substituting in (2) we get:

V (x, y, z) = y2x + ezy + c

The potential function corresponding to c = 0 is:

V (x, y, z) = y2x + ezy.

10. F = 〈y, x, z3〉
solution We examine whether the field F =

〈
y, x, z3

〉
satisfies the cross partials condition.

∂F1

∂y
= ∂

∂y
(y) = 1

∂F2

∂x
= ∂

∂x
(x) = 1

⇒ ∂F1

∂y
= ∂F2

∂x

∂F2

∂z
= ∂

∂z
(x) = 0

∂F3

∂y
= ∂

∂y

(
z3
)

= 0
⇒ ∂F2

∂z
= ∂F3

∂y

∂F3

∂x
= ∂

∂x

(
z3
)

= 0

∂F1

∂z
= ∂

∂z
(y) = 0

⇒ ∂F3

∂x
= ∂F1

∂z

Since F satisfies the cross partials condition everywhere, F is conservative. We find a potential function for F.

Step 1. Use the condition ∂V
∂x

= F1. V is an antiderivative of F1 = y when y and z are fixed. Therefore:

V (x, y, z) =
∫

y dx = yx + g(y, z) (1)

Step 2. Use the condition ∂V
∂y

= F2. By (1) we have:

∂

∂y
(yx + g(y, z)) = x

x + gy(y, z) = x ⇒ gy(y, z) = 0

Therefore, g(y, z) = g(z). Substituting in (1) gives:

V (x, y, z) = yx + g(z) (2)

Step 3. Use the condition ∂V
∂z

= F3. Using (2) we have:

∂

∂z
(yx + g(z)) = z3

g′(z) = z3 ⇒ g(z) = 1

4
z4 + c

Substituting in (2) gives the following general potential function:

V (x, y, z) = yx + 1

4
z4 + c

Choosing c = 0 we obtain the potential:

V (x, y, z) = yx + z4

4
.

11. F = 〈cos(xz), sin(yz), xy sin z
〉

solution Since ∂F2
∂z

= ∂
∂z

(sin(yz)) = y cos(yz) and ∂F3
∂y

= ∂
∂y

(xy sin z) = x sin z, we have ∂F2
∂z

�= ∂F3
∂y

. The cross
partials condition is not satisfied, therefore the vector field is not conservative.
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12. F = 〈cos z, 2y, −x sin z
〉

solution We examine whether F satisfies the cross partials condition:

∂F1

∂y
= ∂

∂y
(cos z) = 0

∂F2

∂x
= ∂

∂x
(2y) = 0

⇒ ∂F1

∂y
= ∂F2

∂x

∂F2

∂z
= ∂

∂z
(2y) = 0

∂F3

∂y
= ∂

∂y
(−x sin z) = 0

⇒ ∂F2

∂z
= ∂F3

∂y

∂F3

∂x
= ∂

∂x
(−x sin z) = − sin z

∂F1

∂z
= ∂

∂z
(cos z) = − sin z

⇒ ∂F3

∂x
= ∂F1

∂z

We see that the conditions are satisfied, therefore F is conservative. We find a potential function for F.

Step 1. Use the condition ∂V
∂x

= F1. V (x, y, z) is an antiderivative of F1 = cos z when y and z are fixed, therefore:

V (x, y, z) =
∫

cos z dx = x cos z + g(y, z) (1)

Step 2. Use the condition ∂V
∂y

= F2. Using (1) we get:

∂

∂y
(x cos z + g(y, z)) = 2y

gy(y, z) = 2y

We integrate with respect to y, holding z fixed:

g(y, z) =
∫

2y dy = y2 + g(z)

Substituting in (1) gives

V (x, y, z) = x cos z + y2 + g(z) (2)

Step 3. Use the condition ∂V
∂z

= F3. By (2) we have

∂

∂z

(
x cos z + y2 + g(z)

)
= −x sin z

−x sin z + g′(z) = −x sin z

g′(z) = 0 ⇒ g(z) = c

Substituting in (2) we obtain the general potential function:

V (x, y, z) = x cos z + y2 + c

Choosing c = 0 gives the potential function:

V (x, y, z) = x cos z + y2.

13. F = 〈z sec2 x, z, y + tan x
〉

solution

Step 1. Use the condition ∂V
∂x

= F1. V (x, y, z) is an antiderivative of F1 = z sec2 x when y and z are fixed, therefore:

V (x, y, z) =
∫

z sec2 x dx = z tan x + g(y, z) (1)

Step 2. Use the condition ∂V
∂y

= F2. Using (1) we get:

∂

∂y
(z tan x + g(y, z)) = z

gy(y, z) = z
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We integrate with respect to y, holding z fixed:

g(y, z) =
∫

z dy = yz + h(z)

Substituting in (1) gives

V (x, y, z) = z tan x + yz + h(z) (2)

Step 3. Use the condition ∂V
∂z

= F3. By (2) we have

∂

∂z
(z tan x + yz + h(z)) = y + tan x

tan x + y + h′(z) = y + tan x

h′(z) = 0 ⇒ h(z) = c

Substituting in (2) we obtain the general potential function:

V (x, y, z) = z tan x + yz + c

Choosing c = 0 gives the potential function:

V (x, y, z) = z tan x + yz

14. F = 〈ex(z + 1), − cos y, ex
〉

solution

Step 1. Use the condition ∂V
∂x

= F1. V (x, y, z) is an antiderivative of F1 = ex(z + 1) when y and z are fixed, therefore:

V (x, y, z) =
∫

ex(z + 1) dx = ex(z + 1) + g(y, z) (1)

Step 2. Use the condition ∂V
∂y

= F2. Using (1) we get:

∂

∂y

(
ex(z + 1) + g(y, z)

) = − cos y

gy(y, z) = − cos y

We integrate with respect to y, holding z fixed:

g(y, z) =
∫

− cos y dy = − sin y + h(z)

Substituting in (1) gives

V (x, y, z) = ex(z + 1) − sin y + h(z) (2)

Step 3. Use the condition ∂V
∂z

= F3. By (2) we have

∂

∂z

(
ex(z + 1) − sin y + h(z)

) = ex

ex + h′(z) = ex

h′(z) = 0 ⇒ h(z) = c

Substituting in (2) we obtain the general potential function:

V (x, y, z) = ex(z + 1) − sin y + c

Choosing c = 0 gives the potential function:

V (x, y, z) = ex(z + 1) − sin y

15. F = 〈2xy + 5, x2 − 4z, −4y
〉

solution We find a potential function V (x, y, z) for F, using the following steps.

Step 1. Use the condition ∂V
∂x

= F1. V is an antiderivative of F1 = 2xy + 5 when y and z are fixed, therefore,

V (x, y, z) =
∫

(2xy + 5) dx = x2y + 5x + g(y, z) (1)
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Step 2. Use the condition ∂V
∂y

= F2. We have,

∂

∂y

(
x2y + 5x + g(y, z)

)
= x2 − 4z

x2 + gy(y, z) = x2 − 4z ⇒ gy(y, z) = −4z

We integrate with respect to y, holding z fixed:

g(y, z) =
∫

−4z dy = −4zy + h(z)

Combining with (1) gives:

V (x, y, z) = x2y + 5x − 4zy + h(z) (2)

Step 3. Use the condition ∂V
∂z

= F3. We have,

∂

∂z

(
x2y + 5x − 4zy + h(z)

)
= −4y

−4y + h′(z) = −4y

h′(z) = 0 ⇒ h(z) = c

Substituting in (2) we obtain the general potential function:

V (x, y, z) = x2y + 5x − 4zy + c

To compute the line integral we need one of the potential functions. We choose c = 0 to obtain the function,

V (x, y, z) = x2y + 5x − 4zy

16. F = 〈yzexy, xzexy − z, exy − y
〉

solution

Step 1. Use the condition ∂V
∂x

= F1. V (x, y, z) is an antiderivative of F1 = yzexy when y and z are fixed, therefore:

V (x, y, z) =
∫

yzexy dx = zexy + g(y, z) (1)

Step 2. Use the condition ∂V
∂y

= F2. Using (1) we get:

∂

∂y

(
zexy + g(y, z)

) = xzexy − z

xzexy + gy(y, z) = xzexy − z

gy(y, z) = −z

We integrate with respect to y, holding z fixed:

g(y, z) =
∫

−z dy = −yz + h(z)

Substituting in (1) gives

V (x, y, z) = zexy − yz + h(z) (2)

Step 3. Use the condition ∂V
∂z

= F3. By (2) we have

∂

∂z

(
zexy − yz + h(z)

) = exy − y

exy − y + h′(z) = exy − y

h′(z) = 0 ⇒ h(z) = c

Substituting in (2) we obtain the general potential function:

V (x, y, z) = zexy − yz + c

Choosing c = 0 gives the potential function:

V (x, y, z) = zexy − yz
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17. Evaluate ∫
c

2xyz dx + x2z dy + x2y dz

over the path c(t) = (t2, sin(πt/4), et2−2t ) for 0 ≤ t ≤ 2.

solution A potential function is

V (x, y, z) = x2yz

The path begins at c(0) = (0, 0, 1) and ends at c(2) = (4, 1, 1) so the line integral is

V (4, 1, 1) − V (0, 0, 1) = 16 − 0 = 16

18. Evaluate ∮
C

sin x dx + z cos y dy + sin y dz

where C is the ellipse 4x2 + 9y2 = 36, oriented clockwise.

solution First we find a potential function for the vector field F = 〈sin x, z cos y, sin y〉.
Step 1. Use the condition ∂V

∂x
= F1.

V (x, y, z) =
∫

sin x dx = − cos x + g(y, z) (1)

Step 2. Use the condition ∂V
∂y

= F2. Using (1) we get:

∂

∂y
(− cos x + g(y, z)) = z cos y

gy(y, z) = z cos y

We integrate with respect to y, holding z fixed:

g(y, z) =
∫

z cos y dy = z sin y + h(z)

Substituting in (1) gives

V (x, y, z) = − cos x + z sin y + h(z) (2)

Step 3. Use the condition ∂V
∂z

= F3. By (2) we have

∂

∂z
(− cos x + z sin y + h(z)) = sin y

sin y + h′(z) = sin y

h′(z) = 0 ⇒ h(z) = c

Substituting in (2) we obtain the general potential function:

V (x, y, z) = − cos x + z sin y + c

Choosing c = 0 gives the potential function:

V (x, y, z) = − cos x + z sin y

Since this is a conservative vector field integrated around a closed curve we have

∮
C

sin x dx + z cos y dy + sin y dz = 0
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19. A vector field F and contour lines of a potential function for F are shown in Figure 17. Calculate the common value

of
∫
C

F · ds for the curves shown in Figure 17 oriented in the direction from P to Q.

x

y

1

3

5

7

99

77

55

Q

P

FIGURE 17

solution ∫
C

F · ds =
∫
C

∇V · ds = V (Q) − V (P ) = 8 − 2 = 6

20. Give a reason why the vector field F in Figure 18 is not conservative.

x

y

FIGURE 18

solution The line integral from the lower left corner to the upper right corner would clearly be larger if the path passed
through the lower right region (where the vector field has large magnitude) than if it passed through the upper left region
(where the vector field has small magnitude). If the vector field were conservative, the line integral would not depend on
the path. Thus the vector field is not conservative.

21. Calculate the work expended when a particle is moved from O to Q along segments OP and PQ in Figure 19 in the
presence of the force field F = 〈x2, y2〉. How much work is expended moving in a complete circuit around the square?

x

y

O

R = (0, 1) Q = (1, 1)

P = (1, 0)

FIGURE 19

solution

x

y

O

R = (0, 1) Q = (1, 1)

P = (1, 0)

Since ∂F1
∂y

= ∂
∂y

(x2) = 0 and ∂F2
∂x

= ∂
∂x

(y2) = 0, we have ∂F1
∂y

= ∂F2
∂x

. That is, F satisfies the cross partials condition,

therefore F is conservative. We choose the function x3

3 + y3

3 , such that F is the gradient of the function. The potential

energy is, thus, V = − x3

3 − y3

3 . The work done against F is computed by the Fundamental Theorem for Gradient vectors:

Work against F = −
∫
C

F · ds = V (Q) − V (O) = V (1, 1) − V (0) = −2

3
− 0 = −2

3
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(The negative sign is to be expected, as our force field is actually helping us move along OP and OQ. The line integral
of a conservative field along a closed curve is zero, therefore the integral of F along the complete square is zero, and we
get:

W = −
∫

OPQR

F · ds = 0

22. Let F =
〈

1

x
,
−1

y

〉
. Calculate the work against F required to move an object from (1, 1) to (3, 4) along any path in

the first quadrant.

solution F is a conservative force, since F = −∇V with potential energy V (x, y) = ln y − ln x. The work required
to move an object from (1, 1) to (3, 4) along any path C is equal to the change in potential energy:

Work against F = −
∫
C

F · ds = V (3, 4) − V (1, 1) = (ln 4 − ln 3) − (ln 1 − ln 1) = ln 4 − ln 3

23. Compute the work W against the earth’s gravitational field required to move a satellite of mass m = 1000 kg along
any path from an orbit of altitude 4000 km to an orbit of altitude 6000 km.

solution Work against gravity is calculated with the integral

W = −
∫
C

mF · ds = 1000
∫
C

∇V · ds = 1000(V (r2) − V (r1))

Since r1 and r2 are measured from the center of the earth,

r1 = 4 × 106 + 6.4 × 106 = 10.4 × 106 meters

r2 = 6 × 106 + 6.4 × 106 = 12.4 × 106 meters

V (r) = −k

r
⇒ W = −1000k

106

(
1

12.4
− 1

10.4

)
≈ 6.2 × 109 J

24. An electric dipole with dipole moment p = 4 × 10−5 C-m sets up an electric field (in newtons per coulomb)

F(x, y, z) = kp

r5

〈
3xz, 3yz, 2z2 − x2 − y2

〉

where r = (x2 + y2 + z2)1/2 with distance in meters and k = 8.99 × 109 N-m2/C2. Calculate the work against F
required to move a particle of charge q = 0.01 C from (1, −5, 0) to (3, 4, 4). Note: The force on q is qF newtons.

solution We first calculate the potential function.

−∂V

∂x
= kpq3xz

r5 = qF1

⇒ V (x, y, z) = −3kpqz

∫
x

(x2 + y2 + z2)
5
2

dx

= −3kpqz
1

2

(
−2

3

)
1

(x2 + y2 + z2)
3
2

+ g(y, z) = kpqz

r3
+ g(y, z)

We may let g(y, z) = 0 since,

− ∂

∂y

(
kpqz

r3

)
= −kpqz

(
−3

2

)
2y

(x2 + y2 + z2)
5
2

= kpq3yz

r5 = qF2

− ∂

∂z

(
kpqz

r3

)
= − kpq

(x2 + y2 + z2)
3
2

− kpqz

(
−3

2

)
2z

(x2 + y2 + z2)
5
2

= kpq
−(x2 + y2 + z2) + 3z2

(x2 + y2 + z2)
5
2

= kpq(2z2 − x2 − y2)

r5 = qF3
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Hence V = kpqz

r3 , so

V (3, 4, 4) − V (1, −5, 0) = V (3, 4, 4) = (0.01)(4 × 10−5)(8.99 × 109)(4)

(32 + 42 + 42)
3
2

≈ 54.8 J

25. On the surface of the earth, the gravitational field (with z as vertical coordinate measured in meters) is F = 〈0, 0, −g〉.
(a) Find a potential function for F.

(b) Beginning at rest, a ball of mass m = 2 kg moves under the influence of gravity (without friction) along a path from
P = (3, 2, 400) to Q = (−21, 40, 50). Find the ball’s velocity when it reaches Q.

solution

(a) By inspection F = −∇V for V (x, y, z) = gz.

(b) The force of gravity is mF = 〈0, 0, −mg〉, therefore mF = −∇V for V (x, y, z) = mgz. The work performed moving
the ball from P to Q is the line integral of mF over the path. Since mF is conservative, the energy is independent of the
path connecting the two points. Using the Fundamental Theorem for Gradient Vector Fields we have:

W = −
∫

c
mF · ds = V (−21, 40, 50) − V (3, 2, 400) = 2 · 9.8(50 − 400) = −6860 joules

By conservation of energy, the kinetic energy of the ball will be 6860 joules, so

mv2

2
= 6860 ⇒ v =

√
2 · 6860

2
≈ 82.8 m/s

26. An electron at rest at P = (5, 3, 7) moves along a path ending at Q = (1, 1, 1) under the influence of the electric
field (in newtons per coulomb)

F(x, y, z) = 400(x2 + z2)−1 〈x, 0, z〉

(a) Find a potential function for F.

(b) What is the electron’s speed at point Q? Use Conservation of Energy and the value qe/me = −1.76 × 1011 C/kg,
where qe and me are the charge and mass on the electron, respectively.

solution

(a)

∂V

∂x
= 400x

x2 + z2
= F1

⇒ V (x, y, z) =
∫

400x

x2 + z2
dx

= 200 ln(x2 + z2) + g(y, z)

We may let g(y, z) = 0 since,

∂

∂y
(200 ln(x2 + z2)) = 0 = F2

∂

∂z
(200 ln(x2 + z2)) = 400z

x2 + z2
= F3

Hence V = 200 ln(x2 + z2) volts.

(b) The energy at the point Q will be qe(V (1, 1, 1) − V (5, 3, 7)). By conservation of energy,

mev
2

2
= qe(V (1, 1, 1) − V (5, 3, 7))

⇒ v =
√

2qe(V (1, 1, 1) − V (5, 3, 7))

me
=
√

400
qe

me
(ln(12 + 12) − ln(52 + 72)) ≈ 1.59 × 107 m/s
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27. Let F =
〈 −y

x2 + y2
,

x

x2 + y2

〉
be the vortex field. Determine

∫
c

F · ds for each of the paths in Figure 20.

(A)

y

x

(D)

y

x

(E)

y

x

(B)

y

x

(C)

y

x

FIGURE 20

solution Since the cross partials of F are equal, F has the property,∫
c

F · ds = 2πn

where c is a closed curve not passing through the origin, and n is the number of times c winds around the origin (n is
negative if n winds in the clockwise direction). We use this property to compute the line integrals of F over the paths in
Figure 18:

(A) The path (A) winds around the origin one time in the counterclockwise direction hence the line integral is 2π · 1 = 2π .

(B) The point (B) winds around the origin one time in the counterclockwise direction hence the line integral is 2π · 1 = 2π .

(C) The path (C) does not encounter the origin, hence the line integral is 2π · 0 = 0. Notice that there exists a simply
connected domain D, not including the origin, so that the path c and the region inside c are in D. Therefore, Theorem 4
applies in D and F is a gradient vector in D. Consequently, the line integral of F over c is zero.

c

x

y

D

(D) This path winds around the origin one time in the clockwise direction, hence
∫

c F · ds = 2π · (−1) = −2π .

(E) The path winds around the origin twice in the counterclockwise direction, hence the line integral is 2π · 2 = 4π .

28. The vector field F =
〈

x

x2 + y2
,

y

x2 + y2

〉
is defined on the domain D = {(x, y) �= (0, 0)}.

(a) Is D simply-connected?

(b) Show that F satisfies the cross-partial condition. Does this guarantee that F is conservative?

(c) Show that F is conservative on D by finding a potential function.

(d) Do these results contradict Theorem 4?

solution

(a) D is not simply-connected since it has a “hole" at the origin.

(b) We compute the partials of F:

∂F2

∂x
= ∂

∂x

(
y

x2 + y2

)
= −2xy(

x2 + y2
)2

∂F1

∂y
= ∂

∂y

(
x

x2 + y2

)
= −2yx(

x2 + y2
)2

The cross partials are equal in D, however this does not guarantee F is conservative since D is not simply connected.
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(c) We compute the gradient of V (x, y) = 1
2 ln

(
x2 + y2

)
:

∇V =
〈
∂V

∂x
,
∂V

∂x

〉
= 1

2

〈
2x

x2 + y2
,

2y

x2 + y2

〉
=
〈

x

x2 + y2
,

y

x2 + y2

〉
= F

(d) The requirement in Theorem 4 (that the domain be simply connected) is a sufficient condition for a vector field with
equal cross-partial to have a potential function. It is not necessary, since as in our example, even if the domain is not
simply-connected the field may have a gradient function. Moreover, for any closed curve in D, V have the same value
after completing one round along c. This is perhaps best seen by noting that V = log(r) in polar coordinates, which will
be independent of θ . Therefore,

∫
c

F · ds = 0

Hence, F is conservative.

PQ

Further Insights and Challenges
29. Suppose that F is defined on R3 and that

∮
c

F · ds = 0 for all closed paths c in R3. Prove:

(a) F is path-independent; that is, for any two paths c1 and c2 in D with the same initial and terminal points,

∫
c1

F · ds =
∫

c2

F · ds

(b) F is conservative.

solution

(a) Choose two distinct points P and Q, and let c1 and c2 be paths from P to Q. We construct a path from P to P by
first using c1 to reach Q, then using c2 with its orientation reversed to return to P . (This reversed path is designated −c2.)
Such a closed path c can be represented as a difference c = c1 − c2. (See figure below)

P

Q

c2

c1

c

The closed loop c is represented as c1 − c2.

Thus, ∮
c

F · ds =
∫

c1

F · ds +
∫
−c2

F · ds

=
∫

c1

F · ds −
∫

c2

F · ds

Since the problem states that the integral around any closed path is zero, we have

∫
c1

F · ds −
∫

c2

F · ds = 0 ⇒
∫

c1

F · ds =
∫

c2

F · ds

(b) Since F is defined for all of R
3, it is certainly defined in a simply connected domain D. Since we have just established

that F is also path independent, F is conservative by Theorem 2.
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16.4 Parametrized Surfaces and Surface Integrals (LT Section 17.4)

Preliminary Questions
1. What is the surface integral of the function f (x, y, z) = 10 over a surface of total area 5?

solution Using Surface Integral and Surface Area we have:∫∫
S

f (x, y, z) dS =
∫∫

D
f (�(u, v)) ‖n(u, v)‖ du dv =

∫∫
D

10‖n(u, v)‖ du dv

= 10
∫∫

D
‖n(u, v)‖ du dv = 10 Area(S) = 10 · 5 = 50

2. What interpretation can we give to the length ‖n‖ of the normal vector for a parametrization G(u, v)?

solution The approximation:

Area
(
Sij

) ≈ ‖n
(
uij , vij

) ‖Area
(
Rij

)
tells that ‖n‖ is a distortion factor that indicates how much the area of a small rectangle Rij is altered under the map φ.

Φ

u
ui

j

ui + 0.01

j + 0.02

Rij
Sij

3. A parametrization maps a rectangle of size 0.01 × 0.02 in the uv-plane onto a small patch S of a surface. Estimate
Area(S) if Tu × Tv = 〈1, 2, 2〉 at a sample point in the rectangle.

solution We use the estimation

Area(S) ≈ ‖n(u, v)‖Area(R)

where n(u, v) = Tu × Tv at a sample point in R. We get:

Area(S) ≈ ‖ 〈1, 2, 2〉 ‖ · 0.01 · 0.02 =
√

12 + 22 + 22 · 0.0002 = 0.0006

Φ

u
u u + 0.01

 + 0.02

R S

4. A small surface S is divided into three small pieces, each of area 0.2. Estimate
∫∫

S
f (x, y, z) dS if f (x, y, z) takes

the values 0.9, 1, and 1.1 at sample points in these three pieces.

solution We use the approximation obtained by the Riemann Sum:∫∫
S

f (x, y, z) dS ≈
∑
ij

f
(
Pij

)
Area

(
Sij

) = 0.9 · 0.2 + 1 · 0.2 + 1.1 · 0.2 = 0.6

5. A surface S has a parametrization whose domain is the square 0 ≤ u, v ≤ 2 such that ‖n(u, v)‖ = 5 for all (u, v).
What is Area(S)?

solution Writing the surface area as a surface integral where D is the square [0, 2] × [0, 2] in the uv-plane, we have:

Area(S) =
∫∫

D
‖n(u, v)‖ du dv =

∫∫
D

5 du dv = 5
∫∫

D
1 du dv = 5Area(D) = 5 · 22 = 20
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6. What is the outward-pointing unit normal to the sphere of radius 3 centered at the origin at P = (2, 2, 1)?

solution The outward-pointing normal to the sphere of radius R = 3 centered at the origin is the following vector:

〈cos θ sin φ, sin θ sin φ, cos φ〉 (1)

2

1

2P = (2, 2, 1)

z

y

x

We compute the values in (1) corresponding to P = (2, 2, 1): x = y = 2, z = 1 hence 0 ≤ θ ≤ π
2 and 0 < φ < π

2 . We
get:

cos φ = z

ρ
= 1

3
⇒ sin φ =

√
1 −

(
1

3

)2
= 2

√
2

3

cos θ = x

ρ sin φ
= 2

3 · 2
√

2
3

= 1√
2

⇒ sin θ =
√

1 − 1

2
= 1√

2

Substituting in (1) we get the following unit normal:〈
1√
2

· 2
√

2

3
,

1√
2

· 2
√

2

3
,

1

3

〉
=
〈

2

3
,

2

3
,

1

3

〉

Exercises
1. Match each parametrization with the corresponding surface in Figure 16.

(a) (u, cos v, sin v)

(b) (u, u + v, v)

(c) (u, v3, v)

(d) (cos u sin v, 3 cos u sin v, cos v)

(e) (u, u(2 + cos v), u(2 + sin v))

(i) (ii) (iii)

x

y

z

x
y

z

x y

(iv) (v)

x
y

z

z

x

z

y

FIGURE 16

solution (a) = (v), because the y and z coordinates describe a circle with fixed radius.
(b) = (iii), because the coordinates are all linear in u and v.
(c) = (i), because the parametrization gives y = z3.
(d) = (iv), an ellipsoid.
(e) = (ii), because the y and z coordinates describe a circle with varying radius.

2. Show that G(r, θ) = (r cos θ, r sin θ, 1 − r2) parametrizes the paraboloid z = 1 − x2 − y2. Describe the grid curves
of this parametrization.

solution We substitute x = r cos θ and y = r sin θ in the right-hand side of the equation of the cone, and verify that

the result is 1 − r2:

1 − x2 − y2 = 1 − (r cos θ)2 − (r sin θ)2 = 1 − r2
(

cos2 θ + sin2 θ
)

= 1 − r2 · 1 = 1 − r2 = z
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Moreover, for every x, y, z satisfying z = 1 − x2 − y2 there are suitable values of r and θ so that x = r cos θ , y = r sin θ

and z = 1 − r2. We conclude that G(r, θ) parametrizes the whole paraboloid z = 1 − x2 − y2. The grid curves on the
paraboloid through P = (r0, θ0) are:

• r-grid curve:(
r cos θ0, r sin θ0, 1 − r2

)
= parabola z = 1 − r2 in the plane sin(θ0)x − cos(θ0)y = 0.

• θ -grid curve: (
r0 cos θ, r0 sin θ, 1 − r2

0

)
= circle of radius r0 at height 1 − r2

0 .

3. Show that G(u, v) = (2u + 1, u − v, 3u + v) parametrizes the plane 2x − y − z = 2. Then:

(a) Calculate Tu, Tv , and n(u, v).

(b) Find the area of S = G(D), where D = {(u, v) : 0 ≤ u ≤ 2, 0 ≤ v ≤ 1}.
(c) Express f (x, y, z) = yz in terms of u and v, and evaluate

∫∫
S

f (x, y, z) dS.

solution We show that x = 2u + 1, y = u − v, and z = 3u + v satisfy the equation of the plane,

2x − y − z = 2(2u + 1) − (u − v) − (3u + v) = 4u + 2 − u + v − 3u − v = 2

Moreover, for any x, y, z satisfying 2x − y − z = z, there are values of u and v such that x = 2u + 1, y = u − v, and
z = 3u + v, since the following equations can be solved for u and v:

x = 2u + 1

y = u − v

z = 3u + v

2x − y − z = 2

⇒ u = x − 1

2
, v = x − 1

2
− y

We conclude that �(u, v) parametrizes the whole plane 2x − y − z = 2.

(a) The tangent vectors Tu and Tv are:

Tu = ∂φ

∂u
= ∂

∂u
(2u + 1, u − v, 3u + v) = 〈2, 1, 3〉

Tv = ∂φ

∂v
= ∂

∂v
(2u + 1, u − v, 3u + v) = 〈0, −1, 1〉

The normal vector is the following cross product:

n(u, v) = Tu × Tv =
∣∣∣∣∣∣

i j k
2 1 3
0 −1 1

∣∣∣∣∣∣ =
∣∣∣∣ 1 3

−1 1

∣∣∣∣ i −
∣∣∣∣ 2 3

0 1

∣∣∣∣ j +
∣∣∣∣ 2 1

0 −1

∣∣∣∣k
= 4i − 2j − 2k = 〈4, −2, −2〉

(b) That area of S = �(D) is the following surface integral:

Area(S) =
∫∫

D
‖n(u, v)‖ du dv =

∫∫
D

‖ 〈4, −2, −2〉 ‖ du dv = √
24
∫∫

D
1 du dv

= √
24 Area(D) = √

24 · 2 · 1 = 4
√

6

(c) We express f (x, y, z) = yz in terms of the parameters u and v:

f (φ(u, v)) = (u − v)(3u + v) = 3u2 − 2uv − v2

Using the Theorem on Surface Integrals we have:∫∫
S

f (x, y, z) dS =
∫∫

D
f (φ(u, v)) ‖n(u, v)‖ du dv =

∫∫
D

(
3u2 − 2uv − v2

)
‖ 〈4, −2, −2〉 ‖ du dv

= √
24
∫ 1

0

∫ 2

0

(
3u2 − 2uv − v2

)
du dv = √

24
∫ 1

0

(
u3 − u2v − v2u

) ∣∣∣∣2
u=0

dv

= √
24
∫ 1

0

(
8 − 4v − 2v2

)
dv = √

24

(
8v − 2v2 − 2

3
v3
) ∣∣∣∣1

0
= 32

√
6

3
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4. Let S = G(D), where D = {(u, v) : u2 + v2 ≤ 1, u ≥ 0, v ≥ 0} and G is as defined in Exercise 3.

(a) Calculate the surface area of S.

(b) Evaluate
∫∫

S
(x − y) dS. Hint: Use polar coordinates.

solution The surface S is given by the parametrization:

�(u, v) = (2u + 1, u − v, 3u + v).

In Exercise 3 we computed the normal vector:

n(u, v) = 〈4, −2, 2〉 ⇒ ‖n(u, v)‖ = √
24.

The surface area for u and v in the domain D =
{
(u, v) : u2 + v2 ≤ 1, u ≥ 0, v ≥ 0

}
is the surface integral:

Area(S) =
∫∫

D
‖n(u, v)‖ du dv =

∫∫
D

√
24 du dv = √

24
∫∫

D
1 du dv = √

24 Area(D) (1)

x

y

1

1

D

D is the quarter disc u2 + v2 ≤ 1 in the first quadrant, hence it has the area π ·12

4 = π
4 . Substituting in (1) gives:

Area(S) = √
24 · π

4
= π

√
6

2
.

To compute the surface integral of f (x, y, z) = x − y, we first express f in terms of the parameters u and v:

f (�(u, v)) = (2u + 1) − (u − v) = u + v + 1.

We now use the Theorem on surface integrals to compute the integral:∫∫
S

f (x, y, z) dS =
∫∫

D
f (�(u, v)) ‖n(u, v)‖ du dv =

∫∫
D

(u + v + 1)
√

24 du dv

We convert the integral to polar coordinates:

u = r cos θ, v = r sin θ

Then, the region of integration is:

0 ≤ r ≤ 1, 0 ≤ θ ≤ π

2
.

We get:

∫∫
S

f (x, y, z) dS =
∫ π/2

0

∫ 1

0
(r cos θ + r sin θ + 1)

√
24 r dr dθ = √

24
∫ π/2

0

∫ 1

0

(
r2(cos θ + sin θ) + r

)
dr dθ

= √
24
∫ π/2

0

r3(cos θ + sin θ)

3
+ r2

2

∣∣∣∣1
r=0

dθ = √
24
∫ π/2

0

(
cos θ + sin θ

3
+ 1

2

)
dθ

= √
24

(
sin θ − cos θ

3
+ θ

2

) ∣∣∣∣π/2

0
= √

24

(
2

3
+ π

4

)
= 8 + 3π√

6

5. Let G(x, y) = (x, y, xy).

(a) Calculate Tx , Ty , and n(x, y).

(b) Let S be the part of the surface with parameter domain D = {(x, y) : x2 + y2 ≤ 1, x ≥ 0, y ≥ 0}. Verify the
following formula and evaluate using polar coordinates:∫∫

S
1 dS =

∫∫
D

√
1 + x2 + y2 dx dy
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(c) Verify the following formula and evaluate:

∫∫
S

z dS =
∫ π/2

0

∫ 1

0
(sin θ cos θ)r3

√
1 + r2 dr dθ

solution

(a) The tangent vectors are:

Tx = ∂φ

∂x
= ∂

∂x
(x, y, xy) = 〈1, 0, y〉

Ty = ∂φ

∂y
= ∂

∂y
(x, y, xy) = 〈0, 1, x〉

The normal vector is the cross product:

n(x, y) = Tx × Ty =
∣∣∣∣∣∣

i j k
1 0 y

0 1 x

∣∣∣∣∣∣ =
∣∣∣∣ 0 y

1 x

∣∣∣∣ i −
∣∣∣∣ 1 y

0 x

∣∣∣∣ j +
∣∣∣∣ 1 0

0 1

∣∣∣∣k
= −yi − xj + k = 〈−y, −x, 1〉

(b) Using the Theorem on evaluating surface integrals we have:∫∫
S

1 dS =
∫∫

D
‖n(x, y)‖ dx dy =

∫∫
D

‖ 〈−y, −x, 1〉 ‖ dx dy =
∫∫

D

√
y2 + x2 + 1 dx dy

x
10

1

y

D

We convert the integral to polar coordinates x = r cos θ , y = r sin θ . The new region of integration is:

0 ≤ r ≤ 1, 0 ≤ θ ≤ π

2
.

We get:

∫∫
S

1 dS =
∫ π/2

0

∫ 1

0

√
r2 + 1 · r dr dθ =

∫ π/2

0

(∫ 1

0

√
r2 + 1 · r dr

)
dθ

=
∫ π/2

0

(∫ 2

1

√
u

2
du

)
dθ =

∫ π/2

0

2
√

2 − 1

3
dθ =

(
2
√

2 − 1
)

π

6

(c) The function z expressed in terms of the parameters x, y is f (�(x, y)) = xy. Therefore,∫∫
S

z dS =
∫∫

D
xy · ‖n(x, y)‖ dx dy =

∫∫
D

xy

√
1 + x2 + y2 dx dy

We compute the double integral by converting it to polar coordinates. We get:

∫∫
S

z dS =
∫ π/2

0

∫ 1

0
(r cos θ)(r sin θ)

√
1 + r2 · r dr dθ =

∫ π/2

0

∫ 1

0
(sin θ cos θ)r3

√
1 + r2 dr dθ

=
(∫ π/2

0
(sin θ cos θ) dθ

)(∫ 1

0
r3
√

1 + r2 dr

)
(1)

We compute each integral in (1). Using the substitution u = 1 + r2, du = 2r dr we get:

∫ 1

0
r3
√

1 + r2 dr =
∫ 1

0
r2
√

1 + r2 · r dr =
∫ 2

1

(
u3/2 − u1/2

) du

2
= u5/2

5
− u3/2

3

∣∣∣∣2
1

=
2
(√

2 + 1
)

15
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Also, ∫ π/2

0
sin θ cos θ dθ =

∫ π/2

0

sin 2θ

2
dθ = − cos 2θ

4

∣∣∣∣π/2

0
= 1

2

We substitute the integrals in (1) to obtain the following solution:

∫∫
S

z dS = 1

2
·

2
(√

2 + 1
)

15
=

√
2 + 1

15

6. A surface S has a parametrization G(u, v) whose domain D is the square in Figure 17. Suppose that G has the
following normal vectors:

n(A) = 〈2, 1, 0〉 , n(B) = 〈1, 3, 0〉
n(C) = 〈3, 0, 1〉 , n(D) = 〈2, 0, 1〉

Estimate
∫∫

S
f (x, y, z) dS, where f is a function such that f (G(u, v)) = u + v.

u

A B

C D

1

1

FIGURE 17

solution We estimate the surface integral by the following Riemann sum:∫∫
S

f (x, y, z) dS = �u�v (f (A)‖n(A)‖ + f (B)‖n(B)‖ + f (C)‖n(C)‖ + f (D)‖n(D)‖) (1)

In the given grid, we have �u = �v = 1
2 . We compute the lengths of the normal vectors:

‖n(A)‖ = ‖ 〈2, 1, 0〉 ‖ = √
4 + 1 + 0 = √

5

‖n(B)‖ = ‖ 〈1, 3, 0〉 ‖ = √
1 + 9 + 0 = √

10

‖n(C)‖ = ‖ 〈3, 0, 1〉 ‖ = √
9 + 0 + 1 = √

10

‖n(D)‖ = ‖ 〈2, 0, 1〉 ‖ = √
4 + 0 + 1 = √

5

The sample points are A =
(

1
4 , 3

4

)
, B =

(
3
4 , 3

4

)
, C =

(
1
4 , 1

4

)
, D =

(
3
4 , 1

4

)
, hence the values of f at the sample points

are:

f (A) = 1

4
+ 3

4
= 1, f (B) = 3

4
+ 3

4
= 3

2
, f (C) = 1

4
+ 1

4
= 1

2
, f (D) = 3

4
+ 1

4
= 1

Substituting the values in (1) gives the following estimation:∫∫
S

f (x, y, z) dS = 1

2
· 1

2

(
1 · √

5 + 3

2
· √

10 + 1

2
· √

10 + 1 · √
5

)
=

√
5 + √

10

2

In Exercises 7–10, calculate Tu, Tv , and n(u, v) for the parametrized surface at the given point. Then find the equation
of the tangent plane to the surface at that point.

7. G(u, v) = (2u + v, u − 4v, 3u); u = 1, v = 4

solution The tangent vectors are the following vectors,

Tu = ∂�

∂u
= ∂

∂u
(2u + v, u − 4v, 3u) = 〈2, 1, 3〉

Tv = ∂�

∂v
= ∂

∂v
(2u + v, u − 4v, 3u) = 〈1, −4, 0〉

The normal is the cross product:

n(u, v) = Tu × Tv =
∣∣∣∣∣∣

i j k
2 1 3
1 −4 0

∣∣∣∣∣∣ =
∣∣∣∣ 1 3

−4 0

∣∣∣∣ i −
∣∣∣∣ 2 3

1 0

∣∣∣∣ j +
∣∣∣∣ 2 1

1 −4

∣∣∣∣k
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= 12i + 3j − 9k = 3 〈4, 1, −3〉
The equation of the plane passing through the point P : �(1, 4) = (6, −15, 3) with the normal vector 〈4, 1, −3〉 is:

〈x − 6, y + 15, z − 3〉 · 〈4, 1, −3〉 = 0

or

4(x − 6) + y + 15 − 3(z − 3) = 0

4x + y − 3z = 0

8. G(u, v) = (u2 − v2, u + v, u − v); u = 2, v = 3

solution We compute the tangent vectors:

Tu = ∂�

∂u
= ∂

∂u

(
u2 − v2, u + v, u − v

)
= 〈2u, 1, 1〉

Tv = ∂�

∂v
= ∂

∂v

(
u2 − v2, u + v, u − v

)
= 〈−2v, 1, −1〉

The normal is the cross product of Tu and Tv . That is:

n(u, v) = Tu × Tv =
∣∣∣∣∣∣

i j k
2u 1 1

−2v 1 −1

∣∣∣∣∣∣ =
∣∣∣∣ 1 1

1 −1

∣∣∣∣ i −
∣∣∣∣ 2u 1

−2v −1

∣∣∣∣ j +
∣∣∣∣ 2u 1

−2v 1

∣∣∣∣k
= −2i − 2(v − u)j + 2(u + v)k = 2 〈−1, u − v, v + u〉

We compute the tangency point and the normal n(u, v) at this point:

P = �(2, 3) =
(

22 − 32, 2 + 3, 2 − 3
)

= (−5, 5, −1)

n(2, 3) = 2 〈−1, 2 − 3, 3 + 2〉 = 2 〈−1, −1, 5〉
The equation of the plane passing through the point P = (−5, 5, −1) with the normal vector 〈−1, −1, 5〉 is:

〈x + 5, y − 5, z + 1〉 · 〈−1, −1, 5〉 = 0

or

−(x + 5) − (y − 5) + 5(z + 1) = 0

−x − y + 5z + 5 = 0

9. G(θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ); θ = π
2 , φ = π

4

solution We compute the tangent vectors:

Tθ = ∂�

∂θ
= ∂

∂θ
(cos θ sin φ, sin θ sin φ, cos φ) = 〈− sin θ sin φ, cos θ sin φ, 0〉

Tφ = ∂�

∂φ
= ∂

∂φ
(cos θ sin φ, sin θ sin φ, cos φ) = 〈cos θ cos φ, sin θ cos φ, − sin φ〉

The normal vector is the cross product:

n(θ, φ) = Tθ × Tφ =
∣∣∣∣∣∣

i j k
− sin θ sin φ cos θ sin φ 0
cos θ cos φ sin θ cos φ − sin φ

∣∣∣∣∣∣
=
(
− cos θ sin2 φ

)
i −
(

sin θ sin2 φ
)

j +
(
− sin2 θ sin φ cos φ − cos2 θ cos φ sin φ

)
k

= −
(

cos θ sin2 φ
)

i −
(

sin θ sin2 φ
)

j − (sin φ cos φ)k

The tangency point and the normal at this point are,

P = �
(π

2
,
π

4

)
=
(

cos
π

2
sin

π

4
, sin

π

2
sin

π

4
, cos

π

4

)
=
(

0,

√
2

2
,

√
2

2

)

n
(π

2
,
π

4

)
= −1

2
j − 1

2
k = −1

2
(j + k) = −1

2
〈0, 1, 1〉
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The equation of the plane orthogonal to the vector 〈0, 1, 1〉 and passing through P =
(

0,

√
2

2 ,

√
2

2

)
is:

〈
x, y −

√
2

2
, z −

√
2

2

〉
· 〈0, 1, 1〉 = 0

or

y −
√

2

2
+ z −

√
2

2
= 0

y + z = √
2

10. G(r, θ) = (r cos θ, r sin θ, 1 − r2); r = 1
2 , θ = π

4

solution The tangent vectors are:

Tr = ∂�

∂r
= ∂

∂r

(
r cos θ, r sin θ, 1 − r2

)
= 〈cos θ, sin θ, −2r〉

Tθ = ∂�

∂θ
= ∂

∂θ

(
r cos θ, r sin θ, 1 − r2

)
= 〈−r sin θ, r cos θ, 0〉

The normal vector is the cross product of Tr and Tθ . That is,

n(r, θ) = Tr × Tθ =
∣∣∣∣∣∣

i j k
cos θ sin θ −2r

−r sin θ r cos θ 0

∣∣∣∣∣∣ =
(

2r2 cos θ
)

i +
(

2r2 sin θ
)

j +
(
r cos2 θ + r sin2 θ

)
k

=
(

2r2 cos θ
)

i +
(

2r2 sin θ
)

j + rk = r 〈2r cos θ, 2r sin θ, 1〉

We compute the tangency point and the normal vector at this point. We get:

P = �

(
1

2
,
π

4

)
=
(

1

2
cos

π

4
,

1

2
sin

π

4
, 1 −

(
1

2

)2
)

=
(

1

2
√

2
,

1

2
√

2
,

3

4

)

N
(

1

2
,
π

4

)
= 1

2

〈
2 · 1

2
cos

π

4
, 2 · 1

2
sin

π

4
, 1

〉
= 1

2

〈
1√
2
,

1√
2
, 1

〉

The equation of the plane through P , with normal vector
〈

1√
2
, 1√

2
, 1
〉

is:

〈
x − 1

2
√

2
, y − 1

2
√

2
, z − 3

4

〉
·
〈

1√
2
,

1√
2
, 1

〉
= 0

or

1√
2

(
x − 1

2
√

2

)
+ 1√

2

(
y − 1

2
√

2

)
+ z − 3

4
= 0

1√
2
x + 1√

2
y + z = 5

4

2
√

2x + 2
√

2y + 4 = 5

11. Use the normal vector computed in Exercise 8 to estimate the area of the small patch of the surface G(u, v) =
(u2 − v2, u + v, u − v) defined by

2 ≤ u ≤ 2.1, 3 ≤ v ≤ 3.2

solution We denote the rectangle D = {(u, v) : 2 ≤ u ≤ 2.1, 3 ≤ v ≤ 3.2}. Using the sample point corresponding
to u = 2, v = 3 we obtain the following estimation for the area of S = �(D):

Area(S) ≈ ‖n(2, 3)‖Area(D) = ‖n(2, 3)‖ · 0.1 · 0.2 = 0.02‖n(2, 3)‖ (1)

In Exercise 8 we found that n(2, 3) = 2 〈−1, −1, 5〉. Therefore,

‖n(2, 3)‖ = 2
√

12 + 12 + 52 = 2
√

27

Substituting in (1) gives the following estimation:

Area(S) ≈ 0.02 · 2 · √
27 ≈ 0.2078.
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12. Sketch the small patch of the sphere whose spherical coordinates satisfy

π

2
− 0.15 ≤ θ ≤ π

2
+ 0.15,

π

4
− 0.1 ≤ φ ≤ π

4
+ 0.1

Use the normal vector computed in Exercise 9 to estimate its area.

solution The small patch of the sphere is shown in the following figure:

z

x

y

Let D denote the rectangle in the (θ, φ)-plane. Using the sample point corresponding to the parameters θ = π
2 , φ = π

4 ,
we obtain the following estimation for the area of S = φ(D):

Area(S) =
∥∥∥n
(π

2
,
π

4

)∥∥∥ · Area(D) =
∥∥∥n
(π

2
,
π

4

)∥∥∥ · 0.3 · 0.2 =
∥∥∥n
(π

2
,
π

4

)∥∥∥ · 0.06 (1)

In Exercise 9 we found that:

n
(π

2
,
π

4

)
= −1

2
〈0, 1, 1〉

hence: ∥∥∥n
(π

2
,
π

4

)∥∥∥ = 1

2

√
0 + 1 + 1 = 1√

2

Substituting in (1) gives the following estimation:

Area(S) ≈ 1√
2

· 0.06 ≈ 0.0424

O 1 p
2

− 0.15p
2

+ 0.1p
4

− 0.1p
4

p
4

+ 0.15p
2

f

1

q

D

In Exercises 13–26, calculate
∫∫

S
f (x, y, z) dS for the given surface and function.

13. G(u, v) = (u cos v, u sin v, u), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1; f (x, y, z) = z(x2 + y2)

solution
Step 1. Compute the tangent and normal vectors. We have:

Tu = ∂�

∂u
= ∂

∂u
(u cos v, u sin v, u) = 〈cos v, sin v, 1〉

Tv = ∂�

∂v
= ∂

∂v
(u cos v, u sin v, u) = 〈−u sin v, u cos v, 0〉

The normal vector is the cross product:

n = Tu × Tv =
∣∣∣∣∣∣

i j k
cos v sin v 1

−u sin v u cos v 0

∣∣∣∣∣∣
= (−u cos v)i − (u sin v)j +

(
u cos2 v + u sin2 v

)
k

= (−u cos v)i − (u sin v)j + uk = 〈−u cos v, −u sin v, u〉
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We compute the length of n:

‖n‖ =
√

(−u cos v)2 + (−u sin v)2 + u2 =
√

u2
(

cos2 v + sin2 v + 1
)

=
√

u2 · 2 = √
2|u| = √

2u

Notice that in the region of integration u ≥ 0, therefore |u| = u.

Step 2. Calculate the surface integral. We express the function f (x, y, z) = z
(
x2 + y2

)
in terms of the parameters u, v:

f (�, (u, v)) = u
(
u2 cos2 v + u2 sin2 v

)
= u · u2 = u3

We obtain the following integral:

∫∫
S

f (x, y, z) dS =
∫ 1

0

∫ 1

0
f (�, (u, v)) ‖n‖ du dv =

∫ 1

0

∫ 1

0
u3 · √

2u du dv

=
(∫ 1

0

√
2 dv

)(∫ 1

0
u4 du

)
= √

2 · u5

5

∣∣∣∣∣
1

0

=
√

2

5

14. G(r, θ) = (r cos θ, r sin θ, θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π ; f (x, y, z) =
√

x2 + y2

solution

Step 1. Compute the tangent and normal vectors. We have:

Tr = ∂�

∂r
= ∂

∂r
(r cos θ, r sin θ, θ) = 〈cos θ, sin θ, 0〉

Tθ = ∂�

∂θ
= ∂

∂θ
(r cos θ, r sin θ, θ) = 〈−r sin θ, r cos θ, 1〉

The normal vector is their cross product:

n = Tr × Tθ =
∣∣∣∣∣∣

i j k
cos θ sin θ 0

−r sin θ r cos θ 1

∣∣∣∣∣∣ = (sin θ)i − (cos θ)j +
(
r cos2 θ + r sin2 θ

)
k

= (sin θ)i − (cos θ)j + rk = 〈sin θ, − cos θ, r〉
We compute the length of n:

‖n‖ =
√

sin2 θ + cos2 θ + r2 =
√

1 + r2

Step 2. Calculate the surface integral. The surface integral is computed by the following double integral:

∫∫
S

f (x, y, z) dS =
∫∫

D
f (�(r, θ)) ‖n‖ dr dθ =

∫ 2π

0

∫ 1

0

√
r2 cos2 θ + r2 sin2 θ

√
1 + r2 dr dθ

=
∫ 2π

0

∫ 1

0
r
√

1 + r2 dr dθ =
(∫ 2π

0
1 dθ

)(∫ 1

0
r
√

1 + r2 dr

)
= 2π

∫ 1

0
r
√

1 + r2 dr

We compute the integral using the substitution t = 1 + r2, dt = 2r dr . We get:

∫∫
S

f (x, y, z) dS = 2π

∫ 2

1

1

2
t1/2 dt =

2π
(

2
√

2 − 1
)

3

15. y = 9 − z2, 0 ≤ x ≤ 3, 0 ≤ z ≤ 3; f (x, y, z) = z

solution We use the formula for the surface integral over a graph y = g(x, z):∫∫
S

f (x, y, z) dS =
∫∫

D
f (x, g(x, z), z)

√
1 + g2

x + g2
z dx dz (1)

Since y = g(x, z) = 9 − z2, we have gx = 0, gz = −2z, hence:√
1 + g2

x + g2
z =

√
1 + 4z2

f (x, g(x, z), z) = z
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The domain of integration is the square [0, 3] × [0, 3] in the xz-plane. By (1) we get:

∫∫
S

f (x, y, z) dS =
∫ 3

0

∫ 3

0
z
√

1 + 4z2 dz dx =
(∫ 3

0
1 dx

)(∫ 3

0
z
√

1 + 4z2 dz

)
= 3

∫ 3

0
z
√

1 + 4z2 dz

We use the substitution u = 1 + 4z2, du = 8z dz to compute the integral. This gives:

∫∫
S

f (x, y, z) dS = 3
∫ 3

0
z
√

1 + 4z2 dz = 3
∫ 37

1

u1/2

8
du = 37

√
37 − 1

4
≈ 56

16. y = 9 − z2, 0 ≤ x ≤ z ≤ 3; f (x, y, z) = 1

solution We use the formula for the surface integral over a graph y = g(x, z):∫∫
S

f (x, y, z) dS =
∫∫

D
f (x, g(x, z), z)

√
1 + g2

x + g2
z dx dz (1)

Since y = g(x, z) = 9 − z2 we have gx = 0, gz = −2z, hence:√
1 + g2

x + g2
z =

√
1 + 4z2

The domain of integration D is the triangle in the xz-plane shown in the figure.

x

z

3

D
z = x

O

By (1) we get:

∫∫
S

f (x, y, z) dS =
∫∫

D

√
1 + 4z2 dx dz =

∫ 3

0

∫ z

0

√
1 + 4z2 dx dz

=
∫ 3

0

√
1 + 4z2x

∣∣∣∣z
x=0

dz =
∫ 3

0

√
1 + 4z2 · z dz

We compute the integral using the substitution u = 1 + 4z2, du = 8z dz. This gives:

∫∫
S

f (x, y, z) dS =
∫ 3

0

√
1 + 4z2 · z dz =

∫ 37

1

u1/2

8
du = 37

√
37 − 1

12
≈ 18.672

17. x2 + y2 + z2 = 1, x, y, z ≥ 0; f (x, y, z) = x2.

solution The octant of the unit sphere centered at the origin, where x, y, z ≥ 0 has the following parametrization in
spherical coordinates:

�(θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ), 0 ≤ θ ≤ π

2
, 0 ≤ φ ≤ π

2

The length of the normal vector is:

‖n‖ = sin φ

The function x2 expressed in terms of the parameters is cos2 θ sin2 φ. Using the theorem on computing surface integrals
we obtain,

∫∫
S

x2 dS =
∫ π/2

0

∫ π/2

0

(
cos2 θ sin2 φ

)
(sin φ) dφ dθ =

∫ π/2

0

∫ π/2

0
cos2 θ sin3 φ dφ dθ

=
(∫ π/2

0
cos2 θ dθ

)(∫ π/2

0
sin3 φ dφ

)
=
(

θ

2
+ sin 2θ

4

) ∣∣∣∣π/2

θ=0
·
(

− sin2 φ cos φ

3
− 2

3
cos φ

) ∣∣∣∣π/2

φ=0

= π

4
· 2

3
= π

6
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18. z = 4 − x2 − y2, 0 ≤ z ≤ 3; f (x, y, z) = x2/(4 − z)

solution Use the formula for the surface integral over the graph of z = g(x, y).

z = g(x, y) = 4 − x2 − y2

⇒ gx(x, y) = −2x gy(x, y) = −2y

‖n‖ =
√

1 + (−2x)2 + (−2y)2 =
√

1 + 4(x2 + y2)

The domain of integration, D, can be determined by the restrictions on z,

0 ≤ z ≤ 3 ⇒ 0 ≤ 4 − x2 − y2 ≤ 3

⇒ x2 + y2 ≤ 4 and 4 − 3 ≤ x2 + y2

⇒ 1 ≤ x2 + y2 ≤ 4

D is the annulus for 1 ≤ r ≤ 2. Changing into polar coordinates, the integral may be written,

∫∫
S

x2

4 − z
dS =

∫∫
D

x2

x2 + y2

√
1 + 4(x2 + y2) dx dy

=
∫ 2π

0

∫ 2

1

r2 cos2 θ

r2

√
1 + 4r2 r dr dθ =

(∫ 2π

0
cos2 θ dθ

)(∫ 2

1

√
1 + 4r2 r dr

)

Substituting u = 1 + 4r2 ⇒ du = 8r dr into the second integral, we have

=
(∫ 2π

0

1 + cos 2θ

2
dθ

)(∫ 17

1

√
u

8
du

)

= π · 1

8
· 2

3
· u

3
2

∣∣∣∣17

5
= π

12
(17

√
17 − 5

√
5)

19. x2 + y2 = 4, 0 ≤ z ≤ 4; f (x, y, z) = e−z

solution The cylinder has the following parametrization in cylindrical coordinates:

�(θ, z) = (2 cos θ, 2 sin θ, z), 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 4

Step 1. Compute the tangent and normal vectors. The tangent vectors are the partial derivatives:

Tθ = ∂�

∂θ
= ∂

∂θ
(2 cos θ, 2 sin θ, z) = 〈−2 sin θ, 2 cos θ, 0〉

Tz = ∂

∂z
(2 cos θ, 2 sin θ, z) = 〈0, 0, 1〉

The normal vector is their cross product:

n(θ, z) = Tθ × Tz =
∣∣∣∣∣∣

i j k
−2 sin θ 2 cos θ 0

0 0 1

∣∣∣∣∣∣ = (2 cos θ)i + (2 sin θ)j = 〈2 cos θ, 2 sin θ, 0〉

The length of the normal vector is thus

‖n(θ, z)‖ =
√

(2 cos θ)2 + (2 sin θ)2 + 0 =
√

4
(

cos2 θ + sin2 θ
)

= √
4 = 2

Step 2. Calculate the surface integral. The surface integral equals the following double integral:

∫∫
S

f (x, y, z) dS =
∫∫

D
f (�(θ, z)) ‖n‖ dθ dz =

∫ 2π

0

∫ 4

0
e−z · 2 dθ dz

=
(∫ 2π

0
2 dθ

)(∫ 4

0
e−z dz

)
= 4π · (−e−z

) ∣∣∣∣4
0

= 4π
(

1 − e−4
)
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20. G(u, v) = (u, v3, u + v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1; f (x, y, z) = y

solution

Step 1. Compute the tangent and normal vectors. We have:

Tu = ∂�

∂u
= ∂

∂u

(
u, v3, u + v

)
= 〈1, 0, 1〉

Tv = ∂�

∂v
= ∂

∂v

(
u, v3, u + v

)
=
〈
0, 3v2, 1

〉
The normal vector is their cross product:

n = Tu × Tv =
∣∣∣∣∣∣

i j k
1 0 1
0 3v2 1

∣∣∣∣∣∣ =
(
−3v2

)
i − j +

(
3v2
)

k =
〈
−3v2, −1, 3v2

〉

The length of the normal vector is, thus:

‖n‖ =
√

9v4 + 1 + 9v4 =
√

1 + 18v4

Step 2. Calculate the surface integral. We express f (x, y, z) = y in terms of the parameters:

f (�(u, v)) = v3

We compute the surface integral by the following double integral:

∫∫
S

f (x, y, z) dS =
∫ 1

0

∫ 1

0
f (�(u, v)) ‖n‖ dv du =

∫ 1

0

∫ 1

0
v3
√

1 + 18v4 dv du

=
(∫ 1

0
du

)(∫ 1

0
v3
√

1 + 18v4 dv

)
=
∫ 1

0
v3
√

1 + 18v4 dv

We compute the integral using the substitution t = 1 + 18v4, dt = 72v3 dv . We get:

∫∫
S

f (x, y, z) dS =
∫ 1

0

√
1 + 18v4 · v3 dv =

∫ 19

1

t1/2

72
dt = 19

√
19 − 1

108
≈ 0.758

21. Part of the plane x + y + z = 1, where x, y, z ≥ 0;
f (x, y, z) = z

solution We let z = g(x, y) = 1 − x − y and use the formula for the surface integral over the graph of z = g(x, y),
where D is the parameter domain in the xy-plane. That is:∫∫

S
f (x, y, z) dS =

∫∫
D

f (x, y, g(x, y))

√
1 + g2

x + g2
y dx dy (1)

We have, gx = −1 and gy = −1 therefore:

√
1 + g2

x + g2
y =

√
1 + (−1)2 + (−1)2 = √

3

We express the function f (x, y, z) = z in terms of the parameters x and y:

f (x, y, g(x, y)) = z = 1 − x − y

The domain of integration is the triangle D in the xy-plane shown in the figure.

z

y

x

S: x + y + z = 1, x ≥ 0, y ≥ 0, z ≥ 0
x

1

1

0

y

x + y = 1

D
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By (1) we get:

∫∫
S

f (x, y, z) dS =
∫ 1

0

∫ 1−y

0
(1 − x − y)

√
3 dx dy = √

3
∫ 1

0
x − x2

2
− yx

∣∣∣∣1−y

x=0
dy

= √
3
∫ 1

0

(
(1 − y)2 − (1 − y)2

2

)
dy =

√
3

2

∫ 1

0

(
1 − 2y + y2

)
dy

=
√

3

2

(
y − y2 + y3

3

) ∣∣∣∣1
0

=
√

3

6

22. Part of the plane x + y + z = 0 contained in the cylinder x2 + y2 = 1; f (x, y, z) = z2

solution We let z = −x − y and use the formula for the surface integral over the graph of z = g(x, y). We have,
gx = −1 and gy = −1 therefore:

‖n‖ =
√

1 + g2
x + g2

y =
√

1 + (−1)2 + (−1)2 = √
3

The domain of integration, D : x2 + y2 ≤ 1, is the unit disk.

z

x

y

1
x

y

D

Changing to polar coordinates the integral may be evaluated

∫∫
S

z2 dS =
∫∫

D
(−x − y)2

√
3 dx dy =

∫ 2π

0

∫ 1

0
(−r cos θ − r sin θ)2

√
3 r dr dθ

=
∫ 2π

0

∫ 1

0
(r2)(cos2 θ + 2 sin θ cos θ + sin2 θ) · √

3 r dr dθ

=
(∫ 2π

0
1 + sin(2θ) dθ

)(√
3
∫ 1

0
r3 dr

)

=
(

θ − cos(2θ)

2

∣∣∣∣2π

0

)(√
3
r4

4

∣∣∣∣1
0

)
= π

√
3

2
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23. x2 + y2 + z2 = 4, 1 ≤ z ≤ 2; f (x, y, z) = z2(x2 + y2 + z2)−1

solution We use spherical coordinates to parametrize the cap S.

�(θ, φ) = (2 cos θ sin φ, 2 sin θ sin φ, 2 cos φ)

D : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ φ0

The angle φ0 is determined by cos φ0 = 1
2 , that is, φ0 = π

3 . The length of the normal vector in spherical coordinates is:

‖n‖ = R2 sin φ = 4 sin φ

We express the function f (x, y, z) = z2
(
x2 + y2 + z2

)−1
in terms of the parameters:

f (�(θ, φ)) = (2 cos φ)24−1 = cos2 φ

Using the theorem on computing the surface integral we get:∫∫
S

f (x, y, z) dS =
∫∫

D
f (�(θ, φ)) ‖n‖ dφ dθ =

∫ 2π

0

∫ π/3

0

(
cos2 φ

)
· 4 sin φ dφ dθ

=
(∫ 2π

0
4 dθ

)(∫ π/3

0
cos2 φ sin φ dφ

)
= 8π

(
− cos φ

3

) ∣∣∣∣π/3

0

= 8π

3

(
−
(

1

2

)3
− (−1)

)
= 8π

3
· 7

8
= 7π

3

24. x2 + y2 + z2 = 4, 0 ≤ y ≤ 1; f (x, y, z) = y

solution Since y ≥ 0, we may consider the surface the graph y =
√

4 − x2 − z2. Using the formula for the surface
integral over the graph

y = g(x, z) =
√

4 − x2 − z2

⇒ gx(x, z) = −x√
4 − x2 − z2

⇒ gz(x, z) = −z√
4 − x2 − z2

‖n‖ =
√√√√1 +

(
−x√

4 − x2 − z2

)2

+
(

−z√
4 − x2 − z2

)2

=
√

1 + x2 + z2

4 − x2 − z2
= 2√

4 − x2 − z2

The domain of integration, D, can be determined by the restrictions on y,

0 ≤ y ≤ 1 ⇒ 0 ≤
√

4 − x2 − z2 ≤ 1

⇒ x2 + z2 ≤ 4 and 4 − 1 ≤ x2 + z2

⇒ 3 ≤ x2 + z2 ≤ 4

D is the annulus for
√

3 ≤ r ≤ 2. Changing into polar coordinates, the integral may be written,∫∫
S

y dS =
∫∫

D

√
4 − x2 − z2 2√

4 − x2 − z2
dx dz

=
∫ 2π

0

∫ 2

√
3

2r dr dθ = 2π · r2
∣∣∣∣2√

3
= 2π(4 − 3) = 2π

25. Part of the surface z = x3, where 0 ≤ x ≤ 1, 0 ≤ y ≤ 1; f (x, y, z) = z

solution Use the formula for the surface integral over the graph of z = g(x, y). We have, gx = 3x2 and gy = 0
therefore:

‖n‖ =
√

1 + g2
x + g2

y =
√

1 + (3x2)2 + (0)2 =
√

1 + 9x4
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The integral then is

∫∫
S

z dS =
∫ 1

0

∫ 1

0
x3
√

1 + 9x4 dx dy =
(∫ 1

0
dy

)(∫ 1

0
x3
√

1 + 9x4 dx

)

Substituting u = 1 + 9x4, du = 36x3 dx

= 1 ·
∫ 10

1
u

1
2
du

36
= 1

36
· 2

3
· u

3
2

∣∣∣∣10

1
= 1

54
(10

√
10 − 1)

26. Part of the unit sphere centered at the origin, where x ≥ 0 and |y| ≤ x; f (x, y, z) = x

solution We parametrize the surface as follows:

�(θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ), −π

4
≤ θ ≤ π

4
, 0 ≤ φ ≤ π

1
x

y

y =
 x

y = −x

q = p
4

q = − p
4

The length of the normal vector is:

‖n‖ = 12 sin φ = sin φ

The function expressed in terms of the parameters is:

f (�(θ, φ)) = x = cos θ sin φ

We obtain the following integral:

∫∫
S

f (x, y, z) dS =
∫∫

D
f (�(θ, φ)) ‖n‖ dθ dφ =

∫ π

0

∫ π/4

−π/4
(cos θ sin φ) sin φ dθ dφ

=
∫ π

0

∫ π/4

−π/4
cos θ sin2 φ dθ dφ =

(∫ π

0
sin2 φ dφ

)(∫ π/4

−π/4
cos θ dθ

)

=
(

φ

2
− sin 2φ

4

∣∣∣∣π
φ=0

)(
sin θ

∣∣π/4
θ=− π

4

)
= π

2
· √

2 = π√
2

27. A surface S has a parametrization G(u, v) with domain 0 ≤ u ≤ 2, 0 ≤ v ≤ 4 such that the following partial
derivatives are constant:

∂G

∂u
= 〈2, 0, 1〉 ,

∂G

∂v
= 〈4, 0, 3〉

What is the surface area of S?

solution Since the partial derivatives are constant, the normal vector is also constant. We find it by computing the
cross product:

n = Tu × Tv = ∂�

∂u
× ∂�

∂v
=
∣∣∣∣∣∣

i j k
2 0 1
4 0 3

∣∣∣∣∣∣ = −2j = 〈0, −2, 0〉 ⇒ ‖n‖ = 2

We denote the rectangle D = {(u, v) : 0 ≤ u ≤ 2, 0 ≤ v ≤ 4}, and use the surface area to compute the area of S = �(D).
We obtain:

Area(S) =
∫∫

D
‖n‖ du dv =

∫∫
D

2 du dv = 2
∫∫

D
1 du dv = 2 · Area(D) = 2 · 2 · 4 = 16
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28. Let S be the sphere of radius R centered at the origin. Explain using symmetry:∫∫
S

x2 dS =
∫∫

S
y2 dS =

∫∫
S

z2 dS

Then show that
∫∫

S
x2 dS = 4

3
πR4 by adding the integrals.

solution
(a) Since the sphere is symmetric with respect to the yz-plane, the surface integrals of x over the hemispheres on the two
sides of the plane cancel each other and the result is zero. The two other integrals are zero due to the symmetry of the
sphere with respect to the xz and xy-planes.

(b) Since the sphere is symmetric with respect to the xy, xz and yz-planes, interchanging x and y in the integral for∫∫
S x2 dS does not change the value of the integral and the result is

∫∫
S y2 dS. The equality for

∫∫
S z2 dS is explained

similarly.
On the sphere, we have x2 + y2 + z2 = R2 so, using properties of integrals, the integral for surface area, and the

surface area of the sphere of radius R we obtain:∫∫
S

x2 dS +
∫∫

S
y2 dS +

∫∫
S

z2 dS =
∫∫

S

(
x2 + y2 + z2

)
dS = R2

∫∫
S

1 dS

= R2 · Area(S) = R2 · 4πR2 = 4πR4

Combining with (b) we conclude that the value of each of the integrals is 4
3πR4. That is:∫∫

S
x2 dS =

∫∫
S

y2 dS =
∫∫

S
z2 dS = 4

3
πR4.

29. Calculate
∫∫

S
(xy + ez) dS, where S is the triangle in Figure 18 with vertices (0, 0, 3), (1, 0, 2), and (0, 4, 1).

z

yx

(0, 0, 3)

(1, 0, 2)

(0, 4, 1)

1
4

FIGURE 18

solution We find the equation of the plane through the points A = (0, 0, 3), B = (0, 4, 1) and C = (1, 0, 2).

z

y

x

A = (0, 0, 3)

C = (1, 0, 2)
B = (0, 4, 1)

1

4

A normal to the plane is the cross product:

−→
AB × −→

AC = 〈0, 4, −2〉 × 〈1, 0, −1〉 =
∣∣∣∣∣∣

i j k
0 4 −2
1 0 −1

∣∣∣∣∣∣ = −4i − 2j − 4k = −2 〈2, 1, 2〉

The equation of the plane passing through A = (0, 0, 3) and perpendicular to the vector 〈2, 1, 2〉 is:

〈x − 0, y − 0, z − 3〉 · 〈2, 1, 2〉 = 0

2x + y + 2(z − 3) = 0

2x + y + 2z = 6

or

z = g(x, y) = −x − 1

2
y + 3
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We compute the surface integral of f (x, y, z) = xy + ez over the triangle ABC using the formula for the surface integral
over a graph. The parameter domain D is the projection of the triangle ABC onto the xy-plane (see figure).

y = − 4x + 42

2

(0, 4)

(1, 0)
x

y

D

O

We have: ∫∫
S

f (x, y, z) dS =
∫∫

D
f
(
x, y, g(x, y)

)√
1 + g2

x + g2
z dx dy (1)

We compute the functions in the integrand. Since z = g(x, y) = −x − y
2 + 3, we have:

gx = −1, gy = −1

2
⇒

√
1 + g2

x + g2
z =

√
1 + (−1)2 +

(
−1

2

)2
= 3

2

f
(
x, y, g(x, y, z)

) = xy + ez = xy + e−x− y
2 +3

Substituting in (1) gives:

∫∫
S

f (x, y, z) dS =
∫ 1

0

∫ −4x+4

0

(
xy + e−x−y/2+3

)
· 3

2
dy dx =

∫ 1

0

3xy2

4
− 3e−x−y/2+3

∣∣∣∣−4x+4

y=0
dx

=
∫ 1

0

(
3x(−4x + 4)2

4
− 3e−x−(−4x+4)/2+3 + 3e−x+3

)
dx

=
∫ 1

0

(
12x3 − 24x2 + 12x − 3ex+1 + 3e−x+3

)
dx = 3x4 − 8x3 + 6x2 − 3ex+1 − 3e−x+3

∣∣∣∣1
0

= (1 − 3e2 − 3e2) − (−3e − 3e3) = 3e3 − 6e2 + 3e + 1 ≈ 25.08

30. Use spherical coordinates to compute the surface area of a sphere of radius R.

solution The sphere of radius R centered at the origin has the following parametrization in spherical coordinates:

�(θ, φ) = (R cos θ sin φ, R sin θ sin φ, R cos φ), 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

The length of the normal vector is:

‖n‖ = R2 sin φ

Using the integral for surface area gives:

Area(S) =
∫∫

D
‖n‖ dθ dφ =

∫ 2π

0

∫ π

0
R2 sin φ dφ dθ =

(∫ 2π

0
R2 dθ

)(∫ π

0
sin φ dφ

)

= 2πR2 ·
(

− cos φ

∣∣∣∣π
0

)
= 2πR2 · 2 = 4πR2

31. Use cylindrical coordinates to compute the surface area of a sphere of radius R.

solution As z = ±
√

R2 − (x2 + y2) we may parametrize the upper hemisphere by the map

G(r, θ) = (r cos θ, r sin θ,
√

R2 − r2)
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To compute the surface area of the hemisphere S, we first must find the tangent vectors and the normal vector. That is,

Tr = ∂G

∂r
= ∂

∂r

〈
r cos θ, r sin θ,

√
R2 − r2

〉
=
〈

cos θ, sin θ, − r√
R2 − r2

〉

Tθ = ∂G

∂θ
= ∂

∂θ

〈
r cos θ, r sin θ,

√
R2 − r2

〉
= 〈−r sin θ, r cos θ, 0〉

The normal vector is the cross product:

n = Tr × Tθ =

∣∣∣∣∣∣∣
i j k

cos θ sin θ −r√
R2−r2

−r sin θ r cos θ 0

∣∣∣∣∣∣∣
=
(

r2 cos θ√
R2 − r2

)
i +
(

r2 sin θ√
R2 − r2

)
j +
(
r cos2 θ + r sin2 θ

)
k

=
(

r2 cos θ√
R2 − r2

)
i +
(

r2 sin θ√
R2 − r2

)
j + rk

The length of the normal vector is thus

‖n‖ =
√

r4 cos2 θ

R2 − r2
+ r4 sin2 θ

R2 − r2
+ r2 =

√
r4

R2 − r2

(
cos2 θ + sin2 θ

)
+ r2 =

√
r4

R2 − r2
+ r2 = rR√

R2 − r2

We now compute the surface area as the following surface integral:

Area(S) =
∫∫

D
‖n‖ dr dθ =

∫ 2π

0

∫ R

0

rR√
R2 − r2

dr dθ

=
(∫ 2π

0
R dθ

)(∫ R

0

r√
R2 − r2

dr

)
= 2πR

∫ R

0

r√
R2 − r2

dr

We compute the integral using the substitution t = R2 − r2, dt = −2r dr . We get:

Area(S) = 2πR

∫ 0

R2

−1

2t1/2
dt = 2πR2

The area of the entire sphere is twice this or 4πR2.

32. Let S be the surface with parametrization

G(u, v) = ((3 + sin v) cos u, (3 + sin v) sin u, v
)

for 0 ≤ u ≤ 2π , 0 ≤ v ≤ 2π . Using a computer algebra system:

(a) Plot S from several different viewpoints. Is S best described as a “vase that holds water” or a “bottomless vase”?

(b) Calculate the normal vector n(u, v).

(c) Calculate the surface area of S to four decimal places.

solution

(a) We show the graph of S here.

6

4

2

0

−2
−4 −4

−2
0

2
44

2
0

4

2

0

−4

−2

−4
−2

6

0
2

4

0

4

2

Note that it is best described as a “bottomless vase.”
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(b) We compute the tangent and normal vectors:

Tu = ∂�

∂u
= 〈(3 + sin v)(− sin u), (3 + sin v)(cos u), 0〉

Tv = ∂�

∂v
= 〈cos v cos u, cos v sin u, 1〉

The normal vector is the cross product:

n(u, v) = Tu × Tv =
∣∣∣∣∣∣

i j k
(3 + sin v)(− sin u) (3 + sin v)(cos u) 0

cos v cos u cos v sin u 1

∣∣∣∣∣∣
= ((3 + sin v) cos u)i + ((3 + sin v) sin u)j − ((3 + sin v) cos v)k

Hence,

‖n(u, v)‖ = (3 + sin v)
√

1 + cos2 v

We obtain the following area:

Area(S) =
∫∫

D
‖n‖ du dv =

∫ 2π

0

∫ 2π

0
(3 + sin v)

√
1 + cos2 v du dv ≈ 144.0181

33. Let S be the surface z = ln(5 − x2 − y2) for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Using a computer algebra system:

(a) Calculate the surface area of S to four decimal places.

(b) Calculate
∫∫

S
x2y3 dS to four decimal places.

solution

(a) Using that zx = −2x/(5 − x2 − y2) and zy = −2y/(5 − x2 − y2), we calculate ‖n‖ to be

‖n‖ =
√

1 + (zx)2 + (zy)2 =
√

(5 − x2 − y2)2 + 4x2 + 4y2

5 − x2 − y2

Thus, the surface area is

Area(S) =
∫ 1

0

∫ 1

0

√
(5 − x2 − y2)2 + 4x2 + 4y2

5 − x2 − y2
dx dy ≈ 1.078

(b) We calculate
∫∫

S
x2y3 dS as follows:

∫∫
S

x2y3 dS =
∫ 1

0

∫ 1

0
x2y3

√
(5 − x2 − y2)2 + 4x2 + 4y2

5 − x2 − y2
dx dy ≈ 0.09814

34. Find the area of the portion of the plane 2x + 3y + 4z = 28 lying above the rectangle 1 ≤ x ≤ 3, 2 ≤ y ≤ 5 in the
xy-plane.

solution We rewrite the equation of the plane as:

z = g(x, y) = −x

2
− 3

4
y + 7 (1)

The domain of the parameters is the rectangle D = [1, 3] × [2, 5] in the xy-plane. Using the integral for surface area and
the surface integral over a graph we have:

Area(S) =
∫∫

S
1 dS =

∫∫
D

√
1 + g2

x + g2
z dx dy (2)

x
31

5

2

0

y

D
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By (1) we have:

gx = −1

2
, gy = −3

4
⇒

√
1 + g2

x + g2
z =

√
1 + 1

4
+ 9

16
=

√
29

4

We substitute in (2) to obtain:

Area(S) =
∫∫

D

√
29

4
dx dy =

√
29

4

∫∫
D

1 dx dy =
√

29

4
Area(D) =

√
29

4
· 3 · 2 = 3

√
29

2

35. What is the area of the portion of the plane 2x + 3y + 4z = 28 lying above the domain D in the xy-plane in Figure
19 if Area(D) = 5?

D

x

y

FIGURE 19

solution We rewrite the equation of the plane as:

z = g(x, y) = −x

2
− 3

4
y + 7

Hence:

√
1 + g2

x + g2
y =

√
1 +

(
−1

2

)2
+
(

−3

4

)2
=

√
29

4

We use the integral for surface area and the surface integral over a graph to write:

Area(S) =
∫∫

S
1 dS =

∫∫
D

√
1 + g2

x + g2
y dx dy =

∫∫
D

√
29

4
dx dy

=
√

29

4

∫∫
D

1 dx dy =
√

29

4
Area(D) =

√
29

4
· 5 = 5

√
29

4
≈ 6.73

36. Find the surface area of the part of the cone x2 + y2 = z2 between the planes z = 2 and z = 5.

solution

z

x

y

We use the following parametrization of the surface S:

�(u, v) = (u cos v, u sin v, u)

D : 0 ≤ v ≤ 2π, 2 ≤ u ≤ 5

Step 1. Compute the tangent and normal vectors. We have,

Tu = ∂ϕ

∂u
= ∂

∂u
(u cos v, u sin v, u) = 〈cos v, sin v, 1〉

Tv = ∂ϕ

∂v
= ∂

∂v
(u cos v, u sin v, u) = 〈−u sin v, u cos v, 0〉
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The normal vector is their cross product:

n = Tu × Tv =
∣∣∣∣∣∣

i j k
cos v sin v 1

−u sin v u cos v 0

∣∣∣∣∣∣ = (−u cos v)i − (u sin v)j +
(
u cos2 v + u sin2 v

)
k

= (−u cos v)i − (u sin v)j + uk = 〈−u cos v, −u sin v, u〉
We compute the length of n:

‖n‖ =
√

u2 cos2 v + u2 sin2 v + u2 =
√

u2
(

cos2 v + sin2 v
)

+ u2 =
√

2u2 = u
√

2

Step 2. Calculate the surface area. Using the formula for the surface area as a double integral gives:

Area(S) =
∫∫

D
‖n‖ du dv =

∫ 2π

0

∫ 5

2

√
2u du dv =

(∫ 2π

0

√
2 dv

)(∫ 5

2
u du

)

= 2
√

2π

(
u2

2

∣∣∣∣5
2

)
= 2

√
2π

25 − 4

2
= 21

√
2π ≈ 93.3

37. Find the surface area of the portion S of the cone z2 = x2 + y2, where z ≥ 0, contained within the cylinder
y2 + z2 ≤ 1.

solution We rewrite the equation of the cone as x = ±
√

z2 − y2. The projection of the cone onto the yz-plane is
obtained by setting x = 0 in the equation of the cone, that is,

x = 0 =
√

z2 − y2 ⇒ z = ±y

Since on S, z ≥ 0, we get z = |y|. We conclude that the projection of the upper part of the cone x2 + y2 = z2 onto the
yz-plane is the region between the lines z = y and z = −y on the upper part of the yz-plane. Therefore, the projection
D of S onto the yz-plane is the region shown in the figure:

y

z

z = yz = −y

2

1

2

1−

D

y2 + z2 = 1 z = 1 − y2

There are two identical portions of the surface parametrized by this region—one for x ≥ 0, and one for x ≤ 0. Therefore
the area of S is twice the integral over the domain D:

Area(S) =
∫∫

S
dS = 2

∫∫
D

√
1 + g2

y + g2
z dy dz

We compute the integral using a surface integral over a graph. Since x = g(y, z) = ±
√

z2 − y2 we have,

gz = ± z√
z2 − y2

, gy = ± y√
z2 − y2

Hence, (notice that z ≥ 0 on S):

√
1 + g2

y + g2
z =

√
1 + z2

z2 − y2
+ y2

z2 − y2
=
√

2z2

z2 − y2
= z

√
2√

z2 − y2

We obtain the following integral:

Area(S) = 2
∫∫

D

√
1 + g2

y + g2
z dy dz = 2

∫∫
D

z
√

2√
z2 − y2

dz dy

Using symmetry gives:

Area(S) = 4
∫ 1/(

√
2)

0

∫ √
1−y2

y

z
√

2√
z2 − y2

dz dy = 4
√

2
∫ 1/(

√
2)

0

(∫ √
1−y2

y

z dz√
z2 − y2

)
dy (1)
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We compute the inner integral using the substitution u =
√

z2 − y2, du = z
u dz. We get:

∫ √
1−y2

y

z dz√
z2 − y2

=
∫ √

1−y2

0

u du

u
=
∫ √

1−2y2

0
du =

√
1 − 2y2

We substitute in (1) and compute the resulting integral using the substitution t = √
2y. We get:

Area(S) = 4
√

2
∫ 1/(

√
2)

0

√
1 − 2y2 dy = 4

√
2
∫ 1

0

√
1 − t2 dt√

2
= 4

∫ 1

0

√
1 − t2 dt = 4 · π

4
= π

38. Calculate the integral of ze2x+y over the surface of the box in Figure 20.

4

2 3

z

P

Q

S

R

O

y

x

FIGURE 20

solution The cube may be parametrized by six functions for the six faces of the cube.

φ1(x, y) = (x, y, 0) φ2(x, y) = (x, y, 4) (0 ≤ x ≤ 3)(0 ≤ y ≤ 2)

φ3(x, z) = (x, 0, z) φ4(x, z) = (x, 2, z) (0 ≤ x ≤ 3)(0 ≤ z ≤ 4)

φ5(y, z) = (0, y, z) φ6(x, y) = (3, y, z) (0 ≤ y ≤ 2)(0 ≤ z ≤ 4)

We calculate the outward normal vector for the face parametrized by φ1.

∂φ1

∂x
= 〈1, 0, 0〉 ,

∂φ1

∂y
= 〈0, 1, 0〉 ⇒ n1 = − 〈1, 0, 0〉 × 〈0, 1, 0〉 = 〈0, 0, −1〉

We have that ‖n1‖ = 1. Clearly this will be true for all the other normal vectors, ‖ni‖. The integrals over the six faces
proceed as follows

∫∫
S1

ze2x+y dS1 =
∫ 3

0

∫ 2

0
0 · e2x+y dx dy = 0

∫∫
S2

ze2x+y dS2 =
∫ 2

0

∫ 3

0
4 · e2x+y dx dy = 4

e2x

2

∣∣∣∣3
0
ey

∣∣∣∣2
0

= 2(e6 − 1)(e2 − 1)

∫∫
S3

ze2x+y dS3 =
∫ 4

0

∫ 3

0
z · e2x dx dz = e2x

2

∣∣∣∣3
0

z2

2

∣∣∣∣4
0

= 4(e6 − 1)

∫∫
S4

ze2x+y dS4 =
∫ 4

0

∫ 3

0
z · e2x+2 dx dz = e2x+2

2

∣∣∣∣3
0

z2

2

∣∣∣∣4
0

= 4(e8 − e2)

∫∫
S5

ze2x+y dS5 =
∫ 4

0

∫ 2

0
z · ey dy dz = ey

∣∣∣∣2
0

z2

2

∣∣∣∣4
0

= 8(e2 − 1)

∫∫
S6

ze2x+y dS6 =
∫ 4

0

∫ 2

0
z · e6+y dy dz = ey+6

∣∣∣∣2
0

z2

2

∣∣∣∣4
0

= 8(e8 − e6)

The integral over the surface is just the sum of the integrals over the faces.∫∫
S

ze2x+y dS = 0 + 2(e6 − 1)(e2 − 1) + 4(e6 − 1) + 4(e8 − e2) + 8(e2 − 1) + 8(e8 − e6)

= 14e8 − 6e6 + 2e2 − 10
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39. Calculate
∫∫

G
x2z dS, where G is the cylinder (including the top and bottom) x2 + y2 = 4, 0 ≤ z ≤ 3.

solution We calculate the surface integral for each of the three surfaces. We begin with the bottom.

S1 : φ(x, y) = (x, y, 0)∫∫
S1

x2z dS1 =
∫∫

D
x2(0)‖n1‖ dx dy = 0

Then the top

S2 : φ(x, y) = (x, y, 3)

Tx = 〈1, 0, 0〉 , Ty 〈0, 1, 0〉 ⇒ n2 = 〈0, 0, 1〉∫∫
S2

x2z dS2 =
∫∫

D
x2(3)‖n2‖ dx dy = 3

∫∫
D

x2 dx dy

The domain, D, is the disk of radius 2. Changing to polar coordinates,

= 3
∫ 2π

0

∫ 2

0
(r cos θ)2 r dr dθ = 3

∫ 2π

0
cos2 θ dθ ·

∫ 2

0
r3 dr

= 3

(
1

2
+ sin 2θ

2

) ∣∣∣∣2π

0
· r4

4

∣∣∣∣2
0

= 12π

Finally the side,

S3 : φ(r, θ) = (2 cos θ, 2 sin θ, z)

Tθ = 〈−2 sin θ, 2 cos θ, 0〉 , Tz 〈0, 0, 1〉
⇒ n3 = 〈2 cos θ, 2 sin θ, 0〉 ⇒ ‖n3‖ = 2

∫∫
S3

x2z dS2 =
∫ 2π

0

∫ 3

0
(2 cos θ)2 z 2 dz dθ

= 8
∫ 2π

0
cos2 θ dθ ·

∫ 3

0
z dz = 8

(
1

2
+ sin 2θ

2

) ∣∣∣∣2π

0
· z2

2

∣∣∣∣3
0

= 36π

The total surface integral is thus ∫∫
G

x2z dS = 0 + 12π + 36π = 48π

40. Let S be the portion of the sphere x2 + y2 + z2 = 9, where 1 ≤ x2 + y2 ≤ 4 and z ≥ 0 (Figure 21). Find a
parametrization of S in polar coordinates and use it to compute:

(a) The area of S (b)
∫∫

S
z−1 dS

z

y
1 2

x

FIGURE 21
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solution

1 2 3
x

y

D

We parametrize S by spherical coordinates as follows:

�(θ, φ) = (3 cos θ sin φ, 3 sin θ sin φ, 3 cos φ)

D : 0 ≤ θ ≤ 2π, φ0 ≤ φ ≤ φ1

The angles φ0 and φ1 are determined by,

sin φ0 = 1

3
⇒ φ0 = sin−1 1

3

sin φ1 = 2

3
⇒ φ1 = sin−1 2

3

x

z

y

f0

f1

The length of the normal is:

‖n‖ = R2 sin φ = 9 sin φ

(a) Using the integral for the surface area we have,

Area(S) =
∫∫

D
‖n‖ dφ dθ =

∫ 2π

0

∫ sin−1(2/3)

sin−1(1/3)
9 sin φ dφ dθ =

(∫ 2π

0
9 dφ

)(∫ sin−1(2/3)

sin−1(1/3)
sin φ dφ

)

= 18π

(
− cos φ

∣∣∣φ1=sin−1(2/3)

φ0=sin−1(1/3)

)
= 18π

(
−

√
5

3
+

√
8

3

)
= 6π

(√
8 − √

5
)

≈ 11.166

3
2

f1

5

3
1

f0

8

(b) We express the function f (x, y, z) = z−1 in the terms of the parameters:

f (�(θ, φ)) = (3 cos φ)−1 = sec φ

3

Using the surface integral as a double integral we obtain:∫∫
S

z−1 dS =
∫∫

D
f (�(θ, φ)) ‖n‖ dφ dθ =

∫ 2π

0

∫ φ1

φ0

sec φ

3
· 9 sin φ dφ dθ =

∫ 2π

0

∫ φ1

φ0

3 tan φ dφ dθ

=
(∫ 2π

0
3 dθ

)(∫ φ1

φ0

tan φ dφ

)
= 6π

(
ln(sec φ)

∣∣∣∣φ1=sin−1(2/3)

φ0=sin−1(1/3)

)

= 6π

(
ln

3√
5

− ln
3√
8

)
= 6π ln

√
8

5
= 3π ln 1.6 ≈ 4.43
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41. Prove a famous result of Archimedes: The surface area of the portion of the sphere of radius R between two horizontal
planes z = a and z = b is equal to the surface area of the corresponding portion of the circumscribed cylinder (Fig-
ure 22).

a

b

z
R

FIGURE 22

solution We compute the area of the portion of the sphere between the planes a and b. The portion S1 of the sphere
has the parametrization,

�(θ, φ) = (r cos θ sin φ, r sin θ sin φ, r cos φ)

where,

D1 : 0 ≤ θ ≤ 2π, φ0 ≤ φ ≤ φ1

If we assume 0 < a < b, then the angles φ0 and φ1 are determined by,

cos φ0 = b

r
⇒ φ0 = cos−1 b

r

cos φ1 = a

r
⇒ φ1 = cos−1 a

r

rb ra

f0

f1

The length of the normal vector is ‖n‖ = r2 sin φ. We obtain the following integral:

Area (S1) =
∫∫

D1

‖n‖dφ dθ =
∫ 2π

0

∫ φ1

φ0

r2 sin φ dφ dθ =
(∫ 2π

0
r2dφ

)(∫ φ2

φ1

sin φ dφ

)

= 2πr2

(
− cos φ

∣∣∣∣cos−1 a
r

φ=cos−1 b
r

)
= 2πr2

(
−a

r
+ b

r

)
= 2πr(b − a)

The area of the part S2 of the cylinder of radius r between the planes z = a and z = b is:

Area (S2) = 2πr · (b − a)

We see that the two areas are equal:

Area (S1) = Area (S2)

Further Insights and Challenges
42. Surfaces of Revolution Let S be the surface formed by rotating the region under the graph z = g(y) in the yz-plane
for c ≤ y ≤ d about the z-axis, where c ≥ 0 (Figure 23).

(a) Show that the circle generated by rotating a point (0, a, b) about the z-axis is parametrized by

(a cos θ, a sin θ, b), 0 ≤ θ ≤ 2π

(b) Show that S is parametrized by

G(y, θ) = (y cos θ, y sin θ, g(y)) 13

for c ≤ y ≤ d , 0 ≤ θ ≤ 2π .
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(c) Use Eq. (13) to prove the formula

Area(S) = 2π

∫ d

c
y

√
1 + g′(y)2 dy 14

z = g(y)

(0, a, b)

(a cos   , a sin   , 0) (y cos   , y sin   , g(y))

y

x

z

a y

x

z

(a cos   , a sin   , b)

b
(0, y, g(y))

FIGURE 23

solution

(a) The circle generated by rotating a point (0, a, b) about the z-axis is a circle of radius a centered at the point (0, 0, b)

on the z-axis. Therefore it is parametrized by,

(a cos θ, a sin θ, b), 0 ≤ θ ≤ 2π

(b) An arbitrary point (x, y, g(y)) on the surface S lies on the circle generated by rotating the point (0, y, g(y)) about
the z-axis. Using part (a), a parametrization of this circle is:

(y cos θ, y sin θ, g(y)) , 0 ≤ θ ≤ 2π

Therefore, the following parametrization parametrizes the surface S:

�(y, θ) = (y cos θ, y sin θ, g(y)) , 0 ≤ θ ≤ 2π, c ≤ y ≤ d.

(c) To compute the area of S we first find the tangent and normal vectors. We have:

Ty = ∂�

∂y
= ∂

∂y
(y cos θ, y sin θ, g(y)) = 〈cos θ, sin θ, g′(y)

〉

Tθ = ∂�

∂θ
= ∂

∂θ
(y cos θ, y sin θ, g(y)) = 〈−y sin θ, y cos θ, 0〉

The normal vector is their cross product:

n = Ty × Tθ =
∣∣∣∣∣∣

i j k
cos θ sin θ g′(y)

−y sin θ y cos θ 0

∣∣∣∣∣∣
= (−y cos θg′(y)

)
i − (y sin θg′(y)

)
j +
(
y cos2 θ + y sin2 θ

)
k

= y
〈− cos θg′(y), − sin θg′(y), 1

〉
We compute the length of n:

‖n‖ = |y|
√

cos2 θg′(y)2 + sin2 θg′(y)2 + 1 = |y|
√

g′(y)2
(

cos2 θ + sin2 θ
)

+ 1 = |y|
√

1 + g′(y)2

We obtain the following integral for the surface area:

Area(S) =
∫∫

D
1 dS =

∫∫
D

‖n‖ dy dθ =
∫ 2π

0

∫ d

c
|y|
√

1 + g′(y)2 dy dθ

=
(∫ 2π

0
1 dθ

)(∫ d

c
|y|
√

1 + g′(y)2 dy

)
= 2π

∫ d

c
|y|
√

1 + g′(y)2 dy

43. Use Eq. (14) to compute the surface area of z = 4 − y2 for 0 ≤ y ≤ 2 rotated about the z-axis.

solution Since g(y) = 4 − y2, we have g′(y) = −2y. By Eq. (14) we obtain the following integral,

Area(S) = 2π

∫ 2

0
|y|
√

1 + (−2y)2 dy = 2π

∫ 2

0
y ·
√

1 + 4y2 dy
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We compute the integral using the substitution u = 1 + 4y2, du = 8y dy. We get:

Area(S) = 2π

∫ 17

1
u1/2 · du

8
= 2π

2

3
· u3/2

8

∣∣∣∣17

1
= π

6

(
17

√
17 − 1

)
≈ 36.18

44. Describe the upper half of the cone x2 + y2 = z2 for 0 ≤ z ≤ d as a surface of revolution (Figure 2) and use Eq. (14)
to compute its surface area.

solution We find the graph z = g(y) in the (yz)-plane that when revolved about the z-axis describes the upper part
of the cone. Substituting x = 0 in the equation of the cone we have,

02 + y2 = z2 ⇒ z = ±y

The generating curve is z = g(y) = y for 0 ≤ y ≤ d. Therefore g′(y) = 1 and Eq. (14) gives:

Area(S) = 2π

∫ d

0
|y|
√

1 + g′(y)2 dy = 2π

∫ d

0
y
√

1 + 12 dy = 2π
√

2
∫ d

0
y dy = 2π

√
2 · y2

2

∣∣∣∣d
0

= √
2πd2

z

y
d

x

z = y

45. Area of a Torus Let T be the torus obtained by rotating the circle in the yz-plane of radius a centered at (0, b, 0)

about the z-axis (Figure 24). We assume that b > a > 0.

(a) Use Eq. (14) to show that

Area(T) = 4π

∫ b+a

b−a

ay√
a2 − (b − y)2

dy

z

y

x

z

y

x

b

b − a
b + a

FIGURE 24 The torus obtained by rotating a circle of radius a.

(b) Show that Area(T) = 4π2ab.

solution
(a) Using symmetry, the area of the surface obtained by rotating the upper part of the circle is half the area of the torus.

z

y

x

b

b − a
b + a

The rotated graph is z = g(y) =
√

a2 − (y − b)2, b − a ≤ y ≤ b + a. So, we have,

g′(y) = −2(y − b)

2
√

a2 − (y − b)2
= − y − b√

a2 − (y − b)2

√
1 + g′(y)2 =

√
1 + (y − b)2

a2 − (y − b)2
=
√

a2 − (y − b)2 + (y − b)2

a2 − (y − b)2
= a√

a2 − (y − b)2
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We now use symmetry and Eq. (14) to obtain the following area of the torus (we assume that b − a > 0, hence y > 0):

Area (T) = 2 · 2π

∫ b+a

b−a
|y|
√

1 + g′(y)2 dy = 4π

∫ b+a

b−a

ay√
a2 − (y − b)2

dy (1)

(b) We compute the integral using the substitution u = y−b
a , du = 1

a dy. We get:

∫ b+a

b−a

ay√
a2 − (y − b)2

dy =
∫ 1

−1

a2u + ab√
a2 − a2u2

a du =
∫ 1

−1

a2u + ab√
1 − u2

du =
∫ 1

−1

a2u√
1 − u2

du +
∫ 1

−1

ab√
1 − u2

du

The first integral is zero since the integrand is an odd function. We get:

∫ b+a

b−a

ay√
a2 − (y − b)2

dy = 2
∫ 1

0

ab√
1 − u2

du = 2ab sin−1 u

∣∣∣∣1
0

= 2ab
(π

2
− 0
)

= πab

Substituting in (1) gives the following area:

Area (T) = 4π · πab = 4π2ab

46. Pappus’s Theorem (also called Guldin’s Rule) states that the area of a surface of revolution S is equal to the length
L of the generating curve times the distance traversed by the center of mass. Use Eq. (14) to prove Pappus’s Theorem. If
C is the graph z = g(y) for c ≤ y ≤ d, then the center of mass is defined as the point (y, z) with

y = 1

L

∫
C

y ds, z = 1

L

∫
C

z ds

solution We may assume that the generating curve z = g(y) lies in the region y ≥ 0 (otherwise we translate the axes
so that this condition is satisfied). The curve z = g(y), c ≤ y ≤ d is parametrized by:

C : c(y) = (y, g(y)) , c ≤ y ≤ d

Hence,

c′(y) = 〈1, g′(y)
〉 ⇒ ‖c′(y)‖ =

√
1 + g′(y)2

Using the theorem on computing scalar line integrals, we obtain:∫
C

y ds =
∫ d

c
y‖c′(y)‖ dy =

∫ d

c
y

√
1 + g′(y)2 dy (1)

The center of mass (y, z) of the generating curve traverses a circle of radius y. Therefore the distance traversed by the
center of mass is 2πy. The length L of the generating curve, times the distance traversed by the center of mass, is:

L · 2πy = L · 2π · 1

L

∫
C

y ds = 2π

∫
C

y ds

Combining with (1) we get:

L · 2πy = 2π ·
∫ d

c
y

√
1 + g′(y)2 dy

Since y ≥ 0, the right hand-side is the area of the surface of revolution S, as stated in Eq. (14). Therefore we get:

L · 2πy = Area(S)

This proves Pappus’ Theorem.

47. Compute the surface area of the torus in Exercise 45 using Pappus’s Theorem.

solution The generating curve is the circle of radius a in the (y, z)-plane centered at the point (0, b, 0). The length of
the generating curve is L = πa.

2πb

L = 2πb

z

y

x

b
b − a

b + a
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The center of mass of the circle is at the center (y, z) = (b, 0), and it traverses a circle of radius b centered at the origin.
Therefore, the center of mass makes a distance of 2πb. Using Pappus’ Theorem, the area of the torus is:

L · 2πa = 2πa · 2πb = 4π2ab.

48. Potential Due to a Uniform Sphere Let S be a hollow sphere of radius R with center at the origin with

a uniform mass distribution of total mass m [since S has surface area 4πR2, the mass density is ρ = m/(4πR2)]. The
gravitational potential V (P ) due to S at a point P = (a, b, c) is equal to

−G

∫∫
S

ρ dS√
(x − a)2 + (y − b)2 + (z − c)2

(a) Use symmetry to conclude that the potential depends only on the distance r from P to the center of the sphere.
Therefore, it suffices to compute V (P ) for a point P = (0, 0, r) on the z-axis (with r �= R).

(b) Use spherical coordinates to show that V (0, 0, r) is equal to

−Gm

4π

∫ π

0

∫ 2π

0

sin φ dθ dφ√
R2 + r2 − 2Rr cos φ

(c) Use the substitution u = R2 + r2 − 2Rr cos φ to show that

V (0, 0, r) = −mG

2Rr

(|R + r| − |R − r|)
(d) Verify Eq. (12) for V .

solution

(a) The gravitational potential due to S at a point P = (a, b, c) is given by:

ϕ(P ) = −G

∫∫
S

ρ dS√
(x − a)2 + (y − b)2 + (z − c)2

Due to the symmetry of the sphere, the “sum” of the distances of a point P = (a, b, c) from the points Q = (x, y, z) on
the sphere is equal for all the points P located at the same distance r from the center of the sphere. That is, the integral∫∫

S
dS

|Q−P | depends only on r . Since ρ is constant, the integral for ϕ(P ) also depends only on r . Thus, we might as well

assume that P is on the z-axis at the point (0, 0, r), with r being
√

a2 + b2 + c2.

(b) For a = b = 0, and c = r we have,

ϕ(0, 0, r) = −G

∫∫
S

ρ dS√
x2 + y2 + (z − r)2

(1)

We parametrize the sphere S by the spherical parametrization:

�(θ, φ) = (R cos θ sin φ, R sin θ sin φ, R cos φ), 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

Then, the length of the normal vector is:

‖n‖ = R2 sin φ

We express the function in the integrand in terms of the parameters:

x2 + y2 + (z − r)2 = R2 cos2 θ sin2 φ + R2 sin2 θ sin2 φ + (R cos φ − r)2

= R2 sin2 φ + R2 cos2 φ − 2Rr cos φ + r2 = R2 − 2Rr cos φ + r2

The surface integral in (1) is equal to the following double integral:

ϕ(0, 0, r) = −G

∫ π

0

∫ 2π

0

ρ‖n‖ dθ dφ√
R2 − 2Rr cos φ + r2

= −G

∫ π

0

∫ 2π

0

m
4πR2 · R2 sin φ dθ dφ√
R2 − 2Rr cos φ + r2

= −Gm

4π

∫ π

0

∫ 2π

0

sin φ dθ dφ√
R2 − 2Rr cos φ + r2

(c) We compute the double integral for ϕ(0, 0, r). Since the integrand does not depend on θ , we have,

ϕ(0, 0, r) = −Gm

4π
· 2π

∫ π

0

sin φ dφ√
R2 + r2 − 2Rr cos φ

= −Gm

2

∫ π

0

sin φ dφ√
R2 + r2 − 2Rr cos φ
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We compute the integral using the substitution u = R2 + r2 − 2Rr cos φ, du = 2Rr sin φ dφ. We obtain:

ϕ(0, 0, r) = −Gm

2

∫ (R+r)2

(R−r)2

du
2Rr√

u
= − Gm

4Rr

∫ (R+r)2

(R−r)2
u−1/2 du = − Gm

4Rr
· 2u1/2

∣∣∣∣(R+r)2

u=(R−r)2

= − Gm

2Rr

((
(R + r)2

)1/2 −
(
(R − r)2

)1/2
)

= − Gm

2Rr
(|R + r| − |R − r|)

(d) For r > R:

|R + r| − |R − r| = R + r − (r − R) = 2R

Thus,

φ(0, 0, r) = − Gm

2Rr
· 2R = −Gm

r
.

Similarly, for r < R we obtain,

φ(0, 0, r) = − Gm

2Rr
· 2r = −Gm

R
.

49. Calculate the gravitational potential V for a hemisphere of radius R with uniform mass distribution.

solution In Exercise 48(b) we expressed the potential ϕ for a sphere of radius R. To find the potential for a hemisphere
of radius R, we need only to modify the limits of the angle φ to 0 ≤ φ ≤ π

2 . This gives the following integral:

ϕ(0, 0, r) = ϕ(r) = −Gm

4π

∫ π/2

0

∫ 2π

0

sin φ dθ dφ√
R2 + r2 − 2Rr cos φ

= −Gm

4π
· 2π

∫ π/2

0

sin φ dφ√
R2 + r2 − 2Rr cos φ

= −Gm

2

∫ π/2

0

sin φ dφ√
R2 + r2 − 2Rr cos φ

We compute the integral using the substitution u = R2 + r2 − 2Rr cos φ, du = 2Rr sin φ dφ. We obtain:

ϕ(r) = −Gm

2

∫ R2+r2

(R−r)2

du
2Rr√

u
= − Gm

4Rr

∫ R2+r2

(R−r)2
u−1/2 du = − Gm

4Rr
· 2u1/2

∣∣∣∣R
2+r2

u=(R−r)2

= − Gm

2Rr

((
R2 + r2

)1/2 −
(
(R − r)2

)1/2
)

= − Gm

2Rr

(√
R2 + r2 − |R − r|

)
50. The surface of a cylinder of radius R and length L has a uniform mass distribution ρ (the top and bottom of the
cylinder are excluded). Use Eq. (11) to find the gravitational potential at a point P located along the axis of the cylinder.

solution By Eq. (11) the gravitational potential at a point P = (0, 0, c) along the axis of the cylinder is:

ϕ(0, 0, c) = −G

∫∫
S

ρ dS√
x2 + y2 + (z − c)2

z

y
R

x

L

P = (0, 0, c)

We parametrize the cylinder S by the following parametrization:

�(θ, z) = (R cos θ, R sin θ, z), 0 ≤ θ ≤ 2π, 0 ≤ z ≤ L

We compute the tangent and normal vectors:

Tθ = ∂�

∂θ
= 〈−R sin θ, R cos θ, 0〉

Tz = ∂�

∂z
= 〈0, 0, 1〉
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Hence,

n = Tθ × Tz =
∣∣∣∣∣∣

i j k
−R sin θ R cos θ 0

0 0 1

∣∣∣∣∣∣ = (R cos θ)i + (R sin θ)j = R 〈cos θ, sin θ, 0〉

Hence,

‖n‖ = R

√
cos2 θ + sin2 θ = R

We express the function in the integrand in terms of the parameters:√
x2 + y2 + (z − c)2 =

√
R2 cos2 θ + R2 sin2 θ + (z − c)2 =

√
R2 + (z − c)2

We obtain the following integral:

ϕ(0, 0, c) = −G

∫ 2π

0

∫ L

0

ρ‖n‖ dz dθ√
R2 + (z − c)2

= −G

∫ 2π

0

∫ L

0

ρR dz dθ√
R2 + (z − c)2

= −GρR

∫ 2π

0

∫ L

0

dz dθ√
R2 + (z − c)2

= −GρR · 2π

∫ L

0

dz√
R2 + (z − c)2

= −2GρRπ ln

∣∣∣∣z − c +
√

(z − c)2 + R2
∣∣∣∣
∣∣∣∣L
z=0

= −2GρRπ

(
ln

(
L − c +

√
(L − c)2 + R2

))
− ln

(
−c +

√
c2 + R2

)

= −2GρRπ ln

⎛
⎜⎝L − c +

√
(L − c)2 + R2

−c +
√

c2 + R2

⎞
⎟⎠

51. Let S be the part of the graph z = g(x, y) lying over a domain D in the xy-plane. Let φ = φ(x, y) be the angle
between the normal to S and the vertical. Prove the formula

Area(S) =
∫∫

D
dA

| cos φ|
solution

y

x

(x, y, g(x, y))

f  = f (x, y)

z

D

S

n

Using the Surface Integral over a Graph we have:

Area(S) =
∫∫

S
1 dS =

∫∫
D

√
1 + g2

x + g2
y dA (1)

In parametrizing the surface by φ(x, y) = (x, y, g(x, y)), (x, y) = D, we have:

Tx = ∂�

∂x
= 〈1, 0, gx〉

Ty = ∂�

∂y
= 〈0, 1, gy

〉
Hence,

n = Tx × Ty =
∣∣∣∣∣∣

i j k
1 0 gx

0 1 gy

∣∣∣∣∣∣ = −gx i − gy j + k = 〈−gx, −gy, 1
〉

‖n‖ =
√

g2
x + g2

y + 1
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nk

−k

There are two adjacent angles between the normal n and the vertical, and the cosines of these angles are opposite numbers.
Therefore we take the absolute value of cos φ to obtain a positive value for Area(S). Using the Formula for the cosine of
the angle between two vectors we get:

| cos φ| = |n · k|
‖n‖‖k‖ = | 〈−gx, −gy, 1

〉 · 〈0, 0, 1〉 |√
1 + g2

x + g2
y · 1

= 1√
1 + g2

x + g2
y

Substituting in (1) we get:

Area(S) =
∫∫

D
dA

| cos φ|

16.5 Surface Integrals of Vector Fields (LT Section 17.5)

Preliminary Questions
1. Let F be a vector field and G(u, v) a parametrization of a surface S, and set n = Tu × Tv . Which of the following

is the normal component of F?

(a) F · n (b) F · en

solution The normal component of F is F · en rather than F · n.

2. The vector surface integral
∫∫

S
F · dS is equal to the scalar surface integral of the function (choose the correct

answer):

(a) ‖F‖
(b) F · n, where n is a normal vector
(c) F · en, where en is the unit normal vector

solution The vector surface integral
∫∫

S F · dS is defined as the scalar surface integral of the normal component of F
on the oriented surface. That is,

∫∫
S F · dS = ∫∫S (F · en) dS as stated in (c).

3.
∫∫

S
F · dS is zero if (choose the correct answer):

(a) F is tangent to S at every point.
(b) F is perpendicular to S at every point.

solution Since
∫∫

S F · dS is equal to the scalar surface integral of the normal component of F on S, this integral is
zero when the normal component is zero at every point, that is, when F is tangent to S at every point as stated in (a).

4. If F(P ) = en(P ) at each point on S, then
∫∫

S
F · dS is equal to (choose the correct answer):

(a) Zero (b) Area(S) (c) Neither

solution If F(P ) = en(P ) at each point on S, then,:∫∫
S

F · dS =
∫∫

S
(en · en) dS =

∫∫
S

‖en‖2 dS =
∫∫

S
1 dS = Area(S)

Therefore, (b) is the correct answer.

5. Let S be the disk x2 + y2 ≤ 1 in the xy-plane oriented with normal in the positive z-direction. Determine
∫∫

S
F · dS

for each of the following vector constant fields:

(a) F = 〈1, 0, 0〉 (b) F = 〈0, 0, 1〉 (c) F = 〈1, 1, 1〉
solution The unit normal vector to the oriented disk is en = 〈0, 0, 1〉.
(a) Since F · en = 〈1, 0, 0〉 · 〈0, 0, 1〉 = 0, F is perpendicular to the unit normal vector at every point on S, therefore∫∫

S F · dS = 0.
(b) Since F = en at every point on S, we have:∫∫

S
F · dS =

∫∫
S

(en · en) dS =
∫∫

S
‖en‖2 dS =

∫∫
S

1 dS = Area(S) = π
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(c) For F = 〈1, 1, 1〉 we have:∫∫
S

F · dS =
∫∫

S
(F · en) dS =

∫∫
S

〈1, 1, 1〉 · 〈0, 0, 1〉 dS =
∫∫

S
1 dS = Area(S) = π

6. Estimate
∫∫

S
F · dS, where S is a tiny oriented surface of area 0.05 and the value of F at a sample point in S is a

vector of length 2 making an angle π
4 with the normal to the surface.

solution

en F

π
4

P

S

Since S is a tiny surface, we may assume that the dot product F · en on S is equal to the dot product at the sample point.
This gives the following approximation:∫∫

S
F · dS =

∫∫
S

(F · en) dS ≈
∫∫

S
(F(P ) · en(P )) dS = F(P ) · en(P )

∫∫
S

1dS = F(P ) · enArea(S)

That is, ∫∫
S

F · dS ≈ F(P ) · en(P )Area(S) (1)

We are given that Area(S) = 0.05. We compute the dot product:

F(P ) · en(P ) = ‖F(P )‖‖en(P )‖ cos
π

4
= 2 · 1 · 1√

2
= √

2

Combining with (1) gives the following estimation:∫∫
S

F · dS ≈ 0.05
√

2 ≈ 0.0707.

7. A small surface S is divided into three pieces of area 0.2. Estimate
∫∫

S
F · dS if F is a unit vector field making

angles of 85◦, 90◦, and 95◦ with the normal at sample points in these three pieces.

solution

F

F
F

en

enen

P1

S1

S2

S3

P2
P3

We estimate the vector surface integral by the following sum:∫∫
S

F · dS = F (P1) · en (P1) Area (S1) + F (P2) · en (P2) Area (S2) + F (P3) · en (P3) Area (S3)

= 0.2 (F (P1) · en (P1) + F (P2) · en (P2) + F (P3) · en (P3))

We compute the dot product. Since F and en are unit vectors, we have:

F (P1) · en (P1) = cos 85◦ ≈ 0.0872

F (P2) · en (P2) = cos 90◦ = 0

F (P3) · en (P3) = cos 95◦ ≈ −0.0872

Substituting gives the following estimation:∫∫
S

F · dS ≈ 0.2(0.0872 + 0 − 0.0872) = 0.
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Exercises
1. Let F = 〈z, 0, y〉 and let S be the oriented surface parametrized by G(u, v) = (u2 − v, u, v2) for 0 ≤ u ≤ 2,

−1 ≤ v ≤ 4. Calculate:

(a) n and F · n as functions of u and v

(b) The normal component of F to the surface at P = (3, 2, 1) = G(2, 1)

(c)
∫∫

S
F · dS

solution

(a) The tangent vectors are,

Tu = ∂G

∂u
= ∂

∂u

(
u2 − v, u, v2

)
= 〈2u, 1, 0〉

Tv = ∂G

∂v
= ∂

∂v

(
u2 − v, u, v2

)
= 〈−1, 0, 2v〉

The normal vector is their cross product:

n = Tu × Tv =
∣∣∣∣∣∣

i j k
2u 1 0
−1 0 2v

∣∣∣∣∣∣ = vi − 4uvj + k = 〈2v, −4uv, 1〉

We write F = 〈z, 0, y〉 in terms of the parameters x = u2 − v, y = u, z = v2 and then compute F · n:

F (�(u, v)) = 〈z, 0, y〉 =
〈
v2, 0, u

〉
F (�(u, v)) · n(u, v) =

〈
v2, 0, u

〉
· 〈2v, −4uv, 1〉

= 2v3 + u

(b) At the point P = (3, 2, 1) = �(2, 1) we have:

F(P ) = 〈1, 0, 2〉
n(P ) = 〈2, −8, 1〉

en(P ) = n(P )

‖n(P )‖ = 〈2, −8, 1〉√
4 + 64 + 1

= 1√
69

〈2, −8, 1〉

Hence, the normal component of F to the surface at P is the dot product:

F(P ) · en(P ) = 〈1, 0, 2〉 · 1√
69

〈2, −8, 1〉 = 4√
69

(c) Using the definition of the vector surface integral and the dot product in part (a), we have:

∫∫
S

F · dS =
∫∫

D
F (φ(u, v)) · n(u, v) du dv =

∫ 2

0

∫ 4

−1

(
2v3 + u

)
dv du

=
∫ 2

0

2v4

4
+ uv

∣∣∣∣4
v=−1

du

=
∫ 2

0

(
128 − 1

2

)
+ (4 − (−1))u du

=
∫ 2

0

255

2
+ 5u du = 255u

2
+ 5u2

2

∣∣∣∣2
0

= 265

2. Let F = 〈y, −x, x2 + y2〉 and let S be the portion of the paraboloid z = x2 + y2 where x2 + y2 ≤ 3.

(a) Show that if S is parametrized in polar variables x = r cos θ , y = r sin θ , then F · n = r3.

(b) Show that
∫∫

S
F · dS =

∫ 2π

0

∫ √
3

0
r3 dr dθ and evaluate.

solution

(a) The parametrization of this surface in these coordinates is:

φ(r, θ) = (x, y, x2 + y2) = (r cos θ, r sin θ, r2) (0 ≤ θ ≤ 2π, 0 ≤ r ≤ √
3)
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Calculating the normal vector,

Tr = 〈cos θ, sin θ, 2r〉
Tθ = 〈−r sin θ, r cos θ, 0〉

⇒ n =
〈
−2r2 cos θ, −2r2 sin θ, r

〉
Then

F · n =
〈
y, −x, x2 + y2

〉
· n =

〈
r sin θ, −r cos θ, r2

〉
·
〈
−2r2 cos θ, −2r2 sin θ, r

〉
= −2r3 sin θ cos θ + 2r3 cos θ sin θ + r3 = r3

(b) The integral over this surface is

∫∫
S

F · dS =
∫ 2π

0

∫ √
3

0
F · n dr dθ =

∫ 2π

0

∫ √
3

0
r3 dr dθ

=
∫ 2π

0
dθ ·

∫ √
3

0
r3 dr = 2π

r4

4

∣∣∣∣
√

3

0
= 9π

2

3. Let S be the unit square in the xy-plane shown in Figure 14, oriented with the normal pointing in the positive
z-direction. Estimate ∫∫

S
F · dS

where F is a vector field whose values at the labeled points are

F(A) = 〈2, 6, 4〉, F(B) = 〈1, 1, 7〉
F(C) = 〈3, 3, −3〉, F(D) = 〈0, 1, 8〉

x

y

A B

C D

1

1

FIGURE 14

solution The unit normal vector to S is en = 〈0, 0, 1〉. We estimate the vector surface integral
∫∫

S F · dS using the
division and sample points given in Figure 12.

x

y

A B

C D

1

1

Each subsquare has area 1
4 , therefore we obtain the following estimation:∫∫

S
F · dS ≈ (F(A) · en + F(B) · en + F(C) · en + F(D) · en) · 1

4

= (〈2, 6, 4〉 · 〈0, 0, 1〉 + 〈1, 1, 7〉 · 〈0, 0, 1〉 + 〈3, 3, −3〉 · 〈0, 0, 1〉 + 〈0, 1, 8〉 · 〈0, 0, 1〉) · 1

4

= (4 + 7 − 3 + 8) · 1

4
= 4

4. Suppose that S is a surface in R3 with a parametrization G whose domain D is the square in Figure 14. The values
of a function f , a vector field F, and the normal vector n = Tu × Tv at G(P ) are given for the four sample points in D
in the following table. Estimate the surface integrals of f and F over S.
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Point
P in D f F n

A 3 〈2, 6, 4〉 〈1, 1, 1〉
B 1 〈1, 1, 7〉 〈1, 1, 0〉
C 2 〈3, 3, −3〉 〈1, 0, −1〉
D 5 〈0, 1, 8〉 〈2, 1, 0〉

solution The area of each subrectangle is 1
4 . We estimate the surface integral of f over S by the following sum:∫∫

S
f (x, y, z) dS = (f (A)‖n(A)‖ + f (B)‖n(B)‖ + f (C)‖n(C)‖ + f (D)‖n(D)‖) · 1

4
(1)

We use the given data to compute the length of the normal vectors:

‖n(A)‖ = ‖ 〈1, 1, 1〉 ‖ = √
3

‖n(B)‖ = ‖ 〈1, 1, 0〉 ‖ = √
2

‖n(C)‖ = ‖ 〈1, 0, −1〉 ‖ = √
2

‖n(D)‖ = ‖ 〈2, 1, 0〉 ‖ = √
5

Substituting the values in (1) we obtain the following estimation:

∫∫
S

f (x, y, z) dS =
(

3
√

3 + 1 · √
2 + 2

√
2 + 5

√
5
)

· 1

4
= 3

√
3 + 3

√
2 + 5

√
5

4
≈ 5.155

We now estimate the vector surface integral
∫∫

S F · dS by the following sum:∫∫
S

F · dS = (F(A) · n + F(B) · n + F(C) · n + F(D) · n) · 1

4

= (〈2, 6, 4〉 · 〈1, 1, 1〉 + 〈1, 1, 7〉 · 〈1, 1, 0〉 + 〈3, 3, −3〉 · 〈1, 0, −1〉 + 〈0, 1, 8〉 · 〈2, 1, 0〉) · 1

4

= (12 + 2 + 6 + 1) · 1

4
= 21

4

In Exercises 5–17, compute
∫∫

S
F · dS for the given oriented surface.

5. F = 〈y, z, x〉, plane 3x − 4y + z = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, upward-pointing normal

solution We rewrite the equation of the plane as z = 1 − 3x + 4y, and parametrize the plane by:

�(x, y) = (x, y, 1 − 3x + 4y)

Here, the parameter domain is the square D = {(x, y) : 0 ≤ x, y ≤ 1} in the xy-plane.

Step 1. Compute the tangent and normal vectors.

Tx = ∂�

∂x
= ∂

∂x
(x, y, 1 − 3x + 4y) = 〈1, 0, −3〉

Ty = ∂�

∂y
= ∂

∂y
(x, y, 1 − 3x + 4y) = 〈0, 1, 4〉

Tx × Ty =
∣∣∣∣∣∣

i j k
1 0 −3
0 1 4

∣∣∣∣∣∣ = 3i − 4j + k = 〈3, −4, 1〉

Since the plane is oriented with upward pointing normal, the normal vector n is:

n = 〈3, −4, 1〉
Step 2. Evaluate the dot product F · n. We write F in terms of the parameters:

F (�(x, y)) = 〈y, z, x〉 = 〈y, 1 − 3x + 4y, x〉
The dot product F · n is thus

F (�(x, y)) · n = 〈y, 1 − 3x + 4y, x〉 · 〈3, −4, 1〉 = 3y − 4(1 − 3x + 4y) + x = 13x − 13y − 4
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Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral:

∫∫
S

F · dS =
∫∫

D
F (�(x, y)) · n(x, y) dx dy =

∫ 1

0

∫ 1

0
(13x − 13y − 4) dx dy

=
∫ 1

0

13x2

2
− 13yx − 4x

∣∣∣∣1
x=0

dy =
∫ 1

0

(
13

2
− 13y − 4

)
dy = 5y

2
− 13y2

2

∣∣∣∣1
0

= −4

6. F = 〈ez, z, x
〉
, G(r, s) = (rs, r + s, r), 0 ≤ r ≤ 1, 0 ≤ s ≤ 1, oriented by Tr × Ts

solution
Step 1. Compute the tangent and normal vectors. We have:

Tr = ∂�

∂r
= ∂

∂r
(rs, r + s, r) = 〈s, 1, 1〉

Ts = ∂�

∂s
= ∂

∂s
(rs, r + s, r) = 〈r, 1, 0〉

n = Tr × Ts =
∣∣∣∣∣∣

i j k
s 1 1
r 1 0

∣∣∣∣∣∣ = −i + rj + (s − r)k = 〈−1, r, s − r〉

Step 2. Evaluate the dot product F · n. We write F in terms of the parameters x = rs, y = r + s, z = r:

F (φ(r, s)) = 〈ez, z, x
〉 = 〈er , r, rs

〉
We compute the dot product F · n:

F (φ(r, s)) · n(r, s) = 〈er , r, rs
〉 · 〈−1, r, s − r〉 = −er + r2 + rs(s − r) = −er + r2(1 − s) + rs2

Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral:

∫∫
S

F · dS =
∫∫

D
F (�(r, s)) · n(r, s) dr ds =

∫ 1

0

∫ 1

0

(
−er + r2(1 − s) + rs2

)
dr ds

=
∫ 1

0
−er + r3(1 − s)

3
+ r2s2

2

∣∣∣∣1
r=0

ds =
∫ 1

0

(
−e + 1 − s

3
+ s2

2
+ 1

)
ds

= (1 − e)s + s − s2

2
3

+ s3

6

∣∣∣∣1
0

= 1 − e + 1

6
+ 1

6
= 4

3
− e ≈ −1.385

7. F = 〈0, 3, x
〉
, part of sphere x2 + y2 + z2 = 9, where x ≥ 0, y ≥ 0, z ≥ 0 outward-pointing normal

solution We parametrize the octant S by:

�(θ, φ) = (3 cos θ sin φ, 3 sin θ sin φ, 3 cos φ), 0 ≤ θ ≤ π

2
, 0 ≤ φ ≤ π

2

Step 1. Compute the normal vector. As seen in the text, the normal vector that points to the outside of the sphere is:

n = Tφ × Tθ = 9 sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉
For 0 ≤ θ ≤ π

2 , 0 ≤ φ ≤ π
2 , all trigonometric functions are positive. Therefore all components of n are positive, so n

points to the outside of the sphere.

y

x

z

Step 2. Evaluate the dot product F · n. We express the vector field in terms of the parameters:

F (�(θ, φ)) = 〈0, 3, x〉 = 〈0, 3, 3 cos θ sin φ〉
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Hence:

F (�(θ, φ)) · n(θ, φ) = 〈0, 3, 3 cos θ sin φ〉 · 9 sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉
= 27 sin θ sin2 φ + 27 cos θ sin2 φ cos φ

Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral:∫∫
S

F · dS =
∫∫

D
F (�(θ, φ)) · n(θ, φ) dθ dφ

=
∫ π

2

0

∫ π
2

0

(
27 sin θ sin2 φ + 27 cos θ sin2 φ cos φ

)
dθ dφ

= 27

(∫ π
2

0
sin θ dθ ·

∫ π
2

0
sin2 φ dφ +

∫ π
2

0
cos θ dθ ·

∫ π
2

0
sin2 φ cos φ dφ

)

= 27

(
− cos θ

∣∣∣∣
π
2

0
·
(

φ

2
− sin 2φ

4

) ∣∣∣∣
π
2

0
+ sin θ

∣∣∣∣
π
2

0
· sin3 φ

3

∣∣∣∣
π
2

0

)

= 27

(
π

4
· 1 + 1

3
· 1

)
= 27

12
(3π + 4)

8. F = 〈x, y, z〉, part of sphere x2 + y2 + z2 = 1, where
1

2
≤ z ≤

√
3

2
, inward-pointing normal

solution

z

x

y

We parametrize S by the following parametrization:

�(θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ)

D : 0 ≤ θ ≤ 2π, φ0 ≤ φ ≤ φ1

f0

13
2

The angles φ0 and φ1 are determined by:

cos φ0 =
√

3

2
⇒ φ0 = π

6

cos φ1 = 1

2
⇒ φ1 = π

3

f1

1
1
2

Step 1. Determine the normal vector. The normal vector pointing to the inside of the sphere is:

n = Tθ × Tφ = − sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉
(Notice that for π

6 ≤ φ ≤ π
3 , − sin φ cos φ < 0, therefore the z-component is negative and the normal points to the inside

of the sphere).
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Step 2. Evaluate the dot product F · n. We express F in terms of the parameters:

F (�(θ, φ)) = 〈x, y, z〉 = (cos θ sin φ, sin θ sin φ, cos φ)

Hence:

F (�(θ, φ)) · n(θ, φ) = 〈cos θ sin φ, sin θ sin φ, cos φ〉 · (− sin φ) 〈cos θ sin φ, sin θ sin φ, cos φ〉
= − sin φ

(
cos2 φ sin2 φ + sin2 θ sin2 φ + cos2 φ

)
= − sin φ · 1 = − sin φ

Step 3. Evaluate the surface integral. We have:

∫∫
S

F · dS =
∫∫

D
F (�(θ, φ)) · n(θ, φ) dθ dφ =

∫ 2π

0

∫ π/3

π/6
− sin φ dθ dφ = 2π

∫ π/3

π/6
− sin φ dθ

= 2π(cos φ)

∣∣∣∣π/3

φ=π/6
= 2π

(
cos

π

3
− cos

π

6

)
= 2π

(
1

2
−

√
3

2

)
= π

(
1 − √

3
)

≈ −2.3

9. F = 〈z, z, x〉, z = 9 − x2 − y2, x ≥ 0, y ≥ 0, z ≥ 0 upward-pointing normal

solution

Step 1. Find a parametrization. We use x and y as parameters and parametrize the surface by:

�(x, y) =
(
x, y, 9 − x2 − y2

)

The parameter domain D is determined by the conditions z = 9 − x2 − y2 ≥ 0 ⇒ x2 + y2 ≤ 9 and x, y ≥ 0. That is:

D =
{
(x, y) : x2 + y2 ≤ 9, x, y ≥ 0

}

D is the portion of the disk of radius 3 in the first quadrant.

Step 2. Compute the tangent and normal vectors. We have:

Tx = ∂�

∂x
= ∂

∂x

(
x, y, 9 − x2 − y2

)
= 〈1, 0, −2x〉

Ty = ∂�

∂y
= ∂

∂y

(
x, y, 9 − x2 − y2

)
= 〈0, 1, −2y〉

We compute the cross product of the tangent vectors:

Tx × Ty =
∣∣∣∣∣∣

i j k
1 0 −2x

0 1 −2y

∣∣∣∣∣∣ = (2x)i + (2y)j + k = 〈2x, 2y, 1〉

Since the z-component is positive, the vector points upward, and we have:

n = 〈2x, 2y, 1〉

Step 3. Evaluate the dot product F · n. We first express the vector field in terms of the parameters x and y, by setting
z = 9 − x2 − y2. We get:

F (�(x, y)) = 〈z, z, x〉 =
〈
9 − x2 − y2, 9 − x2 − y2, x

〉

We now compute the dot product:

F (�(x, y)) · n(x, y) =
〈
9 − x2 − y2, 9 − x2 − y2, x

〉
· 〈2x, 2y, 1〉

= 2x(9 − x2 − y2) + 2y(9 − x2 − y2) + x

= 19x + 18y − 2xy(x2 + y2)
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Step 4. Evaluate the surface integral.

D

x

y

3

The surface integral is equal to the following double integral:∫∫
S

F · dS =
∫∫

D
F (�(x, y)) · n(x, y) dx dy =

∫∫
D

(
19x + 18y − 2xy(x2 + y2)

)
dx dy

We convert the integral to polar coordinates and use the identity sin 2θ = 2 cos θ sin θ to obtain:∫∫
S

F · dS =
∫ 3

0

∫ π/2

0

(
19r cos θ + 18r sin θ − 2r2 cos θ sin θ

)
r dθ dr

=
(∫ 3

0
r2 dr

)
·
(∫ π/2

0
19 cos θ + 18 sin θ dθ

)
+
(∫ 3

0
−r3 dr

)
·
(∫ π/2

0
sin 2θ dθ

)

=
(

r3

3

∣∣∣∣3
0

)
·
(

19 sin θ − 18 cos θ

∣∣∣∣π/2

0

)
+
(

− r4

4

∣∣∣∣3
0

)
·
(

−1

2
cos 2θ

∣∣∣∣π/2

0

)

= 9 · 37 − 81

4
· (1) = 312.75

10. F = 〈sin y, sin z, yz〉, rectangle 0 ≤ y ≤ 2, 0 ≤ z ≤ 3 in the (y, z)-plane, normal pointing in negative x-direction

solution

z

yx

3

2

S

n

The surface is the plane x = 0 over the rectangle 0 ≤ y ≤ 2, 0 ≤ z ≤ 3 in the (y, z)-plane, hence it is parametrized by:

�(y, z) = (0, y, z), 0 ≤ y ≤ 2, 0 ≤ z ≤ 3

Step 1. Compute the tangent and normal vectors. We have:

Ty = ∂�

∂y
= ∂

∂y
(0, y, z) = 〈0, 1, 0〉 = j

Tz = ∂�

∂z
= ∂

∂z
(0, y, z) = 〈0, 0, 1〉 = k

Ty × Tz = j × k = i = 〈1, 0, 0〉
Since the normal points to the negative x-direction, the x-component must be negative. Hence:

n = 〈−1, 0, 0〉
Step 2. Evaluate the dot product F · n. We compute the dot product:

F (�(y, z)) · n = 〈sin y, sin z, yz〉 · 〈−1, 0, 0〉 = − sin y

Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral:∫∫
S

F · dS =
∫∫

D
F (�(y, z)) · n dy dz =

∫ 3

0

∫ 2

0
(− sin y) dy dz =

∫ 2

0

∫ 3

0
− sin y dz dy

= 3
∫ 2

0
(− sin y) dy = 3 cos y

∣∣∣∣2
0

= 3(cos 2 − 1) ≈ −4.25
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11. F = y2i + 2j − xk, portion of the plane x + y + z = 1 in the octant x, y, z ≥ 0, upward-pointing normal

solution

1
1

1

z

y

x

S
n

We parametrize the surface by:

�(x, y) = (x, y, 1 − x − y),

using the parameter domain D shown in the figure.

D

x

y

1

1

0

Step 1. Compute the tangent and normal vectors. We have:

Tx = ∂�

∂x
= ∂

∂x
(x, y, 1 − x − y) = 〈1, 0, −1〉

Ty = ∂�

∂y
= ∂

∂y
(x, y, 1 − y) = 〈0, 1, −1〉

n = Tx × Ty =
∣∣∣∣∣∣

i j k
1 0 −1
0 1 −1

∣∣∣∣∣∣ = i + j + k = 〈1, 1, 1〉

Note that n points upward.
Step 2. Evaluate the dot product F · n.

D

x

y

10

0 ≤ x ≤ 1 − y

1

We compute the dot product:

F (�(x, y)) · n =
〈
y2, 2, −x

〉
· 〈1, 1, 1〉 = y2 + 2 − x

Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral:∫∫
S

F · dS =
∫∫

D
F (�(x, y)) · n dx dy =

∫ 1

0

∫ 1−y

0

(
y2 + 2 − x

)
dx dy =

∫ 1

0
y2x + 2x − x2

2

∣∣∣∣1−y

x=0
dy

=
∫ 1

0

(
y2(1 − y) + 2(1 − y) − (1 − y)2

2

)
dy =

∫ 1

0

(
y2 − y3 + 2(1 − y) − (y − 1)2

2

)
dy

= y3

3
− y4

4
− (1 − y)2 − (y − 1)3

6

∣∣∣∣1
0

=
(

1

3
− 1

4

)
+
(

1 − 1

6

)
= 11

12
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12. F = 〈x, y, ez
〉
, cylinder x2 + y2 = 4, 1 ≤ z ≤ 5, outward-pointing normal

solution We parametrize the surface by

�(θ, z) = (2 cos θ, 2 sin θ, z)

where the parameter domain is:

D : 0 ≤ θ ≤ 2π, 1 ≤ z ≤ 5

For this parametrization it holds that:

Tθ × Tz = 〈2 cos θ, 2 sin θ, 0〉
z

y

x

5

1

This vector is horizontal and points out of the cylinder (this can be verified by setting θ = 0; the vector 〈2, 0, 0〉 points
out of the cylinder). Therefore:

n = 〈2 cos θ, 2 sin θ, 0〉
We compute the dot product F · n:

F (�(θ, z)) · n(θ, z) = 〈2 cos θ, 2 sin θ, ez
〉 · 〈2 cos θ, 2 sin θ, 0〉 = 4 cos2 θ + 4 sin2 θ = 4

z

1

2p
q

5

D

The surface integral is equal to the following double integral:∫∫
S

F · dS =
∫∫

D
F (�(θ, z)) · n(θ, z) dz dθ =

∫∫
D

4 dz dθ = 4Area(D) = 4 · 4 · 2π = 32π

13. F = 〈xz, yz, z−1〉, disk of radius 3 at height 4 parallel to the xy-plane, upward-pointing normal

solution

3
4

z

y

x

n
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We parametrize the surface S by:

�(θ, r) = (r cos θ, r sin θ, 4)

with the parameter domain:

D = {(θ, r) : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3}

Step 1. Compute the tangent and normal vectors. We have:

Tθ = ∂�

∂θ
= ∂

∂θ
(r cos θ, r sin θ, 4) = 〈−r sin θ, r cos θ, 0〉

Tr = ∂�

∂r
= ∂

∂r
(r cos θ, r sin θ, 4) = 〈cos θ, sin θ, 0〉

Tθ × Tr =
∣∣∣∣∣∣

i j k
−r sin θ r cos θ 0

cos θ sin θ 0

∣∣∣∣∣∣ =
(
−r sin2 θ − r cos2θ

)
k = −rk = 〈0, 0, −r〉

Since the orientation of S is with an upward pointing normal, the z-coordinate of n must be positive. Hence:

n = 〈0, 0, r〉

Step 2. Evaluate the dot product F · n. We first express F in terms of the parameters:

F (�(θ, r)) =
〈
xz, yz, z−1

〉
=
〈
r cos θ · 4, r sin θ · 4, 4−1

〉
=
〈
4r cos θ, 4r sin θ,

1

4

〉

We now compute the dot product:

F (�(θ, r)) · n(θ, r) =
〈
4r cos θ, 4r sin θ,

1

4

〉
· 〈0, 0, r〉 = r

4

Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral:

∫∫
S

F · dS =
∫∫

D
F (�(θ, r)) · n(θ, r) dr dθ =

∫ 2π

0

∫ 3

0

r

4
dr dθ = 2π

∫ 3

0

r

4
dr = 2π · r2

8

∣∣∣∣3
0

= 9π

4

14. F = 〈xy, y, 0〉, cone z2 = x2 + y2, x2 + y2 ≤ 4, z ≥ 0, downward-pointing normal

solution We parametrize the surface S by:

�(θ, t) = (t cos θ, t sin θ, t)

with the parameter domain:

D = {(θ, t) : 0 ≤ θ ≤ 2π, 0 ≤ t ≤ 2}

2
x

y

D

In this parametrization it holds that (see Example 4 in Section 17.4).

Tθ × Tt = 〈t cos θ, t sin θ, −t〉

Since the normal is pointing downward, the z-coordinate must be negative. Therefore the normal is:

n = 〈t cos θ, t sin θ, −t〉
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We express F in terms of the parameters and then compute the dot product F · n. We obtain:

F (�(θ, t)) = 〈xy, y, 0〉 = 〈(t cos θ)(t sin θ), t sin θ, 0〉 =
〈
t2 cos θ sin θ, t sin θ, 0

〉
F (�(θ, t)) · n(θ, t) = t sin θ 〈t cos θ, 1, 0〉 · t 〈cos θ, sin θ, −1〉 = t2 sin θ

(
t cos2 θ + sin θ

)
= t3 cos2 θ sin θ + t2 sin2 θ

The surface integral is equal to the following double integral:∫∫
S

F · dS =
∫∫

D
F (�(θ, t)) · n(θ, t) dt dθ =

∫ 2π

0

∫ 2

0

(
t3 cos2 θ sin θ + t2 sin2 θ

)
dt dθ

=
(∫ 2

0
t3 dt

)(∫ 2π

0
cos2θ sin θ dθ

)
+
(∫ 2

0
t2 dt

)(∫ 2π

0
sin2 θ dθ

)

=
⎛
⎝ t4

4

∣∣∣∣∣
2

t=0

⎞
⎠
⎛
⎝− cos3θ

3

∣∣∣∣∣
2π

θ=0

⎞
⎠+

⎛
⎝ t3

3

∣∣∣∣∣
2

t=0

⎞
⎠( θ

2
− sin 2θ

4

∣∣∣∣2π

θ=0

)
= 4 · 0 + 8

3
· π = 8π

3

15. F = 〈0, 0, ey+z
〉
, boundary of unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, outward-pointing normal

solution

y

x

z

O

G

A

B

C

E

F
D

We denote the faces of the cube by:

S1 = Face OABC S2 = Face DGEF S3 = Face ABGF

S4 = Face OCDE S5 = Face BCDG S6 = Face OAFE

• On S1

�1(x, y) = (x, y, 0)

and n1 = 〈0, 0, −1〉. Thus,

F (�1(x, y)) · n1 = 〈0, 0, ey
〉 · 〈0, 0, −1〉 = −ey

• On S2

�2(x, y) = (x, y, 1)

and n2 = 〈0, 0, 1〉. Thus,

F (�2(x, y)) · n2 =
〈
0, 0, ey+1

〉
· 〈0, 0, 1〉 = ey+1

• On any other surface Si , 3 ≤ i ≤ 6, we have

F (�1(x, y)) · ni = 0,

because the z-component of ni = 0 and the x, y components of F equal 0. Thus,∫∫
S

F · dS =
∫∫

S1

F · dS +
∫∫

S2

F · dS =
∫ 1

0

∫ 1

0
−ey dx dy +

∫ 1

0

∫ 1

0
ey+1 dx dy

=
∫ 1

0

∫ 1

0

(
ey+1 − ey

)
dx dy =

∫ 1

0

(
ey+1 − ey

)
dy

=
∫ 1

0
ey(e − 1) dy = (e − 1)ey

∣∣∣∣1
0

= (e − 1)2
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16. F = 〈0, 0, z2〉, G(u, v) = (u cos v, u sin v, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π , upward-pointing normal

solution For this parametrization it holds that (see Example 3 in Section 17.4):

Tu × Tv = 〈sin v, − cos v, u〉

Since u ≥ 0, the upward pointing normal is,

n = 〈sin v, − cos v, u〉

We express F in terms of the parameters and then compute F · n we get:

F (�(u, v)) =
〈
0, 0, z2

〉
=
〈
0, 0, v2

〉
F (�(u, v)) · n(u, v) =

〈
0, 0, v2

〉
· 〈sin v, − cos v, u〉 = v2u

The surface integral is equal to the following double integral:

∫∫
S

F · dS =
∫∫

D
F (�(u, v)) · n(u, v) du dv =

∫ 2π

0

∫ 1

0
v2u du dv =

(∫ 2π

0
v2 dv

)(∫ 1

0
u du

)

=
(

v3

3

∣∣∣∣2π

v=0

)(
u2

2

∣∣∣∣1
u=0

)
= 8π3

3
· 1

2
= 4π3

3

17. F = 〈y, z, 0〉, G(u, v) = (u3 − v, u + v, v2), 0 ≤ u ≤ 2, 0 ≤ v ≤ 3, downward-pointing normal

solution

Step 1. Compute the tangent and normal vectors. We have,

Tu = ∂�

∂u
= ∂

∂u

(
u3 − v, u + v, v2

)
=
〈
3u2, 1, 0

〉

Tv = ∂�

∂v
= ∂

∂v

(
u3 − v, u + v, v2

)
= 〈−1, 1, 2v〉

Tu × Tv =
∣∣∣∣∣∣

i j k
3u2 1 0
−1 1 2v

∣∣∣∣∣∣ = (2v)i −
(

6u2v
)

j +
(

3u2 + 1
)

k =
〈
2v, −6u2v, 3u2 + 1

〉

Since the normal is pointing downward, the z-coordinate is negative, hence,

n =
〈
−2v, 6u2v, −3u2 − 1

〉

Step 2. Evaluate the dot product F · n. We first express F in terms of the parameters:

F (�(u, v)) = 〈y, z, 0〉 =
〈
u + v, v2, 0

〉

We compute the dot product:

F (�(u, v)) · n(u, v) =
〈
u + v, v2, 0

〉
·
〈
−2v, 6u2v, −3u2 − 1

〉

= −2v(u + v) + 6u2v · v2 + 0 = −2vu − 2v2 + 6u2v3

Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral:

∫∫
S

F · dS =
∫∫

D
F (�(u, v)) · n(u, v) du dv =

∫ 3

0

∫ 2

0

(
−2uv − 2v2 + 6u2v3

)
du dv

=
∫ 3

0
−u2v − 2v2u + 2u3v3

∣∣∣∣2
u=0

dv =
∫ 3

0

(
16v3 − 4v2 − 4v

)
dv = 4v4 − 4

3
v3 − 2v2

∣∣∣∣3
0

= 270
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18. Let S be the oriented half-cylinder in Figure 15. In (a)–(f), determine whether
∫∫

S
F · dS is positive,

negative, or zero. Explain your reasoning.

(a) F = i (b) F = j
(c) F = k (d) F = yi
(e) F = −yj (f) F = xj

y

x

n

z

FIGURE 15

solution

y

x

n

3

1

z

−1

S is parametrized by:

�(θ, z) = (cos θ, sin θ, z), 0 ≤ z ≤ 3, −π

2
≤ θ ≤ π

2

Hence,

Tθ = ∂�

∂θ
= 〈− sin θ, cos θ, 0〉

Tz = ∂�

∂z
= 〈0, 0, 1〉

Tθ × Tz =
∣∣∣∣∣∣

i j k
− sin θ cos θ 0

0 0 1

∣∣∣∣∣∣ = (cos θ)i + (sin θ)j = 〈cos θ, sin θ, 0〉

The normal to S is pointing in the outward direction, hence the x-coordinate of n is positive. Since −π
2 ≤ θ ≤ π

2 , we
have cos θ ≥ 0, hence,

n = 〈cos θ, sin θ, 0〉
(a) Since F · n = 〈1, 0, 0〉 · 〈cos θ, sin θ, 0〉 = cos θ , and −π

2 ≤ θ ≤ π
2 , we have F · n ≥ 0 therefore:∫∫

S
F · dS > 0.

(b) We compute the dot product:

F · n = 〈0, 1, 0〉 · 〈cos θ, sin θ, 0〉 = sin θ

The part of the surface integral for −π
2 ≤ θ ≤ 0 is canceled by the part for 0 ≤ θ ≤ π

2 , therefore the surface integral is
zero.
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(c) The normal vector n is horizontal at each point on S, therefore it is orthogonal to the field F = k. We conclude that
the surface integral is zero.
(d) We compute the dot product:

F · n = 〈y, 0, 0〉 · 〈cos θ, sin θ, 0〉 = 〈sin θ, 0, 0〉 · 〈cos θ, sin θ, 0〉 = sin θ cos θ

The surface integral over the part of S where −π
2 ≤ θ ≤ 0 is canceled by the integral over the part where 0 ≤ θ ≤ π

2 ,
hence the surface integral over S is zero.
(e) We have,

F · n = 〈0, −y, 0〉 · 〈cos θ, sin θ, 0〉 = 〈0, − sin θ, 0〉 · 〈cos θ, sin θ, 0〉 = − sin2 θ ≤ 0

Since the dot product is nonpositive, the surface integral is negative.
(f) We compute the dot product:

F · n = 〈0, x, 0〉 · 〈cos θ, sin θ, 0〉 = 〈0, cos θ, 0〉 · 〈cos θ, sin θ, 0〉 = cos θ sin θ

The surface integral is zero by the same reasoning given in part (d).

19. Let er = 〈x/r, y/r, z/r〉 be the unit radial vector, where r =
√

x2 + y2 + z2. Calculate the integral of F = e−rer
over:

(a) The upper hemisphere of x2 + y2 + z2 = 9, outward-pointing normal.
(b) The octant x ≥ 0, y ≥ 0, z ≥ 0 of the unit sphere centered at the origin.

solution
(a) We parametrize the upper-hemisphere by,

� : x = 3 cos θ sin φ, y = 3 sin θ sin φ, z = 3 cos φ

with the parameter domain:

D =
{
(θ, φ) : 0 ≤ θ < 2π, 0 ≤ φ <

π

2

}
The outward pointing normal is (see Eq. (4) in sec. 17.4):

n = 9 sin φer

We compute the dot product F · n on the sphere. On the sphere r = 3, hence,

F · n = e−r er · n = e−3er · 9 sin φ er = 9e−3 sin φ er · er = 9 e−3 sin φ

We obtain the following integral:∫∫
S

F · dS =
∫∫

D
(F · n) dφ dθ =

∫ 2π

0

∫ π/2

0
9e−3 sin φ dφ dθ

= 18πe−3
∫ π/2

0
sin φ dφ = 18πe−3

(
− cos φ

∣∣∣∣π/2

0

)
= 18πe−3

(b) We parametrize the first octant of the sphere by,

� : x = cos θ sin φ, y = sin θ sin φ, z = cos φ

with the parameter domain:

D =
{
(θ, φ) : 0 ≤ θ <

π

2
, 0 ≤ φ <

π

2

}
The outward pointing normal is (as seen above):

n = 1 sin φer

We compute the dot product F · n on the sphere. On the sphere r = 1, hence,

F · n = e−r er · n = e−1er · sin φ er = e−1 sin φ er · er = e−1 sin φ

We obtain the following integral:∫∫
S

F · dS =
∫∫

D
(F · n) dφ dθ =

∫ π/2

0

∫ π/2

0
e−1 sin φ dφ dθ

= π

2
e−1

∫ π/2

0
sin φ dφ = π

2
e−1

(
− cos φ

∣∣∣∣π/2

0

)
= π

2
e−1



April 19, 2011

1202 C H A P T E R 16 LINE AND SURFACE INTEGRALS (LT CHAPTER 17)

20. Show that the flux of F = er

r2
through a sphere centered at the origin does not depend on the radius of the sphere.

solution We parametrize the sphere of radius R centered at the origin by,

� : x = R cos θ sin φ, y = R sin θ sin φ, z = R cos φ, 0 ≤ θ < 2π, 0 ≤ φ ≤ π

The outward pointing normal is (See Eq. (4) in sec. 17.4):

n = R2 sin φ er

We compute the product F · n on the sphere. On the sphere r = R, therefore we get:

F · n = er

r2
· R2 sin φ er = er

R2
· R2 sin φer = (sin φ)er · er = sin φ

hence, ∫∫
S

F · dS =
∫∫

D
(F · n) dφ dθ =

∫ 2π

0

∫ π

0
(sin φ)dφ dθ

= 2π

∫ π

0
sin φ dφ = 2π

(− cos φ
∣∣π
0

) = 4π

We see that the surface integral of F does not depend on the radius R of the sphere.

21. The electric field due to a point charge located at the origin in R3 is E = k
er

r2
, where r =

√
x2 + y2 + z2 and k is a

constant. Calculate the flux of E through the disk D of radius 2 parallel to the xy-plane with center (0, 0, 3).

solution Let r =
√

x2 + y2 + z2 and r̂ =
√

x2 + y2. We parametrize the disc by:

�(r̂, θ) = (r̂ cos θ, r̂ sin θ, 3)

Tr̂ = ∂�

∂r̂
= 〈cos θ, sin θ, 0〉

Tθ = ∂�

∂θ
= 〈−r̂ sin θ, r̂ cos θ, 0

〉

n = Tr̂ × Tθ =
∣∣∣∣∣∣

i j k
cos θ sin θ 0

−r̂ sin θ r̂ cos θ 0

∣∣∣∣∣∣ =
〈
0, 0, r̂

〉

Now,

E · n = k
er

r2
· 〈0, 0, r̂

〉 = kr̂

r3
〈x, y, z〉 · 〈0, 0, 1〉 = zkr̂

r3

Since on the disk z = 3, we get:

E · n = 3k
r̂

r3
and r =

√
r̂2 + 9

so E · n = 3k r̂(√
r̂2+9

)3 .

∫∫
D

E · dS =
∫ 2π

0

∫ 2

0

3kr̂

(r̂2 + 9)3/2
dr̂ dθ = 6πk

∫ 2

0

r̂

(r̂2 + 9)3/2
dr̂

Substituting u = r̂2 + 9 and 1
2 du = r̂ dr̂ , we get:

∫∫
D

E · dS = 3πk

∫ 13

9

du

u3/2
= −6πku−1/2

∣∣∣∣13

9
=
(

2 − 6√
13

)
πk

22. Let S be the ellipsoid
(x

4

)2 +
(y

3

)2 +
( z

2

)2 = 1. Calculate the flux of F = zi over the portion of S where x, y, z ≤ 0

with upward-pointing normal. Hint: Parametrize S using a modified form of spherical coordinates (θ, φ).

solution We parametrize the ellipsoid by a modified form of spherical coordinates. That is,

�(θ, φ) = (4 cos θ sin φ, 3 sin θ sin φ, 2 cos φ)

with the parameter domain

D =
{
(θ, φ) : π ≤ θ <

3π

2
,
π

2
≤ φ < π

}
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−4

−3

x

y

D

One can easily verify that �(u, v) satisfies the equation of the ellipsoid.

Step 1. Compute the tangent and normal vectors. We have,

Tθ = ∂�

∂θ
= 〈−4 sin θ sin φ, 3 cos θ sin φ, 0〉

Tφ = ∂�

∂φ
= 〈4 cos θ cos φ, 3 sin θ cos φ, −2 sin φ〉

Tθ × Tφ =
∣∣∣∣∣∣

i j k
−4 sin θ sin φ 3 cos θ sin φ 0
4 cos θ cos φ 3 sin θ cos φ −2 sin φ

∣∣∣∣∣∣
=
(
−6 cos θ sin2 φ

)
i −
(

8 sin θ sin2 φ
)

j −
(

12 sin2 θ cos φ sin φ + 12 cos2 θ cos φ sin φ
)

k

=
〈
−6 cos θ sin2 φ, −8 sin θ sin2 φ, −12 cos φ sin φ

〉
In D, π

2 ≤ φ < π hence −12 cos φ sin φ ≥ 0. This is the upward pointing normal on this portion of the ellipse since the
z-coordinate is positive. Therefore,

n =
〈
−6 cos θ sin2 φ, −8 sin θ sin2 φ, −12 cos φ sin φ

〉
= −2 sin φ 〈3 cos θ sin φ, 4 sin θ sin φ, 6 cos φ〉

Step 2. Compute the dot product F · n. We first express F in terms of the parameters:

F (�(θ, φ)) = 〈z, 0, 0〉 = 〈2 cos φ, 0, 0〉
Hence,

F (�(θ, φ)) · n(θ, φ) = −2 sin φ(6 cos θ sin φ cos φ)

= −4 sin2 φ(3 cos θ cos φ)

Step 3. Calculate the surface integral. The surface integral is equal to the following double integral:

∫∫
S

F · dS =
∫∫

D
F (�(θ, φ)) · n(θ, φ) dφ dθ = −

∫ 3π/2

π

∫ π

π/2

(
12 sin2 φ cos φ cos θ

)
dφ dθ

= −
(∫ 3π/2

π
12 cos θ dθ

)(∫ π

π/2
sin2 φ cos φ dφ

)

= −
(

12 sin θ

∣∣∣∣3π/2

θ=π

)(
sin3 φ

3

∣∣∣∣π
φ=π/2

)

= 12 ·
(

−1

3

)
= −4

23. Let v = zk be the velocity field (in meters per second) of a fluid in R3. Calculate the flow rate (in cubic meters per
second) through the upper hemisphere (z ≥ 0) of the sphere x2 + y2 + z2 = 1.

solution We use the spherical coordinates:

x = cos θ sin φ, y = sin θ sin φ, z = cos φ

with the parameter domain

0 ≤ θ < 2π, 0 ≤ φ ≤ π

2
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The normal vector is (see Eq. (4) in Section 17.4):

n = Tφ × Tθ = sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉
We express the function in terms of the parameters:

v = 〈0, 0, z〉 = 〈0, 0, cos φ〉
Hence,

v · n = 〈0, 0, cos φ〉 · sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉 = sin φ cos2 φ

The flow rate of the fluid through the upper hemisphere S is equal to the flux of the velocity vector through S. That is,

∫∫
S

v · dS =
∫ π

2

0

∫ 2π

0
sin φ cos2 φ dθ dφ

=
∫ 2π

0
dθ ·

∫ π
2

0
sin φ cos2 φ dφ = 2π · − cos3 φ

3

∣∣∣∣
π
2

0

= 2π

3
m3/s

24. Calculate the flow rate of a fluid with velocity field v = 〈
x, y, x2y

〉
(in m/s) through the portion of the ellipse(x

2

)2 +
(y

3

)2 = 1 in the xy-plane, where x, y ≥ 0, oriented with the normal in the positive z-direction.

solution We use the following parametrization for the surface (see remark at the end of the solution):

� : x = 2r cos θ, y = 3r sin θ, z = 0

0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 1 (1)

3
2

z

y

x

n

Step 1. Compute the tangent and normal vectors. We have,

Tr = ∂�

∂r
= ∂

∂r
(2r cos θ, 3r sin θ, 0) = 〈2 cos θ, 3 sin θ, 0〉

Tθ = ∂�

∂θ
= ∂

∂θ
(2r cos θ, 3r sin θ, 0) = 〈−2r sin θ, 3r cos θ, 0〉

Tr × Tθ =
∣∣∣∣∣∣

i j k
2 cos θ 3 sin θ 0

−2r sin θ 3r cos θ 0

∣∣∣∣∣∣ =
(

6r cos2 θ + 6r sin2θ
)

k = 6rk

Since the normal points to the positive z-direction, the normal vector is,

n = 6rk = 〈0, 0, 6r〉
Step 2. Compute the dot product v · n. We write the velocity vector in terms of the parameters:

v =
〈
x, y, x2y

〉
=
〈
2r cos θ, 3r sin θ, 4r2 cos2 θ · 3r sin θ

〉
=
〈
2r cos θ, 3r sin θ, 12r3 cos2 θ sin θ

〉
Hence,

v · n = 12r3 cos2 θ sin θ · 6r = 72r4 cos2 θ sin θ
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Step 3. Compute the flux. The flow rate of the fluid is the flux of the velocity vector through S. That is,

∫∫
S

v · dS =
∫ π/2

0

∫ 1

0
72r4cos2θ sin θ dr dθ =

(∫ 1

0
72r4 dr

)(∫ π/2

0
cos2 θ sin θ dθ

)

=
(

72

5
r5
∣∣∣∣1
0

)(
− cos3 θ

3

∣∣∣∣π/2

θ=0

)
= 72

5
·
(

0 + 1

3

)
= 24

5
= 4.8 ft3/s

Remark: We explain why (1) parametrizes the given portion of the ellipse. At any point (x, y) which satisfies (1) we have,(x

2

)2 +
(y

3

)3 = r2 cos2 θ + r2sin2θ = r2 ≤ 1

Therefore (x, y) is inside the ellipse
(
x
2

)2 + ( y2 )2 = 1. The limits of θ determine the part of the region inside the ellipse
in the first quadrant.

In Exercises 25–26, let T be the triangular region with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1) oriented with upward-
pointing normal vector (Figure 16). Assume distances are in meters.

v = 2k

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

z

y

x

FIGURE 16

25. A fluid flows with constant velocity field v = 2k (m/s). Calculate:

(a) The flow rate through T
(b) The flow rate through the projection of T onto the xy-plane [the triangle with vertices (0, 0, 0), (1, 0, 0), and (0, 1, 0)]

solution

x

y

T
(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

z

y

x (1, 0, 0)(0, 0, 0)

(0, 1, 0)

D

The equation of the plane through the three vertices is x + y + z = 1, hence the upward pointing normal vector is:

n = 〈1, 1, 1〉
and the unit normal is:

en =
〈

1√
3
,

1√
3
,

1√
3

〉

We compute the dot product v · en:

v · en = 〈0, 0, 2〉 ·
〈

1√
3
,

1√
3
,

1√
3

〉
= 2√

3

The flow rate through T is equal to the flux of v through T . That is,∫∫
S

v · dS =
∫∫

S
(v · en) dS =

∫∫
S

2√
3

dS = 2√
3

∫∫
S

1 dS = 2√
3

· Area(S)

The area of the equilateral triangle T is

(√
2
)2·√3

4 =
√

3
2 . Therefore,

∫∫
S

v · dS = 2√
3

·
√

3

2
= 1
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Let D denote the projection of T onto the xy-plane. Then the upward pointing normal is n = 〈0, 0, 1〉. We compute the
dot product v · n:

v · n = 〈0, 0, 2〉 · 〈0, 0, 1〉 = 2

The flow rate through D is equal to the flux of v through D. That is,∫∫
D

v · dS =
∫∫

D
(v · n) dS =

∫∫
D

2 dS = 2
∫∫

D
1 dS = 2 · Area(D) = 2 · 1 · 1

2
= 1

26. Calculate the flow rate through T if v = −j m/s.

solution We compute the flow rate through T . Since the unit normal vector is en =
〈

1√
3
, 1√

3
, 1√

3

〉
we have,

v · en = 〈0, −1, 0〉 ·
〈

1√
3
,

1√
3
,

1√
3

〉
= −1√

3

Therefore, the flow rate through T is the following flux:

∫∫
S

v · dS =
∫∫

S
(v · en) dS =

∫∫
S

−1√
3

dS = −Area(S)/
√

3 = −
√

3

2

1√
3

= −1

2

The upward pointing normal to the projection D of T onto the xy-plane is n = 〈0, 0, 1〉. Since v = 〈0, −1, 0〉 is orthogonal
to n, the flux of v through D is zero.

27. Prove that if S is the part of a graph z = g(x, y) lying over a domain D in the xy-plane, then∫∫
S

F · dS =
∫∫

D

(
−F1

∂g

∂x
− F2

∂g

∂y
+ F3

)
dx dy

solution

Step 1. Find a parametrization. We parametrize the surface by

�(x, y) = (x, y, g(x, y)) , (x, y) ∈ D

Step 2. Compute the tangent and normal vectors. We have,

Tx = ∂�

∂x
= ∂

∂x
(x, y, g(x, y)) =

〈
1, 0,

∂g

∂x

〉

Ty = ∂�

∂y
= ∂

∂y
(x, y, g(x, y)) =

〈
0, 1,

∂g

∂y

〉

n = Tx × Ty =

∣∣∣∣∣∣∣
i j k
1 0 ∂g

∂x

0 1 ∂g
∂y

∣∣∣∣∣∣∣ = − ∂g

∂x
i − ∂g

∂x
j + k =

〈
− ∂g

∂x
, −∂g

∂y
, 1

〉

Step 3. Evaluate the dot product F · n.

F · n = 〈F1, F2, F3〉 ·
〈
− ∂g

∂x
, −∂g

∂y
, 1

〉
= −F1

∂g

∂x
− F2

∂g

∂y
+ F3

Step 4. Evaluate the surface integral. The surface integral is equal to the following double integral:∫∫
S

F · dS =
∫∫

D
(F · n) dx dy =

∫∫
D

(
−F1

∂g

∂x
− F2

∂g

∂y
+ F3

)
dx dy

In Exercises 28–29, a varying current i(t) flows through a long straight wire in the xy-plane as in Example 5. The current

produces a magnetic field B whose magnitude at a distance r from the wire is B = μ0i

2πr
T, where μ0 = 4π · 10−7 T-m/A.

Furthermore, B points into the page at points P in the xy-plane.

28. Assume that i(t) = t (12 − t) A (t in seconds). Calculate the flux �(t), at time t , of B through a rectangle of
dimensions L × H = 3 × 2 m whose top and bottom edges are parallel to the wire and whose bottom edge is located
d = 0.5 m above the wire, similar to Figure 13(B). Then use Faraday’s Law to determine the voltage drop around the
rectangular loop (the boundary of the rectangle) at time t .
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solution

x

y

Wire

0.5 m

H = 2 m

L = 3 m

Rectangle R

Loop C

P = (x, y)

We choose the coordinate system as shown in the figure. Therefore the rectangle R is the region:

R = {(x, y) : 0 ≤ x ≤ 3, 0.5 ≤ y ≤ 2.5}
Since the magnetic field points into the page and R is oriented with normal vector pointing out of the page (as in Example
5) we have B = −‖B‖k and n = en = k. Hence:

B · n = ‖B‖ (−k) · k = −‖B‖ = − μ0i

2πr

The distance from P = (x, y) in R to the wire is r = y, hence, B · n = − μ0i
2πy

. We now compute the flux �(t) of B
through the rectangle R, by evaluating the following double integral:

�(t) =
∫∫

R
B · dS =

∫∫
R

B · n dy dx =
∫ 3

0

∫ 2.5

0.5
− μ0i

2πy
dy dx = −μ0i

2π

∫ 3

0

∫ 2.5

0.5

1

y
dy dx

= −3μ0i

2π

∫ 2.5

0.5

dy

y
= −3μ0i

2π
(ln 2.5 − ln 0.5) = −3μ0i

2π
ln

2.5

0.5

= −3 · 4π · 10−7 ln 5

2π
t(12 − t) = −9.65 × 10−7t (12 − t) T/m2

We now use Faraday’s Law to determine the voltage drop around the boundary C of the rectangle. By Faraday’s Law,
the voltage drop around C, when C is oriented according to the orientation of R and the Right Hand Rule (that is,
counterclockwise) is,∫

C
E · dS = −d�

dt
= − d

dt

(
−9.65 · 10−7t (12 − t)

)
= 9.65 · 10−7 · 2(6 − t) = 1.93 · 10−6(6 − t) volts

R
C

29. Assume that i = 10e−0.1t A (t in seconds). Calculate the flux �(t), at time t , of B through the isosceles triangle of
base 12 cm and height 6 cm whose bottom edge is 3 cm from the wire, as in Figure 17. Assume the triangle is oriented
with normal vector pointing out of the page. Use Faraday’s Law to determine the voltage drop around the triangular loop
(the boundary of the triangle) at time t .

Volt meter

Triangular wire

B

B
P

i

r

3

12

6

B

FIGURE 17

solution The magnetic field is B = −μ0i
2πr

k and the unit normal on the triangle points out of the page, hence n = en = k.

−6
x

y

P = (x, y)

R

i

Triangular
wire

Loop C

6

3

9
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Also, the distance from a point P = (x, y) in R to the wire is r = y. Hence:

B · n = −μ0i

2πy
k · k = −μ0i

2πy

The flux �(t) of B through R is the following integral:

�(t) =
∫∫

R
B · n dx dy = −μ0i

2π

∫∫
R

1

y
dx dy

y

y = 9 − x

3

6

(6, 3)

9

x

0 ≤ x ≤ 9 − y

Using symmetry we have:

�(t) = −μ0i

π

∫ 9

3

∫ 9−y

0

1

y
dx dy = −μ0i

π

∫ 9

3

x

y

∣∣∣∣9−y

x=0
dy = −μ0i

π

∫ 9

3

9 − y

y
dy

= −μ0i

π

∫ 9

3

(
9

y
− 1

)
dy = −μ0i

π

(
9 ln y − y

∣∣∣∣9
y=3

)
= −μ0i

π
((9 ln 9 − 9) − (9 ln 3 − 3))

= −μ0i

π
(9 ln 3 − 6) = −4π · 10−7

π
(9 ln 3 − 6)i = −1.56 · 10−6i = −1.56 · 10−5 · e−0.1t

Using Faraday’s Law, the voltage drop around the triangular loop C (oriented counterclockwise):∫
C

E · dS = −dφ

dt
= − d

dt

(
−1.56 · 10−5 · e−0.1t

)
= −1.56 · 10−6 · e−0.1t Volts

Further Insights and Challenges
30. A point mass m is located at the origin. Let Q be the flux of the gravitational field F = −Gm

er

r2
through the cylinder

x2 + y2 = R2 for a ≤ z ≤ b, including the top and bottom (Figure 18). Show that Q = −4πGm if a < 0 < b (m lies
inside the cylinder) and Q = 0 if 0 < a < b (m lies outside the cylinder).

z

y

x

b R

a

m

FIGURE 18

solution Let the surface be oriented with normal vector pointing outward.

zn

n

n
y

x

b R

a

m
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We denote by S1, S2 and S3 the cylinder, the top and the bottom respectively. These surfaces are parametrized by:

• S1:

�1(θ, z) = (R cos θ, R sin θ, z), 0 ≤ θ < 2π, a ≤ z ≤ b, n = R 〈cos θ, sin θ, 0〉
• S2:

�2(θ, r) = (r cos θ, r sin θ, b), 0 ≤ θ < 2π, 0 ≤ r ≤ R, n = 〈0, 0, r〉
• S3:

�3(θ, r) = (r cos θ, r sin θ, a), 0 ≤ θ < 2π, 0 ≤ r ≤ R, n = 〈0, 0, −r〉
Using properties of integrals we have,

Q =
∫∫

S
F · dS =

∫∫
S1

F · dS +
∫∫

S2

F · dS +
∫∫

S3

F · dS (1)

Let us assume that a < 0. We compute the integrals over each part of the surface S separately.

• S1: On S1, we have:

F (�1(θ, z)) = −Gm
er

r2
= − Gm(

R2 + z2
)3/2

〈R cos θ, R sin θ, z〉

Hence,

F (�1(θ, z)) · n(θ, z) = − Gm(
R2 + z2

)3/2
〈R cos θ, R sin θ, z〉 · R 〈cos θ, sin θ, 0〉 = − GmR2(

R2 + z2
)3/2

We obtain the following integral:∫∫
S1

F · dS =
∫ 2π

0

∫ b

a
− GmR2(

R2 + z2
)3/2

dz dθ = −2πGmR2
∫ b

a

dz(
R2 + z2

)3/2

We compute the integral using the substitution z = R tan t . This gives:

∫∫
S1

F · dS = −2πGmR2
∫ tan−1 b

R

tan−1 a
R

cos t

R2
dt = −2πGm sin t

∣∣∣∣tan−1 b
R

t=tan−1 a
R

= −2πGm

(
b√

b2 + R2
− a√

a2 + R2

)
(2)

a
R

b

sin (tan−1 ) =b
R

b

b2 + R2

b2 + R2

• S2:

F (�2(θ, r)) = −Gm
er

r2
= − Gm(

r2 + b2
)3/2

〈r cos θ, r sin θ, b〉

Hence,

F (�2(θ, r)) · n(θ, r) = − Gm(
r2 + b2

)3/2
〈r cos θ, r sin θ, b〉 · 〈0, 0, r〉 = − Gmbr(

r2 + b2
)3/2

We obtain the following integral:∫∫
S2

F · dS =
∫ 2π

0

∫ R

0
− Gmbr(

r2 + b2
)3/2

dr dθ = −2πGmb

∫ R

0

r dr(
r2 + b2

)3/2
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We compute the integral using the substitution t = r2 + b2, dt = 2r dr , and we get:

∫∫
S2

F · dS = −πGmb

∫ R2+b2

b2

dt

t3/2
= 2πGmb

1√
t

∣∣∣∣R
2+b2

t=b2
= 2πGmb

(
1√

b2 + R2
− 1

b

)
(3)

• S3:

F (�3(θ, r)) = −Gm
er

r2
= − Gm(

r2 + a2
)3/2

〈r cos θ, r sin θ, a〉

F (�3(θ, r)) · n(θ, r) = − Gm(
r2 + a2

)3/2
〈r cos θ, r sin θ, a〉 · 〈0, 0, −r〉 = Gmar(

r2 + a2
)3/2

Hence, by the same computation as for S2 we get (notice that since a < 0, we have
√

a2 = −a):

∫∫
S3

F · dS =
∫ 2π

0

∫ R

0

Gmar(
r2 + a2

)3/2
dr dθ = −2πGma

1√
t

∣∣∣∣R
2+a2

t=a2

= −2πGma

(
1√

R2 + a2
− 1√

a2

)
= −2πGma

(
1√

R2 + a2
+ 1

a

)
(4)

Substituting (2), (3), and (4) in (1) we get:

Q = −2πGm

(
b√

b2 + R2
− a√

a2 + R2

)
+ 2πGmb

(
1√

b2 + R2
− 1

b

)
− 2πGma

(
1√

R2 + a2
+ 1

a

)

= −2πGm − 2πGm = −4πGm

If 0 < a < b the only difference is in the integral in (4). In this case
√

a = a therefore,

∫∫
S3

F · dS = −2πGma

(
1√

R2 + a2
− 1√

a2

)
= −2πGma

(
1√

R2 + a2
− 1

a

)
.

Therefore, adding the integrals gives:

Q = −2πGm

(
b√

b2 + R2
− a√

a2 + R2

)
+ 2πGmb

(
1√

b2 + R2
− 1

b

)
− 2πGma

(
1√

R2 + a2
− 1

a

)

= −2πGm + 2πGm = 0

In Exercises 31 and 32, let S be the surface with parametrization

G(u, v) =
((

1 + v cos
u

2

)
cos u,

(
1 + v cos

u

2

)
sin u, v sin

u

2

)

for 0 ≤ u ≤ 2π , − 1
2 ≤ v ≤ 1

2 .

31. Use a computer algebra system.

(a) Plot S and confirm visually that S is a Möbius strip.

(b) The intersection of S with the xy-plane is the unit circle G(u, 0) = (cos u, sin u, 0). Verify that the normal vector
along this circle is

n(u, 0) =
〈
cos u sin

u

2
, sin u sin

u

2
, − cos

u

2

〉

(c) As u varies from 0 to 2π , the point G(u, 0) moves once around the unit circle, beginning and ending at G(0, 0) =
G(2π, 0) = (1, 0, 0). Verify that n(u, 0) is a unit vector that varies continuously but that n(2π, 0) = −n(0, 0). This shows
that S is not orientable—that is, it is not possible to choose a nonzero normal vector at each point on S in a continuously
varying manner (if it were possible, the unit normal vector would return to itself rather than to its negative when carried
around the circle).
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solution
(a) We use a computer algebra system to graph the plot of S, and it is indeed a Möbius strip.
(b) To find the normal vector along the unit circle, we use our computer to first find the cross product ∂n

∂u
× ∂n

∂v
and

simplify, we get the very ugly expression

n(u, v) = ∂n
∂u

× ∂n
∂v

=
〈

1

2

(
−v cos

(u

2

)
+ 2 cos u + v cos

(
3u

2

))
sin
(u

2

)
,

1

4

(
v + 2 cos

(u

2

)
+ 2v cos(u) − 2 cos

(
3u

2

)
− v cos(2u)

)
,

− cos
(u

2

) (
1 + v cos

(u

2

))〉
(Different computer algebra systems may produce different simplifications.) When we replace v with 0 and simplify, we
find that:

n(u, 0) =
〈
cos u sin

u

2
,

1

2

(
cos

u

2
− cos

3u

2

)
, − cos

u

2

〉

This is almost, but not quite, what we want. Let’s examine that middle term a bit more.

1

2

(
cos

u

2
− cos

3u

2

)
= 1

2

(
cos

u

2
− (cos u cos

u

2
− sin u sin

u

2
)
)

= 1

2

(
cos

u

2
(1 − cos u) + sin u sin

u

2

)

= 1

2

(
cos

u

2
· 2 sin2 u

2
+ sin u sin

u

2

)
= 1

2
sin

u

2

(
2 sin

u

2
cos

u

2
+ sin u

)

= 1

2
sin

u

2
(sin u + sin u) = sin u sin

u

2

which is what we expect. Thus, we see that

n(u, 0) =
〈
cos u sin

u

2
, sin u sin

u

2
, − cos

u

2

〉
(c) To verify that n(u, 0) is a unit vector, we note that

‖n(u, 0)‖ =
√(

cos u sin
u

2

)2 +
(

sin u sin
u

2

)2 +
(

cos
u

2

)2

=
√

cos2 u sin2 u

2
+ sin2 u sin2 u

2
+ cos2 u

2
=
√

sin2 u

2
+ cos2 u

2
= √

1 = 1

It is clear that n(u, 0) varies continuously with u, as each of its three components are non-constant continuous functions
of u. Finally, we note that n(0, 0) = 〈0, 0, −1〉 but n(2π, 0) = 〈0, 0, 1〉, so indeed n(2π, 0) = −n(0, 0).

32. We cannot integrate vector fields over S because S is not orientable, but it is possible to integrate functions
over S. Using a computer algebra system:

(a) Verify that

‖n(u, v)‖2 = 1 + 3

4
v2 + 2v cos

u

2
+ 1

2
v2 cos u

(b) Compute the surface area of S to four decimal places.

(c) Compute
∫∫

S
(x2 + y2 + z2) dS to four decimal places.

solution
(a) Using a CAS, we discover that

n(u, v) = ∂n
∂u

× ∂n
∂v

=
〈

1

2

(
−v cos

(u

2

)
+ 2 cos u + v cos

(
3u

2

))
sin
(u

2

)
,

1

4

(
v + 2 cos(u/2) + 2v cos(u) − 2 cos

(
3u

2

)
− v cos(2u)

)
,

− cos
(u

2

) (
1 + v cos

(u

2

))〉
and after taking the norm of this, we find that

‖n(u, v)‖2 = 1 + 3

4
v2 + 2v cos

u

2
+ 1

2
v2 cos u
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(b) We calculate the area of S as follows:

A(S) =
∫ ∫

‖n(u, v)‖ du dv =
∫ 1/2

−1/2

∫ 2π

0

√
1 + 3

4
v2 + 2v cos

u

2
+ 1

2
v2 cos u du dv ≈ 6.3533

(c) We proceed as follows. Since

x2 + y2 + z2 =
((

1 + v cos
u

2

)
cos u

)2 +
((

1 + v cos
u

2

)
sin u

)2 +
(
v sin

u

2

)2

and

‖n(u, v)‖ =
√

1 + 3

4
v2 + 2v cos

u

2
+ 1

2
v2 cos u

then, substituting these expressions into the double integral
∫∫

S (x2 + y2 + z2) dS = ∫∫S (x2 + y2 + z2)‖n(u, v)‖ du dv,

and integrating over 0 ≤ u ≤ 2π , − 1
2 ≤ v ≤ 1

2 , we find that

∫∫
S

(x2 + y2 + z2) dS ≈ 7.4003

CHAPTER REVIEW EXERCISES

1. Compute the vector assigned to the point P = (−3, 5) by the vector field:

(a) F = 〈xy, y − x〉
(b) F = 〈4, 8〉
(c) F = 〈3x+y, log2(x + y)

〉
solution

(a) Substituting x = −3, y = 5 in F = 〈xy, y − x〉 we obtain:

F = 〈−3 · 5, 5 − (−3)〉 = 〈−15, 8〉

(b) The constant vector field F = 〈4, 8〉 assigns the vector 〈4, 8〉 to all the vectors. Thus:

F(−3, 5) = 〈4, 8〉

(c) Substituting x = −3, y = 5 in F = 〈3x+y, log2(x + y)
〉

we obtain

F =
〈
3−3+5, log2(−3 + 5)

〉
=
〈
32, log2(2)

〉
= 〈9, 1〉

2. Find a vector field F in the plane such that ‖F(x, y)‖ = 1 and F(x, y) is orthogonal to G(x, y) = 〈x, y〉 for all x, y.

solution The vector field 〈y, −x〉 is orthogonal to G(x, y) = 〈x, y〉 since the dot product of the two vectors is zero.

〈y, −x〉 · 〈x, y〉 = yx − xy = 0

We now normalize the vector 〈y, −x〉 to obtain a unit vector orthogonal to G:

F(x, y) = 〈y, −x〉
‖ 〈y, −x〉 ‖ = 〈y, −x〉√

y2 + (−x)2
=
〈

y√
x2 + y2

,
−x√

x2 + y2

〉

However, this is only for (x, y) �= (0, 0)! We can assign any unit vector for F(0, 0), as since G(0, 0) = 〈0, 0〉, then
anything is perpendicular to G(0, 0). So, let’s define F to be as above for (x, y) �= (0, 0), and let’s define F(0, 0) to be,
say, 〈1, 0〉. Now we have a vector field F such that F(x, y) is always a unit vector and always perpendicular to G(x, y).

In Exercises 3–6, sketch the vector field.

3. F(x, y) = 〈y, 1〉
solution Notice that the vector field is constant along horizontal lines.
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F = 〈y, 1〉

y

x

4. F(x, y) = 〈4, 1〉
solution F is the constant field 〈4, 1〉 shown in the figure.

F = 〈4, 1〉 

y

x

5. ∇V , where V (x, y) = x2 − y

solution The gradient of V (x, y) = x2 − y is the following vector:

F(x, y) =
〈
∂V

∂x
,
∂V

∂y

〉
= 〈2x, −1〉

This vector is sketched in the following figure:

∇j  = 〈2x, −1〉

y

x

6. F(x, y) =
〈

4y√
x2 + 4y2

,
−x√

x2 + 16y2

〉

Hint: Show that F is a unit vector field tangent to the family of ellipses x2 + 4y2 = c2.

solution First, F is a unit vector since:

‖F(x, y)‖2 =
(

4y√
x2 + 16y2

)2

+
(

−x√
x2 + 16y2

)2

= 16y2

x2 + 16y2
+ x2

x2 + 16y2

= 16y2 + x2

x2 + 16y2
= 1 ⇒ ‖F(x, y)‖ = 1

Next, we show that F is tangent to the ellipses x2 + 4y2 = c2. We find dy
dx

using implicit differentiation of x2 + 4y2 = c2:

2x + 8y
dy

dx
= 0 ⇒ dy

dx
= − x

4y

Therefore the vector 〈4y, −x〉 is tangent to the ellipses. Since F(x, y) is a scalar multiple of this vector, i.e, F(x, y) =
1√

x2+16y2
〈4y, −x〉, F is parallel to 〈4y, −x〉 hence F is tangent to the ellipses x2 + 4y2 = c2. We find that F can be

sketched by first sketching ellipses in the family x2 + 4y2 = c2, and then sketching the unit tangents at points on the
ellipses. The field F(x, y) is shown in the figure:



April 19, 2011

1214 C H A P T E R 16 LINE AND SURFACE INTEGRALS (LT CHAPTER 17)

In Exercises 7–15, determine whether the vector field is conservative, and if so, find a potential function.

7. F(x, y) = 〈x2y, y2x
〉

solution If F is conservative, the cross partials must be equal. We compute the cross partials:

∂F1

∂y
= ∂

∂y

(
x2y
)

= x2

∂F2

∂x
= ∂

∂x

(
y2x
)

= y2

Since the cross-partials are not equal, F is not conservative.

8. F(x, y) = 〈4x3y5, 5x4y4〉
solution

∂F1

∂y
= ∂

∂y

(
4x3y5

)
= 20x3y4

∂F2

∂x
= ∂

∂x

(
5x4y4

)
= 20x3y4

Since the cross partials are equal F is conservative.

F1 = ∂V

∂x
= 4x3y5

⇒ V =
∫

4x3y5 dx = x4y5 + h(y)

F2 = ∂

∂y
(x4y5 + h(y)) = 5x4y4 + h′(y) = 5x4y4

⇒ h′(y) = 0 ⇒ h(y) = c

We may choose the constant c = 0, giving us the potential function,

V (x, y) = x4y5

9. F(x, y, z) = 〈sin x, ey, z
〉

solution We examine the cross partials of F. Since F1 = sin x, F2 = ey , F3 = z we have:

∂F1

∂y
= 0

∂F2

∂z
= 0

∂F3

∂x
= 0

∂F2

∂x
= 0

∂F3

∂y
= 0

∂F1

∂z
= 0

⇒ ∂F1

∂y
= ∂F2

∂x
,

∂F2

∂z
= ∂F3

∂y
,

∂F3

∂x
= ∂F1

∂z

Since the cross partials are equal, F is conservative. We denote the potential field by V (x, y, z). So we have:

Vx = sin x Vy = ey Vz = z

By integrating we get:

V (x, y, z) =
∫

sin x dx = − cos x + C(y, z)

Vy = Cy = ey ⇒ C(y, z) = ey + D(z)

V (x, y, z) = − cos x + ey + D(z)

Vz = Dz = z ⇒ D(z) = z2

2
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We conclude that V (x, y, z) = − cos x + ey + z2

2 . Indeed:

∇V =
〈
∂V

∂x
,
∂V

∂y
,
∂V

∂z

〉
= 〈sin x, ey, z

〉 = F

10. F(x, y, z) = 〈2, 4, ez
〉

solution We examine the cross partials of F. We have, F1 = 2, F2 = 4, F3 = ez hence:

∂F1

∂y
= 0

∂F2

∂x
= 0

⇒ ∂F1

∂y
= ∂F2

∂x

∂F2

∂z
= 0

∂F3

∂y
= 0

⇒ ∂F2

∂z
= ∂F3

∂y

∂F3

∂x
= 0

∂F1

∂z
= 0

⇒ ∂F3

∂x
= ∂F1

∂z

Since the cross-partials are equal, F is conservative. We denote the potential field by V (x, y, z). We have:

Vx = 2 Vy = 4 Vz = ez

By integrating we get:

V (x, y, z) =
∫

2 dx = 2x + C(y, z)

Vy = Cy = 4 ⇒ C(y, z) = 4y + D(z)

V (x, y, z) = 2x + 4y + D(z)

Vz = Dz = ez ⇒ D = ez

We conclude that V (x, y, z) = 2x + 4y + ez. We verify:

∇V =
〈
∂V

∂x
,
∂V

∂y
,
∂V

∂z

〉
= 〈2, 4, ez

〉 = F

11. F(x, y, z) = 〈xyz, 1
2x2z, 2z2y

〉
solution No. We show that the cross partials for x and z are not equal. Since the equality of the cross partials is a
necessary condition for a field to be a gradient vector field, we conclude that F is not a gradient field. We have:

∂F1

∂z
= ∂

∂z
(xyz) = xy

∂F3

∂x
= ∂

∂x
(2z2y) = 0

⇒ ∂F1

∂z
�= ∂F3

∂x

Therefore the cross partials condition is not satisfied, hence F is not a gradient vector field.

12. F(x, y) = 〈y4x3, x4y3〉
solution YES. We examine the cross-partials of F:

∂F1

∂y
= ∂

∂y

(
y4x3

)
= 4y3x3

∂F2

∂x
= ∂

∂x

(
y4x3

)
= 4y3x3

Since the cross-partials are equal, F is conservative. We compute the potential function V (x, y) of F.

Step 1. Use the condition ∂V
∂x

= F1. Since V is an antiderivative of F1 = y4x3 when y is fixed, we have:

V (x, y) =
∫

y4x3 dx = y4 · x4

4
+ g(y) (1)
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Step 2. Use the condition ∂V
∂y

= F2. Differentiating V with respect to y gives:

4y3 · x4

4
+ g′(y) = F2 = x4y4

y3x4 + g′(y) = x4y3

g′(y) = 0 ⇒ g(y) = c

Substituting in (1) gives:

V (x, y) = 1

4
x4y4 + c

Choosing c = 0, we obtain one of the potential functions, which is V (x, y) = 1
4x4y4.

13. F(x, y, z) =
〈

y

1 + x2
, tan−1 x, 2z

〉
solution We examine the cross partials of F. Since F1 = y

1+x2 , F2 = tan−1 x, F3 = 2z we have:

∂F1

∂y
= 1

1 + x2

∂F2

∂x
= 1

1 + x2

⇒ ∂F1

∂y
= ∂F2

∂x

∂F2

∂z
= 0

∂F3

∂y
= 0

⇒ ∂F2

∂z
= ∂F3

∂y

∂F3

∂x
= 0

∂F1

∂z
= 0

⇒ ∂F3

∂x
= ∂F1

∂z

Since the cross partials are equal, F is conservative. We denote the potential function by V (x, y, z). We have:

Vx = y

1 + x2
, Vy = tan−1(x), Vz = 2z

By integrating we get:

V (x, y, z) =
∫

y

1 + x2
dx = y tan−1(x) + c(y, z)

Vy = tan−1(x) + cy(y, z) = tan−1(x) ⇒ cy(y, z) = 0 ⇒ c(y, z) = c(z)

Hence V (x, y, z) = y tan−1(x) + c(z). Vz = c′(z) = 2z ⇒ c(z) = z2. We conclude that V (x, y, z) = y tan−1(x) + z2.
Indeed:

∇V =
〈
∂V

∂x
,
∂V

∂y
,
∂V

∂z

〉
=
〈

y

1 + x2
, tan−1 x, 2z

〉
= F

14. F(x, y, z) =
〈

2xy

x2 + z
, ln(x2 + z),

y

x2 + z

〉
solution

∂F1

∂y
= ∂

∂y

(
2xy

x2 + z

)
= 2x

x2 + z

∂F2

∂x
= ∂

∂x

(
ln(x2 + z)

)
= 2x

x2 + z

∂F1

∂z
= ∂

∂z

(
2xy

x2 + z

)
= −2xy

(x2 + z)2

∂F3

∂x
= ∂

∂x

(
y

x2 + z

)
= −2xy

(x2 + z)2

∂F3

∂y
= ∂

∂y

(
y

x2 + z

)
= 1

x2 + z

∂F2

∂z
= ∂

∂z

(
ln(x2 + z)

)
= 1

x2 + z
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Since the cross partials are equal F is conservative.

F1 = ∂V

∂x
= 2xy

x2 + z

⇒ V =
∫

2xy

x2 + z
dx = y ln(x2 + z) + g(y, z)

F2 = ∂

∂y
(y ln(x2 + z) + g(y, z)) = ln(x2 + z) + gy(y, z) = ln(x2 + z)

⇒ gy(y, z) = 0 ⇒ g(y, z) = h(z)

F3 = ∂

∂z
(y ln(x2 + z) + h(z)) = y

x2 + z
+ h′(z) = y

x2 + z

⇒ h(z) = 0 ⇒ h(y) = c

We may choose the constant c = 0, giving us the potential function,

V (x, y) = y ln(x2 + z)

15. F(x, y, z) = 〈xe2x, ye2z, ze2y
〉

solution We have:

∂F3

∂y
= ∂

∂y

(
ze2y

)
= 2ze2y

∂F2

∂z
= ∂

∂z

(
ye2z

)
= 2ye2y

Since ∂F3
∂y

�= ∂F2
∂z

, the cross-partials condition is not satisfied , hence F is not conservative.

16. Find a conservative vector field of the form F = 〈g(y), h(x)〉 such that F(0, 0) = 〈1, 1〉, where g(y) and h(x) are
differentiable functions. Determine all such vector fields.

solution We need to find a scalar function V (x, y) such that F = ∇V . That is:

∂V

∂x
= g(y) (1)

∂V

∂y
= h(x) (2)

Integrating (1) with respect to x, treating y as a constant, we get:

V (x, y) = xg(y) + f (y) (3)

We differentiate V (x, y) with respect to y and equate with (2). This gives:

∂V

∂y
= xg′(y) + f ′(y) = h(x)

This equation can hold only when g′(y) and f ′(y) are constants. That is, g′(y) = c1 and f ′(y) = c2, yielding g(y) =
c1y + d1 and f (y) = c2y + d2. Substituting in (3) gives:

V (x, y) = x(c1y + d1) + c2y + d2

Or

V (x, y) = d1x + c2y + c1xy + d2 ⇒ ∇V = 〈d1 + c1y, c2 + c1x〉
We conclude that F = 〈g(y), h(x)〉 are gradient vector fields if and only if g(y) = a + by and h(x) = c + bx for any
constants a, b, c. That is:

F = 〈a + by, c + bx〉
We also want that F(0, 0) = 〈1, 1〉, hence:

F(0, 0) = 〈a, c〉 = 〈1, 1〉 ⇒ a = c = 1

Therefore, all the gradient fields of the form F = 〈g(y), h(x)〉 such that F(0, 0) = 〈1, 1〉 are:

F = 〈1 + by, 1 + bx〉
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In Exercises 17–20, compute the line integral
∫
C

f (x, y) ds for the given function and path or curve.

17. f (x, y) = xy, the path c(t) = (t, 2t − 1) for 0 ≤ t ≤ 1

solution
Step 1. Compute ds = ‖c′(t)‖ dt . We differentiate c(t) = (t, 2t − 1) and compute the length of the derivative vector:

c′(t) = 〈1, 2〉 ⇒ ‖c′(t)‖ =
√

12 + 22 = √
5

Hence,

ds = ‖c′(t)‖ dt = √
5 dt

Step 2. Write out f (c(t)) and evaluate the line integral. We have:

f (c(t)) = xy = t (2t − 1) = 2t2 − t

Using the Theorem on Scalar Line Integral we have:∫
C

f (x, y) ds =
∫ 1

0
f (c(t)) ‖c′(t)‖ dt =

∫ 1

0

(
2t2 − t

)√
5 dt = √

5

(
2

3
t3 − 1

2
t2
) ∣∣∣∣1

0
= √

5

(
2

3
− 1

2

)
=

√
5

6

18. f (x, y) = x − y, the unit semicircle x2 + y2 = 1, y ≥ 0

solution

x

C

y

The semi unit circle above the x-axis is parametrized by:

c(θ) = (cos θ, sin θ), 0 ≤ θ ≤ π

Step 1. Compute ds = ‖c′(θ)‖ dθ . We have:

c′(θ) = d

dθ
〈cos θ, sin θ〉 = 〈− sin θ, cos θ〉

‖c′(θ)‖ =
√

(− sin θ)2 + cos2θ = 1

Hence:

ds = ‖c′(θ)‖ dθ = dθ

Step 2. Write out f (c(θ)) and evaluate the integral.

f (c(θ)) = x − y = cos θ − sin θ

We use the Theorem on Scalar Line Integrals to obtain:∫
C

f (x, y) ds =
∫ π

0
f (c(θ)) ‖c′(θ)‖ dt =

∫ π

0
(cos θ − sin θ) dθ

= sin θ + cos θ

∣∣∣∣π
0

= (0 − 1) − (0 + 1) = −2

19. f (x, y, z) = ex − y

2
√

2z
, the path c(t) = (ln t,

√
2t, 1

2 t2) for 1 ≤ t ≤ 2

solution
Step 1. Compute ds = ‖c′(t)‖ dt . We have:

c′(t) = d

dt

〈
ln t,

√
2t,

1

2
t2
〉

=
〈

1

t
,
√

2, t

〉

‖c′(t)‖ =
√(

1

t

)2
+
(√

2
)2 + t2 =

√
1

t2
+ 2 + t2 =

√(
1

t
+ t

)2
= 1

t
+ t
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Hence:

ds = ‖c′(t)‖ dt =
(

t + 1

t

)
dt

Step 2. Write out f (c(t)) and evaluate the integral.

f (c(t)) = ex − y

2
√

2z
= eln t −

√
2t

2
√

2 · 1
2 t2

= t − 1

t

We use the Theorem on Scalar Line Integrals to compute the line integral:∫
C

f (x, y) ds =
∫ 2

1
f (c(t)) ‖c′(t)‖ dt =

∫ 2

1

(
t − 1

t

)(
t + 1

t

)
dt

=
∫ 2

1

(
t2 − 1

t2

)
dt = t3

3
+ 1

t

∣∣∣∣∣
2

1

=
(

8

3
+ 1

2

)
−
(

1

3
+ 1

)
= 11

6

20. f (x, y, z) = x + 2y + z, the helix c(t) = (cos t, sin t, t) for −1 ≤ t ≤ 3

solution We have:

c′(t) = d

dt
〈cos t, sin t, t〉 = 〈− sin t, cos t, 1〉

‖c′(t)‖ =
√

(− sin t)2 + cos2 t + 1 = √
1 + 1 = √

2

We write out f (c(t)):

f (c(t)) = x + 2y + z = cos t + 2 sin t + t

The scalar Line Integral is the following integral:∫
C

f (x, y, z) ds =
∫ 3

−1
f (c(t)) ‖c′(t)‖ dt =

∫ 3

−1
(cos t + 2 sin t + t)

√
2 dt

= √
2

(
sin t − 2 cos t + t2

2

) ∣∣∣∣3−1

= √
2

((
sin 3 − 2 cos 3 + 9

2

)
−
(

sin(−1) − 2 cos(−1) + 1

2

))

= √
2(sin 3 − 2 cos 3 + sin 1 + 2 cos 1 + 4) ≈ 11.375

21. Find the total mass of an L-shaped rod consisting of the segments (2t, 2) and (2, 2 − 2t) for 0 ≤ t ≤ 1 (length in
centimeters) with mass density ρ(x, y) = x2y g/cm.

solution

A = (0, 2)

C = (2, 0)

B = (2, 2)

x

y

The total mass of the rod is the following sum:

M =
∫
AB

x2y ds +
∫
BC

x2y ds (1)

The segment AB is parametrized by c1(t) = (2t, 2), 0 ≤ t ≤ 1. Hence

c′
1(t) = 〈2, 0〉 , ‖c′

1(t)‖ = 2

and

f (c1(t)) = x2y = (2t)2 · 2 = 8t2.
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The segment BC is parametrized by c2(t) = (2, 2 − 2t), 0 ≤ t ≤ 1. Hence

c′
2(t) = 〈0, −2〉 , ‖c′

2(t)‖ = 2

and

f (c2(t)) = x2y = 22(2 − 2t) = 8 − 8t.

Using these values, the Theorem on Scalar Line Integrals and (1) we get:

M =
∫ 1

0
8t2 · 2 dt +

∫ 1

0
(8 − 8t) · 2 dt = 16t3

3

∣∣∣∣1
0

+ 16t − 8t2
∣∣∣∣1
0

= 40

3
= 13

1

3

22. Calculate F = ∇V , where V (x, y, z) = xyez, and compute
∫
C

F · ds, where:

(a) C is any curve from (1, 1, 0) to (3, e, −1).
(b) C is the boundary of the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 oriented counterclockwise.

solution The gradient of V (x, y, z) = xyez is the following vector:

F =
〈
∂V

∂x
,
∂V

∂y
,
∂V

∂z

〉
= 〈yez, xez, xyez

〉
(a) By the Fundamental Theorem for Gradient Vector Fields, we have:∫

C
F · ds =

∫
C

∇V · ds = V (3, e, −1) − V (1, 1, 0) = 3 · e · e−1 − 1 · 1e0 = 3 − 1 = 2

(b) Since F is the gradient of a function, F is conservative. That is, the line integral of F over any closed curve is zero.
Therefore, the line integral

∫
C F · ds is zero, where C is the boundary of a square.

23. Calculate
∫
C1

y dx + x2y dy, where C1 is the oriented curve in Figure 1(A).

x

y

3

(A)

−3
C1

x

y

3

(B)

−3 C2

FIGURE 1

solution We compute the line integral as the sum of the line integrals over the segments AO, OB and the circular
arc BA.

x
B

A

y

3

3

0

The vector field is F =
〈
y, x2y

〉
. We have:

∫
C1

F · ds =
∫
AO

F · ds +
∫
OB

F · ds +
∫

arc BA
F · ds (1)

We compute each integral separately.

• The line integral over AO. The segment AO is parametrized by c(t) = (0, −t), −3 ≤ t ≤ 0 . Hence:

F (c(t)) =
〈
y, x2y

〉
= 〈−t, 0〉

c′(t) = 〈0, −1〉
F (c(t)) · c′(t) = 〈−t, 0〉 · 〈0, −1〉 = 0

Therefore: ∫
AO

F · ds =
∫ 0

−3
F (c(t)) · c′(t) dt = 0 (2)
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• The line integral over OB. We parametrize the segment OB by c(t) = (t, 0), 0 ≤ t ≤ 3 . Hence:

F (c(t)) =
〈
y, x2y

〉
= 〈0, 0〉

c′(t) = 〈1, 0〉
F (c(t)) · c′(t) = 0

Therefore: ∫
OB

F · ds =
∫ 3

0
F (c(t)) · c′(t) dt = 0 (3)

• The line integral over the circular arc BA. We parametrize the circular arc by c(t) = (3 cos t, 3 sin t), 0 ≤ t ≤ π
2 .

Then c′(t) = 〈−3 sin t, 3 cos t〉 and F (c(t)) =
〈
y, x2y

〉
=
〈
3 sin t, 27 cos2 t sin t

〉
. We compute the dot product:

F (c(t)) · c′(t) =
〈
3 sin t, 27 cos2 t sin t

〉
· 〈−3 sin t, 3 cos t〉 = −9 sin2 t + 81 cos3 t sin t

We obtain the integral:

∫
arc BA

F · ds =
∫ π/2

0
−9 sin2 t + 81 cos3 t sin t dt

= −9

(
t

2
− sin 2t

4

)
− 81

(
cos4 t

4

) ∣∣∣∣π/2

0

= −9π

4
+ 81

4
= 81 − 9π

4

Combining (1), (2), (3), and (4) gives:∫
C1

F · ds = 0 + 0 + 81 − 9π

4
≈ 13.18

24. Let F(x, y) = 〈9y − y3, e
√

y(x2 − 3x)
〉

and let C2 be the oriented curve in Figure 1(B).

(a) Show that F is not conservative.

(b) Show that
∫
C2

F · ds = 0 without explicitly computing the integral. Hint: Show that F is orthogonal to the edges

along the square.

solution

(a) We show that the cross-partials of F(x, y) =
〈
9y − y3, e

√
y
(
x2 − 3x

)〉
are not equal.

C2

x

y

0

C = (0, 3) B = (3, 3)

A = (3, 0)

We have F1 = 9y − y3 and F2 = e
√

y
(
x2 − 3x

)
, therefore:

∂F1

∂y
= 9 − 3y2

∂F2

∂x
= e

√
y(2x − 3)

The cross-partials are not equal, hence F is not conservative.

(b) On OA, y = 0 hence

F = F(x, 0) =
〈
0, x2 − 3x

〉
.

Therefore the tangential component of F along the segment OA is zero, resulting in
∫
OA

F · ds = 0. On AB, x = 3 hence

F(3, y) =
〈
9y − y3, e

√
y
(

32 − 3 · 3
)〉

=
〈
9y − y3, 0

〉
.
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We see that F is orthogonal to the segment AB, resulting in
∫
AB

F · ds = 0. On BC, y = 3 hence

F(x, 3) =
〈
9 · 3 − 33, e

√
3
(
x2 − 3x

)〉
=
〈
0, e

√
3
(
x2 − 3x

)〉
.

We see that F is orthogonal to the segment BC, therefore
∫
BC

F · ds = 0. Finally, on CO we have x = 0, hence

F(0, y) =
〈
9y − y3, 0

〉
. It follows that F is orthogonal to the segment CO, therefore the tangential component of F along

CO is zero. We conclude that
∫
CO

F · ds = 0. Combining these integrals we conclude that:∫
C2

F · ds =
∫
OA

F · ds +
∫
AB

F · ds +
∫
BC

F · ds +
∫
CO

F · ds = 0 + 0 + 0 + 0 = 0

In Exercises 25–28, compute the line integral
∫

c
F · ds for the given vector field and path.

25. F(x, y) =
〈

2y

x2 + 4y2
,

x

x2 + 4y2

〉
,

the path c(t) =
(

cos t, 1
2 sin t

)
for 0 ≤ t ≤ 2π

solution
Step 1. Calculate the integrand F (c(t)) · c′(t).

c(t) =
(

cos t,
1

2
sin t

)

F (c(t)) =
〈

2y

x2 + 4y2
,

x

x2 + 4y2

〉
=
〈

2 · 1
2 · sin t

cos2 t + 4 · 1
4 sin2 t

,
cos t

cos2t + 4 · 1
4 sin2 t

〉

=
〈

sin t

cos2 t + sin2t
,

cos t

cos2 t + sin2 t

〉
= 〈sin t, cos t〉

c′(t) =
〈
− sin t,

1

2
cos t

〉

The integrand is the dot product:

F (c(t)) · c′(t) = 〈sin t, cos t〉 ·
〈
− sin t,

1

2
cos t

〉
= − sin2 t + 1

2
cos2 t = 1

2
cos 2t − 1

2
sin2 t

Step 2. Evaluate the line integral.∫
C

F · ds =
∫ 2π

0
F (c(t)) · c′(t) dt =

∫ 2π

0

(
1

2
cos 2t − 1

2
sin2 t

)
dt = sin 2t

4
− t

4
+ sin 2t

8

∣∣∣∣2π

0
= −π

2

26. F(x, y) = 〈2xy, x2 + y2〉, the part of the unit circle in the first quadrant oriented counterclockwise.

solution

C

x

y

The path is parametrized by:

c(θ) = (cos θ, sin θ), 0 ≤ θ ≤ π

2

Step 1. Calculate the integrand F (c(θ)) · c′(θ).

c′(θ) = 〈− sin θ, cos θ〉
F (c(θ)) =

〈
2xy, x2 + y2

〉
=
〈
2 cos θ sin θ, cos2 θ + sin2 θ

〉
= 〈2 cos θ sin θ, 1〉

The integrand is the dot product:

F (c(θ)) · c′(θ) = 〈2 cos θ sin θ, 1〉 · 〈− sin θ, cos θ〉 = −2 cos θ sin2 θ + cos θ
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Step 2. Evaluate the line integral. The vector line integral is:

∫
C

F · ds =
∫ π/2

0
F (c(θ)) · c′(θ) dθ =

∫ π/2

0

(
−2 cos θ sin2 θ + cos θ

)
dθ

= −2
∫ π/2

0
sin2 θ cos θ dθ +

∫ π/2

0
cos θ dθ = −2 sin3 θ

3

∣∣∣∣π/2

0
+ sin θ

∣∣∣∣π/2

0
= −2

3
+ 1 = 1

3

27. F(x, y) = 〈x2y, y2z, z2x
〉
, the path c(t) = (e−t , e−2t , e−3t

)
for 0 ≤ t < ∞

solution

Step 1. Calculate the integrand F (c(t)) · c′(t).

c(t) =
(
e−t , e−2t , e−3t

)
c′(t) =

〈
e−t , −2e−2t , −3e−3t

〉
F (c(t)) =

〈
x2y, y2z, z2x

〉
=
〈
e−2t · e−2t , e−4t · e−3t , e−6t · e−t

〉
=
〈
e−4t , e−7t , e−7t

〉

The integrand is the dot product:

F (c(t)) · c′(t) =
〈
e−4t , e−7t , e−7t

〉
·
〈
e−t , −2e−2t , −3e−3t

〉
= −e−5t − 2e−9t − 3e−10t

Step 2. Evaluate the line integral.

∫
C

F · ds =
∫ ∞

0
F (c(t)) · c′(t) dt =

∫ ∞
0

(
−e−5t − 2e−9t − 3e−10t

)
dt

= lim
R→∞

(
1

5
e−5R + 2

9
e−9R + 3

10
e−10R

)
−
(

1

5
+ 2

9
+ 3

10

)
= 0 − 13

18
= −13

18

28. F = ∇V , where V (x, y, z) = 4x2 ln(1 + y4 + z2), the path c(t) = (t3, ln(1 + t2), et
)

for 0 ≤ t ≤ 1

solution We use the Fundamental Theorem for Gradient Vector Field to write:

∫
c

∇V · ds = V (c(1)) − V (c(0)) (1)

We compute the values on the right-hand side:

c(1) =
(

13, ln
(

1 + 12
)

, e1
)

= (1, ln 2, e)

c(0) =
(

03, ln
(

1 + 02
)

, e0
)

= (0, 0, 1)

Hence:

V (c(1)) = 4 · 12 ln
(

1 + ln42 + e2
)

= 4 ln
(

1 + e2 + ln42
)

≈ 8.616

V (c(0)) = 0

Combining with (1) gives:

∫
c

∇V · ds = 8.616
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29. Consider the line integrals
∫

c
F · ds for the vector fields F and paths c in Figure 2. Which two of the line integrals

appear to have a value of zero? Which of the other two appears to have a negative value?

(C)

x

P

P
Q

Q

y

(D)

x

y

(A)

x

y

(B)

x

y

C

FIGURE 2

solution In (A), the line integral around the ellipse appears to be positive, because the negative tangential components
from the lower part of the curve appears to be smaller than the positive contribution of the tangential components from
the upper part.

In (B), the line integral around the ellipse appears to be zero, since F is orthogonal to the ellipse at all points except
for two points where the tangential components of F cancel each other.

In (C), F is orthogonal to the path, hence the tangential component is zero at all points on the curve. Therefore the line
integral

∫
C F · ds is zero.

In (D), the direction of F is opposite to the direction of the curve. Therefore the dot product F · T is negative at each
point along the curve, resulting in a negative line integral.

30. Calculate the work required to move an object from P = (1, 1, 1) to Q = (3, −4, −2) against the force field
F(x, y, z) = −12r−4 〈x, y, z〉 (distance in meters, force in newtons), where r =

√
x2 + y2 + z2. Hint: Find a potential

function for F.

solution The work performed against F is given by the line integral:

W = −
∫
PQ

F · ds (1)

We notice that F = − 12(
x2+y2+z2

)2 〈x, y, z〉 is the gradient of the function V (x, y, z) = 6
x2+y2+z2 since:

∇V =
〈
∂V

∂x
,
∂V

∂y
,
∂V

∂z

〉
=
〈

6 · (−2x)(
x2 + y2 + z2

)2 ,
6 · (−2y)(

x2 + y2 + z2
)2 ,

6 · (−2z)(
x2 + y2 + z2

)2
〉

= − 12(
x2 + y2 + z2

)2 〈x, y, z〉 = F

We now use the Fundamental Theorem for Gradient vector Field to compute the line integral (1):

W = −
∫
PQ

F · ds = −
∫
PQ

∇V · ds = − (V (Q) − V (P )) = − (V (3, −4, −2) − V (1, 1, 1))

= −
(

6

9 + 16 + 4
− 6

1 + 1 + 1

)
= 52

29
≈ 1.79

31. Find constants a, b, c such that

G(u, v) = (u + av, bu + v, 2u − c)

parametrizes the plane 3x − 4y + z = 5. Calculate Tu, Tv , and n(u, v).

solution We substitute x = u + av, y = bu + v and z = 2u − c in the equation of the plane 3x − 4y + z = 5, to
obtain:

5 = 3x − 4y + z = 3(u + av) − 4(bu + v) + 2u − c = (5 − 4b)u + (3a − 4)v − c
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or

(5 − 4b)u + (3a − 4)v − (5 + c) = 0

This equation must be satisfied for all u and v, therefore the following must hold:

5 − 4b = 0 b = 5

4

3a − 4 = 0 ⇒ a = 4

3

5 + c = 0 c = −5

We obtain the following parametrization for the plane 3x − 4y + z = 5:

φ(u, v) =
(

u + 4

3
v,

5

4
u + v, 2u + 5

)

We compute the tangent vectors Tu and Tv :

Tu = ∂φ

∂u
=
〈
1,

5

4
, 2

〉
; Tv = ∂φ

∂v
=
〈

4

3
, 1, 0

〉

The normal vector is their cross product:

n = Tu × Tv =
∣∣∣∣∣∣

i j k
1 5

4 2
4
3 1 0

∣∣∣∣∣∣ =
∣∣∣∣ 5

4 2
1 0

∣∣∣∣ i −
∣∣∣∣ 1 2

4
3 0

∣∣∣∣ j +
∣∣∣∣∣ 1 5

4
4
3 1

∣∣∣∣∣k

= −2i + 8

3
j +
(

1 − 5

3

)
k =

〈
−2,

8

3
, −2

3

〉

32. Calculate the integral of f (x, y, z) = ez over the portion of the plane x + 2y + 2z = 3, where x, y, z ≥ 0.

solution We consider the surface a graph of the form x = g(y, z) = 3 − 2y − 2z. The requirement that x ≥ 0 means

3 − 2y − 2z ≥ 0 ⇒ y + z ≤ 3
2 . Combined with the requirements that y, z ≥ 0 we have that our parameter domain, D,

is the triangle bounded by the y−axis, the z−axis, and the line y + z = 3
2 .

Calculating the magnitude of the normal vector,

�(y, z) = (3 − 2y − 2z, y, z) (x, y) ∈ D
Ty = 〈−2, 1, 0〉
Tz = 〈−2, 0, 1〉

n = 〈1, 2, 2〉 ⇒ ‖n‖ =
√

12 + 22 + 22 = 3

Our integral is

∫∫
S

f (x, y, z) dS =
∫∫

D
ez‖n‖ dz dy =

∫ 3/2

0

∫ −y+3/2

0
ez 3 dz dy

=
∫ 3/2

0

(
e−y+3/2 − 1

)
3 dy = −3e−y+3/2 − 3y

∣∣∣∣3/2

0

= −3 + 3e3/2 − 9

2
= 3e3/2 − 15

2
≈ 5.945

33. Let S be the surface parametrized by

G(u, v) =
(

2u sin
v

2
, 2u cos

v

2
, 3v
)

for 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2π .

(a) Calculate the tangent vectors Tu and Tv and the normal vector n(u, v) at P = G(1, π
3 ).

(b) Find the equation of the tangent plane at P .

(c) Compute the surface area of S.
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solution
(a) The tangent vectors are the partial derivatives:

Tu = ∂G

∂u
= ∂

∂u

〈
2u sin

v

2
, 2u cos

v

2
, 3v
〉
=
〈
2 sin

v

2
, 2 cos

v

2
, 0
〉

Tv = ∂G

∂v
= ∂

∂v

〈
2u sin

v

2
, 2u cos

v

2
, 3v
〉
=
〈
u cos

v

2
, −u sin

v

2
, 3
〉

The normal vector is their cross-product:

n = Tu × Tv =
∣∣∣∣∣∣

i j k
2 sin v

2 2 cos v
2 0

u cos v
2 −u sin v

2 3

∣∣∣∣∣∣ =
∣∣∣∣ 2 cos v

2 0
−u sin v

2 3

∣∣∣∣ i −
∣∣∣∣ 2 sin v

2 0
u cos v

2 3

∣∣∣∣ j +
∣∣∣∣ 2 sin v

2 2 cos v
2

u cos v
2 −u sin v

2

∣∣∣∣k
=
(

6 cos
v

2

)
i −
(

6 sin
v

2

)
j +
(
−2u sin2 v

2
− 2u cos2 v

2

)
k

=
(

6 cos
v

2

)
i −
(

6 sin
v

2

)
j − 2uk =

〈
6 cos

v

2
, −6 sin

v

2
, −2u

〉
At the point P = G

(
1, π

3

)
, u = 1 and v = π

3 . The tangents and the normal vector at this point are,

Tu

(
1,

π

3

)
=
〈
2 sin

π

6
, 2 cos

π

6
, 0
〉
=
〈
1,

√
3, 0
〉

Tv

(
1,

π

3

)
=
〈
1 · cos

π

6
, −1 · sin

π

6
, 3
〉
=
〈√

3

2
, −1

2
, 3

〉

n
(

1,
π

3

)
=
〈
6 cos

π

6
, −6 sin

π

6
, −2 · 1

〉
=
〈
3
√

3, −3, −2
〉

(b) A normal to the plane is n
(
1, π

3

) =
〈
3
√

3, −3, −2
〉

found in part (a). We find the tangency point:

P = φ
(

1,
π

3

)
=
(

2 · 1 sin
π

6
, 2 · 1 cos

π

6
, 3 · π

3

)
=
(

1,
√

3, π
)

The equation of the tangent plane is, thus,〈
x − 1, y − √

3, z − π
〉
·
〈
3
√

3, −3, −2
〉
= 0

or

3
√

3(x − 1) − 3
(
y − √

3
)

− 2(z − π) = 0

3
√

3x − 3y − 2z + 2π = 0

(c) In part (a) we found the normal vector:

n =
〈
6 cos

v

2
, −6 sin

v

2
, −2u

〉
We compute the length of n:

‖n‖ =
√

36 cos2 v

2
+ 36 sin2 v

2
+ 4u2 =

√
36 + 4u2 = 2

√
9 + u2

Using the Integral for the Surface Area we get:

Area(S) =
∫∫

D
‖n(u, v)‖ du dv =

∫ 2π

0

∫ 1

0
2
√

9 + u2 du dv = 4π

∫ 1

0

√
9 + u2 du

= 4π

(
u

2

√
u2 + 9 + 9

2
ln
(
u +

√
9 + u2

) ∣∣∣∣1
u=0

)
= 4π

(
1

2

√
10 + 9

2
ln
(

1 + √
10
)

− 9

2
ln 3

)

= 2
√

10π + 18π ln
(

1 + √
10
)

− 18π ln 3 = 2
√

10π + 18π ln
1 + √

10

3
≈ 38.4

34. Plot the surface with parametrization

G(u, v) = (u + 4v, 2u − v, 5uv)

for −1 ≤ v ≤ 1, −1 ≤ u ≤ 1. Express the surface area as a double integral and use a computer algebra system to compute
the area numerically.
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solution The surface is shown in the following plot:

z

y
x

We compute the area of the surface, using the Integral for the surface Area. We find the tangent and normal vectors:

Tu = ∂φ

∂u
= ∂

∂u
〈u + 4v, 2u − v, 5uv〉 = 〈1, 2, 5v〉

Tv = ∂φ

∂v
= ∂

∂v
〈u + 4v, 2u − v, 5uv〉 = 〈4, −1, 5u〉

n = Tu × Tv =
∣∣∣∣∣∣

i j k
1 2 5v

4 −1 5u

∣∣∣∣∣∣ =
∣∣∣∣ 2 5v

−1 5u

∣∣∣∣ i −
∣∣∣∣ 1 5v

4 5u

∣∣∣∣ j +
∣∣∣∣ 1 2

4 −1

∣∣∣∣k
= (10u + 5v)i − (5u − 20v)j + (−1 − 8)k = 〈10u + 5v, −5u + 20v, −9〉

Next, we calculate the length of the normal vector:

‖n‖ =
√

(10u + 5v)2 + (−5u + 20v)2 + (−9)2

=
√

100u2 + 100uv + 25v2 + 25u2 − 200uv + 400v2 + 81

=
√

125u2 − 100uv + 425v2 + 81

We obtain the following integral, which we compute by a CAS:

Area(S) =
∫∫

D
‖n(u, v)‖ du dv =

∫ 1

−1

∫ 1

−1

√
125u2 − 100uv + 425v2 + 81 du dv = 62.911

35. Express the surface area of the surface z = 10 − x2 − y2 for −1 ≤ x ≤ 1, −3 ≤ y ≤ 3 as a double integral.
Evaluate the integral numerically using a CAS.

solution We use the Surface Integral over a graph. Let g(x, y) = 10 − x2 − y2. Then gx = −2x, gy = −2y hence√
1 + gx

2 + gy
2 =

√
1 + 4x2 + 4y2. The area at the surface is the following integral which we compute using a CAS:

Area(S) =
∫∫

D

√
1 + gx

2 + gy
2 dx dy =

∫ 3

−3

∫ 1

−1

√
1 + 4x2 + 4y2 dx dy ≈ 41.8525

36. Evaluate
∫∫

S
x2y dS, where S is the surface z = √

3x + y2, −1 ≤ x ≤ 1, 0 ≤ y ≤ 1.

solution We use the Surface Integral over a Graph with g(x, y) = √
3x + y2. The partial derivatives are gx = √

3
and gy = 2y. Therefore

√
1 + g2

x + g2
y =

√
1 +

(√
3
)2 + (2y)2 =

√
4 + 4y2 = 2

√
1 + y2

We obtain the following integral:

∫∫
S

x2y · dS =
∫∫

D
x2y

√
1 + g2

x + g2
y dx dy =

∫ 1

0

∫ 1

−1
x2y · 2

√
1 + y2 dx dy =

(∫ 1

−1
x2dx

)(∫ 1

0

√
1 + y2 · 2y dy

)

=
(

x3

3

∣∣∣∣1
x=−1

)(∫ 1

0

√
1 + y2 · 2y dy

)
= 2

3

∫ 1

0

√
1 + y2 · 2y dy
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We compute the integral using the substitution u = 1 + y2, du = 2y dy. We get:

∫∫
S

x2y · dS = 2

3

∫ 2

1
u1/2du = 2

3
· 2

3
u3/2

∣∣∣∣2
1

= 4

9

(
23/2 − 1

)
= 4

9

(
2
√

2 − 1
)

37. Calculate
∫∫

S

(
x2 + y2

)
e−z dS, where S is the cylinder with equation x2 + y2 = 9 for 0 ≤ z ≤ 10.

solution We parametrize the cylinder S by,

G(θ, z) = (3 cos θ, 3 sin θ, z)

with the parameter domain:

0 ≤ θ ≤ 2π, 0 ≤ z ≤ 10.

We compute the tangent and normal vectors:

Tθ = ∂φ

∂θ
= ∂

∂θ
〈3 cos θ, 3 sin θ, z〉 = 〈−3 sin θ, 3 cos θ, 0〉

Tz = ∂φ

∂θ
= ∂

∂θ
〈3 cos θ, 3 sin θ, z〉 = 〈0, 0, 1〉

The normal vector is their cross product:

n = Tθ × Tz =
∣∣∣∣∣∣

i j k
−3 sin θ 3 cos θ 0

0 0 1

∣∣∣∣∣∣ =
∣∣∣∣ 3 cos θ 0

0 1

∣∣∣∣ i −
∣∣∣∣ −3 sin θ 0

0 1

∣∣∣∣ j +
∣∣∣∣ −3 sin θ 3 cos θ

0 0

∣∣∣∣k
= (3 cos θ)i + (3 sin θ)j = 3 〈cos θ, sin θ, 0〉

We compute the length of the normal vector:

‖n‖ = 3
√

cos2 θ + sin2 θ + 0 = 3

We now express the function f (x, y, z) =
(
x2 + y2

)
e−z in terms of the parameters:

f (φ(θ, z)) =
(
x2 + y2

)
e−z =

(
9 cos2 θ + 9 sin2 θ

)
e−z = 9e−z

Using the Theorem on Surface Integrals, we obtain:

∫∫
S

(
x2 + y2

)
e−zdS =

∫ 10

0

∫ 2π

0
9e−z3 dθ dz = 27 · 2π

∫ 10

0
e−zdz = 54π

(−e−z
) ∣∣∣∣10

z=0

= 54π
(
−e−10 + 1

)
≈ 54π

38. Let S be the upper hemisphere x2 + y2 + z2 = 1, z ≥ 0. For each of the functions (a)–(d), determine whether∫∫
S

f dS is positive, zero, or negative (without evaluating the integral). Explain your reasoning.

(a) f (x, y, z) = y3 (b) f (x, y, z) = z3

(c) f (x, y, z) = xyz (d) f (x, y, z) = z2 − 2

solution

(a) Since f (x, y, z) = y3 is an odd function of y, and the upper hemisphere is symmetric with respect to the (x, z)-plane,
the surface integrals over the parts where y ≥ 0 and y ≤ 0 cancel each other. Therefore the surface integral is zero.

(b) The function f (x, y, z) = z3 is non-negative on S, hence the surface integral is positive.

(c) Since f (−x, y, z) = −xyz = −f (x, y, z) and since the upper hemisphere is symmetric with respect to (y, z)-plane,
the surface integrals over the parts of S where x ≥ 0 and x ≤ 0 cancel each other to obtain a zero surface integral.

(d) On S we have z2 = 1 − x2 − y2 ≤ 1, hence z2 − 2 < 0. That is, f (x, y, z) = z2 − 2 is negative on S, therefore the
surface integral is negative.
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39. Let S be a small patch of surface with a parametrization G(u, v) for 0 ≤ u ≤ 0.1, 0 ≤ v ≤ 0.1 such that the normal
vector n(u, v) for (u, v) = (0, 0) is n = 〈2, −2, 4〉. Use Eq. (3) in Section 16.4 to estimate the surface area of S.

solution

n(0, 0)

y

Φ

P = Φ(0, 0)

u
0.1(0, 0)

0.1
S

R

x

We use Eq. (3) in section 16.4 with
(
uij , vij

) = (0, 0), Rij = R = [0, 0.1] × [0, 0.1] in the (u, v)-plane and Sij = S =
G(R), in the (x, y)-plane to obtain the following estimation for the area of S:

Area(S) ≈ ‖n(0, 0)‖Area(R)

That is:

Area(S) ≈ ‖ 〈2, −2, 4〉 ‖0.12 =
√

22 + (−2)2 + 42 · (0.1)2 = 0.02
√

6 ≈ 0.049

40. The upper half of the sphere x2 + y2 + z2 = 9 has parametrization G(r, θ) = (r cos θ, r sin θ,
√

9 − r2) in cylindrical
coordinates (Figure 3).

(a) Calculate the normal vector n = Tr × Tθ at the point G
(
2, π

3

)
.

(b) Use Eq. (3) in Section 16.4 to estimate the surface area of G(R), where R is the small domain defined by

2 ≤ r ≤ 2.1,
π

3
≤ θ ≤ π

3
+ 0.05

x

y

z

3

3

3Δr Δ

P0 = (2,    )3

Φ(P0)

FIGURE 3

solution

(a) We first find the tangent vectors at the given point:

Tθ = ∂G

∂θ
= ∂

∂θ

〈
r cos θ, r sin θ,

√
9 − r2

〉
= 〈−r sin θ, r cos θ, 0〉

⇒ Tθ

(
2,

π

3

)
=
〈
−2 sin

π

3
, 2 cos

π

3
, 0
〉
=
〈
−√

3, 1, 0
〉

Tr = ∂G

∂r
= ∂

∂r

〈
r cos θ, r sin θ,

√
9 − r2

〉
=
〈

cos θ, sin θ, − r√
9 − r2

〉

⇒ Tr

(
2,

π

3

)
=
〈

cos
π

3
, sin

π

3
, − 2√

9 − 22

〉
=
〈

1

2
,

√
3

2
, − 2√

5

〉

The normal vector is the cross product:

n = Tr × Tθ =

∣∣∣∣∣∣∣
i j k
1
2

√
3

2 − 2√
5

−√
3 1 0

∣∣∣∣∣∣∣ =
2√
5

i + 2
√

3√
5

j +
(

1

2
+ 3

2

)
k =

〈
2√
5
,

2
√

3√
5

, 2

〉
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(b) We use Eq. (3) with the sample point (u, v) = (2, π
3

)
.

3

3

n (2,   )
y

Φ

P = Φ(R)

r
2

S
R

x

 + 0.05

3

2.1

In part (a) we found that the normal to G(R) at this point is n =
〈

2√
5
, 2

√
3√
5

, 2
〉
. Therefore, ‖n‖ =

√
4
5 + 12

5 + 4 = 6√
5

.

We get:

Area(G(R)) ≈
∥∥∥n
(

2,
π

3

)∥∥∥Area(R) = 6√
5

· 0.1 · 0.05 = 0.03√
5

≈ 0.0134

In Exercises 41–46, compute
∫∫

S
F · dS for the given oriented surface or parametrized surface.

41. F(x, y, z) = 〈y, x, exz
〉
, x2 + y2 = 9, x ≥ 0, y ≥ 0, −3 ≤ z ≤ 3, outward-pointing normal

solution The part of the cylinder is parametrized by:

G(θ, z) = (3 cos θ, 3 sin θ, z), 0 ≤ θ ≤ π

2
, −3 ≤ z ≤ 3

z

y

x

3 3

−3

Step 1. Compute the tangent and normal vectors.

Tθ = ∂G

∂θ
= ∂

∂θ
〈3 cos θ, 3 sin θ, z〉 = 〈−3 sin θ, 3 cos θ, 0〉

Tz = ∂G

∂z
= ∂

∂z
〈3 cos θ, 3 sin θ, z〉 = 〈0, 0, 1〉

We compute the cross product:

Tθ × Tz = ((−3 sin θ)i + (3 cos θ)j) × k = (3 sin θ)j + (3 cos θ)i = 〈3 cos θ, 3 sin θ, 0〉

The outward pointing normal is (when θ = 0, the x-component must be positive):

n = 〈3 cos θ, 3 sin θ, 0〉

Step 2. Evaluate the dot product F · n. We write F(x, y, z) = 〈
y, x, exz

〉
in terms of the parameters by substituting

x = 3 cos θ , y = 3 sin θ . We get:

F (G(θ, z)) =
〈
3 sin θ, 3 cos θ, e3z cos θ

〉
Hence:

F (G(θ, z)) · n =
〈
3 sin θ, 3 cos θ, e3z cos θ

〉
· 〈3 cos θ, 3 sin θ, 0〉

= 18 sin θ cos θ
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Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral (we use the trigono-
metric identities sin θ cos θ = sin 2θ

2 and sin2 2θ = 1
2 (1 − cos 4θ)):

∫∫
S

F · dS =
∫ π/2

0

∫ 3

−3
F (G(θ, z)) · n(θ, z) dz dθ =

∫ π/2

0

∫ 3

−3
18 sin θ cos θ dθ

= 18
∫ π/2

0

sin 2θ

2
dθ ·

∫ 3

−3
dz = −9

cos 2θ

2

∣∣∣∣π/2

0
· z

∣∣∣∣3−3

= −9

2
(−1 − 1) · (3 − (−3)) = 54

42. F(x, y, z) = 〈−y, z, −x〉, G(u, v) = (u + 3v, v − 2u, 2v + 5), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, upward-pointing normal

solution

Step 1. Compute the tangent and normal vectors.

Tu = ∂G

∂u
= ∂

∂u
〈u + 3v, v − 2u, 2v + 5〉 = 〈1, −2, 0〉

Tv = ∂G

∂v
= ∂

∂v
〈u + 3v, v − 2u, 2v + 5〉 = 〈3, 1, 2〉

Tu × Tv =
∣∣∣∣∣∣

i j k
1 −2 0
3 1 2

∣∣∣∣∣∣ =
∣∣∣∣ −2 0

1 2

∣∣∣∣ i −
∣∣∣∣ 1 0

3 2

∣∣∣∣ j +
∣∣∣∣ 1 −2

3 1

∣∣∣∣k = −4i − 2j + 7k = 〈−4, −2, 7〉

Since the normal is pointing upward, the z-component is positive. Therefore the normal vector is n = 〈−4, −2, 7〉.
Step 2. Evaluate the dot product F · n. We write F in terms of the parameters. Since x = u + 3v, y = v − 2u,

z = 2v + 5, we have:

F (G(u, v)) = 〈−y, z, −x〉 = 〈2u − v, 2v + 5, −u − 3v〉
The dot product is, thus:

F (G(u, v)) · n = 〈2u − v, 2v + 5, −u − 3v〉 · 〈−4, −2, 7〉
= −4(2u − v) − 2(2v + 5) + 7(−u − 3v) = −15u − 21v − 10

Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral:

∫∫
S

F · ds =
∫∫

D
F (G(u, v)) · n du dv =

∫ 1

0

∫ 1

0
(−15u − 21v − 10) du dv

=
∫ 1

0
−15u2

2
− 21vu − 10u

∣∣1
u=0 dv =

∫ 1

0

(
−35

2
− 21v

)
dv

= −35v

2
− 21v2

2

∣∣1
0 = −35

2
− 21

2
= −28

43. F(x, y, z) = 〈0, 0, x2 + y2〉, x2 + y2 + z2 = 4, z ≥ 0, outward-pointing normal

solution The upper hemisphere is parametrized by:

G(θ, φ) = (2 cos θ sin φ, 2 sin θ sin φ, 2 cos φ), 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

2

As seen in Section 17.4, since 0 ≤ φ ≤ π
2 then the outward-pointing normal is:

n = 4 sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉
We express F in terms of the parameters:

F (G(θ, φ)) =
〈
0, 0, x2 + y2

〉
=
〈
0, 0, 4 sin2 φ

(
cos2 θ + sin2 θ

)〉
=
〈
0, 0, 4 sin2 φ

〉
The dot product F · n is thus

F (G(θ, φ)) · n(θ, φ) = 16 sin3 φ cos φ
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We obtain the following integral:

∫∫
S

F · ds =
∫∫

D
F (G(θ, φ)) · n(θ, φ) dθ dφ

=
∫ π/2

0

∫ 2π

0
16 sin3 φ cos φ dθ dφ = 16

∫ 2π

0
dθ ·

∫ π/2

0
sin3 φ cos φ dφ

= 16 · 2π · sin4 φ

4

∣∣∣∣π/2

0
= 8π

44. F(x, y, z) = 〈z, 0, z2〉, G(u, v) = (v cosh u, v sinh u, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, upward-pointing normal

solution

Step 1. Compute the tangent and normal vectors.

Tu = ∂G

∂u
= ∂

∂u
〈v cosh(u), v sinh(u), v〉 = 〈v sinh(u), v cosh(u), 0〉

Tv = ∂G

∂v
= ∂

∂v
〈v cosh(u), v sinh(u), v〉 = 〈cosh(u), sinh(u), 1〉

Tu × Tv =
∣∣∣∣∣∣

i j k
v sinh(u) v cosh(u) 0
cosh(u) sinh(u) 1

∣∣∣∣∣∣
=
∣∣∣∣ v cosh(u) 0

sinh(u) 1

∣∣∣∣ i −
∣∣∣∣ v sinh(u) 0

cosh(u) 1

∣∣∣∣ j +
∣∣∣∣ v sinh(u) v cosh(u)

cosh(u) sinh(u)

∣∣∣∣k
= (v cosh(u)) i − (v sinh(u)) j +

(
vsinh2(u) − vcosh2(u)

)
k

= 〈v cosh(u), −v sinh(u), −v〉

Since the normal points upward, the z-component is positive. Therefore the normal vector is, (notice that v ≥ 0):

n = 〈−v cosh(u), v sinh(u), v〉

Step 2. Evaluate the dot product F · n. We write F in terms of the parameters:

F (G(u, v)) =
〈
z, 0, z2

〉
=
〈
v, 0, v2

〉
Hence:

F (G(u, v)) · n(u, v) =
〈
v, 0, v2

〉
· 〈−v cosh(u), v sinh(u), v〉 = −v2 cosh(u) + v3

Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral:

∫∫
S

F · ds =
∫∫

D
F (G(u, v)) · n du dv =

∫ 1

0

∫ 1

0

(
−v2 cosh(u) + v3

)
du dv

=
∫ 1

0

∫ 1

0
−v2 cosh(u) du dv +

∫ 1

0

∫ 1

0
v3 du dv =

(∫ 1

0
−v2 dv

)(∫ 1

0
cosh(u) du

)
+
∫ 1

0
v3 dv

=
(

−v3

3

∣∣1
v=0

)(
sinh(u)

∣∣∣∣1
u=0

)
+ v4

4

∣∣∣∣1
v=0

= −1

3
sinh(1) + 1

4
≈ −0.1417

45. F(x, y, z) = 〈0, 0, xzexy
〉
, z = xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, upward-pointing normal

solution We parametrize the surface by:

G(x, y) = (x, y, xy)

Where the parameter domain is the square:

D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
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Step 1. Compute the tangent and normal vectors.

Tx = ∂G

∂x
= ∂

∂x
〈x, y, xy〉 = 〈1, 0, y〉

Ty = ∂G

∂y
= ∂

∂y
〈x, y, xy〉 = 〈0, 1, x〉

Tx × Ty =
∣∣∣∣∣∣

i j k
1 0 y

0 1 x

∣∣∣∣∣∣ =
∣∣∣∣ 0 y

1 x

∣∣∣∣ i −
∣∣∣∣ 1 y

0 x

∣∣∣∣ j +
∣∣∣∣ 1 0

0 1

∣∣∣∣k = −yi − xj + k = 〈−y, −x, 1〉

Since the normal points upwards, the z-coordinate is positive. Therefore the normal vector is:

n = 〈−y, −x, 1〉
Step 2. Evaluate the dot product F · n. We express F in terms of x and y:

F (G(x, y)) = 〈0, 0, xzexy
〉 = 〈0, 0, x(xy)exy

〉 = 〈0, 0, x2yexy
〉

Hence:

F (G(x, y)) · n(x, y) =
〈
0, 0, x2yexy

〉
· 〈−y, −x, 1〉 = x2yexy

Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral:∫∫
S

F · ds =
∫∫

D
F (G(x, y)) · n(x, y) dx dy

=
∫ 1

0

∫ 1

0
x2yexy dy dx =

∫ 1

0
x2

(∫ 1

0
yexy dy

)
dx (1)

We evaluate the inner integral using integration by parts:

∫ 1

0
yexy dy = y

x
exy
∣∣1
y=0 −

∫ 1

0

1

x
exy dy = ex

x
− 1

x2
exy

∣∣∣∣1
y=0

= ex

x
− 1

x2

(
ex − 1

)
Substituting this integral in (1) gives:∫∫

S

F · ds =
∫ 1

0

(
xex − (ex − 1

))
dx =

∫ 1

0
xex dx −

∫ 1

0

(
ex − 1

)
dx

=
∫ 1

0
xex dx − (ex − x

) ∣∣∣∣1
0

=
∫ 1

0
xex dx − (e − 2)

Using integration by parts we have:

∫∫
S

F · dS = xex − ex

∣∣∣∣1
0

− (e − 2) = 1 − (e − 2) = 3 − e

46. F(x, y, z) = 〈0, 0, z〉, 3x2 + 2y2 + z2 = 1, z ≥ 0,
upward-pointing normal

solution We use modified spherical coordinates to parametrize the ellipsoid:

G(θ, φ) =
(

1√
3

cos θ sin φ,
1√
2

sin θ sin φ, cos φ

)

where the parameter domain is:

D =
{
(θ, φ) : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

2

}
Step 1. Compute the tangent and normal vectors.

Tθ = ∂G

∂θ
=
〈
− 1√

3
sin θ sin φ,

1√
2

cos θ sin φ, 0

〉

Tφ = ∂G

∂φ
=
〈

1√
3

cos θ cos φ,
1√
2

sin θ cos φ, − sin φ

〉
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Tθ × Tφ =

∣∣∣∣∣∣∣
i j k

− 1√
3

sin θ sin φ 1√
2

cos θ sin φ 0
1√
3

cos θ cos φ 1√
2

sin θ cos φ − sin φ

∣∣∣∣∣∣∣
=
(

− 1√
2

cos θ sin2 φ

)
i −
(

1√
3

sin θ sin2 φ

)
j −
(

1√
6

sin2 θ sin φ cos φ + 1√
6

cos2 θ sin φ cos φ

)
k

=
(

− 1√
2

cos θ sin2 φ

)
i −
(

1√
3

sin θ sin2 φ

)
j −
(

1√
6

sin φ cos φ

)
k

Since the normal points upward, the z-component is positive. For 0 ≤ φ ≤ π
2 , sin φ cos φ ≥ 0 therefore the normal vector

is:

n =
〈

1√
2

cos θ sin2 φ,
1√
3

sin θ sin2 φ,
1√
6

sin φ cos φ

〉

Step 2. Compute the dot product F · n. We have:

F (G(θ, φ)) = 〈0, 0, cos φ〉 ·
〈

1√
2

cos θ sin2 φ,
1√
3

sin θ sin2 φ,
1√
6

sin φ cos φ

〉
= 1√

6
sin φ cos2 φ

Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral:

∫∫
S

F · ds =
∫∫

D
F (G(θ, φ)) · n(θ, φ) dφ dθ =

∫ 2π

0

∫ π/2

0

1√
6

sin φ cos2 φ dφ dθ

= 2π√
6

∫ π/2

0
cos2 φ sin φ dφ = 2π√

6

(
− cos3 φ

3

∣∣∣∣
π/2

φ=0

)
= 2π√

6

(
0 + 1

3

)
= 2π

3
√

6
=

√
2

3
√

3
π

47. Calculate the total charge on the cylinder

x2 + y2 = R2, 0 ≤ z ≤ H

if the charge density in cylindrical coordinates is ρ(θ, z) = Kz2 cos2 θ , where K is a constant.

solution The total change on the surface S is
∫∫

S ρ dS. We parametrize the surface by,

G(θ, z) = (R cos θ, R sin θ, Hz)

with the parameter domain,

0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1.

We compute the tangent and normal vectors:

Tθ = ∂G

∂θ
= ∂

∂θ
〈R cos θ, R sin θ, Hz〉 = 〈−R sin θ, R cos θ, 0〉

Tz = ∂G

∂z
= ∂

∂z
〈R cos θ, R sin θ, Hz〉 = 〈0, 0, H 〉

The normal vector is their cross product:

n = Tθ × Tz =
∣∣∣∣∣∣

i j k
−R sin θ R cos θ 0

0 0 H

∣∣∣∣∣∣
=
∣∣∣∣ R cos θ 0

0 H

∣∣∣∣ i −
∣∣∣∣ −R sin θ 0

0 H

∣∣∣∣ j +
∣∣∣∣ −R sin θ R cos θ

0 0

∣∣∣∣k
= (RH cos θ)i + (RH sin θ)j = RH 〈cos θ, sin θ, 0〉

We find the length of n:

‖n‖ = RH

√
cos2 θ + sin2 θ = RH

We compute ρ (G(θ, z)):

ρ (G(θ, z)) = K(Hz)2 cos2 θ = KH 2z2cos2θ
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Using the Theorem on Surface Integrals we obtain:∫∫
S

ρ · dS =
∫∫

D
ρ (G(θ, z)) · ‖n(θ, z)‖ dz dθ =

∫ 2π

0

∫ 1

0
KH 2z2 cos2 θ · HR dz dθ

=
(∫ 1

0
KH 3Rz2dz

)(∫ 2π

0
cos2 θ dθ

)
=
(

KH 3Rz3

3

∣∣∣∣1
0

)(
θ

2
+ sin 2θ

4

∣∣∣∣2π

0

)

= KH 3R

3
· π = π

3
KH 3R

48. Find the flow rate of a fluid with velocity field v = 〈2x, y, xy〉 m/s across the part of the cylinder x2 + y2 = 9 where
x ≥ 0, y ≥ 0, and 0 ≤ z ≤ 4 (distance in meters).

solution The flow rate of a fluid with velocity field v through the part S of the cylinder is the surface integral:

3

4

3

z

y

x

∫∫
S

v · dS (1)

We parametrize S by,

G(θ, z) = (3 cos θ, 3 sin θ, z), 0 ≤ θ ≤ π

2
, 0 ≤ z ≤ 4.

2

x

y

0 ≤ θ ≤
30

3

Step 1. Compute the tangent and normal vectors.

Tθ = ∂G

∂θ
= ∂

∂θ
〈3 cos θ, 3 sin θ, z〉 = 〈−3 sin θ, 3 cos θ, 0〉 = (−3 sin θ) i + (3 cos θ)j

Tz = ∂G

∂z
= ∂

∂z
〈3 cos θ, 3 sin θ, z〉 = 〈0, 0, 1〉 = k

n = Tθ × Tz = ((−3 sin θ)i + (3 cos θ)j) × k = (3 sin θ)j + (3 cos θ)i = 〈3 cos θ, 3 sin θ, 0〉
Step 2. Compute the dot product v · n.

v (G(θ, z)) · n = 〈2 · 3 cos θ, 3 sin θ, 9 cos θ sin θ〉 · 〈3 cos θ, 3 sin θ, 0〉
= 18 cos2 θ + 9 sin2 θ = 9

(
cos2 θ + sin2 θ

)
+ 9 cos2 θ = 9 cos2 θ + 9

Step 3. Evaluate the flux of v. The flux of v in (1) is equal to the following double integral (we use the equality
cos2 θ = 1

2 + 1
2 cos 2θ ):∫∫

S
v · dS =

∫∫
D

v (G(θ, z)) · n dθ dz =
∫ 4

0

∫ π/2

0

(
9 cos2 θ + 9

)
dθ dz

= 4
∫ π/2

0

(
9 cos2 θ + 9

)
dθ = 36

∫ π/2

0

(
cos2 θ + 1

)
dθ

= 36
∫ π/2

0

(
3

2
+ 1

2
cos 2θ

)
dθ = 36

(
3

2
θ + 1

4
sin 2θ

∣∣∣∣π/2

θ=0

)
= 27π
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49. With v as in Exercise 48, calculate the flow rate across the part of the elliptic cylinder
x2

4
+ y2 = 1 where x ≥ 0, y ≥ 0,

and 0 ≤ z ≤ 4.

solution The flow rate of a fluid with velocity field v = 〈2x, y, xy〉 through the elliptic cylinder S is the surface
integral: ∫∫

S
v · dS (1)

1
2

z

y

x

To compute this integral, we parametrize S by,

G(θ, z) = (2 cos θ, sin θ, z), 0 ≤ θ ≤ π

2
, 0 ≤ z ≤ 4

x

y

0 ≤ θ ≤ π/2

Step 1. Compute the tangent and normal vectors.

Tθ = ∂G

∂θ
= ∂

∂θ
〈2 cos θ, sin θ, z〉 = 〈−2 sin θ, cos θ, 0〉

Tz = ∂G

∂z
= ∂

∂z
〈2 cos θ, sin θ, z〉 = 〈0, 0, 1〉

n = Tθ × Tz =
∣∣∣∣∣∣

i j k
−2 sin θ cos θ 0

0 0 1

∣∣∣∣∣∣ = (cos θ)i + (2 sin θ)j = 〈cos θ, 2 sin θ, 0〉

Step 2. Compute the dot product v · n

v (G(θ, z)) · n = 〈4 cos θ, sin θ, 2 cos θ sin θ〉 · 〈cos θ, 2 sin θ, 0〉 = 4 cos2 θ + 2 sin2 θ

= 2 cos2 θ + 2
(

cos2 θ + sin2 θ
)

= 2 cos2 θ + 2

Step 3. Evaluate the flux of v. The flux of v in (1) is equal to the following double integral (we use the equality
2 cos2 θ = 1 + cos 2θ in our calculation):

∫∫
S

v · dS =
∫∫

D
v (G(θ, z)) · n dθ dz =

∫ 4

0

∫ π/2

0

(
2 cos2 θ + 2

)
dθ dz

= 4
∫ π/2

0

(
2 cos2 θ + 2

)
dθ = 4

∫ π/2

0
(3 + cos 2θ) dθ = 4

(
3θ + sin 2θ

2

∣∣∣∣π/2

θ=0

)
= 6π

50. Calculate the flux of the vector field E(x, y, z) = 〈0, 0, x〉 through the part of the ellipsoid

4x2 + 9y2 + z2 = 36

where z ≥ 3, x ≥ 0, y ≥ 0. Hint: Use the parametrization

G(r, θ) = (3r cos θ, 2r sin θ, 6
√

1 − r2
)

solution The flux of the vector field E through the part S of the ellipsoid is the surface integral:∫∫
S

E · dS (1)
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We use the following parametrization for S:

G(θ, r) =
(

3r cos θ, 2r sin θ, 6
√

1 − r2
)

With the parameter domain:

D =
{

(θ, r) : 0 ≤ θ ≤ π

2
, 0 ≤ r ≤

√
3

2

}

We justify this parametrization. First, we verify that x = 3r cos θ , y = 2r sin θ and z = 6
√

1 − r2 satisfy the equation of
the ellipsoid 4x2 + 9y2 + z2 = 36.

4x2 + 9y2 + z2 = 4(3r cos θ)2 + 9(2r sin θ)2 +
(

6
√

1 − r2
)2 = 36r2 cos2 θ + 36r2 sin2 θ + 36

(
1 − r2

)
= 36r2

(
cos2 θ + sin2 θ

)
+ 36 − 36r2 = 36r2 + 36 − 36r2 = 36

Next, the part z ≥ 3 of the ellipsoid corresponds to the values of r such that 6
√

1 − r2 ≥ 3. We solve for r ≥ 0:

6
√

1 − r2 ≥ 3 ⇒
√

1 − r2 ≥ 1

2
⇒ 1 − r2 ≥ 1

4
⇒ r2 ≤ 3

4
⇒ 0 ≤ r ≤

√
3

2

Finally,

x ≥ 0, y ≥ 0 ⇒ cos θ ≥ 0, sin θ ≥ 0 ⇒ 0 ≤ θ ≤ π

2

Step 1. Compute the tangent and normal vectors.

Tθ = ∂G

∂θ
= ∂

∂θ

〈
3r cos θ, 2r sin θ, 6

√
1 − r2

〉
= 〈−3r sin θ, 2r cos θ, 0〉

Tr = ∂G

∂r
= ∂

∂r

〈
3r cos θ, 2r sin θ, 6

√
1 − r2

〉
=
〈

3 cos θ, 2 sin θ, − 6r√
1 − r2

〉

The outward pointing normal is:

n = −Tθ × Tr = ((3r sin θ)i − (2r cos θ)j) ×
(

(3 cos θ)i + (2 sin θ)j − 6r√
1 − r2

k

)

= 6r sin2 θk + 18r2 sin θ√
1 − r2

j +
(

6r cos2 θ
)

k + 12r2 cos θ√
1 − r2

i = 12r2 cos θ√
1 − r2

i + 18r2 sin θ√
1 − r2

j + 6rk

Step 2. Compute the dot product E · n.

E (G(θ, r)) · n = 〈0, 0, 3r cos θ〉 ·
〈

12r2 cos θ√
1 − r2

,
18r2 sin θ√

1 − r2
, 6r

〉
= 18r2 cos θ

Step 3. Evaluate the flux of E. The flux of E in (1) is equal to the following double integral:

∫∫
S

E · dS =
∫∫

D
E (G(θ, r)) · n dr dθ =

∫ π/2

0

∫ √
3/2

0
18r2 cos θ dr dθ

= 18
∫ π/2

0
cos θ dθ ·

∫ √
3/2

0
r2 dr = 18 sin θ

∣∣∣∣π/2

0
· r3

3

∣∣∣∣
√

3/2

0

= 9
√

3

4
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17 FUNDAMENTAL THEOREMS
OF VECTOR ANALYSIS

17.1 Green’s Theorem (LT Section 18.1)

Preliminary Questions
1. Which vector field F is being integrated in the line integral

∮
x2 dy − ey dx?

solution The line integral can be rewritten as
∮ −ey dx + x2 dy. This is the line integral of F =

〈
−ey, x2

〉
along the

curve.

2. Draw a domain in the shape of an ellipse and indicate with an arrow the boundary orientation of the boundary curve.
Do the same for the annulus (the region between two concentric circles).

solution The orientation on C is counterclockwise, meaning that the region enclosed by C lies to the left in travers-
ing C.

C

For the annulus, the inner boundary is oriented clockwise and the outer boundary is oriented counterclockwise. The region
between the circles lies to the left while traversing each circle.

3. The circulation of a conservative vector field around a closed curve is zero. Is this fact consistent with Green’s
Theorem? Explain.

solution Green’s Theorem asserts that∫
C

F · ds =
∫
C

P dx + Q dy =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA (1)

If F is conservative, the cross partials are equal, that is,

∂P

∂y
= ∂Q

∂x
⇒ ∂Q

∂x
− ∂P

∂y
= 0 (2)

Combining (1) and (2) we obtain
∫
C F · ds = 0. That is, Green’s Theorem implies that the integral of a conservative vector

field around a simple closed curve is zero.

4. Indicate which of the following vector fields possess the following property: For every simple closed curve C,
∫
C

F · ds

is equal to the area enclosed by C.

(a) F = 〈−y, 0〉 (b) F = 〈x, y〉 (c) F = 〈sin(x2), x + ey2 〉
solution By Green’s Theorem, ∫

C
F · ds =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy (1)

D

C

1238
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(a) Here, P = −y and Q = 0, hence ∂Q
∂x

− ∂P
∂y

= 0 − (−1) = 1. Therefore, by (1),

∫
C

F · ds =
∫∫

D
1 dx dy = Area(D)

(b) We have P = x and Q = y, therefore ∂Q
∂x

− ∂P
∂y

= 0 − 0 = 0. By (1) we get

∫
C

F · ds =
∫∫

D
0 dx dy = 0 �= Area(D)

(c) In this vector field we have P = sin(x2) and Q = x + ey2
. Therefore,

∂Q

∂x
− ∂P

∂y
= 1 − 0 = 1.

By (1) we obtain ∫
C

F · ds =
∫∫

D
1 dx dy = Area(D).

Exercises
1. Verify Green’s Theorem for the line integral

∮
C

xy dx + y dy, where C is the unit circle, oriented counterclockwise.

solution

Step 1. Evaluate the line integral. We use the parametrization γ (θ) = 〈cos θ, sin θ〉, 0 ≤ θ ≤ 2π of the unit circle. Then

dx = − sin θ dθ, dy = cos θ dθ

and

xy dx + y dy = cos θ sin θ(− sin θ dθ) + sin θ cos θ dθ =
(
− cos θ sin2 θ + sin θ cos θ

)
dθ

The line integral is thus

∫
C

xy dx + y dy =
∫ 2π

0

(
− cos θ sin2 θ + sin θ cos θ

)
dθ

=
∫ 2π

0
− cos θ sin2 θ dθ +

∫ 2π

0
sin θ cos θ dθ = − sin3 θ

3

∣∣∣∣2π

0
− cos 2θ

4

∣∣∣∣2π

0
= 0 (1)

x

y

C

D

Step 2. Evaluate the double integral. Since P = xy and Q = y, we have

∂Q

∂x
− ∂P

∂y
= 0 − x = −x

We compute the double integral in Green’s Theorem:∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∫∫
D

−x dx dy = −
∫∫

D
x dx dy

The integral of x over the disk D is zero, since by symmetry the positive and negative values of x cancel each other.
Therefore, ∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dx dy = 0 (2)
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Step 3. Compare. The line integral in (1) is equal to the double integral in (2), as stated in Green’s Theorem.

2. Let I =
∮
C

F · ds, where F = 〈y + sin x2, x2 + ey2 〉
and C is the circle of radius 4 centered at the origin.

(a) Which is easier, evaluating I directly or using Green’s Theorem?
(b) Evaluate I using the easier method.

solution

x

y

D

C

(a) Using the parametrization γ (θ) = 〈4 cos θ, 4 sin θ〉 for the circle, we have

dx = −4 sin θ dθ, dy = 4 cos θ dθ

and

(y + sin x2)dx + (x2 + ey2
)dy =

(
4 sin θ + sin(16 cos2 θ)

)
(−4 sin θ) dθ + (16 cos2 θ + e16 sin2 θ ) · 4 cos θ dθ

=
(
−16 sin2 θ − 4 sin θ sin(16 cos2 θ) + 64 cos3 θ + 4 cos θe16 sin2 θ

)
dθ

The line integral is thus∫
C

F · ds =
∫ 2π

0

(
−16 sin2 θ − 4 sin θ sin(16 cos2 θ) + 64 cos3 θ + 4 cos θe16 sin2 θ

)
dθ (1)

We examine the double integral in Green’s Theorem. Since P = y + sin x2 and Q = x2 + ey2
, we have

∂Q

∂x
− ∂P

∂y
= 2x − 1

The double integral is thus ∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
D

(2x − 1) dx dy (2)

Clearly, the double integral in (2) is much easier to evaluate than the line integral in (1).
(b) To evaluate the double integral in (2), we notice that by symmetry the integral of 2x over D is zero, since the positive
and negative values of x cancel each other. Hence,∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
D

(2x − 1) dx dy =
∫∫

D
2x dx dy −

∫∫
D

1 dx dy

= 0 − Area(D) = −π · 42 = −16π

In Exercises 3–10, use Green’s Theorem to evaluate the line integral. Orient the curve counterclockwise unless otherwise
indicated.

3.
∮
C

y2 dx + x2 dy, where C is the boundary of the unit square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

solution

1

1

x

y

C

D
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We have P = y2 and Q = x2, therefore

∂Q

∂x
− ∂P

∂y
= 2x − 2y

Using Green’s Theorem we obtain∫
C

y2 dx + x2 dy =
∫∫

D
∂Q

∂x
− ∂P

∂y
dA =

∫∫
D

(2x − 2y) dx dy = 2
∫∫

D
x dx dy − 2

∫∫
D

y dx dy

By symmetry, the positive and negative values of x cancel each other in the first integral, so this integral is zero. The
second double integral is zero by similar reasoning. Therefore,∫

C
y2 dx + x2 dy = 0 − 0 = 0

4.
∮
C

e2x+y dx + e−y dy, where C is the triangle with vertices (0, 0), (1, 0), and (1, 1)

solution

x

y

(1, 0)(0, 0)

(1, 1)

D
C

We have P = e2x+y and Q = e−y , hence

∂Q

∂x
− ∂P

∂y
= 0 − e2x+y = −e2x+y

x

y

y = x

0 ≤ y ≤ x

10

D

Using Green’s Theorem we get

∫
C

e2x+y dx + e−y dy =
∫∫

D
∂Q

∂x
− ∂P

∂y
dA =

∫∫
D

−e2x+y dA =
∫ 1

0

∫ x

0
−e2x+y dy dx

=
∫ 1

0
−e2x+y

∣∣∣∣x
y=0

dx =
∫ 1

0

(
−e3x + e2x

)
dx = − e3x

3
+ e2x

2

∣∣∣∣1
0

= e2

2
− e3

3
− 1

6

5.
∮
C

x2 y dx, where C is the unit circle centered at the origin

solution

x

y

C

D
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In this function P = x2y and Q = 0. Therefore,

∂Q

∂x
− ∂P

∂y
= 0 − x2 = −x2

We obtain the following integral:

I =
∫
C

x2y dx =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
D

−x2 dA

We convert the integral to polar coordinates. This gives

I =
∫ 2π

0

∫ 1

0
−r2 cos2 θ · r dr dθ =

∫ 2π

0

∫ 1

0
−r3 cos2 θ dr dθ

=
(∫ 2π

0
cos2 θ dθ

)(∫ 1

0
−r3 dr

)
=
(

θ

2
+ sin 2θ

4

∣∣∣∣2π

θ=0

)(
− r4

4

∣∣∣∣1
r=0

)
= π ·

(
−1

4

)
= −π

4

6.
∮
C

F · ds, where F = 〈
x + y, x2 − y

〉
and C is the boundary of the region enclosed by y = x2 and y = √

x for

0 ≤ x ≤ 1

solution By Green’s Theorem we have

I =
∫
C

F · ds =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

10
x

y

D

C

y = x2

y =    x

Since P = x + y and Q = x2 − y, we have

∂Q

∂x
− ∂P

∂y
= 2x − 1

Therefore,

I =
∫∫

D
(2x − 1) dA =

∫ 1

0

∫ √
x

x2
(2x − 1) dy dx =

∫ 1

0
(2x − 1)y

∣∣∣∣
√

x

y=x2
dx

=
∫ 1

0
(2x − 1)

(√
x − x2

)
dx =

∫ 1

0

(
2x3/2 − 2x3 − x1/2 + x2

)
dx

= 4

5
x5/2 − 1

2
x4 − 2

3
x3/2 + x3

3

∣∣∣∣1
0

= 4

5
− 1

2
− 2

3
+ 1

3
= − 1

30

7.
∮
C

F · ds, where F = 〈x2, x2〉 and C consists of the arcs y = x2 and y = x for 0 ≤ x ≤ 1

solution By Green’s Theorem,

I =
∫
C

F · ds =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

10
x

y

D

C

y = x2

y = x
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We have P = Q = x2, therefore

∂Q

∂x
− ∂P

∂y
= 2x − 0 = 2x

Hence,

I =
∫∫

D
2x dA =

∫ 1

0

∫ x

x2
2x dy dx =

∫ 1

0
2xy

∣∣∣∣x
y=x2

dx =
∫ 1

0
2x(x − x2) dx =

∫ 1

0
(2x2 − 2x3) dx

= 2

3
x3 − 1

2
x4
∣∣∣∣1
0

= 2

3
− 1

2
= 1

6

8.
∮
C
(ln x + y) dx − x2 dy, where C is the rectangle with vertices (1, 1), (3, 1), (1, 4), and (3, 4)

solution By Green’s Theorem,

I =
∫
C

F · ds =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

x

y

(1, 1) (3, 1)

(1, 4) (3, 4)

D

We have P = ln x + y and Q = −x2, therefore

∂Q

∂x
− ∂P

∂y
= −2x − 1

Hence,

I =
∫∫

D
(−2x − 1) dA =

∫ 3

1

∫ 4

1
(−2x − 1) dy dx =

∫ 3

1
(−2x − 1)y

∣∣∣∣4
y=1

dx =
∫ 3

1
−3(2x + 1) dx

= −3(x2 + x)

∣∣∣∣3
1

= −3(12 − 2) = −30

9. The line integral of F = 〈ex+y, ex−y
〉
along the curve (oriented clockwise) consisting of the line segments by joining

the points (0, 0), (2, 2), (4, 2), (2, 0), and back to (0, 0) (note the orientation).

solution Consider F = 〈ex+y, ex−y
〉
. Here, P = ex+y and Q = ex−y , hence

∂Q

∂x
− ∂P

∂y
= ex−y − ex+y = ex(e−y − ey).

2

x

y

x = y
x = y + 2

Using Green’s Theorem we obtain∫
C

F · ds =
∫∫

D
ex(e−y − ey) dx dy =

∫ 2

0

∫ y+2

y
ex(e−y − ey) dx dy =

∫ 2

0
ex(e−y − ey)

∣∣∣∣y+2

x=y

dy

=
∫ 2

0
(ey+2 − ey)(e−y − ey) dy =

∫ 2

0
(e2 − 1)(1 − e2y) dy = (e2 − 1)

(
y − e2y

2

) ∣∣∣∣2
y=0

= (e2 − 1)

(
2 − e4

2
−
(

−1

2

))
= (e2 − 1)(5 − e4)

2



April 20, 2011

1244 C H A P T E R 17 FUNDAMENTAL THEOREMS OF VECTOR ANALYSIS (LT CHAPTER 18)

10.
∫
C

xy dx + (x2 + x) dy, where C is the path in Figure 16

(1, 0)(−1, 0)

(0, 1)

x

y

FIGURE 16

solution

(1, 0)(−1, 0)

(0, 1)

x

y

D
C

In the given function, P = xy and Q = x2 + x. Therefore,

∂Q

∂x
− ∂P

∂y
= 2x + 1 − x = x + 1

By Green’s Theorem we obtain the following integral:∫
C

xy dx + (x2 + x) dy =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
D

(x + 1) dA =
∫∫

D
x dA +

∫∫
D

1 dA

By symmetry, the positive and negative values of x cancel each other, causing the first integral to be zero. Thus,∫
C

xy dx + (x2 + x) dy = 0 +
∫∫

D
dA = Area(D) = 2 · 1

2
= 1.

11. Let F = 〈
2xey, x + x2ey

〉
and let C be the quarter-circle path from A to B in Figure 17. Evaluate I =

∮
C

F · ds as

follows:

(a) Find a function V (x, y) such that F = G + ∇V , where G = 〈0, x〉.
(b) Show that the line integrals of G along the segments OA and OB are zero.
(c) Evaluate I . Hint: Use Green’s Theorem to show that

I = V (B) − V (A) + 4π

O

B = (0, 4)

A = (4, 0)
x

y

FIGURE 17

solution
(a) We need to find a potential function V (x, y) for the difference

F − G =
〈
2xey, x + x2ey

〉
− 〈0, x〉 =

〈
2xey, x2ey

〉
We let V (x, y) = x2ey .
(b) We use the parametrizations AO : 〈t, 0〉, 0 ≤ t ≤ 4 and OB : 〈0, t〉, 0 ≤ t ≤ 4 to evaluate the integrals of G = 〈0, x〉.
We get ∫

OA
G · ds =

∫ 4

0
〈0, t〉 · 〈1, 0〉 dt =

∫ 4

0
0 dt = 0

∫
OB

G · ds =
∫ 4

0
〈0, 0〉 · 〈0, 1〉 dt =

∫ 4

0
0 dt = 0
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O

B = (0, 4)

A = (4, 0)
x

y

(c) Since F − G = ∇V , we have∫
C
(F − G) · ds = V (B) − V (A) =

∫
C

F · ds −
∫
C

G · ds = I −
∫
C

G · ds

That is,

I = V (B) − V (A) +
∫
C

G · ds (1)

To compute the line integral on the right-hand side, we rewrite it as∫
C

G · ds =
∫
BO+OA+C

G · ds −
∫
BO

G · ds −
∫
OA

G · ds

Using part (b) we may write ∫
C

G · ds =
∫
BO+OA+C

G · ds (2)

We now use Green’s Theorem. Since G = 〈0, x〉, we have P = 0 and Q = x, hence ∂Q
∂x

− ∂P
∂y

= 1 − 0 = 1. Thus,

∫
BO+OA+C

G · ds =
∫∫

D
1 dA = Area(D) = π · 42

4
= 4π (3)

Combining (1), (2), and (3), we obtain

I = V (B) − V (A) + 4π

Since V (x, y) = x2ey , we conclude that

I = V (0, 4) − V (4, 0) + 4π = 0 − 42e0 + 4π = 4π − 16.

C

O

B = (0, 4)

A = (4, 0)
x

y

D

12. Compute the line integral of F = 〈
x3, 4x

〉
along the path from A to B in Figure 18. To save work, use Green’s

Theorem to relate this line integral to the line integral along the vertical path from B to A.

1

A = (−1, 0)

B = (−1, −1)

y

x

FIGURE 18

solution We denote by C the path from A to B, and D is the region enclosed by C and the segment BA.

1

A = (−1, 0)

−2

B = (−1, −1)

y

x

D

C
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By Green’s Theorem, we have∫
C+BA

F · ds =
∫
C

F · ds +
∫
BA

F · ds =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

or ∫
C

F · ds =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA +

∫
AB

F · ds (1)

We compute the integrals on the right-hand side. We parametrize the segment AB by 〈−1, t〉, with t from 0 to −1. We get

∫
AB

F · ds =
∫ −1

0
〈−1, −4〉 · 〈0, 1〉 dt =

∫ −1

0
−4 dt =

∫ 0

−1
4 dt = 4 (2)

Since Q = 4x and P = x3, we have ∂Q
∂x

− ∂P
∂y

= 4 − 0 = 4. Hence,

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
D

4 dA = 4
∫∫

D
1 dA = 4Area(D) = 4(1 · 3 + 1 · 1) = 16 (3)

Substituting (2) and (3) in (1), we get ∫
C

F · ds = 4 + 16 = 20

13. Evaluate I =
∫
C
(sin x + y) dx + (3x + y) dy for the nonclosed path ABCD in Figure 19. Use the method of Exer-

cise 12.

(2, 2)

(2, 4)

x

y

D = (0, 6)

A = (0, 0)

FIGURE 19

solution

C

B = (2, 2)

C = (2, 4)

x

y

D = (0, 6)

A = (0, 0)

D

Let F = 〈sin x + y, 3x + y〉, hence P = sin x + y and Q = 3x + y. We denote by C1 the closed path determined by C
and the segment DA. Then by Green’s Theorem,∫

C1

P dx + Q dy =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
D

(3 − 1) dA = 2
∫∫

D
dA = 2 Area(D) (1)

The area of D is the area of the trapezoid ABCD, that is,

Area(D) =
(
BC + AD

)
h

2
= (2 + 6) · 2

2
= 8.

x

y

h

D = (0, 6)

A = (0, 0)
B = (2, 2)

C = (2, 4)
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Combining with (1) we get ∫
C1

P dx + Q dy = 2 · 8 = 16

Using properties of line integrals, we have∫
C

P dx + Q dy +
∫
DA

P dx + Q dy = 16 (2)

We compute the line integral over DA, using the parametrization

DA : x = 0, y = t, t varies from 6 to 0.

We get ∫
DA

P dx + Q dy =
∫ 0

6
F(0, t) · d

dt
〈0, t〉 dt =

∫ 0

6
〈sin 0 + t, 3 · 0 + t〉 · 〈0, 1〉 dt

=
∫ 0

6
〈t, t〉 · 〈0, 1〉 dt =

∫ 0

6
t dt = t2

2

∣∣∣∣0
t=6

= −18

We substitute in (2) and solve for the required integral:∫
C

P dx + Q dy − 18 = 16 or
∫
C

P dx + Q dy = 34.

14. Show that if C is a simple closed curve, then ∮
C

−y dx =
∮
C

x dy

and both integrals are equal to the area enclosed by C.

solution We show that
∫
C y dx + x dy = 0 by showing that the vector field F = 〈y, x〉 is conservative. Indeed, since

P = y and Q = x, we have ∂Q
∂x

= 1 and ∂P
∂y

= 1. Therefore, the cross partials are equal and therefore F is conservative.
By the formula for the area enclosed by a simple closed curve, the area enclosed by C is

A = 1

2

∫
C

x dy − y dx = 1

2

∫
C

x dy + 1

2

∫
C

−y dx

Using the equality obtained above, we have

A = 1

2

∫
C

x dy + 1

2

∫
C

x dy =
∫
C

x dy =
∫
C

−y dx.

In Exercises 15–18, use Eq. (6) to calculate the area of the given region.

15. The circle of radius 3 centered at the origin

solution By Eq. (6), we have

A = 1

2

∫
C

x dy − y dx

We parametrize the circle by x = 3 cos θ , y = 3 sin θ , hence,

x dy − y dx = 3 cos θ · 3 cos θ dθ − 3 sin θ(−3 sin θ) dθ = (9 cos2 θ + 9 sin2 θ) dθ = 9 dθ

Therefore,

A = 1

2

∫
C

x dy − y dx = 1

2

∫ 2π

0
9 dθ = 9

2
· 2π = 9π.

16. The triangle with vertices (0, 0), (1, 0), and (1, 1)

solution We parametrize the segments by

OA : 〈t, 0〉 , t = 0 to t = 1

AB : 〈1, t〉 , t = 0 to t = 1

BO : 〈t, t〉 , t = 1 to t = 0
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x

y

O = (0, 0) A = (1, 0)

B = (1, 1)

Using Eq. (6), we obtain the following area of the triangle:

A = 1

2

∫
C

x dy − y dx = 1

2

∫
OA

〈−y, x〉 · ds + 1

2

∫
AB

〈−y, x〉 · ds + 1

2

∫
BO

〈−y, x〉 · ds

= 1

2

∫ 1

0
〈0, t〉 · 〈1, 0〉 dt + 1

2

∫ 1

0
〈−t, 1〉 · 〈0, 1〉 dt + 1

2

∫ 0

1
〈−t, t〉 · 〈1, 1〉 dt

= 1

2

∫ 1

0
0 dt + 1

2

∫ 1

0
dt + 1

2

∫ 0

1
0 dt = 1

2

∫ 1

0
dt = 1

2
· 1 = 1

2

17. The region between the x-axis and the cycloid parametrized by c(t) = (t − sin t, 1 − cos t) for 0 ≤ t ≤ 2π (Fig-
ure 20)

x

y

1

2

2

FIGURE 20 Cycloid.

solution By Eq. (6), the area is the following integral:

A = 1

2

∫
C

x dy − y dx

where C is the closed curve determined by the segment OA and the cycloid �.

x
O

y

1

Γ

A = (2  , 0)

Therefore,

A = 1

2

∫
OA

x dy − y dx + 1

2

∫
�

x dy − y dx (1)

We compute the two integrals. The segment OA is parametrized by 〈t, 0〉, t = 0 to t = 2π . Hence, x = t and y = 0.
Therefore,

x dy − y dx = t · 0 dt − 0 · dt = 0∫
OA

x dy − y dx = 0 (2)

On � we have x = t − sin t and y = 1 − cos t , therefore

x dy − y dx = (t − sin t) sin t dt − (1 − cos t)(1 − cos t) dt

= (t sin t − sin2 t − 1 + 2 cos t − cos2 t) dt = (t sin t + 2 cos t − 2) dt

Hence, ∫
�

x dy − y dx =
∫ 0

2π
(t sin t + 2 cos t − 2) dt =

∫ 2π

0
(2 − 2 cos t − t sin t) dt

= 2t − 2 sin t + t cos t − sin t

∣∣∣∣2π

0
= 2t − 3 sin t + t cos t

∣∣∣∣2π

0
= 6π (3)
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Substituting (2) and (3) in (1) we get

A = 1

2
· 0 + 1

2
· 6π = 3π.

18. The region between the graph of y = x2 and the x-axis for 0 ≤ x ≤ 2

solution The boundary of the region consists of the curve � and the segments OA and AB shown in the figure.

0

4

x

y

2 Γ

A = (2, 0)

B = (2, 4)

By Eq. (6), the area A of the region is given by,

A = 1

2

∫
OA

x dy − y dx + 1

2

∫
AB

x dy − y dx + 1

2

∫
�

x dy − y dx (1)

We compute each integral separately. We use the following parametrizations:

OA : c1(t) = (t, 0), for 0 ≤ t ≤ 2 ⇒ c′
1(t) = 〈1, 0〉

AB : c2(t) = (2, t), for 0 ≤ t ≤ 4 ⇒ c′
2(t) = 〈0, 1〉

� : c3(t) = (t, t2) for t from 2 to 0 ⇒ c′
3(t) = 〈1, 2t〉

The line integrals in (1) are thus

∫
OA

x dy − y dx =
∫
OA

〈−y, x〉 · ds =
∫ 2

0
〈0, t〉 · 〈1, 0〉 dt = 0

∫
AB

x dy − y dx =
∫
AB

〈−y, x〉 · ds =
∫ 4

0
〈−t, 2〉 · 〈0, 1〉 dt =

∫ 4

0
2 dt = 8

∫
�

x dy − y dx =
∫
�
〈−y, x〉 · ds =

∫ 0

2

〈−t2, t
〉 · 〈1, 2t〉 dt =

∫ 0

2
(−t2 + 2t2) · dt

=
∫ 2

0
−t2 dt = − t3

3

∣∣∣∣2
0

= −8

3

Substituting the integrals in (1) we obtain the following area:

A = 1

2
· 0 + 1

2
· 8 + 1

2
·
(

−8

3

)
= 8

3
.

19. Let x3 + y3 = 3xy be the folium of Descartes (Figure 21).

x

y

2

−2

2−2

FIGURE 21 Folium of Descartes.

(a) Show that the folium has a parametrization in terms of t = y/x given by

x = 3t

1 + t3
, y = 3t2

1 + t3
(−∞ < t < ∞) (t �= −1)
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(b) Show that

x dy − y dx = 9t2

(1 + t3)2
dt

Hint: By the Quotient Rule,

x2 d
(y

x

)
= x dy − y dx

(c) Find the area of the loop of the folium.

solution

(a) We show that x = 3t
1+t3 , y = 3t2

1+t3 satisfy the equation x3 + y3 − 3xy = 0 of the folium:

x3 + y3 − 3xy =
(

3t

1 + t3

)3
+
(

3t2

1 + t3

)3

− 3 · 3t

1 + t3
· 3t2

1 + t3

= 27t3 + 27t6

(1 + t3)
3

− 27t3(1 + t3)

(1 + t3)
3

=
27t3

(
1 + t3 − (1 + t3)

)
(1 + t3)

3
= 0

(1 + t3)
3

= 0

This proves that the curve parametrized by x = 3t
1+t3 , y = 3t2

1+t3 lies on the folium of Descartes. This parametrization
parametrizes the whole folium since the two equations can be solved for t in terms of x and y. That is,

x = 3t

1 + t3

y = 3t2

1 + t3

⇒ t = y

x

A glance at the graph of the folium shows that any line y = tx, with slope t , intersects the folium exactly once. Thus,
there is a one-to-one relationship between the values of t and the points on the graph.
(b) We differentiate the two sides of t = y

x with respect to t . Using the Quotient Rule gives

1 = x
dy
dt

− y dx
dt

x2

or

x
dy

dt
− y

dx

dt
= x2 =

(
3t

1 + t3

)2

This equality can be written in the form

x dy − y dx = 9t2

(1 + t3)
2

dt

(c) We use the formula for the area enclosed by a closed curve and the result of part (b) to find the required area. That is,

A = 1

2

∫
C

x dy − y dx = 1

2

∫ ∞
0

9t2

(1 + t3)
2

dt

From our earlier discussion on the parametrization of the folium, we see that the loop is traced when the parameter
t is increasing along the interval 0 ≤ t < ∞. We compute the improper integral using the substitution u = 1 + t3,
du = 3t2 dt . This gives

A = 1

2
lim

R→∞

∫ R

0

9t2

(1 + t3)
2

dt = 1

2
lim

R→∞

∫ 1+R3

1

3 du

u2
= 3

2
lim

R→∞ − 1

u

∣∣∣∣1+R3

u=1

= 3

2
lim

R→∞

(
1 − 1

1 + R3

)
= 3

2
(1 − 0) = 3

2

C

x

y

2

−2

2t = 0

t = ∞

−2
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20. Find a parametrization of the lemniscate (x2 + y2)2 = xy (see Figure 22) by using t = y/x as a parameter (see
Exercise 19). Then use Eq. (6) to find the area of one loop of the lemniscate.

x

y

0.5

−0.5

0.5

−0.5

FIGURE 22 Lemniscate.

solution We first find the parametrization of the lemniscate, determined by the parameter t = y
x . We substitute y = tx

in the equation of the lemniscate and solve for x in terms of t . This gives

(x2 + y2)
2 = (x2 + t2x2)

2 = (1 + t2)
2
x4

xy = x · tx = tx2

We obtain the equation

(1 + t2)
2
x4 = tx2

(1 + t2)
2
x2 = t

or (taking x positive)

x = t1/2

1 + t2

hence

y = tx = t3/2

1 + t2
.

We obtain the parametrization

x = t1/2

1 + t2
, y = t3/2

1 + t2
.

One loop is traced as 0 ≤ t < ∞.

x

y

t = 0
t = ∞

C

The area enclosed by one loop is given by the following line integral:

A = 1

2

∫
C

x dy − y dx (1)

In Exercise 19 we showed the relation t = y
x implies that

x dy − y dx = x2 dt

Now x = t1/2

1+t2 , hence

x dy − y dx = t

(1 + t2)
2

dt

We substitute in (1) and compute the resulting improper integral using the substitution u = 1 + t2, du = 2t dt . We get

A = 1

2

∫
C

x dy − y dx = 1

2

∫ ∞
0

t

(1 + t2)
2

dt = 1

2
lim

R→∞

∫ R

0

t dt

(1 + t2)
2

= 1

2
lim

R→∞

∫ 1+R2

1

1
2 du

u2
du

= 1

4
lim

R→∞ − 1

u

∣∣∣∣1+R2

u=1
= 1

4
lim

R→∞

(
1 − 1

1 + R2

)
= 1

4
(1 − 0) = 1

4
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21. The Centroid via Boundary Measurements The centroid (see Section 15.5) of a domain D enclosed by a simple
closed curve C is the point with coordinates (x, y) = (My/M, Mx/M), where M is the area of D and the moments are
defined by

Mx =
∫∫

D
y dA, My =

∫∫
D

x dA

Show that Mx =
∮
C

xy dy. Find a similar expression for My .

solution Consider the moment Mx = ∫∫D y dA, we know from Green’s Theorem:∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∮
C

F1dx + F2dy

So then we need

∂F2

dx
− ∂F1

∂y
= y

If we set F2 = xy and F1 = 0, then ∂F2
dx

− ∂F1
∂y

= y and

Mx =
∫∫

D
y dA =

∮
C

xy dy

Similarly, consider the moment My = ∫∫D x dA. We will now use Green’s Theorem, stated above. Here we need

∂F2

dx
− ∂F1

∂y
= x

If we set F1 = −xy and F2 = 0 then ∂F2
∂x

− ∂F1
∂y

= x and

My =
∫∫

D
x dA =

∮
C

−xy dx

22. Use the result of Exercise 21 to compute the moments of the semicircle x2 + y2 = R2, y ≥ 0 as line integrals. Verify
that the centroid is (0, 4R/(3π)).

solution Firstly, let us compute M which is the area of the semicircular region, here 1
2πR2. Then computing Mx and

My as line integrals we must first parametrize the semicircle from (1, 0) to (−1, 0) as:

r(θ) = 〈R cos θ, R sin θ〉 , 0 ≤ θ ≤ π

and the line segment from (−1, 0) to (1, 0) as:

r(t) = 〈2t − 1, 0〉 , 0 ≤ t ≤ 1

Thus we have

Mx =
∮
C

xy dy

=
∫ π

0
(R cos θ)(R sin θ)(R cos θ) dθ +

∫ 1

0
(2t − 1) · (0) · (0) dt

=
∫ π

0
R3 cos2 θ sin θ dθ

= −R3 cos3 θ

3

∣∣∣∣∣
π

0

= R3

3
+ R3

3
= 2

3
R3

and

My =
∮
C

−xy dx

=
∫ π

0
−(R cos θ)(R sin θ)(−R sin θ) dθ +

∫ 1

0
(2t − 1) · (0) · (2) dt

=
∫ π

0
R3 cos θ sin2 θ dθ

= R3 sin3 θ

3

∣∣∣∣∣
π

0

= 0
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Now to compute the coordinates of the centroid we have:

x = My

M
= 0, y = Mx

M
= 2R3/3

πR2/2
= 2R3

3
· 2

πR2
= 4R

3π

Thus the centroid is (x, y) = (0, 4R/(3π)).

23. Let CR be the circle of radius R centered at the origin. Use the general form of Green’s Theorem to determine
∮
C2

F · ds,

where F is a vector field such that
∮
C1

F · ds = 9 and
∂F2

∂x
− ∂F1

∂y
= x2 + y2 for (x, y) in the annulus 1 ≤ x2 + y2 ≤ 4.

solution We use Green’s Theorem for the annulus D between the circles C1 and C2 oriented as shown in the figure.

x

y

D

C(8)

C(3)

3 8

That is, ∫
C2

F · ds −
∫
C1

F · ds =
∫∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dx dy

Substituting the given information, we get∫
C2

F · ds − 9 =
∫∫

D
(x2 + y2) dx dy

or ∫
C2

F · ds = 9 +
∫∫

D
(x2 + y2) dx dy

We compute the double integral by converting it to polar coordinates:

∫
C2

F · ds = 9 +
∫ 2π

0

∫ 2

1
r2 · r dr dθ = 9 + 2π

∫ 2

1
r3 dr = 9 + 2π · r4

4

∣∣∣∣2
1

= 9 + 2π

(
24 − 14

4

)
= 9 + 15π

2

24. Referring to Figure 23, suppose that
∮
C2

F · ds = 12. Use Green’s Theorem to determine
∫
C1

F · ds, assuming that

∂F2

∂x
− ∂F1

∂x
= −3 in D.

3

x

y

52

D

C1

C2

FIGURE 23

solution By Green’s Theorem, ∫
C1

F · ds −
∫
C2

F · ds =
∫∫

D
curl(F) dx dy

Substituting the given information gives∫
C1

F · ds − 12 =
∫∫

D
−3 dx dy = −3

∫∫
D

1 dx dy = −3 Area(D)
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Hence, ∫
C1

F · ds − 12 = −3 Area(D) (1)

We compute the area of D as the difference between the area of the rectangle and the area of the inner disk. That is,

Area(D) = 6 · 10 − π · 22 = 60 − 4π

Substituting in (1) we get ∫
C1

F · ds = 12 − 3(60 − 4π) = 12π − 168 ≈ −130.3.

25. Referring to Figure 24, suppose that∮
C2

F · ds = 3π,

∮
C3

F · ds = 4π

Use Green’s Theorem to determine the circulation of F around C1, assuming that
∂F2

∂x
− ∂F1

∂x
= 9 on the shaded region.

C1

C3 C2

5

11

D

FIGURE 24

solution We must calculate
∫
C1

F · ds. We use Green’s Theorem for the region D between the three circles C1, C2,

and C3. Because of orientation, the line integrals
∫
−C2

F · ds = − ∫C2
F · ds and

∫
−C3

F · ds = − ∫C3
F · ds must be used

in applying Green’s Theorem. That is,∫
C1

F · ds −
∫
C2

F · ds −
∫
C3

F · ds =
∫∫

D
curl(F) dA

We substitute the given information to obtain∫
C1

F · ds − 3π − 4π =
∫∫

D
9 dA = 9

∫∫
D

1 · dA = 9 Area(D) (1)

The area of D is computed as the difference of areas of discs. That is,

Area(D) = π · 52 − π · 12 − π · 12 = 23π

We substitute in (1) and compute the desired circulation:∫
C1

F · ds − 7π = 9 · 23π

or ∫
C1

F · ds = 214π.

26. Let F be the vortex vector field

F =
〈 −y

x2 + y2
,

x

x2 + y2

〉

In Section 16.3 we verified that
∫
CR

F · ds = 2π , where CR is the circle of radius R centered at the origin. Prove that∮
C

F · ds = 2π for any simple closed curve C whose interior contains the origin (Figure 25). Hint: Apply the general form

of Green’s Theorem to the domain between C and CR , where R is so small that CR is contained in C.
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x

y

C
CR

FIGURE 25

solution Let R > 0 be sufficiently small so that the circle CR is contained in C.

x

y

C
DCR

Let D denote the region between CR and C. We apply Green’s Theorem to the region D. The curve C is oriented
counterclockwise and CR is oriented clockwise. We have∫

C
F · ds +

∫
CR

F · ds =
∫∫

D
curl(F) dA (1)

From Exercise 16.3.27 we know that
∫
CR

F · ds = −2π . Since D does not contain the origin, we have by part (a) of
Exercise 16.3.28, curl (F) = 0 on D. Substituting in (1) we obtain∫

C
F · ds − 2π =

∫∫
D

0 dA = 0

or ∫
C

F · ds = 2π.

In Exercises 27–30, refer to the Conceptual Insight that discusses the curl, defined by

curlz(F) = ∂F2

∂x
− ∂F1

∂y

27. For the vector fields (A)–(D) in Figure 26, state whether the curlz at the origin appears to be positive, negative, or
zero.

(C) (D)

(A) (B)

xx

x

y

y

x

y

y

FIGURE 26

solution The vector field (A) does not have spirals, nor is it a “shear flow.” Therefore, the curl appears to be zero.
The vector field (B) rotates in the counterclockwise direction, hence we expect the curl to be positive. The vector field
(C) rotates in a clockwise direction about the origin—we expect the curl to be negative. Finally, in the vector field (D),
the fluid flows straight toward the origin without spiraling. We expect the curl to be zero.
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28. Estimate the circulation of a vector field F around a circle of radius R = 0.1, assuming that curlz(F) takes the value
4 at the center of the circle.

solution We estimate the circulation by∫
C

F · ds ≈ curl(F)(P )Area(D) (1)

C

1
P

D

We are given that curl(F)(P ) = 4. The area of the disk of radius R = 0.1 is π · 0.12 = π/100. Substituting in (1) gives
the estimation ∫

C
F · ds ≈ 4 · π

100
= π

25

29. Estimate
∮
C

F · ds, where F =
〈
x + 0.1y2, y − 0.1x2

〉
and C encloses a small region of area 0.25 containing the

point P = (1, 1).

solution Use the following estimation:

F · ds =
∮
C

F1 dx + F2 dy ≈ curlz(F)(P ) · Area(D)

First computing curlF we have:

curlF =
∣∣∣∣∣∣

i j k
∂x ∂y ∂z

x + 0.1y2 y − 0.1x2 0

∣∣∣∣∣∣ = 〈0, 0, −0.2x − 0.2y〉

Thus curlz(F) = −0.2x − 0.2y and curlz(F)(1, 1) = −0.2 − 0.2 = −0.4. Also, we are given the area of the region is
0.25. Hence, we see: ∮

F · ds ≈ (−0.4)(0.25) = −0.10

30. Let F be the velocity field. Estimate the circulation of F around a circle of radius R = 0.05 with center P , assuming
that curlz(F)(P ) = −3. In which direction would a small paddle placed at P rotate? How fast would it rotate (in radians
per second) if F is expressed in meters per second?

solution We use the following estimation:∫
C

F · ds ≈ curl(F)(P )Area(D) (1)

C

0.05
P

D

We are given that curl(F)(P ) = −3. Also, the area of the disk of radius R = 0.05 is π · 0.052 = 0.0025π . Therefore, we
obtain the following estimation: ∫

C
F · ds ≈ −3 · 0.0025π ≈ −0.024.

Since the curl is negative, the paddle would rotate in the clockwise direction. Using the formula |curl(F)| = 2ω, we see
that the angular speed is ω = 1.5 radians per second.
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31. Let CR be the circle of radius R centered at the origin. Use Green’s Theorem to find the value of R that maximizes∮
CR

y3 dx + x dy.

solution Using Green’s Theorem we can write:∮
CR

y3 dx + x dy =
∫∫

D
∂F2

∂x
− ∂F1

∂y
dA

=
∫∫

D
1 − 3y2 dA

Then we have the following, using polar coordinates:∮
CR

y3 dx + x dy =
∫∫

D
∂F2

∂x
− ∂F1

∂y
dA

=
∫∫

D
1 − 3y2 dA

=
∫ 2π

0

∫ R

0
(1 − 3r2 sin2 θ)(r) dr dθ

=
∫ 2π

0

∫ R

0
r − 3r3 sin2 θ dr dθ

=
∫ 2π

0

1

2
r2 − 3

4
r4 sin2 θ

∣∣∣∣R
0

dθ

=
∫ 2π

0

1

2
R2 − 3

8
R4(1 − cos 2θ) dr dθ

=
∫ 2π

0

3R4

8
(cos 2θ) + 1

2
R2 − 3

8
R4 dθ

= 3R4

16
sin 2θ +

(
1

2
R2 − 3

8
R4
)

θ

∣∣∣∣∣
2π

0

= 0 + 2π

(
1

2
R2 − 3

8
R4
)

= π

(
R2 − 3

4
R4
)

Now to maximize this quantity, we need to let f (R) = π(R2 − 3/4R4) and take the first derivative.

f ′(R) = π(2R − 3R3) = 0 ⇒ R = 0, ±√2/3

This quantity is maximized when R = ±
√

2
3 (that is, R = 0 is a minimum).

32. Area of a Polygon Green’s Theorem leads to a convenient formula for the area of a polygon.

(a) Let C be the line segment joining (x1, y1) to (x2, y2). Show that

1

2

∫
C

−y dx + x dy = 1

2
(x1y2 − x2y1)

(b) Prove that the area of the polygon with vertices (x1, y1), (x2, y2), . . . , (xn, yn) is equal [where we set (xn+1, yn+1) =
(x1, y1)] to

1

2

n∑
i=1

(xiyi+1 − xi+1yi)

solution
(a) We parametrize the segment from (x1, y1) to (x2, y2) by

x = tx2 + (1 − t)x1, y = ty2 + (1 − t)y1, 0 ≤ t ≤ 1

Then, dx = (x2 − x1) dt and dy = (y2 − y1) dt . Therefore,

−y dx + x dy = (−ty2 − (1 − t)y1) (x2 − x1) dt + (tx2 + (1 − t)x1) (y2 − y1) dt

= (−ty2x2 + ty2x1 − y1x2(1 − t) + (1 − t)y1x1 + tx2y2 − tx2y1 + (1 − t)x1y2 − (1 − t)x1y1) dt

= (x1y2 − x2y1) dt
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We obtain the following integral:

1

2

∫
C

−y dx + x dy = 1

2

∫ 1

0
(x1y2 − x2y1) dt = 1

2
(x1y2 − x2y1)t

∣∣∣∣1
t=0

= 1

2
(x1y2 − x2y1)

A1 = (x1, y1)

A2 = (x2, y2)

An − 1 = (xn − 1, yn − 1)
An  = (xn , yn)

(b) Let Ai = (xi , yi), i = 1, 2, . . . , n, and let C be the closed curve determined by the polygon. By the formula for the
area enclosed by a simple closed curve, the area of the polygon is

A = 1

2

∫
C

−y dx + x dy

We use additivity of line integrals and the result in part (a) to write the integral as follows:

A = 1

2

⎛
⎝n−1∑

i=1

∫
AiAi+1

−y dx + x dy +
∫
AnA1

−y dx + x dy

⎞
⎠

= 1

2

⎛
⎝n−1∑

i=1

(xiyi+1 − xi+1yi) + (xny1 − x1yn)

⎞
⎠

= 1

2

n−1∑
i=1

(xiyi+1 − xi+1yi) + 1

2
(xny1 − x1yn)

If we define (xn+1, yn+1) = (x1, y1), we obtain the sum

A = 1

2

n∑
i=1

(xiyi+1 − xi+1yi).

33. Use the result of Exercise 32 to compute the areas of the polygons in Figure 27. Check your result for the area of the
triangle in (A) using geometry.

(A)

(2, 1)

(2, 3)

(5, 1)
x

y

1 2 3 4 5

1

2

3

4

5

(B)

(−1, 1)

(−3, 5)

(5, 3)

(3, 2)

(1, 3)

x

y

1 2 3 4 5

1

2

3

4

5

−1−2−3

FIGURE 27

solution
(a) The vertices of the triangle are

(x1, y1) = (x4, y4) = (2, 1), (x2, y2) = (5, 1), (x3, y3) = (2, 3)

(2, 1)

(2, 3)

(5, 1)
x

y

1 2 3 4 5

1

2

3

4

5

Using the formula obtained in Exercise 28, the area of the triangle is the following sum:

A = 1

2

(
(x1y2 − x2y1) + (x2y3 − x3y2) + (x3y1 − x1y3)

)
= 1

2

(
(2 · 1 − 5 · 1) + (5 · 3 − 2 · 1) + (2 · 1 − 2 · 3)

) = 1

2
(−3 + 13 − 4) = 3
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We verify our result using the formula for the area of a triangle:

A = 1

2
bh = 1

2
· (5 − 2) · (3 − 1) = 3

(b) The vertices of the polygon are

(x1, y1) = (x6, y6) = (−1, 1)

(x2, y2) = (1, 3)

(x3, y3) = (3, 2)

(x4, y4) = (5, 3)

(x5, y5) = (−3, 5)

(−1, 1)

(−3, 5)

(5, 3)

(3, 2)

(1, 3)

x

y

1 2 3 4 5

1

2

3

4

5

−1−2−3

Using the formula in part (a), the area of the polygon is the following sum:

A = 1

2

(
(x1y2 − x2y1) + (x2y3 − x3y2) + (x3y4 − x4y) + (x4y5 − x5y4) + (x5y1 − x1y5)

)
= 1

2

(
(−1 · 3 − 1 · 1) + (1 · 2 − 3 · 3) + (3 · 3 − 5 · 2) + (5 · 5 − (−3) · 3

)+ (− 3 · 1 − (−1) · 5
))

= 1

2
(−4 − 7 − 1 + 34 + 2) = 12

Exercises 34–39: In Section 16.2, we defined the flux of F across a curve C (Figure 28) as the integral of the normal
component of F along C, and we showed that if c(t) = (x(t), y(t)) is a parametrization of C for a ≤ t ≤ b, then the flux
is equal to

∫ b

a
F(c(t)) · n(t) dt

where n(t) = 〈y′(t), −x′(t)〉.

n

P
F

T

FIGURE 28 The flux of F is the integral of the normal component F · n around the curve.

34. Show that the flux of F = 〈P, Q〉 across C is equal to
∮
C

P dy − Q dx.

solution First, let F∗ = 〈Q, −P 〉. It is easy to show that F∗ is a rotation of F by π/2 counterclockwise. The two are
easily shown to be orthogonal since:

F · F∗ = 〈P, Q〉 · 〈Q, −P 〉 = 0

We must show that if C is a simple closed curve, then∫
C
(F · n)ds =

∫
C

F∗ · ds
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By the definition of the vector line integral, the line integral of the vector field F∗ over C is∫
C

F∗ · ds =
∫
C
(F∗ · T)ds (1)

Since F∗ is a rotation of F by π
2 counterclockwise, the angle between F∗ and the tangent T is equal to the angle between

F and the normal n. Also,
∥∥F∗∥∥ = ‖F‖. Hence,

F∗ · T = ∥∥F∗∥∥ ‖T‖ cos θ = ‖F‖ cos θ

F · n = ‖F‖‖n‖ cos θ = ‖F‖ cos θ

Since the dot products are equal, we conclude that∫
C
(F∗ · T)ds =

∫
C
(F · n)ds (2)

Combining (1) and (2) we obtain∫
C
(F · n)ds =

∫
C

F∗ · ds =
∫
C

〈Q, −P 〉 · 〈dx, dy〉 =
∫
C

Q dx − P dy

Fq
q

n

T
F*

35. Define div(F) = ∂P

∂x
+ ∂Q

∂y
. Use Green’s Theorem to prove that for any simple closed curve C,

Flux across C =
∫∫

D
div(F) dA 12

where D is the region enclosed by C. This is a two-dimensional version of the Divergence Theorem discussed in
Section 17.3.

solution Since F = 〈P, Q〉 and F∗ = 〈−Q, P 〉, we have

div(F) = ∂P

∂x
+ ∂Q

∂y

curl(F∗) = ∂P

∂x
− ∂

∂y
(−Q) = ∂P

∂x
+ ∂Q

∂y

Therefore,

div(F) = curl(F∗) (1)

Using Exercise 33, the flux of F across C is

flux of F across C =
∫
C

F∗ · ds (2)

Green’s Theorem and (1) imply that∫
C

F∗ · ds =
∫∫

D
curl(F∗) dA =

∫∫
D

div(F) dA (3)

Combining (2) and (3) we have

flux of F across C =
∫∫

D
div(F) dA.

36. Use Eq. (12) to compute the flux of F =
〈
2x + y3, 3y − x4

〉
across the unit circle.

solution Using the result:

flux =
∫∫

D
div(F) dA
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we can compute the divergence:

div(F) = ∂P

∂x
+ ∂Q

∂y
= 2 + 3

Therefore,

flux =
∫∫

D
div(F) dA =

∫∫
D

(2 + 3) dA = 5(Area of the Region) = 5π

37. Use Eq. (12) to compute the flux of F = 〈cos y, sin y〉 across the square 0 ≤ x ≤ 2, 0 ≤ y ≤ π
2 .

solution Using the result:

flux =
∫∫

D
div(F) dA

we can compute the divergence:

div(F) = ∂P

∂x
+ ∂Q

∂y
= 0 + cos y

Therefore,

flux =
∫∫

D
div(F) dA

=
∫∫

D
(0 + cos y) dA

=
∫ 2

0

∫ π/2

0
cos y dy dx

= (2 − 0)

(
sin y

∣∣∣∣π/2

0

)
= 2

38. If v is the velocity field of a fluid, the flux of v across C is equal to the flow rate (amount of fluid flowing across C in
m2/s). Find the flow rate across the circle of radius 2 centered at the origin if div(v) = x2.

solution Using the result:

flux =
∫∫

D
div(F) dA

we have, using polar coordinates:

flux =
∫∫

D
div(F) dA

=
∫∫

D
x2 dA

=
∫ 2π

0

∫ 2

0
(r cos θ)2(r) dr dθ

=
∫ 2

0

∫ 2π

0
r3 cos2 θ dr dθ

=
∫ 2

0
r3 dr ·

∫ 2π

0

1

2
(1 + cos 2θ) dθ

= r4

4

∣∣∣∣2
0

· 1

2

(
θ + 1

2
sin 2θ

) ∣∣∣∣2π

0

= (4) · 1

2
(2π) = 4π

39. A buffalo (Figure 29) stampede is described by a velocity vector field F = 〈
xy − y3, x2 + y

〉
km/h in the region D

defined by 2 ≤ x ≤ 3, 2 ≤ y ≤ 3 in units of kilometers (Figure 30). Assuming a density is ρ = 500 buffalo per square
kilometer, use Eq. (12) to determine the net number of buffalo leaving or entering D per minute (equal to ρ times the flux
of F across the boundary of D).
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FIGURE 29 Buffalo stampede.

x

y

3

2

2

3

FIGURE 30 The vector field
F =

〈
xy − y3, x2 + y

〉
.

solution The flux of F across the boundary ∂D has units of area per second. We multiply the buffalo density to obtain
the number of buffalo per second crossing the boundary. Using Green’s Theorem:

flux of buffalo =
∫
∂D

500F ds

= 500
∫
∂D

〈
xy − y3, x2 + y

〉
ds

= 500
∫ 3

2

∫ 3

2
div(F) dy dx

= 500
∫ 3

2

∫ 3

2
(y + 1) dy dx

= 500
∫ 3

2
dx ·

∫ 3

2
(y + 1) dy

= 500(3 − 2)

(
1

2
y2 + y

) ∣∣∣∣3
2

= 500(1)

(
9

2
+ 3 − 2 − 2

)

= 500(3.5)

= 1750 buffalos per second

Further Insights and Challenges
In Exercises 40–43, the Laplace operator 	 is defined by

	ϕ = ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
13

For any vector field F = 〈F1, F2〉, define the conjugate vector field F∗ = 〈−F2, F1〉.

40. Show that if F = ∇ϕ, then curlz(F∗) = 	ϕ.

solution For a vector field F = 〈P, Q〉, the conjugate vector field is F∗ = 〈−Q, P 〉. By the given information,

F = ∇ϕ =
〈
∂ϕ

∂x
,
∂ϕ

∂y

〉
⇒ F∗ =

〈
−∂ϕ

∂y
,
∂ϕ

∂x

〉

We compute the curl of F∗:

curl(F∗) = ∂

∂x

(
∂ϕ

∂x

)
− ∂

∂y

(−∂ϕ

∂y

)
= ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
= 	ϕ

41. Let n be the outward-pointing unit normal vector to a simple closed curve C. The normal derivative of a function
ϕ, denoted ∂ϕ

∂n , is the directional derivative Dn(ϕ) = ∇ϕ · n. Prove that∮
C

∂ϕ

∂n
ds =

∫∫
D

	ϕ dA

where D is the domain enclosed by a simple closed curve C. Hint: Let F = ∇ϕ. Show that ∂ϕ
∂n = F∗ · T where T is the

unit tangent vector, and apply Green’s Theorem.



April 20, 2011

S E C T I O N 17.1 Green’s Theorem (LT SECTION 18.1) 1263

solution In Exercise 34 we showed that for any vector field F, F∗ is a rotation of F by π
2 counterclockwise. The unit

tangent en is a rotation of n by π
2 counterclockwise.

F
qq

n
en

F*

These properties imply that the angle θ between F and n is equal to the angle between F∗ and en, and ‖F‖ = ∥∥F∗∥∥.
Therefore,

F · n = ‖F‖‖n‖ cos θ = ‖F‖ cos θ

F∗ · en = ∥∥F∗∥∥ ‖en‖ cos θ = ‖F‖ cos θ
⇒ F · n = F∗ · en

Now, if F = ∇ϕ, then

∂ϕ

∂n
= ∇ϕ · n = F · n = F∗ · en

By the definition of the vector line integral
∫
C F∗ · ds = ∫C(F∗ · en) ds. Therefore,∫

C
∂ϕ

∂n
ds =

∫
C
(F∗ · en) ds =

∫
C

F∗ · ds

Using Green’s Theorem and the equality curl(F∗) = 	ϕ obtained in Exercise 40, we get∫
C

∂ϕ

∂n
ds =

∫
C

F∗ · ds =
∫∫

D
curl(F∗) dA =

∫∫
D

	ϕ dA.

42. Let P = (a, b) and let Cr be the circle of radius r centered at P . The average value of a continuous function ϕ on Cr

is defined as the integral

Iϕ(r) = 1

2π

∫ 2π

0
ϕ(a + r cos θ, b + r sin θ) dθ

(a) Show that

∂ϕ

∂n
(a + r cos θ, b + r sin θ) = ∂ϕ

∂r
(a + r cos θ, b + r sin θ)

(b) Use differentiation under the integral sign to prove that

d

dr
Iϕ(r) = 1

2πr

∫
Cr

∂ϕ

∂n
ds

(c) Use Exercise 41 to conclude that

d

dr
Iϕ(r) = 1

2πr

∫∫
D(r)

	ϕ dA

where D(r) is the interior of Cr .

solution In this solution, ϕr (a + r cos θ, b + r sin θ) denotes the partial derivative ϕr computed at (a + r cos θ, b +
r sin θ), whereas ∂

∂r
ϕ(a + r cos θ, b + r sin θ) is the derivative of the composite function.

(a) Since ∂ϕ
∂n

= ∇ϕ · n, we first express the gradient vector in terms of polar coordinates. We use the Chain Rule and the
derivatives:

θx = − sin θ

r
, θy = cos θ

r
, rx = cos θ, ry = sin θ

We get

ϕx = ϕrrx + ϕθ θx = ϕr cos θ + ϕθ

(
− sin θ

r

)

ϕy = ϕrry + ϕθ θy = ϕr sin θ + ϕθ

(
cos θ

r

)
(1)
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Hence,

∇ϕ =
〈
ϕr cos θ − ϕθ

sin θ

r
, ϕr sin θ + ϕθ

cos θ

r

〉

We use the following parametrization for Cr :

Cr : c(θ) = 〈a + r cos θ, b + r sin θ〉 , 0 ≤ θ ≤ 2π

The unit normal vector is

n = 〈cos θ, sin θ〉 .

We compute the dot product:

∂ϕ

∂n
= ∇ϕ · n =

〈
ϕr cos θ − ϕθ

sin θ

r
, ϕr sin θ + ϕθ

cos θ

r

〉
· 〈cos θ, sin θ〉

= ϕr cos2 θ − ϕθ
sin θ cos θ

r
+ ϕr sin2 θ + ϕθ

cos θ sin θ

r
= ϕr

(
cos2 θ + sin2 θ

) = ϕr

That is,

∂ϕ

∂n
(a + r cos θ, b + r sin θ) = ϕr (a + r cos θ, b + r sin θ) (2)

(b) We compute the following derivative using the Chain Rule and (1):

∂

∂r
ϕ(a + r cos θ, b + r sin θ) = ϕx

∂

∂r
(a + r cos θ) + ϕy

∂

∂r
(b + r sin θ)

=
(

ϕr cos θ − ϕθ
sin θ

r

)
cos θ +

(
ϕr sin θ + ϕθ

cos θ

r

)
sin θ

= ϕr cos2 θ − ϕθ
sin θ cos θ

r
+ ϕr sin2 θ + ϕθ

cos θ sin θ

r

= ϕr (a + r cos θ, b + r sin θ) (3)

We now differentiate Iϕ(r) under the integral sign, and use (3) and (2) to obtain

d

dr
Iϕ(r) = 1

2π

∫ 2π

0

∂

∂r
ϕ(a + r cos θ, b + r sin θ) dθ = 1

2π

∫ 2π

0
ϕr (a + r cos θ, b + r sin θ) dθ

= 1

2π

∫ 2π

0

∂ϕ

∂n
(a + r cos θ, b + r sin θ) dθ (4)

On the other hand, since c′(θ) = 〈−r sin θ, r cos θ〉, we have

∫
Cr

∂ϕ

∂n
ds =

∫ 2π

0

∂ϕ

∂n
(a + r cos θ, b + r sin θ)

∥∥c′(θ)
∥∥ dθ =

∫ 2π

0

∂ϕ

∂n
(a + r cos θ, b + r sin θ)r dθ

= r

∫ 2π

0

∂ϕ

∂n
(a + r cos θ, b + r sin θ) dθ (5)

Combining (4) and (5) we get

d

dr
Iϕ(r) = 1

2πr

∫
Cr

∂ϕ

∂n
ds.

(c) We combine the result of part (b) and Exercise 36 to conclude

d

dr
Iϕ(r) = 1

2πr

∫
Cr

∂ϕ

∂n
ds = 1

2πr

∫∫
D(r)

	ϕ dA.

43. Prove that m(r) ≤ Iϕ(r) ≤ M(r), where m(r) and M(r) are the minimum and maximum values of ϕ on Cr . Then
use the continuity of ϕ to prove that lim

r→0
Iϕ(r) = ϕ(P ).

solution Iϕ(r) is defined by

Iϕ(r) = 1

2π

∫ 2π

0
ϕ(a + r cos θ, b + r sin θ) dθ
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The points on Cr have the form (a + r cos θ, b + r sin θ). Therefore, since m(r) and M(r) are the minimum and maximum
values of ϕ on Cr , we have for all 0 ≤ θ ≤ 2π ,

m(r) ≤ ϕ(a + r cos θ, b + r sin θ) ≤ M(r)

Using properties of integrals (Eq. (6) in Section 5.2), we conclude that

2πm(r) ≤
∫ 2π

0
ϕ(a + r cos θ + b + r sin θ) ≤ 2πM(r)

Dividing by 2π we obtain

m(r) ≤ Iϕ(r) ≤ M(r) (1)

Now, since ϕ is continuous and the functions sin θ and cos θ are bounded for all 0 ≤ θ ≤ 2π , the following holds:

lim
r→0

ϕ(a + r cos θ, b + r sin θ) = ϕ

(
lim
r→0

(a + r cos θ, b + r sin θ)

)
= ϕ(a, b)

which means that for ε > 0 there exists δ > 0 so that

|ϕ(a + r cos θ, b + r sin θ) − ϕ(a, b)| < ε

for all 0 ≤ θ ≤ 2π , whenever 0 < r < δ. Hence also

lim
r→0

m(r) = lim
r→0

M(r) = ϕ(a, b) (2)

Combining (1), (2), and the Squeeze Theorem, we obtain the following conclusion:

lim
r→0

Iϕ(r) = ϕ(a, b).

In Exercises 44 and 45, let D be the region bounded by a simple closed curve C. A function ϕ(x, y) on D (whose second-
order partial derivatives exist and are continuous) is called harmonic if 	ϕ = 0, where 	ϕ is the Laplace operator
defined in Eq. (13).

44. Use the results of Exercises 42 and 43 to prove the mean-value property of harmonic functions: If ϕ is harmonic,
then Iϕ(r) = ϕ(P ) for all r .

solution In Exercise 42 we showed that

d

dr
Iϕ(r) = 1

2πr

∫∫
D

	ϕ dA

If ϕ is harmonic, 	ϕ = 0. Therefore the right-hand side of the equality is zero, and we get

d

dr
Iϕ(r) = 0

We conclude that Iϕ(r) is constant, that is, Iϕ(r) has the same value for all r . The constant value is determined by the
limit limr→0 Iϕ(r) = ϕ(P ) obtained in Exercise 38. That is, Iϕ(r) = ϕ(P ) for all r .

45. Show that f (x, y) = x2 − y2 is harmonic. Verify the mean-value property for f (x, y) directly [expand f (a +
r cos θ, b + r sin θ) as a function of θ and compute Iϕ(r)]. Show that x2 + y2 is not harmonic and does not satisfy the
mean-value property.

solution We show that the function f (x, y) = x2 − y2 is harmonic by showing that 	f = ∂2f

∂x2 + ∂2f

∂y2 = 0. We have

∂f

∂x
= 2x,

∂f

∂y
= −2y

∂2f

∂x2
= 2,

∂2f

∂y2
= −2

Hence,

	f = ∂2f

∂x2
+ ∂2f

∂y2
= 2 − 2 = 0

We now verify the mean-value property for f . That is, we show that for all r ,

If (r) = 1

2π

∫ 2π

0
f (a + r cos θ, b + r sin θ) dθ = f (a, b)
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We compute the integrand:

f (a + r cos θ, b + r sin θ) = x2 − y2 = (a + r cos θ)2 − (b + r sin θ)2

= a2 + 2ar cos θ + r2 cos2 θ −
(
b2 + 2br sin θ + r2 sin2 θ

)
= a2 − b2 + 2r(a cos θ − b sin θ) + r2 cos 2θ

We compute the integral:

2πIf (r) =
∫ 2π

0

(
a2 − b2 + 2r(a cos θ − b sin θ) + r2 cos 2θ

)
dθ

= (a2 − b2)θ + 2ar sin θ + 2br cos θ + r2

2
sin 2θ

∣∣∣∣2π

θ=0
= 2π(a2 − b2)

Hence,

If (r) = a2 − b2

However, we have f (a, b) = a2 − b2. Hence, for all r , If (r) = f (a, b), which proves the mean-value property for f .

For g(x, y) = x2 + y2 we have

gxx = 2, gyy = 2, and 	g = 2 + 2 = 4 �= 0.

We check the mean value property:

Ig(r) = 1

2π

∫ 2π

0
g(a + r cos θ, b + r sin θ) dθ = 1

2π

∫ 2π

0
(a + r cos θ)2 + (b + r sin θ)2 dθ

= 1

2π

∫ 2π

0
a2 + b2 + 2r(a cos θ + b sin θ) + r2 dθ = a2 + b2 + r2 �= a2 + b2 = ϕ(a, b)

The mean value property does not hold for g.

17.2 Stokes’ Theorem (LT Section 18.2)

Preliminary Questions
1. Indicate with an arrow the boundary orientation of the boundary curves of the surfaces in Figure 14, oriented by the

outward-pointing normal vectors.

(A) (B)

nn

FIGURE 14

solution The indicated orientation is defined so that if the normal vector is moving along the boundary curve, the
surface lies to the left. Since the surfaces are oriented by the outward-pointing normal vectors, the induced orientation is
as shown in the figure:

(A) (B)

nn

2. Let F = curl(A). Which of the following are related by Stokes’ Theorem?

(a) The circulation of A and flux of F.
(b) The circulation of F and flux of A.

solution Stokes’ Theorem states that the circulation of A is equal to the flux of F. The correct answer is (a).

3. What is the definition of a vector potential?

solution A vector field A such that F = curl(A) is a vector potential for F.
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4. Which of the following statements is correct?

(a) The flux of curl(A) through every oriented surface is zero.
(b) The flux of curl(A) through every closed, oriented surface is zero.

solution Statement (b) is the correct statement. The flux of curl(F) through an oriented surface is not necessarily zero,
unless the surface is closed.

5. Which condition on F guarantees that the flux through S1 is equal to the flux through S2 for any two oriented surfaces
S1 and S2 with the same oriented boundary?

solution If F has a vector potential A, then by a corollary of Stokes’ Theorem,∫∫
S

F · ds =
∫
C

A · ds

Therefore, if two oriented surfaces S1 and S2 have the same oriented boundary curve, C, then∫∫
S1

F · ds =
∫
C

A · ds and
∫∫

S2

F · ds =
∫
C

A · ds

Hence, ∫∫
S1

F · ds =
∫∫

S2

F · ds

Exercises
In Exercises 1–4, calculate curl(F).

1. F = 〈z − y2, x + z3, y + x2〉
solution We have

curl(F) =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

z − y2 x + z3 y + x2

∣∣∣∣∣∣∣∣∣∣
= (1 − 3z2)i − (2x − 1)j + (1 + 2y)k = 〈1 − 3z2, 1 − 2x, 1 + 2y

〉

2. F =
〈
y

x
,
y

z
,

z

x

〉
solution The curl is the following vector:

curl(F) =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

y
x

y
z

z
x

∣∣∣∣∣∣∣∣∣∣
=
(

0 − −y

z2

)
i −
(

− z

x2
− 0

)
j +
(

0 − 1

x

)
k =

〈
y

z2
,

z

x2
, − 1

x

〉

3. F = 〈ey, sin x, cos x
〉

solution We have

curl(F) =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

ey sin x cos x

∣∣∣∣∣∣∣∣∣∣
= 0i − (− sin x)j + (cos x − ey)k = 〈0, sin x, cos x − ey

〉

4. F =
〈

x

x2 + y2
,

y

x2 + y2
, 0

〉
solution

curl(F) =

∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

x

x2 + y2

y

x2 + y2
0

∣∣∣∣∣∣∣∣∣∣∣
= 0i − 0j +

(
−2xy

(x2 + y2)
2

+ 2xy

(x2 + y2)
2

)
k = 0
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In Exercises 5–8, verify Stokes’Theorem for the given vector field and surface, oriented with an upward-pointing normal.

5. F = 〈2xy, x, y + z〉, the surface z = 1 − x2 − y2 for x2 + y2 ≤ 1

solution We must show that ∫
C

F · ds =
∫∫

S
curl (F) · dS

−1.0 −0.5 0
10

0.5

1.0

0.5 1.0

x

y

Step 1. Compute the line integral around the boundary curve. The boundary curve C is the unit circle oriented in the
counterclockwise direction. We parametrize C by

γ (t) = (cos t, sin t, 0), 0 ≤ t ≤ 2π

Then,

F (γ (t)) = 〈2 cos t sin t, cos t, sin t〉
γ ′(t) = 〈− sin t, cos t, 0〉

F (γ (t)) · γ ′(t) = 〈2 cos t sin t, cos t, sin t〉 · 〈− sin t, cos t, 0〉 = −2 cos t sin2 t + cos2 t

We obtain the following integral:

∫
C

F ds =
∫ 2π

0

(−2 cos t sin2 t + cos2 t
)
dt = −2 sin3 t

3
+ t

2
+ sin 2t

4

∣∣∣∣2π

0
= π (1)

Step 2. Compute the flux of the curl through the surface. We parametrize the surface by

(θ, t) = (t cos θ, t sin θ, 1 − t2), 0 ≤ t ≤ 1, 0 ≤ θ ≤ 2π

We compute the normal vector:

Tθ = ∂

∂θ
= 〈−t sin θ, t cos θ, 0〉

Tt = ∂

∂t
= 〈cos θ, sin θ, −2t〉

Tθ × Tt =
∣∣∣∣∣∣

i j k
−t sin θ t cos θ 0

cos θ sin θ −2t

∣∣∣∣∣∣ = (−2t2 cos θ)i − (2t2 sin θ)j − t (sin2 θ + cos2 θ)k

= (−2t2 cos θ)i − (2t2 sin θ)j − tk

Since the normal is always supposed to be pointing upward, the z-coordinate of the normal vector must be positive.
Therefore, the normal vector is

n = 〈2t2 cos θ, 2t2 sin θ, t
〉

We compute the curl:

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

2xy x y + z

∣∣∣∣∣∣∣∣∣
= i + (1 − 2x)k = 〈1, 0, 1 − 2x〉

We compute the curl in terms of the parameters:

curl(F) = 〈1, 0, 1 − 2t cos θ〉
Hence,

curl(F) · n = 〈1, 0, 1 − 2t cos θ〉 ·
〈
2t2 cos θ, 2t2 sin θ, t

〉
= 2t2 cos θ + t − 2t2 cos θ = t
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The surface integral is thus∫∫
S

curl(F) · dS =
∫ 2π

0

∫ 1

0
t dt dθ = 2π

∫ 1

0
t dt = 2π · t2

2

∣∣∣∣1
0

= π (2)

The values of the integrals in (1) and (2) are equal, as stated in Stokes’ Theorem.

6. F = 〈yz, 0, x〉, the portion of the plane
x

2
+ y

3
+ z = 1 where x, y, z ≥ 0

solution
Step 1. Compute the integral around the boundary curve. The boundary curve C consists of the segments C1, C2, and C3
shown in the figure:

z

y

x

1

C3
C2

C1 32

We parametrize the segments by

C1 : γ1(t) = (2 − 2t, 3t, 0), t from 0 to 1

C2 : γ2(t) = (0, 3 − 3t, t), t from 0 to 1

C3 : γ3(t) = (2t, 0, 1 − t), t from 0 to 1

We compute the following values:

F (γ1(t)) = 〈yz, 0, x〉 = 〈0, 0, 2 − 2t〉 , γ ′
1(t) = 〈−2, 3, 0〉

F (γ2(t)) = 〈yz, 0, x〉 =
〈
3t − 3t2, 0, 0

〉
, γ ′

2(t) = 〈0, −3, 1〉
F (γ3(t)) = 〈yz, 0, x〉 = 〈0, 0, 2t〉 , γ ′

3(t) = 〈2, 0, −1〉
Hence,

F (γ1(t)) · γ ′
1(t) = 〈0, 0, 2 − 2t〉 · 〈−2, 3, 0〉 = 0

F (γ2(t)) · γ ′
2(t) =

〈
3t − 3t2, 0, 0

〉
· 〈0, −3, 1〉 = 0

F (γ3(t)) · γ ′
3(t) = 〈0, 0, 2t〉 · 〈2, 0, −1〉 = −2t

We obtain the following integral:∫
C

F · ds =
∫
C1

F · ds +
∫
C2

F · ds +
∫
C3

F · ds = 0 + 0 +
∫ 1

0
−2t dt = −t2

∣∣∣∣1
0

= −1 (1)

Step 2. Compute the curl.

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

yz 0 x

∣∣∣∣∣∣∣∣∣
= −(1 − y)j + (0 − z)k = 〈0, y − 1, −z〉

Step 3. Compute the flux of the curl through the surface. We parametrize the portion of the plane by

(x, y) =
(
x, y, 1 − x

2
− y

3

)
for (x, y) ∈ D

y

x

D

20

3

y = − + 33x
2
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We find the normal vector:

Tx = ∂

∂x
=
〈
1, 0, −1

2

〉

Ty = ∂

∂y
=
〈
0, 1, −1

3

〉

Tx × Ty =

∣∣∣∣∣∣∣∣
i j k

1 0 − 1
2

0 1 − 1
3

∣∣∣∣∣∣∣∣
= 1

2
i + 1

3
j + k =

〈
1

2
,

1

3
, 1

〉

The upward pointing normal is

n =
〈

1

2
,

1

3
, 1

〉
.

We compute the curl(F) in terms of the parameters x and y:

curl(F) =
〈
0, y − 1, −

(
1 − x

2
− y

3

)〉
=
〈
0, y − 1,

x

2
+ y

3
− 1
〉

We obtain the following integral:∫∫
S

curl(F) · dS =
∫∫

D

〈
0, y − 1,

x

2
+ y

3
− 1
〉
·
〈

1

2
,

1

3
, 1

〉
dA =

∫∫
D

(
x

2
+ 2y

3
− 4

3

)
dA

=
∫ 2

0

∫ −3x/2+3

0

(
x

2
+ 2y

3
− 4

3

)
dy dx =

∫ 2

0

xy

2
+ y2

3
− 4y

3

∣∣∣∣−3x/2+3

y=0
dx

=
∫ 2

0

(x

2
− 1
)

dx = x2

4
− x

∣∣∣∣2
0

= −1 (2)

The integrals in (1) and (2) are equal as stated in Stokes’ Theorem.

7. F = 〈ey−z, 0, 0
〉
, the square with vertices (1, 0, 1), (1, 1, 1), (0, 1, 1), and (0, 0, 1)

solution
Step 1. Compute the integral around the boundary curve. The boundary consists of four segments C1, C2, C3, and C4
shown in the figure:

C3

C4C1

C2

(1, 0, 1)

(0, 1, 1)

(1, 1, 1)

(0, 0, 1)

z

y

x

S

We parametrize the segments by

C1 : γ1(t) = (t, 0, 1), 0 ≤ t ≤ 1

C2 : γ2(t) = (1, t, 1), 0 ≤ t ≤ 1

C3 : γ3(t) = (1 − t, 1, 1), 0 ≤ t ≤ 1

C4 : γ4(t) = (0, 1 − t, 1), 0 ≤ t ≤ 1

We compute the following values:

F (γ1(t)) = 〈ey−z, 0, 0
〉 = 〈e−1, 0, 0

〉
F (γ2(t)) = 〈ey−z, 0, 0

〉 = 〈et−1, 0, 0
〉

F (γ3(t)) = 〈ey−z, 0, 0
〉 = 〈1, 0, 0〉

F (γ4(t)) = 〈ey−z, 0, 0
〉 = 〈e−t−1, 0, 0

〉
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Hence,

F (γ1(t)) · γ ′
1(t) =

〈
e−1, 0, 0

〉
· 〈1, 0, 0〉 = e−1

F (γ2(t)) · γ ′
2(t) =

〈
et−1, 0, 0

〉
· 〈0, 1, 0〉 = 0

F (γ3(t)) · γ ′
3(t) = 〈1, 0, 0〉 · 〈−1, 0, 0〉 = −1

F (γ4(t)) · γ ′
4(t) =

〈
e−t−1, 0, 0

〉
· 〈0, −1, 0〉 = 0

We obtain the following integral:

∫
C

F · ds =
4∑

i=1

∫
Ci

F · ds =
∫ 1

0
e−1 dt + 0 +

∫ 1

0
(−1) dt + 0 = e−1 − 1

Step 2. Compute the curl.

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

ey−z 0 0

∣∣∣∣∣∣∣∣∣
= −ey−z j − ey−z k = 〈0, −ey−z, −ey−z

〉

Step 3. Compute the flux of the curl through the surface. We parametrize the surface by

(x, y) = (x, y, 1), 0 ≤ x, y ≤ 1

The upward pointing normal is n = 〈0, 0, 1〉. We express curl(F) in terms of the parameters x and y:

curl(F) ((x, y)) =
〈
0, −ey−1, −ey−1

〉
Hence,

curl(F) · n =
〈
0, −ey−1, −ey−1

〉
· 〈0, 0, 1〉 = −ey−1

The surface integral is thus

∫∫
S

curl(F) · dS =
∫∫

D
−ey−1 dA =

∫ 1

0

∫ 1

0
−ey−1 dy dx =

∫ 1

0
−ey−1 dy = −ey−1

∣∣∣∣1
0

= −1 + e−1 = e−1 − 1 (1)

We see that the integrals in (1) and (2) are equal.

8. F =
〈
y, x, x2 + y2

〉
, the upper hemisphere x2 + y2 + z2 = 1, z ≥ 0

solution

Step 1. Compute the integral around the boundary curve. The boundary curve is the unit circle oriented in the counter-
clockwise direction. We use the parametrization γ (t) = 〈cos t, sin t, 0〉, 0 ≤ t ≤ 2π . Then,

F (γ (t)) · γ ′(t) = 〈sin t, cos t, 1〉 · 〈− sin t, cos t, 0〉 = − sin2 t + cos2 = cos 2t

The line integral is

∫
C

F · ds =
∫ 2π

0
(cos2 t − sin2 t) dt =

∫ 2π

0
cos 2t dt = 1

2
sin 2t

∣∣∣∣2π

0
= 0

Step 2. Compute the curl.

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

y x x2 + y2

∣∣∣∣∣∣∣∣∣
= 〈2y, −2x, 0〉

Step 3. Compute the flux of the curl through the surface. We parametrize the surface by

G(φ, θ) = 〈cos θ sin φ, sin θ sin φ, cos φ〉 , 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

2
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We compute the normal to the surface:

Gθ = 〈− sin θ sin φ, cos θ sin φ, 0〉
Gφ = 〈cos θ cos φ, sin θ cos φ, − sin φ〉

Gθ × Gφ =
∣∣∣∣∣∣

i j k
− sin θ sin φ cos θ sin φ 0
cos θ cos φ sin θ cos φ − sin φ

∣∣∣∣∣∣
=
〈
− cos θ sin2 φ, − sin θ sin2 φ, − sin2θ sin 2φ

2
− cos2 θ sin 2φ

2

〉

Since n points upward, we take n = −Gθ × Gφ . Thus,

n = sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉

We express curl(F) in terms of G(φ, θ):

curl(F)(G(φ, θ)) = 〈2 sin θ sin φ, −2 cos θ sin φ, 0〉

Then we obtain:

curl(F) · n = 〈2 sin θ sin φ, −2 cos θ sin φ, 0〉 · sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉
= sin φ(2 sin θ cos θ sin2 φ − 2 sin θ cos θ sin2 φ + 0) = 0

Therefore, the line integral around the unit circle is

∫∫
S

curl(F) · dS =
∫∫

D
0 dA = 0.

In Exercises 9 and 10, calculate curl(F) and then use Stokes’ Theorem to compute the flux of curl(F) through the given
surface as a line integral.

9. F =
〈
ez2 − y, ez3 + x, cos(xz)

〉
, the upper hemisphere x2 + y2 + z2 = 1, z ≥ 0 with outward-pointing normal

solution

Step 1. Compute the curl.

curl(F) =
∣∣∣∣∣∣

i j k
∂x ∂y ∂z

ez2 − y ez3 + x cos(xz)

∣∣∣∣∣∣ =
〈
−3z2ez3

, 2zez3 + z sin(xz), 2
〉

Step 2. Compute the flux of the curl through the surface. We will use Stokes’ Theorem and compute the line integral
around the boundary curve. The boundary curve is the unit circle oriented in the counterclockwise direction. We use the
parametrization γ (t) = 〈cos t, sin t, 0〉 , 0 ≤ t ≤ 2π . Then

F(γ (t)) · γ ′(t) =
〈
e0 − sin t, e0 + cos t, cos(0)

〉
· 〈− sin t, cos t, 0〉

= 〈1 − sin t, 1 + cos t, 1〉 · 〈− sin t, cos t, 0〉
= − sin t (1 − sin t) + cos t (1 + cos t) + 0

= − sin t + sin2 t + cos t + cos2 t

= 1 − sin t + cos t

The line integral is:

∫
C

F · ds =
∫ 2π

0
(1 − sin t + cos t) dt = t + cos t + sin t

∣∣∣∣2π

0
= 2π



April 20, 2011

S E C T I O N 17.2 Stokes’ Theorem (LT SECTION 18.2) 1273

10. F =
〈
x + y, z2 − 4, x

√
y2 + 1)

〉
, surface of the wedge-shaped box in Figure 15 (bottom included, top excluded)

with outward pointing normal.

y

x + y = 1

z

2

x

(0, 1, 2)

(1, 0, 2)

1

1

FIGURE 15

solution We are asked to calculate the flux of curl(F) through the walls of the wedge-shaped box (bottom included,
top excluded) with outward pointing normal. The oriented boundary of this surface is the triangle at height z = 2, oriented
clockwise (when viewed from above). By Stokes’ Theorem, the flux of curl(F) is equal to the line integral of F around
the oriented boundary. The restriction of F to the boundary, where z = 2 is

F =
〈
x + y, 0, x

√
y2 + 1

〉

We parametrize the three sides of this triangle for 0 ≤ t ≤ 1:

〈1 − t, 0, 0〉 , 〈0, t, 0〉 , 〈t, 1 − t, 0〉
Thus ds on the three sides is

〈−1, 0, 0〉 dt, 〈0, 1, 0〉 dt, 〈1, −1, 0〉 dt

and the dot products are (the z-component of F is not relevant because ds has zero z-component):

F · ds = 〈1 − t, 0, �〉 · 〈−1, 0, 0〉 dt = (t − 1) dt

F · ds = 〈t, 0, �〉 · 〈0, 1, 0〉 dt = 0

F · ds = 〈1, 0, �〉 · 〈1, −1, 0〉 dt = dt

Therefore, the line integral around the oriented boundary is equal to

∫ 1

0
(t − 1) dt + 0 +

∫ 1

0
dt = −1

2
+ 0 + 1 = 1

2

Thus, the flux of curl(F) through the surface is 1
2 .

11. Let S be the surface of the cylinder (not including the top and bottom) of radius 2 for 1 ≤ z ≤ 6, oriented with
outward-pointing normal (Figure 16).

(a) Indicate with an arrow the orientation of ∂S (the top and bottom circles).

(b) Verify Stokes’ Theorem for S and F = 〈yz2, 0, 0
〉
.

1

6

z

yx

FIGURE 16

solution

(a) The induced orientation is defined so that as the normal vector travels along the boundary curve, the surface lies to
its left. Therefore, the boundary circles on top and bottom have opposite orientations, which are shown in the figure.
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1

6

z

yx

n

C1

C2

(b) We verify Stokes’ Theorem for S and F =
〈
yz2, 0, 0

〉
.

Step 1. Compute the integral around the boundary circles. We use the following parametrizations:

C1 : γ1(t) = (2 cos t, 2 sin t, 6), t from 2π to 0

C2 : γ2(t) = (2 cos t, 2 sin t, 1), t from 0 to 2π

We compute the following values:

F (γ1(t)) =
〈
yz2, 0, 0

〉
= 〈72 sin t, 0, 0〉 ,

γ ′
1(t) = 〈−2 sin t, 2 cos t, 0〉

F (γ1(t)) · γ ′
1(t) = 〈72 sin t, 0, 0〉 · 〈−2 sin t, 2 cos t, 0〉 = −144 sin2 t

F (γ2(t)) =
〈
yz2, 0, 0

〉
= 〈2 sin t, 0, 0〉 ,

γ ′
2(t) = 〈−2 sin t, 2 cos t, 0〉

F (γ2(t)) · γ ′
2(t) = 〈2 sin t, 0, 0〉 · 〈−2 sin t, 2 cos t, 0〉 = −4 sin2 t

The line integral is thus

∫
C

F · ds =
∫
C1

F · ds +
∫
C2

F · ds =
∫ 0

2π
(−144 sin2 t) dt +

∫ 2π

0
(−4 sin2 t) dt

=
∫ 2π

0
140 sin2 t dt = 140

∫ 2π

0

1 − cos 2t

2
dt = 70 · 2π − 70 sin 2t

2

∣∣∣∣2π

0
= 140π

Step 2. Compute the curl

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

yz2 0 0

∣∣∣∣∣∣∣∣∣
= (2yz)j − z2k =

〈
0, 2yz, −z2

〉

Step 3. Compute the flux of the curl through the surface. We parametrize S by

(θ, z) = (2 cos θ, 2 sin θ, z), 0 ≤ θ ≤ 2π, 1 ≤ z ≤ 6

In Example 2 in the text, it is shown that the outward pointing normal is

n = 〈2 cos θ, 2 sin θ, 0〉

We compute the dot product:

curl(F) ((θ, z)) · n =
〈
0, 4z sin θ, −z2

〉
· 〈2 cos θ, 2 sin θ, 0〉 = 8z sin2 θ

We obtain the following integral (and use the integral we computed before):

∫∫
S

curl(F) · dS =
∫ 6

1

∫ 2π

0
8z sin2 θ dθ dz =

(∫ 6

1
8z dz

)(∫ 2π

0
sin2 θ dθ

)
= 4z2

∣∣∣∣6
1

· π = 140π

The line integral and the flux have the same value. This verifies Stokes’ Theorem.

12. Let S be the portion of the plane z = x contained in the half-cylinder of radius R depicted in Figure 17. Use Stokes’
Theorem to calculate the circulation of F = 〈z, x, y + 2z〉 around the boundary of S (a half-ellipse) in the counterclockwise
direction when viewed from above. Hint: Show that curl(F) is orthogonal to the normal vector to the plane.
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y

−R

R
x

z

S

FIGURE 17

solution By Stokes’ Theorem, ∫
C

F · ds =
∫∫

S
curl(F) · dS

We compute the curl:

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

z x y + 2z

∣∣∣∣∣∣∣∣∣
= i + j + k = 〈1, 1, 1〉

The outward pointing vector of the plane z = x, or x − z = 0, is n = 〈−1, 0, 1〉. Therefore,

curl(F) · n = 〈1, 1, 1〉 · 〈−1, 0, 1〉 = −1 + 0 + 1 = 0

We conclude that ∫∫
S

curl(F) · ds =
∫∫

D
0 dA = 0

This equation, along with Stokes’ Theorem, allows us to conclude that the circulation of F around C is zero.

13. Let I be the flux of F = 〈ey, 2xex2
, z2〉 through the upper hemisphere S of the unit sphere.

(a) Let G = 〈ey, 2xex2
, 0
〉
. Find a vector field A such that curl(A) = G.

(b) Use Stokes’ Theorem to show that the flux of G through S is zero. Hint: Calculate the circulation of A around ∂S.
(c) Calculate I . Hint: Use (b) to show that I is equal to the flux of

〈
0, 0, z2〉 through S.

solution
(a) We search for a vector field A so that G = curl(A). That is,〈

∂A3

∂y
− ∂A2

∂z
,
∂A1

∂z
− ∂A3

∂x
,
∂A2

∂x
− ∂A1

∂y

〉
=
〈
ey, 2xex2

, 0
〉

We note that the third coordinate of this curl vector must be zero; this can be satisfied if A1 = 0 and A2 = 0. With this in

mind, we let A =
〈
0, 0, ey − ex2

〉
. The vector field A =

〈
0, 0, ey − ex2

〉
satisfies this equality. Indeed,

∂A3

∂y
− ∂A2

∂z
= ey,

∂A1

∂z
− ∂A3

∂x
= 2xex2

,
∂A2

∂x
− ∂A1

∂y
= 0

(b) We found that G = curl(A), where A =
〈
0, 0, ey − ex2

〉
. We compute the flux of G through S. By Stokes’ Theorem,

∫∫
S

G · dS =
∫∫

S
curl(A) · dS =

∫
C

A · ds

The boundary C is the circle x2 + y2 = 1, parametrized by

γ (t) = (cos t, sin t, 0), 0 ≤ t ≤ 2π

C

z

y

x
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We compute the following values:

A (γ (t)) =
〈
0, 0, ey − ex2

〉
=
〈
0, 0, esin t − ecos2 t

〉
γ ′(t) = 〈− sin t, cos t, 0〉

A (γ (t)) · γ ′(t) =
〈
0, 0, esin t − ecos2t

〉
· 〈− sin t, cos t, 0〉 = 0

Therefore,

∫
C

A · ds =
∫ 2π

0
0 dt = 0

(c) We rewrite the vector field F =
〈
ey, 2xex2

, z2
〉

as

F =
〈
ey, 2xex2

, z2
〉
=
〈
ey, 2xex2

, 0
〉
+
〈
0, 0, z2

〉
= curl(A) +

〈
0, 0, z2

〉
Therefore, ∫∫

S
F · dS =

∫∫
S

curl(A) · dS +
∫∫

S

〈
0, 0, z2

〉
· dS (1)

In part (b) we showed that the first integral on the right-hand side is zero. Therefore,∫∫
S

F · dS =
∫∫

S

〈
0, 0, z2

〉
· dS (2)

The upper hemisphere is parametrized by

(θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ), 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

2
.

with the outward pointing normal

n = sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉
See Example 4, Section 17.4. We have 〈

0, 0, cos2 φ
〉
· n = sin φ cos3 φ

Therefore,

∫∫
S

〈
0, 0, z2

〉
· dS =

∫ 2π

0

∫ π/2

0
sin φ cos3 φ dφ dθ = 2π

∫ π/2

0
sin φ cos3 φ dφ

= 2π
− cos4 φ

4

∣∣∣∣π/2

0
= −π

2
(0 − 1) = π

2

Combining with (2) we obtain the solution ∫∫
S

F · dS = π

2
.

14. Let F = 〈0, −z, 1〉. Let S be the spherical cap x2 + y2 + z2 ≤ 1, where z ≥ 1
2 . Evaluate

∫∫
S

F · dS directly as a

surface integral. Then verify that F = curl(A), where A = (0, x, xz) and evaluate the surface integral again using Stokes’
Theorem.

solution

C

1
2

y

f0

x

z

1
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We first compute the surface integral directly. The spherical cap is parametrized by

(θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ), 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

3

 ⇒ φ0 = cos φ0 = 1
2

π
3

φ0

1
2 1

The outward pointing normal is

n = sin φ(cos θ sin φ, sin θ sin φ, cos φ)

See Example 4, Section 17.4. Hence,

F ((θ, φ)) · n = 〈0, − cos φ, 1〉 · n = − sin θ sin2 φ cos φ + sin φ cos φ

We obtain the following integral:∫∫
S

F · dS =
∫ 2π

0

∫ π/3

0

(
− sin θ sin2 φ cos φ + sin φ cos φ

)
dφ dθ

=
(∫ 2π

0
− sin θ dθ

)(∫ π/3

0
sin2 φ cos φ dφ

)
+ 2π

∫ π/3

0
sin φ cos φ dφ

= 0 + π

∫ π/3

0
sin 2φ dφ = π

(
− cos 2φ

2

) ∣∣∣∣π/3

0
= 3π

4
(1)

We now evaluate the flux using Stokes’ Theorem. We first notice that F = curl(A), where A = 〈0, x, xz〉. We verify it:

∂A3

∂y
− ∂A2

∂z
= 0 − 0 = 0

∂A1

∂z
− ∂A3

∂x
= 0 − z = −z

∂A2

∂x
− ∂A1

∂y
= 1 − 0 = 1

Indeed, we see that curl(A) = F. Applying Stokes’ Theorem, we have∫∫
S

F · dS =
∫∫

S
curl(A) · dS =

∫
C

A · ds (2)

C
1
2

3
2

y

f0

x

z

1

To compute the line integral, we notice that the boundary curve is the circle x2 + y2 = 3
4 in the plane z = 1

2 . We
parametrize C by

γ (t) =
(√

3

2
cos t,

√
3

2
sin t,

1

2

)
, 0 ≤ t ≤ 2π

We compute the following values:

A (γ (t)) = 〈0, x, xz〉 =
〈

0,

√
3

2
cos t,

√
3

4
cos t

〉

γ ′(t) =
〈
−

√
3

2
sin t,

√
3

2
cos t, 0

〉

A (γ (t)) · γ ′(t) =
〈

0,

√
3

2
cos t,

√
3

4
cos t

〉
·
〈
−

√
3

2
sin t,

√
3

2
cos t, 0

〉
= 3

4
cos2 t
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We obtain the following line integral:

∫
C

A · ds =
∫ 2π

0

3

4
cos2t dt =

∫ 2π

0

(
3

8
+ 3

8
cos 2t

)
dt = 3t

8
+ 3

16
sin 2t

∣∣∣∣2π

0
= 3π

4
(3)

Combining with (2), we obtain

∫∫
S

F · dS = 3π

4

This values agrees with the solution obtained in (1), as expected.

15. Let A be the vector potential and B the magnetic field of the infinite solenoid of radius R in Example 6. Use Stokes’
Theorem to compute:

(a) The flux of B through a circle in the xy-plane of radius r < R

(b) The circulation of A around the boundary C of a surface lying outside the solenoid

solution

(a) In Example 6 it is shown that B = curl(A), where

A =

⎧⎪⎪⎨
⎪⎪⎩

1

2
R2B

〈
− y

r2
,

x

r2
, 0

〉
if r > R

1

2
B 〈−y, x, 0〉 if r < R

(1)

Therefore, using Stokes’ Theorem, we have (S is the disk of radius r in the xy-plane)

∫∫
S

B · dS =
∫∫

S
curl(A) · dS =

∫
∂S

A · ds (2)

x
r

y

S

We parametrize the circle C = ∂S by c(t) = 〈r cos t, r sin t, 0〉, 0 ≤ t ≤ 2π . Then

c′(t) = 〈−r sin t, r cos t, 0〉

By (1) for r < R,

A (c(t)) = 1

2
B 〈−r sin t, r cos t, 0〉

Hence,

A (c(t)) · c′(t) = 1

2
B 〈−r sin t, r cos t, 0〉 · 〈−r sin t, r cos t, 0〉 = 1

2
B
(
r2 sin2 t + r2 cos2 t

)
= 1

2
r2B

Now, by (2) we get

∫∫
S

B · dS =
∫
∂S

A · dS =
∫ 2π

0

1

2
r2B dt = 1

2
r2B

∫ 2π

0
dt = r2Bπ

(b) Outside the solenoid B is the zero field, hence B = 0 on every domain lying outside the solenoid. Therefore, Stokes’
Theorem implies that

∫
∂S

A · dS =
∫∫

S
curl(A) · dS =

∫∫
S

B · dS =
∫∫

S
0 · dS = 0.
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16. The magnetic field B due to a small current loop (which we place at the origin) is called a magnetic dipole (Fig-
ure 18). Let ρ = (x2 + y2 + z2)1/2. For ρ large, B = curl(A), where

A =
〈
− y

ρ3
,

x

ρ3
, 0

〉

(a) Let C be a horizontal circle of radius R with center (0, 0, c), where c is large. Show that A is tangent to C.

(b) Use Stokes’ Theorem to calculate the flux of B through C.

R
c

Current loop

A

z

y

x

FIGURE 18

solution

(a) We parametrize C by

c(t) = (R cos t, R sin t, c) , 0 ≤ t ≤ 2π

Then, the tangent to c(t) is in the direction of

c′(t) = 〈−R sin t, R cos t, 0〉

We write A =
〈
− y

ρ3 , x
ρ3 , 0

〉
in terms of the parameter t :

A (c(t)) =
〈
−R sin t

ρ3
,
R cos t

ρ3
, 0

〉

A (c(t)) = 1
ρ3 c′(t). Therefore, A is parallel to c′(t). We conclude that A is tangent to C.

(b) Let S be the disc enclosed in C. By Stokes’ Theorem the flux of B through S is∫∫
S

B · dS =
∫∫

S
curl(A) · dS =

∫
C

A · ds

We compute the line integral. Since A and c′(t) are parallel, we have

A (c(t)) · c′(t) = ‖A (c(t))‖ ∥∥c′(t)
∥∥ =

√
R2 sin2 t

ρ6
+ R2 cos2 t

ρ6

√
R2 sin2 t + R2 cos2 t

= R

ρ3
· R = R2

ρ3
= R2(

R2 cos2 t + R2 sin2 t + c2
)3/2

= R2(
R2
(

cos2 t + sin2 t + ( c
R

)2))3/2
= 1

R
(

1 + ( c
R

)2)3/2

Hence,

∫∫
S

B · dS =
∫
C

A · ds =
∫ 2π

0

dt

R
(

1 + ( c
R

)2)3/2
= 2π

R
(

1 + ( c
R

)2)3/2

17. A uniform magnetic field B has constant strength b in the z-direction [that is, B = 〈0, 0, b〉].
(a) Verify that A = 1

2 B × r is a vector potential for B, where r = 〈x, y, 0〉.
(b) Calculate the flux of B through the rectangle with vertices A, B, C, and D in Figure 19.
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FIGURE 19

solution

(a) We compute the vector A = 1
2 B × r. Since B = bk and r = xi + yj, we have

A = 1

2
B × r = 1

2
bk × (xi + yj) = 1

2
b(xk × i + yk × j) = 1

2
b(xj − yi) =

〈
−by

2
,
bx

2
, 0

〉

We now show that curl(A) = B. We compute the curl of A:

curl (A) =

∣∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

−by

2

bx

2
0

∣∣∣∣∣∣∣∣∣∣
=
〈
0, 0,

b

2
+ b

2

〉
= 〈0, 0, b〉 = B

Therefore, A is a vector potential for B.

(b) Let S be the rectangle �ABCD and let C be the boundary of S. Since B = Curl(A), we see that B has a vector
potential. It follows, as explained in this section, that the flux of B through rectangle S is equal to the flux of B through
any surface with the same boundary C. Let S ′ be the wedge-shaped box with four sides and open top. Since the boundary
of S ′ is also C, we have

∫∫
S

B · dS =
∫∫

S ′
B · dS

The vector field B points in the k direction, so it has zero flux through the three vertical sides of S ′. On the other hand,
the unit normal vector to the bottom face of S ′ is k, so the normal component of B along the bottom face is equal to b.
We obtain ∫∫

S ′
B · dS =

∫∫
Bottom Face of S ′

b dA

= b(Area of Bottom Face of S ′) = 18b

18. Let F = 〈−x2y, x, 0
〉
. Referring to Figure 19, let C be the closed path ABCD. Use Stokes’ Theorem to evaluate∫

C
F · ds in two ways. First, regard C as the boundary of the rectangle with vertices A, B, C, and D. Then treat C as the

boundary of the wedge-shaped box with open top.

solution Let S1 be the rectangle whose boundary is C, and let S2 denote the wedge-shaped box. Then by Stokes’
Theorem, ∫

C
F · ds =

∫∫
S1

curl(F) · dS (1)

and: ∫
C

F · ds =
∫∫

S2

curl(F) · dS (2)

We find the curl of F =
〈
−x2y, x, 0

〉
:

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

−x2y x 0

∣∣∣∣∣∣∣∣∣
=
〈
0, 0, 1 + x2

〉
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We first compute the line integral via the surface integral in (1). To find a parametrization for S1, we compute the equation
of the plane through A = (6, 0, 4), C = (0, 3, 0), D = (0, 0, 4). A normal to the plane is

−→
AD × −→

AC = 〈−6, 0, 0〉 × 〈−6, 3, −4〉 = −6i × (−6i + 3j − 4k) = −18k − 24j

= 〈0, −24, −18〉 = −6 〈0, 4, 3〉
We use the point-normal equation of the plane:

0(x − 0) + 4(y − 3) + 3(z − 0) = 0

4y − 12 + 3z = 0 ⇒ z = 4 − 4

3
y

We parametrize S1 by

(x, y) =
(

x, y, 4 − 4y

3

)

With the parameter domain, D = [0, 6] × [0, 3] in the xy-plane.

y

x

D

60

3

Then

∂

∂x
× ∂

∂y
= 〈1, 0, 0〉 ×

〈
0, 1, −4

3

〉
= i × (j − 4

3
k) = k + 4

3
j =

〈
0,

4

3
, 1

〉

The upward pointing normal is

n =
〈
0,

4

3
, 1

〉

Also,

curl(F) ((x, y)) =
〈
0, 0, 1 + x2

〉
Hence,

curl(F) · n =
〈
0, 0, 1 + x2

〉
·
〈
0,

4

3
, 1

〉
= 1 + x2

The integral in (1) is thus

∫
C

F · ds =
∫∫

S1

curl(F) · dS =
∫∫

D
(1 + x2) dA =

∫ 3

0

∫ 6

0
(1 + x2) dx dy = 3

∫ 6

0
(1 + x2) dx

= 3

(
x + x3

3

∣∣∣∣6
0

)
= 234 (3)

We now compute the line integral via the surface integral (2). The surface S2 consists of two rectangles R1 and R2 and
two triangles T1 and T2, parametrized by

R1 : 1(x, z) = (x, 0, z), 0 ≤ x ≤ 6, 0 ≤ z ≤ 4

n1 = 〈0, 1, 0〉
R2 : 2(x, y) = (x, y, 0), 0 ≤ x ≤ 6, 0 ≤ y ≤ 3

n2 = 〈0, 0, 1〉
T1 : 3(y, z) = (6, y, z), (y, z) ∈ D3

n3 = 〈−1, 0, 0〉
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z

y

D3

30

4

T2 : 4(y, z) = (0, y, z), (y, z) ∈ D4

n4 = 〈1, 0, 0〉

z

y

D4

30

4

We compute each one of the surface integrals.

curl(F) (1(x, z)) · n1 =
〈
0, 0, 1 + x2

〉
· 〈0, 1, 0〉 = 0

curl(F) (2(x, y)) · n2 =
〈
0, 0, 1 + x2

〉
· 〈0, 0, 1〉 = 1 + x2

curl(F) (3(x, y)) · n3 =
〈
0, 0, 1 + 62

〉
· 〈−1, 0, 0〉 = 0

curl(F) (4(y, z)) · n4 =
〈
0, 0, 1 + 02

〉
· 〈1, 0, 0〉 = 0

Therefore the only nonzero integral is through R2. We obtain

∫
C

F · ds =
∫∫

S2

curl(F) · dS

=
∫∫

R1

curl(F) · dS +
∫∫

R2

curl(F) · dS +
∫∫

T1

curl(F) · dS +
∫∫

T2

curl(F) · dS

=
∫∫

R2

curl(F) · dS =
∫ 3

0

∫ 6

0
(1 + x2) dx dy = 3

∫ 6

0
(1 + x2) dx

= 3

(
x + x3

3

) ∣∣∣∣6
0

= 234 (4)

The values in (3) and (4) match as expected.

19. Let F = 〈
y2, 2z + x, 2y2〉. Use Stokes’ Theorem to find a plane with equation ax + by + cz = 0 (where a, b, c are

not all zero) such that
∮
C

F · ds = 0 for every closed C lying in the plane. Hint: Choose a, b, c so that curl(F) lies in the

plane.

solution Since we are interested in
∮
C F · ds, we can also consider

∫∫
curlF · dS, by Stokes’ Theorem. The curl is

〈4y − 2, 0, 1 − 2y〉 and the normal to the plane is n = 〈a, b, c〉. They are orthogonal if

〈4y − 2, 0, 1 − 2y〉 · 〈a, b, c〉 = a(4y − 2) + c(1 − 2y) = 0

which means:

4ay − 2a + c − 2cy = 0 ⇒ (4a − 2c) = 0, (c − 2a) = 0

This yields c = 2a and b is arbitrary.
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20. Let F = 〈−z2, 2zx, 4y − x2〉 and let C be a simple closed curve in the plane x + y + z = 4 that encloses a region of

area 16 (Figure 20). Calculate
∮
C

F · ds, where C is oriented in the counterclockwise direction (when viewed from above

the plane).

x + y + z = 4

4
4

4

z

y

x

C

FIGURE 20

solution We denote by S the region enclosed by C. Then by Stokes’ Theorem,∫
c

F · ds =
∫∫

S
curl(F) · ds (1)

We compute the curl of F =
〈
−z2, 2zx, 4y − x2

〉
:

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

−z2 2zx 4y − x2

∣∣∣∣∣∣∣∣∣
= 〈4 − 2x, 2x − 2z, 2z〉

The plane x + y + z = 4 has the parametrization

(x, y) = 〈x, y, 4 − x − y〉
Hence,

∂

∂x
× ∂

∂y
= 〈1, 0, −1〉 × 〈0, 1, −1〉 = (i − k)(j − k) = k + j + i = 〈1, 1, 1〉

The normal determined by the induced orientation is

n = 〈1, 1, 1〉
Let D be the parameter domain in the parametrization (x, y) = (x, y, 4 − x − y) of S; that is, D will be the base
triangle in the xy plane that lies underneath the pyramid in the picture. To compute the surface integral in (1) we compute
the values

curl(F) ((x, y)) = 〈4 − 2x, 2x − 2(4 − x − y), 2(4 − x − y)〉 = 〈4 − 2x, −8 + 4x + 2y, 8 − 2x − 2y〉
curl(F) · n = 〈4 − 2x, −8 + 4x + 2y, 8 − 2x − 2y〉 · 〈1, 1, 1〉 = 4 − 2x − 8 + 4x + 2y + 8 − 2x − 2y = 4

Therefore, using (1) and (2) we obtain∫
C

F · ds =
∫∫

S
curl(F) · dS =

∫∫
D

4 dA = 4Area(D) = 4 · 16

2
= 32

21. Let F = 〈y2, x2, z2〉. Show that ∫
C1

F · ds =
∫
C2

F · ds

for any two closed curves lying on a cylinder whose central axis is the z-axis (Figure 21).

y
x

z

C1

C2

FIGURE 21
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solution We denote by S the part of the cylinder for which C1 and C2 are boundary curves. Using Stokes’ Theorem
(notice that C1 and C2 have the same orientations), we have∫

C1

F · ds −
∫
C2

F · ds =
∫∫

S
curl(F) · dS (1)

We compute the curl:

curl(F) =
〈
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

〉
= 〈0, 0, 2x − 2y〉

We parametrize S by

(θ, z) = 〈R cos θ, R sin θ, z〉
where (θ, z) varies in a certain parameter domain D. The outward-pointing normal is

n = 〈R cos θ, R sin θ, 0〉
We compute curl(F) in terms of the parameters:

curl(F) = 〈0, 0, 2x − 2y〉 = 〈0, 0, 2R cos θ − 2R sin θ〉
We compute the dot product:

curl(F) · n = 2R 〈0, 0, cos θ − sin θ〉 · R 〈cos θ, sin θ, 0〉 = 2R2(0 + 0 + 0) = 0

Combining with (1) gives ∫
C1

F · ds −
∫
C2

F · ds =
∫∫

S
curl(F) · dS =

∫∫
D

0 dθ dr = 0

or ∫
C1

F · ds =
∫
C2

F · ds.

22. The curl of a vector field F at the origin is v0 = 〈3, 1, 4〉. Estimate the circulation around the small parallelogram
spanned by the vectors A = 〈0, 1

2 , 1
2

〉
and B = 〈0, 0, 1

3

〉
.

solution We use the following approximation, relying on Stokes’ Theorem:∫
C

F · ds ≈ (v0 · en)A(P ) (1)

y
x

z

0
en

B = (0, 0,   )1
3

A = (0,   ,   )1
2

1
2

The unit normal vector in the positive x-direction is

en = 〈1, 0, 0〉 (2)

We compute the area of the parallelogram spanned by the vectors
−→
OA =

〈
0, 1

2 , 1
2

〉
and

−→
OB =

〈
0, 0, 1

3

〉
:

−→
OA × −→

OB = 1

2
(j + k) × 1

3
k = 1

6
(j × k + k × k) = 1

6
i

A(P ) =
∥∥∥∥1

6
i

∥∥∥∥ = 1

6
(3)

We now substitute v0 = 〈3, 1, 4〉, (2), and (3) in (1) to obtain the approximation∫
C

F · ds ≈ 〈3, 1, 4〉 · 〈1, 0, 0〉 · 1

6
= 3 · 1

6
= 1

2
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23. You know two things about a vector field F:

(i) F has a vector potential A (but A is unknown).

(ii) The circulation of A around the unit circle (oriented counterclockwise) is 25.

Determine the flux of F through the surface S in Figure 22, oriented with upward pointing normal.

S

y

x

z

1

Unit circle

FIGURE 22 Surface S whose boundary is the unit circle.

solution Since F has a vector potential—that is, F is the curl of a vector field—the flux of F through a surface depends
only on the boundary curve C. Now, the surface S and the unit disc S1 in the xy-plane share the same boundary C.
Therefore, ∫∫

S
F · dS =

∫∫
S1

F · dS (1)

x

z

1

1

D

We compute the flux of F through S1, using the parametrization

S1 : (r, θ) = (r cos θ, r sin θ, 0), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

n = 〈0, 0, 1〉
By the given information, we have

F ((r, θ)) = F(r cos θ, r sin θ, 0) = 〈0, 0, 1〉
Hence,

F ((r, θ)) · n = 〈0, 0, 1〉 · 〈0, 0, 1〉 = 1

We obtain the following integral:

∫∫
S1

F · dS =
∫ 2π

0

∫ 1

0
F ((r, θ)) · n dr dθ =

∫ 2π

0

∫ 1

0
1 dr dθ = 2π

Combining with (1) we obtain ∫∫
S

F · dS = 2π

24. Suppose that F has a vector potential and that F(x, y, 0) = k. Find the flux of F through the surface S in Figure 22,
oriented with upward pointing normal.

solution The flux is equal to the flux through the lower hemisphere with outward pointing normal, and this is

∫ 2π

θ=0

∫ π

φ=0
sin φ dθ dφ
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25. Prove that curl(f a) = ∇f × a, where f is a differentiable function and a is a constant vector.

solution Let us first write a as a constant vector a = 〈a1, a2, a3〉 and f = f (x, y, z). Then consider the following:

curl(f a) = curl(f (x, y, z)〈a1, a2, a3〉) =
∣∣∣∣∣∣

i j k
∂/∂x ∂/∂y ∂/∂z

a1f (x, y, z) a2f (x, y, z) a3f (x, y, z)

∣∣∣∣∣∣
=
〈

∂

∂y
(a3f ) − ∂

∂z
(a2f ), − ∂

∂z
(a1f ) + ∂

∂x
(a3f ),

∂

∂x
(a2f ) − ∂

∂y
(a1f )

〉

= 〈a3fy − a2fz, a3fx − a1fz, a2fx − a1fy

〉
And now consider the following:

∇f × a = 〈fx, fy, fz〉 × 〈a1, a2, a3〉

=
∣∣∣∣∣∣

i j k
fx fy fz

a1 a2 a3

∣∣∣∣∣∣
= 〈a3fy − a2fz, a3fx − a1fz, a2fx − a1fy

〉
Since the two expressions above are equal, we conclude

curl(f a) = ∇f × a

26. Show that curl(F) = 0 if F is radial, meaning that F = f (ρ) 〈x, y, z〉 for some function f (ρ), where ρ =√
x2 + y2 + z2. Hint: It is enough to show that one component of curl(F) is zero, because it will then follow for

the other two components by symmetry.

solution Let v = 〈x, y, z〉. We must show that curl(F) = curl(f v) = 0. We compute the curl of v:

curl(f v) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

x · f y · f z · f

∣∣∣∣∣∣∣∣∣
=
〈

∂

∂y
(z · f ) − ∂

∂z
(y · f ), − ∂

∂z
(x · f ) + ∂

∂x
(z · f ),

∂

∂x
(y · f ) − ∂

∂y
(x · f )

〉

=
〈
z
∂f

∂y
− y

∂f

∂z
, z

∂f

∂x
− x

∂f

∂z
, y

∂f

∂x
− x

∂f

∂y

〉

We now must prove that the cross product is zero. To compute the first order partials for f , we use the derivatives

∂ρ

∂x
= 2x

2
√

x2 + y2 + z2
= x

ρ

∂ρ

∂y
= 2y

2
√

x2 + y2 + z2
= y

ρ

∂ρ

∂z
= 2z

2
√

x2 + y2 + z2
= z

ρ

By the Chain Rule we get
∂f

∂x
= df

dρ

∂ρ

∂x
= df

dρ
· x

ρ

∂f

∂y
= df

dρ

∂ρ

∂y
= df

dρ
· y

ρ

∂f

∂z
= df

dρ

∂ρ

∂z
= df

dρ
· z

ρ

Therefore,

curl(f v) =
〈
z
∂f

∂y
− y

∂f

∂z
, z

∂f

∂x
− x

∂f

∂z
, y

∂f

∂x
− x

∂f

∂y

〉

=
〈
df

dρ
· yz

ρ
− df

dρ
· yz

ρ
,
df

dρ
· xz

ρ
− df

dρ
· xz

ρ
,
df

dρ
· xy

ρ
− df

dρ
· xy

ρ

〉

= 0

Hence, we have shown, curl(F) = curl(f v) = 0.
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27. Prove the following Product Rule:

curl(f F) = f curl(F) + ∇f × F

solution We evaluate the curl of f F. Since f F = 〈f F1, f F2, f F3〉, using the Product Rule for scalar functions we
have

curl(f F) =
〈

∂

∂y
(f F3) − ∂

∂z
(f F2),

∂

∂z
(f F1) − ∂

∂x
(f F3),

∂

∂x
(f F2) − ∂

∂y
(f F1)

〉

=
〈
∂f

∂y
F3 + f

∂F3

∂y
− ∂f

∂z
F2 − f

∂F2

∂z
,
∂f

∂z
F1 + f

∂F1

∂z
− ∂f

∂x
F3 − f

∂F3

∂x
,

∂f

∂x
F2 + f

∂F2

∂x
− ∂f

∂y
F1 − f

∂F1

∂y

〉

= f

〈
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

〉

+
〈
∂f

∂y
F3 − ∂f

∂z
F2,

∂f

∂z
F1 − ∂f

∂x
F3,

∂f

∂x
F2 − ∂f

∂y
F1

〉
(1)

The vector in the first term is curl(F). We show that the second term is the cross product ∇f × F. We compute the cross
product:

∇f × F =

∣∣∣∣∣∣∣∣∣

i j k
∂f

∂x

∂f

∂y

∂f

∂z

F1 F2 F3

∣∣∣∣∣∣∣∣∣
=
(

∂f

∂y
F3 − ∂f

∂z
F2

)
i −
(

∂f

∂x
F3 − ∂f

∂z
F1

)
j +
(

∂f

∂x
F2 − ∂f

∂y
F1

)
k

=
〈
∂f

∂y
F3 − ∂f

∂z
F2,

∂f

∂z
F1 − ∂f

∂x
F3,

∂f

∂x
F2 − ∂f

∂y
F1

〉

Therefore, (1) gives

curl(f F) = f curl(F) + ∇f × F

28. Assume that f and g have continuous partial derivatives of order 2. Prove that∮
∂S

f ∇(g) · ds =
∫∫

S
∇(f ) × ∇(g) · ds

solution By Stokes’ Theorem, we have∫
∂S

f ∇(g) · ds =
∫∫

S
curl(f ∇g) · dS

We now use Eq.(8) to evaluate the curl of f ∇g. That is,∫
∂S

f ∇(g) · ds =
∫∫

S
(f curl(∇g) + ∇f × ∇g) · dS

=
∫∫

S
f curl(∇g) · dS +

∫∫
S

∇(g) × ∇(g) · dS (1)

Now, since the gradient field ∇f is conservative, this field satisfies the cross-partials condition. In other words,

curl(∇f ) = 0

Combining with (1) we obtain∫
∂S

f (∇g) · ds =
∫∫

S
0 · dS +

∫∫
S

∇(f ) × ∇(g) · dS =
∫∫

S
∇(f ) × ∇(g) · dS

29. Verify that B = curl(A) for r > R in the setting of Example 6.

solution As observed in the example,

curl(〈f, g, 0〉) = 〈−gz, fz, gx − fy

〉
and recall r = x2 + y2. For r > R, this yields

curl(A) = 1

2
R2B

〈
0, 0,

∂

∂x
(xr−2) − ∂

∂y
(−yr−2)

〉
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The z-component on the right is also zero:

∂

∂x
(xr−2) + ∂

∂y
(yr−2) = ∂

∂x

(
x

x2 + y2

)
+ ∂

∂y

(
y

x2 + y2

)

= (x2 + y2) − x(2x)

(x2 + y2)2
+ (x2 + y2) − y(2y)

(x2 + y2)2

= 0

Thus, curl(A) = 0 when r > R as required.

30. Explain carefully why Green’s Theorem is a special case of Stokes’ Theorem.

solution Let C be a simple closed curve enclosing a region D oriented counterclockwise in the xy-plane. We must
show, using Stokes’ Theorem, that for F = 〈F1, F2〉,∫

C
F · ds =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA

We consider D as a surface in three-space with parametrization

(x, y) = (x, y, 0), (x, y) ∈ D

The normal vector is

n = 〈0, 0, 1〉

C

z

y

x

n

D

We compute the curl of F = 〈F1, F2, 0〉. Since F1 = F1(x, y), F2 = F2(x, y), and F3 = 0, the curl of F is the vector

curl(F) =
〈
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

〉
=
〈
0, 0,

∂F2

∂x
− ∂F1

∂y

〉

Hence,

curl(F) · n =
〈
0, 0,

∂F2

∂x
− ∂F1

∂y

〉
· 〈0, 0, 1〉 = ∂F2

∂x
− ∂F1

∂y

By Stokes’ Theorem we have∫
C

F · ds =
∫∫

D
curl(F) · dS =

∫∫
D

curl(F) · n dA =
∫∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dA

We thus showed that Green’s Theorem is a special case of Stokes’ Theorem for two dimensions.

Further Insights and Challenges
31. In this exercise, we use the notation of the proof of Theorem 1 and prove∮

C
F3(x, y, z)k · ds =

∫∫
S

curl(F3(x, y, z)k) · dS 11

In particular, S is the graph of z = f (x, y) over a domain D, and C is the boundary of S with parametrization
(x(t), y(t), f (x(t), y(t))).

(a) Use the Chain Rule to show that

F3(x, y, z)k · ds = F3(x(t), y(t), f (x(t), y(t))
(
fx(x(t), y(t))x′(t) + fy(x(t), y(t))y′(t)

)
dt
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and verify that ∮
C

F3(x, y, z)k · ds =
∮
C0

〈
F3(x, y, z)fx(x, y), F3(x, y, z)fy(x, y)

〉 · ds

where C0 has parametrization (x(t), y(t)).

(b) Apply Green’s Theorem to the line integral over C0 and show that the result is equal to the right-hand side of Eq. (11).

solution Let (x(t), y(t)), a ≤ t ≤ b be a parametrization of the boundary curve C0 of the domain D.

z

y

x

(x, y, f (x, y))

(x, y)

n

C0
D

The boundary curve C of S projects on C0 and has the parametrization

γ (t) = (x(t), y(t), f (x(t), y(t))) , a ≤ t ≤ b

Let

F = 〈0, 0, F3(x, y, z)〉
We must show that ∫

C
F · ds =

∫∫
S

curl(F) · dS (1)

We first compute the surface integral, using the parametrization

S : (x, y) = (x, y, f (x, y))

The normal vector is

n = ∂

∂x
× ∂

∂y
= 〈1, 0, fx(x, y)〉 × 〈0, 1, fy(x, y)

〉 = (i + fx(x, y)k) × (j + fy(x, y)k
)

= −fy(x, y)j − fx(x, y)i + k = 〈−fx(x, y), −fy(x, y), 1
〉

We compute the curl of F:

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

0 0 F3(x, y, z)

∣∣∣∣∣∣∣∣∣
=
〈
∂F3(x, y, z)

∂y
, −∂F3(x, y, z)

∂x
, 0

〉

Hence,

curl(F) ((x, y)) · n =
〈
∂F3

∂y
(x, y, f (x, y)) − ∂F3

∂x
(x, y, f (x, y)) , 0

〉
· 〈−fx(x, y), −fy(x, y), 1

〉

= −∂F3 (x, y, f (x, y))

∂y
fx(x, y) + ∂F3 (x, y, f (x, y))

∂x
fy(x, y)

The surface integral is thus∫∫
S

curl(F) · dS =
∫∫

D

(
−∂F3 (x, y, f (x, y))

∂y
fx(x, y) + ∂F3 (x, y, f (x, y))

∂x
fy(x, y)

)
dx dy (2)

We now evaluate the line integral in (1). We have

F
(
γ (t)

) · γ ′(t) =
〈
0, 0, F3

(
x(t), y(t), f

(
x(t), y(t)

))〉 · 〈x′(t), y′(t), d

dt
f
(
x(t), y(t)

)〉

= F3

(
x(t), y(t), f

(
x(t), y(t)

)) d

dt
f
(
x(t), y(t)

)
(3)
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Using the Chain Rule gives

d

dt
f
(
x(t), y(t)

) = fx

(
x(t), y(t)

)
x′(t) + fy

(
x(t), y(t)

)
y′(t)

Substituting in (3), we conclude that the line integral is∫
C

F · ds =
∫ b

a

(
F3

(
x(t), y(t), f

(
x(t), y(t)

)) ·
(
fx

(
x(t), y(t)

)
x′(t) + fy

(
x(t), y(t)

)
y′(t)

))
dt (4)

We consider the following vector field:

G(x, y) = 〈F3
(
x, y, f (x, y)

)
fx(x, y), F3

(
x, y, f (x, y)

)
fy(x, y)

〉
Then the integral in (4) is the line integral of the planar vector field G over C0. That is,∫

C
F · ds =

∫
C0

G · ds

Therefore, we may apply Green’s Theorem and write∫
C

F · ds =
∫
C0

G · ds =
∫∫

D

(
∂

∂x

(
F3
(
x, y, f (x, y)

)
fy(x, y)

)
− ∂

∂y

(
F3
(
x, y, f (x, y)

)
fx(x, y)

))
dx dy (5)

We use the Product Rule to evaluate the integrand:

∂F3

∂x
(x, y, f (x, y)) fy(x, y) + F3

(
x, y, f (x, y)

)
fyx(x, y) − ∂F3

∂y

(
x, y, f (x, y)

)
fx(x, y) − F3

(
x, y, f (x, y)

)
fxy(x, y)

= ∂F3

∂x

(
x, y, f (x, y)

)
fy(x, y) − ∂F3

∂y

(
x, y, f (x, y)

)
fx(x, y)

Substituting in (5) gives∫
C

F · ds =
∫∫

D

(
∂F3 (x, y, f (x, y))

∂x
fy(x, y) − ∂F3 (x, y, f (x, y))

∂y
fx(x, y)

)
dx dy (6)

Equations(2) and(6) give the same result, hence∫
C

F · ds =
∫∫

S
curl(F) · ds

for

F = 〈0, 0, F3(x, y, z)〉

32. Let F be a continuously differentiable vector field in R3, Q a point, and S a plane containing Q with unit normal
vector e. Let Cr be a circle of radius r centered at Q in S, and let Sr be the disk enclosed by Cr . Assume Sr is oriented
with unit normal vector e.

(a) Let m(r) and M(r) be the minimum and maximum values of curl(F(P )) · e for P ∈ Sr . Prove that

m(r) ≤ 1

πr2

∫∫
Sr

curl(F) · dS ≤ M(r)

(b) Prove that

curl(F(Q)) · e = lim
r→0

1

πr2

∫
Cr

F · ds

This proves that curl(F(Q)) · e is the circulation per unit area in the plane S.

solution
(a) We may assume that the circle lies on the xy-plane, and parametrize Sr by

Sr : (x, y, z) = (x, y, 0), (x, y) ∈ Sr

en(Q) = e

Cr

Q

Sr
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Then, n is a unit vector and we have∫∫
Sr

curl(F) · dS =
∫∫

Sr

curl(F)(P ) · en(P ) dA (1)

We use the given information m(r) ≤ curl(F)(P ) · en(P ) ≤ M(r) for P ∈ Sr and properties of the double integral to
write

A(Sr )m(r) ≤
∫∫

Sr

curl(F)(P ) · en(P ) dA ≤ A(Sr ) · M(r)

The area of the disk is A(Sr ) = πr2. Therefore,

πr2m(r) ≤
∫∫

Sr

curl(F)(P ) · en(P ) dA ≤ πr2M(r)

or

m(r) ≤ 1

πr2

∫∫
Sr

curl(F)(P ) · en(P ) dA ≤ M(r)

Combining with (1) we get

m(r) ≤ 1

πr2

∫∫
Sr

curl(F) · dS ≤ M(r)

(b) By Stokes’ Theorem, ∫
Cr

F · ds =
∫∫

Sr

curl(F) · dS

By part(a) we have

m(r) ≤ 1

πr2

∫
Cr

F · ds ≤ M(r) (2)

We take the limit over the circles of radius r centered at Q, as r → 0. As r → 0, the regions Sr are approaching the
center Q. The continuity of the curl implies that

lim
r→0

m(r) = lim
r→0

M(r) = curl(F)(Q) · en(Q) = curl(F)(Q) · e

Therefore,

lim
r→0

m(r) ≤ lim
r→0

1

πr2

∫
Cr

F · ds ≤ lim
r→0

M(r)

curl(F)(Q) · e ≤ lim
r→0

1

πr2

∫
Cr

F · ds ≤ curl(F)(Q) · e

Hence,

lim
r→0

1

πr2

∫
Cr

F · ds = curl(F)(Q) · e

17.3 Divergence Theorem (LT Section 18.3)

Preliminary Questions
1. What is the flux of F = 〈1, 0, 0〉 through a closed surface?

solution The divergence of F = 〈1, 0, 0〉 is div(F) = ∂P
∂x

+ ∂Q
∂y

+ ∂R
∂z

= 0, therefore the Divergence Theorem
implies that the flux of F through a closed surface S is∫∫

S
F · dS =

∫∫∫
W

div(F) dV =
∫∫∫

W
0 dV = 0

2. Justify the following statement: The flux of F = 〈x3, y3, z3〉 through every closed surface is positive.

solution The divergence of F =
〈
x3, y3, z3

〉
is

div(F) = 3x2 + 3y2 + 3z2
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Therefore, by the Divergence Theorem, the flux of F through a closed surface S is∫∫
S

F · dS =
∫∫∫

W
(3x2 + 3y2 + 3z2) dV

Since the integrand is positive for all (x, y, z) �= (0, 0, 0), the triple integral, hence also the flux, is positive.

3. Which of the following expressions are meaningful (where F is a vector field and f is a function)? Of those that are
meaningful, which are automatically zero?

(a) div(∇f ) (b) curl(∇f ) (c) ∇curl(f )

(d) div(curl(F)) (e) curl(div(F)) (f) ∇(div(F))

solution

(a) The divergence is defined on vector fields. The gradient is a vector field, hence div(∇ϕ) is defined. It is not automat-
ically zero since for ϕ = x2 + y2 + z2 we have

div(∇ϕ) = div 〈2x, 2y, 2z〉 = 2 + 2 + 2 = 6 �= 0

(b) The curl acts on vector valued functions, and ∇ϕ is such a function. Therefore, curl(∇ϕ) is defined. Since the gradient
field ∇ϕ is conservative, the cross partials of ∇ϕ are equal, or equivalently, curl(∇ϕ) is the zero vector.

(c) The curl is defined on vector fields rather than on scalar functions. Therefore, curl(ϕ) is undefined. Obviously,
∇curl(ϕ) is also undefined.

(d) The curl is defined on the vector field F and the divergence is defined on the vector field curl(F). Therefore the
expression div (curl(F)) is meaningful. We show that this vector is automatically zero:

div (curl (F)) = div

〈
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

〉

= ∂

∂x

(
∂F3

∂y
− ∂F2

∂z

)
+ ∂

∂y

(
∂F1

∂z
− ∂F3

∂x

)
+ ∂

∂z

(
∂F2

∂x
− ∂F1

∂y

)

= ∂2F3

∂x∂y
− ∂2F2

∂x∂z
+ ∂2F1

∂y∂z
− ∂2F3

∂y∂x
+ ∂2F2

∂z∂x
− ∂2F1

∂z∂y

=
(

∂2F3

∂x∂y
− ∂2F3

∂y∂x

)
+
(

∂2F2

∂z∂x
− ∂2F2

∂x∂z

)
+
(

∂2F1

∂y∂z
− ∂2F1

∂z∂y

)

= 0 + 0 + 0 = 0

(e) The curl acts on vector valued functions, whereas div(F) is a scalar function. Therefore the expression curl (div(F))

has no meaning.

(f) div(F) is a scalar function, hence ∇(divF) is meaningful. It is not necessarily the zero vector as shown in the following
example:

F =
〈
x2, y2, z2

〉
div (F) = 2x + 2y + 2z

∇(divF) = 〈2, 2, 2〉 �= 〈0, 0, 0〉

4. Which of the following statements is correct (where F is a continuously differentiable vector field defined everywhere)?

(a) The flux of curl(F) through all surfaces is zero.

(b) If F = ∇ϕ, then the flux of F through all surfaces is zero.

(c) The flux of curl(F) through all closed surfaces is zero.

solution

(a) This statement holds only for conservative fields. If F is not conservative, there exist closed curves such that
∫
C F · ds �=

0, hence by Stokes’ Theorem
∫∫

S curl(F) · dS �= 0.

(b) This statement is false. Consider the unit sphere S in the three-dimensional space and the function ϕ(x, y, z) =
x2 + y2 + z2. Then F = ∇ϕ = 〈2x, 2y, 2z〉 and div (F) = 2 + 2 + 2 = 6. Using the Divergence Theorem, we have (W
is the unit ball in R3)∫∫

S
F · dS =

∫∫∫
W

div(F) dV =
∫∫∫

W
6 dV = 6

∫∫∫
W

dV = 6 Vol(W)

(c) This statement is correct, as stated in the corollary of Stokes’ Theorem in section 18.2.
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5. How does the Divergence Theorem imply that the flux of F = 〈x2, y − ez, y − 2zx
〉
through a closed surface is equal

to the enclosed volume?

solution By the Divergence Theorem, the flux is∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

(2x + 1 − 2x) dV =
∫∫∫

W
1 dV = Volume(W)

Therefore the statement is true.

Exercises
In Exercises 1–4, compute the divergence of the vector field.

1. F = 〈xy, yz, y2 − x3〉
solution The divergence of F is

div(F) = ∂

∂x
(xy) + ∂

∂y
(yz) + ∂

∂z
(y2 − x3) = y + z + 0 = y + z

2. xi + yj + zk

solution

div(F) = ∂

∂x
(x) + ∂

∂y
(y) + ∂

∂z
(z) = 1 + 1 + 1 = 3

3. F = 〈x − 2zx2, z − xy, z2x2〉
solution

div(F) = ∂

∂x
(x − 2zx2) + ∂

∂y
(z − xy) + ∂

∂z
(z2x2) = (1 − 4zx) + (−x) + (2zx2) = 1 − 4zx − x + 2zx2

4. sin(x + z)i − yexzk

solution

div(F) = ∂

∂x
sin(x + z) + ∂

∂z
(−yexz) = cos(x + z) − yxexz

5. Find a constant c for which the velocity field

v = (cx − y)i + (y − z)j + (3x + 4cz)k

of a fluid is incompressible [meaning that div(v) = 0].

solution We compute the divergence of v:

div(v) = ∂

∂x
(cx − y) + ∂

∂y
(y − z) + ∂

∂z
(3x + 4cz) = c + 1 + 4c = 5c + 1

Therefore, div(v) = 0 if 5c + 1 = 0 or c = − 1
5 .

6. Verify the identity div(curl(F)) = 0 where F = 〈F1, F2, F3〉. Assume that the components Fj have continuous
second-order derivatives.

solution Let F = 〈F1(x, y, z), F2(x, y, z), F3(x, y, z)〉. We compute the curl of F:

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

F1 F2 F3

∣∣∣∣∣∣∣∣∣
=
〈
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

〉

The divergence of curl(F) is thus

div(curl(F)) = ∂

∂x

(
∂F3

∂y
− ∂F2

∂z

)
+ ∂

∂y

(
∂F1

∂z
− ∂F3

∂x

)
+ ∂

∂z

(
∂F2

∂x
− ∂F1

∂y

)

= ∂2F3

∂x∂y
− ∂2F2

∂x∂z
+ ∂2F1

∂y∂z
− ∂2F3

∂y∂x
+ ∂2F2

∂z∂x
− ∂2F1

∂z∂y
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=
(

∂2F3

∂x∂y
− ∂2F3

∂y∂x

)
+
(

∂2F2

∂z∂x
− ∂2F2

∂x∂z

)
+
(

∂2F1

∂y∂z
− ∂2F1

∂z∂y

)

Since the second-order partials are continuous, the mixed partials are equal. Therefore,

div (curl(F)) = 0

In Exercises 7–10, verify the Divergence Theorem for the vector field and region.

7. F = 〈z, x, y〉, the box [0, 4] × [0, 2] × [0, 3]
solution Let S be the surface of the box and R the region enclosed by S.

z

y

x

3

2

4

We first compute the surface integral in the Divergence Theorem:∫∫
S

F · dS =
∫∫∫

R
div(F) dV (1)

We denote by Si , i = 1, . . . , 6, the faces of the box, starting at the face on the xz-plane and moving counterclockwise,
then moving to the bottom and the top. We use parametrizations

S1 : 1(x, z) = (x, 0, z), 0 ≤ x ≤ 4, 0 ≤ z ≤ 3

n = 〈0, −1, 0〉
S2 : 2(y, z) = (0, y, z), 0 ≤ y ≤ 2, 0 ≤ z ≤ 3

n = 〈−1, 0, 0〉
S3 : 3(x, z) = (x, 2, z), 0 ≤ x ≤ 4, 0 ≤ z ≤ 3

n = 〈0, 1, 0〉
S4 : 4(y, z) = (4, y, z), 0 ≤ y ≤ 2, 0 ≤ z ≤ 3

n = 〈1, 0, 0〉
S5 : 5(x, y) = (x, y, 0), 0 ≤ x ≤ 4, 0 ≤ y ≤ 2

n = 〈0, 0, −1〉
S6 : 6(x, y) = (x, y, 3), 0 ≤ x ≤ 4, 0 ≤ y ≤ 2

n = 〈0, 0, 1〉
Then, ∫∫

S1

F · dS =
∫ 3

0

∫ 4

0
F (1(x, z)) · 〈0, −1, 0〉 dx dz =

∫ 3

0

∫ 4

0
〈z, x, 0〉 · 〈0, −1, 0〉 dx dz

=
∫ 3

0

∫ 4

0
−x dx dz = 3

−x2

2

∣∣∣∣4
0

= −24

∫∫
S2

F · dS =
∫ 3

0

∫ 2

0
F (2(y, z)) · 〈−1, 0, 0〉 dy dz =

∫ 3

0

∫ 2

0
〈z, 0, y〉 · 〈−1, 0, 0〉 dy dz

=
∫ 3

0

∫ 2

0
−z dy dz = 2 · −z2

2

∣∣∣∣3
0

= −9

∫∫
S3

F · dS =
∫ 3

0

∫ 4

0
F (3(x, z)) · 〈0, 1, 0〉 dx dz =

∫ 3

0

∫ 4

0
〈z, x, 2〉 · 〈0, 1, 0〉 dx dz
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=
∫ 3

0

∫ 4

0
x dx dz = 3 · x2

2

∣∣∣∣4
0

= 24

∫∫
S4

F · dS =
∫ 3

0

∫ 2

0
F (4(y, z)) · 〈1, 0, 0〉 dy dz =

∫ 3

0

∫ 2

0
〈z, 4, y〉 · 〈1, 0, 0〉 dy dz

=
∫ 3

0

∫ 2

0
z dy dz = 2 · z2

2

∣∣∣∣3
0

= 9

∫∫
S5

F · dS =
∫ 2

0

∫ 4

0
F (5(x, y)) · 〈0, 0, −1〉 dx dy =

∫ 2

0

∫ 4

0
〈0, x, y〉 · 〈0, 0, −1〉 dx dy

=
∫ 2

0

∫ 4

0
−y dx dy = 4 · −y2

2

∣∣∣∣2
0

= −8

∫∫
S6

F · dS =
∫ 2

0

∫ 4

0
F (6(x, y)) · n dx dy =

∫ 2

0

∫ 4

0
〈3, x, y〉 · 〈0, 0, 1〉 dx dy

=
∫ 2

0

∫ 4

0
y dx dy = 4 · y2

2

∣∣∣∣2
0

= 8

We add the integrals to obtain the surface integral

∫∫
S

F · dS =
6∑

i=1

∫∫
Si

F · dS = −24 − 9 + 24 + 9 − 8 + 8 = 0 (2)

We now evaluate the triple integral in (1). We compute the divergence of F = 〈z, x, y〉:

div(F) = ∂

∂x
(z) + ∂

∂y
(x) + ∂

∂z
(y) = 0

Hence, ∫∫∫
R

div(F) dV =
∫∫∫

R
0 dV = 0 (3)

The equality of the integrals in (2) and (3) verifies the Divergence Theorem.

8. F = 〈y, x, z〉, the region x2 + y2 + z2 ≤ 4

solution Let S be the surface of the sphere and R the ball enclosed by S. We compute both sides of the Divergence
Theorem: ∫∫

S
F · dS =

∫∫∫
R

div(F) dV (1)

Step 1. Integral over sphere. We use the parametrization

S : (θ, φ) = (2 cos θ sin φ, 2 sin θ sin φ, 2 cos φ), 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

n = 4 sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉
Then,

F ((θ, φ)) · n = 2 〈sin θ sin φ, cos θ sin φ, cos φ〉 · 4 sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉
= 8

(
sin θ cos θ sin3 φ + cos θ sin θ sin3 φ + cos2 φ sin φ

)
= 8 sin 2θ sin3 φ + 8 cos2 φ sin φ

The surface integral is thus

∫∫
S

F · dS =
∫ π

0

∫ 2π

0
F ((θ, φ)) · n dθ dφ =

∫ π

0

∫ 2π

0

(
8 sin 2θ sin3 φ + 8 cos2 φ sin φ

)
dθ dφ

=
(

8
∫ 2π

0
sin 2θ dθ

)(∫ π

0
sin3 φdφ

)
+ 16π

∫ π

0
cos2 φ sin φ dφ

= 0 + 16π

(
− cos3 φ

3

∣∣∣∣π
0

)
= −16π

3
(−1 − 1) = 32π

3
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We compute the triple integral in (1):

divF = div 〈y, x, z〉 = ∂

∂x
(y) + ∂

∂y
(x) + ∂

∂z
(z) = 1

∫∫∫
R

div(F) dV =
∫∫∫

R
1 dV = Volume(R) = 4π · 23

3
= 32π

3
(2)

The equality of the integrals in (2) and (3) verifies the Divergence Theorem.

9. F = 〈2x, 3z, 3y〉, the region x2 + y2 ≤ 1, 0 ≤ z ≤ 2

solution

z

y

x

2

1

Let S be the surface of the cylinder and R the region enclosed by S. We compute the two sides of the Divergence Theorem:∫∫
S

F · dS =
∫∫∫

R
div(F) dV (1)

We first calculate the surface integral.

Step 1. Integral over the side of the cylinder. The side of the cylinder is parametrized by

(θ, z) = (cos θ, sin θ, z), 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 2

n = 〈cos θ, sin θ, 0〉

Then,

F ((θ, z)) · n = 〈2 cos θ, 3z, 3 sin θ〉 · 〈cos θ, sin θ, 0〉 = 2 cos2 θ + 3z sin θ

We obtain the integral

∫∫
side

F · dS =
∫ 2

0

∫ 2π

0

(
2 cos2 θ + 3z sin θ

)
dθ dz = 4

∫ 2π

0
cos2 θ dθ +

(∫ 2

0
3z dz

)(∫ 2π

0
sin θ dθ

)

= 4 ·
(

θ

2
+ sin 2θ

4

∣∣∣∣2π

0

)
+ 0 = 4π

Step 2. Integral over the top of the cylinder. The top of the cylinder is parametrized by

(x, y) = (x, y, 2)

with parameter domain D =
{
(x, y) : x2 + y2 ≤ 1

}
. The upward pointing normal is

n = Tx × Ty = 〈1, 0, 0〉 × 〈0, 1, 0〉 = i × j = k = 〈0, 0, 1〉

Also,

F ((x, y)) · n = 〈2x, 6, 3y〉 · 〈0, 0, 1〉 = 3y

Hence, ∫∫
top

F · dS =
∫∫

D
3y dA = 0

The last integral is zero due to symmetry.
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1
x

y

D

Step 3. Integral over the bottom of the cylinder. We parametrize the bottom by

(x, y) = (x, y, 0), (x, y) ∈ D

The downward pointing normal is n = 〈0, 0, −1〉. Then

F ((x, y)) · n = 〈2x, 0, 3y〉 · 〈0, 0, −1〉 = −3y

We obtain the following integral, which is zero due to symmetry:∫∫
bottom

F · dS =
∫∫

D
−3y dA = 0

Adding the integrals we get∫∫
S

F · dS =
∫∫

side
F · dS +

∫∫
top

F · dS +
∫∫

bottom
F · dS = 4π + 0 + 0 = 4π (2)

Step 4. Compare with integral of divergence.

div(F) = div 〈2x, 3z, 3y〉 = ∂

∂x
(2x) + ∂

∂y
(3z) + ∂

∂z
(3y) = 2

∫∫∫
R

div (F) dV =
∫∫∫

R
2 dV = 2

∫∫∫
R

dV = 2 Vol(R) = 2 · π · 2 = 4π (3)

The equality of (2) and (3) verifies the Divergence Theorem.

10. F = 〈x, 0, 0〉, the region x2 + y2 ≤ z ≤ 4

solution

−2
0

−2 −1 0
0

1

2

3

4

1 2
x

y

Let S be the surface enclosing the given region R. We must verify the equality∫∫
S

F · dS =
∫∫∫

R
div(F) dV (1)

We first compute the surface integral on the left-hand side.

Step 1. Integral over the side of the surface. The side of the surface is parametrized by

(θ, t) =
(
t cos θ, t sin θ, t2

)
, 0 ≤ t ≤ 2, 0 ≤ θ ≤ 2π

The outward pointing normal is

n = Tθ × Tt =
∣∣∣∣∣∣

i j k
−t sin θ t cos θ 0

cos θ sin θ 2t

∣∣∣∣∣∣ =
〈
2t2 cos θ, 2t2 sin θ, −t

〉

Also,

F ((θ, t)) · n = 〈t cos θ, 0, 0〉 ·
〈
2t2 cos θ, 2t2 sin θ, −t

〉
= 2t3 cos2 θ
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The surface integral over the side is

∫∫
side

F · dS =
∫ 2π

0

∫ 2

0
2t3 cos2 θ dt dθ =

(∫ 2π

0
cos2 θ dθ

)(∫ 2

0
2t3 dt

)

=
(

θ

2
+ sin 2θ

4

∣∣∣∣2π

θ=0

)(
t4

2

∣∣∣∣2
t=0

)
= 8π (2)

Step 2. Integral over the top of the surface. The top of the surface is parametrized by (x, y) = (x, y, 4) with parameter

domain D =
{
(x, y) : x2 + y2 ≤ 2

}
. The upward pointing normal vector is

n = Tx × Ty = 〈1, 0, 0〉 × 〈0, 1, 0〉 = i × j = k = 〈0, 0, 1〉
Also,

F ((x, y)) · n = 〈x, 0, 0〉 · 〈0, 0, 1〉 = 0

Hence, ∫∫
top

F · dS =
∫∫

D
0 dA = 0 (3)

Adding the surface integrals (2) and (3) we get∫∫
S

F · dS =
∫∫

side
F · dS +

∫∫
top

F · dS = 8π + 0 = 8π

Step 3. Compare with integral of divergence.

x

y

2

D

We compute the divergence:

div(F) = ∂

∂x
(x) + ∂

∂y
(0) + ∂

∂z
(0) = 1

We obtain the following triple integral:

∫∫∫
R

div(F) · dV =
∫∫∫

R
1 dV =

∫∫
D

(∫ 4

x2+y2
dz

)
dx dy =

∫∫
D

(
4 − (x2 + y2)

)
dx dy

=
∫ 2π

0

∫ 2

0
(4 − r2)r dr dθ = 2π

∫ 2

0

(
4r − r3

)
dr = 2π

(
2r2 − r4

4

∣∣∣∣2
0

)

= 2π · 4 = 8π (4)

The equality of (2) and (4) verifies the Divergence Theorem.

In Exercises 11–18, use the Divergence Theorem to evaluate the flux
∫∫

S
F · dS.

11. F =
〈
0, 0, z3/3

〉
, S is the sphere x2 + y2 + z2 = 1.

solution We compute the divergence of F =
〈
0, 0, z3/3

〉
:

divF = ∂

∂x
(0) + ∂

∂y
(0) + ∂

∂z
(z3/3) = z2
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Hence, by the Divergence Theorem (W is the unit ball),∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

z2 dV

Computing this integral we see:

∫∫∫
W

z2 dV =
∫ 2π

0

∫ π

0

∫ 1

0
ρ2 cos2 φ · ρ2 sin φ dρ dφ dθ

=
∫ 2π

0
dθ ·

∫ π

0
cos2 φ sin φ dφ ·

∫ 1

0
ρ4 dρ

= (2π) ·
(

− cos3 φ

3

∣∣∣∣π
0

)
·
(

ρ5

5

∣∣∣∣1
0

)

= 2π

(
−1

3
(−1 − 1)

)(
1

5

)

= 2π

(
2

3

)(
1

5

)
= 4π

15

12. F = 〈y, z, x〉, S is the sphere x2 + y2 + z2 = 1.

solution We compute the divergence of F = 〈y, z, x〉:

div(F) = ∂

∂x
(y) + ∂

∂y
(z) + ∂

∂z
(x) = 0 + 0 + 0 = 0

Hence, by the Divergence Theorem (W is the unit ball),∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

0 dV = 0

13. F = 〈x3, 0, z3〉, S is the octant of the sphere x2 + y2 + z2 = 4, in the first octant x ≥ 0, y ≥ 0, z ≥ 0.

solution We compute the divergence of F =
〈
x3, 0, z3

〉
:

div(F) = ∂

∂x
(x3) + ∂

∂y
(0) + ∂

∂z
(z3) = 3x2 + 3z2 = 3(x2 + z2)

Using the Divergence Theorem we obtain (W is the region inside the sphere)∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

3(x2 + z2) dV

We convert the integral to spherical coordinates. We have

x2 + z2 = ρ2 cos2 θ sin2 φ + ρ2 cos2 φ = ρ2 cos2 θ sin2 φ + ρ2(1 − sin2 φ)

= −ρ2 sin2 φ(1 − cos2 θ) + ρ2 = −ρ2 sin2 φ sin2 θ + ρ2 = ρ2(1 − sin2 φ sin2 θ)

We obtain the following integral:

∫∫
S

F · dS = 3
∫ 2π

0

∫ π/2

0

∫ 2

0
ρ2(1 − sin2 φ sin2 θ) · ρ2 sin φ dρ dφ dθ

= 3
∫ 2π

0

∫ π/2

0

∫ 2

0
ρ4(sin φ − sin3 φ sin2 θ)dρ dφ dθ

= 3
∫ 2π

0

∫ π/2

0

∫ 2

0
ρ4 sin φ dρ dφ dθ − 3

∫ 2π

0

∫ π/2

0

∫ 2

0
ρ4 sin3 φ sin2 θ dρ dφ dθ

= 6π

(∫ π/2

0
sin φ dφ

)(∫ 2

0
ρ4 dρ

)
− 3

(∫ 2π

0
sin2 θ dθ

)(∫ π/2

0
sin3 φ dφ

)(∫ 2

0
ρ4 dρ

)

= 6π

(
− cos φ

∣∣∣∣π/2

φ=0

)(
ρ5

5

∣∣∣∣2
ρ=0

)(
−3

θ

2
− sin 2θ

4

∣∣∣∣2π

θ=0

)
·
(

− sin2 φ cos φ

3
− 2

3
cos φ

∣∣∣∣π/2

φ=0

)(
ρ5

5

∣∣∣∣2
ρ=0

)

= 6π · 32

5
− 3π · 2

3
· 32

5
= 128π

5
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14. F = 〈ex+y, ex+z, ex+y
〉
, S is the boundary of the unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

solution Let W denote the box [0, 1] × [0, 1] × [0, 1]. By the Divergence Theorem,∫∫
S

F · dS =
∫∫∫

W
div(F) dV

We compute the divergence of F = 〈ex+y, ex+z, ex+y
〉
:

div(F) = ∂

∂x
(ex+y) + ∂

∂y
(ex+z) + ∂

∂z
(ex+y) = ex+y + 0 + 0 = ex+y

By the Divergence Theorem we have∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

ex+y dV

We compute the triple integral:

∫∫∫
W

ex+y dV =
∫ 1

0

∫ 1

0

∫ 1

0
ex · ey dxdydz

=
∫ 1

0
dz ·

∫ 1

0
ex dx ·

∫ 1

0
ey dy

= (1) · ex

∣∣∣∣1
0

· ey

∣∣∣∣1
0

= (e − 1)2

15. F = 〈x, y2, z + y
〉
, S is the boundary of the region contained in the cylinder x2 + y2 = 4 between the planes z = x

and z = 8.

solution Let W be the region enclosed by S.

z

yx

We compute the divergence of F =
〈
x, y2, z + y

〉
:

div(F) = ∂

∂x
(x) + ∂

∂y
(y2) + ∂

∂z
(z + y) = 1 + 2y + 1 = 2 + 2y.

By the Divergence Theorem we have∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

(2 + 2y) dV

We compute the triple integral. Denoting by D the disk x2 + y2 ≤ 4 in the xy-plane, we have

∫∫
S

F · dS =
∫∫

D

∫ 8

x
(2 + 2y) dz dx dy =

∫∫
D

(2 + 2y)z

∣∣∣∣8
z=x

dx dy =
∫∫

D
(2 + 2y)(8 − x) dx dy

We convert the integral to polar coordinates:

∫∫
S

F · dS =
∫ 2π

0

∫ 2

0
(2 + 2r sin θ)(8 − r cos θ)r dr dθ

=
∫ 2π

0

∫ 2

0

(
16r + 2r2(8 sin θ − cos θ) − r3 sin 2θ

)
dr dθ

=
∫ 2π

0
8r2 + 2

3
r3(8 sin θ − cos θ) − r4

4
sin 2θ

∣∣∣∣2
r=0

dθ
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=
∫ 2π

0

(
32 + 16

3
(8 sin θ − cos θ) − 4 sin 2θ

)
dθ

= 64π + 128

3

∫ 2π

0
sin θ dθ − 16

3

∫ 2π

0
cos θ dθ −

∫ 2π

0
4 sin 2θ dθ = 64π

16. F = 〈
x2 − z2, ez2 − cos x, y3〉, S is the boundary of the region bounded by x + 2y + 4z = 12 and the coordinate

planes in the first octant.

solution We compute the divergence of F =
〈
x2 − z2, ez2 − cos x, y3

〉
:

div(F) = ∂

∂x
(x2 − z2) + ∂

∂y

(
ez2 − cos x

)+ ∂

∂z
(y3) = 2x.

By the Divergence Theorem, ∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

2x dV .

z

y

x

3

6

12

To compute the triple integral, we describe the region W by the inequalities

0 ≤ x ≤ 12, 0 ≤ y ≤ −x

2
+ 6, 0 ≤ z ≤ 3 − y

2
− x

4
.

y

x

D

12

6
1
2

y = − x + 6

Thus,

∫∫
S

F · dS =
∫ 12

0

∫ −x/2+6

0

∫ 3− y
2 − x

4

0
2x dz dy dx =

∫ 12

0

∫ −x/2+6

0
2xz

∣∣∣∣3− y
2 − x

4

z=0
dy dx

=
∫ 12

0

∫ −x/2+6

0
2x
(

3 − y

2
− x

4

)
dy dx =

∫ 12

0
2x

(
3y − y2

4
− xy

4

) ∣∣∣∣−x/2+6

y=0
dx

=
∫ 12

0
2x

((
3 − x

4

) (
6 − x

2

)
−
(
6 − x

2

)2
4

)
dx

We let u = 6 − x
2 and du = − 1

2 dx:

∫ 12

0
2x ·

(
6 − x

2

)2
4

dx =
∫ 6

0
2(6 − u)u2 du = 4u3 − 1

2
u4
∣∣∣∣6
0

= 216.

17. F = 〈x + y, z, z − x〉, S is the boundary of the region between the paraboloid z = 9 − x2 − y2 and the xy-plane.

solution We compute the divergence of F = 〈x + y, z, z − x〉,

div(F) = ∂

∂x
(x + y) + ∂

∂y
(z) + ∂

∂z
(z − x) = 1 + 0 + 1 = 2.
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z

y
3

9

x

Using the Divergence Theorem we have∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

2 dV

We compute the triple integral:

∫∫
S

F · dS =
∫∫∫

W
2 dV =

∫∫
D

∫ 9−x2−y2

0
2 dz dx dy =

∫∫
D

2z

∣∣∣∣9−x2−y2

0
dx dy

=
∫∫

W
2(9 − x2 − y2) dx dy

3

x2 + y2 = 9

x

y

D

We convert the integral to polar coordinates:

x = r cos θ, y = r sin θ, 0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π∫∫
S

F · dS =
∫ 2π

0

∫ 3

0
2
(

9 − r2
)

r dr dθ = 4π

∫ 3

0
(9r − r3) dr = 4π

(
9r2

2
− r4

4

∣∣∣∣3
0

)
= 81π

18. F = 〈ez2
, 2y + sin(x2z), 4z +

√
x2 + 9y2

〉
, S is the region

x2 + y2 ≤ z ≤ 8 − x2 − y2.

solution First, let us solve for the boundary (or intersection) of the two surfaces:

8 − x2 − y2 = x2 + y2

8 = 2x2 + 2y2

x2 + y2 = 4

The intersection of the two surfaces is a circle of radius 2 centered at the origin.

We compute the divergence of F = 〈ez2
, 2y + sin(x2z), 4z +

√
x2 + 9y2

〉
:

divF = ∂

∂x
(ez2

) + ∂

∂y
(2y + sin(x2z)) + ∂

∂z
(4z +

√
x2 + 9y2) = 0 + 2 + 4 = 6

Using the Divergence Theorem we have∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

6 dV

We compute the triple integral:

∫∫
S

F · dS =
∫∫∫

W
6 dV =

∫∫
D

∫ 8−x2−y2

x2+y2
6 dz dx dy

We convert this triple integral to cylindrical coordinates:

x = r cos θ, y = r sin θ, 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π
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∫∫
S

F · dS = 6
∫ 2π

0

∫ 2

0

∫ 8−r2

r2
r dz dr dθ

= 6
∫ 2π

0
dθ ·

∫ 2

0
r[(8 − r2) − r2] dr

= 6(2π)

∫ 2

0
8r − 2r3 dr = 12π

(
4r2 − 1

2
r4
∣∣∣∣2
0

)

= 12π(16 − 8) = 96π

19. Calculate the flux of the vector field F = 2xyi − y2j + k through the surface S in Figure 18. Hint: Apply the
Divergence Theorem to the closed surface consisting of S and the unit disk.

solution From the diagram in the book, S is the surface in question bounded by the unit circle. Let T be the union of
S and the unit disk D. Then T is a closed surface, and we may apply the Divergence Theorem:∫∫

S
F · dS +

∫∫
D

F · dS =
∫∫

T
F · dS =

∫∫∫
W

div(F) · dS

where W is the region enclosed by T . Now we observe that F =
〈
2xy, −y2, 1

〉
and we compute the divergence of F:

div(F) = ∂

∂x
(2xy) + ∂

∂y
(−y2) + ∂

∂z
(1) = 2y − 2y + 0 = 0

Therefore, the triple integral is zero and we obtain:∫∫
S

F · dS = −
∫∫

D
F · dS (1)

where D is oriented with a downward pointing normal. Let (r, θ) = (r cos θ, r sin θ, 0) be the parametrization of D

with polar coordinates. Then

F((r, θ)) =
〈
2r2 cos θ sin θ, −r2 sin2 θ, 1

〉
Furthermore,

r(r, θ) = 〈cos θ, sin θ, 0〉 , θ (r, θ) = 〈−r sin θ, r cos θ, 0〉
and r × θ = 〈0, 0, r〉 is an upward pointing normal. Finally,

F · dS = F((r, θ)) · (r × θ) dr dθ = r dr dθ

The integral on the right in (1) uses a downward pointing normal, so we may drop the minus sign and use the upward-
pointing normal to obtain:

∫∫
S

F · dS =
∫ 2π

0

∫ 1

0
r dr dθ = π

20. Let S1 be the closed surface consisting of S in Figure 18 together with the unit disk. Find the volume enclosed by
S1, assuming that ∫∫

S1

〈x, 2y, 3z〉 · dS = 72

S

y

x

z

1

Unit circle

FIGURE 18 Surface S whose boundary is the unit circle.
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solution First, let F = 〈x, 2y, 3z〉. By the Divergence Theorem we can conclude∫∫
S1

〈x, 2y, 3z〉 · dS =
∫∫∫

W
divF dV

where

divF = ∂

∂x
(x) + ∂

∂y
(2y) + ∂

∂z
(3z) = 1 + 2 + 3 = 6

So then

72 =
∫∫

S1

〈x, 2y, 3z〉 · dS =
∫∫∫

W
divF dV =

∫∫∫
W

6 dV = 6 · Volume(W)

Therefore, Volume(W) = 12.

21. Let S be the half-cylinder x2 + y2 = 1, x ≥ 0, 0 ≤ z ≤ 1. Assume that F is a horizontal vector field (the z-component
is zero) such that F(0, y, z) = zy2i. Let W be the solid region enclosed by S, and assume that∫∫∫

W
div(F) dV = 4

Find the flux of F through the curved side of S.

solution The flux through the top and bottom of the surface are zero. The flux through the flat side (with outward
normal −i) is

−
∫ 1

z=0

∫ 1

y=−1
zy2 dydz = −1

2
(

2

3
) = −1

3

The flux through the curved side is 4 + 1
3 = 13

3 .

22. Volume as a Surface Integral Let F = 〈x, y, z〉. Prove that if W is a region R3 with a smooth boundary S, then

Volume(W) = 1

3

∫∫
S

F · dS 10

solution Using the volume as a triple integral we have

Volume(W) =
∫∫∫

W
1 dV (1)

We compute the surface integral of F over S, using the Divergence Theorem. Since div(F) = ∂
∂x

(x) + ∂
∂y

(y) + ∂
∂z

(z) = 3,
we get ∫∫

S
F · dS =

∫∫∫
W

div(F) dV =
∫∫∫

W
3 dV = 3

∫∫∫
W

1 dV (2)

We combine (1) and (2) to obtain ∫∫
S

F · dS = 3 · volume(W)

or

Volume(W) = 1

3

∫∫
S

F · dS

23. Use Eq. (10) to calculate the volume of the unit ball as a surface integral over the unit sphere.

solution Let S be the unit sphere and W is the unit ball. By Eq. (10) we have

Volume(W) = 1

3

∫∫
S

F · dS, F = 〈x, y, z〉

To compute the surface integral, we parametrize S by

(θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ), 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

n = sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉
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Then

F ((θ, φ)) · n = 〈cos θ sin φ, sin θ sin φ, cos φ〉 ·
〈
cos θ sin2 φ, sin θ sin2 φ, cos φ sin φ

〉
= cos2 θ sin3 φ + sin2 θ sin3 φ + cos2 φ sin φ = sin3 φ(cos2 θ + sin2 θ) + cos2 φ sin φ

= sin3 φ + cos2 φ sin φ = sin3 φ + (1 − sin2 φ) sin φ = sin φ

We obtain the following integral:

Volume(W) = 1

3

∫ 2π

0

∫ π

0
sin φ dφ dθ = 1

3
· 2π

∫ π

0
sin φ dφ = 2π

3

(
− cos φ

∣∣∣∣π
0

)
= 2π

3
(1 + 1) = 4π

3

24. Verify that Eq. (10) applied to the box [0, a] × [0, b] × [0, c] yields the volume V = abc.

solution Recall the result

Volume(W) = 1

3

∫∫
S

F · dS

= 1

3

∫∫∫
W

div(F) dV

= 1

3

∫∫∫
W

(1 + 1 + 1) dV =
∫∫∫

W
dV

=
∫ c

0

∫ b

0

∫ a

0
dV = abc

25. Let W be the region in Figure 19 bounded by the cylinder x2 + y2 = 4, the plane z = x + 1, and the xy-plane. Use

the Divergence Theorem to compute the flux of F =
〈
z, x, y + z2

〉
through the boundary of W .

x

y

z

FIGURE 19

solution We compute the divergence of F =
〈
z, x, y + z2

〉
:

div(F) = ∂

∂x
(z) + ∂

∂y
(x) + ∂

∂z
(y + z2) = 2z

By the Divergence Theorem we have

∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

2 dV

To compute the triple integral, we identify the projection D of the region on the xy-plane. D is the region in the xy plane
enclosed by the circle x2 + y2 = 4 and the line 0 = x + 1 or x = −1. We obtain the following integral:

∫∫
S

F · dS =
∫∫∫

W
2z dV =

∫∫
D

∫ x+1

0
2z dz dx dy =

∫∫
D

z2
∣∣∣∣x+1

z=0
dx dy =

∫∫
D

(x + 1)2 dx dy

We compute the double integral as the difference of two integrals: the integral over the disk D2 of radius 2, and the integral
over the part D1 of the disk, shown in the figure.
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x

y

3

D1

We obtain ∫∫
S

F · dS =
∫∫

D2

(x + 1)2 dx dy −
∫∫

D1

(x + 1)2 dx dy

x

y

3

D2

We compute the first integral, converting to polar coordinates:

∫∫
D2

(x + 1)2 dx dy =
∫ 2π

0

∫ 2

0
(r cos θ + 1)2r dr dθ

=
∫ 2π

0

∫ 2

0
r3 cos2 θ + 2r2 cos θ + r dr dθ

=
∫ 2π

0

r4

4
cos2 θ + 2

3
r3 cos θ + 1

2
r2
∣∣∣∣2
0
dθ

=
∫ 2π

0
4 cos2 θ + 16

3
cos θ + 2 dθ

=
∫ 2π

0
2 cos 2θ + 16

3
cos θ + 4 dθ

= sin 2θ + 16

3
sin θ + 4θ

∣∣∣∣2π

0
= 8π

We compute the second integral over the upper part of D1. Due to symmetry, this integral is equal to half of the integral
over D1.

x

y

3−1

q

We describe the region in polar coordinates:

2π

3
≤ θ ≤ π,

−1

cos θ
≤ r ≤ 2
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Then ∫∫
D1

(x + 1)2 dx dy = 2
∫ π

2π/3

∫ 2

−1/ cos θ
(r cos θ + 1)2r dr dθ

=
∫ π

2π/3

∫ 2

−1/ cos θ
(r3 cos2 θ + 2r2 cos θ + r) dr dθ

=
∫ π

2π/3

r4

4
cos2 θ + 2

3
r3 cos θ + 1

2
r2
∣∣∣∣2
r= −1

cos θ

dθ

= 2
∫ π

2π/3
(4 cos2 θ + 16

3
cos θ + 2) −

(
cos2 θ

4 cos4 θ
− 2 cos θ

3 cos3 θ
+ 1

2 cos2 θ

)
dθ

= 2
∫ π

2π/3
2 cos 2θ + 4 + 16

3
cos θ − 1

4
sec2 θ + 2

3
sec2 θ − 1

2
sec2 θ dθ

= 2
∫ π

2π/3
2 cos 2θ + 4 + 16

3
cos θ − 1

12
sec2 θ dθ

= sin 2θ + 4θ + 16

3
sin θ − 1

12
tan θ

∣∣∣∣π
2π/3

= 2(4π) − 2

(
sin

4π

3
+ 8π

3
+ 16

3
sin

2π

3
− 1

12
tan

2π

3

)

= 8π − 2

(
−

√
3

2
+ 8π

3
+ 16

√
3

6
+

√
3

12

)

= 8π + √
3 − 16π

3
− 16

√
3

3
−

√
3

6

= 8π

3
+ √

3

(
1 − 16

3
− 1

6

)

= 8π

3
− 9

2

√
3

so we have ∫∫
S

F · dS = 8π −
∫∫

D1

(x + 1)2 dx dy ≈ 8π −
(

8π

3
− 9

2

√
3

)
= 16π

3
+ 9

2

√
3 ≈ 24.550.

26. Let I =
∫∫

S
F · dS, where

F =
〈

2yz

r2
, −xz

r2
, −xy

r2

〉

(r =
√

x2 + y2 + z2) and S is the boundary of a region W .

(a) Check that F is divergence-free.

(b) Show that I = 0 if S is a sphere centered at the origin. Explain, however, why the Divergence Theorem
cannot be used to prove this.

solution

(a) To find div(F), we first compute the partial derivatives of r =
√

x2 + y2 + z2:

∂r

∂x
= 2x

2
√

x2 + y2 + z2
= x

r
,

∂r

∂y
= 2y

2
√

x2 + y2 + z2
= y

r
,

∂r

∂z
= 2z

2
√

x2 + y2 + z2
= z

r

We compute the partial derivatives:

∂

∂x

(
2yz

r2

)
= 2yz

∂

∂x
(r−2) = 2yz · (−2)r−3 ∂r

∂x
= −4yz · r−3 x

r
= −4xyzr−4

∂

∂y

(
−xz

r2

)
= −xz

∂

∂y
(r−2) = −xz · (−2)r−3 ∂r

∂y
= 2zx · r−3 y

r
= 2xyzr−4

∂

∂z

(
−xy

r2

)
= −xy

∂

∂z
(r−2) = −xy · (−2)r−3 ∂r

∂z
= 2xyr−3 z

r
= 2xyzr−4
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The divergence of F is the sum of these partials. That is,

div(F) = −4xyzr−4 + 2xyzr−4 + 2xyzr−4 = 0

We conclude that F is divergence-free.

(b) We compute the flux of F over S, using the following parametrization:

S : (θ, φ) = (R cos θ sin φ, R sin θ sin φ, R cos φ), 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

n = R2 sin φ er where er = r−1 〈x, y, z〉
We compute the dot product:

F · n =
〈

2yz

r2
, −xz

r2
, −xy

r2

〉
· 〈x, y, z〉 r−1 · R2 sin φ = (2xyz − xyz − xyz)r−3 · R2 sin φ = 0

Therefore, F ((θ, φ)) · n = 0, so we have∫∫
S

F · dS =
∫ 2π

0

∫ π

0
F ((θ, φ)) · n dφ dθ =

∫ 2π

0

∫ π

0
0 dφ dθ = 0

The Divergence Theorem cannot be used since F is not defined at the origin, which is inside the ball with the boundary S.

27. The velocity field of a fluid v (in meters per second) has divergence div(v)(P ) = 3 at the point P = (2, 2, 2).
Estimate the flow rate out of the sphere of radius 0.5 centered at P .

solution

flow rate through the box ≈ div(v)(P ) ·
(

4

3
π(0.5)3

)
= π

2
≈ 1.57 m3/s

28. A hose feeds into a small screen box of volume 10 cm3 that is suspended in a swimming pool. Water flows across the
surface of the box at a rate of 12 cm3/s. Estimate div(v)(P ), where v is the velocity field of the water in the pool and P

is the center of the box. What are the units of div(v)(P )?

solution

flow rate through the box = 12 ≈ div(v)(P ) · (10)

Thus div(v)(P ) ≈ 1.2 sec−1.

29. The electric field due to a unit electric dipole oriented in the k-direction is E = ∇(z/r3), where r = (x2 + y2 + z2)1/2

(Figure 20). Let er = r−1 〈x, y, z〉.
(a) Show that E = r−3k − 3zr−4er .

(b) Calculate the flux of E through a sphere centered at the origin.

(c) Calculate div(E).

(d) Can we use the Divergence Theorem to compute the flux of E through a sphere centered at the origin?

x

z

FIGURE 20 The dipole vector field restricted to the xz-plane.

solution
(a) We first compute the partial derivatives of r:

∂r

∂x
= 1

2
(x2 + y2 + z2)

−1/2 · 2x = x

r

∂r

∂y
= 1

2
(x2 + y2 + z2)

−1/2 · 2y = y

r

∂r

∂z
= 1

2
(x2 + y2 + z2)

−1/2 · 2z = z

r
(1)
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We compute the partial derivatives of z
r3 , using the Chain Rule and the partial derivatives in (1):

∂

∂x

(
z

r3

)
= z

∂

∂x
(r−3) = z · (−3)r−4 ∂r

∂x
= −3z · r−4 x

r
= −3zx

r5 = −3zr−5x

∂

∂y

(
z

r3

)
= z

∂

∂y
(r−3) = z · (−3)r−4 ∂r

∂y
= −3z · r−4 y

r
= −3zr−5y

∂

∂z

(
z

r3

)
= ∂

∂z
(z · r−3) = 1 · r−3 + z · (−3)r−4 ∂r

∂z
= r−3 − 3z · r−4 · z

r
= r−3 − 3z2r−5

Therefore,

E = ∇
(

z

r3

)
= −3zr−5xi − 3zr−5yj + (r−3 − 3z2r−5)k

= r−3k − 3zr−4 · r−1(xi + yj + zk) = r−3k − 3zr−4er

(b) To compute the flux
∫∫

S E · dS we use the parametrization (θ, φ) = (R cos θ sin φ, R sin θ sin φ, R cos φ), 0 ≤
θ ≤ 2π , 0 ≤ φ ≤ π :

n = R2 sin φer

We compute E ((θ, φ)) · n. Since r = R on S, we get

E ((θ, φ)) · n =
(
R−3k − 3zR−4er

)
· R2 sin φer = R−1 sin φk · er − 3zR−2 sin φ

= R−1 sin φk · R−1(xi + yj + zk) − 3zR−2 sin φ

= R−2z sin φ − 3zR−2 sin φ = −2zR−2 sin φ

= −2R cos φ · R−2 sin φ = −R−1 sin 2φ

Hence,

∫∫
S

E · dS =
∫ 2π

0

∫ π

0
−R−1 sin 2φ dφ dθ = −2π

R

∫ π

0
sin 2φ dφ = π

R
cos 2φ

∣∣∣∣π
φ=0

= 0

(c) We use part (a) to write the vector E componentwise:

E = r−3k − 3zr−4er = r−3k − 3zr−4r−1 〈x, y, z〉 =
〈
−3zr−5x, −3zr−5y, −3z2r−5 + r−3

〉
To find div(E) we compute the following derivatives, using (1) and the laws of differentiation. This gives

∂

∂x
(−3zr−5x) = −3z

∂

∂x
(r−5x) = −3z

(
−5r−6 ∂r

∂x
x + r−5 · 1

)

= −3z
(
−5r−6x

x

r
+ r−5

)
= 3zr−7(5x2 − r2)

Similarly,

∂

∂y
(−3zr−5y) = 3zr−7(5y2 − r2)

and

∂

∂z
(−3z2r−5 + r−3) = −6zr−5 − 3z2(−5)r−6 ∂r

∂z
− 3r−4 ∂r

∂z

= −6zr−5 + 15z2r−6 z

r
− 3r−4 z

r
= 3zr−7(5z2 − 3r2)

Hence,

div(E) = 3zr−7(5x2 − r2 + 5y2 − r2 + 5z2 − 3r2) = 15zr−7(x2 + y2 + z2 − r2)

= 15zr−7(r2 − r2) = 0

(d) Since E is not defined at the origin, which is inside the ball W , we cannot use the Divergence Theorem to compute
the flux of E through the sphere.
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30. Let E be the electric field due to a long, uniformly charged rod of radius R with charge density δ per unit length
(Figure 21). By symmetry, we may assume that E is everywhere perpendicular to the rod and its magnitude E(d) depends
only on the distance d to the rod (strictly speaking, this would hold only if the rod were infinite, but it is nearly true if the
rod is long enough). Show that E(d) = δ/2πε0d for d > R. Hint: Apply Gauss’s Law to a cylinder of radius R and of
unit length with its axis along the rod.

z

x
y

d

E

FIGURE 21

solution Gauss’s Theorem asserts that if S is a closed surface, then the total charge Q enclosed by S is given by

Q =
∫∫

S
ε0E · dS

where ε0 is the dielectric coefficient in vacuum. Here, we take S is a closed cylinder of radius d and unit length that
encloses a charge Q = δ · 1 = δ. By symmetry, E is directed radially outward from the rod and its magnitude depends
only on the distance d:

E = E(d) 〈cos θ, 0, sin θ〉
By Gauss’s Theorem, for d > R,

δ =
∫∫

S
ε0E · dS =

∫∫
integral cylinder

ε0E · dS +
∫∫

bases
ε0E · dS

The second integral is zero because E is perpendicular to the normal vectors of the two bases. To compute the surface
integral over the side of the cylinder, we parametrize the side of S by (y, θ) = (d cos θ, y, d sin θ) for 0 ≤ y ≤ 1 and
0 ≤ θ ≤ 2π . It can be checked that the normal vector in this parametrization is

n = y × θ = 〈d cos θ, 0, d sin θ〉
Therefore,

E · n = dE(d)

and we

δ =
∫∫

S
ε0E · dS =

∫ 2π

0

∫ 1

0
ε0 dE(d) dy dθ = 2πε0 dE(d) (1)

r

R

E

1

We obtain

E(d) = δ

2πε0 d
.

31. Let W be the region between the sphere of radius 4 and the cube of side 1, both centered at the origin. What is the
flux through the boundary S = ∂W of a vector field F whose divergence has the constant value div(F) = −4?

solution Recall,

flux =
∫∫∫

W
div(F)dV

Using this fact we see:

flux =
∫∫∫

W
(−4)dV = −4 · V (W) = (−4)

(
256π

3
− 1

)
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32. Let W be the region between the sphere of radius 3 and the sphere of radius 2, both centered at the origin. Use the
Divergence Theorem to calculate the flux of F = xi through the boundary S = ∂W .

solution We first calculate the divergence of F = 〈x, 0, 0〉:

div(F) = ∂

∂x
(x) + ∂

∂y
(0) + ∂

∂z
(0) = 1

Then to calculate flux, we use the Divergence Theorem:

flux =
∫∫

W
div(F) dV =

∫∫
W

1 dV = Volume(W) = 4

3
π(3)3 − 4

3
π(2)3 = 76π

3

33. Find and prove a Product Rule expressing div(f F) in terms of div(F) and ∇f .

solution Let F = 〈P, Q, R〉. We compute div(f F):

div(f F) = div 〈f P, f Q, f R〉 = ∂

∂x
(f P ) + ∂

∂y
(f Q) + ∂

∂z
(f R)

Applying the product rule for scalar functions we obtain

div(f F) =
(

f
∂P

∂x
+ ∂f

∂x
P

)
+
(

f
∂Q

∂y
+ ∂f

∂y
Q

)
+
(

f
∂R

∂z
+ ∂f

∂z
R

)

= f

(
∂P

∂x
+ ∂Q

∂y
+ ∂R

∂z

)
+ ∂f

∂x
P + ∂f

∂y
Q + ∂f

∂z
R = f div(F) + F · ∇f

We thus proved the following identity:

div(f F) = f div(F) + F · ∇f

34. Prove the identity

div(F × G) = curl(F) · G − F · curl(G)

Then prove that the cross product of two irrotational vector fields is incompressible [F is called irrotational if curl(F) = 0
and incompressible if div(F) = 0].

solution We compute the left-hand side of the identity. For F = 〈P, Q, R〉 and G = 〈S, T , U〉 we have

F × G =
∣∣∣∣∣∣

i j k
P Q R

S T U

∣∣∣∣∣∣ = (QU − RT )i − (PU − RS)j + (PT − QS)k

div(F × G) = ∂

∂x
(QU − RT ) − ∂

∂y
(PU − RS) + ∂

∂z
(PT − QS)

= (QxU + QUx − RxT − RTx) − (PyU + PUy − RyS − RSy

)+ (PzT + PTz − QzS − QSz)

= S(Ry − Qz) + T (Pz − Rx) + U(Qx − Py) − P(Uy − Tz) − Q(Sz − Ux) − R(Tx − Sy)

We compute the right hand side of the given identity. We have

curl(F) = 〈Ry − Qz, Pz − Rx, Qx − Py

〉
curl(G) = 〈Uy − Tz, Sz − Ux, Tx − Sy

〉
Thus,

G · curl(F) − F · curl(G) = 〈S, T , U〉 · 〈Ry − Qz, Pz − Rx, Qx − Py

〉
− 〈P, Q, R〉 · 〈Uy − Tz, Sz − Ux, Tx − Sy

〉
= S(Ry − Qz) + T (Pz − Rx) + U(Qx − Py)

− P(Uy − Tz) − Q(Sz − Ux) − R(Tx − Sy)

This, with (1), proves the identity

div(F × G) = G · curl(F) − F · curl(G).

Thus, if both F and G are irrotational (that is, with curl zero), then their cross product is source-free (that is, with divergence
zero), as div F × G = G · 0 − F · 0 = 0.
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35. Prove that div(∇f × ∇g) = 0.

solution We compute the cross product:

∇f × ∇g = 〈fx, fy, fz

〉× 〈gx, gy, gz

〉 =
∣∣∣∣∣∣

i j k
fx fy fz

gx gy gz

∣∣∣∣∣∣
= 〈fygz − fzgy, fzgx − fxgz, fxgy − fygx

〉
We now compute the divergence of this vector. Using the Product Rule for scalar functions and the equality of the mixed
partials, we obtain

div(∇f × ∇g) = ∂

∂x
(fygz − fzgy) + ∂

∂y
(fzgx − fxgz) + ∂

∂z
(fxgy − fygx)

= fyxgz + fygzx − fzxgy − fzgyx + fzygx + fzgxy − fxygz − fxgzy + fxzgy + fxgyz

− fyzgx − fygxz

= (fyx − fxy)gz + (gzx − gxz)fy + (fxz − fzx)gy + (gxy − gyx)fz

+ (fzy − fyz)gx + (gyz − gzy)fx = 0

In Exercises 36–38, 	 denotes the Laplace operator defined by

	ϕ = ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2

36. Prove the identity

curl(curl(F)) = ∇(div(F)) − 	F

where 	F denotes 〈	F1, 	F2, 	F3〉.
solution We compute the left-hand side of the identity. We have

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

F1 F2 F3

∣∣∣∣∣∣∣∣∣
=
〈
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

〉

Hence,

curl (curl(F)) =
〈

∂

∂y

(
∂F2

∂x
− ∂F1

∂y

)
− ∂

∂z

(
∂F1

∂z
− ∂F3

∂x

)
,

∂

∂z

(
∂F3

∂y
− ∂F2

∂z

)
− ∂

∂x

(
∂F2

∂x
− ∂F1

∂y

)
,

∂

∂x

(
∂F1

∂z
− ∂F3

∂x

)
− ∂

∂y

(
∂F3

∂y
− ∂F2

∂z

)〉

=
〈

∂2F2

∂y∂x
− ∂2F1

∂y2
− ∂2F1

∂z2
+ ∂2F3

∂z∂x
,
∂2F3

∂z∂y
− ∂2F2

∂z2
− ∂2F2

∂x2
+ ∂2F1

∂x∂y
,

∂2F1

∂x∂z
− ∂2F3

∂x2
− ∂2F3

∂y2
+ ∂2F2

∂y∂z

〉
(1)

We now compute the right-hand side of the given identity:

∇ (div(F)) = ∇
(

∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z

)

=
〈

∂

∂x

(
∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z

)
,

∂

∂y

(
∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z

)
,

∂

∂z

(
∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z

)〉

=
〈

∂2F1

∂x2
+ ∂2F2

∂x∂y
+ ∂2F3

∂x∂z
,
∂2F1

∂y∂x
+ ∂2F2

∂y2
+ ∂2F3

∂y∂z
,
∂2F1

∂z∂x
+ ∂2F2

∂z∂y
+ ∂2F3

∂z2

〉

Therefore,

∇ (div(F)) − 	F = ∇ (div(F)) −
〈

∂2F1

∂x2
+ ∂2F1

∂y2
+ ∂2F1

∂z2
,
∂2F2

∂x2
+ ∂2F2

∂y2
+ ∂2F2

∂z2
,
∂2F3

∂x2
+ ∂2F3

∂y2
+ ∂2F3

∂z2

〉
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=
〈

∂2F2

∂x∂y
+ ∂2F3

∂x∂z
− ∂2F1

∂y2
− ∂2F1

∂z2
,
∂2F1

∂y∂x
+ ∂2F3

∂y∂z
− ∂2F2

∂x2
− ∂2F2

∂z2
,

∂2F1

∂z∂x
+ ∂2F2

∂z∂y
− ∂2F3

∂x2
− ∂2F3

∂y2

〉
(2)

Since the mixed partials are equal, the expressions obtained in (1) and (2) are the same. This proves the desired identity.

37. A function ϕ satisfying 	ϕ = 0 is called harmonic.

(a) Show that 	ϕ = div(∇ϕ) for any function ϕ.

(b) Show that ϕ is harmonic if and only if div(∇ϕ) = 0.

(c) Show that if F is the gradient of a harmonic function, then curl(F ) = 0 and div(F ) = 0.

(d) Show that F =
〈
xz, −yz, 1

2 (x2 − y2)
〉

is the gradient of a harmonic function. What is the flux of F through a closed

surface?

solution

(a) We compute the divergence of ∇ϕ:

div(∇ϕ) = div

(〈
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

〉)
= ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
= 	ϕ

(b) In part (a) we showed that 	ϕ = div(∇ϕ). Therefore 	ϕ = 0 if and only if div(∇ϕ) = 0. That is, ϕ is harmonic if
and only if ∇ϕ is divergence free.

(c) We are given that F = ∇ϕ, where 	ϕ = 0. In part (b) we showed that

div(F) = div(∇ϕ) = 0

We now show that curl(F) = 0. We have

curl(F) = curl(∇ϕ) = curl
〈
ϕx, ϕy, ϕz

〉 =
∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

ϕx ϕy ϕz

∣∣∣∣∣∣∣∣∣
= 〈ϕzy − ϕyz, ϕxz − ϕzx, ϕyx − ϕxy

〉 = 〈0, 0, 0〉 = 0

The last equality is due to the equality of the mixed partials.

(d) We first show that F =
〈
xz, −yz,

x2−y2

2

〉
is the gradient of a harmonic function. We let ϕ = x2z

2 − y2z
2 such that

F = ∇ϕ. Indeed,

∇ϕ =
〈
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

〉
=
〈
xz, −yz,

x2 − y2

2

〉
= F

We show that ϕ is harmonic, that is, 	ϕ = 0. We compute the partial derivatives:

∂ϕ

∂x
= xz ⇒ ∂2ϕ

∂x2
= z

∂ϕ

∂y
= −yz ⇒ ∂2ϕ

∂y2
= −z

∂ϕ

∂z
= x2 − y2

2
⇒ ∂2ϕ

∂z2
= 0

Therefore,

	ϕ = ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
= z − z + 0 = 0

Since F is the gradient of a harmonic function, we know by part (c) that div(F) = 0. Therefore, by the Divergence
Theorem, the flux of F through a closed surface is zero:∫∫

S
F · dS =

∫∫∫
W

div(F) dV =
∫∫∫

W
0 dV = 0
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38. Let F = rner , where n is any number, r = (x2 + y2 + z2)1/2, and er = r−1 〈x, y, z〉 is the unit radial vector.

(a) Calculate div(F).
(b) Calculate the flux of F through the surface of a sphere of radius R centered at the origin. For which values of n is this
flux independent of R?
(c) Prove that ∇(rn) = n rn−1er .
(d) Use (c) to show that F is conservative for n �= −1. Then show that F = r−1er is also conservative by computing the
gradient of ln r .

(e) What is the value of
∫
C

F · ds, where C is a closed curve that does not pass through the origin?

(f) Find the values of n for which the function ϕ = rn is harmonic.

solution
(a) F is the vector field:

F(x, y, z) = rnr−1 〈x, y, z〉 = (x2 + y2 + z2)
(n−1)/2 〈x, y, z〉 (1)

Hence,

∂F1

∂x
= ∂

∂x

(
(x2 + y2 + z2)

(n−1)/2
x
)

=
(

n − 1

2

)
(x2 + y2 + z2)

(n−3)/2 · 2x · x + (x2 + y2 + z2)
(n−1)/2

= (x2 + y2 + z2)
(n−3)/2 (

(n − 1)x2 + x2 + y2 + z2
)

= (x2 + y2 + z2)
(n−3)/2

(nx2 + y2 + z2)

Similarly,

∂F2

∂y
= ∂

∂y

(
(x2 + y2 + z2)

(n−1)/2
y
)

= (x2 + y2 + z2)
(n−3)/2

(x2 + ny2 + z2)

and

∂F3

∂z
= ∂

∂z

(
(x2 + y2 + z2)

(n−1)/2
z
)

= (x2 + y2 + z2)
(n−3)/2

(x2 + y2 + nz2)

The divergence of F is the sum

div(F) = (x2 + y2 + z2)
(n−3)/2 = (nx2 + y2 + z2 + x2 + ny2 + z2 + x2 + y2 + nz2)

= (x2 + y2 + z2)
(n−3)/2

(n + 2)(x2 + y2 + z2) = (n + 2)(x2 + y2 + z2)
(n−1)/2 = (n + 2)rn−1

(b) Let W denote the ball inside the sphere of radius R. We may apply the Divergence Theorem when the components
of F in (1) are defined and have continuous derivatives in W , that is, when n−1

2 ≥ 0 and n−3
2 ≥ 0 or when n ≥ 3. In this

case, we have ∫∫
S

F · dS =
∫∫∫

W
div(F ) dV =

∫∫∫
W

(n + 2)rn−1 dV

We compute the triple integral by converting it to spherical coordinates. Since r = ρ, we obtain∫∫
S

F · dS =
∫ 2π

0

∫ π

0

∫ R

0
(n + 2)rn−1ρ2 sin φ dρ dφ dθ = 2π(n + 2)

∫ π

0

∫ R

0
ρn+1 sin φ dρ dφ

= 2π(n + 2)

(∫ R

0
ρn+1dρ

)(∫ π

0
sin φ dφ

)
= 2π(n + 2)

(
− cos φ

∣∣∣∣π
φ=0

)∫ R

0
ρn+1dρ

= 4π(n + 2)

∫ R

0
ρn+1 dρ = 4π(n + 2)

ρn+2

n + 2

∣∣∣∣R
ρ=0

= 4π(n + 2)
Rn+2

n + 2
= 4πRn+2

That is, ∫∫
S

F · dS = 4πRn+2, n ≥ 3.

We now consider the case n < 3. We evaluate the surface integral directly, using the parametrization, (θ, φ) =
(R cos θ sin φ, R sin θ sin φ, R cos φ), 0 ≤ θ ≤ 2π , 0 ≤ φ ≤ π .

n = R2 sin φer

Then,

F ((θ, φ)) · n = rner · R2 sin φer = ρnR2 sin φ

= R2 sin φ
(
R2 cos2 θ sin2 φ + R2 sin2 θ sin2 φ + R2 cos2 φ

)n/2 = Rn+2 sin φ



April 20, 2011

S E C T I O N 17.3 Divergence Theorem (LT SECTION 18.3) 1315

Hence, ∫∫
S

F · dS =
∫ 2π

0

∫ π

0
Rn+2 sin φ dφ dθ = 2πRn+2

(
− cos φ

∣∣∣∣π
0

)
= 4πRn+2

We conclude that, for all values of n, ∫∫
S

F · dS = 4πRn+2

The flux is independent of R when n + 2 = 0 or n = −2.
(c) We compute the gradient of rn. We first compute the partial derivatives,

∂r

∂x
= ∂

∂x
(x2 + y2 + z2)

1/2 = 1

2
(x2 + y2 + z2)

−1/2 · 2x = x

(x2 + y2 + z2)
1/2

= x

r
(2)

Similarly,

∂r

∂y
= y

r
and

∂r

∂z
= z

r

Therefore,

∂

∂x
(rn) = nrn−1 ∂r

∂x
= nrn−1 · x

r
= nrn−2x

∂

∂y
(rn) = nrn−1 ∂r

∂y
= nrn−1 · y

r
= nrn−2y

∂

∂z
(rn) = nrn−1 ∂r

∂z
= nrn−1 · z

r
= nrn−2z

The gradient of rn is thus

∇(rn) =
〈
nrn−2x, nrn−2y, nrn−2z

〉
= nrn−2 〈x, y, z〉 = nrn−1 · r−1 〈x, y, z〉 = nrn−1er

(d) Replacing n by n + 1 in the equality of part (c), we have

∇(rn+1) = (n + 1)rner = (n + 1)F

Therefore, if n �= −1, then

F = ∇
(

rn+1

n + 1

)

We now show that F = r−1er is also conservative. We compute the gradient of ln r . Using the Chain Rule and the partial
derivatives (1), we have

∂

∂x
(ln r) = 1

r

∂r

∂x
= 1

r

x

r
= x

r2

∂

∂y
(ln r) = 1

r

∂r

∂y
= 1

r

y

r
= y

r2

∂

∂z
(ln r) = 1

r

∂r

∂z
= 1

r

z

r
= z

r2

Therefore, the gradient of ln r is

∇(ln r) =
〈

x

r2
,

y

r2
,

z

r2

〉
= r−1 · r−1 〈x, y, z〉 = r−1er = F.

We conclude that F is conservative for all values of n.
(e) Since F is conservative, the line integral of F is zero over every closed curve in the domain of F, that is, over every
closed curve not passing through the origin.
(f) Using Exercise 37 part (b), ϕ = rn is harmonic if and only if

div
(∇(rn)

) = 0

That is, by part (c),

div(nrn−1er ) = n div
(
rn−1er

)
= 0
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or

div(rn−1er ) = 0 or n = 0

Using part (a) for n replaced by n − 1, we have

div(rn−1er ) = (n + 1)rn−2 = 0 ⇒ n = −1 or n = 0.

We conclude that ϕ = rn is harmonic for n = −1 or n = 0.

Further Insights and Challenges
39. Let S be the boundary surface of a region W in R3 and let Denϕ denote the directional derivative of ϕ, where en is
the outward unit normal vector. Let 	 be the Laplace operator defined earlier.

(a) Use the Divergence Theorem to prove that∫∫
S

Denϕ dS =
∫∫∫

W
	ϕ dV

(b) Show that if ϕ is a harmonic function (defined in Exercise 37), then∫∫
S

Denϕ dS = 0

solution

(a) By the theorem on evaluating directional derivatives, Denϕ = ∇ϕ · en, hence,∫∫
S

Denϕ dS =
∫∫

S
∇ϕ · en dS (1)

By the definition of the vector surface integral, we have∫∫
S

∇ϕ · dS =
∫∫

S
(∇ϕ · en) dS

Combining with (1) gives ∫∫
S

Denϕ dS =
∫∫

S
∇ϕ · dS

We now apply the Divergence Theorem and the identity div(∇ϕ) = 	ϕ shown in part (a) of Exercise 27, to write∫∫
S

Denϕ dS =
∫∫

S
∇ϕ · dS =

∫∫∫
W

div(∇ϕ) dV =
∫∫∫

W
	ϕ dV

(b) If ϕ is harmonic, then 	ϕ = 0; therefore, by the equality of part (a) we have∫∫
S

Denϕ dS =
∫∫∫

W
	ϕ · dV =

∫∫∫
W

0 dV = 0.

40. Assume that ϕ is harmonic. Show that div(ϕ∇ϕ) = ‖∇ϕ‖2 and conclude that∫∫
S

ϕDenϕ dS =
∫∫∫

W
‖∇ϕ‖2 dV

solution In Exercise 33 we proved the following Product Rule:

div(f F) = ∇f · F + f div (F)

We use this rule for f = ϕ and F = ∇ϕ to obtain

div (ϕ∇ϕ) = ∇ϕ · ∇ϕ + ϕ div (∇ϕ) = ‖∇ϕ‖2 + ϕ div (∇ϕ) (1)

By Exercise 37 part (a),

div(∇ϕ) = 	ϕ (2)

Also, since ϕ is harmonic,

	ϕ = 0 (3)
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Combining (1), (2), and (3), we obtain

div(ϕ∇ϕ) = ‖∇ϕ‖2 + ϕ · 0 = ‖∇ϕ‖2 (4)

Now, by the Theorem on evaluating directional derivatives,

Denϕ = ∇ϕ · en

Hence, ∫∫
S

ϕDenϕ dS =
∫∫

S
(ϕ∇ϕ · en) dS (5)

By the definition of the vector surface integral we have∫∫
S

ϕ∇ϕ · dS =
∫∫

S
(ϕ∇ϕ · en) dS (6)

Combining (5) and (6) and using the Divergence Theorem and equality (4), we get∫∫
S

ϕDenϕ dS =
∫∫

S
ϕ∇ϕ · dS =

∫∫∫
W

div(ϕ∇ϕ) dV =
∫∫∫

W
‖∇ϕ‖2 dV

41. Let F = 〈P, Q, R〉 be a vector field defined on R3 such that div(F) = 0. Use the following steps to show that F has
a vector potential.

(a) Let A = 〈f, 0, g〉. Show that

curl(A) =
〈
∂g

∂y
,
∂f

∂z
− ∂g

∂x
, −∂f

∂y

〉

(b) Fix any value y0 and show that if we define

f (x, y, z) = −
∫ y

y0

R(x, t, z) dt + α(x, z)

g(x, y, z) =
∫ y

y0

P(x, t, z) dt + β(x, z)

where α and β are any functions of x and z, then ∂g/∂y = P and −∂f/∂y = R.

(c) It remains for us to show that α and β can be chosen so Q = ∂f/∂z − ∂g/∂x. Verify that the following choice works
(for any choice of z0):

α(x, z) =
∫ z

z0

Q(x, y0, t) dt, β(x, z) = 0

Hint: You will need to use the relation div(F) = 0.

solution
(a) If A = 〈f, 0, g〉, then the curl of A is the following vector field:

curl(A) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

f 0 g

∣∣∣∣∣∣∣∣∣
=
(

∂g

∂y
− 0

)
i −
(

∂g

∂x
− ∂f

∂z

)
j +
(

0 − ∂f

∂y

)
k =

〈
∂g

∂y
,
∂f

∂z
− ∂g

∂x
, −∂f

∂y

〉

(b) Using the Fundamental Theorem of Calculus, we have

∂g

∂y
(x, y, z) = ∂

∂y

∫ y

y0

P(x, t, z) dt + ∂

∂y
β(x, z) = P(x, y, z) + 0 = P(x, y, z)

−∂f

∂y
(x, y, z) = ∂

∂y

∫ y

y0

R(x, t, z) dt + ∂

∂y
α(x, z) = R(x, y, z) + 0 = R(x, y, z)

(c) We verify that the functions

α(x, z) =
∫ z

z0

Q(x, y0, t) dt, β(x, z) = 0

satisfy the equality

Q = ∂f

∂z
− ∂g

∂x
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We differentiate to obtain

∂f

∂z
− ∂g

∂x
= −

∫ y

y0

Rz(x, t, z) dt + αz(x, z) −
∫ y

y0

Px(x, t, z) dz − βx(x, z)

= −
∫ y

y0

(Px(x, t, z) + Rz(x, t, z)) dt + αz(x, z) (1)

By the Fundamental Theorem of Calculus,

αz(x, z) = ∂

∂z

∫ z

z0

Q(x, y0, t) dt = Q(x, y0, z) (2)

Also, since div(F) = 0, we have

div(F) = Px + Qy + Rz = 0 ⇒ Px + Rz = −Qy (3)

Substituting (2) and (3) in (1) gives

∂f

∂z
− ∂g

∂x
=
∫ y

y0

Qy(x, t, z) dt + Q(x, y0, z) = Q(x, y, z) − Q(x, y0, z) + Q(x, y0, z) = Q(x, y, z)

Parts (a)–(c) prove that F = curl(A), or A is a vector potential for F.

42. Show that

F = 〈2y − 1, 3z2, 2xy
〉

has a vector potential and find one.

solution Since div(F) = ∂
∂x

(2y − 1) + ∂
∂y

(3z2) + ∂
∂z

(2xy) = 0, we know by Exercise 41 that F has a vector
potential A, which is

A = 〈f, 0, g〉 (1)

f (x, y, z) = −
∫ y

y0

R(x, t, z) dt +
∫ z

z0

Q(x, y0, t) dt

g(x, y, z) =
∫ y

y0

P(x, t, z) dt

Hence, P(x, y, z) = 2y − 1, Q(x, y, z) = 3z2, and R(x, y, z) = 2xy. We choose z0 = y0 = 0 and find f and g:

f (x, y, z) = −
∫ y

0
2xt dt +

∫ z

0
3t2 dt = −xt2

∣∣∣∣y
t=0

+ t3
∣∣∣∣z
t=0

= −xy2 + z3

g(x, y, z) =
∫ y

0
(2t − 1) dt = t2 − t

∣∣∣∣y
t=0

= y2 − y

Substituting in (1) we obtain the vector potential

A =
〈
z3 − xy2, 0, y2 − y

〉

43. Show that

F = 〈2yez − xy, y, yz − z
〉

has a vector potential and find one.

solution As shown in Exercise 41, if F is divergence free, then F has a vector potential. We show that div(F) = 0:

div(F) = ∂

∂x
(2yez − xy) + ∂

∂y
(y) + ∂

∂z
(yz − z) = −y + 1 + y − 1 = 0

We find a vector potential A, using the result in Exercise 41:

A = 〈f, 0, g〉 (1)

Using z0 = 0, we have

f (x, y, z) = −
∫ y

y0

R(x, t, z) dt +
∫ z

0
Q(x, y0, t) dt
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g(x, y, z) =
∫ y

y0

P(x, t, z) dt

Hence, P(x, y, z) = 2yez − xy, Q(x, y, z) = y, and R(x, y, z) = yz − z. We choose y0 = 0 and compute the functions
f and g:

f (x, y, z) = −
∫ y

0
(tz − z) dt +

∫ z

0
0 dt = −

(
t2z

2
− zt

) ∣∣∣∣y
t=0

= zy − y2z

2
= z

(
y − y2

2

)

g(x, y, z) =
∫ y

0
(2tez − xt) dt = t2ez − xt2

2

∣∣∣∣y
t=0

= y2ez − xy2

2
= y2

(
ez − x

2

)

Substituting in (1) we obtain

A =
〈
z

(
y − y2

2

)
, 0, y2

(
ez − x

2

)〉

44. In the text, we observed that although the inverse-square radial vector field F = er

r2
satisfies div(F) = 0, F cannot

have a vector potential on its domain {(x, y, z) �= (0, 0, 0)} because the flux of F through a sphere containing the origin
is nonzero.

(a) Show that the method of Exercise 41 produces a vector potential A such that F = curl(A) on the restricted domain
D consisting of R3 with the y-axis removed.

(b) Show that F also has a vector potential on the domains obtained by removing either the x-axis or the z-axis from R3.

(c) Does the existence of a vector potential on these restricted domains contradict the fact that the flux of F through a
sphere containing the origin is nonzero?

solution

(a) We have F(x, y, z) = er

r2 = <x,y,z>

(x2+y2+z2)
3/2 , hence

P(x, y, z) = x

(x2 + y2 + z2)
3/2

Q(x, y, z) = y

(x2 + y2 + z2)
3/2

R(x, y, z) = z

(x2 + y2 + z2)
3/2

In Exercise 41, we defined the functions (taking y0 = z0 = 0)

f (x, y, z) = −
∫ y

0

z

(x2 + t2 + z2)
3/2

dt +
∫ z

0
Q(x, 0, t) dt = −

∫ y

0

z

(x2 + t2 + z2)
3/2

dt

g(x, y, z) =
∫ y

0

x

(x2 + t2 + z2)
3/2

dt

We obtain

f (x, y, z) = − yz

(x2 + z2)(x2 + y2 + z2)1/2

g(x, y, z) = xy

(x2 + z2)(x2 + y2 + z2)1/2

We can check directly that A = 〈f, 0, g〉 is a vector potential, without using the FTC.
These functions are defined for (x, z) �= (0, 0), since the points with x = 0 and z = 0 are on the y-axis. (Notice that

for any fixed (x, z) �= (0, 0) the interval of integration do not intersect the y-axis, therefore they are contained in the
domain D.) For (x, z) �= (0, 0) we have by the Fundamental Theorem of Calculus

∂g

∂y
= ∂

∂y

∫ y

0

x

(x2 + t2 + z2)
3/2

dt = x

(x2 + y2 + z2)
3/2

= P(x, y, z)

∂f

∂z
− ∂g

∂x
= −

∫ y

0

(x2 + t2 + z2)
3/2 − z · 3

2 (x2 + t2 + z2)
1/2 · 2z

(x2 + t2 + z2)
3

dt

−
∫ y

0

(x2 + t2 + z2)
3/2 − x · 3

2 (x2 + t2 + z2)
1/2 · 2x

(x2 + t2 + z2)
3

dt
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= −
∫ y

0

(x2 + t2 + z2)
1/2

(x2 + t2 + z2 − 3z2)

(x2 + t2 + z2)
3

dt

−
∫ y

0

(x2 + t2 + z2)
1/2

(x2 + t2 + z2 − 3x2)

(x2 + t2 + z2)
3

dt

= −
∫ y

0

x2 + t2 − 2z2 + t2 + z2 − 2x2

(x2 + t2 + z2)
5/2

dt

=
∫ y

0

x2 − 2t2 + z2

(x2 + t2 + z2)
5/2

dt = y

(x2 + y2 + z2)
3/2

= Q(x, y, z)

The last integral can be verified by showing that

∂

∂y

(
y

(x2 + y2 + z2)
3/2

)
= x2 − 2y2 + z2

(x2 + y2 + z2)
5/2

and

∂f

∂y
= − ∂

∂y

∫ y

0

z

(x2 + t2 + z2)
3/2

dt = − z

(x2 + y2 + z2)
3/2

= −R(x, y, z)

We conclude that the vector A = 〈f, 0, g〉 is a vector potential of F in D, since

curl(A) =
〈
∂g

∂y
,
∂f

∂z
− ∂g

∂x
, −∂f

∂y

〉
= 〈P, Q, R〉 = F.

(b) Suppose we remove the x-axis. In this case, we let

A = 〈0, f, g〉

g(x, y, z) = −
∫ x

x0

Q(t, y, z) dt +
∫ y

y0

P(x0, t, z) dt

f (x, y, z) =
∫ x

x0

R(t, y, z) dt

Using similar procedure to that in Exercise 41, one can show that

F = curl(A).

In removing the z-axis the proof is similar, with corresponding modifications of the functions in Exercise 41.
(c) The ball inside any sphere containing the origin must intersect the x, y, and z axes; therefore, F does not have a vector
potential in the ball, and the flux of F through the sphere may differ from zero, as in our example.

CHAPTER REVIEW EXERCISES

1. Let F(x, y) = 〈x + y2, x2 − y
〉
and let C be the unit circle, oriented counterclockwise. Evaluate

∮
C

F · ds directly as

a line integral and using Green’s Theorem.

solution We parametrize the unit circle by c(t) = (cos t, sin t), 0 ≤ t ≤ 2π . Then, c′(t) = 〈− sin t, cos t〉 and

F(c(t)) = (cos t + sin2 t, cos2 t − sin t). We compute the dot product:

F(c(t)) · c′(t) =
〈
cos t + sin2 t, cos2 t − sin t

〉
· 〈− sin t, cos t〉

= (− sin t)(cos t + sin2 t) + cos t (cos2 t − sin t)

= cos3 t − sin3t − 2 sin t cos t

The line integral is thus∫
C

F (c(t)) · c′(t) dt =
∫ 2π

0

(
cos3 t − sin3 t − 2 sin t cos t

)
dt

=
∫ 2π

0
cos3 t dt −

∫ 2π

0
sin3 t dt −

∫ 2π

0
sin 2t dt

= cos2 t sin t

3
+ 2 sin t

3

∣∣∣∣2π

0
+
(

sin2 t cos t

3
+ 2 cos t

3

) ∣∣∣∣2π

0
+ cos 2t

2

∣∣∣∣2π

0
= 0
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We now compute the integral using Green’s Theorem. We compute the curl of F. Since P = x + y2 and Q = x2 − y,
we have

∂Q

∂x
− ∂P

∂y
= 2x − 2y

Thus, ∫
C

F · ds =
∫∫

D
(2x − 2y) dx dy

1
x

y

C

D

We compute the double integral by converting to polar coordinates. We get∫
C

F · ds =
∫ 2π

0

∫ 1

0
(2r cos θ − 2r sin θ)r dr dθ =

∫ 2π

0

∫ 1

0
2r2(cos θ − sin θ) dr dθ

=
(∫ 1

0
2r2 dr

)(∫ 2π

0
(cos θ − sin θ) dθ

)
=
(

2

3
r3
∣∣∣∣1
0

)(
sin θ + cos θ

∣∣∣∣2π

0

)
= 2

3
(1 − 1) = 0

2. Let ∂R be the boundary of the rectangle in Figure 1 and let ∂R1 and ∂R2 be the boundaries of the two triangles, all
oriented counterclockwise.

(a) Determine
∮
∂R1

F · ds if
∮
∂R

F · ds = 4 and
∮
∂R2

F · ds = −2.

(b) What is the value of
∮
∂R

F ds if ∂R is oriented clockwise?

x

Rectangle R
y

R1

R2

FIGURE 1

solution

(a) Since all boundaries are oriented counterclockwise, the segment DB is oriented in opposite directions as part of the
boundaries ∂R1 and ∂R2.

B

C

A

D

x

R
y

R1

R2

Therefore, the contributions of this segment to the sum of the line integrals over ∂R1 and ∂R2 cancel each other and the
following equality holds: ∫

∂R
F · ds =

∫
∂R1

F · ds +
∫
∂R2

F · ds

Substituting the given information, we get

4 =
∫
∂R1

F · ds − 2 or
∫
∂R1

F · ds = 6.
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(b) Reversing the orientation of the curve gives the opposite integral. Therefore if ∂R is oriented clockwise, the line
integral is the opposite of 4; that is, ∫

∂R
F · ds = −4.

In Exercises 3–6, use Green’s Theorem to evaluate the line integral around the given closed curve.

3.
∮
C

xy3 dx + x3y dy, where C is the rectangle −1 ≤ x ≤ 2, −2 ≤ y ≤ 3, oriented counterclockwise.

solution

2

3

−2

−1
x

y

C

D

Since P = xy3, Q = x3y the curl of F is

∂Q

∂x
− ∂P

∂y
= 3x2y − 3xy2

By Green’s Theorem we obtain∫
C

xy3 dx + x3y dy =
∫∫

D
(3x2y − 3xy2) dx dy =

∫ 3

−2

∫ 2

−1
(3x2y − 3xy2) dx dy

=
∫ 3

−2
x3y − 3x2y2

2

∣∣∣∣2
x=−1

dy =
∫ 3

−2

(
(8y − 6y2) −

(
−y − 3y2

2

))
dy

=
∫ 3

−2

(
−9y2

2
+ 9y

)
dy = −3y3

2
+ 9y2

2

∣∣∣∣3−2
=
(

−81

2
+ 81

2

)
− (12 + 18) = −30

4.
∮
C
(3x + 5y − cos y) dx + x sin y dy, where C is any closed curve enclosing a region with area 4, oriented counter-

clockwise.

solution The components of F are P = 3x + 5y − cos y and Q = x sin y. Therefore the curl of F is

∂Q

∂x
− ∂P

∂y
= sin y − (5 + sin y) = −5

Using Green’s Theorem we obtain∫
C

P dx + Q dy =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
D

(−5) dA

= −5
∫∫

D
1 · dA = 5Area(A) = −5 · 4 = −20

5.
∮
C

y2 dx − x2 dy, where C consists of the arcs y = x2 and y = √
x, 0 ≤ x ≤ 1, oriented clockwise.

solution We compute the curl of F.

10
x

y

D

C

y = x2

y =    x
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We have P = y2 and Q = −x2, hence

∂Q

∂x
− ∂P

∂y
= −2x − 2y

We now compute the line integral using Green’s Theorem. Since the curve is oriented clockwise, we consider the negative
of the double integrals. We get

∫
C

y2 dx − x2 dy = −
∫∫

D
(−2x − 2y) dA = −

∫ 1

0

∫ √
x

x2
(−2x − 2y) dy dx

=
∫ 1

0
2xy + y2

∣∣∣∣
√

x

y=x2
dx =

∫ 1

0

((
2x

√
x + x

)− (2x · x2 + x4)
)

dx

=
∫ 1

0
(−x4 − 2x3 + 2x3/2 + x) dx = −x5

5
− x4

2
+ 4x5/2

5
+ x2

2

∣∣∣∣1
0

= −1

5
− 1

2
+ 4

5
+ 1

2
= 3

5

6.
∮
C

yex dx + xey dy, where C is the triangle with vertices (−1, 0), (0, 4), and (0, 1), oriented counterclockwise.

solution

(0, 1)

(−1, 0)

C

x

y

(0, 4)

D

The components of the vector field are P = yex and Q = xey , hence the flux is

∂Q

∂x
− ∂P

∂y
= ey − ex .

Green’s Theorem implies that∫
C0

yex dx + xey dy =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
D

(ey − ex) dA

=
∫ 0

−1

∫ 4x+4

x+1
(ey − ex) dy dx =

∫ 0

−1
ey − yex

∣∣∣∣4x+4

y=x+1
dx

=
∫ 0

−1

((
e4x+4 − (4x + 4)ex

)
−
(
ex+1 − (x + 1)ex

))
dx

=
∫ 0

−1

(
e4x+4 − ex+1 − (3x + 3)ex

)
dx

=
∫ 0

−1
(e4x+4 − ex+1 − 3ex) dx −

∫ 0

−1
3xex dx

1

−1
x

y

y = 4x + 4

y = x + 1

4

D

The second integral is computed by parts. We obtain

∫
C

yex dx + xey dy = e4x+4

4
− ex+1 − 3ex

∣∣∣∣0−1
− 3ex(x − 1)

∣∣∣∣0−1
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=
(

e4

4
− e − 3

)
−
(

1

4
− 1 − 3e−1

)
− (−3 + 6e−1)

= e4

4
− e + 3

4
− 3e−1 ≈ 10.58

7. Let c(t) = (t2(1 − t), t(t − 1)2).
(a) Plot the path c(t) for 0 ≤ t ≤ 1.

(b) Calculate the area A of the region enclosed by c(t) for 0 ≤ t ≤ 1 using the formula A = 1

2

∮
C
(x dy − y dx).

solution

(a) The path c(t) for 0 ≤ t ≤ 1 is shown in the figure:

x

y

0.10

0.1

Note that the path is traced out clockwise as t goes from 0 to 1.

(b) We use the formula for the area enclosed by a closed curve,

A = 1

2

∫
C
(x dy − y dx)

We compute the line integral. Since x = t2(1 − t) and y = t(t − 1)2, we have

dx =
(

2t (1 − t) − t2
)

dt =
(

2t − 3t2
)

dt

dy = (t − 1)2 + t · 2(t − 1) = (t − 1)(3t − 1) dt

Therefore,

x dy − y dx = t2(1 − t) · (t − 1)(3t − 1) dt − t(t − 1)2 · (2t − 3t2) dt = t2(t − 1)2 dt

We obtain the following integral (note that the path must be counterclockwise):

A = 1

2

∫ 0

1
−t2(t − 1)2 dt = 1

2

∫ 1

0
(t4 − 2t3 + t2) dt = 1

2

(
t5

5
− t4

2
+ t3

3

∣∣∣∣1
0

)
= 1

60

8. In (a)–(d), state whether the equation is an identity (valid for all F or V ). If it is not, provide an example in which the
equation does not hold.

(a) curl(∇V ) = 0 (b) div(∇V ) = 0

(c) div(curl(F)) = 0 (d) ∇(div(F)) = 0

solution

(a) This equality is valid for all V since

∇V = 〈Vx, Vy, Vz

〉

curl(∇V ) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

Vx Vy Vz

∣∣∣∣∣∣∣∣∣
= (Vzy − Vyz)i − (Vzx − Vxz)j − (Vyx − Vxy)k

By the equality of the mixed partials, we conclude that curl(∇ϕ) is the zero vector.

(b) This equation is not an identity. Take V (x, y, z) = x2 + y + z. Then ∇V = 〈2x, 1, 1〉 and

div(∇V ) = ∂

∂x
(2x) + ∂

∂y
(1) + ∂

∂z
(1) = 2 + 0 + 0 = 2 �= 0.
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(c) The equality div (curl(F)) = 0 is an identity. To prove it, we let F = 〈P, Q, R〉. Then

curlF = ∇ × F =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

P Q R

∣∣∣∣∣∣∣∣∣
= (Ry − Qz)i − (Rx − Pz)j + (Qx − Py)k

div (curl(F)) = ∂

∂x
(Ry − Qz) − ∂

∂y
(Rx − Pz) + ∂

∂z
(Qx − Py)

= Ryx − Qzx − (Rxy − Pzy) + Qxz − Pyz

= (Ryx − Rxy) + (Pzy − Pyz) + (Qxz − Qzx) = 0

The last equality is due the equality of the mixed partials.

(d) The equality ∇ (div(F)) = 0 is not an identity. Take F =
〈
x2, y, z

〉
. Then

div(F) = ∂

∂x
(x2) + ∂

∂y
(y) + ∂

∂z
(z) = 2x + 2

∇ (div(F)) =
〈

∂

∂x
(2x + 2),

∂

∂y
(2x + 2),

∂

∂z
(2x + 2)

〉
= 〈2, 0, 0〉 �= 0

In Exercises 9–12, calculate the curl and divergence of the vector field.

9. F = yi − zk

solution We compute the curl of the vector field,

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

y 0 −z

∣∣∣∣∣∣∣∣∣
=
(

∂

∂y
(−z) − ∂

∂z
(0)

)
i −
(

∂

∂x
(−z) − ∂

∂z
(y)

)
j +
(

∂(0)

∂x
− ∂(y)

∂y

)
k

= 0i + 0j − 1k = −k

The divergence of F is

div(F) = ∂

∂x
(y) + ∂

∂y
(0) + ∂

∂z
(−z) = 0 + 0 − 1 = −1.

10. F = 〈ex+y, ey+z, xyz
〉

solution The curl of F = 〈ex+y, ey+z, xyz
〉

is the following vector:

curl(F ) = ∇ × F =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

ex+y ey+z xyz

∣∣∣∣∣∣∣∣∣
=
(

∂

∂y
(xyz) − ∂

∂z
ey+z

)
i −
(

∂

∂x
(xyz) − ∂

∂z
ex+y

)
j +
(

∂

∂x
ey+z − ∂

∂y
ex+y

)
k

= (xz − ey+z)i − (yz)j − ex+yk = 〈xz − ey+z, −yz, −ex+y
〉

The divergence of F is

divF = ∂

∂x
(ex+y) + ∂

∂y
(ey+z) + ∂

∂z
(xyz) = ex+y + ey+z + xy.

11. F = ∇(e−x2−y2−z2
)

solution In Exercise 8 we proved the identity curl(∇ϕ) = 0. Here, ϕ = e−x2−y2−z2
, and we have

curl
(
∇
(
e−x2−y2−z2

))
= 0. To compute div F, we first write F explicitly:

F = ∇
(
e−x2−y2−z2

)
=
〈
−2xe−x2−y2−z2

, −2ye−x2−y2−z2
, −2ze−x2−y2−z2

〉
= 〈P, Q, R〉
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div(F) = ∂P

∂x
+ ∂Q

∂y
+ ∂R

∂z

=
(
−2e−x2−y2−z2 + 4x2e−x2−y2−z2

)
+
(
−2e−x2−y2−z2 + 4y2e−x2−y2−z2

)
+
(
−2e−x2−y2−z2 + 4z2e−x2−y2−z2

)
= 2e−x2−y2−z2

(
2(x2 + y2 + z2) − 3

)

12. er = r−1 〈x, y, z〉 (r =
√

x2 + y2 + z2
)

solution It can be easily verified that er = ∇ϕ for ϕ(x, y, z) =
√

x2 + y2 + z2 = r . Therefore, by the identity
curl(∇ϕ) = 0 (provided in Exercise 8), we have

curl(er ) = curl(∇ϕ) = 0

We compute the divergence of er . Since rx = x
r , ry = y

r , rz = z
r , we have

div(er ) = ∂

∂x
(xr−1) + ∂

∂y
(yr−1) + ∂

∂z
(zr−1) = (r−1 − xr−2rx) + (r−1 − yr−2ry) + (r−1 − zr−2rz)

= 3r−1 − r−2(xrx + yry + zrz) = 3r−1 − r−2

(
x2

r
+ y2

r
+ z2

r

)
= 3r−1 − r−2 · r2

r
= 2r−1

13. Recall that if F1, F2, and F3 are differentiable functions of one variable, then

curl (〈F1(x), F2(y), F3(z)〉) = 0

Use this to calculate the curl of

F = 〈x2 + y2, ln y + z2, z3 sin(z2)ez3 〉
solution We use the linearity of the curl and the property mentioned in the exercise to compute the curl of F:

curl F = curl
(〈

x2 + y2, ln y + z2, z3 sin
(
z2
)

ez3
〉)

= curl
(〈

x2, ln y, z3 sin(z2)ez3
〉)

+ curl
(〈

y2, z2, 0
〉)

= 0 + curl
〈
y2, z2, 0

〉
=
〈

∂

∂y
(0) − ∂

∂z
z2,

∂

∂z
y2 − ∂

∂x
(0),

∂

∂x
z2 − ∂

∂y
y2
〉

= 〈−2z, 0, −2y〉

14. Give an example of a nonzero vector field F such that curl(F) = 0 and div(F) = 0.

solution Let F = 〈x, −y, 0〉. Then

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

x −y 0

∣∣∣∣∣∣∣∣∣
=
(

∂

∂y
(0) + ∂

∂z
(y)

)
i −
(

∂

∂x
(0) − ∂

∂z
(x)

)
j +
(

∂

∂x
(−y) − ∂

∂y
(x)

)
k = 0

div(F) = ∂

∂x
(x) + ∂

∂y
(−y) + ∂

∂z
(0) = 1 − 1 + 0 = 0

15. Verify the identities of Exercises 6 and 34 in Section 17.3 for the vector fields F = 〈
xz, yex, yz

〉
and G =〈

z2, xy3, x2y
〉
.

solution We first show div(curl(F)) = 0. Let F = 〈P, Q, R〉 = 〈xz, yex, yz
〉
. We compute the curl of F:

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

P Q R

∣∣∣∣∣∣∣∣∣
=
〈
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

〉

Substituting in the appropriate values for P, Q, R and taking derivatives, we get

curl(F) = 〈z − 0, x − 0, yex − 0
〉

Thus,

div (curl(F)) = (z)x + (x)y + (yex)z = 0 + 0 + 0 = 0.
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Likewise, for G = 〈P, Q, R〉 =
〈
z2, xy3x2y

〉
, we compute the curl of G:

curl(G) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

P Q R

∣∣∣∣∣∣∣∣∣
=
〈
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

〉

Substituting in the appropriate values for P, Q, R and taking derivatives, we get

curl(G) =
〈
x2 − 0, 2z − 2xy, y3 − 0

〉
Thus,

div (curl(G)) = (x2)x + (2z − 2xy)y + (y3)z = 2x − 2x = 0.

We now work on the second identity. For F = 〈xz, yex, yz
〉

and G = 〈z2, xy3, x2y
〉
, it is easy to calculate

F × G = 〈x2y2ex − xy4z, yz3 − x3yz, x2y3z − yz2ex〉
Thus,

div(F × G) = (2xy2ex + x2y2ex − y4z) + (z3 − x3z) + (x2y3 − 2yzex)

On the other hand, from our work above,

curl(F) = 〈z, x, yex
〉

curl(G) =
〈
x2, 2z − 2xy, y3

〉
So, we calculate

G · curl(F − F) · curl(G) = z2 · z + xy3 · x + x2y · yex − xz · x2 − yex · (2z − 2xy) − yz · y3

= z3 + x2y3 + x2y2ex + 2xy2ex − x3z − 2yzex − y4z

= (2xy2ex + x2y2ex − y4z) + (z3 − x3z) + (x2y3 − 2yzex) = div(F × G)

16. Suppose that S1 and S2 are surfaces with the same oriented boundary curve C. Which of the following conditions
guarantees that the flux of F through S1 is equal to the flux of F through S2?

(i) F = ∇V for some function V

(ii) F = curl(G) for some vector field G

solution If F = curl(G), then by the Theorem on Surface Independence for Curl Vector Fields, the flux of F through a
surface S depends only the oriented boundary ∂S. Since S1 and S2 have the same oriented boundary curve, we conclude
that the flux of F through S1 is equal to the flux of F through S2. The condition in (i) that F is conservative does not
guarantee that the flux of F through S1 is equal to the flux through S2.

17. Prove that if F is a gradient vector field, then the flux of curl(F) through a smooth surface S (whether closed or not)
is equal to zero.

solution If F is a gradient vector field, then F is conservative; therefore the line integral of F over any closed curve
is zero. Combining with Stokes’ Theorem yields∫∫

S
curl(F) · dS =

∫
∂S

F · ds = 0

18. Verify Stokes’ Theorem for F = 〈y, z − x, 0〉 and the surface z = 4 − x2 − y2, z ≥ 0, oriented by outward-pointing
normals.

solution We begin by computing the line integral
∫
C F · ds. The boundary curve is the circle x2 + y2 = 4 (in the xy

plane) oriented in the counterclockwise direction. We use the parametrization

C : r(t) = (2 cos t, 2 sin t, 0), 0 ≤ t ≤ 2π

Then,

F (r(t)) = 〈2 sin t, −2 cos t, 0〉
r ′(t) = 〈−2 sin t, 2 cos t, 0〉

F (r(t)) · r ′(t) = 〈2 sin t, −2 cos t, 0〉 · 〈−2 sin t, 2 cos t, 0〉 = −4 sin2 t − 4 cos2 t = −4
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The line integral is thus ∫
C

F · ds =
∫ 2π

0
−4 dt = −8π (1)

We now compute the integral
∫∫

S curl(F) · dS. We find the curl of F:

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

y z − x 0

∣∣∣∣∣∣∣∣∣
=
(

0 − ∂

∂z
(z − x)

)
i −
(

0 − ∂

∂z
y

)
j +
(

∂

∂x
(z − x) − ∂

∂y
y

)
k

= −i − 2k = 〈−1, 0, −2〉
We parametrized the surface by

(u, v) =
(
u cos v, u sin v, 4 − u2

)
, 0 ≤ v < 2π, 0 ≤ u ≤ 2.

Then,

Tu = ∂

∂u
= 〈cos v, sin v, −2u〉

Tv = ∂

∂v
= 〈−u sin v, u cos v, 0〉

Tu × Tv =
∣∣∣∣∣∣

i j k
cos v sin v −2u

−u sin v u cos v 0

∣∣∣∣∣∣ = (2u2 cos v)i + (2u2 sin v)j + (u cos2 v + u sin2 v)k

=
〈
2u2 cos v, 2u2 sin v, u

〉
The surface is oriented outwards, hence the z-component of the normal vector is nonnegative. Therefore, the normal
vector is (recall that u ≥ 0)

n =
〈
2u2 cos v, 2u2 sin v, u

〉
We compute the dot product:

curl(F) · n = 〈−1, 0, −2〉 ·
〈
2u2 cos v, 2u2 sin v, u

〉
= −2u2 cos v − 2u

We obtain the following integral:∫∫
S

curl(F) · n ds =
∫ 2π

0

∫ 2

0
(−2u2 cos v − 2u) du dv =

∫ 2π

0

−2u3 cos v

3
− u2

∣∣∣∣2
u=0

dv

=
∫ 2π

0

(−16 cos v

3
− 4

)
dv = −16 sin v

3
− 4v

∣∣∣∣2π

0
= −8π (2)

By (1) and (2), both the line integral and the flux of the curl are equal to −8π . Thus, this example verifies Stokes’Theorem.

19. Let F = 〈z2, x + z, y2〉 and let S be the upper half of the ellipsoid

x2

4
+ y2 + z2 = 1

oriented by outward-pointing normals. Use Stokes’ Theorem to compute
∫∫

S
curl(F) · dS.

solution We compute the curl of F =
〈
z2, x + z, y2

〉
:

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

z2 x + z y2

∣∣∣∣∣∣∣∣∣
= (2y − 1)i − (0 − 2z)j + (1 − 0)k = 〈2y − 1, 2z, 1〉

Let C denote the boundary of S, that is, the ellipse x2

4 + y2 = 1 in the xy-plane, oriented counterclockwise. Then by
Stoke’s Theorem we have ∫∫

S
curl(F) · dS =

∫
C

F · ds (1)
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We parametrize C by

C : r(t) = (2 cos t, sin t, 0), 0 ≤ t ≤ 2π

Then

F (r(t)) · r ′(t) =
〈
0, 2 cos t, sin2 t

〉
· 〈−2 sin t, cos t, 0〉 = 2 cos2 t

Combining with (1) gives

∫∫
S

curl(F) · ds =
∫ 2π

0
2 cos2 t dt = t + sin 2t

2

∣∣∣∣2π

0
= 2π

20. Use Stokes’ Theorem to evaluate
∮
C
〈
y, z, x

〉 · ds, where C is the curve in Figure 2.

y

y2 + z2 = 1

S

(0, 0, 1)

(0, 1, 0)x

z

FIGURE 2

solution We compute the curl of F = 〈y, z, x〉:

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

y z x

∣∣∣∣∣∣∣∣∣
= −i − j − k = 〈−1, −1, −1〉

By Stokes’ Theorem, we have∫
C

〈y, z, x〉 · ds =
∫∫

S
curl(F) · dS =

∫∫
S

(curl(F) · en) dS

Since the boundary C of the quarter circle S is oriented clockwise, the induced orientation on S is normal pointing in the
negative x direction. Thus,

en = 〈−1, 0, 0〉 .

Hence,

curl(F) · en = 〈−1, −1, −1〉 · 〈−1, 0, 0〉 = 1.

Combining with (1) we get ∫
C

〈y, z, x〉 · ds =
∫∫

S
1 ds = Area (S) = π

4

21. Let S be the side of the cylinder x2 + y2 = 4, 0 ≤ z ≤ 2 (not including the top and bottom of the cylinder). Use
Stokes’ Theorem to compute the flux of F = 〈0, y, −z〉 through S (with outward pointing normal) by finding a vector
potential A such that curl(A) = F.

solution We can write F = curl(A) where A = 〈yz, 0, 0〉. The flux of F through S is equal to the line integral of A

around the oriented boundary which consists of two circles of radius 2 with center on the z-axis (one at height z = 0 and
one at height z = 2).

However, the line integrals of A about both circles are zero. This is clear for the circle at z = 0 because then A = 0,
but it is also true at z = 2 because the vector field A = 〈2y, 0, 0〉 integrates to zero around the circle.
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22. Verify the Divergence Theorem for F = 〈0, 0, z〉 and the region x2 + y2 + z2 = 1.

solution Let S be the boundary of the unit sphere W . We calculate both sides of the equation:∫∫
S

F · dS =
∫∫∫

W
div (F) dV (1)

We start with the surface integral. We parametrize S by

(θ, φ) = 〈cos θ sin φ, sin θ sin φ, cos φ〉 , 0 ≤ θ < 2π, 0 ≤ φ ≤ π

Then (see Example 1 in Section 17.5)

n = sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉
Hence,

F ((θ, φ)) · n = 〈0, 0, cos φ〉 · sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉 = cos2 φ sin φ

We obtain the following integral:

∫∫
S

F · dS =
∫ 2π

0

∫ π

0
F ((θ, φ)) · n dφ dθ =

∫ 2π

0

∫ π

0
cos2 φ sin φ dφ dθ

= 2π

∫ π

0
cos2 φ sin φ dφ = 2π

(
− cos3 φ

3

∣∣∣∣π
0

)
= 2π

(
1 + 1

3

)
= 4π

3
(2)

We now compute the triple integral in (1). We find the divergence of F:

div(F) = ∂

∂x
(0) + ∂

∂y
(0) + ∂

∂z
(z) = 1

Hence, ∫∫∫
W

div(F) · dV =
∫∫∫

W
1 dV = Volume (W) = 4π

3
(3)

The integrals in (2) and (3) are equal, as follows from the Divergence Theorem.

In Exercises 23–26, use the Divergence Theorem to calculate
∫∫

S
F · dS for the given vector field and surface.

23. F = 〈xy, yz, x2z + z2〉, S is the boundary of the box [0, 1] × [2, 4] × [1, 5].

solution

1 2
4

z

y
x

1

5

We compute the divergence of F =
〈
xy, yz, x2z + z2

〉
:

div(F) = ∂

∂x
xy + ∂

∂y
yz + ∂

∂z
(x2z + z2) = y + z + x2 + 2z = x2 + y + 3z

The Divergence Theorem gives

∫∫
S

〈
xy, yz, x2z + z2

〉
· dS =

∫ 5

1

∫ 4

2

∫ 1

0
(x2 + y + 3z) dx dy dz =

∫ 5

1

∫ 4

2

x3

3
+ (y + 3z)x

∣∣∣∣1
x=0

dy dz

=
∫ 5

1

∫ 4

2

(
1

3
+ y + 3z

)
dy dz =

∫ 5

1

1

3
y + 1

2
y2 + 3zy

∣∣∣∣4
y=2

dz
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=
∫ 5

1

((
4

3
+ 16

2
+ 12z

)
−
(

2

3
+ 2 + 6z

))
dz =

∫ 5

1

(
20

3
+ 6z

)
dz

= 20z

3
+ 3z2

2

∣∣∣∣5
1

=
(

75 + 100

3

)
−
(

3 + 20

3

)
= 296

3

24. F = 〈xy, yz, x2z + z2〉, S is the boundary of the unit sphere.

solution We use spherical coordinates:

x = ρ cos θ sin φ, y = ρ sin θ sin φ, z = ρ cos φ

with

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, 0 ≤ ρ ≤ 1

We obtain∫∫
S

〈
xy, yz, x2z + z2

〉
· dS =

∫∫∫
V

div(F) dV =
∫∫∫

V
(x2 + y + 3z) dV

=
∫ 2π

0

∫ π

0

∫ 1

0
(ρ2 cos2 θ sin2 φ + ρ sin θ sin φ + 3ρ cos φ) · ρ2 sin φ dρ dφ dθ

=
(∫ 2π

0
cos2 θ dθ

)(∫ π

0
sin3 φ dφ

)(∫ 1

0
ρ4 dρ

)

+
(∫ 2π

0
sin θ dθ

)(∫ π

0
sin2 φ dφ

)(∫ 1

0
ρ3 dρ

)

+ 6π

(∫ π

0
cos φ sin φ dφ

)(∫ 1

0
ρ3dρ

)

= π · 4

3
· 1

5
+ 0 + 0 = 4π

15

25. F = 〈
xyz + xy, 1

2y2(1 − z) + ex, ex2+y2 〉
, S is the boundary of the solid bounded by the cylinder x2 + y2 = 16

and the planes z = 0 and z = y − 4.

solution We compute the divergence of F:

div(F) = ∂

∂x
(xyz + xy) + ∂

∂y

(
y2

2
(1 − z) + ex

)
+ ∂

∂z
(ex2+y2

) = yz + y + y(1 − z) = 2y

Let S denote the surface of the solid W . The Divergence Theorem gives

∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

2y dV =
∫∫

D

∫ 0

y−4
2y dz dx dy

=
∫∫

D
2yz

∣∣∣∣0
z=y−4

dx dy =
∫∫

D
2y (0 − (y − 4)) dx dy =

∫∫
D

(8y − 2y2) dx dy

We convert the integral to polar coordinates:

∫∫
S

F · dS =
∫ 2π

0

∫ 4

0
(8r cos θ − 2r2 cos2 θ)r dr dθ

= 8

(∫ 4

0
r2 dr

)(∫ 2π

0
cos θ dθ

)
−
(∫ 4

0
r3 dr

)(∫ 2π

0
2 cos2 θ dθ

)

= 0 −
(

r4

4

∣∣∣∣4
0

)(
θ + sin 2θ

2

∣∣∣∣2π

0

)
= −44

4
· 2π = −128π
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26. F = 〈sin(yz),
√

x2 + z4, x cos(x − y)
〉
, S is any smooth closed surface that is the boundary of a region in R3.

solution We compute the divergence of F:

div(F) = ∂

∂x
(sin(yz)) + ∂

∂y

(√
x2 + z4

)
+ ∂

∂z
(x cos x(x − y)) = 0

Let W denote the solid inside S. The Divergence Theorem gives∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

0 dV = 0

27. Find the volume of a region W if∫∫
∂W

〈
x + xy + z, x + 3y − 1

2
y2, 4z

〉
· dS = 16

solution Let F =
〈
x + xy + z, x + 3y − 1

2y2, 4z
〉
. We compute the divergence of F:

div(F) = ∂

∂x
(x + xy + z) + ∂

∂y

(
x + 3y − 1

2
y2
)

+ ∂

∂z
(4z) = 1 + y + 3 − y + 4 = 8

Using the Divergence Theorem and the given information, we obtain

16 =
∫∫

S
F · dS =

∫∫
W

div(F) dV =
∫∫

W
8 dV = 8

∫∫
W

1 dV = 8 Volume (W)

That is,

16 = 8 Volume (W)

or

Volume (W) = 2

28. Show that the circulation of F = 〈
x2, y2, z(x2 + y2)

〉
around any curve C on the surface of the cone z2 = x2 + y2

is equal to zero (Figure 3).

y

x

z

z2 = x2 + y2

C

FIGURE 3

solution Let S be the part of the cone that is inside C. Then by Stoke’s Theorem, the circulation of F around C is∫
C

F · ds =
∫∫

S
curl(F) · dS (1)

We parametrize the cone by

(r, θ) = (r cos θ, r sin θ, r)

Then,

Tr = ∂

∂r
= 〈cos θ, sin θ, 1〉

Tθ = ∂

∂θ
= 〈−r sin θ, r cos θ, 0〉

n = Tθ × Tr =
∣∣∣∣∣∣

i j k
−r sin θ r cos θ 0

cos θ sin θ 1

∣∣∣∣∣∣ = 〈r cos θ, r sin θ, −r〉
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We compute the curl of F and express it in terms of the parameters:

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

x2 y2 z(x2 + y2)

∣∣∣∣∣∣∣∣∣
= 〈2yz, −2xz, 0〉

curl(F) ((r, θ)) = 〈2r sin θ · r, −2r cos θ · r, 0〉 =
〈
2r2 sin θ, −2r2 cos θ, 0

〉
The dot product is thus

curl(F)
(
(r, θ)

) · n =
〈
2r2 sin θ, −2r2 cos θ, 0

〉
· 〈r cos θ, r sin θ, −r〉

= 2r3 sin θ cos θ − 2r3 cos θ sin θ + 0 = 0

We see that curl(F) is tangent to the cone at all points on the cone, hence the surface integral in (1) is zero. We conclude
that the circulation of F around any curve C on the cone is zero.

In Exercises 29–32, let F be a vector field whose curl and divergence at the origin are

curl(F)(0, 0, 0) = 〈2, −1, 4〉 , div(F)(0, 0, 0) = −2

29. Estimate
∮
C

F · ds, where C is the circle of radius 0.03 in the xy-plane centered at the origin.

solution We use the estimation ∫
C

F · ds ≈ (curl(F)(0) · en) Area(R)

z

y

x

en

C

R

The unit normal vector to the disk R is en = k = 〈0, 0, 1〉. The area of the disk is

Area (R) = π · 0.032 = 0.0009π.

Using the given curl at the origin, we have∫
C

F · ds ≈ 〈2, −1, 4〉 · 〈0, 0, 1〉 · 0.0009π = 4 · 0.0009π ≈ 0.0113

30. Estimate
∮
C

F · ds, where C is the boundary of the square of side 0.03 in the yz-plane centered at the origin. Does

the estimate depend on how the square is oriented within the yz-plane? Might the actual circulation depend on how it is
oriented?

solution We use the estimation ∫
C

F · ds ≈ (curl(F)(0) · en) Area (R) (1)

en

z

y

x

C
R
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If we orient C counterclockwise, then the unit normal vector is

en = i = 〈1, 0, 0〉 .

The area of the square is Area(R) = 0.032 = 0.0009, and by the given information the curl at the origin is 〈2, −1, 4〉.
Therefore (1) gives the estimation∫

C
F · ds ≈ 〈2, −1, 4〉 · 〈1, 0, 0〉 · 0.0009 = 2 · 0.0009 = 0.0018

The estimate depend on curl(F), en and the area of the square. Hence, if we flip the square over (such that en points along
the negative x-axis), then we will get a different answer.

31. Suppose that v is the velocity field of a fluid and imagine placing a small paddle wheel at the origin. Find the equation
of the plane in which the paddle wheel should be placed to make it rotate as quickly as possible.

solution The paddle wheel has the maximum spin when the circulation of the velocity field v around the wheel is
maximum. The maximum circulation occurs when en, and the curl of v at the origin (i.e., the vector 〈2, −1, 4〉) point in
the same direction. Therefore, the plane in which the paddle wheel should be placed is the plane through the origin with
the normal 〈2, −1, 4〉. This plane has the equation, 2x − y + 4z = 0.

32. Estimate the flux of F through the box of side 0.5 in Figure 4. Does the result depend on how the box is oriented
relative to the coordinate axes?

y

0.5

x

z

FIGURE 4

solution We use the following estimation:∫∫
S

F · dS ≈ div F(0) Volume (W)

The volume of the box W is 0.53, and we are given that div(F)(0) = −2. This gives the estimation∫∫
S

F · dS ≈ −2 · 0.53 = −0.25.

The negative sign shows that there is a net inflow across the box. Our estimation of the flux does not depend on the
orientation of the box; rather, it depends on the magnitude of the divergence of F.

33. The velocity vector field of a fluid (in meters per second) is

F = 〈x2 + y2, 0, z2〉
Let W be the region between the hemisphere

S = {(x, y, z) : x2 + y2 + z2 = 1, x, y, z ≥ 0
}

and the disk D = {(x, y, 0) : x2 + y2 ≤ 1
}

in the xy-plane. Recall that the flow rate of a fluid across a surface is equal
to the flux of F through the surface.

(a) Show that the flow rate across D is zero.
(b) Use the Divergence Theorem to show that the flow rate across S, oriented with outward-pointing normal, is equal to∫∫∫

W
div(F) dV . Then compute this triple integral.

solution
(a) To show that no fluid flows across D, we show that the normal component of F at each point on D is zero. At each
point P = (x, y, 0) on the xy-plane,

F(P ) =
〈
x2 + y2, 0, 02

〉
=
〈
x2 + y2, 0, 0

〉
.

Moreover, the unit normal vector to the xy-plane is en = (0, 0, 1). Therefore,

F(P ) · en =
〈
x2 + y2, 0, 0

〉
· 〈0, 0, 1〉 = 0.

Since D is contained in the xy-plane, we conclude that the normal component of F at each point on D is zero. Therefore,
no fluid flows across D.
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(b) By the Divergence Theorem and the linearity of the flux we have∫∫
S

F · dS +
∫∫

D
F · dS =

∫∫∫
W

div(F) dV

Since the flux through the disk D is zero, we have∫∫
S

F · dS =
∫∫∫

W
div(F) dV (1)

To compute the triple integral, we first compute div(F):

div(F) = ∂

∂x
(x2 + y2) + ∂

∂y
(0) + ∂

∂z
(z2) = 2x + 2z = 2(x + z).

W

z

y

x

Using spherical coordinates we get∫∫∫
W

div(F) dV = 2
∫ π/2

0

∫ 2π

0

∫ 1

0
(ρ sin φ cos θ + ρ cos φ)ρ2 sin φ dρ dφ

= 2
∫ 1

0
ρ3dρ

((∫ π/2

0
sin2 φ dφ

)(∫ 2π

0
cos θ dθ

)
+ 2π

∫ π/2

0
cos φ sin φ dρ

)

= 1

2

(
0 + π

∫ π/2

0
sin 2φ dφ

)
= π

2

(
− cos 2φ

2

) ∣∣∣∣π/2

0
= −π

4
(−1 − 1) = π

2

Combining with (1) we obtain the flux: ∫∫
S

F · dS = π

2

34. The velocity field of a fluid (in meters per second) is

F = (3y − 4)i + e−y(z+1)j + (x2 + y2)k

(a) Estimate the flow rate (in cubic meters per second) through a small surface S around the origin if S encloses a region
of volume 0.01 m3.
(b) Estimate the circulation of F about a circle in the xy-plane of radius r = 0.1 m centered at the origin (oriented
counterclockwise when viewed from above).
(c) Estimate the circulation of F about a circle in the yz-plane of radius r = 0.1 m centered at the origin (oriented
counterclockwise when viewed from the positive x-axis).

solution
(a) We use the approximation ∫∫

S
F · dS ≈ div(F)(0)Vol(W) (1)

Here, Vol(W) = 0.01 m3. We compute the divergence at the origin:

div(F) = ∂

∂x
(3y − 4) + ∂

∂y
e−y(z+1) + ∂

∂z
(x2 + y2) = −(z + 1)e−y(z+1) ⇒ div(F)(0) = −1

Substituting in (1) gives the estimation ∫∫
S

F · dS ≈ −1 · 0.01 = −0.01 m3/s

(b) We use the estimation for the circulation using the point P = (0, 0.1, 0):∫
C

F · ds ≈ (curl(F)(P ) · en) Area (R) (2)
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en = k

z

y

P = (0, 0.1, 0)

x

C

R

The unit normal vector to R is en = 〈0, 0, 1〉 = k and the area of the disc is π · 0.12 = 0.01π . We compute the curl at P :

curl(F) =

∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z

(3y − 4) e−y(z+1) x2 + y2

∣∣∣∣∣∣∣∣
=
(

2y − e−y(z+1) · (−y)
)

i − (2x − 0)j + (0 − 3)k

=
(

2y + ye−y(z+1)
)

i − 2xj − 3k

Hence,

curl(F)(P ) = (0.2 + 0.1e−0.1)i − 3k

D curl(F)(P ) · en =
(
(0.2 + 0.1e−0.1)i − 3k

)
· k = −3

Combining with (2) gives the estimation ∫
C

F · ds ≈ −3 · 0.01π = −0.03π

(c) We use estimation (2), only that now the unit normal vector is en = i.

en = i

z

y

P = (0, 0.1, 0)

x

C
R

We get ∫
C

F · ds ≈
((

(0.2 + 0.1e−0.1)i − 3k
)

· i
)

0.01π = (0.2 + 0.1e−0.1) · 0.01π = 0.009

35. Let V (x, y) = x + x

x2 + y2
. The vector field F = ∇V (Figure 5) provides a model in the plane of the velocity

field of an incompressible, irrotational fluid flowing past a cylindrical obstacle (in this case, the obstacle is the unit circle
x2 + y2 = 1).

(a) Verify that F is irrotational [by definition, F is irrotational if curl(F) = 0].

x

y

1

3

2

1

−1−2−3
−1

−2

−3

32

FIGURE 5 The vector field ∇V for V (x, y) = x + x

x2 + y2
.

(b) Verify that F is tangent to the unit circle at each point along the unit circle except (1, 0) and (−1, 0) (where F = 0).
(c) What is the circulation of F around the unit circle?
(d) Calculate the line integral of F along the upper and lower halves of the unit circle separately.
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solution

(a) In Exercise 8, we proved the identity curl(∇ϕ) = 0. Since F is a gradient vector field, it is irrotational; that is,
curl(F) = 0 for (x, y) �= (0, 0), where F is defined.

(b) We compute F explicitly:

F = ∇ϕ =
〈
∂ϕ

∂x
,
∂ϕ

∂y

〉
=
〈

1 + y2 − x2

(x2 + y2)
2
, − 2xy

(x2 + y2)
2

〉

Now, using x = cos t and y = sin t as a parametrization of the circle, we see that

F =
〈
1 + sin2 t − cos2 t, −2 cos t sin t

〉
=
〈
2 sin2 t, −2 cos t sin t

〉
,

and so

F = 2 sin t 〈sin t, − cos t〉 = 2 sin t 〈y, −x〉 ,

which is clearly perpendicular to the radial vector 〈x, y〉 for the circle.

(c) We use our expression of F from Part (b):

F = ∇ϕ =
〈

1 + y2 − x2

(x2 + y2)
2
, − 2xy

(x2 + y2)
2

〉

Now, F is not defined at the origin and therefore we cannot use Green’s Theorem to compute the line integral along the
unit circle. We thus compute the integral directly, using the parametrization

c(t) = (cos t, sin t), 0 ≤ t ≤ 2π.

x
1

y

C

Then,

F (c(t)) · c′(t) =
〈

1 + sin2t − cos2 t

(cos2 t + sin2 t)
2
, − 2 cos t sin t

(cos2 t + sin2 t)
2

〉
· 〈− sin t, cos t〉

=
〈
1 + sin2 t − cos2 t, −2 cos t, sin t

〉
· 〈− sin t, cos t〉 =

〈
2 sin2 t, −2 cos t sin t

〉
· 〈− sin t, cos t〉

= −2 sin3 t − 2 cos2 t sin t = −2 sin t (sin2 t + cos2 t) = −2 sin t

Hence, ∫
C

F · ds =
∫ 2π

0
−2 sin t dt = 0

(d) We denote by C1 and C2 the upper and lower halves of the unit circle. Using part (c) we have∫
C1

F · ds +
∫
C2

F · ds = 0 ⇒
∫
C2

F · ds = −
∫
C1

F · ds (1)

x
1

y

C1

C2
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To compute the circulation along C1, we compute the integral as in part (c), only that the limits of integration are now
t = 0 and t = π . Using the computations in part (c) we obtain

∫
C1

F · ds =
∫ π

0
−2 sin2 t dt = −4

Therefore, by (1), ∫
C2

F · ds = 4.

36. Figure 6 shows the vector field F = ∇V , where

V (x, y) = ln
(
x2 + (y − 1)2)+ ln

(
x2 + (y + 1)2)

which is the velocity field for the flow of a fluid with sources of equal strength at (0, ±1) (note that V is undefined at these
two points). Show that F is both irrotational and incompressible—that is, curlz(F) = 0 and div(F) = 0 [in computing
div(F), treat F as a vector field in R3 with a zero z-component]. Is it necessary to compute curlz(F) to conclude that it is
zero?

(0, 1)

(0, −1)

x

y

FIGURE 6 The vector field ∇V for V (x, y) = ln(x2 + (y − 1)2) + ln(x2 + (y + 1)2).

solution Since F is a gradient field it is irrotational. This property was proved in Exercise 8, where we showed that
curl(∇ϕ) = 0 for all ϕ. To show that F is incompressible, we first find F explicitly.

F(x, y, z) =
〈
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

〉
=
〈

2x

x2 + (y − 1)2
+ 2x

x2 + (y + 1)2
,

2(y − 1)

x2 + (y − 1)2
+ 2(y + 1)

x2 + (y + 1)2
, 0

〉

= 〈F1, F2, F3〉

Hence,

div F(x, y, z) = ∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z

=
2
(
x2 + (y − 1)2

)
− 2x · 2x(

x2 + (y − 1)2
) +

2
(
x2 + (y + 1)2

)
− 2x · 2x(

x2 + (y + 1)2
)

+
2
(
x2 + (y − 1)2

)
− 2(y − 1) · 2(y − 1)(

x2 + (y − 1)2
) +

2
(
x2 + (y + 1)2

)
− 2 · 2(y + 1)2(

x2 + (y + 1)2
)

= 0 + 0 = 0

Note that, again by Exercise 8, the divergence of ∇ϕ is zero, and hence so also is the divergence of F.

37. In Section 17.1, we showed that if C is a simple closed curve, oriented counterclockwise, then the line integral is

Area enclosed by C = 1

2

∮
C

x dy − y dx 1

Suppose that C is a path from P to Q that is not closed but has the property that every line through the origin intersects C
in at most one point, as in Figure 7. Let R be the region enclosed by C and the two radial segments joining P and Q to
the origin. Show that the line integral in Eq. (1) is equal to the area of R. Hint: Show that the line integral of F = 〈−y, x〉
along the two radial segments is zero and apply Green’s Theorem.
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x

y

C

R
P

Q

FIGURE 7

solution

x

y

C

R
P

Q

Q

Let F = 〈−y, x〉. Then P = −y and Q = x, and ∂Q
∂x

− ∂P
∂y

= 2. By Green’s Theorem, we have

∫
C

−y dx + x dy +
∫
QO

−y dx + x dy +
∫
OP

−y dx + x dy =
∫∫

R
2 dA = 2

∫∫
R

dA

Denoting by A the area of the region R, we obtain

A = 1

2

∫
C

−y dx + x dy + 1

2

∫
QO

−y dx + x dy + 1

2

∫
OP

−y dx + x dy (1)

We parametrize the two segments by

QO : c(t) = (t, t tan β)

OP : d(t) = (t, t tan α)
⇒

c′(t) = 〈1, tan β〉
d′(t) = 〈1, tan α〉

Then,

F (c(t)) · c′(t) = 〈−t tan β, t〉 · 〈1, tan β〉 = −t tan β + t tan β = 0

F (d(t)) · d′(t) = 〈−t tan α, t〉 · 〈1, tan α〉 = −t tan α + t tan α = 0

Therefore, ∫
QO

F · ds =
∫
OP

F · ds = 0.

Combining with (1) gives

A = 1

2

∫
C

−y dx + x dy.

38. Suppose that the curve C in Figure 7 has the polar equation r = f (θ).

(a) Show that c(θ) = (f (θ) cos θ, f (θ) sin θ) is a counterclockwise parametrization of C.

(b) In Section 11.4, we showed that the area of the region R is given by the formula

Area of R = 1

2

∫ β

α
f (θ)2 dθ

Use the result of Exercise 37 to give a new proof of this formula. Hint: Evaluate the line integral in Eq. (1) using c(θ).

solution

(a) The curve r = f (θ) in polar coordinates can be parametrized using θ as a parameter. Since x = r cos θ and y = r sin θ ,
we have

x = r cos θ = f (θ) cos θ, y = r sin θ = f (θ) sin θ.

When θ varies from α to β, the path C is traversed counterclockwise.
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(b) In Exercise 37 we showed that

area of R = 1

2

∫
C

x dy − y dx (1)

We evaluate the line integral using the parametrization in (a):

c(θ) = (f (θ) cos θ, f (θ) sin θ) , α ≤ θ ≤ β.

We have

dy

dθ
= f ′(θ) sin θ + f (θ) cos θ ⇒ dy = (f ′(θ) sin θ + f (θ) cos θ

)
dθ

dx

dθ
= f ′(θ) cos θ − f (θ) sin θ ⇒ dx = (f ′(θ) cos θ − f (θ) sin θ

)
dθ

Hence∫
C

x dy − y dx =
∫ β

α

(
f (θ) cos θ

(
f ′(θ) sin θ + f (θ) cos θ

)− f (θ) sin θ
(
f ′(θ) cos θ − f (θ) sin θ

))
dθ

=
∫ β

α

(
f (θ)f ′(θ) cos θ sin θ + f 2(θ) cos2 θ − f (θ)f ′(θ) sin θ cos θ + f 2(θ) sin2 θ

)
dθ

=
∫ β

α
f 2(θ)

(
cos2 θ + sin2 θ

)
dθ =

∫ β

α
f 2(θ) dθ

Substituting in (1) we obtain

area of R = 1

2

∫ β

α
f 2(θ) dθ

39. Prove the following generalization of Eq. (1). Let C be a simple closed curve in the plane (Figure 8)

S : ax + by + cz + d = 0

Then the area of the region R enclosed by C is equal to

1

2‖n‖
∮
C
(bz − cy) dx + (cx − az) dy + (ay − bx) dz

where n = 〈a, b, c〉 is the normal to S, and C is oriented as the boundary of R (relative to the normal vector n). Hint:
Apply Stokes’ Theorem to F = 〈bz − cy, cx − az, ay − bx〉.

z

y
x

Plane S

C
R

n = 〈a, b, c〉

FIGURE 8

solution By Stokes’ Theorem,∫∫
S

curl(F) · dS =
∫∫

S
(curl(F) · en) dS =

∫
C

F · ds (1)

We compute the curl of F:

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

bz − cy cx − az ay − bx

∣∣∣∣∣∣∣∣∣
= 2ai + 2bj + 2ck = 2 〈a, b, c〉

The unit normal to the plane ax + by + cz + d = 0 is

en = 〈a, b, c〉√
a2 + b2 + c2
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Therefore,

curl(F) · en = 2 〈a, b, c〉 · 1√
a2 + b2 + c2

〈a, b, c〉

= 2√
a2 + b2 + c2

(a2 + b2 + c2) = 2
√

a2 + b2 + c2

Hence, ∫∫
S

curl(F) · dS =
∫∫

S
curl(F) · en dS =

∫∫
S

2
√

a2 + b2 + c2 dS = 2
√

a2 + b2 + c2
∫∫

S
1 dS (2)

The sign of
∫∫

S 1 dS is determined by the orientation of S. Since the area is a positive value, we have

∣∣∣∣
∫∫

S
1 ds

∣∣∣∣ = Area (S)

Therefore, (2) gives ∣∣∣∣
∫∫

S
curl(F) · dS

∣∣∣∣ = 2
√

a2 + b2 + c2 Area(S)

Combining with (1) we obtain

2
√

a2 + b2 + c2 Area(S) =
∣∣∣∣
∫
C

F · ds

∣∣∣∣
or

Area(S) = 1

2
√

a2 + b2 + c2
= 1

2‖n‖ ·
∣∣∣∣
∫
C
(bz − cy) dx + (cx − az) dy + (ay − bx) dz

∣∣∣∣
40. Use the result of Exercise 39 to calculate the area of the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1) as a
line integral. Verify your result using geometry.

solution In Exercise 39 we showed that if C is a simple closed curve in the plane ax + by + cz + d = 0, then the
area of the region R enclosed by C is equal to

1

2‖n‖
∫
C
(bz − cy) dx + (cx − az) dy + (ay − bx) dz, n = 〈a, b, c〉 (1)

A = (1, 0, 0)

B = (0, 1, 0)

C = (0, 0, 1)

z

y

x

We use this formula where C is the triangle ABC parametrized counterclockwise. We compute the upward-pointing
normal to the plane of the triangle:

n = −→
AB × −→

AC = (j − i) × (k − i) = i + k + j = i + j + k.

We substitute ‖n‖ =
√

12 + 12 + 12 = √
3 and a = b = c = 1 in (1) to obtain:

area of R = 1

2
√

3

∫
C
(z − y) dx + (x − z) dy + (y − x) dz (2)

We parametrized the oriented segments by

AB : c1(t) = (1 − t, t, 0), 0 ≤ t ≤ 1 ⇒ dx = −dt, dy = dt, dz = 0

BC : c2(t) = (0, 1 − t, t), 0 ≤ t ≤ 1 ⇒ dx = 0, dy = −dt, dz = dt

CA : c3(t) = (t, 0, 1 − t), 0 ≤ t ≤ 1 ⇒ dx = dt, dy = 0, dz = −dt
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We compute the line integral along each segment separately:∫
AB

(z − y) dx + (x − z) dy + (y − x) dz =
∫ 1

0
(0 − t)(−dt) + (1 − t − 0) dt =

∫ 1

0
1 dt = 1

∫
BC

(z − y) dx + (x − z) dy + (y − x) dz =
∫ 1

0
(0 − t)(−dt) + (1 − t − 0) dt =

∫ 1

0
1 dt = 1

∫
CA

(z − y) dx + (x − z) dy + (y − x) dz =
∫ 1

0
(1 − t − 0) dt + (0 − t)(−dt) =

∫ 1

0
1 dt = 1

The integral along C is the sum of these three integrals. That is,∫
C
(z − c) dx + (x − z) dy + (y − x) dz = 1 + 1 + 1 = 3

We combine with (2) to obtain the following area of the triangle:

area of R = 1

2
√

3
· 3 =

√
3

2

We verify this solution geometrically. The triangle spanned by the vectors
−→
AB = j − i and

−→
AC = k − i has area

1

2

∥∥∥−→AB × −→
AC

∥∥∥ = 1

2
‖i + j + k‖ = 1

2

√
3.

The two answers match.

41. Show that G(θ, φ) = (a cos θ sin φ, b sin θ sin φ, c cos φ) is a parametrization of the ellipsoid

(x

a

)2 +
(y

b

)2 +
( z

c

)2 = 1

Then calculate the volume of the ellipsoid as the surface integral of F = 1
3 〈x, y, z〉 (this surface integral is equal to the

volume by the Divergence Theorem).

solution For the given parametrization,

x = a cos θ sin φ, y = b sin θ sin φ, z = c cos φ (1)

We show that it satisfies the equation of the ellipsoid

(x

a

)2 +
(y

b

)2 +
( z

c

)2 =
(

a cos θ sin φ

a

)2
+
(

b sin θ sin φ

b

)2
+
(

c cos φ

c

)2

= cos2 θ sin2 φ + sin2 θ sin2 φ + cos2 φ

= sin2 φ(cos2 θ + sin2 θ) + cos2 φ

= sin2 φ + cos2 φ = 1

Conversely, for each (x, y, z) on the ellipsoid, there exists θ and φ so that (1) holds. Therefore (θ, φ) parametrizes the
whole ellipsoid. Let W be the interior of the ellipsoid S. Then by Eq. (10):

Volume(W) = 1

3

∫∫
S

F · dS, F = 〈x, y, z〉

We compute the surface integral, using the given parametrization. We first compute the normal vector:

∂

∂θ
= 〈−a sin θ sin φ, b cos θ sin φ, 0〉

∂

∂φ
= 〈a cos θ cos φ, b sin θ cos φ, −c sin φ〉

∂

∂θ
× ∂

∂φ
= −ab sin2 θ sin φ cos φk − ac sin θ sin2 φj − ab cos2 θ sin φ cos φk − bc cos θ sin2 φi

=
〈
−bc cos θ sin2 φ, −ac sin θ sin2 φ, −ab sin φ cos φ

〉
Hence, the outward pointing normal is

n =
〈
bc cos θ sin2 φ, ac sin θ sin2 φ, ab sin φ cos φ

〉
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F ((θ, φ)) · n = 〈a cos θ sin φ, b sin θ sin φ, c cos φ〉 ·
〈
bc cos θ sin2 φ, ac sin θ sin2 φ, ab sin φ cos φ

〉
= abc cos2 θ sin3 φ + abc sin2 θ sin3 φ + abc sin φ cos2 φ

= abc sin3 φ(cos2 θ + sin2 θ) + abc sin φ cos2 φ

= abc sin3 φ + abc sin φ cos2 φ = abc sin3 φ + abc sin φ(1 − sin2 φ)

= abc sin φ

We obtain the following integral:

Volume(W) = 1

3

∫∫
S

F · dS = 1

3

∫ 2π

0

∫ π

0
abc sin φ dφ dθ

= 2πabc

3

∫ π

0
sin φ dϕ = 2πabc

3

(
− cos φ

∣∣∣∣π
0

)
= 4πabc

3
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