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1. (8 points) This question is multiple choice. Indicate your answers clearly in the
following table. Only this table will be graded for this question.

Part A B C D

(a) X

(b) X

(c) X

(d) X

(e) X

(f) X

(g) X

(h) X

(a) If R = [−2, 0]× [−1, 3], then
∫∫
R 3 dA is equal to

A. 24
B. 8
C. 18
D. 12

(b) If R = [0, 1]× [−1, 1], then
∫∫
R y sin(xy2) dA is equal to

A. −1
B. 0
C. π
D. π2

(c) Let R = [0, 2]× [0, 2]. The Riemann sum S2,2 for estimating
∫∫
R(x+ y) dA

where we divide each interval in half and use upper left corners as sample
points is equal to
A. 12
B. 8
C. 6
D. 4

Question 1 continues on the next page. . .
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(d) If D is the region bounded by the curves y = 2x2 and y = 1 − x2, then D
has the description
A. −

√
3 ≤ x ≤

√
3, and 2x2 ≤ y ≤ 1− x2

B. −1/
√

3 ≤ x ≤ 1/
√

3, and 2x2 ≤ y ≤ 1− x2

C. −
√

3 ≤ x ≤
√

3, and 1− x2 ≤ y ≤ 2x2

D. −1/
√

3 ≤ x ≤ 1/
√

3, and 1− x2 ≤ y ≤ 2x2

(e) If D is the disc x2 + y2 ≤ 9, then after changing to polar coordinates, the
integral

∫∫
D xy dA becomes

A.
∫ 2π

0
∫ 3

0 r
3 sin(θ) cos(θ) dr dθ

B.
∫ 2π

0
∫ 3

0 r
2 sin(θ) cos(θ) dr dθ

C.
∫ π

0
∫ 3

0 r
3 sin(θ) cos(θ) dr dθ

D.
∫ π

0
∫ 3

0 r
2 sin(θ) cos(θ) dr dθ

(f) The triangle with vertices (0, 0), (1, 1), (1,
√

3) is described in polar coordi-
nates by
A. π/6 ≤ θ ≤ π/4, and 0 ≤ r ≤ 1/ sin(θ)
B. π/4 ≤ θ ≤ π/3, and 0 ≤ r ≤ 1/ sin(θ)
C. π/6 ≤ θ ≤ π/4, and 0 ≤ r ≤ 1/ cos(θ)
D. π/4 ≤ θ ≤ π/3, and 0 ≤ r ≤ 1/ cos(θ)

(g) The domain {(x, y) | y ≥ x, (x − 1)2 + y2 ≤ 1} in R2 is described in polar
coordinates by
A. π/4 ≤ θ ≤ π/2, and 0 ≤ r ≤ 2 cos(θ)
B. 0 ≤ θ ≤ π/4, and 0 ≤ r ≤ 2 cos(θ)
C. π/4 ≤ θ ≤ π/2, and 0 ≤ r ≤ 2 sin(θ)
D. 0 ≤ θ ≤ π/4, and 0 ≤ r ≤ 2 sin(θ)

(h) Every integral of the form
∫ b
a

∫ f2(x)
f1(x) f(x, y) dy dx can also be represented in

the form
∫ θ2
θ1

∫ r2(θ)
r1(θ) f(r cos(θ), r sin(θ)) r dr dθ.

A. True
B. False
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2. (8 points) Find a real number C such that∫ 2

0

∫ 1

y/2
C cos(Cx2) dx dy = 1.

Solution: ∫ 2

0

∫ 1

y/2
C cos(Cx2) dx dy =

∫ 1

0

∫ 2x

0
C cos(Cx2) dy dx

=
∫ 1

0
2xC cos(Cx2) dx

=
(

sin(Cx2)
)1

0
= sin(C).

Hence for instance C = π
2 will do.
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3. Let W be the region in R3 bounded by the planes y = 0, y = 1, z = 0, z = 1 and
between the surfaces given by x = 5− y2 and x = 2y2.
(a) (4 points) Find a domain D in the yz-plane and functions f1(y, z) and

f2(y, z) such that W = {(x, y, z) | (y, z) ∈ D, f1(y, z) ≤ x ≤ f2(y, z)}.
(b) (4 points) Calculate the volume of W .
(c) (4 points) Is the regionW z-simple? If not, explain why not. If yes, describe

a domain E in the xy-plane and functions g1(x, y), g2(x, y) such that W =
{(x, y, z) | (x, y) ∈ E , g1(x, y) ≤ z ≤ g2(x, y)}.

Solution:
(a) • D = [0, 1]× [0, 1] = {(y, z) | 0 ≤ y ≤ 1, 0 ≤ z ≤ 1},

• f1(y, z) = 2y2,
• f2(y, z) = 5− y2.

(b)

Vol(W) =
∫∫∫

W
1 dV

=
∫ 1

0

∫ 1

0

∫ 5−y2

2y2
1 dx dy dz

=
∫ 1

0

∫ 1

0
(5− 3y2) dy dz

=
∫ 1

0
4 dz

= 4.

(c) Yes. One can take

• E = {(x, y) | 0 ≤ y ≤ 1, 2y2 ≤ x ≤ 5− y2},
• g1(x, y) = 0, and
• g2(x, y) = 1.
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4. A spiky mountain is described by the region bounded by the xy-plane and the
surface z = 5−

√
x2 + y2.

(a) (3 points) Find the projection of the mountain onto the xy-plane.
(b) (5 points) Use a suitable integral to find the average height of the surface

of the mountain.
(c) (2 points) Without calculation, can we know if there is a point on the surface

of the mountain where the average height is attained? Justify your answer.
(d) (2 points) Suppose another mountain is described by a surface above a disk

of radius 3 in the xy-plane, which has average height 10. What is the volume
of this other mountain? Justify your answer.

Solution:
(a) D = {(x, y) | x2 + y2 ≤ 25}.

(b) The average height h̄ is given by the integral of the function giving the
surface, divided by the area of the domain. It turns out polar coordinates
help us out:

h̄ = 1
Area(D)

∫∫
D

(5−
√
x2 + y2) dA

= 1
25π

∫ 2π

0

∫ 5

0
(5− r)r dr dθ

= 1
25π

∫ 2π

0

125
6 dθ

= 5
3

(c) Yes, because f(x, y) = 5−
√
x2 + y2 is continuous on D and D is closed,

bounded and connected. Thus, this follows from the mean value theorem.

(d) Say this other mountain lies under the surface f(x, y) above domain E ,
then

Vol(OtherMountain) =
∫∫
E
f(x, y) dA

which by definition equals

f̄ · Area(E) = 90π.


