Course 32 B Sec. 2 UCLA Department of Mathematics

Fall 2020 Instructor: Oleg Gleizer

Student: Student ID: Student ID:

Midterm 1

Please print your name and student ID in the designated space at the top of the page. Show your work! Answers unsupported by work yield no credit.

Problem 1 Use the symmetry of the problem 10 pts to find the integral

$$
\iint\limits_D \left(1 + \frac{y}{x^{10} + y^{10} + 10}\right) dA
$$

over the domain $D = [-3, 2] \times [-1, 1]$.

$$
\iint\limits_{D} \left(1 + \frac{y}{x^{10} + y^{10} + 10}\right) dA = \iint\limits_{D} \left\{ dA + \iint\limits_{D} \frac{y}{x^{10} + y^{10} + 10} dA \right\} = \mathbb{I}
$$

in the polar opposite y coordinate which has a value equal in mappoitude Note that if $f(n_iy) = \frac{1}{x^{10}+y^{10}+10}$, then $f(n_i-y) = f(n_iy)$. Moreover, our domain is symmetric along the y axis so for every point in domain, there exist a point but opposite in sign for our function. So $\iint_{D} f(x,y) dA = 0$. $I = Area$ of domain + O = $|(-3-2)x(-1-1)| = 10$.

Problem 2 10 pts

• Use the upper-left vertices of the below partition to find the Riemann sum $S_{3,3}$ for the integral

$$
\iint\limits_D (2x-y)dA
$$

over the domain *D* shaded on the picture below. 8 pts

x y 1 1 *D S*3*,*³ = A 56 we consider ^apoint Bedsit ⁰⁶⁸¹ only if it liesin pointshave ^avalued 0 fury 2n y ² 3 45 0 7 8 q to JCA areaofRectAt ^A JCB areaofRectat ^B ^t goooareaofRectat ^C t's t's Ii 4 ³ ² 6 ³ ² 12.2 ² 24 36 48 108

$$
||P|| = 3
$$

$$
\int \max_{1 \leq i \leq N} \text{diam} \, \text{diam} \, \text{diam} \, \text{diam} \, \text{diam}
$$
\n
$$
2
$$

• What is the maximal length *||P||* of the partition? 2 pts

Problem 3 10 pts

Should we consider the below region *R* as vertically simple or as horizontally simple? Please circle the correct answer. 2 pts

Find the following integral.
$$
\iint_R 8xydA =
$$
 8 pts
\n $Q(y) = 8y/d$ 2.
\n $\mathcal{J}(y) = 8y/d$ 2.
\n $\mathcal{J}(y) = 8y/d$ 2.

Doing
$$
\frac{1}{2}
$$
 is integral:

\n
$$
\iint_{R} \frac{1}{8} \frac{1}{
$$

$$
=(128 y2-9y4)o2 = 512 - 168 = 368
$$

The domain can be drawn as

Evaluate the following integral. Hint: it helps to sketch the domain.

$$
\int\limits_{0}^{1} \int\limits_{y}^{1} \frac{\cos x}{x} \, dxdy
$$

The reason we did change of order of integration was to make the integration easies. As can be seen, instead of having to integrate ord $\frac{cos x}{x}$ d x we just had to integrate over cosed x since integrating with y first alcowed us to remove x from the denominated.

 10 pts

Find the integral

$$
\iiint\limits_B 24xy^2z^3dV
$$

over the box $B = [0, a] \times [0, b] \times [0, c]$.

 $\iiint_{B} 24 \pi y^2 z^2 dV = \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} 24 \pi y^2 z^2 dz dy dx = \int_{0}^{a} \int_{0}^{b} 6 \pi y^2 z^4 \Big|_{z=0}^{c} dy dx$

= $\int_{0}^{a} \int_{0}^{b} 6c^{4}xy^{2}dydx = \int_{0}^{a} \int_{0}^{b} 2c^{4}xy^{3} \Big|_{y=0}^{b} dx = \int_{0}^{a} 2c^{4}b^{3}x dx$

= c^4b^3 $[2^2]_0^q$ = $a^2b^3c^4$

Compute the average value \bar{f} of the function

$$
f(x,y,z) = z
$$

over the region bounded above by the upper semi-sphere of radius R centered at the origin and bounded below by the plane $z = 0$.

We can drow the region as follows: Conventing to spherical coordinates, we have $J: O \rightarrow R$
 $J: O \rightarrow \frac{\pi}{2}$ $CH \rightarrow \alpha$ hemisphore] $\theta = 0 + 215$
 $\iiint_{\alpha} z \cdot dV = \iint_{\alpha=0}^{2\pi} \int_{\beta=0}^{2\pi} \int_{\beta=0}^{2\pi} f \cos \beta \cdot (f^2 \sin \beta) d\beta d\beta = \iint_{\alpha=0}^{2\pi} \int_{\beta=0}^{2\pi} f^4 \sin \beta \cos \beta \int_{\alpha}^{R} dy d\theta$ $=$ $\int_{0}^{2\pi} \int_{0}^{3\pi} \frac{R^{4}}{4}$ sindcosp $d\phi d\theta = \frac{R^{4}}{8} \int_{0}^{2\pi} \int_{2\sin\phi}^{\frac{\pi}{2}} cos\phi d\phi d\theta$ = R^4 $\int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} sin 2\phi d\phi d\theta = R^4 \int_{0}^{2\pi} -cos 2\phi \int_{0}^{\frac{\pi}{2}} d\phi = \frac{R^4}{8} \int_{0}^{2\pi} 1 d\theta = \frac{\pi R^4}{4}$ we can calculate $\iiint_R dV$ by just caleulating the volume of
a hemigphore with radius R, which we know to be $\frac{2}{8}\pi R^2$ The average value is defined as $\frac{\int f(x,y,z) dV}{\int f(x-y,z)} = \frac{\pi R^4}{7} = \frac{3}{5}R$

Convert the following equation to an equation in rectangular coordinates. 5 pts

 10 pts

 $r = 2a \sin \theta$ Multiplying both sides by r r^2 = 2a rsin θ We know that $r^2 = x^2 + y^2$, $rsin\theta = x$. Making these septacements arget $7^2 + y^2 = 2ay$ $2^2 + y^2 - 2ay + a^2 = a^2$ $x^2 + (y-a)^2 = a^3$

Graph the set of the points $(\theta, r(\theta))$ that satisfy the above equation. 5 pts

 10 pts

The region of integration R is given by the following inequalities.

$$
R: x^2 + y^2 \le 1, x + y \ge 1
$$

Evaluate the integral below by switching to polar coordinates.

First, we can draw the domain of integration:		
x -r th ?	Convolting to polar coordinates, the equation of integration:	
x -r th ?	Suppose bound for r is r ≤ 1 [as x ² +y ²].	
x -r th ?	Then down in, 9 ∈ [0, 7] so simple, cos0 ≥ 0.] ⇒ r ≥ 1	sinθ + cosθ = 1
x -r th ?	From $x + y ≥ 1 ⇒ r$ sinθ + cosθ = 1	
x -r th ?	From $x + y ≥ 1 ⇒ r$ sinθ + cosθ = 1	
x -r th	From $x + y ≥ 1 ⇒ r$ sinθ + cosθ = 1	
x -r th	From $x + y ≥ 1 ⇒ r$ sinθ + cosθ = 1	
x -r th	From $x + y ≥ 1 ⇒ r$ sinθ + cosθ = 1	
x -r th	From $x + y ≥ 1 ⇒ r$ cosθ = 1	
x -r th	From $x + y ≥ 1 ⇒ r$ cosθ = 1	
x -r th	From $x + y ≥ 1 ⇒ r$ cosθ = 1	
x -r th	From x -r th	1; $θ : 0 → T$
x -r th	From x -r th	1; $θ : 0 → T$

Problem 9 10 pts

The region of integration R is given by the following inequalities.

 $R: x^2 + y^2 \le 1, x \ge 0, y \ge 0, 0 \le z \le 2$

Use cylindrical coordinates to evaluate the below integral.

The domain can be drawn as follows:
\n
$$
2x^2
$$

\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow 1$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow 1$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow 1$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow 1$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow 1$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow 1$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow 1$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow 1$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow 1$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow 1$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow 1$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow 1$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow 1$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow 1$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow 1$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow r : 0$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow r : 0$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow r : 0$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow r : 0$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow r : 0$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow r : 0$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow r : 0$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow r : 0$
\n $2x^2y^2 \le 1 \Rightarrow r : 0 \Rightarrow r : 0$
\n $$

Use spherical coordinates to figure out the volume of the below cone. $\;$

The upper bound for
\n
$$
f
$$
 is given by $z=rt$,
\n $f(z)$ $z = 1$
\n $f(z)$ $z = 1$
\n $f(z)$ $z = 1$
\nLet US now calculate $beundes$
\n f or \emptyset .
\n f or <