Course 32 B UCLA Department of Mathematics

Spring 2021 Instructor: Oleg Gleizer

Final Exam

Please print your name and student ID in the designated space below. Show
your work! Answers unsupported by work yield no credit.

Student’s Name, First: Last:

Student ID:

Pledge: I assert, on my honor, that I have not received assistance of any
kind from any other person while working on the final and that I have not
used any non-permitted materials or technologies during the period of this

evaluation.

Student’s signature:
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Problem 1 10 pts

e Use the upper-right vertices of the below partition to find the Riemann
sum Sz 3 for the integral

/ / (* —y*)dA

D

over the domain D shaded on the picture below. 8 pts
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e What is the maximal length ||P|| of the partition? 2 pts
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Problem 2 10 pts
Consider the following integral.
4 12
/ / e du dy
0 3y
e Sketch the domain of integration. 2 pts
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e Switch the order of integration and evaluate. 8 pts
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Problem 3 10 pts

D is the region bounded by the curves on the picture below.

Find the following integral.
/ / (z* + y*)dA
D
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Problem 4 10 pts

The real numbers X and Y are randomly and independently chosen between
zero and ten. The joint probability density is

0.01 if (z,y) € [0,10] x [0, 10]
plx,y) = {

0 otherwise.

Find the probability P that X > Y?2.




In Problems 5 and 6 of this test, you are asked to consider a truncated
straight circular cone C. Its lower base is a circle of radius b located in the
xy-plane and centered at the origin. Its upper base is a circle of radius a
located in the plane z = h and centered at the point P = (0,0, h) as shown
on the picture below. The cone is homogeneous of mass M.
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Problem 5 10 pts

Find the volume of C. The answer without the derivation yields only one
point!
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Problem 6 10 pts

Recall that the cone is homogeneous and has mass M. Find the cone’s
moment of inertia with respect to the z-axis, I,.
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Problem 7 25 ptS

A torus T(R,r) is a 2D surface spanned by a circumference of radius r,
its center rotating around a circumference of radius R > r, the plane of the
smaller circumference being always perpendicular to the larger circumference.

¢

e Assuming that the larger circumference lies in the zy-plane and is centered
at the origin, find the parametrization (z(6, ), y(0,¢),z(0,¢)) of the torus
where 0 < 0 < 27 is the angle the radius-vector of the larger circumference
forms with the z-axis and 0 < ¢ < 27 is the angle the radius-vector of the
smaller circumference forms with the xy-plane as shown on the left-hand side
picture above. 5 pts
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The problem continues to the next page.
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e Find the length of N. 5 pts
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e Find the area of the torus. The correct answer unsupported

by work yields one point only. 5 pts
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Problem 8 15 pts
e ['ind the circulation of the vortex field

— -y x
F =
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along a positively oriented circumference C) of radius r
centered at the origin. 5 pts
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e Let C5 be a smooth, simple, positively oriented path 10 pts
around the origin in the (x,y)-plane as on the picture below.
Use Green’s Theorem to find the following integral.
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