Course 32 B Sec. 2 UCLA Department of Mathematics

Fall 2020 Instructor: Oleg Gleizer

Final Exam

Please print your name and student ID in the designated space below. Show your work! Answers unsupported by work yield no credit.

Student's Name, First: Last:

Student ID:

Pledge: I assert, on my honor, that I have not received assistance of any kind from any other person while working on the final and that I have not used any non-permitted materials or technologies during the period of this evaluation.

Student's signature:

Problem 1 10 pts

• Use the upper-right vertices of the below partition to find the Riemann sum $S_{3,3}$ for the integral

$$
\iint\limits_D (x^2 - y^2)dA
$$

over the domain *D* shaded on the picture below. 8 pts

• What is the maximal length *||P||* of the partition? 2 pts

$$
||P|| = 3
$$

Since $||P|| = 3$

$$
2
$$

Since $||P|| = \max_{1 \leq i \leq N} (\chi_i \cdot \chi_{i-1} / H_{i} \cdot \chi_{i-1})$

$$
1 \leq j \leq m
$$

Consider the following integral.

 $\int\limits^{4}_{0}\int\limits^{12}_{3y}e^{x^{2}}~dx~dy$

 \bullet Sketch the domain of integration.

2 pts

V = domain of integration

• Switch the order of integration and evaluate.
\nSubitching the order, we see
\n
$$
0.4 \ y \le \frac{1}{3} \alpha
$$
.
\n $0.4 \ z \le 12$
\n $\int_{\alpha=0}^{\frac{1}{2}} \int_{y=0}^{\frac{1}{3}\alpha} e^{\frac{x^2}{4}} dx = \int_{\alpha=0}^{\frac{1}{2}} \int_{y=0}^{\frac{1}{2}\alpha} e^{\frac{x^2}{4}} dx = \int_{\frac{1}{2}\alpha=0}^{\frac{1}{2}\alpha} e^{\frac{x^2}{4}} dx = \int_{\frac{1}{2}\alpha=0}^{\frac{1}{2}\alpha} e^{\frac{x^2}{4}} dx$
\n $\int_{0}^{1} \int_{0}^{14} e^{\frac{1}{2}} dx = \int_{0}^{14} (e^{\frac{1}{2}})^{\frac{1}{4}\alpha} = \int_{0}^{14} (e^{\frac{1}{2}x})^{\frac{1}{4}\alpha} = \int_{0}^{14} (e^{\frac{1}{2}x$

 $\sqrt{3}$

 10 pts

Problem 3 10 pts

D is the region bounded by the curves on the picture below. Find the following integral.

Let
$$
u = y^2 - x^2
$$
 $y = xy$.
\n $f(x, y) = (u(x, y), v(x, y))$
\n $= (y \cdot x^2, y \cdot y)$
\n πc_n
\n $\int (x^2 + y^2) dx$
\n $f(x, y) = (u(x, y), v(x, y))$
\n πc_n
\n πr
\n πr

4

The real numbers X and Y are randomly and independently chosen between zero and ten. The joint probability density is

$$
p(x, y) = \begin{cases} 0.01 & \text{if } (x, y) \in [0, 10] \times [0, 10] \\ 0 & \text{otherwise.} \end{cases}
$$

Find the probability P that $X \ge Y^2$, $\langle \Rightarrow \sqrt{x} \ge y \rangle$

We have the domain as shown.

Then using the figure, we can callulate the domain as $(16, \sqrt{10})$ $\int_{x=0}^{19} \int_{y=0}^{\sqrt{x}} \rho(x,y) \, dy \, dx = \int_{x=0}^{10} \int_{y=0}^{\sqrt{x}} 0.01 \, dy \, dx = \int_{x=0}^{10} 0.01 \, y \Big|_{y=0}^{\sqrt{x}} dx = \int_{x=0}^{10} 0.01 \sqrt{x}$
 $= \frac{20.01 \, x^{3/2}}{3} \Big|_{x=0}^{10} = \frac{0.02 \cdot x^{3/2}}{3} \Big|_{x=0}^{10} = \frac{0.02 \cdot 10^{3/2}}{3}$

In Problems 5 and 6 of this test, you are asked to consider a truncated straight circular cone *C*. Its lower base is a circle of radius *b* located in the *xy*-plane and centered at the origin. Its upper base is a circle of radius *a* located in the plane $z = h$ and centered at the point $P = (0, 0, h)$ as shown on the picture below. The cone is homogeneous of mass *M*.

Find the volume of C . The answer without the derivation yields only one point!

$$
\iint_{B} \omega_{e} \rho_{0} \nu e \rho_{0} \nu e d\rho_{0} \nu e_{1} \quad 1:0 \rightarrow -\frac{b-a}{h}z+b
$$
\n
$$
\iint_{B} \int_{\sigma_{0}^{2}} h \int_{\sigma_{0}^{2}} \nu d\rho dz d\theta = \int_{\sigma_{0}^{2}} \int_{\sigma_{0}^{2}} \int_{\sigma_{0}^{2}} \nu d\rho d\rho dz
$$
\n
$$
= \int_{\sigma_{0}^{2}} \int_{\sigma_{0}^{2}} \frac{1}{\pi} \
$$

Recall that the cone is homogeneous and has mass M . Find the cone's moment of inertia with respect to the z-axis, I_z .

Let the density be
$$
l = \frac{m}{v} = \text{constant} \neq c
$$

\nWe want to find $T_z = \iiint_{\omega} (2l + y^2) \, dV$
\n $\ln cy\sqrt{indr} = \text{constant}$
\n $T_z = c \int_0^h \int_0^{-\frac{1}{2} \cdot \frac{1}{2}} z + b \int_0^{2\pi} r^2 \cdot r \, d\theta \, dr \, dz = 2\pi c \int_0^h \int_0^h r^2 \, dr \, dz$
\n $T_z = c \int_0^h \int_0^{-\frac{1}{2} \cdot \frac{1}{2}} r^2 \, dr \int_0^{2\pi} r^2 \cdot r \, d\theta \, dr \, dz = 2\pi c \int_0^h \int_0^h r^2 \, dr \, dz$
\n $= \frac{\pi c}{2} \int_0^h (b - \frac{(b-a)z}{n})^u dz = \frac{\pi c}{2h^4} \int_0^h (bh + (a-b)z)^u dz$
\nLet $U = bh + (a-b)z$, then $dv = (a-b)dz$
\n $= \frac{\pi c}{2h^4(a-b)} - \int_0^{a b} \frac{v^2}{v^2} dz$
\n $= \frac{\pi c}{2h^4(a-b)} - \frac{v^5}{5} \int_{v = bh}^{a b} \frac{\pi c}{\ln(u^2-b)}$
\n $= \frac{\pi c}{10(a-b)} - \frac{v^5}{10(b-a)} = \frac{\pi h (b^2-a^2)}{\ln(b^2-a^2)} - \frac{3m}{\pi h (b^2+ab+a^2)} = \frac{3m (b^5-a^2)}{10(b-a)(b^2+a^2+a^2)}$
\n $= \frac{3m (b^5-a^5)}{10(b^3-a^3)}$
\n $= \frac{3m (b^5-a^5)}{10(b^3-a^3)}$

Problem 7 25 pts

A torus $T(R,r)$ is a 2D surface spanned by a circumference of radius r, its center rotating around a circumference of radius $R>r$, the plane of the smaller circumference being always perpendicular to the larger circumference.

• Assuming that the larger circumference lies in the *xy*-plane and is centered at the origin, find the parametrization $(x(\theta, \varphi), y(\theta, \varphi), z(\theta, \varphi))$ of the torus where $0 \leq \theta < 2\pi$ is the angle the radius-vector of the larger circumference forms with the *x*-axis and $0 \leq \varphi < 2\pi$ is the angle the radius-vector of the smaller circumference forms with the *xy*-plane as shown on the left-hand side picture above. 5 pts

The problem continues to the next page. x -2 axis and for θ - $\frac{1}{2}$, rotation is restricted in z-y axis. The center of this circle is Along the my plant we are forming a circle of radius R . So we can initially say x = Reoso, y = Rsino At every point in the u , y plane, we are doing a rotation in the plane along the radius vector for the larger circle. We know for a fact that since rotation in my plane has no effect of z) $Z = \text{rsin }\Psi$ Now in x and y directions these will be a term of reas $\mathscr{Y}.$ It would depend on the position of 8. Since, if $\theta \ge 0$, istation is restricted in the also dependants on the position of 8. So. $x = R \cos\theta + \cos\theta \cdot r \cos\varphi = \cos\theta (R + r \cos\varphi)$ $y =$ Rsinot sinocsino = sino(R+ $rcosy$)

Thus we get the parameterization $G(\theta, \theta) = (cos\theta(R + r cos \theta), sin\theta(R + r cos \theta), r sin \theta)$

• Find the vectors
$$
\vec{T}_{\theta}
$$
 and \vec{T}_{φ} .
\n
$$
\vec{T}_{\theta} = \frac{\partial G}{\partial \theta} = \langle -s \rangle \theta (R + r \cos \theta), \cos(\theta) (R + r \cos \theta), 0 \rangle
$$
\n
$$
\vec{T}_{\varphi} = \frac{\partial G}{\partial \varphi} = \langle -r \sin \varphi \cos \theta, -r \sin \varphi \sin \theta, \cos \varphi \rangle
$$

• Find the normal vector
$$
\vec{N} = \vec{T}_0 \times \vec{T}_0
$$
.
\n $\vec{N}(B,y) =$
\n
$$
-\sin\theta (R + r\cos\theta) \cos\theta (R + r\cos\theta) \cos\theta
$$
\n
$$
-\sin\theta \sin\theta \cos\theta - r\sin\theta \sin\theta \cos\theta
$$
\n
$$
= \int r\sin\theta \cos\theta (R + r\cos\theta) - \int (r\cos\theta \sin\theta (R + r\cos\theta)) +
$$
\n
$$
\hat{k}(r\sin^2\theta \sin\theta (R + r\cos\theta) + r\sin\theta \cos^2(R + r\cos\theta)
$$
\n
$$
= \int r\cos\theta (R + r\cos\theta) \cos\theta (R + r\cos\theta) \cos\theta (R + r\cos\theta) \sin\theta (R + r\cos\theta)
$$
\n
$$
= \int (R + r\cos\theta)(R + r\cos\theta) \cos\theta (\cos\theta) \cos\theta (\sin\theta) \sin\theta
$$

The problem continues to the next page.

• Find the length of \vec{N} .

5 pts

Longin of \vec{n} = $||\vec{n}||$ = $|(A + r cos \theta)|$ $|A cos r cos \theta$, $cos r sin \theta$, $sin \theta$ = $||$

- = $6(R + r cos \theta)$ $\sqrt{cos^{2}\theta} cos^{2}\theta + cos^{2}\theta sin\theta + sin^{2}\theta$
- $= r(Rt \cos \theta) \sqrt{cos^2 \theta_t sin^2 \theta}$
- $= r (Rr cos \theta)$

The problem continues to the next page.

 \bullet Find the area of the torus. The correct answer unsupported by work yields one point only.

5 pts

Area of torus is given by $\iint\limits_{G} dS = \int_{\theta=0}^{2\pi} \int_{\frac{\theta}{2}}^{2\pi} \sin \theta d\theta = \int_{\theta=0}^{2\pi} \int_{\frac{\theta}{2}}^{2\pi} f(A + \cos \theta) d\theta d\theta$ $=\int_{\theta=0}^{2\pi} R_f \mathcal{Y} + f \sin \mathcal{Y} \Big|_{\beta=0}^{2\pi} d\theta$ $=$ $\int_{0}^{2\pi} 2\pi Rf d\theta$

 $= 4\pi Rr$

 15 pts

5 pts

Find the circulation of the vortex field

$$
\vec{F} = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)
$$

along a positively oriented circumference C_1 of radius r centered at the origin.

5 pts
We want to find of \vec{r} . of However, we can not apply greencis theorem have
because the point (0,0) [which is undefined for the vortex field] is in the domain. So instant we will use poter coordinated. $\vec{f}(B) = \langle r \cos\theta, r \sin\theta \rangle$, $\cos\theta \sin\theta$, $\cos\theta \sin\theta$, $\cos\theta \sin\theta$, $\cos\theta$) $\sin\theta$, $\cos\theta$) $\sin\theta$, $\cos\theta$) $\sin\theta$, $\cos\theta$) $\cos\$ $8=8$
 $\frac{2\pi}{2\pi}$
 $\int (6\hat{i}t^2\theta + cos^2\theta) d\theta = \frac{2\pi}{\pi}$

The problem continues to the next page.

Let C_2 be a smooth, simple, positively oriented path \bullet around the origin in the (x, y) -plane as on the picture below. Use Green's Theorem to find the following integral.

10 pts

Define C_1 to be a circle of rootive $\oint \vec{F} \cdot d\vec{p}$ r with counterdack orientation Then if we define the domain to be the area between the two curves $\partial D = -G U C_{2}$ C_2 (whose outside me plane ocientator is positive) $\boldsymbol{\mathcal{S}}$ So using Greene's theorem \mathcal{X} $\vec{F} = \langle f_1, f_2 \rangle$ $\frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial x} = \frac{\partial}{\partial x} \left(\frac{x}{x^2+y^2} \right) - \frac{\partial}{\partial y} \left(\frac{-y}{x^2+y^2} \right)$ = $\frac{(x^2+y^2)-2x^2}{(x^2+y^2)^2}$ + $\frac{(x^2+y^2)-2y^2}{(x^2+y^2)^2}$ $= 2x^{2}+2y^{2}-2x^{2}$ この $(x^2+y^2)^2$ Nou $\oint_{\partial\Omega} \vec{F} \cdot d\vec{l} = \iint_{\Omega} (\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}) dA = 0$ Now, if we take $\lim_{x\to\infty}$ for the circle \mathcal{C}_1 , as $v = \frac{v}{c}$
 $-\oint_{c_1} \vec{F} \cdot d\vec{r} + \oint_{c_2} \vec{F} \cdot d\vec{r} = 0$ Then we will conveye upon the value of $\oint_{c_1} \vec{F} \cdot d\vec{r}$ $\frac{14}{\sqrt{50}}$ $\oint \frac{14}{F} F \cdot dF = \lim_{r \to 0} \oint_{C} \vec{F} \cdot dF = \lim_{r \to 0} \lim_{r \to 0} 2\pi = 2\pi$ $\oint \vec{F} \cdot d\vec{r} = \oint_{\rho} \vec{r} \cdot d\vec{r}$ from first part