
Course 32 B Sec. 2 UCLA Department of Mathematics

Fall 2020 Instructor: Oleg Gleizer

Final Exam

Please print your name and student ID in the designated space below. Show

your work! Answers unsupported by work yield no credit.

Student’s Name, First: Last:

Student ID:

Pledge: I assert, on my honor, that I have not received assistance of any

kind from any other person while working on the final and that I have not

used any non-permitted materials or technologies during the period of this

evaluation.

Student’s signature:
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Problem 1 10 pts

• Use the upper-right vertices of the below partition to find the Riemann

sum S3,3 for the integral ZZ

D

(x2 � y2)dA

over the domainD shaded on the picture below. 8 pts
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• What is the maximal length ||P || of the partition? 2 pts
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Problem 2 10 pts

Consider the following integral.
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dx dy

• Sketch the domain of integration. 2 pts

• Switch the order of integration and evaluate. 8 pts
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Problem 3 10 pts

D is the region bounded by the curves on the picture below.

Find the following integral.
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Problem 4 10 pts

The real numbers X and Y are randomly and independently chosen between

zero and ten. The joint probability density is

p(x, y) =

8
<

:

0.01 if (x, y) 2 [0, 10]⇥ [0, 10]

0 otherwise.

Find the probability P that X � Y 2
.
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In Problems 5 and 6 of this test, you are asked to consider a truncated

straight circular cone C. Its lower base is a circle of radius b located in the

xy-plane and centered at the origin. Its upper base is a circle of radius a
located in the plane z = h and centered at the point P = (0, 0, h) as shown
on the picture below. The cone is homogeneous of mass M .
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Problem 5 10 pts

Find the volume of C. The answer without the derivation yields only one

point!
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Problem 6 10 pts

Recall that the cone is homogeneous and has mass M . Find the cone’s

moment of inertia with respect to the z-axis, Iz.
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Problem 7 25 pts

A torus T (R, r) is a 2D surface spanned by a circumference of radius r,
its center rotating around a circumference of radius R > r, the plane of the

smaller circumference being always perpendicular to the larger circumference.

R

r

• Assuming that the larger circumference lies in the xy-plane and is centered

at the origin, find the parametrization (x(✓,'), y(✓,'), z(✓,')) of the torus

where 0  ✓ < 2⇡ is the angle the radius-vector of the larger circumference

forms with the x-axis and 0  ' < 2⇡ is the angle the radius-vector of the

smaller circumference forms with the xy-plane as shown on the left-hand side

picture above. 5 pts

The problem continues to the next page.
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• Find the vectors ~T✓ and
~T'. 4 pts

• Find the normal vector ~N = ~T✓⇥ ~T'. 6 pts

The problem continues to the next page.
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• Find the length of ~N . 5 pts

The problem continues to the next page.
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• Find the area of the torus. The correct answer unsupported

by work yields one point only. 5 pts
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Problem 8 15 pts

• Find the circulation of the vortex field

~F =

✓
�y

x2 + y2
,

x

x2 + y2

◆

along a positively oriented circumference C1 of radius r
centered at the origin. 5 pts

The problem continues to the next page.
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• Let C2 be a smooth, simple, positively oriented path 10 pts
around the origin in the (x, y)-plane as on the picture below.

Use Green’s Theorem to find the following integral.
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