Midterm 1

UCLA: Math 32B, Fall 2019

Instructor: Noah White Date: 21 October 2019

- This exam has 4 questions, for a total of 20 points.
- Please print your working and answers neatly.
- Write your solutions in the space provided showing working.
- Indicate your final answer clearly.
- You may write on the blank pages found at the back of the booklet however these will not be graded unless very clearly indicated. The reverse of any page will *not* be graded. If you need more space please ask the TA or instructor.
- Non programmable and non graphing calculators are allowed.

Name:	Jonathan	Chau	:	
ID number	705	166 732		

Question	Points	Score
1	5	
2	5	
3	5	
4	5	-
Total:	20	

- 1. Each of the following questions has exactly one correct answer. Choose from the four options presented in each case. No partial points will be given.
 - (a) (1 point) If $\mathcal{R} = [-1, 1] \times [0, 2]$, the integral $\iint_{\mathcal{R}} 2 \, dA$ is equal to
- \bigcirc 4
- O 6
- **8**
- (b) (1 point) If $\mathcal{B} = [-1,1] \times [-2,2] \times [3,6]$, the integral $\iiint_{\mathcal{B}} x \ln(y^2 + z^2 + 1)$ Whis equal to

 - $\bigcirc e-1$
 - **0**
 - $\bigcap e^2 + e$
- (c) (1 point) The integral of $12\sqrt{x^2+y^2}$ over the portion of the disc $x^2+y^2\leq 1$, in the first quadrant
 - $\bigcirc \pi$ \bigcirc 2π () $\pi\sqrt{2}$ \bigcirc 0
- (d) (1 point) If \mathcal{D} is the region between the curves $y=x(x^2-1)$ and y=x when $x\geq 0$ then \mathcal{D} has the description
 - $0 \le x \le \sqrt{2}, \ \ x(x^2 1) \le y \le x$
 - $0 \le x \le \sqrt{2}, \quad x \le y \le x(x^2 1)$ $0 \le x \le 1, \quad x(x^2 1) \le y \le x$

 - $\bigcirc 0 \le x \le 1, \ x \le y \le x(x^2 1)$

- (e) (1 point) Let $G(u,v) = (\frac{1}{2}(u-v), \frac{1}{2}(u+v))$. What is the Jacobian of G?
- $\bigcirc uv$

- 2. In this question we will consider two regions. First, $\underline{\mathcal{C}}$ which bounded by y = x(4-x) and y = x. Second, the region \mathcal{D} given by the inequalities
 - $0 \le x + y \le 2$, and
 - $0 \le y x \le 4$.
 - (a) (2 points) Sketch the two regions on the graphs provided.

(b) (1 point) Write the integral

$$\iint_{\mathcal{C}} x \ dA$$

as an iterated integral (no need to evaluate the integral).

Using Fubini's Theorem

(c) (2 points) Let u=x+y and v=y-x, and use the change of coordinates $G(u,v)=\underbrace{\left(\frac{1}{2}(u-v),\frac{1}{2}(u+v)\right)}$ to express the integral

 $\iint_{\mathbb{T}} 2x + 2y \ dA$

as an iterated integral of u and v (no need to evaluate the integral). Hint: have a look back at the multiple choice questions.

A = J(G). Area

 $\int_{0}^{4} \int_{0}^{2} |uv|^{\frac{1}{2}} \cdot A^{rea}(0) |dudy| \int_{0}^{2} |dv|^{\frac{1}{2} - \frac{1}{2}} |dv|$

- Fall, 2019
- 3. In this question we will consider the region \mathcal{D} which bounded by curve $\underline{r} = \theta(2\pi \theta)$.
 - (a) (2 points) Sketch the region \mathcal{D} in the xy-plane, on the graph provided (your sketch can be rough, it does not need to be perfect, it just need to show the main features).

7-22-0-0 -2(22-2) -2-2-2 -2

(b) (3 points) Write the area of \mathcal{D} as an iterated integral (no need to evaluate the integral)

UCLA: Math 32B

- 4. Consider the region \mathcal{E} that is bounded by the surface $z=y-x^2$ and the planes z=0 and y=1.
 - (a) (2 points) Describe the region in the form

$$\mathcal{E} = \{ (x, y, z) \in \mathbb{R}^3 \mid (x, y) \in \mathcal{D}, \ z_1(x, y) \le z \le z_2(x, y) \}$$

for \mathcal{D} a region in the xy-plane. Your answer should specify what \mathcal{D} is. Hint: if you are having trouble imagining what $z = y - x^2$ looks like, try setting y to something. Can you stitch together these pictures for different values of y to get a complete picture?

$$\mathcal{E} = \{(x,y,z) \in \mathbb{R}^3 | (x,y) \in \mathbb{D}, 0 \le z \le y - x^2 \}$$

Where D is described by $|-1 \le x \le 1$.

 $|x^2 \le y \le 1$

(b) (3 points) Compute the volume of the region \mathcal{E} .

$$\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1} dz dy dx$$

$$\int_{-1}^{1} \int_{x^{2}}^{2} z \int_{0}^{2z \cdot y \cdot x^{2}} dy dx = \int_{-1}^{1} \int_{x^{2}}^{1} y - x^{2} dy dx$$

$$\int_{-1}^{1} \int_{x^{2}}^{2} z \int_{z \cdot x^{2}}^{2z \cdot y \cdot x^{2}} dy dx = \int_{-1}^{1} \int_{x^{2}}^{1} y - x^{2} dy dx$$

$$\int_{-1}^{1} \int_{2}^{2} -x^{2} \int_{y=x^{2}-(\frac{z^{2}-x^{2}}{2})}^{1} \int_{-1}^{1} \int_{2}^{2} -x^{2} - \left(\frac{x^{4}-x^{4}}{2}\right) dx$$

$$\int_{-1}^{1} \int_{2}^{2} -x^{2} + \frac{x^{4}}{2} dx = \frac{x}{2} - \frac{x^{3}}{3} + \frac{x}{10} \int_{xz \cdot 1}^{1} - \left(\frac{1}{2} + \frac{1}{3} - \frac{1}{10}\right)$$

$$2\left(\frac{1}{2} - \frac{1}{3} + \frac{1}{10}\right) \rightarrow \left[-\frac{2^{\frac{5}{3}}}{3} + \frac{1}{5}\right] = \frac{15}{15} - \frac{10}{15} + \frac{3}{15} = \frac{8}{15}$$

This page has been left intentionally blank. You may use it as scratch paper. It will not be graded unless indicated very clearly here and next to the relevant question.