Math 32B Final

Professor: Noah White / Term: Spring 2020 / Score: 62/62

Problem 1a *(2 points)*

Consider the region in \mathbb{R}^3 bounded by the planes $x + y + z = 1$ and $2x + 2y + z = 2$ in the first octant (i.e. where $x, y, z \geq 0$).

Let S be the surface that is the boundary of this region, with outward pointing normal vectors.

Calculate the divergence of the vector field $\mathbf{F} = \langle xz, 3yz, 2z^2 \rangle$.

We know that the *divergence* of a vector field is given by $\nabla \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$. In our case,

 $\nabla \cdot \mathbf{F} = z + 3z + 4z = \boxed{8z}$

Problem 1b *(8 points)*

Calculate the flux of \bf{F} through the surface \cal{S} .

We know the flux of \bf{F} through \cal{S} is the *vector surface integral* of \bf{F} over \cal{S} . However, calculating the vector surface integral would be difficult in this case, as we would have to parametrize the four distinct surfaces that comprise S .

Instead, we can try using the *divergence theorem*, which states that

$$
\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \iiint_{\mathcal{W}} \nabla \cdot \mathbf{F} \, dV
$$

S is oriented *outwards*, so we don't have to adjust the sign of the theorem.

Notice that we can write the two planes as functions of z, namely $z_1(x,y) = 1 - x - y$ and $z_2(x, y) = 2 - 2x - 2y$. This means that W is one contiguous *z*-simple region, meaning it will be much easier to find the triple integral over W than to find the surface integral over its boundary S. It also helps that $\nabla \cdot \mathbf{F}$ is really easy to integrate, since it is just 8z.

Both planes intersect each other when $1 - x - y = 2 - 2x - 2y$, or when $y = 1 - x$.

So W projects onto a triangle D in the xy-plane defined by $0 \le x \le 1, 0 \le y \le 1-x$ (which is entirely in the first quadrant).

Our *z*-bounds are simply $z_1(x, y) \le z \le z_2(x, y) \implies 1 - x - y \le z \le 2 - 2x - 2y$.

Now that we have found the bounds for W , we can rewrite the triple integral as an iterated integral:

$$
\iiint_{\mathcal{W}} \nabla \cdot \mathbf{F} \, dV = \int_0^1 \int_0^{1-x} \int_{1-x-y}^{2-2x-2y} 8z \, dz \, dy \, dx
$$

All that is left to do is evaluate the integral, from the inside out. First evaluate the z -integral:

$$
\int_0^1 \int_0^{1-x} \int_{1-x-y}^{2-2x-2y} 8z \, dz \, dy \, dx = \int_0^1 \int_0^{1-x} \left[4z^2 \right]_{1-x-y}^{2-2x-2y} dy \, dx = 4 \int_0^1 \int_0^{1-x} (2(1-x-y))^2 - (1-x-y)^2 \, dy \, dx
$$

For the y-integral, we can make the substitution $u = 1 - x - y$, $du = -dy$ to greatly simplify the integral.

$$
4\int_0^1 \int_0^{1-x} 3(1-x-y)^2 \, dy \, dx = -4 \int_0^1 \int_{1-x}^0 3u^2 \, du \, dx = -4 \int_0^1 \left[u^3 \right]_{1-x}^0 dx = -4 \int_0^1 -(1-x)^3 \, dx
$$

We can do the same for the x-integral, by making the substitution $u = 1 - x$, $du = -dx$.

$$
-4\int_1^0 u^3 du = -4\left[\frac{u^4}{4}\right]_1^0 = -4\left[-\frac{1}{4}\right] = \boxed{1}
$$

Problem 2a *(3 points)*

Consider the region $\mathcal P$ in $\mathbb R^2$ bounded by the lines $y = -x, y = 3 - x, y = 2x$ and $y = 2x - 6$. This is a parallelogram.

Find a linear change of coordinates $G(u, v)$ such that G maps the rectangle $[0, 3] \times [0, 6]$ to P. Calculate the Jacobian of G .

We can rewrite the bounds of P as $x + y = 0$, $x + y = 3$, $2x - y = 0$ and $2x - y = 6$.

So the region ${\cal P}$ we care about is defined by $\left\{ \begin{array}{l} 0 \leq x+y \leq 3 \ 0 \leq 2x-y \leq 6 \end{array} \right.$

If we let $\begin{cases} u = x + y \\ v = 2x - y \end{cases}$, then the corresponding region in the uv -plane is the rectangle $[0,3] \times [0,6]$.

This change of coordinates is actually $G^{-1}(x, y)$, since we are mapping the (x, y) coordinates to (u, v) coordinates. We are trying to find the reverse, $G(u, v)$, which maps (u, v) coordinates to (x, y) coordinates.

To do this, we must solve for (x, y) . From the top equation, we can see that $x = u - y$. Plugging the expression for x into the bottom equation, we get

 $v=2(u-y)-y \implies v=2u-2y-y \implies -3y=-2u+v \implies y=\frac{2}{3}u-\frac{1}{3}v.$

Now we need to plug in for y in the top equation, to get $x = u - (\frac{2}{3}u - \frac{1}{3}v) \implies x = \frac{1}{3}u + \frac{1}{3}v$.

So our linear change of coordinates would be

$$
G(u,v)=(\frac{1}{3}u+\frac{1}{3}v,\frac{2}{3}u-\frac{1}{3}v)
$$

We know that the *Jacobian* of a map $G(u, v)$ is

$$
\operatorname{Jac}(G) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}
$$

In our case,

$$
\frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} = \left(\frac{1}{3}\right)\left(-\frac{1}{3}\right) - \left(\frac{1}{3}\right)\left(\frac{2}{3}\right) = -\frac{1}{9} - \frac{2}{9} = -\frac{3}{9} = \boxed{-\frac{1}{3}}
$$

Problem 2b *(3 points)*

Calculate the integral $\iint_{\mathcal{P}} x^2 - y^2 dA$.

When we change variables, we must adjust the integral to be in terms of the new variables. We know that

$$
\iint_{\mathcal{P}} f(x,y) \ dA_{xy} = \iint_{\mathcal{R}} f(x(u,v),y(u,v)) \ |\text{Jac}(G)| \ dA_{uv}
$$

From part *(a)*, $f(x(u, v), y(u, v)) = f(\frac{1}{2}u + \frac{1}{2}v, \frac{2}{2}u - \frac{1}{2}v) = (\frac{1}{2}u + \frac{1}{2}v)^2 - (\frac{2}{2}u - \frac{1}{2}v)^2$, and .

So we have

$$
\frac{1}{3} \iint_{\mathcal{R}} \left(\frac{1}{3}u + \frac{1}{3}v\right)^2 - \left(\frac{2}{3}u - \frac{1}{3}v\right)^2 dA_{uv} = \frac{1}{27} \int_0^3 \int_0^6 (u + v)^2 - (2u - v)^2 dv du
$$

\n
$$
= \frac{1}{27} \int_0^3 \int_0^6 u^2 + 2uv + v^2 - (4u^2 - 4uv + v^2) dv du = \frac{1}{27} \int_0^3 \int_0^6 -3u^2 + 6uv dv du
$$

\n
$$
= \frac{1}{27} \int_0^3 \left[-3u^2v + 3uv^2 \right]_0^6 du = \frac{1}{27} \int_0^3 -18u^2 + 108u du = \frac{1}{27} \left[-6u^3 + 54u^2 \right]_0^3
$$

\n
$$
= \frac{1}{27} \left[-6(3)^3 + 54(3)^2 \right] = -6 + 18 = \boxed{12}
$$

Problem 2c *(4 points)*

Now consider the region $\mathcal{E} \subset \mathbb{R}^3$ bounded by the planes $y = -x, y = 3 - x, y = 2x$ and $y = 2x - 6$, and by the xy-plane below and the surface $z = 9 + x^2 - y^2$ above. Calculate the volume of \mathcal{E} .

We know that the volume of a region $\mathcal E$ is the triple integral of the constant function $f(x, y, z) = 1$ over $\mathcal{E}.$

We can see that $\mathcal E$ is a *z*-simple region between $z_1(x,y) = 0$ and $z_2(x,y) = 9 + x^2 - y^2$. Since the four planes that are the bounds of $\mathcal E$ are also the bounds of $\mathcal P$ from part *(b)*, we can see that $\mathcal P$ is the projection of $\mathcal E$ onto the xy -plane.

So we have:

Volume(
$$
\mathcal{E}
$$
) = $\iiint_{\mathcal{E}} 1 dV = \iint_{\mathcal{P}} \int_0^{9+x^2-y^2} 1 dz dA_{xy} = \iint_{\mathcal{P}} 9 + x^2 - y^2 dA_{xy} = \iint_{\mathcal{P}} 9 dA_{xy} + \iint_{\mathcal{P}} x^2 - y^2 dA_{xy}$

We already know what $\iint_{\mathcal{D}} x^2 - y^2 dA_{xy}$ is from part *(b)*, we just need to find $\iint_{\mathcal{D}} 9 dA_{xy}$.

Using the same change of variables formula as before, we get

$$
\iint_{\mathcal{P}} 9 \, dA_{xy} = \iint_{\mathcal{R}} 9\left(\frac{1}{3}\right) dA_{uv} = 3 \iint_{\mathcal{R}} 1 \, dA_{uv}
$$

We know that the double integral of the constant function $f(x, y) = 1$ over $\mathcal R$ is just the area of $\mathcal R$. $\mathcal R$ is just a rectangle with width 3 and height 6, meaning its area is 18. So

$$
\iint_{\mathcal{P}}9\ dA_{xy}=3\cdot area(\mathcal{R})=3\cdot 18=54
$$

Finally, combine the two integrals together and we're done:

$$
\text{Volume}(\mathcal{E}) = \iint_{\mathcal{P}} 9 \ dA_{xy} + \iint_{\mathcal{P}} x^2 - y^2 \ dA_{xy} = 54 + 12 = \fbox{66}
$$

Problem 3a *(5 points)*

Consider the region $\mathcal R$ of the plane described by $(\sqrt[3]{x})^2 + (\sqrt[3]{(y/8)})^2 \leq 1$. Use Green's Theorem to calculate the area of \mathcal{R} .

Green's Theorem states that $\iint_{\mathcal{D}} \text{curl}(\mathbf{F}) dA = \oint_{\mathcal{D}} \mathbf{F} \cdot d\mathbf{r}.$ The area of $\mathcal R$ is $\iint_{\mathcal R} 1 \ dA$. If we find $\mathbf F$ such that $\text{curl}(\mathbf F) = 1$, then by Green's Theorem, $area(\mathcal{R}) = \oint \mathbf{F} \cdot d\mathbf{r}$. One such field is $\mathbf{F} = \langle 0, x \rangle$.

We can parameterize $\partial \mathcal{R}$ with the parameterization $\mathbf{r}(t) = (\cos^3(t), 8\sin^3(t))$, where $t \in [0, 2\pi]$.

We know that
$$
\oint_{\partial \mathcal{R}} \mathbf{F} \cdot d\mathbf{r}
$$
 can be rewritten as
$$
\int_{0}^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt.
$$

$$
\mathbf{F}(\mathbf{r}(t)) = \langle -y, 0 \rangle = \langle -8\sin^{3}(t), 0 \rangle \text{ and } \mathbf{r}'(t) = (-3\sin(t)\cos^{2}(t), 24\cos(t)\sin^{2}(t)), \text{so}
$$

$$
\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = 24\sin^{4}(t)\cos^{2}(t).
$$

We can use linearity and trigonometric identities to separate the integral into two simpler ones:

$$
\int_0^{2\pi} 24\sin^4(t)\cos^2(t) \, dt = 24 \int_0^{2\pi} \sin^4(t)(1-\sin^2(t)) \, dt = 24 \int_0^{2\pi} \sin^4(t) - \sin^6(t) \, dt = 24 \left[\int_0^{2\pi} \sin^4(t) \, dt - \int_0^{2\pi} \sin^6(t) \, dt \right]
$$

We can solve \int_0 $\sin^4(t) dt$ first using the sine reduction formula:

$$
\int \sin^n(t) \ dt = -\frac{1}{n} \sin^{n-1}(t) \cos(t) + \frac{n-1}{n} \int \sin^{n-2}(t) \ dt
$$

So we have:

$$
\int_0^{2\pi} \sin^4(t) \ dt = \left[-\frac{1}{4} \sin^3(t) \cos(t) + \frac{3}{4} \int \sin^2(t) \ dt \right]_0^{2\pi}
$$

We can use the sine reduction formula again to solve for $\frac{3}{4}\int \sin^2(t) dt$:

$$
\int \sin^2(t) \ dt = -\frac{1}{2}\sin(t)\cos(t) + \frac{1}{2}\int 1 \ dt = \frac{1}{2}(t - \sin(t)\cos(t))
$$

Now plug the result back into the original integral and evaluate, taking advantage of the fact that $\sin(t)$ and $\sin^3(t)$ are odd:

$$
\left[-\frac{1}{4}\sin^3(t)\cos(t) + \frac{3}{4}\int \sin^2(t) dt \right]_0^{2\pi} = \left[-\frac{1}{4}\sin^3(t)\cos(t) + \frac{3}{8}(t-\sin(t)\cos(t)) dt \right]_0^{2\pi} = \frac{3}{8}(2\pi) = \frac{3\pi}{4}
$$

Now let's solve for $\displaystyle \int_0^{2\pi} \sin^6(t) \ dt$, again using the sine reduction formula and using odd functions to our advantage:

$$
\int_0^{2\pi} \sin^6(t) dt = \left[-\frac{1}{6} \sin^5(t) \cos(t) + \frac{5}{6} \int \sin^4(t) dt \right]_0^{2\pi}
$$

$$
= \left[-\frac{1}{6} \sin^5(t) \cos(t) + \frac{5}{6} \left(-\frac{1}{4} \sin^3(t) \cos(t) + \frac{3}{8} (t - \sin(t) \cos(t)) \right) \right]_0^{2\pi}
$$

$$
= \left[-\frac{1}{6} \sin^5(t) \cos(t) - \frac{5}{24} \sin^3(t) \cos(t) - \frac{15}{48} \sin(t) \cos(t) + \frac{15}{48} t \right]_0^{2\pi} = \frac{15}{48} (2\pi) = \frac{15\pi}{24}
$$

Finally, add the two integrals together and we're done:

$$
=24\bigg[\int_0^{2\pi} \sin^4(t) \, dt - \int_0^{2\pi} \sin^6(t) \, dt\bigg] = 24\big(\frac{3\pi}{4} - \frac{15\pi}{24}\big) = 18\pi - 15\pi = \boxed{3\pi}
$$

Problem 3b *(5 points)*

A spiral ramp is 10 feet wide and in one complete 2π revolution it goes up π feet. What is the area of this spiral ramp?

The surface area of our surface is given by the surface integral $\iint_{\mathcal{D}} \|\mathbf{N}(u,v)\| dA_{uv}$.

We can parameterize this surface in two variables, u and v . We want u to parameterize points on the line segment at a height v , and we want v to parameterize points on the helix at a point u on the line segment.

One such parameterization is $G(u, v) = (u \cos(v), u \sin(v), \frac{v}{2})$, where $u \in [0, 10]$ and $v \in [0, 2\pi]$.

We must now find the normal vector $\mathbf{N}(u, v)$, which is the cross product of the two tangent vectors, $\mathbf{T}_u(G(u,v)) \times \mathbf{T}_v(G(u,v)).$

The tangent vectors are:

$$
\mathbf{T}_u(G(u,v)) = \frac{\partial}{\partial u}(u\cos(v),u\sin(v),\frac{v}{2}) = \langle \cos(v),\sin(v),0\rangle \\ \mathbf{T}_v(G(u,v)) = \frac{\partial}{\partial v}(u\cos(v),u\sin(v),\frac{v}{2}) = \langle -u\sin(v),u\cos(v),\frac{1}{2}\rangle
$$

Computing the cross product, we get our normal vector:

$$
\langle \cos(v), \sin(v), 0 \rangle \times \langle -u \sin(v), u \cos(v), \frac{1}{2} \rangle = \langle \frac{1}{2} \sin(v), -\frac{1}{2} \cos(v), u \rangle
$$

The norm of the normal vector is
$$
\|\mathbf{N}(u, v)\| = \sqrt{(\frac{1}{2}\sin(v))^2 + (-\frac{1}{2}\cos(v))^2 + u^2} = \sqrt{u^2 + \frac{1}{4}}.
$$

Plugging in all the necessary info into our surface integral, we can simplify it into an iterated integral:

$$
\iint_{\mathcal{D}} \|\mathbf{N}(u,v)\| \ dA_{uv} = \int_0^{2\pi} \int_0^{10} \sqrt{u^2 + \frac{1}{4}} \ du \ dv
$$

We can use the hint from HW 3, which states that $\frac{d}{dt}(t\sqrt{t^2+1}+\sinh^{-1}(t))=2\sqrt{t^2+1}.$ To take advantage of this, we must make a substitution, namely $w = 2u, dw = 2 du$, to fully evaluate the integral:

$$
\int_0^{2\pi} \int_0^{10} \sqrt{u^2 + \frac{1}{4}} \, du \, dv = \frac{1}{2} \int_0^{2\pi} \int_0^{20} \sqrt{\left(\frac{w}{2}\right)^2 + \frac{1}{4}} \, dw \, dv = \frac{1}{2} \int_0^{2\pi} \int_0^{20} \sqrt{\frac{w^2}{4} + \frac{1}{4}} \, dw \, dv = \frac{1}{8} \int_0^{2\pi} \int_0^{20} \sqrt{w^2 + 1} \, dw \, dv
$$
\n
$$
= \frac{1}{8} \int_0^{2\pi} \left[w \sqrt{w^2 + 1} + \sinh^{-1}(w) \right]_0^{20} \, dv = \frac{1}{8} \int_0^{2\pi} 20 \sqrt{401} + \sinh^{-1}(20) \, dv = \left[\frac{\pi}{4} (20 \sqrt{401} + \sinh^{-1}(20)) \right]
$$

Problem 4a *(2 points)*

Consider the vector field $\mathbf{F} = \langle xy, yz, zx \rangle$. Calculate the curl of **F**.

We know that the *curl* of a vector field is given by $\nabla\times\mathbf{F}=\langle\frac{\partial F_3}{\partial y}-\frac{\partial F_2}{\partial z},\frac{\partial F_1}{\partial z}-\frac{\partial F_3}{\partial x},\frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y}\rangle$. In our case, $\nabla \times \mathbf{F} = \boxed{\langle -y, -z, -x \rangle}$

Problem 4b *(8 points)*

Consider the closed curve C determined by the intersction of the cylinder $x^2 + y^2 = 1$ and the surface $z = x^2$, with orientation counter-clockwise when looking from above. Calculate the line integral $\int_{\mathbb{R}} \mathbf{F} \cdot d\mathbf{r}$.

We can't use the fundamental theorem of conservative vector fields in this case, since $\nabla \times \mathbf{F} \neq 0$. We can still try parameterizing the line and see if it's possible to integrate it.

From the equation of the cylinder, we can parameterize x and y pretty easily, using $x(t) = \cos(t)$ and $y(t) = \sin(t)$. z is a function of x , so a parameterization of z would be $z(t) = \cos^2(t)$. So our parameterization looks like $\mathbf{r}(t) = (\cos(t), \sin(t), \cos^2(t))$, where $t \in [0, 2\pi]$. So the line integral can be expressed as $\int_{0}^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$. Let's find $\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$ first:

$$
\mathbf{F}(\mathbf{r}(t)) = \langle -\sin(t), -\cos^2(t), -\cos(t) \rangle
$$

$$
\mathbf{r}'(t) = (-\sin(t), \cos(t), -2\sin(t)\cos(t))
$$

$$
\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = \sin^2(t) - \cos^2(t) + 2\sin(t)\cos^2(t)
$$

Now we can evaluate the integral by breaking it up into simpler integrals:

$$
\int_0^{2\pi} \sin^2(t) - \cos^2(t) + 2\sin(t)\cos^2(t) dt = \int_0^{2\pi} 1 - 2\sin^2(t) + 2\sin(t)\cos^2(t) dt
$$

$$
= \int_0^{2\pi} 1 dt - 2\int_0^{2\pi} \sin^2(t) dt + 2\int_0^{2\pi} \sin(t)\cos^2(t) dt
$$

Since $\sin(t)$ is an odd function, integrating $\sin(t) \cos^2(t)$ over $[0, 2\pi]$ gives us zero, so we can remove that term entirely. Finally, we can finish evaluating our integrals:

$$
\int_0^{2\pi} 1 \, dt - 2 \int_0^{2\pi} \sin^2(t) \, dt = 2\pi - 2 \left[\frac{1}{2} (t - \sin(t) \cos(t)) \right]_0^{2\pi} = 2\pi - 2\pi = \boxed{0}
$$

Problem 5a *(2 points)*

Consider the vector field: $\mathbf{F}(x,y,z)=\langle \dfrac{e^{z^2}}{1+y^2+z^2}, \dfrac{1}{1+x^4}, z^2+1 \rangle$. What is the divergence of \mathbf{F} ?

The divergence of the vector field is

$$
\nabla\cdot\mathbf{F}=\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z}=0+0+2z=\boxed{2z}
$$

Problem 5b *(8 points)*

Let ${\cal S}$ be the hemisphere $x^2+y^2+z^2=1$ where $z\geq 0$ with outward pointing orientation. What is $\iint \mathbf{F} \cdot d\mathbf{S}$?

Since \bf{F} looks very complex, finding the surface integral directly might be extremely difficult in this case. However, we can take advantage of the Divergence Theorem to relate $\mathcal S$ with the volume it encloses above the xy -plane. We can write:

$$
\iiint_{\mathcal{W}} \nabla \cdot \mathbf{F} \, dV = \iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} + \iint_{\mathcal{D}} \mathbf{F} \cdot d\mathbf{S} \implies \iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \iiint_{\mathcal{W}} \nabla \cdot \mathbf{F} \, dV - \iint_{\mathcal{D}} \mathbf{F} \cdot d\mathbf{S}
$$

We have to add an additional surface D , which is the domain contained within the unit circle, in order to fully enclose the region W , since the Divergence Theorem only works on closed regions. Thankfully, taking the surface integral over $\mathcal D$ will be a lot easier since it lies on the x_y -plane, meaning any expression involving z will be a lot simpler.

First, let's calculate $\iiint_{\mathcal{M}} \nabla \cdot \mathbf{F} dV$. We can use spherical coordinates to integrate over \mathcal{W} : $\iiint_{\mathcal{W}} 2z\,dV = \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \int_0^1 2\rho\cos(\phi)\,\rho^2\sin(\phi)\,d\rho\,d\phi\,d\theta = \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \int_0^1 2\rho^3\cos(\phi)\sin(\phi)\,d\rho\,d\phi\,d\theta$

We need to make a *u*-substitution ($u = sin(\phi)$, $du = cos(\phi) d\phi$) to get our answer:

$$
= \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \cos(\phi) \sin(\phi) \left[\frac{\rho^4}{2} \right]_0^1 d\phi d\theta = \frac{1}{2} \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \cos(\phi) \sin(\phi) d\phi d\theta = \frac{1}{2} \int_0^{2\pi} \int_0^1 u du d\theta
$$

$$
= \frac{1}{2} \int_0^{2\pi} \left[\frac{u^2}{2} \right]_0^1 d\theta = \frac{1}{4} \int_0^{2\pi} 1 d\theta = \frac{1}{4} (2\pi) = \frac{\pi}{2}
$$

Now we need to find $\iint_{\mathbb{R}} \mathbf{F} \cdot d\mathbf{S}$ by finding a surface parameterization of \mathcal{D} , as well as the normal vector to D .

Finding a surface parameterization is pretty simple since it's just the region enclosed within the unit circle in the xy -plane; we can just use polar coordinates. The parameterization we'll use is $G(r, \theta) = (r \cos(\theta), r \sin(\theta), 0).$

Let's find the normal vector by crossing the two tangent vectors:

$$
\mathbf{T}_r(G(r,\theta))=\frac{\partial}{\partial r}(r\cos(\theta),r\sin(\theta),0)=\langle \cos(\theta),\sin(\theta),0\rangle\\ \mathbf{T}_\theta(G(r,\theta))=\frac{\partial}{\partial \theta}(r\cos(\theta),r\sin(\theta),0)=\langle -r\sin(\theta),r\cos(\theta),0\rangle\\ \mathbf{N}(r,\theta)=\mathbf{T}_r\times\mathbf{T}_\theta=\langle \cos(\theta),\sin(\theta),0\rangle\times\langle -r\sin(\theta),r\cos(\theta),0\rangle=\langle 0,0,r\rangle
$$

We're not done yet! The normal vector is pointing in the *wrong direction*, since it should be oriented pointing *outwards* from the surface, not *into* the surface! To get the correct orientation, we need to take the cross product in reverse order:

$$
\mathbf{N}(r,\theta)=\mathbf{T}_{\theta}\times\mathbf{T}_{r}=\langle -r\sin(\theta),r\cos(\theta),0\rangle\times\langle\cos(\theta),\sin(\theta),0\rangle=\langle 0,0,-r\rangle
$$

Now we can finally take the surface integral:

$$
\iint_{\mathcal{D}} \mathbf{F}(G(r,\theta)) \cdot \mathbf{N}(r,\theta) \, du \, dv = \int_0^{2\pi} \int_0^1 \langle 0, \frac{1}{1 + r^4 \cos^4(\theta)}, 1 \rangle \cdot \langle 0, 0, -r \rangle \, dr \, d\theta = \int_0^{2\pi} \int_0^1 -r \, dr \, d\theta
$$

$$
= \int_0^{2\pi} \left[\frac{-r^2}{2} \right]_0^1 d\theta = -\frac{1}{2} \int_0^{2\pi} 1 \, d\theta = -\frac{1}{2} (2\pi) = -\pi
$$

Plugging in both integrals into the original expression, we get our final answer:

$$
\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{\mathcal{W}} \nabla \cdot \mathbf{F} \, dV - \iint_{\mathcal{D}} \mathbf{F} \cdot d\mathbf{S} = \frac{\pi}{2} - (-\pi) = \boxed{\frac{3\pi}{2}}
$$

Problem 6a *(2 points)*

Consider the vector field

$$
\mathbf{F}(x,y,z)=\langle x,\frac{-z}{y^2+z^2},\frac{y}{y^2+z^2}\rangle
$$

with domain $\mathbb{R}^3 \setminus \{(x,0,0) \mid x \in \mathbb{R}\}.$ Calculate the curl of $\mathbf{F}.$

The curl of $\mathbf F$ is:

$$
\nabla\times\mathbf{F}=\langle \frac{\partial F_3}{\partial y}-\frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z}-\frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y}\rangle=\langle \frac{z^2-y^2}{(y^2+z^2)^2}-\frac{z^2-y^2}{(y^2+z^2)^2},0-0,0-0\rangle=\fbox{0}
$$

Problem 6b *(3 points)*

Is $\mathbf F$ conservative? Demonstrate your answer with a calculation.

Although $\nabla \times \mathbf{F} = \mathbf{0}$, the domain of \mathbf{F} is not simply connected, so we can't make a conclusion based on that. We can instead try to find a closed curve C such that $\int_C \mathbf{F} \cdot d\mathbf{r} \neq 0$. This would show that \mathbf{F} is *not* conservative, since the vector line integral of any closed loop on a conservative vector field must be zero.

Let's try the unit circle in the yz -plane. We can parameterize this pretty easily, using $\mathbf{r}(t) = (0, \cos(t), \sin(t))$, where $t \in [0, 2\pi]$. With this parameterization, let's calculate the vector line integral:

$$
\int_0^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_0^{2\pi} \langle 0, -\sin(t), \cos(t) \rangle \cdot \langle 0, -\sin(t), \cos(t) \rangle dt = \int_0^{2\pi} \sin^2(t) + \cos^2(t) dt = \int_0^{2\pi} 1 dt = \boxed{2\pi}
$$

Since the vector line integral is nonzero, the vector field F is therefore not conservative.

Problem 6c *(7 points)*

Consider the oriented curve C given by the parameterization $\mathbf{r}(t) = (t, \cos(2\pi t), 2\sin(2\pi t))$, where $t \in [0,2].$

Calculate the integral $\int_{a} \mathbf{F} \cdot d\mathbf{r}$.

Our curve C traces out a portion of an *elliptical spiral* around the x -axis. It makes two full revolutions around the x -axis, and its ending position is 2 units in the positive x -direction past its starting point, while its y -coordinate and z -coordinate are the same. While we can take the vector line integral directly, the elliptical nature of the parameterization makes this a bit awkward. Instead, we can try using curve arithmetic to our advantage, and use the fact that F is conservative on *simply connected* domains, to find an easier curve to integrate that has the same vector line integral.

In the pictures below, I drew our curve C, shown in red, and an additional curve, S , shown in blue, parameterized by the curve $\mathbf{r}(t) = (t, \cos(2\pi t), \sin(2\pi t))$, where $t \in [0, 2]$.

Let's divide C into four smaller curves, each defined over a specific t-domain. Let C_1 be the part of C where $t \in [0, 0.5]$, let C_2 be the part of C where $t \in [0.5, 1]$, let C_3 be the part of C where $t \in [1, 1.5]$, and let C_4 be the part of C where $t \in [1.5, 2]$.

S will also be divided into four analogous curves, labeled S_1 through S_4 , along the same tboundaries.

Each $C_n - S_n$ pair forms its own closed loop, which we'll call \mathcal{L}_n . \mathcal{L}_n is defined by traveling in the positive *t*-direction along C_n and the *negative t*-direction along S_n . In the picture below, we can see \mathcal{L}_1 and \mathcal{L}_2 .

 \mathcal{L}_1 (shown in orange), along with \mathcal{L}_3 , are both contained in the domain $\{\mathbb{R}^3\mid z\geq 0\}$, minus the x axis.

 \mathcal{L}_2 (shown in green), along with \mathcal{L}_4 , are both contained in the domain $\{\mathbb{R}^3\mid z\leq 0\}$, minus the x -axis.

Since both domains are simply connected, **F** is conservative on both domains, so $\int_{c} \mathbf{F} \cdot d\mathbf{r} = 0$.

By curve arithmetic, $\mathcal{L}_n = \mathcal{C}_n - \mathcal{S}_n$. So we can expand the integral to show that the vector line integrals of C_n and S_n are equal:

$$
\int_{\mathcal{L}_n} \mathbf{F} \cdot d\mathbf{r} = 0 \implies \int_{\mathcal{C}_n - \mathcal{S}_n} \mathbf{F} \cdot d\mathbf{r} = 0 \implies \int_{\mathcal{C}_n} \mathbf{F} \cdot d\mathbf{r} - \int_{\mathcal{S}_n} \mathbf{F} \cdot d\mathbf{r} = 0 \implies \int_{\mathcal{C}_n} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{S}_n} \mathbf{F} \cdot d\mathbf{r}
$$

We can then go on to show that the vector line integrals of C and S are equal:

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}_1 + \mathcal{C}_2 + \mathcal{C}_3 + \mathcal{C}_4} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} + \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r} + \int_{\mathcal{C}_3} \mathbf{F} \cdot d\mathbf{r} + \int_{\mathcal{C}_4} \mathbf{F} \cdot d\mathbf{r}
$$
\n
$$
= \int_{\mathcal{S}_1} \mathbf{F} \cdot d\mathbf{r} + \int_{\mathcal{S}_2} \mathbf{F} \cdot d\mathbf{r} + \int_{\mathcal{S}_3} \mathbf{F} \cdot d\mathbf{r} + \int_{\mathcal{S}_4} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{S}_1 + \mathcal{S}_2 + \mathcal{S}_3 + \mathcal{S}_4} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{r}
$$

Now all we have to do is find $\int_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{r}$. Our parameterization from before is $\mathbf{r}(t)=(t,\cos(2\pi t),\sin(2\pi t))$, where $t\in[0,2].$ $\mathbf{F}(\mathbf{r}(t)) = \langle t, -\sin(2\pi t), \cos(2\pi t) \rangle$, and $\mathbf{r}'(t) = (1, -2\pi sin(2\pi t), -2\pi cos(2\pi t))$. The dot product is: $\mathbf{F}(\mathbf{r}(t)) = \langle t, -\sin(2\pi t), \cos(2\pi t)\rangle \cdot \langle 1, -2\pi \sin(2\pi t), -2\pi \cos(2\pi t)\rangle = t + 2\pi$

Now we can evaluate the integral to get our final answer:

$$
\int_0^2 t + 2\pi \, dt = \left[\frac{t^2}{2} + 2\pi t\right]_0^2 = \frac{2^2}{2} + 2\pi(2) = \left[\frac{2+4\pi}{2}\right]
$$