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Problem 1a (2 points)  
Consider the region in  bounded by the planes  and  in the first 
octant (i.e. where ).

Let  be the surface that is the boundary of this region, with outward pointing normal vectors.

Calculate the divergence of the vector field .

We know that the divergence of a vector field is given by . In our case,



Problem 1b (8 points)  
Calculate the flux of  through the surface .

We know the flux of  through  is the vector surface integral of  over . However, calculating the 
vector surface integral would be difficult in this case, as we would have to parametrize the four 
distinct surfaces that comprise .

Instead, we can try using the divergence theorem, which states that

 is oriented outwards, so we don't have to adjust the sign of the theorem.

Notice that we can write the two planes as functions of , namely  and 
. This means that  is one contiguous -simple region, meaning it will be 

much easier to find the triple integral over  than to find the surface integral over its boundary . It 
also helps that  is really easy to integrate, since it is just .

Both planes intersect each other when  = , or when .

So  projects onto a triangle  in the -plane defined by  (which is 
entirely in the first quadrant).

Our z-bounds are simply .

Now that we have found the bounds for , we can rewrite the triple integral as an iterated integral:

All that is left to do is evaluate the integral, from the inside out. First evaluate the -integral:

For the -integral, we can make the substitution  to greatly simplify the 
integral.

We can do the same for the -integral, by making the substitution .



Problem 2a (3 points)  
Consider the region  in  bounded by the lines  and . This is 
a parallelogram.

Find a linear change of coordinates  such that  maps the rectangle  to . 
Calculate the Jacobian of .

We can rewrite the bounds of  as  and .

So the region  we care about is defined by 

If we let  , then the corresponding region in the -plane is the rectangle .

This change of coordinates is actually , since we are mapping the  coordinates to 
 coordinates. We are trying to find the reverse, , which maps  coordinates to  

coordinates.

To do this, we must solve for . From the top equation, we can see that . Plugging the 
expression for  into the bottom equation, we get 

.

Now we need to plug in for  in the top equation, to get .

So our linear change of coordinates would be

We know that the Jacobian of a map  is

In our case,



Problem 2b (3 points)  
Calculate the integral .

When we change variables, we must adjust the integral to be in terms of the new variables. We know 
that

From part (a), , and 
.

So we have



Problem 2c (4 points)  
Now consider the region  bounded by the planes  and , 
and by the -plane below and the surface  above. Calculate the volume of .

We know that the volume of a region  is the triple integral of the constant function  
over .

We can see that  is a -simple region between  and . Since the 
four planes that are the bounds of  are also the bounds of  from part (b), we can see that  is the 
projection of  onto the -plane. 

So we have:

We already know what  is from part (b), we just need to find .

Using the same change of variables formula as before, we get

We know that the double integral of the constant function  over  is just the area of .  
is just a rectangle with width 3 and height 6, meaning its area is 18. So

Finally, combine the two integrals together and we're done:



Problem 3a (5 points)  
Consider the region  of the plane described by . Use Green's Theorem to 
calculate the area of .

Green's Theorem states that .

The area of  is . If we find  such that , then by Green's Theorem, 

. One such field is .

We can parameterize  with the parameterization , where .

We know that  can be rewritten as .

 and , so 
.

We can use linearity and trigonometric identities to separate the integral into two simpler ones:

We can solve  first using the sine reduction formula:

So we have:

We can use the sine reduction formula again to solve for :

Now plug the result back into the original integral and evaluate, taking advantage of the fact that 
 and  are odd: 



Now let's solve for , again using the sine reduction formula and using odd functions to 

our advantage:

Finally, add the two integrals together and we're done:



Problem 3b (5 points)  
A spiral ramp is 10 feet wide and in one complete  revolution it goes up  feet. What is the area of 
this spiral ramp?

The surface area of our surface is given by the surface integral .

We can parameterize this surface in two variables,  and . We want  to parameterize points on the 
line segment at a height , and we want  to parameterize points on the helix at a point  on the line 
segment.

One such parameterization is , where  and . 

We must now find the normal vector , which is the cross product of the two tangent vectors, 
.

The tangent vectors are:

Computing the cross product, we get our normal vector:

The norm of the normal vector is .

Plugging in all the necessary info into our surface integral, we can simplify it into an iterated integral:

We can use the hint from HW 3, which states that . To take 

advantage of this, we must make a substitution, namely , to fully evaluate the 
integral:



Problem 4a (2 points)  
Consider the vector field . Calculate the curl of .

We know that the curl of a vector field is given by 

. In our case,



Problem 4b (8 points)  
Consider the closed curve  determined by the intersction of the cylinder  and the 
surface , with orientation counter-clockwise when looking from above. Calculate the line 

integral .

We can't use the fundamental theorem of conservative vector fields in this case, since . We 
can still try parameterizing the line and see if it's possible to integrate it.

From the equation of the cylinder, we can parameterize  and  pretty easily, using  and 
.  is a function of , so a parameterization of  would be . So our 

parameterization looks like , where . So the line integral can 

be expressed as . Let's find  first:

Now we can evaluate the integral by breaking it up into simpler integrals:

Since  is an odd function, integrating  over  gives us zero, so we can remove 
that term entirely. Finally, we can finish evaluating our integrals:



Problem 5a (2 points)  

Consider the vector field: . What is the divergence of ?

The divergence of the vector field is



Problem 5b (8 points)  
Let  be the hemisphere  where  with outward pointing orientation. What is 

?

Since  looks very complex, finding the surface integral directly might be extremely difficult in this 
case. However, we can take advantage of the Divergence Theorem to relate  with the volume it 
encloses above the -plane. We can write:

We have to add an additional surface , which is the domain contained within the unit circle, in order 
to fully enclose the region , since the Divergence Theorem only works on closed regions. 
Thankfully, taking the surface integral over  will be a lot easier since it lies on the -plane, meaning 
any expression involving  will be a lot simpler.

First, let's calculate . We can use spherical coordinates to integrate over :

We need to make a -substitution ( ) to get our answer:

Now we need to find  by finding a surface parameterization of , as well as the normal 

vector to .

Finding a surface parameterization is pretty simple since it's just the region enclosed within the unit 
circle in the -plane; we can just use polar coordinates. The parameterization we'll use is 

.

Let's find the normal vector by crossing the two tangent vectors:



We're not done yet! The normal vector is pointing in the wrong direction, since it should be oriented 
pointing outwards from the surface, not into the surface! To get the correct orientation, we need to 
take the cross product in reverse order:

Now we can finally take the surface integral:

Plugging in both integrals into the original expression, we get our final answer:



Problem 6a (2 points)  
Consider the vector field

with domain . Calculate the curl of .

The curl of  is:



Problem 6b (3 points)  
Is  conservative? Demonstrate your answer with a calculation.

Although , the domain of  is not simply connected, so we can't make a conclusion based 

on that. We can instead try to find a closed curve  such that . This would show that  is 

not conservative, since the vector line integral of any closed loop on a conservative vector field must 
be zero.

Let's try the unit circle in the -plane. We can parameterize this pretty easily, using 
, where . With this parameterization, let's calculate the vector line 

integral:

Since the vector line integral is nonzero, the vector field  is therefore not conservative.



Problem 6c (7 points)  
Consider the oriented curve  given by the parameterization , where 

.

Calculate the integral .

Our curve  traces out a portion of an elliptical spiral around the -axis. It makes two full revolutions 
around the -axis, and its ending position is 2 units in the positive -direction past its starting point, 
while its -coordinate and -coordinate are the same. While we can take the vector line integral 
directly, the elliptical nature of the parameterization makes this a bit awkward. Instead, we can try 
using curve arithmetic to our advantage, and use the fact that  is conservative on simply connected 
domains, to find an easier curve to integrate that has the same vector line integral.

In the pictures below, I drew our curve , shown in red, and an additional curve, , shown in blue, 
parameterized by the curve , where .

Let's divide  into four smaller curves, each defined over a specific -domain. Let  be the part of  
where , let  be the part of  where , let  be the part of  where , 
and let  be the part of  where .

 will also be divided into four analogous curves, labeled  through , along the same -
boundaries.

Each  pair forms its own closed loop, which we'll call .  is defined by traveling in the 
positive -direction along  and the negative -direction along . In the picture below, we can see  
and .

 (shown in orange), along with , are both contained in the domain , minus the -
axis.

 (shown in green), along with , are both contained in the domain , minus the -axis.

Since both domains are simply connected,  is conservative on both domains, so .

By curve arithmetic, . So we can expand the integral to show that the vector line 
integrals of  and  are equal:

We can then go on to show that the vector line integrals of  and  are equal:



Now all we have to do is find . Our parameterization from before is 

, where .

, and . The dot product is:

Now we can evaluate the integral to get our final answer:
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