Total score: 36 points

March Boedihardjo © 2021

- Write your solutions on some papers. Show all your work. Scan as a pdf/jpg file(s). Upload the pdf/jpg file(s) as CCLE Assignment Midterm 1 before the end time.
- Open book. You may use calculator. But you cannot get any help from other people.
- You may compute any integral using Fundamental Theorem of Calculus without using the definition involving Riemann sum.
- If your final answer is a number, have it in 6 decimal places.
- 1. (8 points) (i) Find the polar coordinates of the Cartesian coordinates (2, -5)
 - (ii) Find $S_{2,3}$ for $\int_{[0,3]\times[0,1]} \frac{x+1}{y+1} d(x,y)$ using lower-left vertices.
 - (iii) Write the curve $r = 1 + 3\cos\theta$ in terms of x, y.
 - (iv) Find $\int_{[0,1]\times[0,2]} (x^2+y)^2 d(x,y).$
- 2. (8 points) Let $D = \{(x, y) | y^2 + 1 \le x \le 3\}$. Find $\int_D x \, d(x, y)$ using
 - (i) $\int \int dx \, dy$ set up.
 - (ii) $\int \int dy \, dx$ set up. (Use substitution rule if needed.)

3. (8 points) Let $D = \{(x, y) | y > 0, x^2 + y^2 \le 3\}$. Find $\int_D y d(x, y)$ using

- (i) ∫ ∫ dr dθ set up.
 (ii) ∫ ∫ dx dy set up. (Use substitution rule if needed.)
- 4. (12 points) Use $\int \int \int dz \, dx \, dy$ set up to find $\int_W 1 \, d(x, y, z)$ where
 - (i) $W = \{(x, y, z) | 0 \le x \le 2, 0 \le y \le 2, x + y \le z \le 3\}.$
 - $\text{(ii)} \ W = \{(x,y,z) | \ 0 \leq x \leq 1, \ 0 \leq y \leq 2, \ x \leq z \leq y \}.$

Each part is 6 points. For 4(ii), if you choose to set up using $\int \int \int dz \, dy \, dx$, please indicate so but you will get at most 4 points for 4(ii).

End of exam