Test 02

MATH 32b @ $\mathcal{U}CLA$ (Winter 2022): Test 02

Assigned: February 24, 2022.

Instructions/Oath

1. SHOW ALL WORK.

A correct answer with no relevant work may receive no credit, while an incorrect answer accompanied by some correct work may receive partial credit.

- 2. Duration: 24 hours.
- 3. The following is my own work, without the aid of any other person. Signature:

Question 1 Change of Variables

Let $\mathscr{D} = \{(x,y) \in \mathbb{R}^2; |y| + |y-x| \le 1\}$ and $\mathscr{I} = \iint_{\mathscr{D}} \frac{(2y-x)^2}{x^2+3} dA.$

- (i) Sketch the graph of the domain \mathscr{D} and then use it to give a change of variables u and v.
- (ii) Evaluate the double integral \mathscr{I} .

Question 2 A conservative Vector Field The vector field $\mathbf{F}(x,y) = \left\langle \frac{-x}{(x^2+y^2)^{\frac{3}{2}}}, \frac{-y}{(x^2+y^2)^{\frac{3}{2}}} \right\rangle$ is defined on the region $\mathscr{D} = \{(x,y) \neq (0,0)\}.$

- (i) Is \mathscr{D} a simply connected region?
- (ii) Show that \mathbf{F} satisfies the cross-partials condition. Does this guarantee that \mathbf{F} is conservative?
- (iii) Show that ${\bf F}$ is conservative on ${\mathscr D}$ by finding a potential function.

Question 3 Different forms of Green's Theorem

stion 3 Different forms of Green's Theorem Consider the region \mathscr{R} defined by $x^2 - 3 \le y \le 5 - x^2$ and the vector field $\mathbf{F} = \left\langle \begin{array}{c} \mathbf{F} \\ xy, xy + 2x \end{array} \right\rangle$. Using Green's Theorem

- (i) find the counterclockwise circulation of \mathbf{F} around the boundary of \mathscr{R} ,
- (ii) find the outward flux of \mathbf{F} across the boundary of \mathscr{R} .

Question 4 The Gravitational Potential

m is $\phi = \frac{GMm}{|\mathbf{r}|}$, where $\mathbf{r} = \langle x, y, z \rangle$ is the position vector of the mass m and G is the gravitational constant.

- (i) Compute the gravitational force $\mathbf{F} = -\nabla \phi$
- (ii) Show that the field is irrotational, that is $\nabla \times \mathbf{F} = \mathbf{0}$.