MATH 32B @ UCLA (WINTER 2021): TEST 2

Exercise 1 CHANGE OF VARIABLES.
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(i) Sketch the graph of the domain D and then use it to give a change of variables u and v.

(ii) Evaluate the double integral Z.
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Exercise 2 CONSERVATIVE VECTOR FIELD.

The vector field F(z,y) = <(L2 _7_22)5‘ 2 _:l{yz)% > is defined on the region D = {(z,y) # (0,0)}.

(i) Is D a simply connected region?

(ii) Show that F satisfies the cross-partials condition. Does this guarantee that F is conservative?

(iii) Show that F is conservative on D by finding a potential function.
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Exercise 3 GREEN’s THEOREM.
Consider the region D bounded above by the curve y = 3 — 22 and below by the curve y = 2* + 1 and

the vector field F = <:L'y7 %+ L> Using Green’s Theorem

(i) Find the counterclockwise circulation of F around the boundary of D.

(ii) Find the outward flux of F accross the boundary of D.
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Exercise 4 NAVIER-STOKES EQUATION.

The Navier-Stokes equation is the fundamental equation of fluid dynamics. In one of its many forms
A\
(incompressible and viscous flow) the equation is p <88_f + (V- V)V) = —Vp+ (V- V)V. In the

notation, V. =< w,v,w > is the three-dimensional velocity field, p is the (scalar) pressure, p is the
constant density of the fluid, and p is the constant viscosity.

(i) Take the dot product of V and the nabla V operator, then apply the result to u to show that
ou ou du

0 7] 0
(V- V)u= (ua—x +v(?7; + w£> u=ug- + 1)874 +w$.

(i) Assume u = zy%2% and find (V- V)u at (1,1,1) where V =< 1,z,1 >.

(iii) Write out the 1% component equation of the Navier-Stokes vector equation.
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