Exercise 1 CHANGE OF VARIABLES.

Let
$$\mathcal{D} = \{(x,y) \in \mathbb{R}^2; |x| + |y-x| \le 1\}$$
 and $\mathcal{I} = \iint_{\mathcal{D}} \frac{(y-2x)^2}{y^2 + 1} dx dy$.

- (i) Sketch the graph of the domain \mathcal{D} and then use it to give a change of variables u and v.
- (ii) Evaluate the double integral \mathcal{I} .

Exercise 2 CONSERVATIVE VECTOR FIELD. The vector field $\mathbf{F}(x,y) = \left\langle \frac{-x}{(x^2+y^2)^{\frac{3}{2}}}, \frac{-y}{(x^2+y^2)^{\frac{3}{2}}} \right\rangle$ is defined on the region $\mathcal{D} = \{(x,y) \neq (0,0)\}$.

- (i) Is \mathcal{D} a simply connected region?
- (ii) Show that **F** satisfies the cross-partials condition. Does this guarantee that **F** is conservative?
- (iii) Show that \mathbf{F} is conservative on \mathcal{D} by finding a potential function.

		it is) = (6	0, 0).
(ii)	F(x, y) = <-	-x (x2+y2))3/2 / (x	2 + y2)?	/2		
			F		F ₂			
	dF,	-x · 2 y · 3	$\sqrt{\chi^2}$	+ 4 =	- 3	xy√2	(2+y2)	
	d F₂ = -	-y.2x.	$\frac{3}{2}\sqrt{\chi^2}$	2 +427 =	- 3xy	$\int x^2 +$	A ₅ ,	
		/						
	Satisfier	cross.	parti	uls. N	o gu	man ke	, cr	\mathcal{D}
	1,0	7,5	1					
(üi)	(v. v.)1		d	x = [+	g(y)		
	1 (k, y)	$= \sqrt{x^2 + y^2}$	(2) 1/2	1x2	7	0 0		
	f(x,y)	$= \int \frac{-y}{\kappa^2} +$	-3/2 8	ly = 1	4 (
	<u> </u>	J(K2+	9,7,5	$\sqrt{\chi^2}$	+42'			
	g (y) =	. (
	Potential	function	_: f(x,y) = -		- + C	A (LEIR
				7	x2+y2.			

Exercise 3 GREEN'S THEOREM.

Consider the region \mathcal{D} bounded above by the curve $y = 3 - x^2$ and below by the curve $y = x^4 + 1$ and the vector field $\mathbf{F} = \left\langle xy, x^2 + x \right\rangle$. Using Green's Theorem

- (i) Find the counterclockwise circulation of F around the boundary of D.
- (ii) Find the outward flux of F across the boundary of \mathcal{D} .

(ii) contd.

$$\frac{1}{\sqrt{3}}(F_1) = \frac{1}{\sqrt{3}}(xy) = y$$

$$\frac{1}{\sqrt{3}}(F_2) = \frac{1}{\sqrt{3}}(x^2 + x) = 0$$

$$\frac{1}{\sqrt{3}}(F_1) = \frac{1}{\sqrt{3}}F_1 + \frac{1}{\sqrt{3}}F_2 = y + 0 = y$$

$$\int_{-1}^{3} \int_{x^3 + 1}^{3 - x^2} y \, dy \, dx = \int_{-1}^{1} \frac{1}{2}(y^2 \Big|_{x^3 + 1}^{3 - x^2}) \, dx$$

$$= \frac{1}{2} \int_{-1}^{1} (3 - x^4)^2 - (x^4 + 1)^2 \, dx$$

$$= \frac{1}{2} \int_{-1}^{1} q + x^4 - 6x^2 - (x^3 + 1 + 2x^4)^2 \, dx$$

$$= \frac{1}{2} \int_{-1}^{1} q + x^4 - 6x^2 - (x^3 + 1 + 2x^4)^2 \, dx$$

$$= \frac{1}{2} \left[9x + \frac{1}{5}x^5 - 2x^3 - \frac{1}{7}x^7 - x - \frac{2}{5}x^5 \Big|_{1}^{1} \right]$$

$$= \frac{1}{2} \left[9x + \frac{1}{5}x^5 - 2x^3 - \frac{1}{7}x^7 - x - \frac{2}{5}x^5 \Big|_{1}^{1} \right]$$

$$= \frac{1}{2} \left[-\frac{1}{5} - \frac{1}{7} - \frac{1}{7} - \frac{2}{5} \right]$$

$$= 6 - \frac{1}{5} - \frac{1}{7} = \frac{256}{45}$$

Exercise 4 NAVIER-STOKES EQUATION.

The Navier-Stokes equation is the fundamental equation of fluid dynamics. In one of its many forms (incompressible and viscous flow) the equation is $\rho\left(\frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \cdot \nabla)\mathbf{V}\right) = -\nabla p + \mu(\nabla \cdot \nabla)\mathbf{V}$. In the notation, $\mathbf{V} = \langle u, v, w \rangle$ is the three-dimensional velocity field, p is the (scalar) pressure, ρ is the constant density of the fluid, and μ is the constant viscosity.

- (i) Take the dot product of **V** and the nabla ∇ operator, then apply the result to u to show that $(\mathbf{V} \cdot \nabla)u = \left(u\frac{\partial}{\partial x} + v\frac{\partial}{\partial y} + w\frac{\partial}{\partial z}\right)u = u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}.$
- (ii) Assume $u = xy^2z^3$ and find $(\mathbf{V} \cdot \nabla)u$ at (1,1,1) where $\mathbf{V} = <1, x, 1>$.
- (iii) Write out the 1^{st} component equation of the Navier-Stokes vector equation.

