Test 02

Math 32b @ UCLA (SPRING 2021)

Assigned: May 21, 2021.

Instructions/Admonishment

1. SHOW ALL WORK.

A correct answer with no relevant work may receive no credit, while an incorrect answer accompanied by some correct work may receive partial credit.

- 2. Duration: 24 hours.
- 3. The following is my own work, without the aid of any other person. Signature:

Problem 1 CHANGE OF VARIABLES.

Let
$$\mathscr{D} = \{(x, y) \in \mathbb{R}^2; |y| + |y - x| \le 1\}$$
 and $\mathscr{I} = \iint_{\mathscr{D}} \frac{(2y - x)^2}{x^2 + 3} dA.$

- (i) Sketch the graph of the domain \mathcal{D} and then use it to give a change of variables u and v.
- (ii) Evaluate the double integral \mathscr{I} .

Problem 2 A CONSERVATIVE VECTOR FIELD. Consider the vector field $\mathbf{F}(x, y, z) = \langle 2xy + z^2, x^2, 2xz \rangle$.

- (i) Show that **F** is a conservative vector field and find ϕ such that $\mathbf{F} = \nabla \phi$.
- (ii) Use (i) evaluate $\int_{\mathscr{C}} \mathbf{F} \cdot d\mathbf{r}$, where \mathscr{C} consists of the line segment from (1, 0, -2) to (1, 1, 0) followed by the curve given by $\mathbf{r}(t) = \langle e^t, \cos(t), t \rangle$ for $0 \le t \le 1$.

Problem 3 DIFFERENT FORMS OF GREEN'S THEOREM. Consider the region \mathscr{R} bounded above by the curve $y = 5 - x^2$ and below by the curve $y = x^2 - 3$ and the vector field $\mathbf{F} = \langle xy, xy + 2x \rangle$. Using Green's Theorem

- (i) find the counterclockwise circulation of \mathbf{F} around the boundary of \mathscr{R} ,
- (ii) find the outward flux of \mathbf{F} across the boundary of \mathscr{R} .

Problem 4 THE GRAVITATIONAL POTENTIAL.

The potential function for the gravitational force field due to a mass M at the origin acting on a mass m is $\phi = \frac{GMm}{|\mathbf{r}|}$, where $\mathbf{r} = \langle x, y, z \rangle$ is the position vector of the mass m and G is the gravitational constant.

- (i) Compute the gravitational force $\mathbf{F} = -\nabla \phi$
- (ii) Show that the field is irrotational, that is $\nabla \times \mathbf{F} = \mathbf{0}$.