Test 01

MATH 32B @ UCLA (Spring 2021)

Assigned: April 23, 2021.

Instructions/Admonishment

1. SHOW ALL WORK.

A correct answer with no relevant work may receive no credit, while an incorrect answer accompanied by some correct work may receive partial credit.

- 2. Duration: 24 hours.
- 3. The following is my own work, without the aid of any other person. Signature:

Problem 1 Iterated Double Integral.

Let
$$\mathscr{I} = \int_0^3 \int_0^{2-\frac{2}{3}y} dx dy + \int_{-2}^0 \int_0^{y+2} dx dy.$$

(i) Reverse the order of integration to combine the sum above into one double integral.

(ii) Evaluate \mathscr{I} .

Problem 2 Double Integral in Polar Coordinates.

Let \mathscr{R} be the region in xy-plane inside both the circle of radius r = 2 centered at (0,0) and the circle $r = 4\cos\theta$.

- (i) Sketch the region \mathscr{R} .
- (ii) Use polar coordinates to calculate the area $\mathscr{S} = \int \int_{\mathscr{R}} dA.$

Problem 3 The Cylindrical Solid.

A solid \mathscr{W} lies within the cylinder $x^2 + y^2 = 1$, below the plan z = 4, and above the paraboloid $z = 1 - x^2 - y^2$. The density $\rho(x, y, z)$ at any point is proportional to its distance from the axis of the cylinder and is given by $\rho(x, y, z) = K\sqrt{x^2 + y^2}$, where K is the proportionality constant.

- (i) Express the domain \mathscr{W} in cylindrical coordinates.
- (ii) Integrate $\rho(x, y, z)$ over \mathscr{W} using cylindrical coordinates.

Problem 4 Iterated Triple Integral.

Consider the iterated integral $\mathscr{A} = \int_0^1 \int_0^{x^2} \int_0^y f(x, y, z) dz dy dx.$

- (i) Rewrite \mathscr{A} as an equivalent iterated integral in the order dxdzdy.
- (ii) Explain how you got the new limits of integration.