1. (6 points) Let $\mathscr C$ be the curve with parameterization $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$ for $-4\pi \le t \le 4\pi$. Find the value of the constant *C* that gives the identity

$$
\operatorname{length}(\mathscr{C}) = \int_{\mathscr{C}} \mathbf{F} \cdot d\mathbf{r},
$$

where the vector field

$$
\mathbf{F}(x,y,z) = \langle -y, x, C \rangle.
$$

 $① Find $\vec{r}'(t)$ and $||\vec{r}'(t)||$$ $\vec{r}(t) = \langle -sint, \cos t, t \rangle$
 $\|\vec{r}(t)\| = \sqrt{(-sint)^2 + \cos^2 t + t^2} = \sqrt{1 + t^2}$

$$
2 Find length (e) = \int dS = \int ||\vec{r}'(t)|| dt = \int_{-4\pi} \sqrt{1+t^2} dt = 161.64
$$

length (e) = $\int_{e} dS = \int_{e} ||\vec{r}'(t)|| dt = \int_{-4\pi} \sqrt{1+t^2} dt = 161.64$

$$
0 \int F-dr = \int F(r(t)) \cdot \vec{r}'(t) dt
$$
\n
$$
e
$$
\n
$$
F(r(t)) = \langle -\sin t, \cos t, C \rangle
$$
\n
$$
4\pi
$$
\n
$$
\int \langle -\sin t, \cos t, C \rangle \cdot \langle -\sin t, \cos t, t \rangle dt
$$
\n
$$
-4\pi
$$
\n
$$
4\pi
$$
\n
$$
4\pi
$$
\n
$$
- \int \sin t + \cos t + C \cdot dt = \int \int rC \cdot dt
$$
\n
$$
-4\pi
$$

2. (7 points) A solid *W* occupies the region $x^2 + y^2 + z^2 \le 25$ and $z \le -\sqrt{x^2 + y^2}$, where distance is measured in cm.

The solid has mass density

$$
f(x, y, z) = -\frac{z}{\sqrt{x^2 + y^2 + z^2}}
$$
 g cm⁻³.

(3) Find
$$
f(p_{\text{SinyCMB}} \cdot p_{\text{SinyCMB}} \cdot p_{\text{cosp}})
$$

 $f(p_{\text{SinyCMB}} \cdot p_{\text{SinyCMB}} \cdot p_{\text{cosp}}) = \frac{-p_{\text{cosp}}}{p} = -\cos p$

(4) Compute
$$
\iiint_{N} f(x,y,z) dW
$$

\nIf $(x,y,z) dz = \iiint_{N'} f(\rho sin\phi \omega \theta, \rho sin\phi \sin\theta, \rho cos\phi) \cdot \rho sin\phi dW$

\n $= \int_{0}^{2\pi} \int_{\frac{3\pi}{4}} \int_{0}^{5} -cos\phi \cdot \rho^{2} sin\phi \, d\rho d\phi d\theta$

$$
= \int_{0}^{2\pi} d\theta \int_{\frac{3\pi}{4}}^{\pi} -\sin\theta \cos\theta \, d\theta \int_{0}^{5} \rho^{2} d\rho
$$

\n
$$
= \int_{0}^{2\pi} d\theta \int_{\frac{3\pi}{4}}^{\pi} -\frac{\sin 2\theta}{4} \, d\theta \left[\frac{\rho^{3}}{3} \right]_{0}^{5}
$$

\n
$$
= -\pi \left(\frac{5^{3}}{3} \right) \int_{3\pi/4}^{\pi} \sin 2\theta \, d\theta = -\pi \left(\frac{5^{3}}{3} \right) \left[-\frac{\cos 2\theta}{2} \right]_{3\pi/4}^{\pi}
$$

\n
$$
= -\pi \left(\frac{5^{3}}{3} \right) \left(-\frac{1}{2} + 0 \right) = \frac{5^{3}}{6} \pi = \boxed{\frac{125}{6} \pi \cdot 9}
$$

3. (8 points) Let $\mathscr D$ be the region bounded between $(x-1)^2 + y^2 = 1$ and $(x-2)^2 + y^2 = 4$. Use the change of variables $(x, y) = (r + r \cos \theta, r \sin \theta)$ to evaluate

2) Then, Determine bounds of the transformed region.

$$
(x_1y) = G(r, \theta) = (r + r\cos\theta, r\sin\theta)
$$

The lower limit is $(x-1)^2 + y^2 = 1$. Transformed, This gives us
 $(r + r\cos\theta - 1)^2 + r^2\sin^2\theta = 1$. Expand this equation to select for r:
 $r^2 + r^2\cos\theta - r + r^2\cos\theta + r^2\cos\theta = r\cos\theta + r^2r^2\sin^2\theta = 1$
 $r^2 + 2r^2\cos\theta - 2r + r^2 - 2r\cos\theta = 0$
 $2r^2 + 2r^2\cos\theta - 1 - \cos\theta = 0$
 $2r(r + r\cos\theta - 1 - \cos\theta) = 0$
 $2r = 0$
 $r + r\cos\theta - 1 - \cos\theta = 0$
 $r = 1 + \cos\theta$
 $r = \frac{1 + \cos\theta}{1 + \cos\theta} = 1$... $r = 1$

The upper limit is $(x-2)^2 + y^2 = 4$. Transformed, This gives us The upper 11141 , $3(x-2)$, 49 , -4 , \ldots is \ldots , \ldots

$$
r^{2} + r^{2}cos\theta - 2r + r^{2}cos\theta + r^{2}cos\theta - 2rcos\theta - 2r - 2rcos\theta + A + r^{2}sin^{2}\theta = A
$$

\n
$$
r^{2} + 2r^{2}cos\theta - 4r + r^{2} - 4rcos\theta = 0
$$

\n
$$
2r^{2} + 2r^{2}cos\theta - 4r - 4rcos\theta = 0
$$

\n
$$
2r(r + r cos\theta - 2 - 2 cos\theta) = 0
$$

\n
$$
2r = 0
$$

\n
$$
r = 0
$$

\n
$$
r = 0
$$

\n
$$
r = \frac{2 + 2cos\theta}{1 + cos\theta} = \frac{2(1 + cos\theta)}{1 + cos\theta} = 2
$$

\n
$$
r = 2
$$

Applying the transformation to the bounds of D, we get that $1 \leq r \leq 2$. To find the bounds of θ , me observe that $x \geq 0$ for all of the region D. This implies that $-\frac{\pi}{2} \in \Theta \leq \frac{\pi}{2}$. Thus, the bounds of D_0 are: $D_0 = \{1 \le r \le 2, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \}$ (3) Calculate the Jacobian. $(x,y) = G(r, \theta) = (r + r cos \theta, rsin \theta)$ $Jac(G) = \frac{\partial (x_1 y)}{\partial (r_1 \theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \frac{\partial x}{\partial r} & = 1 + \cos \theta & \frac{\partial x}{\partial \theta} = -\sin \theta \\ \frac{\partial y}{\partial r} & = \sin \theta & \frac{\partial y}{\partial \theta} = \cos \theta \end{vmatrix}$ = $r cos\theta(l + cos\theta) + r sin^{2}\theta$ = $r \cos\theta + r \cos^2\theta + r \sin^2\theta = (r + r \cos\theta)$ (4) find $f(r$ trcos θ , rein θ) $f(Y_i y) = \frac{x^2 + y^2}{y}$: $f(Y + r \cos \theta, r \sin \theta) = \frac{(r + r \cos \theta)^2 + r^2 \sin^2 \theta}{r^2 + r^2 \sin^2 \theta}$ r + $r cos\theta$ $\frac{r^2 + 2r\omega s\theta + r^2\omega s^2\theta + r^2sin^2\theta}{r + r\omega s\theta} = \frac{r^2 + 2r\omega s\theta + r^2}{r + r\omega s\theta} = \left(\frac{2r^2 + 2r\omega s\theta}{r + r\omega s\theta}\right)$ $Y + r cos\theta$

6. Compute the integral using the transformation.

\n
$$
\iint_{D} f(x, y) dA = \iint_{D} f(r(r \cos \theta, r \sin \theta) | \sec \theta | dr d\theta
$$
\n
$$
= \int_{-\pi/2}^{\pi/2} \int_{-\pi/2}^{2} \frac{2r^{2} + 2rcos\theta}{r + r cos\theta} \cdot r \cdot r \cdot r \cdot dr d\theta
$$
\n
$$
= \int_{-\pi/2}^{\pi/2} \int_{1}^{2} 2r^{2} + 2rcos\theta dr d\theta = \int_{-\pi/2}^{\pi/2} \left[\frac{2}{3}r^{3} + r^{2} cos\theta \right]_{1}^{2} d\theta
$$
\n
$$
= \int_{-\pi/2}^{\pi} \int_{1}^{2} 2r^{2} + 2rcos\theta dr d\theta = \int_{-\pi/2}^{\pi/2} \left[\frac{2}{3}r^{3} + r^{2} cos\theta \right]_{1}^{2} d\theta
$$
\n
$$
= \int_{-\pi/2}^{\pi/2} \left[\frac{2}{3}r^{3} + r^{2} cos\theta \right]_{1}^{2} d\theta
$$

$$
= \int_{-\overline{u}/2}^{\overline{u}/2} \frac{16}{3} + 4cos\theta - \frac{2}{3} - cos\theta d\theta = \int_{-\overline{u}/2}^{\overline{u}/2} \frac{14}{3} + 3cos\theta d\theta
$$

$$
= \left[\frac{14}{3}\vartheta + 3\sin\theta\right]_{-\frac{1}{4}}^{\frac{1}{2}} = \frac{14\pi}{6} + 3 + \frac{14\pi}{6} + 3 = \boxed{\frac{14\pi}{3} + 6}
$$

4. (9 points) Let *S* be the part of the cylinder $y^2 + z^2 = 1$ bounded between $z = 0$, $z = 1 + x$ and $z = 1 - x$, oriented with the downward pointing normal. $2 = \sqrt{1-1}$ Find the flux of the vector field

 $x =$

$$
\mathbf{F}(x, y, z) = \langle 0, y, z \rangle
$$

2 Observe that $S = S_{base} + S_{right} + S_{left} + S_{front} + S_{bark}$. Parametrize each surface separately.

③Parametribe Spase, Observe that \bar{z} =0 for all Sbase. So: $y^2 + 0^2 = 1$... $y = \pm 1$ $0 = 1 + x$, $0 = 1 - x$, $x = \pm 1$ Therefore Spase is the unit square. We can now parametrize it as: $S_{base} = G(x,y) = (x,y,0)$ for $0 \le x \le 1$ and $-1 \le y \le 1$

4 Parametrize Sright. Based on the sketch of Sright below,

Sright is the upper half of anellipse with
rertical radius of JZ and houizontal
radius of 1. uts 7 coordinate gues
from 0 tu 1.

Thus, we can parament se it as :

 $S_{right} = G_{\nu}(y, z) = (1 - x^{1/4} \sqrt{1 - y^2}, y, z)$ for $-1 \le y \le 1$, $0 \le z \le 1$

6 Parametrize Sieff.

