Math 32B Final Clockwise

FRANK XING

TOTAL POINTS

80/90

QUESTION 1

1Fubini's Theorem 6/6
v + 6 pts Correct answer (2/3)(e”27 - 1).
+ 2 pts (Partial credit) New x limits are O to 9.
+ 2 pts (Partial credit) New y limits are O to sqgrt(x).
+ 1 pts (Partial credit) New y integral is
sqrt(x)*exp(x™(3/2)).
+ 1 pts (Partial credit, only applies if new limits are
incorrect) Reasonably correct picture.
+ 0 pts No points.
+ 3 pts (Partial credit) Incorrect limits: 0 <=x <=9,

sqrt(x) <=y <=3

QUESTION 2

2 Stokes' Theorem g /8

v + 8 pts Correct answer 248.

+ 4 pts (Partial credit) Answer for _inward_ pointing
normal 208.

+ 0 pts No points.

+ 7 pts (Partial credit) Correct method and
orientations, but arithmetic error

+ 3 pts (Partial credit) Line integral over C1is equal
to sum of line integrals and surface integral, with
some (incorrect) choice of signs.

+ 2 pts (Partial credit, only if no other points apply)

Mention or state Stokes theorem.

QUESTION 3
3Line integral 12/12
v + 4 pts Correct parametrization
+ 2 pts Partial crerdits for parametrization
v + 4 pts Correct integral formula
+ 2 pts Partial credits for integral
v + 4 pts Correct calculation and final answer

+ 2 pts Partial credits for calculation

+ 1 pts AlImost makes no sense
+ 0 pts Nothing correct

-1 pts Tiny calculation error

QUESTION 4
4 Moment of inertia 14 /14

v + 1 pts a) Correct limits $$0\leq\rho\leq\frac1{10}$$
v + 1 pts a) Correct limits $$0\leq\theta<2\pi$$
v + 1 pts a) Correct upper bound $$\phi\leq \pi$$
v + 2 pts a) Correct lower bound $$\phi\geq
\frac{2\pi}3$$
v + 1 pts b) Correctly using part (a) to obtain limits
(credit given even if limits wrong, provided they are
consistent)
v +1 pts b) Correct integrand $$3(x"2+y"*2)$$ (must
substitute $$\delta=3$$ into formula from formula
sheet to gain credit)
v + 2 pts b) Correctly converting $$x*2 + y*2$$ to
$$\rho"2\cos"2\theta\sin"2\phi +
\rho"2\sin"2\theta\sin*2\phi$$ in spherical
coordinates
v + 1 pts b) Correctly simplifying $$3(x*2+y*2)$$ to
$$3\rho”"2\sin"2\phi$$
v + 2 pts b) Correct Jacobian $$\rho”2\sin\phi$$ in
spherical coordinates
v + 1 pts b) Correct answer of
$$\frac{\pi{4000007\,\mathrm{kg}\,\\mathrm{m}*2$$
(units required for points, only awarded if rest of
computation correct)
v + 1 pts Solution thoroughly explained, using full
sentences

+ 1 pts Correct picture(s) of region (bonus point, only
awarded if points lost elsewhere)

+ 0 pts No credit due

QUESTION 5



5 Probability 14 /14 8 Surface integral 6/10

v + 2 pts Correct limits (max 4 pts) v + 3 pts Decompose flux integral

v + 1 pts Correct limits + 1 pts Partial credit for decomposition

v + 1 pts Correct limits v + 2 pts Do component integrals

v + 2 pts Correct integrand (max 5 pts) + 1 pts Partial credit for component integrals
v + 2 pts correct integrand v + 1 pts Combine integrals

v + 1 pts Correct integrand + 2 pts Used divergence theorem (part (b))
v + 2 pts Computations (max 5 pts) + 1 pts Correct (and justified) div(F) (part (b))
v + 2 pts Computations + 1 pts Clear and well-explained solution

v + 1 pts Computations + 0 pts No credit due

* 0 pts No credit due F is not Area(S) times anything sensible.

QUESTION 6
6 Divergence Theorem 8/14

v + 4 pts Correct divergence

W is not necessarily symmetric, and is not a

sphere.

+ 7 pts Correct parametrization of $$ \mathcal{W}$$
v + 3 pts Correct evaluation of triple integral

+ 2 pts Bonus: Drew accurate picture (must include
both cylinders and both planes, and accurate
portrayal of their intersections [the larger cylinder and
two planes meet in a single point))

+ 0 pts No credit

+ 1 Point adjustment

QUESTION 7

7 Vector line integral 12 /12

v + 4 pts Write F as a sum of vortex field and a
conservative field
v + 2 pts Vortex field has integral 2pi over this C
v + 2 pts Compute curl_z F_2 or show F_2 is
conservative
v + 3 pts Conclude (e.g. by Green's theorem or using
that F_2 is conservative) that the integral over C of
F_2is0
v + 1 pts Arrive at correct answer, 2pi, by valid
method

+ 0 pts Incorrect

+ 2 pts Mostly correct argument that integral of F_2
is O

+1 pts curl_z F_2 minor error

QUESTION 8
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Mechanics formulas

e If D is a lamina with mass density 0(z,y) then
— The mass is M = /_/D o(z,y) dA.
- The y-moment is My = /_/Dm(S(x, y) dA.
— The z-moment is M, = /Ayé(w,y) dA.
— The center of mass is (zcom, yom) = (%, %)
— The moment of inertia about the z-axis is I, = / fD y? 6(x, ) dA.
— The moment of inertia about the y-axis is I, = / /D 2% §(z,y) dA.
— The polar moment of inertia is Iy = / -/; (@® + y%) 6(z,y) dA.

e If W is a solid with mass density 6(z,y, z) then
— The mass is M =/// d(z,y,2)dV.
w
— The yz-moment is M, = /// zé{z,y,2)dV.
w
— The zz-moment is M, = /// yo(z,y,2z)dV.
w

— The zy-moment is Mgy = /// z6(z,y,z)dV.
w

MszzxMwy
M'M' M)

— The center of mass is (zcmM, YoM, 2oMm) = (
— The moment of inertia about the z-axis is I, = / / / (y2 + 2% 86(z,y,2) dV.
- w
— The moment of inertia about the y-axis is I, = / / / (2 + 22) b(z,y,2) dV.

w

— The moment of inertia about the z-axis is I, = / / / (2? +v°) 8(z,y,2) dV.
w
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Probability formulas

o If a continuous random variable X has probability density function px (z) then

o

— The total probability / px(z)dz=1.

—00
!

‘ b
— The probability that e < X <bisPla < X <bj = / px{z)dz.
a
o0
— If f: R — R, the expected value of f(X) is E[f(X)] = / f(@)px(z) dz.
—o0
e If continuous random variables X, Y have joint probability density function px,y(z,y) then
# o0 00
— The total probability / / pxy(z,y)dedy =1
: —0Q J 0
— The probability that (X,Y) € Dis P[(X,Y) € D] = / / pxy(z,y) dA.
D

— If f: R? — R, the expected value of f(X,Y) sE[f(X,Y)] = ] / flz,y) pxy(z,y) dedy.
—00 J —0Q
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3 r9 3
1. (6 points) Find / / e®* dady.
0 Jy2

We dvow out 4he a-»*-%ﬁé.@;}i"e i} :
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2. (8 points) Let S be a part of the unit sphere 2% 4 4% + 2% = 1 oriented with outward pointing
normal, with four holes bounded by the curves C;,Cs,C3,C4 oriented as in the following picture:

Suppose that for a vector field F we have

//curlF-dS=20, ng'dr=305, j[F.dr=1o4, f}?-dr:m.
S Co Cs Cy )

Find F - dr.
C1

We kmw “Yhe “‘%f&;)%&?% -ng,.%u‘ﬁ oy ~the
Saald be O clnce dhert owe
‘ ol divection .,
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3. (12 points) Let C be the part of the ellipse 2+ 9y* = 1 bewteen y = 0 and y = %m in the first

quadrant. Find /w\/%xz + 932 ds.
4

We  gketch the cuvve :

{?Eu& %E’% x;i:‘;»%;s){ M,%,%
— the ME O 0%tov

(3y)'Y “““‘“j =}
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4. (14 points) The solid W lies in the region where z? +y? + 22 < = and v3z < —\/z2 +42,
where distance is measured in meters, and has constant density 6(z,y,z) = 3kgm—3.

(a) Write W using spherical coordinates.

(b) Find the moment of inertia of W about the z-axis. (Do not forget to use the correct units.)

(O‘) W I‘H'\ SPhQr@f( é’Ag nggwg’égm%% #

wWe see 0S¢ < j;; Stn _  cosB , Pg{mﬁ@%gﬁ/

P CoCp s

F

< %m{}{ 15, %',‘M,Jf*» £

= L] [l
ehvge, O ond JT

3
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Sing ™~ 5
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TheceSore , the bounds  ove 050225
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5. (14 points) A éhot put throwing sector D C R? is bounded by the curves z = 0, y = —\}—gm and
z2 + 4% = 400 in the first quadrant. On any given throw, the position at which my shot lands
may be modelled by a pair of random variables (X,Y") with joint probability density

2
%Lé if (z,y) € D
pxy(z,y) = (= + 92)2
0 otherwise,

so that the distance I throw is v X2 + Y?2. Find E[vX? +Y?2].
“g’ﬁ (24 5:@6’%(@ +he g:%ktje £Fvy -
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6. (14 points) Let S be the boundary of the region W bounded by the cylinders 3 + 22 = 1,
y% 4+ 2% = 9 and the planes = 3, y = z oriented with outward pointing normal. Find the flux

Y x
of the vector field F = <x2 T e A 72’

22> across S.
» \N k | S}\(’: Q“'{’C%ﬂ Lhe w@ﬁ;g'ﬁ

Ug;{ﬂ " Ahe Aﬁ\;gv% Enle
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7. (12 points) Let C be the curve

Find jl{ F . dr where
C

= <~ + sin(z°) + 29>, + eos) 4 2x62my> :

Y
$2+y2 m2+y2

(Hint: Try writing ' as a sum of two vector fields that we know how to integrate around C )
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8. (10 points) Recall that a polyhedron is a solid bounded by several planar surfaces, for example

Let W C R? be a polyhedron with boundary & composed of k planar surfaces Si,Ss, ..., S 80
that '

S=85USU---US;.
‘We orient & with the outward unit normal.

For each j = 1,...,k define the constant unit vector b; so that b; is equal to the outward unit
normal to S on the surface ;. Define the constant vector Nj = Area(S;) b;.

(a) Let F =Ny + Ny + - - - + Ng. Show that

HFNZ=//SF-dS.

(b) Using your answer to part (a), show that F = 0.

(6 Since Iy = Aren (57 b5

We kvow N 3T The quvltce oxeo -
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