Math 32B - Lectures 3 & 4	Name:	
Winter 2019	SID:	
Final Exam	TA Section:	
3/17/2019		

Time Limit: 180 Minutes Version (5)

This exam contains 20 pages (including this cover page) and 8 problems. There are a total of 90 points available.

Check to see if any pages are missing. Enter your name, SID and TA Section at the top of this page.

You may **not** use your books, notes or a calculator on this exam.

Please switch off your cell phone and place it in your bag or pocket for the duration of the test.

- Attempt all questions.
- Write your solutions clearly, in full English sentences, using units where appropriate.
- You may write on both sides of each page.
- You may use scratch paper if required.

Mechanics formulas

- If \mathcal{D} is a lamina with mass density $\delta(x,y)$ then
 - The mass is $M = \iint_{\mathcal{D}} \delta(x, y) dA$.
 - The y-moment is $M_y = \iint_{\mathcal{D}} x \, \delta(x, y) \, dA$.
 - The x-moment is $M_x = \iint_{\mathcal{D}} y \, \delta(x, y) \, dA$.
 - The center of mass is $(x_{\text{CM}}, y_{\text{CM}}) = \left(\frac{M_y}{M}, \frac{M_x}{M}\right)$.
 - The moment of inertia about the x-axis is $I_x = \iint_{\mathcal{D}} y^2 \, \delta(x,y) \, dA$.
 - The moment of inertia about the y-axis is $I_y = \iint_{\mathcal{D}} x^2 \, \delta(x,y) \, dA$.
 - The polar moment of inertia is $I_0 = \iint_{\mathcal{D}} (x^2 + y^2) \, \delta(x, y) \, dA$.
- If W is a solid with mass density $\delta(x, y, z)$ then
 - The mass is $M = \iiint_{\mathcal{W}} \delta(x, y, z) dV$.
 - The yz-moment is $M_{yz} = \iiint_{\mathcal{W}} x \, \delta(x, y, z) \, dV$.
 - The xz-moment is $M_{zx} = \iiint_{\mathcal{W}} y \, \delta(x, y, z) \, dV$.
 - The xy-moment is $M_{xy} = \iiint_{\mathcal{W}} z \, \delta(x, y, z) \, dV$.
 - The center of mass is $(x_{\text{CM}}, y_{\text{CM}}, z_{\text{CM}}) = \left(\frac{M_{yz}}{M}, \frac{M_{zx}}{M}, \frac{M_{xy}}{M}\right)$.
 - The moment of inertia about the x-axis is $I_x = \iiint_{\mathcal{W}} (y^2 + z^2) \, \delta(x, y, z) \, dV$.
 - The moment of inertia about the y-axis is $I_y = \iiint_{\mathcal{W}} (x^2 + z^2) \, \delta(x, y, z) \, dV$.
 - The moment of inertia about the z-axis is $I_z = \iiint_{\mathcal{W}} (x^2 + y^2) \, \delta(x, y, z) \, dV$.

Probability formulas

- If a continuous random variable X has probability density function $p_X(x)$ then
 - The total probability $\int_{-\infty}^{\infty} p_X(x) dx = 1$.
 - The probability that $a < X \le b$ is $\mathbb{P}[a < X \le b] = \int_a^b p_X(x) \, dx$.
 - If $f: \mathbb{R} \to \mathbb{R}$, the expected value of f(X) is $\mathbb{E}[f(X)] = \int_{-\infty}^{\infty} f(x) \, p_X(x) \, dx$.
- If continuous random variables X, Y have joint probability density function $p_{X,Y}(x,y)$ then
 - The total probability $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p_{X,Y}(x,y) dxdy = 1$
 - The probability that $(X,Y) \in \mathcal{D}$ is $\mathbb{P}[(X,Y) \in \mathcal{D}] = \iint_{\mathcal{D}} p_{X,Y}(x,y) dA$.
 - If $f: \mathbb{R}^2 \to \mathbb{R}$, the expected value of f(X,Y) is $\mathbb{E}[f(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, p_{X,Y}(x,y) \, dx dy$.

1. (6 points) Find $\int_0^2 \int_{y^2}^4 e^{x^{\frac{3}{2}}} dx dy$.

Solution: Using Fubini's Theorem we have

$$\int_0^2 \int_{y^2}^4 e^{x^{\frac{3}{2}}} \, dx dy = \int_0^4 \int_0^{\sqrt{x}} e^{x^{\frac{3}{2}}} \, dy dx = \int_0^4 \sqrt{x} e^{x^{\frac{3}{2}}} \, dx = \frac{2}{3} \left(e^8 - 1 \right).$$

Math 32B - Lectures 3 & 4	Final Exam - Page 5 of 20	3/17/2019

2. (8 points) Let S be a part of the unit sphere $x^2 + y^2 + z^2 = 1$ oriented with outward pointing normal, with four holes bounded by the curves C_1, C_2, C_3, C_4 oriented as in the following picture:

Suppose that for a vector field \mathbf{F} we have

$$\iint_{\mathcal{S}} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = 20, \qquad \oint_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r} = 305, \qquad \oint_{\mathcal{C}_3} \mathbf{F} \cdot d\mathbf{r} = 104, \qquad \oint_{\mathcal{C}_4} \mathbf{F} \cdot d\mathbf{r} = 27.$$

Find $\oint_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r}$.

Solution: By Stokes' Theorem we have

$$\oint_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} - \oint_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r} - \oint_{\mathcal{C}_3} \mathbf{F} \cdot d\mathbf{r} + \oint_{\mathcal{C}_4} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{S}} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S},$$

and hence

$$\oint_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} = 305 + 104 - 27 + 20 = 402.$$

Math 32B - Lectures 3 & 4	Final Exam - Page 7 of 20	3/17/2019

3. (12 points) Let \mathcal{C} be the part of the ellipse $x^2 + 4y^2 = 1$ bewteen y = 0 and $y = \frac{1}{2}x$ in the first quadrant. Find $\int_{\mathcal{C}} x \sqrt{\frac{1}{4}x^2 + 4y^2} \, ds$.

Solution: We parameterize C using $\mathbf{r}(t) = \langle \cos t, \frac{1}{2} \sin t \rangle$ for $0 \le t \le \frac{\pi}{4}$. We then have

$$\mathbf{r}'(t) = \langle -\sin t, \frac{1}{2}\cos t \rangle,$$

and hence

$$\|\mathbf{r}'(t)\| = \sqrt{\sin^2 t + \frac{1}{4}\cos^2 t}.$$

We then compute

$$\int_{\mathcal{C}} x \sqrt{\frac{1}{4}x^2 + 4y^2} \, ds = \int_0^{\frac{\pi}{4}} \cos t \left(\frac{1}{4} \cos^2 t + \sin^2 t \right) \, dt$$
$$= \int_0^{\frac{\pi}{4}} \cos t \left(\frac{1}{4} + \frac{3}{4} \sin^2 t \right) \, dt$$
$$= \frac{3\sqrt{2}}{16}.$$

Math 32B - Lectures 3 & 4	Final Exam - Page 9 of 20	3/17/2019

- 4. (14 points) The solid W lies in the region where $x^2 + y^2 + z^2 \le \frac{1}{100}$ and $\sqrt{3}z \le -\sqrt{x^2 + y^2}$, where distance is measured in meters, and has constant density $\delta(x, y, z) = 5 \,\mathrm{kg}\,\mathrm{m}^{-3}$.
 - (a) Write W using spherical coordinates.
 - (b) Find the moment of inertia of W about the z-axis. (Do not forget to use the correct units.)

Solution:

(a) Using spherical coordinates

$$x = \rho \cos \theta \sin \phi,$$
 $y = \rho \sin \theta \sin \phi,$ $z = \rho \cos \phi,$

we may write

$$W = \{0 \le \theta < 2\pi, \ \frac{2\pi}{3} \le \phi \le \pi, \ 0 \le \rho \le \frac{1}{10}\}.$$

(b) Switching to spherical coordinates we may compute

$$I_z = \iiint_{\mathcal{W}} (x^2 + y^2) \delta(x, y, z) \, dV$$

$$= \int_0^{2\pi} \int_{\frac{2\pi}{3}}^{\pi} \int_0^{\frac{1}{10}} 5\rho^4 \sin^3 \phi \, d\rho d\phi d\theta$$

$$= \frac{\pi}{50000} \int_{\frac{2\pi}{3}}^{\pi} \sin \phi - \cos^2 \phi \sin \phi \, d\phi$$

$$= \frac{\pi}{50000} \left[-\cos \phi + \frac{1}{3} \cos^3 \phi \right]_{\phi = \frac{2\pi}{3}}^{\phi = \pi}$$

$$= \frac{\pi}{240000} \, \text{kg m}^2$$

Math 32B - Lectures 3 & 4	Final Exam - Page 11 of 20	3/17/2019

5. (14 points) A shot put throwing sector $\mathcal{D} \subset \mathbb{R}^2$ is bounded by the curves $x=0, y=\sqrt{3}x$ and $x^2+y^2=400$ in the first quadrant. On any given throw, the position at which my shot lands may be modelled by a pair of random variables (X,Y) with joint probability density

$$p_{X,Y}(x,y) = \begin{cases} \frac{3}{25} \frac{x^2 y}{(x^2 + y^2)^{\frac{3}{2}}} & \text{if } (x,y) \in \mathcal{D} \\ 0 & \text{otherwise,} \end{cases}$$

so that the distance I throw is $\sqrt{X^2 + Y^2}$. Find $\mathbb{E}[\sqrt{X^2 + Y^2}]$.

Solution: We may write the region \mathcal{D} in polar coordinates as

$$\mathcal{D} = \left\{ \frac{\pi}{3} \le \theta \le \frac{\pi}{2}, \ 0 \le r \le 20 \right\}.$$

We then compute

$$\mathbb{E}[\sqrt{X^2 + Y^2}] = \iint_{\mathbb{R}^2} \sqrt{x^2 + y^2} \, p_{X,Y}(x,y) \, dA$$
$$= \frac{3}{25} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \int_{0}^{20} r^2 \cos^2 \theta \sin \theta \, dr d\theta$$
$$= 320 \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos^2 \theta \sin \theta \, d\theta$$
$$= \frac{40}{3}.$$

Math 32B - Lectures 3 & 4	Final Exam - Page 13 of 20	3/17/2019

6. (14 points) Let \mathcal{S} be the boundary of the region \mathcal{W} bounded by the cylinders $x^2+z^2=1$, $x^2+z^2=9$ and the planes y=3, y=x oriented with outward pointing normal. Find the flux of the vector field $\mathbf{F}=\left\langle \frac{y}{x^2+y^2},\, -\frac{x}{x^2+y^2},\, 3z \right\rangle$ across \mathcal{S} .

Solution: Taking cylindrical coordinates

$$x = r\cos\theta, \qquad y = y, \qquad z = r\sin\theta,$$

we may write the region \mathcal{W} as

$$W = \{1 \le r \le 3, \ 0 \le \theta < 2\pi, \ x \le y \le 3\}.$$

We also compute

$$\operatorname{div} \mathbf{F} = 3.$$

Applying the divergence theorem we then obtain

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \iiint_{\mathcal{W}} \operatorname{div} \mathbf{F} \, dV$$

$$= \int_{0}^{2\pi} \int_{1}^{3} \int_{r \cos \theta}^{3} 3r \, dy dr d\theta$$

$$= \int_{0}^{2\pi} \int_{1}^{3} 9r - 3r^{2} \cos \theta \, dr d\theta$$

$$= \int_{1}^{3} 18\pi r \, dr$$

$$= 72\pi.$$

Math 32B - Lectures 3 & 4	Final Exam - Page 15 of 20	3/17/2019

7. (12 points) Let \mathcal{C} be the curve

Find $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ where

$$\mathbf{F}(x,y) = \left\langle -\frac{y}{x^2 + y^2} + \cos(x^3) + ye^{xy}, \frac{x}{x^2 + y^2} + e^{e^y} + xe^{xy} \right\rangle.$$

(Hint: Try writing \mathbf{F} as a sum of two vector fields that we know how to integrate around \mathcal{C} .)

Solution: Taking

$$\mathbf{F}_1(x,y) = \left\langle -\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle,$$

to be the vortex vector field and

$$\mathbf{F}_2(x,y) = \left\langle \cos(x^3) + ye^{xy}, e^{e^y} + xe^{xy} \right\rangle,\,$$

we may write

$$\mathbf{F}(x,y) = \mathbf{F}_1(x,y) + \mathbf{F}_2(x,y).$$

From the theorem proved in class we have

$$\oint_{\mathcal{C}} \mathbf{F}_1 \cdot d\mathbf{r} = 2\pi.$$

Further, we may verify that for every $(x,y) \in \mathbb{R}^2$ we have

$$\operatorname{curl}_{z} \mathbf{F}_{2} = 0$$
,

so by the Fundamental Theorem of Vector Line Integrals,

$$\oint_{\mathcal{C}} \mathbf{F}_2 \cdot d\mathbf{r} = 0.$$

As a consequence,

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \oint_{\mathcal{C}} \mathbf{F}_1 \cdot d\mathbf{r} + \oint_{\mathcal{C}} \mathbf{F}_2 \cdot d\mathbf{r} = 2\pi.$$

Math 32B - Lectures 3 & 4	Final Exam - Page 17 of 20	3/17/2019

8. (10 points) Recall that a polyhedron is a solid bounded by several planar surfaces, for example

Let $\mathcal{W} \subset \mathbb{R}^3$ be a polyhedron with boundary \mathcal{S} composed of k planar surfaces $\mathcal{S}_1, \mathcal{S}_2, \dots, \mathcal{S}_k$ so that

$$S = S_1 \cup S_2 \cup \cdots \cup S_k$$
.

We orient S with the outward unit normal.

For each j = 1, ..., k define the constant unit vector \mathbf{a}_j so that \mathbf{a}_j is equal to the outward unit normal to \mathcal{S} on the surface \mathcal{S}_j . Define the constant vector $\mathbf{N}_j = \text{Area}(\mathcal{S}_j) \mathbf{a}_j$.

(a) Let $\mathbf{F} = \mathbf{N}_1 + \mathbf{N}_2 + \cdots + \mathbf{N}_k$. Show that

$$\|\mathbf{F}\|^2 = \iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}.$$

(b) Using your answer to part (a), show that $\mathbf{F} = 0$.

Solution:

(a) We may write the surface integral as

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \sum_{j=1}^{k} \iint_{\mathcal{S}_{j}} \mathbf{F} \cdot \mathbf{n} \, dS = \mathbf{F} \cdot \left(\sum_{j=1}^{k} \mathbf{a}_{j} \iint_{\mathcal{S}_{j}} dS \right) = \mathbf{F} \cdot \left(\sum_{j=1}^{k} \operatorname{Area}(\mathcal{S}_{j}) \, \mathbf{a}_{j} \right) = \|\mathbf{F}\|^{2}.$$

(b) Applying the Divergence Theorem we obtain

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \iiint_{\mathcal{W}} \operatorname{div} \mathbf{F} \, dV = 0,$$

and hence $\|\mathbf{F}\|^2 = 0$.

Math 32B - Lectures 3 & 4	Final Exam - Page 19 of 20	3/17/2019

Math 32B - Lectures 3 & 4	Final Exam - Page 20 of 20	3/17/2019