

32B Midterm II, Winter 2017

d Section Number: Ben Bellis 4A C 4D, Sudesh Kalyanswamy

wers. No Points Will Be Given Without Suffiug/Calculations.

Problem 1. (4)

Evaluate the following integral

$$\iint_{\mathbf{D}} x^2 + 2y^2 dx dy. \qquad \text{With } \mathbf{M} = \mathbf{A}$$
in \mathbf{R}^2 bounded by the lines $x + y = a$, $x + y = a$

Here D is the finite region in \mathbb{R}^2 bounded by the lines x+y=a, x+y=-a, x-y=b, x-y=-b, where a and b are two positive constants.

let
$$u: x_{1}y, v=x-y$$
 $u\cdot v-2x = x = \frac{1}{2}(u+v)$
 $u\cdot v-2y = y = \frac{1}{2}(u+v)$
 $1 = \frac{1}{2} = \frac{1}{2$

Problem 2. (4)

Find the line integral

$$\int_{C_1+C_2} yzdx + xzdy + xydz,$$

where C_1 is the line segment connecting P and Q with the orientation from P to Q, and C_2 is the line segment connecting Q and R with the orientation from Q to R. Here $P=(1,0,1),\ Q=(1,1,0)$ and R=(0,1,1).

$$\frac{\partial F_1}{\partial y} = z = \frac{\partial F_2}{\partial x} \sqrt{F_2(yz, xz, xy)} \text{ is conservative}$$

$$\frac{\partial F_1}{\partial z} = y = \frac{\partial F_3}{\partial x} \sqrt{F_3(yz, xyz + C_1(y,z))}$$

$$\frac{\partial F_2}{\partial z} = x = \frac{\partial F_3}{\partial x} \sqrt{F_3(yz, xyz + C_1(y,z))}$$

$$\frac{\partial F_2}{\partial z} = x = \frac{\partial F_3}{\partial y} \sqrt{F_3(yz, xyz + C_3(x,z))}$$

$$\frac{\partial F_3}{\partial z} = x = \frac{\partial F_3}{\partial y} \sqrt{F_3(yz, xyz + C_3(x,z))}$$

$$\frac{\partial F_3}{\partial z} = x = \frac{\partial F_3}{\partial y} \sqrt{F_3(yz, xyz + C_3(x,z))}$$

$$\frac{\partial F_3}{\partial z} = x = \frac{\partial F_3}{\partial y} \sqrt{F_3(yz, xyz + C_3(y,z))}$$

$$\frac{\partial F_3}{\partial z} = x = \frac{\partial F_3}{\partial y} \sqrt{F_3(yz, xyz + C_3(y,z))}$$

$$\frac{\partial F_3}{\partial z} = x = \frac{\partial F_3}{\partial y} \sqrt{F_3(yz, xyz + C_3(y,z))}$$

$$\frac{\partial F_3}{\partial z} = x = \frac{\partial F_3}{\partial y} \sqrt{F_3(yz, xyz + C_3(y,z))}$$

Jan 18 For + 18 For = 5(B)-5(P)+5(R)-5(D)=5(R)-5(P)

(1) 16 For + 18 For = 5(B)-5(P)+5(R)-5(D)=5(R)-5(P)

Problem 3. (4)

Let $\mathbf{F} = (x^3 + y)\mathbf{i} + (x + z - \sin y)\mathbf{j} + (z^2 + y + \cos z)\mathbf{k}$ defined on \mathbf{R}^3

(i) Decide if F is conservative.

(ii) If **F** is conservative, find the potential function V, such that $\mathbf{F} = \nabla V$.

(iii) Compute the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is given by the parametric equation $x=t^2,\ y=t^4,\ z=t^6,\ 0\leq t\leq 1$ with the orientation given by the

parametrization.

I)
$$\frac{3F_1}{3g} = 1$$
 $\frac{3F_2}{3g} = \frac{3F_2}{3g} = 1$ $\frac{3F_2}{3g} = 1$ $\frac{3F_3}{3g} = 1$ $\frac{3F_3}{3g}$

$$y + (1/2) = 2^{2} + y + cos2$$

 $(1/2) = 2^{2} + icos2$
 $(1/2) = 2^{2} + icos2$
 $(1/2) = \frac{1}{2} + \frac{1}{2} + icos2$
 $(1/2) = \frac{1}{2} + icos2$

$$II) r(t) = (t^{2}, t^{4}, t^{6}) \quad r(1) = (1,1,1) \quad r(0) = (0,0,0)$$

$$\int_{C} F \cdot dr = \int_{C} (r(1)) - \int_{C} (r(0)) = (\frac{1}{4} + 1 + 1 + \cos 2 + \frac{1}{3} + \sin 2) - (1) = \frac{19}{12} + \cos 1 + \sin 1$$

Problem 4. (4)

Evaluate the surface integral $\int \int_S (3x^2+4y^2+5z^2)dS$ where S is the sphere given by the equation $x^2+y^2+z^2=a^2$ where a is a positive constant.

$$\iint_{S} (3x^{2} + 4y^{2} + 5z^{2}) \int_{S} (3a^{2} + y^{2} + 7z^{2}) \int_{S} (6a, \phi)^{\frac{1}{2}} \int_{S} (\sin\phi \cos s \sin\phi \sin\phi \cos \phi)$$

$$||\hat{N}|| = a^{2} \sin\phi$$

$$||\hat{N}|| = a^{$$

Problem 5. (4)

Let S be a surface given by the parametric equation $G(u,v)=(u,v,au^2+bv^2)$ with domain $D=\{(u,v)|\,u^2+v^2\leq 1\}$ where a and b are two constants. Orient S with the normal vector field ${\bf N}$ pointing to the negative z-direction (that is the z-component of ${\bf N}$ is negative). Find

Here the vector field $\mathbf{F} = \langle z, x^2, x^2 \rangle$. $G_u = \langle 1, 0, 2au \rangle + N = \langle G_u \times G_v \rangle^{-2} \langle -2au, 2bv, 1 \rangle$ $F(G(u,v)) = \langle au^2 + bv^2, u^3, u^2 \rangle \qquad G_v = \langle 0, 1, 2bv \rangle \qquad N = \langle 2au, -2bv, -2 \rangle$ $\iint_S FolS = \iint_D F(G(u,v)) \cdot N dA = \iint_C \langle 2a^2u^3 + 2abv^2u, -2bvu^2 - u^2 \rangle dA$ $Region is symmetric in <math>u \notin N \notin each \ component \text{ of } F(G(u,v)) \cdot N$ $is \ odd in \ either \ u \ ar \ N, \ therefore$ $\iint_S FolS = O \qquad \qquad Is \ Folds =$