| Full Name Vinut Chang | | | | | | UID 305 12764) | | | | | |-----------------------|-----|--------------|---|--------------|----|----------------|------|----|--|--| | | 3A | Ben Szczesny | T | GEOLOGY 4645 | | | | | | | | | 3B | | R | GEOLOGY 4645 | 2 | | | | | | | | 3C | Talon Stark | T | PUB AFF 2242 | | C | 9 | 10 | | | | | 3D | | R | MS 6221 | | Section | 5 | 13 | | | | * | 3E | Ryan Wallace | T | BUNCHE 3156 | į. | | **** | | | | | | 673 | 1 | n | DODD 70 | | | | | | | Sign your name on the line below if you do NOT want your exam graded using GradeScope. Otherwise, keep it blank. If you sign here, we will grade your paper exam by hand and a) you will not get your exam back as quickly as everyone else, and b) you will not be able to keep a copy of your graded exam after you see it. - Fill out your name, section letter, and UID above. - Do not open this exam packet until you are told that you may begin. - Turn off all electronic devices and and put away all items except for a pen/pencil and an eraser. - No phones, calculators, smart-watches or electronic devices of any kind allowed for any reason, including checking the time. - If you have a question, raise your hand and one of the proctors will come to you. We will not answer any mathematical questions except possibly to clarify the wording of a problem. - Quit working and close this packet when you are told to stop. Spherical coordinates: $$x = \rho \sin \phi \cos \theta$$ $$y = \rho \sin \phi \sin \theta$$ $$z = \rho \cos \phi$$ $$dxdydz = \rho^2 \sin \phi \, d\rho d\phi d\theta$$ | Page: | 1 | 2 | 3 | 4 | 5 | Total | |---------|---|----|----|----|----|-------| | Points: | 8 | 10 | 10 | 10 | 12 | 50 | | Score: | | | | | | | You may use this page for scratch work. (b) Let D be the region in the positive octant $(x, y, z \ge 0)$ enclosed by the sphere $x^2 + y^2 + z^2 = 4$ and the planes z=0, x=0, and x=y. For each integral below, circle "yes" or "no" depending on whether or not it equals $\iiint_D x \, dV. \qquad \chi = \int_{0}^{\infty} \int_{0}^{\infty} \phi(\sigma) \, \Theta$ $$\int_0^{\pi/2} \int_{\pi/4}^{\pi/2} \int_0^2 \rho^2 \cos \theta \sin \phi \, d\rho \, d\theta \, d\phi$$ yes (no) $$\int_0^{\pi/2} \int_{\pi/4}^{\pi/2} \int_0^2 \rho^2 \cos \theta \sin \phi \, d\rho \, d\phi \, d\theta$$ $$\int_0^2 \int_{\pi/4}^{\pi/2} \int_0^{\sqrt{4-r^2}} r^2 \cos\theta \, dz \, d\theta \, dr$$ $$\int_0^{\pi/2} \int_0^2 \int_{\pi/4}^{\pi/2} \rho^3 \cos \theta \sin^2 \phi \, d\theta \, d\rho \, d\phi$$ - 2. (10 points) Let R be the region in \mathbb{R}^2 which lies above the x-axis and between the circles of radius 1 and 2 centered at (0,0). - (a) Write the following integral as a sum of integrals in rectangular coordinates: (b) Evaluate the integral in part (a) using polar coordinates. Box your answer. $\frac{7}{\text{COSTL}}$ $\frac{7}{\text{COSTL}}$ $= \int_{0}^{\pi} \left[r^{3} \sin \theta \right]_{1}^{2} d\theta$ $= \int_{0}^{\pi} \left[r^{3} \sin \theta \right]_{1}^{2} d\theta$ $= \left[-7 \cos \theta \right]_{0}^{\pi} d\theta$ $= \frac{7 + 7}{2 \left[\frac{1+7}{2} \right]_{1}^{4}}$ Page 2 3. (10 points) Let $$G: \mathbb{R}^2 \to \mathbb{R}^2$$ be the non-linear transformation $(1, 2)$ $(1, -1)$ $(3, 6)$ Let R be the unit square $[0, 1] \times [0, 1]$ in the uv -plane and let $D = G(R)$ in the xy -plane. (b) Find the limits and integrand of the integral below so that it equals $$\int \int_{D} \sqrt{x} dA$$ as an integral over the square R. Do not evaluate the integral. Show your work. $$Jac(G) = \begin{vmatrix} 1+v & 1+u \\ -1+2v & 2+2u \end{vmatrix}$$ $$= (1+v)(2+2u) - (1+u)(-1+2v)$$ $$= 2+2av +2v+2u + 1+u -2av -2v$$ $$= 3u+3$$ $$\iint_{D} \sqrt{x} \, dA = \int_{0}^{1} \int_{0}^{1} (3u+3) \sqrt{u+v+uv} \, du \, dv$$ 4. (10 points) (a) In spherical coordinates, describe the region outside the cone $x^2 + y^2 = z^2$ and inside the sphere $x^2 + y^2 + z^2 = 2$ (shown below – the sphere is translucent so you can see the cone inside). $$0 \leq \theta \leq 2\pi$$ $$0 \leq \phi \leq \pi$$ $$0 \leq \phi \leq \pi$$ (b) Fill in the limits and integrand of the double and triple integrals below so that they both equal the volume of the region in the first octant $(x, y, z \ge 0)$ below the plane x + y + z = 1. Be sure to follow the provided order of integration. - 5. (12 points) Multiple choice. Circle the correct answer. - (a) In spherical coordinates the plane y = x can be written as $$\rho = \frac{1}{\cos \phi} \qquad \phi = \frac{\pi}{3} \qquad \rho = 1 \qquad \theta = \frac{\pi}{4} \qquad \rho = \frac{1}{\sin \phi}.$$ (b) The Jacobian of the map $G(u, v) = (u^2 - v^2, uv)$ is $$2u^2 + 2v^2 \qquad 2$$ $$2u^2 - 2v^2$$ $$2u+2v$$ -4 $$\bigvee$$ (c) In cylindrical coordinates the plane x = 1 can be written as $$r = \frac{1}{\cos \theta}$$ $\theta = \frac{\pi}{3}$ $r = 1$ $\theta = \frac{\pi}{4}$ $r = \frac{1}{\sin \theta}$ $$\theta = \frac{\pi}{3} \qquad r$$ $$heta= rac{\pi}{4}$$ $$r = \frac{1}{\sin \theta}$$ (d) The linear map which sends the unit square $[0,1] \times [0,1]$ to the parallelogram with vertices (0,0), (6,1), (8,5), and (2,4) is G(u,v) = $$(6u+v, 2u+4v) \underbrace{(6u+2v, u+4v)}_{(6u+2v, 4u+v)} \underbrace{(6u+v, 4u+2v)}_{(6u+4v, u+2v)}$$ $$(74)$$ *