

Sign your name on the line below if you do **NOT** want your exam graded using GradeScope. Otherwise, keep it blank. If you sign here, we will grade your paper exam by hand and a) you will not get your exam back as quickly as everyone else, and b) you will not be able to keep a copy of your graded exam after you see it.

- Fill out your name, section letter, and UID above.
- Do not open this exam packet until you are told that you may begin.
- Turn off all electronic devices and and put away all items except for a pen/pencil and an eraser.
- No phones, calculators, smart-watches or electronic devices of any kind allowed for any reason, including checking the time.
- If you have a question, raise your hand and one of the proctors will come to you. We will not answer any mathematical questions except possibly to clarify the wording of a problem.
- Quit working and close this packet when you are told to stop.

Spherical coordinates:

$$x = \rho \sin \phi \cos \theta$$

$$y = \rho \sin \phi \sin \theta$$

$$z = \rho \cos \phi$$

$$dxdydz = \rho^2 \sin\phi \, d\rho d\phi d\theta$$

Page:	1	2	3	4	5	6	7	8	Total
Points:	12	12	12	12	12	15	15	10 .	100
Score:									

2. (8 points) Using spherical coordinates, set up but do not evaluate a triple integral that computes the volume of a sphere of radius 2 from which a central cylinder of radius 1 has been removed.

Page 1

3. (12 points) Let F denote the vortex field $F = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$.
(a) Suppose that C_R is the circle of radius R centered at $(0,0)$ oriented counterclockwise.
By parametrizing \mathcal{C}_R , compute $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$. Box your answer
Note: you may not use the fundamental theorem of line integrals or anything about the winding number in this problem. Also, the answer is not zero.
CATE OF (FRUSH, KIND) dr= (-RSIND, ROST)
$F = \left(\frac{-k_{1} \ln \theta}{R^{2}}, \frac{k_{1} \log R}{R^{2}}\right)$ $F \cdot dr = \sin^{2}\theta$ $\int_{0}^{2\pi} dr$
$F = \left(-\frac{5m\theta}{R}, \frac{\cos\theta}{R}\right)$
(b) Compute $\operatorname{curl}_z(F)$. Show your work. Box your answer
Wils (E) 3x
2 Fz - 2 Fg 0 x x x x x x x x x x x x x x x x x x
$\frac{(x_5+h_5)_5}{\sqrt{x_5+h_5}} y = \frac{(x_5+h_5)_5}{\sqrt{x_5+h_5}} y $
$(x^2+y^2)^2$
(c) Fill in the blanks:
(i) If $\mathbf{F} = \nabla f$ on a domain D then $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = $ for every closed curve \mathcal{C} in D .
(ii) If $\operatorname{curl}_z(F)=0$ on a <u>Simply connected</u> domain D then F is conservative.

(d) Is the vortex field F conservative on the domain $\mathbb{R}^2 \setminus \{(0,0)\}$? Explain your reasoning.

No, the domain has a hole at Co,0) making it not asimply connected domain. Surfaces can included that point at 10,0), usingt as and first of anymore.

- 4. (12 points) Let $F = \langle 2x, 0, -2z \rangle$.
 - (a) Verify that $A = \langle yz, -xz, yx \rangle$ is a vector potential for F.

(b) Let S be the portion of the sphere $x^2 + y^2 + z^2 = 13$ where $x \leq 3$, oriented with outward-pointing normal vector. Find the flux of F through S. Hint: use the result of part (a).

(c) Let S' be the portion of the sphere $x^2 + y^2 + z^2 = 13$ where $x \ge 3$, oriented with outward-pointing normal vector. Find the flux of F through S'. Box your answer You don't need to show your work for this part of the problem.

5. (12 points) Given that \mathcal{C} is a simple closed curve in the plane x+y+z=1 (oriented counterclockwise when viewed from above) that encloses a surface area of 5, compute $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ for $\mathbf{F} = \langle 3z, 2x, 4y \rangle$.

Box your answer Hint: it may be helpful to remember that $\iint_{\mathcal{S}} G \cdot dS = \iint_{\mathcal{S}} (G \cdot n) dS$.

$$\int_{C} F - dr = \iint_{S} CV \cdot I F dA$$

$$\iint_{S} \langle 4,3,2 \rangle \cdot \langle 1,1,1 \rangle$$

- 6. (12 points) Let $F = \langle z^2 x, \frac{1}{3} y^3 + \sin^2 z, x^2 z + y^2 \rangle$.
 - (a) Let \mathcal{D} be the unit disk $x^2 + y^2 \leq 1$ in the xy-plane, oriented downward. Compute $\iint_{\mathcal{D}} \mathbf{F} \cdot d\mathbf{S}$.

It may be helpful to know that $\int_0^{2\pi} \sin^2 \theta \, d\theta = \pi$. Box your answer Hint: if \mathcal{D} is parametrized via $G(r,\theta) = \langle r \cos \theta, r \sin \theta, 0 \rangle$ then $N = \pm \langle 0, 0, r \rangle$.

(b) Let S be the top half of the sphere $x^2 + y^2 + z^2 = 1$, oriented upward. Compute $\iint_S \mathbf{F} \cdot d\mathbf{S}$.

Box your answer Hint: you should use your answer to part (a). If you cannot do part (a), let A denote the value of the integral in part (a) and give your answer in terms of A.

SX S

D-> CWIF >

dod

Page 6

div = V. V. f take putial twice

8. (15 points) Multiple choice. Circle the correct answer. Consider the region D in the plane bounded by the curve C as shown to the right. For parts (a)-(c), circle the best answer.

negative

4)

Hint for (c): look at the location of D in the plane.

zero

(d) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation of the plane sending the triangle with vertices (0,0), (1,0), (0,1) to the triangle with vertices (0,0), (1,2), (-1,3), respectively. Find the Jacobian of T.

positive

(e) Let $\mathcal{R} = [1,2] \times [1,2]$ and let $\mathcal{D} = G(\mathcal{R})$, where G is the map $G(u,v) = (u^2/v, v^2/u)$. Compute the area of \mathcal{D} .

9. (10 points) Fill in the blanks in the big theorems of vector calculus.

The fundamental theorem of line integrals. If C is an oriented curve from P to Q in D then

$$\int_{\mathcal{C}} \nabla f \cdot d\mathbf{r} = f(Q) - f(P).$$

Green's theorem. Let \mathcal{D} be a domain whose boundary ∂D is a simple closed curve, oriented

$$\iint_{\mathcal{D}} \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} dA = \oint_{\mathcal{D}} \mathbf{F} \cdot d\mathbf{r}.$$

$$(CW12)$$

Stokes' theorem. Let S be a "sufficiently nice" surface, and let F be a vector field whose components have continuous partial derivatives on an open region containing S. Then

$$\iint_{S} \operatorname{curl}(\boldsymbol{F}) \cdot d\boldsymbol{S} = \begin{array}{|c|c|c|c|} & \oint_{S} \boldsymbol{F} \cdot d\boldsymbol{r} & & \\ & & &$$

The integral on the right-hand side is defined relative to the boundary orientation of ∂S .

The divergence theorem. Let S be a closed surface that encloses a region W in \mathbb{R}^3 . Assume that S is piecewise smooth and is oriented by normal vectors pointing \mathbb{R}^3 . Let F be a vector field whose domain contains W. Then

$$\iiint_{W} \operatorname{div} F \cdot dV = \iint_{\partial W} F \cdot dS.$$

You may use this page for scratch work.

$$\left(\frac{-y}{\chi^2+y^2}, \frac{x}{\chi^2+y^2}\right)$$

$$\left\langle \frac{-9}{R}, \frac{x}{R} \right\rangle$$

$$\frac{\partial r}{\partial x} \frac{X}{(X^2 + y^2)} = \frac{X}{r}$$

$$\frac{2}{\partial x} \left(\frac{x}{x^2 + y^2} \right)$$

$$\frac{(x^2+y^2)\cdot X(2X)}{(x^2+y^2)^2} - \frac{(x^2+y^2)\cdot 2y^2}{(x^2+y^2)^2}$$

$$= \frac{(x_{5}+y_{5})(5x_{5}+5y_{5})}{(5x_{5}+5y_{5})} = 0$$

$$\frac{(x^2+y^2)-x(2x)}{(x^2+y^2)^2}-\left(\frac{-(x^2+y^2)+2y^2}{(x^2+y^2)^2}\right)$$

$$\frac{(\chi^2 + y^2) - 2\chi^2 + \chi^2 + y^2 - 2y^2}{(\chi^2 + y^2)^2}$$

$$\frac{2x^{2}+2y^{2}-2x^{2}-2y^{2}}{(x^{2}+y^{2})^{2}}=0$$