1. (a) (3 points) Let f(z,y) = 22 + y?. Compute the partial derivative [zz.
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(b) (5 points) Let f(u,v,w,z,y,2) = u?/v+vTyz + sin(zwv). Compute the partial
derivative fm 2- :
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(c) (5 points) Compute the following limit:
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(10 points) Let f(z,y) = z%y®. Compute the gradient V f(z,y). Then, find the tangent
plane to the surface z = f(z,y) at the point (a,b) = (2, 3).
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3. (10 points) Suppose your initial position in the plane is (0,9). Between the lines y =9
and y = —9 is a river. The river’s speed at the point (z,y) is 81 — y?, where the river
runs in the direction of the positive z-axis. Suppose you are in a boat which begins with
a constant speed of 1, in the negative y-direction. (So, the velocity of the boat in the
y-direction will always be —1.) What will be your position when you reach the bottom

of the river? That is, what is your position when you reach the line y = —97
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4. (10 points) Find a function f(z,y) such that
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—f =1+ €®cosy,
oz
ﬁ = 14y — " sin y,
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and such that f(In2,0) = In2. (As usual, you must show your work to receive full
credit.)
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5. (15 points) Let D be the solid region in Euclidean space R® defined as the set of all
(z,y, z) such that 22 +y? + 22 < 4, 22 + y* — 32> > 0 and 2? +y* > 1. Note that D is a
solid region, so its boundary is a surface. Let E denote the boundary surface of D. (If

the solid region D were dipped in paint, then the boundary of D is the outer part of D
that is covered in paint.)

Let B be the region in Euclidean space R? defined as the set of all (z,y,2) such that
y==z,x >0and y > 0. Then E and B are surfaces.

Parametrize the intersection of E and B. (Make sure to parametrize the entire intersec-
tion. You MUST specify the domain of your parameter for any parametrization you
give.) (Any parametrization that you write MUST use z as a parameter. That is, any

parametrization you write must be of the form r(z) = (z(2), y(2), z), where z and y are
both functions of 2.}~
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