1. (a) (3 points) Let f(z,y) = z* + y*>. Compute the partial derivative fa:x

(b) (5 points) Let f(u,v,w,z,y,z) = u?/v + vzyz + sin(zwv). Compute the partial
derivative fmv o :
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(c) (5 points) Compute the following limit:
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2. (10 points) Let f(z,y) = 2*y>. Compute the gradient Vf(z,y). Then, find the tangent
plane to the surface z = f(z,y) at the point (a,b) = (2, 3).
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3. (10 points) Suppose your initial position in the plane is (0,9). Between the lines y = 9
and y = —9 is a river. The river’s speed at the point (x,y) is 81 — y?, where the river
runs in the direction of the positive z-axis. Suppose you are in a boat which begins with
a constant speed of 1, in the negative y-direction. (So, the velocity of the boat in the
y-direction will always be —1.) What will be your position when you reach the bottom
of the river? That is, what is your position when you reach the line y=-97
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4. (10 points) Find a function f(z,y) such that

0
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and such that f(In2,0) = In2. (As usual, you must show your work to receive full
credit.)
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5. (15 points) Let D be the solid region in Euelidean space R3 defined as the set of all

(z,y,2) such that 22 + 4% + 27 < 4, 22 + 42 £322 > 0 and 22 +y% > 1. Note that D is a

solid region, so its boundary is a surface. Let E denote the boundary surface of D. (If

the solid region D were dipped in paint, then the boundary of D is the outer part of D
that is covered in paint.)

Let B be the region in Euclidean space R3 defined as the set of all (z,y, 2) such that
y=z,z>0and y > 0. Then F and B are surfaces.

Parametrize the intersection of F and B. (Make sure to parametrize the entire intersec-
tion. You MUST specify the domain of your parameter for any parametrization you
give.) (Any parametrization that you write MUST use z as a parameter. That is, any
parametrization you write must be of the form r(z) = (z(z), y(z), z), where z and y are

both functions of z.) B ~*
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