Math 32A Winter 2017 Midterm 1 1/30/2017

Name: Aidan Wolk

This exam contains 7 pages (including this page) and 5 questions. Total of points is 100. Work neatly and show all your work, including all intermediate steps and also explain in words how you are solving a problem. Partial credits are available for most problems. Calculators are not allowed in this exam. You have 50 minutes.

Grade Table (for instructor use only)

200 20020 (202 2			
	Question	Points	Score
	1	20	20
	2	20	N
	3	20	10
	4	20	20
ľ	5	20	20
	Total:	100	100

- 1. (20 points) Let \vec{v} be the vector (1,2,3) and \vec{w} be the vector (1,1,0)
 - (a) (6 points) Find the unit vector in the same direction as \vec{v} ;
 - (b) (6 points) Find the angle between the vectors \vec{v} and \vec{w} ;
 - (c) (8 points) Let l_1 be the line through (0,0,0) in the direction of \vec{v} and l_2 be the line through (-1,0,3) in the direction of \vec{w} . Write down the parametric equations of l_1 and l_2 . Then determine if these two lines are intersecting.

and of the determine it these two lines are intersecting.

a)
$$\vec{e}_{J} = \vec{V} = (1/2/3) = (1/2$$

$$24 = 42$$
 $34 = 3$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 $4 = 1$
 4

The lines intersed at (1/3/3)

- 2. (20 points) (a) (10 points) Find the acute angle between the lines 2x y = 3 and
 - (b) (10 points) Under what conditions is the cross product of two nonzero vectors \vec{v} and \vec{w} equal to the zero vector, i.e., when is $\vec{v} \times \vec{w} = \vec{0}$ where $\vec{v}, \vec{w} \neq \vec{0}$.

a)
$$2x - y = 3$$
 $3x + y = 7$ $y = -3x + 7$

$$V = -3x + 7$$
 $V = (0, -3) + U(1, 2)$
 $V = (1, 2)$
 V

$$\theta = \left[\frac{iT}{4}\right]$$

Praot:

if T/1 w then the angle o between I and in 0=0 or 0=Ar sin n=0

11プ×カリニロンドインメコニる

therefore VXW= 5 Iff 0=0 or 0=17,

which means that I and it are parallel

- 3. (20 points) Let $\vec{u} = (0, 1, -1)$ and $\vec{v} = (2, 1, 2)$. Find a vector \vec{w} such that
 - (a) $\vec{w} = \lambda \vec{v}$ for some scalar λ and
 - (b) $\vec{u} \vec{w} \perp \vec{v}$.

Draw a picture illustrating the relations between \vec{u} , \vec{v} and \vec{w} .

$$\vec{W} = \lambda \vec{V} = (2\lambda, \lambda, 2\lambda)$$

$$\vec{U} - \vec{W} = (-2\lambda, 1 - \lambda, -1 - 2\lambda)$$

$$(\vec{W} - \vec{W}) \perp \vec{V} \Rightarrow (\vec{U} - \vec{W}) \cdot \vec{V} = 0$$

$$2(-2\lambda) + |(1 - \lambda) + 2(-1 - 2\lambda) = 0$$

$$-4\lambda + 1 - \lambda - 2 - 4\lambda = 0$$

$$9\lambda = -1 \quad \lambda = -\frac{1}{9} \quad \vec{W} = -\frac{1}{9} \cdot \vec{V}$$

$$\vec{V} = (-\frac{2}{9}, -\frac{1}{9}, -\frac{2}{9})$$

4. (20 points) Find the area of the parallelogram with vertices $A=(-2,1),\ B=(0,4),\ C=(4,2)$ and D=(2,-1).

Area =
$$||AB \times AD||$$

= $||(2,3,0) \times (4,-2,0)||$
= $||(det(30),-det(40),det(4-2))||$
= $||(det(-20),-det(40),det(4-2))||$
= $||(0,0,-4-12)|| = \sqrt{0^2+0^2+(-16)^2} = \sqrt{16}$

5. (20 points) Find the volumn of the parallelpiped spanned by \vec{AB} , \vec{AC} and \vec{AD} where the points are A=(1,1,1), B=(2,0,3), C=(4,1,7) and D=(3,-1,-2).

$$\overrightarrow{AB} = (1, -1, 2) \quad \text{Volume} = |(\overrightarrow{AB} \times \overrightarrow{AC}) - \overrightarrow{AD}|$$

$$\overrightarrow{AC} = (3,0,6) \quad = |\det(\overrightarrow{AB})| = |\det(3,0)| = |\det($$