NAME:	Solution	Set +	Rubric	 ID:	
SIGNATU	JRE:				

To get credit for a problem, you must show all of your reasoning and calculations. No calculators may be used. Box your final answer.

If you cannot find a vector that you need for a later part of a problem, you may use the vector $\langle 1, 2, 3 \rangle$.

Circle your section:						
Section:	Tuesday:	Thursday:	TA:			
	2A	2B	Frederick Vu			
	2C	2D	Nicholas Boschert			
	2E	2F	Victoria Kala			

Problem	Possible	Points
1	10	
2	10	
3	10	
4	15	
5	15	
6	15	
Total	75	

1. (10 points) Find the area of the triangle with vertices at points

$$P = (1,0,0), Q = (0,1,0), R = (0,0,1).$$

$$2 \text{ ph}$$

$$P = (1,0,0), Q = (0,1,0), R = (0,0,1).$$

$$P = (1,0,0), P = (1,0,0), P$$

2. (2 points each) True/False! Circle the appropriate answer. No justification is needed here.

(1) For any two vectors \vec{v} and \vec{u} , $\vec{v} \cdot \vec{u} = \vec{u} \cdot \vec{v}$.	True	False
(2) For any two vectors \vec{v} and \vec{u} , $\vec{v} \times \vec{u} = \vec{u} \times \vec{v}$.	True	False
(3) If \vec{u} and \vec{v} are both orthogonal to \vec{w} , then $\vec{u} + \vec{v}$ is othogonal to \vec{w} .	T	False
(4) The projection of \vec{v} onto \vec{w} can have a greater length than \vec{v} .	True	False
(5) If \vec{u} and \vec{v} are orthogonal, then	Trig	False
$ \vec{u} + \vec{v} ^2 = \vec{u} ^2 + \vec{v} ^2.$		

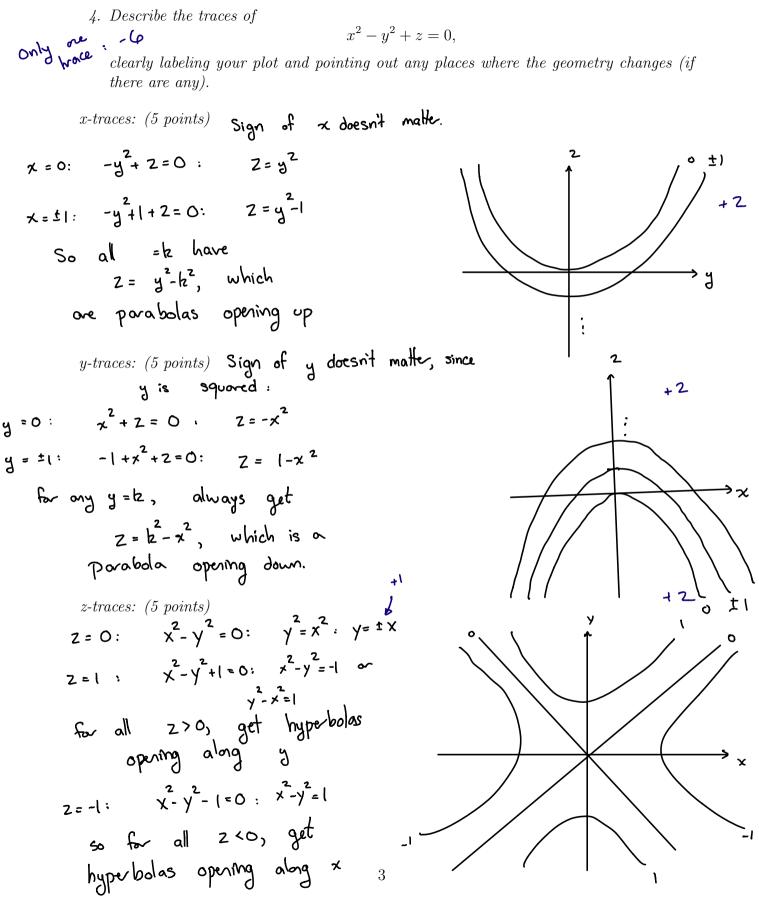
- 3. (10 points)
 - (a) (5 points) Consider the vector

$$\vec{v} = \langle -1, -1, 1 \rangle$$

Find the equations of the lines parallel to \vec{v} i. L_1 passing through $(0, -1, -2) \leftarrow \langle \mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0 \rangle = \langle \mathbf{0}; \mathbf{1}, \mathbf{z} \rangle$ | \mathbf{p}^{\dagger} ii. L_2 passing through $(1, 2, -4) \leftarrow \langle \mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0 \rangle = \langle \mathbf{1}, \mathbf{z}; \mathbf{z} \rangle$ | \mathbf{p}^{\dagger} i. $\vec{r}(t) = \vec{r}_0 + t\vec{v}$ i. $\vec{r}(t) = \langle \mathbf{0}; \mathbf{1}, \mathbf{z} \rangle + t \langle \mathbf{1}, \mathbf{z}, \mathbf{1}, \mathbf{1} \rangle = \boxed{\langle \mathbf{z}, \mathbf{z}, \mathbf{z}, \mathbf{z} + t \rangle}$ | \mathbf{p}^{\dagger} each i. $\vec{r}(t) = \langle \mathbf{0}; \mathbf{1}, \mathbf{z} \rangle + t \langle \mathbf{1}, \mathbf{z}, \mathbf{1}, \mathbf{1} \rangle = \boxed{\langle \mathbf{1}, \mathbf{z}, \mathbf{z}, \mathbf{z} + t \rangle}$

(b) (5 points) Find a vector perpendicular to L_1 that starts at a point on L_1 and ends at a point on L_2 .

at a point on
$$L_2$$
.
Vector: $\vec{u} = \langle 1, 2, 74 \rangle - \langle 0, -1, -2 \rangle = \langle 1, 3, -2 \rangle^{-1}$
Wont $\vec{u}_{\perp \vec{v}} = \vec{u} - \vec{u}_{\parallel \vec{v}}$
 $\vec{u}_{\parallel \vec{v}} = \frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \cdot \vec{v}$
 $= -2\vec{v} = \langle 2, 2, -2 \rangle$
 $= \langle -1, 1, 0 \rangle - 1pt$



No 200: -2

203

5. (15 points) Consider a particle moving according to

$$\vec{r}(t) = \langle \cos(t), \sin(t), \cos(2t) \rangle.$$

(a) (8 points) Find the velocity $\vec{v}(t)$ and acceleration $\vec{a}(t)$ as a function of t. Find the velocity and acceleration at $t = \pi/2$.

$$\hat{\nabla}(t) = \vec{r}'(t) = \langle -\sin(t), \cos(t), -2\sin(2t) \rangle$$
 2 pts
 $\vec{\alpha}(t) = \vec{r}''(t) = \langle -\cos(t), -\sin(t), -4\cos(2t) \rangle$ 2 pts

$$\begin{array}{ccc} \overline{\pi}_{2}; & \overline{\nabla}(\overline{\pi}_{2}) = \left\langle -1, 0, 0 \right\rangle & \text{ 2 phs} \\ \overline{\alpha}(\overline{\pi}_{2}) = \left\langle 0, -1, 4 \right\rangle & \text{ 2 phs} \end{array}$$

(b) (7 points) Find the equation of the tangent line to the curve at $t = \pi/2$.

$$\vec{r}(\pi/2) = \langle 0, 1, -1 \rangle, \text{ so our point is } (0, 1, -1)$$

$$\frac{1}{2} \text{ vector } = \vec{r}'(\pi/2) = \langle -1, 0, 0 \rangle$$

$$\frac{1}{2} \text{ pts}$$

Line:

$$\vec{r}(t) = \langle 0, 1, -1 \rangle + t \cdot \langle -1, 0, 0 \rangle 2 pb$$

= $\left[\langle -t, 1, -1 \rangle \right] 1 pt$

2 ph

6. (15 points) Consider the plane P_1

$$2x + y + 3z = 12.$$

(a) (3 points) Find a normal vector
$$\vec{n}$$
 to P_1 .
 $\vec{n} = \langle 2, 1, 3 \rangle$ (from our formula)

(b) (5 points) Find an equation of the plane P_2 parallel to our given plane and passing through the point R = (0, -1, 0).

$$\vec{n} \cdot \langle x - 0, y - 1, z - 0 \rangle = 0$$

 lpt
 $\partial \cdot (x - 0) + (y + 1) + 3z = 0$
 $2x + y + 3z = -1$
 $2 phs$

(c) (7 points) Choose a point Q on P_1 , and let \overrightarrow{QR} be the vector from Q to R. Find the projection of \overrightarrow{QR} onto \vec{n} .

$$Q = (0, 12, 0) \text{ is } n P_1, \text{ so } QR = \langle 0, 13, 0 \rangle.$$

$$\frac{Q}{R} \cdot \vec{n} = -13$$

$$\frac{Q}{R} \cdot \vec{n} = -13$$

$$\vec{n} \cdot \vec{n} = 2^2 + 1^2 + 3^2 = 14 + 1 \text{ pt}$$

$$= -\frac{13}{14} \langle 2, 1, 3 \rangle = \left\{ \langle -\frac{13}{7}, -\frac{13}{14}, -\frac{-39}{14} \rangle \right\}$$

$$2 \text{ pt}$$