20F-MATH32A-2 Test 2

MATTHEW NIEVA

TOTAL POINTS

94 /94

QUESTION 1

1Instructions / Admonishmento/o
v - 0 pts Correct

QUESTION 2

2 True of False 15 /15
v - 0 pts Correct

- 7 pts Wrong answer for i. The answer is false.

- 8 pts Wrong answer for ii. The answer is false.

- 3 pts Correct answer for i but incorrect (or missing)
justification. This is false because level curves refer to
curve in the domain not the image. Common
mistakes: say this is false because of possible
complex values, or say this is false because level
curve only contains one number in the range, not the
entire range etc.

- 7 pts Correct answer for ii but incorrect
justification. Some of you attempted integration but
did it incorrectly, although it is possible to do this
using integration. Typically for these sort of questions
you use integrations to find such functions when they
do exist, but use Clairaut's theorem when you want to
show that it doesn't exist. Also there is no such thing
as "a partial integral". Also Clairaut's theorem says
f_xy=f_yx, NOT f_xx=f_yy.

- 2 pts Small messups in the justification of (i).

- 2 pts Wrong computation in (ii).

- 2 pts Other, see comment.

- 7 pts Some people wrote two explanations, one

correct one incorrect.

QUESTION 3
3 Examples 15/15

v + 5 pts (a) Correct nontrivial example

v + 5 pts (a) Correctly showed mixed partials

disagree (i.e. conclusion of thm is false) OR that they
are not continuous (i.e. hypotheses of thm are false).

+ 5 pts (a) Clairaut’s theorem did not apply for a
trivial reason, e.g. the graph was not the graph of a
function or was undefined/discontinuous at the point
in question (Update: full credit given for this item)

+ 5 pts (a) Did not completely verify Clairaut’s
theorem did not apply, either made a mistake or did
not fully justify a claim (e.g. claimed mixed partials
disagreed or were discontinuous without showing
this) OR showed mixed partials did not exist, but
this was because original function was discontinuous
or not differentiable. Either way must mention mixed
partials. (Update: full credit given for this item)

v + 5 pts (b) Function has correct domain and range

+ 2 pts (b) Function only has one of domain, range
correct

+ 1 pts (b) Surface is not the graph of a function but
otherwise sort of fits description

+ 2 pts Give correct example and state that mixed
partial derivatives f_xy and f_yx dont not match

without a proof

QUESTION 4
Limit and Continuity 15 pts

4.1Region of continuity 8/8

v + 2 pts Continuity for points away from origin
v + 4 pts Correctly show limit at origin is O (by using
polar coordinate or by definition)
v + 2 pts Discontinuity at origin because limit not
equal to value of function.
+ 1 pts Partial credit for continuity away from origin
+ 3 pts Show limit at origin is O with other method
that is not sufficient (e.g. y=mx)

+ 1 pts Wrong conclusion for limit at the origin but



show some work

+ 1 pts Partial credit for discontinuity at origin

+ 3 pts Showing limit in a correct way, but didn't
derive the correct conclusion

+ 0 pts Nothing correct

4.2 Limit at origin 7/7

v + 5 pts Multiplying by conjugate and simplify
correctly
v + 2 pts Correctly calculate limit = 4

+ 4 pts Use polar coordinate in the correct form

+ 3 pts Correctly complete calculation with polar
coordinate

+ 4 pts Get correct result but with some method that
is not sufficient for limit

+ 2 pts Used some method that is not sufficient and
didn't get correct result

+ 1 pts Partial credit for computation

+ 0 pts Nothing correct

QUESTION 5
Differentiability 15 pts

5.1 Discontinuity and differentiability at
origino/9
v + 6 pts Check y=mx or polar coordinate for
discontinuity
v + 3 pts Not differentiable because of discontnuity
+ 3 pts Proved for discontinuity but not sufficient
+ 1 pts Proved for non-differentiability but not
sufficient

+ 0 pts Nothing correct

5.2 Partial derivative 6/6
v + 2 pts Correctly calculate fx
v + 2 pts Correctly calculate fy
v + 2 pts Reasonable observation
+ 1 pts Partial credit for calculating fx
+ 1 pts Partial credit for calculating fy
+ 1 pts Partial credit for observation

+ 6 pts Correct
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QUESTION 6

6 Directional Derivative 15/ 15

v - 0 pts Correct

- 2 pts Did not find the correct largest slope

- 5 pts Made mistake in the calculation of the
gradient, but the process is correct; did not se a unit
vector for the calculation of the directional derivative

- 5 pts Use limit definition to compute the directions
derivative but result was not correct

- 5 pts Confuse the magnitude of the gradient with
a vector

- 2 pts Did not find the maximum rate of increase

- 10 pts Find incorrect partial derivative

QUESTION 7
7 Chain Rule 15 /15
v - 0 pts Correct
- 5 pts Computation error. Answer is 2/5 by chain
rule.

- 15 pts Not knowing how chain rule works.

QUESTION 8
8 Bonus Question 4/4
v + 4 pts Correct
- 2 pts Took correctly one partial derivative

- 4 pts No action
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Instructions/Admonishment

1. SHOW ALL WORK.
A correct answer with no relevant work may roceive no credit, while an incorrect answer accompaniod
by some correct work may receive partial credit.

2. Duration: 24 hours,

3. Lhe following is my own work, without the aid of any other person.
Signature: W { i
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