TEST 2

MATH 32A @ UCLA (FALL 2020)

Assigned: December 02, 2020.

${\bf Instructions/Admonishment}$

- SHOW ALL WORK.
 A correct answer with no relevant work may receive no credit, while an incorrect answer accompanied by some correct work may receive partial credit.

 Duration: 24 hours.
- 3. The following is my own work, without the aid of any other person.

 Signature:

Exercise 1 TRUE OR FALSE.

State whether the following statements are TRUE or FALSE. Explain your choice.

- (i) Every element of the range of f(x,y) is contained in some level curve of f(x,y).
- (ii) There is a function f(x,y) with continuous second partial derivative such that $f_x = f_y = e^x \sin(xy)$.

Exercise 2 EXAMPLES.

Give one example of:

- (i) A function f(x,y) for which $Clairaut's\ Theorem$ of equality of mixed partials does not apply. Explain.
- (ii) A function f(x,y) with domain and range, $\{(x,y) \mid x>0\}$ and \mathbb{R} , respectively. Explain.

Exercise 3 LIMIT AND CONTINUITY.

(i) At what points is f(x, y) continuous?

$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}; (x,y) \neq (0,0). \\ 1; (x,y) = (0,0). \end{cases}$$

(ii) Find
$$\lim_{(x,y)\to(0,0)} \left(\frac{x^2+y^2}{\sqrt{x^2+y^2+4}-2}\right)$$
.

Exercise 4 DIFFERENTIABILITY .

Consider the function

$$f(x,y) = \begin{cases} -\frac{xy}{x^2 + y^2}; (x,y) \neq (0,0). \\ 0; (x,y) = (0,0). \end{cases}$$

- (i) Prove that f(x,y) is discontinuous at (0,0)? Give the reason why f(x,y) is not differentiable at (0,0).
- (ii) Use the limit definition of partial derivative to compute $f_x(0,0)$ and $f_y(0,0)$. What can you conclude?

Exercise 5 DIRECTIONAL DERIVATIVE.

Let $f(x, y) = \ln(xy)$.

- (i) Find $\nabla f(\frac{1}{2}, \frac{1}{3})$ and the directional derivative of f(x, y) at $(\frac{1}{2}, \frac{1}{3})$ in the direction of the vector $\mathbf{v} = \langle 1, 2 \rangle$.
- (ii) Find the direction in which the directional derivative of f(x,y) at $(\frac{1}{2},\frac{1}{3})$ is largest. Find this largest value.

Exercise 6 CHAIN RULE.

A rectangle has sides of length x and y, which change at the rates $\frac{dx}{dt} = 2$ and $\frac{dy}{dt} = -1$. If x = 3 and y = 4, find the rate of change of the length of a diagonal of the rectangle.

Exercise 7 BEAUTIFUL HEAT EQUATION (BONUS QUESTION).

The flow of heat along a thin conducting bar is governed by the one-dimensional heat equation, $\frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2}, \text{ where } T \text{ is a measure the temperature at a location } x \text{ of the bar at time } t \text{ and the positive constant } k \text{ is related to the conductivity of the material.}$

Show that the following function satisfy the heat equation with k = 1: $T(x,t) = Ae^{-a^2t}\cos(ax)$ for any real numbers a and A.