FINAL EXAM

MATH 32A @ UCLA (FALL 2020)

Assigned: December 16, 2020.

${\bf Instructions/Admonishment}$

1.	SHOW ALL WORK.
	A correct answer with no relevant work may receive no credit, while an incorrect answer accompanied
	by some correct work may receive partial credit.
2.	Duration: 24 hours.
3.	The following is my own work, without the aid of any other person. Signature:

Exercise 1 INTERSECTION OF A LINE AND A PLANE.

- (i) Find the equation of the plane that passes through the points $A=(2,1,1),\,B=(-1,-1,10)$ and C=(1,3,-4)
- (ii) Find an equation for the line through B that is perpendicular to the plane in part (i).
- (iii) A second plane passes through (2,0,4) and has normal vector $\mathbf{n} = \left\langle 2, -4, -3 \right\rangle$. Find the parametric equations (in scalar form) for the line of intersection of the two planes.

Exercise 2 THE TRIANGLE.

Let $A_1 = (1,0,1)$, $A_2 = (-1,1,1)$ and $A_3 = (0,0,2)$. The set of (x,y) such that A_1,A_2,A_3 and (x,y,0) are on the same plane is a line in the xy-plane. Find the intersection of such line with the x-axis.

Exercise 3 CURVE IN THREE-SPACE.

Consider the path of a particle moving in the Three Space $\mathbf{r}(t) = \left\langle \sin 2t, \cos 2t, 3t - 1 \right\rangle$, for $1 \le t \le 3$.

- (i) Compute the total length of the path.
- (ii) Find an equation of the tangent line to the path at t=2.
- (iii) Write the acceleration vector \mathbf{a} as the sum of the tangential and normal components at t=2.

Exercise 4 LIMIT AND CONTINUITY.

- (i) Compute the following limit or explain why it does not exist. $\lim_{(x,y)\to(0,0)}\left(\frac{x^2+\sin^2(y)}{x^2+2y^2}\right).$
- (ii) Where is the function

$$f(x,y) = \begin{cases} \frac{x^2 \sin(x)}{x^2 + y^2} & if(x,y) \neq (0,0). \\ 0 & if(x,y) = (0,0). \end{cases}$$

continuous?

Exercise 5 DIFFERENTIABILITY .

Consider the function

$$f(x,y) = \begin{cases} \frac{2xy^2}{x^2 + y^4} & if (x,y) \neq (0,0). \\ 0 & if (x,y) = (0,0). \end{cases}$$

- (i) Give the reason why f(x,y) is not differentiable at (0,0) .
- (ii) Use the limit definition of partial derivative to compute $f_x(0,0)$ and $f_y(0,0)$. What is your conclusion?

Exercise 6 THE MARTIAN ROVER.

The elevation of a region on Mars is given by $f(x,y) = x^2 + 2y^2 + xy - 2y$. A Mars rover is currently at the point (x,y,z) = (0,1,0).

- (i) Compute $\nabla f(x,y)$.
- (ii) The rover locates an interesting rock at the bottom of the neaby valley. In what direction (in the xy-plane) should the rover move in order to decrease its elevation most quickly?
- (iii) Compute $\frac{d}{dt}f(\mathbf{r}(t))$ if the rover moves along the path $\mathbf{r}(t)=\left\langle t-t^2,1-2t\right\rangle$, for $t\geq0$.

Problem 7 CHAIN RULE

Consider the surface $f(x, y, z) = x^2y + y^2z$. Suppose x = s + t, y = st, and z = 2s - t.

- (i) Use the **chain rule** to compute f_s in terms of s and t.
- (ii) Use (i) to compute $f_s(s,t)$ at (2,-1).

Exercise 8 TANGENT PLANE.

Consider the ellipsoid $F(x, y, z) = \frac{x^2}{9} + \frac{y^2}{25} + z^2 - 1 = 0$.

- (i) Find an equation of the plane tangent of the ellipsoid at $(0,4,\frac{3}{5})$
- (ii) At what points on the ellipsoid is the tangent plane horizontal?

Exercise 9 OPTIMIZATION.

Find all absolute maxima and minima of $f(x,y) = e^{xy}$ in the region $9x^2 + y^2 \le 1$. For finding critical points around the boundary of the region, use either Lagrange multipliers, or a parametrization of the boundary (i.e. $x(t) = 3\cos t$, $y(t) = \sin t$, for $0 \le t \le 2\pi$), or any other strategy.