| 32B | Killip |
|-----|--------|
| 32  | A      |

## Midterm 1

Oct 25th

| First Name: | Henry | I   | D#.         |                                                                                                                                                                             |
|-------------|-------|-----|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Last Name:  |       |     | <b>(</b> 1a | Tuesday with Derek Levinson                                                                                                                                                 |
|             |       |     | 1b          | Thursday with Derek Levinson                                                                                                                                                |
| Section:    | 11)   | = { | 1c          | Tuesday with Allen Boozer                                                                                                                                                   |
|             |       |     | 1e          | Tuesday with Derek Levinson<br>Thursday with Derek Levinson<br>Tuesday with Allen Boozer<br>Thursday with Allen Boozer<br>Tuesday with Alan Zhou<br>Thursday with Alan Zhou |
|             |       | - ( | 1f          | Thursday with Alan Zhou                                                                                                                                                     |

## Rules.

- $\bullet\,$  There are FOUR problems; ten points per problem.
- $\bullet\,$  No calculators, computers, notes, books, crib-sheets,...
- Out of consideration for your class-mates, no chewing, humming, pentwirling, snoring,... Try to sit still.
- Turn off your cell-phone, pager,...
- Use the backs of pages as necessary.

| 1 | 2 | 3 | 4 | Σ  |
|---|---|---|---|----|
| 9 | 6 | 7 | 5 | 27 |

(1) Consider the three points

$$\vec{a} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \text{and} \quad \vec{c} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}.$$

- (a) What is the area of the triangle with vertices  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$ ?
- (b) What is the equation of the plane passing through these three points?
- (c) Give a parametric description of the line passing through  $\vec{a}$  that is perpendicular to the plane through the three points.

a) 
$$A_{\Delta} = \frac{||\vec{v} \times \vec{w}||}{2}$$
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \\ -3 & 2 & 1 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \\ -3 & 2 & 1 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & 0 \end{vmatrix}$ 
 $\vec{v} \cdot \vec{v} = \begin{vmatrix} \vec{i}$ 

n = v x w because the plane P passes through both v and w, so their normal is the binormal vector.

$$\vec{n} = -2\vec{j} - 4\vec{k} \quad (from above)$$
Point on the plane =  $\begin{pmatrix} 3 \\ -2 \\ -4 \end{pmatrix}\begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$ 

$$P = \begin{pmatrix} -\frac{0}{4} \\ -\frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{y}{y} \\ \frac{z}{z} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \frac{4}{4} \end{pmatrix} \times$$

c)  $\vec{a} + \vec{b} = 1$  is a line passing through  $\vec{a}$  that is perpendicular to the plane  $\vec{b} = 1$  because all  $\vec{n} = 1$  perpendicular to any point on the plane  $\vec{b} = 1$   $\vec{a} = 1$   $\vec{b} = 1$   $\vec{a} = 1$   $\vec{b} = 1$ 

(2) (a) Complete the statement of the Cauchy–Schwarz inequality:

$$\frac{a_1b_1 + a_2b_2}{\sqrt{a_1^2 + a_2^2} + \sqrt{b_1^2 b_2^2}} \qquad |\vec{a} \cdot \vec{b}| \leq ||\vec{a}|| + ||\vec{b}||$$

(b) The volume of the parallelepiped spanned by  $\vec{a}, \, \vec{b}, \, \text{and} \, \, \vec{c}$  is given by...

Parts (c) and (d) relate to the diagram below. Note that the positions of the points A and B relative to the origin O are given by vectors  $\vec{a}$  and  $\vec{b}$ .



(c) The point C is defined as lying on the line through A and B so that the distance from A to C is the same as that from A to B. Express the location of C in terms of the vectors  $\vec{a}$  and  $\vec{b}$ .

of C in terms of the vectors 
$$\vec{a}$$
 and  $\vec{b}$ .

 $\vec{B}A = \vec{A}\vec{C}$ 
 $\vec{B}A = \vec{A}\vec{C}$ 
 $\vec{B}A = \vec{A}\vec{C}$ 
 $\vec{B}A = \vec{A}\vec{C}$ 
 $\vec{B}C = \vec{B}A = \vec{A}\vec{C}$ 
 $\vec{B}C = \vec{B}C =$ 

(d) The point D is defined as lying on the line through O and A and having the property that the line  $\overline{BD}$  meets  $\overline{OA}$  at right angles. Express the location of D in terms of the vectors  $\vec{a}$  and  $\vec{b}$ .

(3) The velocity of a particle is given by

$$\vec{v}(t) = \begin{pmatrix} t \\ 3 \\ t^2 \end{pmatrix}$$

- (a) Given that the particle is at the point (1, 2, 0) at time t = 0, determine its location at time t = 1.
- (b) Determine the curvature of the path taken by the particle at the point where t = 0.
- (c) Find the tangential component of the acceleration of the particle at time t=1.

a) 
$$\vec{v}(t) = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

$$\int v(t) dt = \int_{0}^{0} \int_{0}^{0} \int_{0}^{1} \int_{0}$$

(4) Consider the curve parameterized by

$$\vec{r}(t) = \begin{pmatrix} 2t \\ e^t + e^{-t} \end{pmatrix}. \quad 3 + 2 = 5$$

- (a) Determine the length of arc between parameter values t = 0 and t = 3.
- (b) Determine  $\kappa(t)$ , that is, the curvature as a function of the parameter t.

a) 
$$S(t) = \int_{0}^{3} ||r'(t)|| dt$$

$$||e^{t} - e^{-t}||(e^{t} - e^{-t})|$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t} - e^{-t})^{2}} = \sqrt{4 + e^{2t} \cdot 2e^{t} + e^{-2t}}$$

$$||r'(t)|| = \sqrt{2^{2} + (e^{t$$

b) 
$$k(t) = \frac{\|\mathbf{r}'(t) \wedge \mathbf{r}''(t)\|^{3}}{\|\mathbf{r}'(t)\|^{3}}$$

$$= \frac{\|\left(e^{2} - e^{-t}\right) \times \left(e^{t} + e^{-t}\right)\|}{\|\left(e^{2} - e^{-t}\right)\|^{3}} = \frac{\left(e^{2} - e^{-t}\right) \times \left(e^{t} - e^{-t}\right)}{\|\left(e^{2} - e^{-t}\right)\|^{3}} = \frac{\left(2e^{t} + 2e^{-t}\right)}{\left(e^{2} - e^{-t}\right)^{2}} = \frac{\left(2e^{t} + 2e^{-t}\right)}{\left(e^{2} - e^{-t}\right)^{2}} = \frac{\left(2e^{2} + 2e^{-t}\right)}{\left(e^{2} - e^{-t}\right)} = \frac{\left(2e^{2} + 2e^{-t}\right)}{\left(e^{2} - e^{-$$