328 Killip Midterm 1
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Tuesday with Derek Levinson
Thursday with Derek Levinson
Tuesday with Allen Boozer
Thursday with Allen Boozer
Tuesday with Alan Zhou
Thursday with Alan Zhou

® There are FOUR problems; ten points per problem.

e No calculators, computers, notes, books, crib-sheets,...

twirling, snoring,... Try to sit still.

Turn off your cell-phone, pager,...

Use the backs of pages as necessary.

Out of consideration for your class-mates, no chewing, humming, pen-
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(1) Consider the three points

3\ /1 0
i=|[0], b=]0], and &= [2
1 1 0

(a) What is the area of the triangle with vertices . b, and &7
(b) What is the equation of the plane passing through these three points?
(c

) Give a parametric description of the line passing through a that is
perpendicular to the plane through the three points.
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) (a) Complete the statement of the Cauchy-Schwarz inequality:
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(b) The volume of the parallelepiped spanned by a, b, and ¢ is given by.
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Parts (c) and (d) relate to the diagram below. Note that the positions of
the points A and B relative to the origin O are given by vectors @ and b

(¢) The point C is defined as lying on the line through A and B so that the

distance from A to C is the same as that from A to B. Express the location
of C in terms of the vectors @ and b. > -
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(d) The point D is defined as lying on the line through O and A and having
the property that the line BD meets OA at right angles. Express the location

of D in terms of the vectors @ and b.
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(3) The velocity of a particle is given by
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(a) Given that the particle is at the point (1,2.0) at time ¢ =

its location at time ¢ = 1.
(b) Determine the curvature of the path taken by the particle at the point

(. determine

where ¢t = 0.
(c) Find the tangential component of the acceleration of the particle at time ¢ = |
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(4) Consider the curve parameterized by

mt) = (e‘ -Iz-te“) ' ?) ~+ 2 = 5

(a) Determine the length of arc between parameter values t = 0 and t = 3.
(b) Determine (t), that is, the curvature as a function of the parameter ¢.
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