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1. (30 points) Find an arc length parametrization of the curve

r(t) =

〈
2t3/2, t,

4√
3
t3/2
〉

with the parameter s measuring arc length along the curve from (0, 0, 0). Hint: you may need
to perform a u-substitution at some point.

Solution:

We have

r′(t) = 〈3t1/2, 1, 2
√

3t1/2〉

‖r′(t)‖ =

√
(3t1/2)2 + 12 + (2

√
3t1/2)2

=
√

9t+ 1 + 12t

=
√

21t+ 1

Therefore the arc length function is given by

s = g(t) =

∫ t

0
‖r′(u)‖ du

=

∫ t

0

√
21u+ 1 du

=
1

21
· 2

3
(21u+ 1)3/2

∣∣∣∣u=t

u=0

=
2

63

[
(21t+ 1)3/2 − 1

]
Solving for t in terms of s, we obtain:

t =

(
63s
2 + 1

)2/3 − 1

21

and so the arc length parametrization is:

r1(s) =

〈
2

[
(63s2 + 1)2/3 − 1

21

]3/2
,
(63s2 + 1)2/3 − 1

21
,

4√
3

[
(63s2 + 1)2/3 − 1

21

]3/2〉
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2. (30 points) Find the Frenet frame (T, N, and B) to the curve parametrized by

r(t) = 〈sin (2t), et, cos (2t)〉

at the point (0, 1, 1).

Solution: First observe that the point (0, 1, 1) corresponds to t = 0. We have

r′(t) = 〈2 cos (2t), et,−2 sin (2t)〉

‖r′(t)‖ =
√

(2 cos (2t))2 + (et)2 + (−2 sin (2t))2

=

√
4 cos2 (2t) + e2t + 4 sin2 (2t)

=
√

4 + e2t

T(t) =
r′(t)

‖r′(t)‖

=
〈2 cos (2t), et,−2 sin (2t)〉√

4 + e2t

T(0) =
〈2, 1, 0〉√

5

Taking the derivative of T(t), we obtain:

T′(t) =
〈−4 sin (2t), et,−4 cos (2t)〉

√
4 + e2t − 1

2(4 + e2t)−1/2 · 2e2t〈2 cos (2t), et,−2 sin (2t)〉
4 + e2t

T′(0) =

√
5〈0, 1,−4〉 − 5−1/2〈2, 1, 0〉

5

Now N(0) will be the unit normalization of T′(0). Since the unit normalization of a vector is
equal to that of any of its positive scalar multiples, N(0) is also the unit normalization of

5
√

5T′(0) = 5〈0, 1,−4〉 − 〈2, 1, 0〉
= 〈0, 5,−20〉 − 〈2, 1, 0〉
= 〈−2, 4,−20〉

Since we see that all components of this vector are divisible by 2, in fact we will compute the
unit normalization of

5
√

5

2
T′(0) = 〈−1, 2,−10〉



Math 32A Final Exam - Page 4 of 16 Friday, September 14, 2018

This gives

N(0) =
〈−1, 2,−10〉
‖−1, 2,−10〉‖

=
〈−1, 2,−10〉√
1 + 4 + 100

=
〈−1, 2,−10〉√

105

Finally,

B(0) = T(0)×N(0)

=
1√

5
√

105

∣∣∣∣∣∣
i j k
2 1 0
−1 2 −10

∣∣∣∣∣∣
=

1√
5
√

5
√

21
〈−10, 20, 5〉

=
1

5
√

21
〈−10, 20, 5〉

=
〈−2, 4, 1〉√

21
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3. Compute the following limits or show that they do not exist:

(a) (10 points)

lim
(x,y)→(0,0)

(x2 + y2)4

x8 + y8

Solution: Taking the limit along the curve y = 0 (the x-axis), we obtain:

lim
x→0

(x2)4

x8
= lim

x→0

x8

x8
= 1

Taking the limit along the curve y = x we obtain:

lim
x→0

(x2 + x2)4

x8 + x8
= lim

x→0

(2x2)4

2x8
= lim

x→0

16x8

2x8
= 8

Since the two limits disagree, we conclude that the original limit does not exist.

(b) (10 points)

lim
(x,y)→(0,0)

7x10y

4x15 + 2y3

Solution: Taking the limit along the curve y = 0 we obtain:

lim
x→0

0

4x15 + 0
= 0

Taking the limit along the curve y = x5, we obtain:

lim
x→0

7x10 · x5

4x15 + 2(x5)3
= lim

x→0

7x15

6x15
=

7

6

Since the two limits disagree, we conclude that the original limit does not exist.
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(c) (10 points)

lim
(x,y)→(0,0)

x4 + y4

(x4 + y4 + 1)1/3 − 1

Hint: Recall the identity A3 −B3 = (A−B)(A2 +AB +B2)

Solution: Following the hint, we have:

lim
(x,y)→(0,0)

x4 + y4

(x4 + y4 + 1)1/3 − 1

= lim
(x,y)→(0,0)

x4 + y4

(x4 + y4 + 1)1/3 − 1
· (x4 + y4 + 1)2/3 + (x4 + y4 + 1)1/3 + 1

(x4 + y4 + 1)2/3 + (x4 + y4 + 1)1/3 + 1

= lim
(x,y)→(0,0)

(x4 + y4)[(x4 + y4 + 1)2/3 + (x4 + y4 + 1)1/3 + 1]

x4 + y4 + 1− 13

= lim
(x,y)→(0,0)

(x4 + y4 + 1)2/3 + (x4 + y4 + 1)1/3 + 1

= 3

(d) (10 points)

lim
(x,y)→(0,0)

x sin (x2 + y2)

x2 + y2
sin

(
ln

(
1

1 + x6 + 17y8

))
Solution: We have:

0 ≤
∣∣∣∣x sin (x2 + y2)

x2 + y2
sin

(
ln

(
1

1 + x6 + 17y8

))∣∣∣∣ ≤ ∣∣∣∣x sin (x2 + y2)

x2 + y2

∣∣∣∣
and so if we can verify

lim
(x,y)→(0,0)

x sin (x2 + y2)

x2 + y2
= 0

then the original limit will also be 0 by the Squeeze Theorem. For the computation of the
latter limit, observe:

lim
(x,y)→(0,0)

x sin (x2 + y2)

x2 + y2
=

(
lim

(x,y)→(0,0)
x

)(
lim

(x,y)→(0,0)

sin (x2 + y2)

x2 + y2

)
=
(

lim
x→0

x
)(

lim
r→0

sin (r2)

r2

)
= 0 · 1
= 0

where we have converted to polar coordinates in the second factor.
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4. (a) (10 points) Find the equation of the tangent plane to the surface

−x2 − 9y2 + 25z2 = 4

at the point P =
(
2
√

3, 1, 1
)

Solution: The surface is of the form F (x, y, z) = 4 for the function

F (x, y, z) = −x2 − 9y2 + 25z2

We have

∇F = 〈−2x,−18y, 50z〉
∇F

∣∣
P

= 〈−4
√

3,−18, 50〉

The equation for the tangent plane is

∇F
∣∣
P
· (〈x, y, z〉 − P ) = 0

or

〈−4
√

3,−18, 50〉 · 〈x− 2
√

3, y − 1, z − 1〉 = 0

−4
√

3(x− 2
√

3)− 18(y − 1) + 50(z − 1) = 0

−2
√

3(x− 2
√

3)− 9(y − 1) + 25(z − 1) = 0

−2
√

3x+ 12− 9y + 9 + 25z − 25 = 0

−2
√

3x− 9y + 25z = 4
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(b) (20 points) Find all points on the surface

−x2 − 9y2 + 25z2 = 4

where the tangent plane is orthogonal to the vector v = 〈2, 6, 20〉

Solution: Let F (x, y, z) be as in part (a). Again, we have

∇F = 〈−2x,−18y, 50z〉

The tangent plane at a point (x, y, z) on the surface will be orthogonal to v when ∇F = λv
for some scalar λ. In other words, when:

−2x = 2λ

−18y = 6λ

50z = 20λ

Solving these equations, we get

x = −λ

y = −1

3
λ

z =
2

5
λ

and substituting these equations into the equation of the surface we get

− (−λ)2 − 9

(
−1

3
λ

)2

+ 25

(
2

5
λ

)2

= 4

−λ2 − λ2 + 4λ2 = 4

2λ2 = 4

λ2 = 2

λ = ±
√

2

and so the two points are

P1 =

(
−
√

2,−
√

2

3
,
2
√

2

5

)

P2 =

(
√

2,

√
2

3
,−2
√

2

5

)
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5. Consider the function f(x, y) = 2x2 + 3y3. The aim of this problem is to show that f(x, y) is
differentiable at (2, 1) by using the definition of differentiability directly.

(a) (10 points) Compute the linearization L(x, y) at the point (2, 1).

Solution: We have

fx(x, y) = 4x

fy(x, y) = 9y2

So

L(x, y) = f(2, 1) + fx(2, 1)(x− 2) + fy(2, 1)(y − 1)

= 11 + 8(x− 2) + 9(y − 1)

= 8x+ 9y − 14

(b) (10 points) Recall that e(x, y) = f(x, y)− L(x, y) gives the error between a function and
its linear approximation. Show that e(x, y) = 2 (x− 2)2 + 3 (y − 1)2 (y + 2).

Solution: We have:

e(x, y) = f(x, y)− L(x, y)

= 2x2 + 3y3 − (8x+ 9y − 14)

= 2x2 − 8x+ 3y3 − 9y + 14

and

2(x− 2)2 + 3(y − 1)2(y + 2) = 2(x2 − 4x+ 4) + 3(y2 − 2y + 1)(y + 2)

= 2x2 − 8x+ 8 + 3(y3 − 2y2 + y + 2y2 − 4y + 2)

= 2x2 − 8x+ 8 + 3(y3 − 3y + 2)

= 2x2 − 8x+ 8 + 3y3 − 9y + 6

= 2x2 − 8x+ 3y3 − 9y + 14

so the two quantities are equal.
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(c) (10 points) Recall that f(x, y) is differentiable at (a, b) if

lim
(x,y)→(a,b)

e(x, y)√
(x− a)2 + (y − b)2

= 0

Use this definition in conjunction with the two previous parts to show that f(x, y) is
differentiable at (2, 1).

Solution: We have

lim
(x,y)→(2,1)

e(x, y)√
(x− 2)2 + (y − 1)2

= lim
(x,y)→(2,1)

2(x− 2)2√
(x− 2)2 + (y − 1)2

+ lim
(x,y)→(2,1)

3(y − 1)2(y + 2)√
(x− 2)2 + (y − 1)2

so it suffices to show that each of the summands on the right hand side approaches zero
as (x, y)→ (2, 1). For the first, note

0 ≤ 2(x− 2)2√
(x− 2)2 + (y − 1)2

≤ 2(x− 2)2
√
x− 2

2 =
2(x− 2)2

|x− 2|
= 2 |x− 2|

and since lim
(x,y)→(2,1)

2 |x− 2| = lim
x→2

2 |x− 2| = 0 we may conclude

lim
(x,y)→(2,1)

2(x− 2)2√
(x− 2)2 + (y − 1)2

= 0

by the Squeeze Theorem. For the second, note that

0 ≤

∣∣∣∣∣ 3(y − 1)2(y + 2)√
(x− 2)2 + (y − 1)2

∣∣∣∣∣ ≤
∣∣∣∣3(y − 1)2(y + 2)

y − 1

∣∣∣∣ = 3 |(y − 1)(y + 2)|

and since lim
(x,y)→(2,1)

3 |(y − 1)(y + 2)| = lim
y→1

3 |(y − 1)(y + 2)| = 0 we may conclude (again

using the Squeeze Theorem) that

lim
(x,y)→(2,1)

∣∣∣∣∣ 3(y − 1)2(y + 2)√
(x− 2)2 + (y − 1)2

∣∣∣∣∣ = 0

and hence

lim
(x,y)→(2,1)

3(y − 1)2(y + 2)√
(x− 2)2 + (y − 1)2

= 0
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6. (30 points) Find all critical points of the function

f(x, y) = x3 + 3xy + xy2

and use the Second Derivative Test to classify them as local minima, local maxima, or saddle
points (or state that the test fails).

Solution: We have

fx(x, y) = 3x2 + 3y + y2

fy(x, y) = 3x+ 2xy = x(3 + 2y)

Setting the latter equal to 0 we have either x = 0 or y = −3/2. If x = 0, then setting fx(x, y)
equal to zero gives

3y + y2 = 0

y(3 + y) = 0

so y = 0 or y = −3.

If y = −3/2, setting fx(x, y) equal to zero gives

3x2 + 3

(
−3

2

)
+

(
−3

2

)2

= 0

3x2 − 9

4
= 0

x2 =
3

4

x = ±
√

3

2

Therefore the critical points are (0, 0), (0,−3), (
√

3/2,−3/2), and (−
√

3/2,−3/2). The dis-
criminant is given by

D(x, y) =

∣∣∣∣fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

∣∣∣∣ =

∣∣∣∣ 6x 3 + 2y
3 + 2y 2x

∣∣∣∣
We have:

•

D(0, 0) =

∣∣∣∣0 3
3 0

∣∣∣∣ = −9 < 0

so (0, 0) is a saddle point.

•

D(0,−3) =

∣∣∣∣ 0 −3
−3 0

∣∣∣∣ = −9 < 0

so (0,−3) is also a saddle point.
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•

D

(√
3

2
,−3

2

)
=

∣∣∣∣3√3 0

0
√

3

∣∣∣∣ = 9 > 0

and fxx

(√
3
2 ,−

3
2

)
= 3
√

3 > 0, so
(√

3
2 ,−

3
2

)
is a local minimum.

•

D

(
−
√

3

2
,−3

2

)
=

∣∣∣∣−3
√

3 0

0 −
√

3

∣∣∣∣ = 9 > 0

and fxx

(
−
√
3
2 ,−

3
2

)
= −3

√
3 < 0, so

(
−
√
3

2 ,−3
2

)
is a local maximum.



Math 32A Final Exam - Page 13 of 16 Friday, September 14, 2018

7. (a) (10 points) Suppose that p, q are positive real numbers such that
1

p
+

1

q
= 1. Use Lagrange

multipliers to show that the minimum value of

f(x, y) =
xp

p
+
yq

q

over the curve xy = C, x, y > 0 (for C some positive real constant) is C. Conclude that
Young’s Inequality

xy ≤ xp

p
+
yq

q

holds for any x, y > 0 and p, q as above.

Solution: First observe that
1

p
+

1

q
= 1 is equivalent to the condition p + q = pq (as

may be observed by mulitplying both sides by pq).

We are trying to minimize f (x, y) subject to the constraint g (x, y) = C, where g (x, y) =
xy. By the method of Lagrange multipliers, the extreme value occurs when

∇f = λ∇g

for some scalar λ. In other words,

xp−1 = λy

yq−1 = λx

This gives

xp−1

y
= λ =

yq−1

x

and cross-multiplying gives xp = yq, or y = xp/q. Substituting this into the constraint
xy = C gives

x · x
p
q = C

x
p+q
q = C

x = C
q

p+q = C
q
pq = C

1
p

where we have invoked the assumption p+ q = pq. Therefore

y = x
p
q =

(
C

1
p

) p
q

= C
1
q

For these values of x and y we have:

f(x, y) =

(
C1/p

)p
p

+

(
C1/q

)q
q

=
C

p
+
C

q
=

(
1

p
+

1

q

)
C = C



Math 32A Final Exam - Page 14 of 16 Friday, September 14, 2018

Thus the extreme value occurs when

xp

p
+
yq

q
= C = xy

To show that this is the minimum rather than the maximum observe that there are values
on the constraint curve xy = C where y is arbitrarily large, and therefore there are values
where f(x, y) is arbitrarily large as well.
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(b) (20 points) Use a similar method to prove the Arithmetic Mean-Harmonic Mean Inequal-
ity:

n
1
x1

+ 1
x2

+ · · ·+ 1
xn

≤ x1 + x2 + · · ·+ xn
n

for any positive real numbers x1, x2, . . . , xn. Bonus: Can you prove this any other way?

Solution: Let us minimize

f(x1, . . . , xn) =
x1 + x1 + · · ·+ xn

n

subject to g(x1, . . . , xn) = C, where

g(x1, . . . , xn) =
n

1
x1

+ 1
x2

+ . . . 1
xn

By the method of Lagrange multipliers, the extreme value occurs when ∇f = λ∇g for
some scalar λ, or:

1

n
= λ · −n(

1
x1

+ 1
x2

+ · · ·+ 1
xn

)2 · (− 1

x21

)
1

n
= λ · −n(

1
x1

+ 1
x2

+ · · ·+ 1
xn

)2 · (− 1

x22

)
...

1

n
= λ · −n(

1
x1

+ 1
x2

+ · · ·+ 1
xn

)2 · (− 1

x2n

)

Therefore

x2i =
λn2(

1
x1

+ 1
x2

+ · · ·+ 1
xn

)2
for each 1 ≤ i ≤ n, and so in particular x21 = x22 = · · · = x2n. Since each xi was assumed
positive, we have x1 = x2 = · · · = xn. Using this in conjunction with the constraint
g(x1, . . . , xn) = C, we have

n
1
x1

+ 1
x1

+ · · ·+ 1
x1

= C

n

n
(

1
x1

) = C

x1 = C
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and so each xi equals C. For this value of the xi’s we have

f(x1, . . . , xn) =
x1 + x2 + · · ·+ xn

n
=
C + C + · · ·+ C

n
=
nC

n
= C

Thus the extreme value occurs when

x1 + x2 + · · ·+ xn
n

= C =
n

1
x1

+ 1
x2

+ · · ·+ 1
xn

To see that this is a minimum rather than a maximum, observe that there are values on
the constraint curve where x1 is arbitrarily large, and so f(x1, . . . , xn) may be arbitrarily
large as well.

Solution to Bonus: The inequality we wish to show is equivalent to:(
n∑

i=1

xi

)(
n∑

i=1

1

xi

)
≥ n2

We have: (
n∑

i=1

xi

)(
n∑

i=1

1

xi

)
=

n∑
i=1

n∑
j=1

xi
xj

=
∑

1≤i<j≤n

(
xi
xj

+
xj
xi

)
+

n∑
i=1

xi
xi

≥
∑

1≤i<j≤n
2 +

n∑
i=1

1

= 2

(
n

2

)
+ n

= 2

(
n(n− 1)

2

)
+ n

= n2

as desired. Here we’ve used the inequality

a

b
+
b

a
≥ 2

which comes from expanding the inequality

(a− b)2 ≥ 0

and dividing by ab.


