Math 32A, Lecture 1
Multivariable Calculus

Midterm 1

Instructions: You have 50 minutes to complete the exam. There are five problems, worth
a total of fifty points. You may not use any books, notes, or calculators. Show all your work;
partial credit will be given for progress toward correct solutions, but unsupported correct an-
swers will not receive credit. Remember to make your drawings large and clear, and label your axes.

Write your solutions in the space below the questions.
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Problem 1.
(a) [5pts.] Draw the vectors v = (2,—1,2) and w = (1,2,4). Sketch v+ w and v—w
on your picture.

(b) [6pts.] What is the area of the parallelogram spanned by the unit vectors e, and
ew in the direction of v and w? [Hint: There is a fast way to do this, using the

fact that sin?(8) = 1 — cos?(6).]
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Problem 2.
(a) [5pts.] Let u and v be two vectors in R®. Suppose that u = ), + u.,, where u),
is the projection of u to v and u, = u—uy is orthogonal to v. Use the properties

of the cross product to prove that v x u=v x u ..
(b) [5pts.] Find the projection of u = (1,3,2) to v = (0,9,6), and use part (a) to

quickly compute u x v.
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Problem 3.
Let P=(0,1,4), @ =(2,3,1), and R = (3,—1,-2).

(a) [bpts.] Find an equation for the plane containing P, @, and R.
(b) [5pts.] Give a parametrization of the intersection of the plane from part (a) with

the cylinder (z — 1)? + (y — 4)* = 25.
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Problem 4.
Consider the following four vector equations for lines.

ri() = (1,2,1) + £(—3,3,6)
ra(s) = (7,4,3) + (2, 2, —4)
ra(u) = (1,2, 1) + u{4,3,2)
ry(v) = (4,-1,-5) + v(.5,—.5,—1)

(a) [5pts.] Determine which two equations above parametrize the same line.

(b) [5pts.] Find the point of intersection between the line parametrized by r;(¢) and
the line parametrized by rs(w) = (4,5,1) +w(1,0,—1), and find the angle between

the veetors at the point of intersection.
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Problem 5.
Consider the vector-valued function r(t) = (t,t?,sin(xt)).

(a) [5pts.] Draw the projections of r(t) to the three coordinate planes, and use these
to give a sketch of the space curve determined by r(t).

(b) [5pts.] Find the equation of the tangent line to r(t) at t = £.
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