Problem 5. (4)

Assume that at a certain moment $t = t_0$, a moving particle has velocity $\mathbf{v} = < 2, -1, 1 >$ and acceleration $\mathbf{a} = < 1, 2, -3 >$.

- (i) Decide if the particle is speeding up at the moment $t = t_0$.
- (ii) What is the curvature of the path of the particle at the moment $t = t_0$?

(i)
$$(AC(H))' = D6 \stackrel{?}{\sim} (A) \stackrel{?}{\sim} (A) \stackrel{?}{\sim} (A) \stackrel{?}{\sim} (A) = 5peed of particle$$

$$= V \stackrel{?}{\sim} (A) \stackrel{?}{\sim}$$

$$T'XT'' = \begin{vmatrix} i & j & k \\ 2 & -1 & l \\ 1 & 2 & 3 \end{vmatrix} = \begin{vmatrix} -1 & 1 & l & l \\ 2 & 3 & l & l & l \end{vmatrix} = \begin{vmatrix} 2 & 1 & 1 & 1 \\ 1 & 3 & 3 & l & l & 2 \end{vmatrix} k$$

$$k(4) = \frac{5\sqrt{3}}{6\sqrt{6}} = \frac{5}{6\sqrt{2}}$$

Name: Dong Joon Kim

Circle Your TA's Name and Section Number: Theodore Dokos 4A 4B, Zach Norwood 4C 4D, Natee Pitiwan 4E 4F

Instruction: Justify all your answers.

Problem 1. (4)

A bullet is fired from ground with angle of elevation α and initial speed $v_0 = 100m/s$. The only external force is due to gravity. You may assume that the initial position $\mathbf{r}(0) = (0,0)$.

(i) Find the position vector $\mathbf{r}(t)$.

(ii) The range of the bullet is defined to be the distance between the point where the bullet is fired and the point where it hits the ground. Find the angle α which maximizes the range (justify your answer). What is the maximal range?

Note: The gravity constant $g = 9.8(m/s^2)$.

1

11) -4.9t2+100tsind=0

+(-4.9++1005ma)=0

$$f_x'(\alpha) = \frac{20000}{9.8} \cos 2x = 0$$

maximum range.

$$\frac{10000}{9.8} \sin \frac{\pi}{2} = \frac{10000}{9.8} = \frac{100000}{9.8}$$

$$\frac{a(b-2)^2}{a^2+(b-2)^2} + b.$$

Problem 2. (4)

ab- 4ab+4a

(i) Find $\lim_{(x,y)\to(a,b)} \frac{x(y-2)^2}{x^2+(y-2)^2} + y$.

Note: Your answer should be in term of a and b.

(ii) Function f is defined to be

$$f(x,y) = \begin{cases} \frac{x(y-2)^2}{x^2 + (y-2)^2} + y, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$$

Decide where f is continuous and where it is not.

(i) if
$$a \neq 0$$
, $b \neq 2$,

$$a \neq 0$$
, $b \neq 0$, $b \neq 2$,

$$a \neq 0$$
, $b \neq 0$, $b \neq$

$$\lim_{(X,Z)\to(0,0)} \frac{\chi^2}{\chi^2+z^2} + (z+z) = \lim_{(X,Z)\to(0,0)} \frac{\chi^2}{\chi^2+z^2} + \lim_{(X,Z)\to(0,0)} \frac{\chi^2+z^2}{\chi^2+z^2} = \lim_{(X,Z)\to(0,0)} \frac{\chi^2+z^2}{\chi^2+z^2} + \lim_{(X,Z)\to(0,0)} \frac{\chi^2+z^2}{\chi^2+z^2} = \lim_{(X,Z)\to(0,0)} \frac{\chi^2+z^2}{\chi^2$$

```
-1 E COS Q 2/1/2 Q E 1
    -14 = Las 843,0 = 141
   120 - |L | = 0
   100 M = 0.
   therefore, by squezze thanem,
   lim
       LCO2 (7 2/13/9 = 0
  1-00
   there fore, |m| = \chi(4-2)^2 = 2
       in order to make a continuous, at a point (0,6)
11
         il forbl exists
        is from for A court
          (iii) +(a,b) = /1m + (x4).
       f(a,b) = 1/m cay = a(b-2)2 +b = f(a,b) when a #0.
       all points except for (012)
             therefore continuous at all point (a, b) &
                                                  where a fo.
         but of (0,2),
                                                Now Obeck continuity
         pm 80x91=5
                                                  af point (0,6) where 6 $ 2.
        (14) ->(0,2)
             fa,4=0 2=0. 400
             thorosome it is not continuous on (0,2)
```

Problem 3. (4)

Let $f = e^{\cos x} \sin y - 1$.

- (i) Find the tangent plane of the graph of the function z=f(x,y) at the point x=0,y=0.
- (ii) Estimate the value f(-0.02, 0.01).

Note: The value e is about 2.78.

(i)
$$z = f(a,b) + f_{x}(a,b) (x-a) + f_{y}(a,b) (y-b)$$

= $f(a,b) + f_{x}(a,b) (x-a) + f_{y}(a,b) (y-b)$

$$f_{x}(0,0) = 0$$
.

$$= 0.0208 - 1$$

Problem 4. (4)

Let $f = x^2 + y^4 + z^6$.

- (i) Find $\nabla f(x, y, z)$ and $\nabla f(3, 2, 1)$.
- (ii) Find the directional derivative $D_{\mathbf{u}}f(x,y,z)$ and $D_{\mathbf{u}}f(3,2,1)$, where \mathbf{u} is the unit vector in the direction of < 1, 0, 1 >.
- (iii) Find the equation for the tangent plane of the level surface S at point (3,2,1), where S is give by the equation $x^2 + y^4 + z^6 = 26$.

(i)
$$\nabla \theta(x,y,z) = \langle fx, fy, f_2 \rangle = \langle 2x, 4y^3, 6z^5 \rangle$$

 $\nabla \theta(3,2,1) = \langle 6, 32, 6 \rangle$

(ii)
$$D_{ub}(x,4,z) = \langle 2x, 44^3, 6z^5 \rangle \cdot \langle 1, 0, 1 \rangle$$

= $\langle 2x + 6z^5 \rangle$

$$6 = \langle 6,32,6 \rangle \cdot \langle x-3,y-2,z-1 \rangle$$

$$0 = 6x - 18 + 324 - 64 + 6z - 6$$