e A Midterm 1 - Page 2 of 5 November Tth, 2016

1. (20 points) Consider the curve C parameterized by

r(t) = (3¢, cos(4t),sin(4¢))
fort > 0.
(a) (5 points) Calculate the unit tangent vector T and unit normal vector N to the curve C

at r(t) for t > 0.
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2. (20 points) Consider the quadratic surface given by the equation

—a? =y 4 422 = 4, of = (1)

(a) (2 points) Classify the surface. That is, say what type of quadratic surface is given by
Yo
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(b) (8 points) Sketch the surface and

, included in your sketch, draw the horizontal traces
corresponding to z = 1

y2==1,2 ﬂ.z\m and z = —/2. Be sure to label your axes. You

are free to draw additional traces (to help you in your sketch); however, you must label
the traces corresponding to z = %1, +/2.
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3. (20 points) Define a function J:R? 5 R by

o lad () # (0,0
f(a,y) o+ i (o, y) = (0,0) for (z,y) € R?.

(a) (8 points) Determine the set of points at which f F continuous. Justify your answer.
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4. (20 points) In what follows, f i & two- ) don
that f is defined near 8_8_\ wosvariable funetion with domadn 2 C 1 You iy assaime

(a) (10 points) TRUE OR PALSHE (clrele one, 2 patnts sach)

¥ a )

Noverher il 20160
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Nq«ww False  According to Kepler's laws, planets travel tn ellipses with he sun sl one

foeus.
N?HU False N The curvature 5 of a curve C 1 always non-negabive,
True A.gmo o verify that the Hmit lmgg g0 /(@0) exits and i oqual to £, i

suflices to show that f (@, y) tenda to L an (0, 1) approaches (0,0)
all lines of the form y = mu.

For / to be continuous at (0,0), 1t s necemnry that (0,0) ¢ 1,
Contour lines corresponding to distinet s values of [ onn never fntarsoct
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(b) (5 points) Determine whether the following lmit exiata and, {016 doen, compute it Justity

your answer, \
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