(20 points) Consider the curve C parameterized by

$$\mathbf{r}(t) = \langle 3t, \cos(4t), \sin(4t) \rangle$$

(a) (5 points) Calculate the unit tangent vector T and unit normal vector N to the curve Cat r(t) for $t \ge 0$.

(b) (5 points) Calculate the arc length s(t) of the parameterization $\mathbf{r}(t)$ as a function of t for $t \ge 0$.

(0) (5 points) Find the arc length parameterization $\mathbf{r}_1(s)$ of the curve $\mathcal C$

(d) (5 points) Calculate the curvature $\kappa(s)$ of the curve $\mathcal C$ at a point $\mathbf r_1(s)$

points) Calculate the curvature
$$\kappa(s)$$
 of the curve C at a point $r_1(s)$.

$$|\frac{dT}{ds}| = |\frac{3}{3} + \frac{1}{3}|^2 + |\frac{3}{3}|^2 + |\frac{3}{3}|^$$

2. (20 points) Consider the quadratic surface given by the equation

$$-x^2 - y^2 + 4z^2 = 4. (1)$$

- (2 points) Classify the surface. That is, say what type of quadratic surface is given by
- Equation (1). $hyperhological (1) = \frac{1}{2} \frac$ are free to draw additional traces (to help you in your sketch); however, you must label the traces corresponding to $z=\pm 1,\pm \sqrt{2}$.

(5 points) Give a parameterization r(t) of the trace corresponding to $z = \sqrt{2}$.

(5 points) Using your parameterization, calculate the curvature $\kappa(t)$ of the trace corresponding to $z=\sqrt{2}$ at $\mathbf{r}(t)$.

3. (20 points) Define a function $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{x}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

for $(x, y) \in \mathbb{R}^2$.

(a) (8 points) Determine the set of points at which f is continuous. Justify your answer $\{y,y\}$ $\{y,y\}$ $\{y,y\}$ $\{y,y\}$ $\{y,y\}$ $\{y,y\}$

when the denominator is not 0. (ME O Gimit ingrangery for, 0) = lim to which DNE 1900 05 the upprouch from porint in R. except closse't exist since 6

(b) (10 points) Compute the partial derivatives f_x and f_y where they exist.

the - 161 25- = ht

(c) (2 points) Are the partial derivatives f_x and f_y continuous at all points in $\mathbb{R}^{2?}$ is continuous in all Rexcept (x,y) = (0,0), since

14440

- 4. (20 points) In what follows, f is a two-variable function with domain $\mathcal{D} \subseteq \mathbb{R}$. You may assume that f is defined near (0,0).
- (a) (10 points) TRUE OR FALSE (circle one, 2 points each)

True False

According to Kepler's laws, planets travel in ellipses with the sun at one

True True False

True

The curvature κ of a curve C is always non-negative.

To verify that the limit $\lim_{(x,y)\to(0,0)} f(x,y)$ exits and is equal to L, it suffices to show that f(x,y) tends to L as (x,y) approaches (0,0) along For f to be continuous at (0,0), it is necessary that $(0,0) \in \mathcal{D}$ all lines of the form y = mx.

True (False) Contour lines corresponding to distinct z-values of f can never intersect.

(b) (5 points) Determine whether the following limit exists and, if it does, compute it. Justify your answer,

$$\frac{\lim_{(x,y)\to(0,0)} 4x^2y^4\cos\left(\frac{1}{x^4+y^2}\right)}{\lim_{(x,y)\to(0,0)} 4x^2y^4\cos\left(\frac{1}{x^4+y^2}\right)}$$

$$0 = 2q^2x + \lim_{(x,y)\to(0,0)} 4x^2y^4\cos\left(\frac{1}{x^4+y^2}\right)$$

(5 points) Consider the function

$$f(x,y) = x^{2}y + \frac{\cos\left(\frac{x^{4}}{x^{2}+1}\right)}{2+\sin(x^{2})}$$

defined for all $(x,y) \in \mathbb{R}^2$. Calculate $f_{xy} = \frac{\partial^3 f}{\partial y \partial x}$ at the point (a,b) (You may assume that f_{xy} and f_{yx} exist and are continuous on \mathbb{R}^2).

of child is fory and fugge exist and are containeous clavered + hoosen

try ut (a,b)