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This exam contains 5 pages (including this cover page) and 4 problems. Check to see if any pages
are missing. Enter all requested information on the top of this page, and put your initials on the
top of every page, in case the pages become separated.

You may not use your books, notes, or any calculator on this exam.

You are required to show your work on each problem on this exam. The following rules apply:

¢ Organize your work, in a reasonably neat and )
coherent way, in the space provided. Work scat- Problem | Points | Score
tered all over the page without a clear ordering
will receive very little credit. 1 20 ( (?

] }_‘l
¢ Mysterious or unsupported answers will not 2 20 ( \,é
receive full credit. A correct answer, unsup- )
ported by calculations, explanation, or algebraic 3 20 / 5

work will receive no credit; an incorrect answer
supported by substantially correct calculations and 4 20 9 O
explanations might still receive partial credit. 4
Total: 80 7’ 2
e If you make use of a theorem from lecture (or the |

textbook) in the course of your work, make sure to
indicate which theorem was used and how it was
used. Failure to do so will result in deduction of

points.

e Write your solutions in the space below the ques-
tions. If you need more space, use the back of the
page and clearly indicate when you have done this.
Do not turn in your scratch paper.

Do not write in the table to the right.
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ider the curve C paIameterized by

1. (20 points) Cons
r(t) = (cos(4t),sin(4t), 3t)

tor N to the curve C

fort > 0.
(a) (5 points) Calculate the unit tangent vector T and unit normal vec
at r(t) for t 2 0. I )
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(b) (5 points) Calculate the arc length s(t)
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zation r1(s) of the curve C.

(c) (5 points) Find the arc length parameteri
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(d) (5 points) Calculate the curvature (s) of the curve C at a point r1(s).
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2. (20 points) Consider the quadratic surface given by the equation
2ty -22=3 (1)
(a) (2 points) Classify the surface. That is, say what type of quadratic surface is given by

Ak \”/'\ } /W\l/?f hs / L/ l//

(b) (8 points) Sketch the surface and, included in your sketch, draw the horizontal traces

Equation (1).

corresponding to 2 =1, 2 = -1,z = V6 and 2z = —v/6. Be sure to label your axes. You
are free to draw additional traces (to help you in your sketch); however, you must label
the traces corresponding to z = £1,£v6. ) : 47
\L . /4 { N
,.Q- —— . \ f. W - L//
- - |
~ Yor i e -
L..__‘,z-#_-/f 1Lenp| 7700 ‘ ;
Cirel ‘
/
v A P a4
§Hy2
v Lol
Roarontul  rette Sl s
et ot w v
1 \/ /v/\‘/‘,’,. Z
(c) (5 points) Give a parameterization r(t) of the trace cqrrcspondmg to z = V6. v
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(d) (5 points) Using your parameterization, calculate the curvature k(t) of the trace corre-
sponding to z = V6 at r(t).
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3. (20 points) Define a function f : R? - R by

-1 if (z, 0,0
flz,y) = =4 (.9) #(0,0) for (z,y) € R%
0 if (z,y) = (0,0)
(a) (8 points) Determine the set of points at which f is continuous. Justify your answer.
/k'\\/‘-$,w\ N _' !'r’"\ \/ ‘ “\ b, /
) U K nece e o\ /) . N /:)(J (= b L
’ ' X ) Y@ G AT
/r‘ ) ) £
(S X L/ ) /W] ‘\ P (/
( Q(' )2 Fis
f I AL /V /: H € ¢
Shae L = 4 _ 7 ulo )\: 2 .. (17 Pk
\’/ L,- ~ 0 : 4 v\ ’ Y -
- D |
Loy H ¢ .\ k_/\)' ¢ /Z: /\,) ¥ Zr el v b "l’s Kk/ 7J e
"[ (s (EnTime gy Kor KD o /Qz Stk )t X Y) /g N ez
‘L:Ort‘ { {\3 &- ({‘r‘\r.,’\f‘w - W F IS r‘// (/’{‘,/\ Y €7 ) / t R //j i p /\-/{
IMAS cyish p twd ‘X (-@u”.fcﬂ‘ o, his  apples &, T
4 < ( £ ‘FQ( AND (/(ﬂlt (o 1\ ) s i

s

(b) (10 points) Compute the pa.rt1al dYivatives | fz and fy where they exxst s
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4. (20 points)
that f is defined near

(a) (10 points

@; False

(*I‘r{{é\\ False
e False

\

(:I\rqe ™ False
True  False

(b) (5 points

In what follows, fis a two-
(0,0).

) TRUE OR FALSE

) Determine whether the following limit exists

November 7th,

function with domain P C R. You may assume

variable

(circle one, 2 points each)

r’s laws, planets travel in ellipses with the sun at oné

According to Keple
focus.
The curvature £ of a cur

To verify that the limit lim
does not suffice to show that f

s of the form y = MT.
(0,0), it is neces
values of

ve C is always non-negative.
exits an
(z,y

(z,9)—(0,0) flz,y) d is equal to L, it
) approaches (0,0)

(z,y) tends to L as

sary that (0, 0)eD.

along all line
f can intersect, but

For f to be continuous at

Contour lines corresponding to distinct 2-

only at right angles.
and, if it does, compute it. Justify

your answer.
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(c) (5 points) Consider the function—" |
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defined for all (z,y) € R%. Cal o?
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) ! ( ) ; ate foy = 5yp5 3t the point (a,b) (You may assume that
.y and fy exist and are continuous on R?).
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