MATH 32A: Calculus of Several Variables Lecture 4, Fall 2018 Midterm exam 2

University of California, Los Angeles

Instructor: David Arnold

Total time: 40 minutes

Question	Marks	Score	
1	6	6	
2	5	5	
3	6	6	
4	3	3	
Total:	20	20	

First Name:

Last Name:

ID number:

Signature:

Date:

Richard

W197018

By signing this form you declare that you will act in accordance with the UCLA Student Conduct Code.

Please circle your discussion section

	Zach	Patrick	Bertrand
Tuesday	4A	4C	4E
Thursday	4B	4D	$\overline{4}$ F

Instructions

- Calculators without programming/computer algebra capabilities may be used
- Notes/textbooks may not be used
- Students must have photo ID to prove identity
- Mobile phones must be switched off, and placed in closed bags on the floor
- If extra space for answers is required, there is a blank page at the end of the exam booklet

- 1. Short answer questions. Show brief working, or give a short justification of your answer. Unexplained answers receive no credit.
 - (a) (2 marks) Consider two different parameterisations $\mathbf{r}_1(t_1)$ and $\mathbf{r}_2(t_2)$ of the same space curve. Imagine using \mathbf{r}_1 to calculate the curvature $\kappa_1(t_1)$ and \mathbf{r}_2 to calculate the curvature $\kappa_2(t_2)$. Will $\kappa_1(t_1)$ always, or ever, be equal to $\kappa_2(t_2)$? Explain your answer.

Kecker) will sometimes be equal to kecker. For example, any parameterization of a straight line will have a constant curvature of a However, different parameterisations of a parabola can result in different equations for the curvature when & + &.

(b) (2 marks) Explain why $f(x,y) = \sin(x)e^{-y}$ is continuous everywhere, or give a point where it is discontinuous.

Because sin(x) is continuous everywhere and $e^{-\gamma}$ is continuous everywhere, $f(x,y) = sin(x) e^{-\gamma}$ is also continuous everywhere.

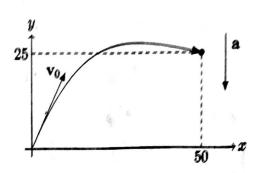
(c) (1 mark) Evaluate $\frac{\partial}{\partial x}(x\sin(x^2y)+y^2)$.

 $\frac{\partial}{\partial x} (x \sin(x^2y) + y^2)$ $= \frac{1}{2} \sin(x^2y) + 2x^2y \cos(x^2y) \sin(x^2y)$ $= \frac{1}{2} \sin(x^2y) + 2x^2y \cos(x^2y)$

(d) (1 mark) True or False? For an object following a path $\mathbf{r}(t)$, the Normal vector $\mathbf{N}(t)$ is perpendicular to the acceleration vector \mathbf{a} ?

False. Since $\alpha = r''(t)$, $T(t) = \frac{1}{117(t)}$ and $N(t) = \frac{1}{117(t)}$, the Mornal vector will be in the direction of the interval of the acceleration vector, not perdendicular to it.

2. (5 marks) An object is fired with initial velocity \mathbf{v}_0 from starting position $\mathbf{x}_0 = (0,0)$ at time t = 0. At time t = 5 it hits a target at position (50,25). The acceleration of the object is (0,-10) and is constant. Find the objects position at time t in terms of \mathbf{v}_0 , and hence determine the initial velocity of the object.



$$f(x,y) = \begin{cases} \frac{|x|y}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

(a) (4 marks) Determine whether or not
$$f$$
 is continuous.

At
$$(x_1) \neq (0,0)$$
, $f(x_2)$ is continuous because it is a ratio of two continuous of functions that are not equal to 0.

lim $f(x_2) = \lim_{6 \neq 1} \frac{Hy}{64 + y^2}$

We let $x = r\cos\theta$ and $y = r\sin\theta$.

 $\lim_{r \to 0} \frac{|r\cos\theta| r \sin\theta}{|r\cos\theta| r \sin\theta} = \lim_{r \to 0} \frac{r^2 |\cos\theta| \sin\theta}{|r^2|} = \lim_{r \to 0} r |\cos\theta| \sin\theta = 0$

Since $\lim_{r \to 0} f(x_2) = f(x_2) = 0$, $f(x_2)$ is continuous at $(x_3, 0)$.

Therefore, f is continuous.

(b) (2 marks) Use the limit definition of the derivative to calculate $f_x(0,0)$.

$$\lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h}$$

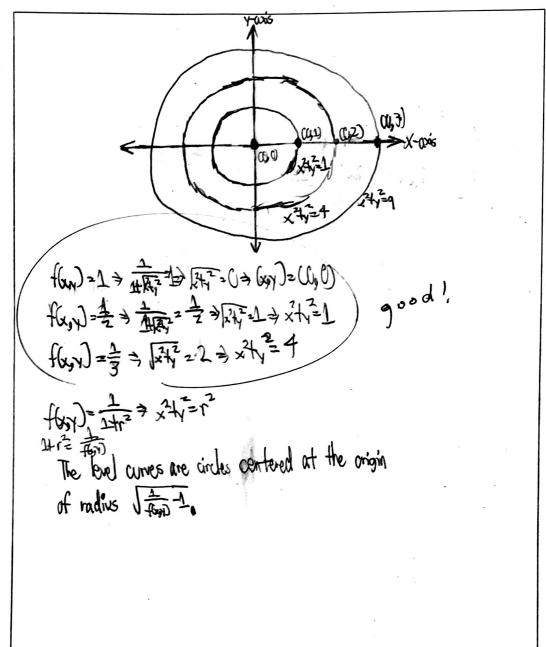
$$= \lim_{h \to 0} \frac{|h| \cdot 0}{h} - 0$$

$$= \lim_{h \to 0} \frac{h \cdot 0}{h} = 0$$

$$f_{x}(0,0) = 0$$

4. (3 marks) Draw a contour map of $f(x,y) = 1/(1+\sqrt{x^2+y^2})$. Give the equations and describe the shapes of the level curves.

3/3



This page left blank intentionally, use for extra answer space if required.