Math 32A - Fall 2018 Exam 1

Full Name: UID:		er.		h.
Circle the name of you	our TA and	the day of yo	our discus	sion: Sang Truong
reviii Carbon	Tuesday		Chursday	

Instructions:

- Read each problem carefully.
- Show all work clearly and circle or box your final answer where appropriate.
- Justify your answers. A correct final answer without valid reasoning will not receive credit.
- Simplify your answers as much as possible.
- Include units with your answer where applicable.
- $\bullet\,$ Calculators are not allowed but you may have a 3 \times 5 inch notecard.

Page	Points	Score	
1	20	20	
2	24	24	
3	16	13	
4	20	14	
5	20	17	
Total:	100	88	

- 1. (3 points) True or False? For any two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^3 , $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{a}$.
 - (a) True.
- (b) False.

- axb=-bxa
- 2. (3 points) True or False? For any three vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} in \mathbb{R}^3 , if $\mathbf{a} \cdot \mathbf{b} = 0$ and $\mathbf{b} \cdot \mathbf{c} = 0$, then $\mathbf{a} \cdot \mathbf{c} = 0$.
 - (a) True.
- (b) False.

- a.c=0
 if a=c. then a.a=llall2
- 3. Consider the points P = (-2, 2, 0), Q = (0, 1, -1) and R = (-1, 2, -2).
 - (a) (10 points) Find the equation of the plane containing the points P, Q, and R.

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ 1 & 0 & -2 \end{vmatrix} = i(2-0)-j(-4+1)+k(0+1)=(2,3,1)$$

$$\begin{vmatrix} 4 & -6 \\ 2(x+2)+3(y-2)+1(z-0)=0 \\ 2x+3y+2=2 \end{vmatrix}$$

(b) (4 points) Find the area of the triangle with vertices P, Q, and R.

4. Consider the lines

$$\mathbf{r}(t) = \langle 1 + t, 1 - t, 2t \rangle$$

$$\mathbf{q}(t) = \langle 2 - t, t, 4 \rangle$$

(a) (8 points) Find the point of intersection of the two lines.

(a) (8 points) Find the point of intersection of the two lines.

$$r(t) = \frac{1}{t} = \frac{1}{t} + \frac{1}{t} = \frac{1}{t} + \frac{1}{t} = \frac{$$

$$t_n=2$$
 $t_q=-1$
 $r(2)=(3,-1,4)$ at point $(3)-1,4$
 $q(-1)=(3,-1,4)$

(b) (8 points) Find the equation of the plane that contains the two lines.

(b) (8 points) Find the equation of the plane that contains the two lines.

$$\frac{1}{1} \times \frac{1}{1} = \frac{1}{1}$$

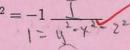
(c) (8 points) Find parametric equations for the line through the point of intersection of $\mathbf{r}(t)$ and $\mathbf{q}(t)$, that is perpendicular to the plane containing $\mathbf{r}(t)$ and $\mathbf{q}(t)$.

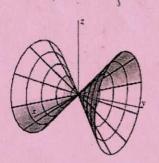
of
$$r(t)$$
 and $q(t)$, that is perpendicular to the plane containing $r(t)$ and $q(t)$, that is perpendicular to the plane containing $r(t)$ and $q(t)$, that is perpendicular to the plane containing $r(t)$ and $q(t)$, that is perpendicular to the plane containing $r(t)$ and $q(t)$, that is perpendicular to the plane containing $r(t)$ and $q(t)$, that is perpendicular to the plane containing $r(t)$ and $q(t)$, that is perpendicular to the plane containing $r(t)$ and $q(t)$, that is perpendicular to the plane containing $r(t)$ and $q(t)$, that is perpendicular to the plane containing $r(t)$ and $q(t)$, that is perpendicular to the plane containing $r(t)$ and $q(t)$, that is perpendicular to the plane containing $r(t)$ and $q(t)$, that is perpendicular to the plane containing $r(t)$ and $q(t)$, that is perpendicular to the plane $r(t)$ and $r(t)$ an

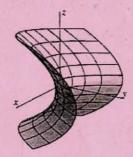
5. (16 points) Matching: Choose the picture that each equation describes. (Hint: Consider traces.)

(a) $z = \cos(x - y)$ (b) $x^2 - y - z^2 = 0$ (c) $x^2 - y + z^2 = 1$

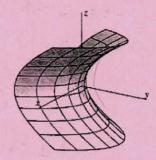
(d) $x^2 - y^2 + z^2 = 0$ A (e) $x^2 - y^2 + z^2 = -1$ $\int_{z^2 + z^2 = 0}^{z^2 + z^2} \frac{A}{z^2}$



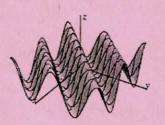




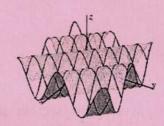
(B)



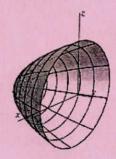
(C)

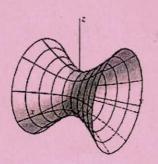


(D)

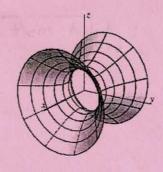


(E)

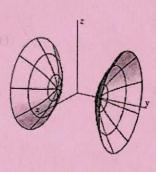




(G)



(H)



6. (10 points) Find the point on the plane 2x - 3y - z = -7 that is closest to the point $(7, -2, -1) = \rho$

$$\frac{7-Q_{+}}{2} = \frac{2\lambda}{4\lambda} \qquad \frac{2\lambda+1}{2\lambda} \qquad \frac{-4\lambda}{-7-21} \\
-2-Q_{+} = \frac{-3\lambda}{3\lambda} \qquad \frac{Q_{+}}{2\lambda} = \frac{-3\lambda-2}{-1+\lambda} \qquad \frac{-4\lambda}{-1+\lambda} = \frac{-7-21}{-1+\lambda}$$

$$Q_{+} = 21$$
 $Q = (21, -23, -8)$
 $Q_{2} = -23$
 $Q_{2} = -8$

7. (10 points) Parametrize the curve of intersection of the ellipsoid $x^2 + y^2 + 4z^2 = 4$ with $y \ge 0$ and the circular cylinder $x^2 + z^2 = 1$.

$$y \ge 0$$
 and the circular cylinder $x^2 + z^2 = 1$.

 $z^2 = 1 - x^2$
 $z^2 = 1 - \cos^2 t$
 $z = 1 - \cos^2 t$
 $z = 1 - \cos^2 t$

8. (10 points) Find parametric equations for the tangent line to the curve defined by
$$\mathbf{r}(t) = \langle 4\cos t, t, 2\sin t \rangle$$
 at $t = \pi$.

$$\hat{c}'(t) = \langle u_{sin}t_{1}, 2cost \rangle$$

$$\hat{c}'(t) = \langle u_{sin}t_{1}, 2cost \rangle$$

$$\hat{c}'(\pi) = \langle 0, 1, -2 \rangle$$

$$\hat{c}'$$

$$\Theta \left\{ \begin{array}{l} \chi = \cdots \\ y = \cdots \\ \xi = \cdots \end{array} \right.$$

9. (10 points) Let A = (-4,0,1) and B = (0,2,3). Find the set of all points P = (x,y,z)such that \overrightarrow{AP} is orthogonal to \overrightarrow{BP} . Give a precise geometric description of your answer.

$$\vec{AP} = (X+4, y, z-1)$$
 $\vec{BP} = (X, y-2, z-3) (z-3)(z-1)$
 $\vec{AP} \cdot \vec{BP} = 0$ orthogonal

$$(x^2+4x+4)^2-2y+2^2-4z+3=0$$

 $(x^2+4x+4)+(y^2-2y+1)+(z^2-4z+3)=0$
 $(x+2)^2+(y^2-1)^2+(z=4+1)$

$$(\chi+2)^2+(y^4-1)^2+(z^2-4z+4)=6$$

 $(\chi+2)^2+(y^4-1)^2+(z^2-2)^2=6$