With 824 784 890

MATH 32A Winter 2017 Midterm 1

Math 32A Winter 2017 Midterm 1 1/30/2017 Name: Smarshin Diggrala

This exam contains 7 pages (including this page) and 5 questions. Total of points is 100. Work neatly and show all your work, including all intermediate steps and also explain in words how you are solving a problem. Partial credits are available for most problems. Calculators are not allowed in this exam. You have 50 minutes.

Grade Table (for instructor use only)

(101 liberaceor ase omy)			
Question	Points	Score	
1	20	30	
2	20	13	
3	20	Ş	12
4	20	20	
5	20	20	
Total:	100	21	

- 1. (20 points) Let \vec{v} be the vector (1,2,3) and \vec{w} be the vector (1,1,0)
 - (a) (6 points) Find the unit vector in the same direction as \vec{v} ;
 - (b) (6 points) Find the angle between the vectors v and w;
 - (c) (8 points) Let l₁ be the line through (0,0,0) in the direction of v and l₂ be the line through (-1,0,3) in the direction of w. Write down the parametric equations of l₁ and l₂. Then determine if these two lines are intersecting.

$$\cos \theta = \frac{\sqrt{2}}{\sqrt{2}} + \frac{\sqrt{2}$$

$$J_1(t) = (t_1 2 t_1 3 t) \quad D_{ab} = (-1 + t_1 t_1, 3)$$
 $t_1 = -1 + t_2 \quad 2t_1 = t_2 \quad 3t_1 = 3$
 $t_2 = 2 \quad t_1 = 1$
 $2 = 2 \quad 3 = 3 \checkmark$

- 2. (20 points) (a) (10 points) Find the acute angle between the lines 2x y = 3 and 3x + y = 7.
 - (b) (10 points) Under what conditions is the cross product of two nonzero vectors \vec{v} and \vec{w} equal to the zero vector, i.e., when is $\vec{v} \times \vec{w} = \vec{0}$ where $\vec{v}, \vec{w} \neq \vec{0}$.

$$\theta = \pi - avicos \left(-\frac{9}{41}\right)$$

$$2x-3 = -3x+7$$
 $5x = 10$
 $x=2$

b) when $\vec{v} = \vec{v}$ are parallel

- 3. (20 points) Let $\vec{u} = (0, 1, -1)$ and $\vec{v} = (2, 1, 2)$. Find a vector \vec{w} such that
 - (a) $\vec{w} = \lambda \vec{v}$ for some scalar λ and
 - (b) u w ⊥ v.

Draw a picture illustrating the relations between \vec{u} , \vec{v} and \vec{w} .

(0,0,0) = < - 12, 1- x; - 12)

there is no it ble there is no I that would make this time

4. (20 points) Find the area of the parallelogram with vertices $A=(-2,1),\ B=(0,4),\ C=(4,2)$ and D=(2,-1).

5. (20 points) Find the volumn of the parallelpiped spanned by \vec{AB} , \vec{AC} and \vec{AD} where the points are A = (1, 1, 1), B = (2, 0, 3), C = (4, 1, 7) and D = (3, -1, -2).

Volume =
$$\begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 6 \\ 2 & -2 & -3 \end{vmatrix}$$