MATH 32A, Winter 2018, Midterm 2

Instructor: Alex Austin

Date: 2/23/2018

Name:

UID:

Discussion section:

THERE ARE FIVE QUESTIONS. EACH QUESTION IS WORTH FIVE POINTS.

NO CALCULATORS ALLOWED.

SHOW ALL YOUR WORK.

ALL UNIVERSITY AND DEPARTMENTAL POLICIES REGARDING ACADEMIC INTEGRITY APPLY.

Question:	1	2	3	4	5	Total / 25
Score:	5	2	5	5	5	22

Question 1. (5 points)

(a) Let $\mathbf{r}(t) = \langle 4t^{1/2}, \ln t, 2t \rangle$, Compute the arc length function on the interval $[1, \infty)$, measuring from the point corresponding to t = 1.

(b) Given the arc length function of $\mathbf{r}(t) = \langle t, \frac{2}{3}t^{3/2}, \frac{2}{\sqrt{3}}t^{3/2} \rangle$ on $[0, \infty)$, measuring from the point corresponding to t = 0, is

$$g(t) = \frac{1}{6} \left((1+4t)^{3/2} - 1 \right),$$

find an arc length parametrization of the same piece of curve.

8.)
$$I(t) = \langle 4t^{1/2}, \ln t, 2t \rangle$$

$$I(t) = \langle 2t^{-1/2}, \frac{1}{t}, 2 \rangle$$

$$I(t'(t)) = \langle \frac{2}{\sqrt{t}} \rangle^2 \cdot (\frac{1}{t})^2 \cdot (2)^2$$

$$I(t'(t)) = \sqrt{\frac{4}{t}} \cdot \frac{1}{t^2} + 4$$

$$= (\frac{4}{t} \cdot \frac{1}{t^2} + 4)^{1/2}$$

$$= (\frac{1}{t} \cdot 2)^{2/2}$$

$$(t^{-1}+2)(t^{-1}+2)$$

$$= (\frac{1}{t} \cdot 2)^{2/2}$$

$$(t^{-1}+2)(t^{-1}+2)$$

$$= \ln(t) + 2t - (\ln(t)^{2}+2)$$

$$= \ln(t) + 2t$$

J/18L 4 J

Question 2. (5 points)

Find the value(s) of α such that the curvature of $y = e^{\alpha x}$ at x = 0 is as large as possible. You may use that the curvature at a point on a graph y = f(x) in the plane is

$$\kappa(x) = \frac{|f''(x)|}{(1+f'(x)^2)^{3/2}}.$$

$$\forall x \in \mathbb{R}^{3} \times \mathbb{R}^{$$

$$T = \frac{\Gamma'(t)}{\|V'(t)\|}$$

$$a_{\tau} = \partial_{\tau} T$$

Question 3. (5 points)

The functions $a_{\mathbf{T}}$ and $a_{\mathbf{N}}$ associated to r, are determined by

$$\mathbf{a}(t) = \mathbf{r}''(t) = a_{\mathbf{T}}(t)\mathbf{T}(t) + a_{\mathbf{N}}(t)\mathbf{N}(t)$$

where T, and N are the unit tangent, and unit normal vectors of r, respectively.

Find $a_{\mathbf{T}}(t)$ and $a_{\mathbf{N}}(t)$ in the case $\mathbf{r}(t) = \langle t, \cos t, \sin t \rangle$.

$$\Gamma(t) + a_{\mathbf{N}}(t)\mathbf{N}(t)$$
 normal vectors of r, respectively.

Find
$$a_{T}(t)$$
 and $a_{N}(t)$ in the case $r(t) = \langle t, \cos t, \sin t \rangle$.

$$r(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos t, \sin t) \rangle$$

$$r'(t) = \langle t, (\cos$$

a= N where Ti)
$$<\frac{1}{\sqrt{2}}$$
, $-\frac{\sin t}{\sqrt{2}}$, $\frac{(0)t}{\sqrt{2}}$ > and Nij <0 , -cost, -sint >

Question 4. (5 points)

Evaluate the limit or determine that it does not exist.

iate the min	x_{11} x_{12} x_{13} x_{14} x_{14} x_{15}
	$\lim_{(x,y)\to(0,0)}\frac{xy}{\sqrt{x^2+y^2}}$
(M)	(r (USO) (r SIM O)
(20	(10010) 2 + (10100) 2
)im	r2 CUS O SIM. O
$\lambda \rightarrow Q$	12(05'0) + 125/1000
lim	12 (03 0 SIN 0)
120	X JUS-6-15111-10
/(M	r cososino = Im
N-> 0	
	bounded

 $\frac{M \times^2}{\sqrt{1-M}} \times \frac{M \times^2}{\sqrt{$

Question 5. (5 points)

Consider the functions,

A.
$$g(x, y) = \cos(x^2 + y^2)$$
,

B.
$$g(x,y) = x + y^2$$
,

C.
$$g(x,y) = (x^2 + y^2)^{1/4}$$
,

D.
$$g(x,y) = |x|^{1/2}$$
,

E.
$$g(x, y) = \cos(x)\cos(y)$$
.

Match each to the correct graph by writing the corresponding letter under the graph.

