Math 32A - Midterm 2
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Problem 1. (80 points) Consider the curve given by

r:[0,+00) 2R3 r(t) = <sin <§> , COS (g) ,t2> ;

(a) (20 points) Find the arc length parametrization of the above curve.
(b) (10 points) Compute the curvature of the above curve.
Hint: You can use part (a).
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Problem 2. ( 30 points) Consider a curve whose acceleration is given by

a(t) = cos(t)i + sin(t)j for all ¢,

and for which we know that the velocity and the position vector at time ¢ = % are
s s :
v (§> = gk and r (5) =g,

i=(1,0,0, j=1{(0,1,0), k=(0,0,1).
(a) (20 points) Find r for all t.

(b) (10 points) Find the tangential and the normal components of the acceleration vector
at any time t.

where

Q. ] (-ﬂ < Yq(*) ¥ = ';x'n@-); -COS(;\'))' T CY

v(3)= sn(3)i- s (3); e,
= \'4-(,, = 3\‘
> C\%;’i‘\'ak

vi(;\')=(‘5f"(f") s .'y‘ - tas () 5 *A'Sk




e al¥) s T N* a7 v sllvl= mﬁ +) +r,o'sy”{:ﬁ ; f"

W

J—

' -112 1} el . aq ()
ay®: v'(+) = 'iL (<2emt ¥l ) (-2eost) fszn_—:;"l =
. .

Atz [la - oy tol? = Ty

zomt 1)
l\a(*)“‘ \‘(Q('f"';-\f\?°4 b4 ‘ )

o (0 =\/-| R <

~teintigg




Problem 3. (25 points)

(a) (15 points) Compute the limit

lim 2y In(z).
(2,y)—(0,3) i ag)

(b) (10 points) Let
r:R—o R, rt) = (f(t),9(1)),

be a twice differentiable vector valued function representing a curve in arc length parametriza-
tion whose curvature is never zero. Show that its curvature is given by the formula

k(t) = |f'(t)g"(t) — f"(t)g'(t)| for all ¢.

Hint: Considerr as a curve in R® and use the formula for k that involves a cross product.
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Problem 4. (15 points) Let r be a vector valued function representing a curve in arc

length parametrization whose curvature is never zero and whose Frenet frame is given by
{T, N, B}. Assume that

. s

sin(28)T'(t) + cos(2t)N(t) + B(t) = c for all ¢,

\ \
where c is a non-zero vector in R® (i.e. the above linear combination of T, N and B is
constant for all t). Show that the curve given by r lies always in the plane of T' and N.

Hint: Differentiate the given relation and try to conclude that the torsion of the curve is
always zero.
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