Final exam, Math 170A, Spring 2020 Instructor: Liza Rebrova

Printed name:
Signed name:
Student ID number:

Instructions:

- On the first page of the work, everyone must state in writing "I assert, on my honor, that I have not received assistance of any kind from any other person while working on the final and that I have not used any non-permitted materials or technologies during the period of this evaluation." Please recall that UCLA has Student Conduct Code (it can be found at www.deanofstudents.ucla.edu; see, in particular, Section 102.01 on academic dishonesty).
- Any collaboration (personal or on the internet) is not allowed.
- Books, arithmetic calculators, googling are allowed.
- The correct answer for any problem is not sufficient for full credit, you should carefully explain each solution (referring only to the official textbook or class materials).
- Read problems very carefully. If you have any questions please email us at rebrova@ math.ucla.edu and bringmann@math.ucla.edu.
- Keep an eye on CCLE announcements. If I get many similar questions, I will make a clarifying announcement for everyone.
- Your work should be submitted at Gradescope by 8am on Thursday (June 11th). Please check the quality of your photos before submission! Please separate the parts belonging to different problems.
- You have 8 problems, 90 points total. Good luck!

- 1. Provide all necessary computations/explanations for your answers.
 - (a) (5 points) Let X and Y be independent random variables such that $\mathbb{E}[X] = \mathbb{E}[Y] = 1$ and $\operatorname{var}[X] = \operatorname{var}[Y] = 2$. Let Z = X Y. Compute $\mathbb{E}[ZX]$.
 - (b) (5 points) Let F_X be the distribution function of a random variable X and let Y = -X. Prove that Y is also a random variable.
 - (c) (5 points) For random variables X and Y from the previous part, express the distribution function of Y in terms of F_X (namely, for any $t \in \mathbb{R}$, what is $F_Y(t) = ?$)
 - (d) (5 points) On each trial two dice are rolled at the same time and the sum of the dice is recorded. If 20 independent trials are conducted, what is the probability a sum of 3 was recorded exactly 5 times?
 - (e) (5 points) Let $X, Y \sim \mathcal{N}(\mu, \sigma^2)$ be independent random variables, and find $\mathbb{P}[X > Y]$.
- 2. (10 points) Let Y be a random variable uniformly distributed on $\{0, 1, ..., 10\}$ (the set of 11 integers) and Z be a uniform random variable on [0, 10] (a segment from 0 to 10). Let

 $X_1 = \max(5, \min(Y, 7))$ and $X_2 = \max(5, \min(Z, 7)).$

- (a) (6 points) Find distribution functions of X_1 and X_2 .
- (b) (4 points) For each of X_1 and X_2 , state whether it is discrete, continuous, or neither. Justify your answers.
- 3. (10 points) Let A be the subset of the plane defined as the intersection of the first quadrant and the annulus between the circles of radii 1 and 2 centered at the origin. In other words

$$A = \{(x, y) | x \ge 0, y \ge 0, 1 \le x^2 + y^2 \le 4\}.$$

Let (X, Y) be a uniformly chosen point in the region A. Find the marginal density function and the expected value of the first coordinate X.

4. (10 points) A box contains n balls, $n \ge 3$, exactly one of which is red and one of which is yellow. We draw a ball uniformly at random, observe the color, return it back to the

box, and repeat this indefinitely. Let X be the number of the draw on which we first time obtain the yellow ball, and let Y be the number of the draw on which we first time obtain the red ball.

- (a) (5 points) Compute $\mathbb{E}[X+Y]$. Are X and Y independent? Justify your answer.
- (b) (5 points) Find joint probability mass function of (X, Y).
- 5. (10 points) There are 20 Statistics students and 20 Mathematics students. They are randomly split into 20 study pairs, with 2 students per study pair. All such pairings are equally probable. Find expected number of pairs consisting of 1 Statistics student and 1 Mathematics student.
- 6. (10 points) Two percent of LA citizens are wizards, the other are muggles. Owls can tell if a person they meet is a wizard or a muggle, but young owlets have not polished this skill to perfection yet. Namely, they can correctly detect a wizard with probability 90% (if the person was actually a wizard, in 90% of the cases they say so), and additionally with 5% chance they call a muggle a wizard. Two young owlets fly together and see a new person.
 - (a) (5 points) What is the probability that both owlets disagree with each other?
 - (b) (5 points) If both owlets say that the person is a wizard, what is the probability that he is actually a wizard?

7. Consider the following joint density function

$$f(x,y) = \begin{cases} \frac{2}{4+\pi}(y+\sin(x)) & \text{if } 0 < x < \pi \text{ and } 0 < y < 1\\ 0 & \text{else} \end{cases}$$

You do not need to prove that f is a joint density function. You may take that for granted.

- (a) (5 points) Find the conditional density of Y given X = x for all values of $x \in \mathbb{R}$ where it is defined.
- (b) (5 points) Are X and Y independent? Are they uncorrelated?
- 8. (5 points) Events A_1, \ldots, A_n, \ldots are independent and have probability p each. Prove that

$$\mathbb{P}(\bigcap_{i=1}^{\infty} A_i) = \begin{cases} 1 & \text{if } p = 1\\ 0 & \text{otherwise} \end{cases}$$

20S-MATH170A-1 Final exam

 \times

TOTAL POINTS

86 / 90

QUESTION 1

1**1**a 3/5

+ 5 pts Correct (=2)

 \checkmark + 3 pts Correct approach, arithmetic error

- + **1 pts** Wrong approach; E[X^2] is not E[X]^2
- + 0 pts Missing

This should be a +

QUESTION 2

2 1b 5/5

✓ + 5 pts Correct

+ **4 pts** Mostly Correct, but inaccurate switch from <= to <

+ 4 pts Mostly correct, but contains a minor mistake

+ **3 pts** Only checked {Y=y}, which is only enough

for discrete rv's. Need {Y&It;=y}.

+ **2 pts** Wrote out set {Y<=y}, but wrong or no further details

+ 0 pts Not addressing the question

+ 0 pts Missing

QUESTION 3

3 1C 5 / 5

✓ + 5 pts Correct

+ **4 pts** Avoided problem with strict inequality by inserting P(X=-t), which is not in terms of F. Else correct.

+ **3 pts** Correct for continuous random variables; but limit missing for general case. Result of a mistake with strict vs non-strict inequality

+ 2 pts F_X instead of 1-F_X

+ **0 pts** (Seriously) wrong answer. For instance, negative, not monotone,...

+ 0 pts Missing

QUESTION 4

4 1d 5 / 5

✓ + 5 pts Correct

+ **3 pts** Factors correct, but binomial coefficient missing.

+ **3 pts** Binomial coefficient there, but one of the factors $(1/18)^5$ or $(17/18)^{(15)}$ missing.

+ **1 pts** Got the 1/18 for a single roll, but combined probability missing at least two things.

+ 0 pts Missing

QUESTION 5

5 1e 5/5

✓ + 5 pts Correct (=1/2)

+ **3 pts** The correct result, but even being nice not enough details. However, integral is used, so X=Y is addressed.

+ **3 pts** Almost correct, except for incorrect treatment of P(X=Y) or ignoring this issue.

+ **3 pts** Symmetry idea, but several incorrect statement (Working with P(X=x), for instance).

- + 1 pts (Long) calculation, but no success
- + **0 pts** Wrong approach
- + 0 pts Missing

2 Great! There is a quicker way that relies on P(X>Y)=P(X<Y) (by symmetry)</p>

QUESTION 6

62a6/6

✓ - 0 pts Correct

QUESTION 7

7 2b 4 / 4

✓ - 0 pts Correct

√ + 10 pts Correct

+ 6 pts Marginal

+ **3 pts** Marginal, one of the regions 0<= x <=1 or 1<= x <=2 completely missing

+ 4 pts Expectation

+ **3 pts** Expectation; but mistake. The result seems sensible, however, so could not be easily detect.

+ **2 pts** Expectation; but mistake. The mistake can be found by just thinking about the picture.

+ **3 pts** Expectation; but with wrong marginal. The mistake could be seen from a quick check, e.g., too close to 2.

+ 2 pts Only abstract definitions in both cases.

+ **1 pts** Wrong definition of uniform distribution; other substantial errors

+ 0 pts Missing

QUESTION 9

94a 5/5

✓ - 0 pts Correct

QUESTION 10

10 4b 5/5

✓ - 0 pts Correct

QUESTION 11

11 5 10 / 10

✓ - 0 pts Correct

QUESTION 12

12 6a 5/5

✓ + 5 pts Correct (approx. 0.0967)

+ 4 pts Computational error, but otherwise correct

+ **3 pts** Correct conditional probabilities, but missing P(muggle) and P(wizard)

+ **3 pts** Correct approach, but took different probabilities than in problem statement.

+ 1 pts Incorrect answer, major conceptual error

+ **1 pts** Incorrect answer, due to incorrect use of independence

+ 0 pts Missing

QUESTION 13

13 6b **5** / **5**

✓ + 5 pts Correct (324/373)

+ **5 pts** Correct approach (error propagating from (a) leads to wrong result)

- + 3 pts Correct use of bayes
- + 2 pts Incorrect use of bayes or total probability
- + 0 pts Major conceptual error

QUESTION 14

14 7a 5/5

✓ - 0 pts Correct

QUESTION 15

15 7b 5/5

✓ - 0 pts Correct

QUESTION 16

1683/5

- 2 pts Why is it possible to take the limit for probabilities/probability of the infinite intersection is the infinite product?

a E[zx] = E[(x-y)x] since z = x-y

$$= \mathbb{E} \left[X^2 - XY \right]$$

= $\mathbb{E} \left[X^2 \right] - \mathbb{E} \left[XY \right]$ (by linearity of Expectations)

Now $V_{or}X = EX^2 - (EX)^2$

We get,
$$\mathbb{E}X^2 = Vor X \sigma (\mathbb{E}X)^2 = 2 - 1 = 1$$

Since
$$X_{1Y}$$
, in dependent. $\mathbb{E}[XY] = \mathbb{E} \times \mathbb$

$$= \sum \mathbb{E}[\mathbb{Z} \times \mathbb{Z}] = 1 - 1 = 0$$
$$= \sum \mathbb{E}[\mathbb{Z} \times \mathbb{Z}] = 0$$

a E[zx] = E[(x-y)x] since z = x-y

$$= \mathbb{E} \left[X^2 - XY \right]$$

= $\mathbb{E} \left[X^2 \right] - \mathbb{E} \left[XY \right]$ (by linearity of Expectations)

Now $V_{or}X = EX^2 - (EX)^2$

We get,
$$\mathbb{E}X^2 = Vor X \sigma (\mathbb{E}X)^2 = 2 - 1 = 1$$

Since
$$X_{1Y}$$
, in dependent. $\mathbb{E}[XY] = \mathbb{E} \times \mathbb$

$$= \sum \mathbb{E}[\mathbb{Z} \times \mathbb{Z}] = 1 - 1 = 0$$
$$= \sum \mathbb{E}[\mathbb{Z} \times \mathbb{Z}] = 0$$

 $= \{ \omega \in \mathcal{A} \mid \chi(\omega) \ge -y^{2} \}$

Note that since $\{\omega \in \Omega \mid X(\omega) \leq u \} \in F \notin u \in \mathbb{R}$ Then, $\lim_{\varepsilon \to 0} \{\omega \in \Omega \mid X(\omega) \leq u + \varepsilon \} \in F$ $\varepsilon < 0, \varepsilon \Rightarrow 0$ $= > \{\omega \in \Omega \mid X(\omega) < u \} \in F \notin u \in F$

Then, consider the set { coen X(w) < - y 3 Since YER, -YER, => {w & IX (w) <- yy & F By the properties of J-Algebra, AEF => A'EF : {werlx(w) < - y 3 ~ e F => {werlx(w) ≥-y3 €F => EWER IY(W) SY3EF HYER. . Y is a Random Variable c) Now, the distribution function of Y, $F_{Y}(y) = P(Y \leq y) = P(-x \leq y)$ since Y = -x $= \Pi(X \ge -y)$ = 1 - 1P (X < -y) since 8x 2-y3

By the Continuity of Meetalure, $\lim_{\xi < 0, \xi \to 0} \mathbb{P}(X \le x + \xi) = \mathbb{P}(X < k)$ $= \{ \omega \in \mathcal{A} \mid \chi(\omega) \ge -y^{2} \}$

Note that since $\{\omega \in \Omega \mid X(\omega) \leq u \} \in F \notin u \in \mathbb{R}$ Then, $\lim_{\varepsilon \to 0} \{\omega \in \Omega \mid X(\omega) \leq u + \varepsilon \} \in F$ $\varepsilon < 0, \varepsilon \Rightarrow 0$ $= > \{\omega \in \Omega \mid X(\omega) < u \} \in F \notin u \in F$

Then, consider the set { coen X(w) < - y 3 Since YER, -YER, => {w & IX (w) <- yy & F By the properties of J-Algebra, AEF => A'EF : {werlx(w) < - y 3 ~ e F => {werlx(w) ≥-y3 €F => EWER IY(W) SY3EF HYER. . Y is a Random Variable c) Now, the distribution function of Y, $F_{Y}(y) = P(Y \leq y) = P(-x \leq y)$ since Y = -x $= \Pi(X \ge -y)$ = 1 - 1P (X < -y) since 8x 2-y3

By the Continuity of Meetalure, $\lim_{\xi < 0, \xi \to 0} \mathbb{P}(X \le x + \xi) = \mathbb{P}(X < k)$

=> $F_{Y}(y) = |- P(X < -y)$ $= 1 - \lim_{\varepsilon < 0, \varepsilon \to 0} \operatorname{IP}(X \leq -y + \varepsilon)$ = 1- lim Fx (-y+&) by def. of Exo, &> 0 Fx => $F_{y}(y) = 1 - \lim_{\epsilon < 0, \epsilon \to 0} F_{x}(-y+\epsilon)$ $\forall y \in \mathbb{R}$ al 2 dice are rolled at the same time in a single trial. To get a sum of 3, either the first die shows 1 and second shows 2 or vice-versa. i.e., there are two favorable outcomes: §(1.2), (2,1)3 Since each die has 6 faces, the total number of outcome of throwing 2 dice is cleany 6.6 = 36. $\therefore \mathbb{P}(\text{sum of dice} = 3) = \frac{2}{36} = \frac{1}{18} \begin{pmatrix} \text{equally likes} \\ \text{outroms} \end{pmatrix}$ and, P(not getting sum = 3) = 1 - TP(getting sum 3) = 1 - 1= 1718 = 1718If twenty independent trials one conducted, the probability of getting exactly 5 trials with sum 3 is

=> $F_{Y}(y) = |- P(X < -y)$ $= 1 - \lim_{\varepsilon < 0, \varepsilon \to 0} \operatorname{IP}(X \leq -y + \varepsilon)$ = 1- lim Fx (-y+&) by def. of Exo, &> 0 Fx => $F_{y}(y) = 1 - \lim_{\epsilon < 0, \epsilon \to 0} F_{x}(-y+\epsilon)$ $\forall y \in \mathbb{R}$ al 2 dice are rolled at the same time in a single trial. To get a sum of 3, either the first die shows 1 and second shows 2 or vice-versa. i.e., there are two favorable outcomes: §(1.2), (2,1)3 Since each die has 6 faces, the total number of outcome of throwing 2 dice is cleany 6.6 = 36. $\therefore \mathbb{P}(\text{sum of dice} = 3) = \frac{2}{36} = \frac{1}{18} \begin{pmatrix} \text{equally likes} \\ \text{outroms} \end{pmatrix}$ and, P(not getting sum = 3) = 1 - TP(getting sum 3) = 1 - 1= 1718 = 1718If twenty independent trials one conducted, the probability of getting exactly 5 trials with sum 3 is

(binomially distributed) $\begin{pmatrix} 20\\5 \end{pmatrix} \begin{pmatrix} 1\\8 \end{pmatrix}^5 \begin{pmatrix} 17\\8 \end{pmatrix}^{15} \rightarrow \text{ in the remaining 1S trialo,} \\ & \text{we need Sum $=3$ with prop. 17/18} \\ & \text{the sum $=3$} \\ & \text{the sum $=3$} \end{pmatrix}$ b) choose 5 with prob. = 1/18 trials out of 20

: defined probability = $\binom{20}{5} \left(\frac{1}{18}\right)^5 \left(\frac{17}{18}\right)^{15}$

e Since XIY~N(µ, σ2)

We want to calculate IP(X > Y) = IP(Y - X) < O

Proof: Let Z:= -X Then Z = g(x) = -x where g(x) = -x

is a decreasing => $f_{z}(z) = -f_{x}(g^{-1}(z)) \cdot (g^{-1}(z))'$ hunchim. $= f_{\chi}(-z) = 1e^{-\frac{(-z-\mu)^2}{2\sigma^2}}$

 $\sqrt{2\pi\sigma^2} \qquad \left(\frac{z-(-\mu)}{2\sigma^2}\right)^2$ $= \frac{1}{\sqrt{2\pi\sigma^2}} \qquad 2\sigma^2$

=> Z~ N(-µ, 52)

(binomially distributed) $\begin{pmatrix} 20\\5 \end{pmatrix} \begin{pmatrix} 1\\8 \end{pmatrix}^5 \begin{pmatrix} 17\\8 \end{pmatrix}^{15} \rightarrow \text{ in the remaining 1S trialo,} \\ & \text{we need Sum $=3$ with prop. 17/18} \\ & \text{the sum $=3$} \\ & \text{the sum $=3$} \end{pmatrix}$ b) choose 5 with prob. = 1/18 trials out of 20

: defined probability = $\binom{20}{5} \left(\frac{1}{18}\right)^5 \left(\frac{17}{18}\right)^{15}$

e Since XIY~N(µ, σ2)

We want to calculate IP(X > Y) = IP(Y - X) < O

Proof: Let Z:= -X Then Z = g(x) = -x where g(x) = -x

is a decreasing => $f_{z}(z) = -f_{x}(g^{-1}(z)) \cdot (g^{-1}(z))'$ hunchim. $= f_{\chi}(-z) = 1e^{-\frac{(-z-\mu)^2}{2\sigma^2}}$

 $\sqrt{2\pi\sigma^2} \qquad \left(\frac{z-(-\mu)}{2\sigma^2}\right)^2$ $= \frac{1}{\sqrt{2\pi\sigma^2}} \qquad 2\sigma^2$

=> Z~ N(-µ, 52)

Then, by the Convolution Formula (since XIY independent) $f_{Y+2}(z) = \int_{R} f_{Y}(u) \cdot f_{z}(z-u) du$ $\int_{\mathbb{R}} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(\varkappa - \mu)^2}{2\sigma^2}} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(\varkappa - \mu)^2} d\mu$ $= \int_{R} \frac{1}{2\pi\sigma^{2}} e^{\chi P} \left(-\frac{1}{2\sigma^{2}} \left(\varkappa^{2} + \mu^{2} - 2\chi \mu + (z-\chi)^{2} + \mu^{2} - \chi^{2} \mu + (z-\chi)^{2} + \chi^{2} + \chi$ $= \frac{1}{2\pi\omega^{2}} \int_{\mathcal{R}} \exp\left(-\frac{1}{\sigma^{2}} \left(\chi^{2} + \mu^{2} - 2\chi\mu + \frac{z^{2}}{2} + z\mu - z\chi\right)\right)$ $= \frac{1}{2\sqrt{\pi\sigma^2}} \int_{\mathcal{R}} \frac{1}{\sqrt{\pi\sigma^2}} \exp\left(-\frac{1}{\sigma^2}\left(\varkappa^2 + \mu^2 - 2\varkappa\mu + \frac{z^2}{4} + \frac{z^2}{4}\right) - z\varkappa + z\mu\right) d\varkappa$ $= \exp\left(\frac{-z^{2}}{4\sigma^{2}}\right) \int_{\mathcal{R}} \frac{1}{\sqrt{\pi\sigma^{2}}} \exp\left(\frac{-1}{\sigma^{2}}\left(\frac{\kappa^{2}+\mu^{2}-2\kappa\mu}{+\frac{z^{2}}{2}-z(\kappa-\mu)}\right)\right)$ $= \exp\left(-\frac{z^{2}}{4\sigma^{2}}\right) \int_{\mathcal{R}} \frac{1}{\sqrt{\pi\sigma^{2}}} \exp\left(\frac{\kappa-\mu-\frac{z}{2}}{2}\right) d\mu$ $= \exp\left(-\frac{z^{2}}{4\sigma^{2}}\right) \int_{\mathcal{R}} \frac{1}{\sqrt{\pi\sigma^{2}}} \exp\left(\frac{\kappa-\mu-\frac{z}{2}}{2}\right) d\mu$ $= \frac{1}{1}$ $\frac{e^{-\frac{z^2}{2(2\sigma^2)}}}{\sqrt{2\pi(2\sigma^2)}} \cdot \frac{1}{z} = denijy hundrian of \sim N\left(0, 2\sigma^2\right)$ 2

$$\therefore Y+Z \text{ had normal clist.}$$

$$\text{with } (0, 2\sigma^{2})$$

$$\Rightarrow Y-X \sim N(0, 2\sigma^{2}) \qquad \therefore \text{ Prived.}$$

$$\Rightarrow f_{Y-X}(z) = \frac{1}{|Y| r \sigma^{2}} e^{-\frac{z^{2}}{4\sigma^{2}}}$$

$$= \frac{1}{\sqrt{4r\sigma^{2}}} e^{-\frac{z^{2}}{4\sigma^{2}}}$$
and $(P(Y-X<0) = \int_{-\infty}^{0} f_{Y-X}(z) dz$

$$\text{Since } Y-X \text{ is cts.}$$
But observe that
$$f_{Y-X}(-z) = \frac{1}{\sqrt{4r\sigma^{2}}} e^{-\frac{(-z)^{2}}{4\sigma^{2}}} = \frac{1}{\sqrt{4r\sigma^{2}}} e^{\frac{z^{2}}{4\sigma^{2}}}$$

$$= f_{Y-X}(z)$$

$$\text{Which implies } f_{Y-X} \text{ is even.}$$
Since even, we know that
$$\int_{-\infty}^{\infty} f_{Y-X}(z) dz$$

$$= 2 \int_{-\infty}^{0} f_{Y}(z) dz$$

$$=> 1 = \int_{-\infty}^{\infty} f_{YX}(z) dz = 2 \int_{-\infty}^{0} f_{YX}(z) dz$$

$$\Rightarrow 1 = \int_{-\infty}^{\infty} f_{YX}(z) dz = 2 \int_{-\infty}^{0} f_{YX}(z) dz$$

$$=> \frac{1}{2} = \int_{-\infty}^{0} f_{YX}(z) dz = TP(Y-X < 0)$$

$$=> \left(\frac{2}{2} = P(X > Y)\right)$$

al Now, $\mathbb{P}(X_1 \leq \mathcal{K}) = \mathbb{P}(\max(5, \min(\mathcal{Y}, \mathcal{I})) \leq \mathcal{K})$

Suppose
$$n < 5$$
,
 $\{mox(5, min(4,7)) \le n \}$
 $= \{5 \le n \text{ and } min(4,7) \le n \}$
But since $n < 5$,
 $= \emptyset$
 $=> P(X \le n) = 0 \text{ if } n < 5$.
Now suppose $5 \le n < 7$
Then, $\{max(5, min(4,7)) \le n \}$
 $= \{min(4,7) \le n \}$ since $n \ge 5$
The complement of this sets,
 $\{min(4,7) \ge n \}$
The complement of this sets,
 $\{min(4,7) \ge n \}$
 $= \{y > n \text{ and } 7 > n \}$
Since $n < 7$
 $= \{y > n < n > 7 > n > 1 \}$
 $= \{y > n < n > 7 > n > 1 \}$
 $= \{y > n < n > 7 > n > 1 \}$
 $= 1 - P(min(4,7) \le n)$
 $= 1 - P(min(4,7) \ge n)$ since
 $(complement)$
 $= 1 - P(y \ge n)$
 $= P(y \le n)$

Since Y is discretely whitem on IO,107, we have $IP(4 \le n) = \begin{cases} K \\ 1 \\ 1 \\ 0 \end{cases}$; f k-1 ≤ 2< < k for k=1,2,...,9 (shown in clan) $1 \quad \text{if} \quad \varkappa \geq 10$ 6 ;f x <0 5 < n < 7, Since $P(Y \le n) = \begin{cases} 6 & ||| & if 5 \le n < 6 \\ 7 & ||| & if 6 \le n < 7 \end{cases}$ Using the distribution apone. Now, suppose 75x<10, Then {max (5, min (4,7)) = 223 = {min (4,7) <22 since 227>5 = EVENor TENg But since n≥7 by dosuption, this event always occurs. => $P(\max \xi 5, \min(4, 7)) \leq 22) = 1$ for x 37. $\therefore F_{x_1}(n) = \begin{cases} 0 \\ 6 / 11 \\ 7 / 11 \\ 1 \end{cases}$ if x < 5 if 5 ≤ x < C if 6 < u < 7 if れシフ

For X2, we tollow the same steps above but use Z instead of Y when necessary. Suppose x<5, then just as above, $\mathbb{P}(X_2 \leq u) = \mathbb{P}(\emptyset) = 0$ Suppose 5=x<7, then just with the same recorning as above. $\mathbb{P}(X_2 \leq n) = \mathbb{P}(Z \leq n)$ Since, Z is uniformly distributed on E0,107, we have $P(ZSH) = \int \frac{\pi}{10}$ if $0 \le n < 10$ if x<0 (1 if 2210 Since, 05552<7<10, $\Pi(X_2 \leq u) = \Pi(z \leq u) = u$ 10 Suppose n 27, then just like above, $P(X_2 \leq x) = 1$ $F_{X_2}(u) = \begin{cases} 0 & \text{if } u < 5 \\ \frac{\pi}{10} & \text{if } u < 7 \\ 1 & \text{if } u < 7 \end{cases}$ $\begin{array}{c}
2 & \frac{\pi}{10} & \text{if } 5 \leq n < 7 \\
7 & 10 & \text{if } \pi \geq 7
\end{array}$

b) Observe X1: it is sufficient to show that

$$Im X_1$$
 is countable and $[X_1=u] \leq F$
For $u < 5$, $\{X_1 \le u = 0\} = 0$ as shown above
which also implify that
 $fr any u < 5$,
 $\{X_1=u = 0\} = 0 \in F$
and,
 $\therefore P(X_1=u) = 0$ for $u < S$
finite.
For $5 \le u \le 7$,
 $\{X_1 = \max(5, \min(4,7)) = u = 0\}$
 \equiv
 $\{\min(4,7) = u = 0\} = \{Y = u = 0\}$ since $u < 7$
 $= S P(X_1=u) = P(Y=u)$
Since Y is discrete, X , takes on countably many
values in $5 \le u \le 7$.
And $\{X_1=u = 0\} = \{Y=u = 0\} \in F$ since Y discrete.
If $u > 7$,
Then again, observe theat
 $P(X_1=u) = P(\{Y=u = 0\})$
 $= P(\{Y=u = 0\})$
 $= P(\{Y=u = 0\})$ since $u > 7$
 $= P(Y=u)$
 $Since Y is discrete, X takes on countably many
 $u = 10$ for $x = 7$.
 $P(X_1=u) = P(\{Y=u = 0\})$ since $u > 7$
 $= P(Y=u)$
 $Since Y is discrete, X takes on countably many
 $u = 10$ for $u = 7$.
 $P(Y=u = 0)$
 $= P(\{Y=u = 0\})$ since $u > 7$
 $= P(U=u)$
 \therefore Since Y is discrete, X takes on countably many
 $u = 10$ for $u = 7$.
 $u = 10$ for $u = 7$.
 $u = 10$ for $u = 7$.
 $u = 10$ for $u = 10$.$$

=> X takes on courseloy many value in R and {XI=XYEF VNER :. X is disurte.

We dain that X2 is peither discrete nor continue.

It is not discrete since for, 5=n < T, $\chi_2 = max(5, min(2,7)) = Z$ which is continuou.

. in 5 5 x <7, X2 takes on uncompubly many valles

It is not continuous since $\mathbb{P}(X_2 = 5) = \mathbb{P}(X_2 \leq 5) - \mathbb{P}(X_2 \leq 5)$ = $\frac{5}{10}$ = 0 $=\frac{1}{2}$ => P(X2=5) =0.

: X2 is neither continuous nor discrete.

In general, if (X1Y) is uniform in region A, Then, we know fx,y (u,y) = combout in A. Now, $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{x,y}(n,y) dn dy = 1$ by properties Since $(X_1Y) \in A_1$ fx, $y(u_1u_3) = 0$ if $(X_1Y) \notin A_2$. unitam of fx,y. => $\iint f_{x,y}(u,y) dh dy = 1$ = fx,y(u,y) \$\$1 dm dy = 1 since fx,y contt. in A and $\iint 1 \, du \, dy = area (A)$ Now, Area (A) (an be seen geometrically al $\frac{1}{4} \left(Area of circle of \right) - \frac{1}{4} \left(Area of circle \\ of matin 1 \right)$ $= \frac{1}{4} \left(\pi (2)^{2} - \pi (1)^{2} \right)$ $= \frac{1}{4} \left(4\pi - \pi \right) = \frac{3\pi}{4}$

=>
$$f_{X,Y}(u,y) \cdot \frac{3\pi}{4} = 1$$

=> $f_{X,Y}(u,y) = \frac{4}{3\pi}$ $\forall (u,y) \in A$
Then, maginal dendity of X,
 $f_X(u) = \int_{-\infty}^{\infty} f_{X,Y}(\pi,v) dW (fextbook)$
 $Now, we have $y \ge 0 = 3y^2 \ge 0$
 $(in A)$ $1 \le u^2 + y^2 \le 4$
 $\Rightarrow 1 - u^2 \le y^2 \le 4 - u^2 \Rightarrow max(0,1-u^2) \le y^2$
Then if $n \ge 0$, and $1 - u^2 \ge 0$
 $\Rightarrow 1 \ge u^2 = 3n \le 1$
 $f_{X,y}(u) = \int_{-\infty}^{\sqrt{4}-\sqrt{2}} \frac{4}{3\pi} dy$
 $\Rightarrow if 0 \le n \le 1$, $f_X(u) = \int_{\sqrt{4}-\sqrt{2}}^{\sqrt{4}-\sqrt{2}} \frac{4}{3\pi} dy$
 $and 1 < u^2 \le 4$
 $Now, suppose $1 - n^2 < 0$, $\Rightarrow n \ge 1$
 $f_{X,y}(u) = \int_{0}^{\sqrt{4}-\sqrt{2}} \frac{4}{3\pi} dy$
 $x = 0 \le y \le (4-u^2)$
 $Now, suppose $1 - n^2 < 0$, $\Rightarrow n \ge 1$
 $f_X(u) = \int_{0}^{\sqrt{4}-\sqrt{2}} \frac{4}{3\pi} dy$$$$

$$= \int f_{X}(w) = \frac{4}{3\pi} \sqrt{4-x^{2}} \quad if |exes 2$$

$$= \int f_{X}(w) = \begin{cases} \frac{4}{3\pi} \left(\sqrt{4-x^{2}} - \sqrt{1-x^{2}}\right) & if \quad 0 \le x \le 1 \\ \frac{4}{3\pi} \left(\sqrt{4-x^{2}}\right) & if \quad 1 < x \le 2 \\ 0 & 0 \text{ therefore} \end{cases}$$

$$Now, \quad E[X] = \int_{-\infty}^{\infty} \chi f_{X}(w) dw$$

$$= \int_{0}^{1} \frac{4n}{3\pi} \left(\sqrt{4-x^{2}} - \sqrt{1-x^{2}}\right) dw$$

$$f_{0} = \int_{1}^{2} \frac{4n}{3\pi} \left(\sqrt{4-x^{2}} - \sqrt{1-x^{2}}\right) dw$$

$$f_{1} = \int_{0}^{2} \frac{4n}{3\pi} \left(\sqrt{4-x^{2}}\right) dw - \int_{0}^{1} \frac{4n}{3\pi} \sqrt{1-x^{2}} dw$$

$$f_{1} = \frac{1}{3\pi} \int_{0}^{2} \frac{4n}{3\pi} \left(\sqrt{4-x^{2}}\right) dw - \int_{0}^{1} \frac{4n}{3\pi} \sqrt{1-x^{2}} dw$$

$$f_{2} = \frac{1}{3\pi} \int_{0}^{2} \frac{4n}{3\pi} \int_{0}^{2} \frac{-2}{3\pi} \int_{0}^{2} \frac{1}{3\pi} \int_{$$

al Now $\mathbb{E}[X+Y] = \mathbb{E}(X) + \mathbb{E}(Y)$ by Linearity of Expectation.

Now, P(X=n) = P(first n-1) draws were not yellowand zet draw was yellow)

Since, there are n-1 non-yellow bdly, the probability of picking d non-yellow pall n-, tipue is $\left(\frac{n-i}{n}\right)^{n-1}$. In the nth draw we must pick a yellow ball (For the First tine) with Probability 1 So, $\mathbb{P}(X=\kappa) = \left(\frac{n-1}{n}\right)^{n-1} \left(\frac{1}{n}\right) \quad \forall n \ge 1$ Then, $\mathbb{E}[x] = \sum_{n=1}^{\infty} n \cdot \mathbb{P}(x = n)$ $= \underbrace{\underbrace{\mathcal{Z}}}_{\mathcal{H}_{-1}} \mathcal{H} \left(\frac{n-1}{n} \right)^{n-1} \left(\frac{1}{n} \right)$ $= \frac{1}{n} \sum_{n=1}^{\infty} \varkappa \left(\frac{n-1}{n} \right)^{n-1}$ We know if |r| < 1, then $\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}$ by inf. sum of

Geometric Series topula

=> $\frac{d}{dr} \sum_{k=0}^{\infty} r^{k} = \frac{d}{\partial r} \left(\frac{1}{1-r} \right)$ => $\frac{2}{k=0} \frac{d}{dr} (r^{n}) = \frac{1}{(1-r)^{2}} (since derivet k=0 dr (r^{n}) = \frac{1}{(1-r)^{2}} (since derivet-$ ive is line)=) $\sum_{k=0}^{\infty} \chi r^{\lambda-1} = \frac{1}{(1-r)^2}$ =) $\sum_{k=1}^{\infty} \chi r^{\lambda-1} = \frac{1}{(1-r)^2}$ sine $fr = \lambda = 0$, k=1 $(1-r)^2$ $\chi r^{\lambda-1} = 0$

$$= \sum_{\substack{n \neq k = 1 \\ n \neq k = 1}}^{n \neq k \neq k} \left(\frac{n-1}{n} \right)^{n-1} = \frac{n^2}{n} = n .$$

: E[x]=n.

Similary, we can show E[Y] = n by the same logic for red ballo.

This implies $\mathbb{E}[x+y] = \mathbb{E}[x] + \mathbb{E}[y] = 2n$ $\mathbb{E}[x+y] = 2n$

X and Y are NOT independent since

TP(Y=k|X=k) = 0 ≠ TP(Y=k) since if we're given that a yellow ball was aboun for the first time on the ktn drub, it is impossible that a red ball cap also be drawn on the same drub. .: Probability = 0.
This is the for any k≥1.

b) We need to calulate P(X=u, Y=y)i.e., yellow pall drawn for the first time on non draw, red ball drawn for the tist fine an yth draw.

if n=y, TP(X=u, Y=y) = 0 since different colored bally cannot be drawn on the same draw in a trial.

Suppose n < y. We need that in the first (n-1)draws, neither a yellow nor a red ball is drawn; in the sets draw, we draw a yellow ball, in the $(n+1)^{tn}$ to $(y-1)^{tn}$ draw \equiv the past

This implies $\mathbb{E}[x+y] = \mathbb{E}[x] + \mathbb{E}[y] = 2n$ $\mathbb{E}[x+y] = 2n$

X and Y are NOT independent since

TP(Y=k|X=k) = 0 ≠ TP(Y=k) since if we're given that a yellow ball was aboun for the first time on the ktn drub, it is impossible that a red ball cap also be drawn on the same drub. .: Probability = 0.
This is the for any k≥1.

b) We need to calulate P(X=u, Y=y)i.e., yellow pall drawn for the first time on non draw, red ball drawn for the tist fine an yth draw.

if n=y, TP(X=u, Y=y) = 0 since different colored bally cannot be drawn on the same draw in a trial.

Suppose n < y. We need that in the first (n-1)draws, neither a yellow nor a red ball is drawn; in the sets draw, we draw a yellow ball, in the $(n+1)^{tn}$ to $(y-1)^{tn}$ draw \equiv the past

y-n-1 draws, we don't draw a red ball and finally in the yth draw, we draw a red ball. which implies, $\mathbb{P}(X=n, Y=y) = \left(\frac{n-2}{n}\right)^{n-1} \left(\frac{1}{n}\right)$. $= \frac{(n-2)^{n-1}(n-1)^{y-n-1}}{n^{y}}$ on identical logic, By if y < u, $\operatorname{IP}(X=u, Y=y) = \left(\frac{n-2}{n}\right)^{y-1} \left(\frac{1}{n}\right) \left(\frac{n-1}{n}\right)^{u-y-1} \left(\frac{1}{n}\right)$ $= \frac{(n-2)^{y-1}(n-1)^{x-y-1}}{n^{n}}$ $\frac{1}{n^{2}} P_{x,y}(u,y) = \begin{cases} 0 & \text{if } u = y \text{ or } or \ u \leq 0 \ or \ y \leq 0 \\ (n-2)^{n-1} (n-1)^{y-n-1} & \text{if } 0 < u < y \\ (n-2)^{y-1} (n-1)^{n-y-1} & \text{if } 0 < y < u \\ (n-2)^{y-1} (n-1)^{n-y-1} & \text{if } 0 < y < u \end{cases}$

let A; be the event that the jth Statistic student is paired with a Mathematic student. for i = 1, 2, ..., 20. Let 1_{A_i} be the indicator function of A_i

Note that $P(A_i) = \# of math students$ # of total remaining students $= \frac{20}{40-1} = \frac{20}{39}$ Ly since the it Stat student Cannot be paired with him/herelf.

Clearly, the number of 1 stats student - 1 motor student pairs = A1+A2+...+ A20 Since $ZA_i = m <=>$ some m-subset of the set i=1 ZA_i occurred <=> there are in State students paired with Marth students.

=> Expected number of defined pairs $E\left[\sum_{j=1}^{20}A_{j}\right]$ = Z²⁰_{i=1} E [A;] by Linearity of Expectations.

> >	Expected	number of	pairs =	20.	拒 A;
		,		20.2	0 - 400
				3	39 39

... The expected number of pairs with 1 Stats student and 1 Month student is 100 39

Let
$$A := \frac{2}{5}$$
 citizen is wizerel?
 $B := \frac{2}{5}$ citizen is muggle?
 $C_1 := \frac{2}{5}$ coulet i claims wizerel?; $E_1 = \frac{2}{5}$ coulet i
 $D := \frac{2}{5}$ coulets disagree?
al Now, $P(D) = P(D|A) \cdot P(A) + P(D|B) \cdot P(B)$
 \downarrow where we partition on $\frac{2}{5}A, B$?
by the Partition Therein since a citizen can
either be a
 $muggle ra$
 $wizerel a$
 $wizerel a$
 $wizerel a$
 $wizerel a$
 $wizerel a$
 $P(c_1|A) = \frac{90}{100} \Rightarrow P(E_1|A) = \frac{10}{100}$
 end $P(c_1|B) = \frac{5}{100} \Rightarrow P(E_1|A) = \frac{95}{100}$
 $P(C_1|A) = P(C_1|A) TP(E_2|A)$
 $+ TP(C_2|A) \cdot P(E|A)$
 $= \frac{90}{100} \cdot \frac{100}{100} + \frac{10}{100} \cdot \frac{90}{100}$

5 2.9 18 100 = 100

Similar,
$$P(D|B) = P(c_1|B) \cdot P(E_2|B) + P(c_2|B) \cdot P(E_1|B)$$

$$= \frac{B}{20} \cdot \frac{95^{19}}{100} + \frac{95^{19}}{100} \cdot \frac{B}{100} \frac{2}{20}$$

$$= \frac{19}{20}$$
and we're given that $P(A) = \frac{2}{100}$

$$= P(B) = \frac{98}{100}$$

$$\therefore P(D) = \frac{19}{100} \cdot \frac{2}{100} + \frac{19}{200} \cdot \frac{98'49}{100}$$

$$= \frac{967}{1000} = 0.0967$$

$$\therefore Probability that both owlets disagree = 0.0967$$
b) We need to find, $P(A|C_1nC_2)$

$$i.e., Probability that dist different is wird given both owlets distagree, in the probability of the probability $P(A|C_1nC_2)$

$$i.e., Probability The point owlets distagree = 0.0967$$$$

Similar,
$$P(D|B) = P(c_1|B) \cdot P(E_2|B) + P(c_2|B) \cdot P(E_1|B)$$

$$= \frac{B}{20} \cdot \frac{95^{19}}{100} + \frac{95^{19}}{100} \cdot \frac{B}{100} \frac{2}{20}$$

$$= \frac{19}{20}$$
and we're given that $P(A) = \frac{2}{100}$

$$= P(B) = \frac{98}{100}$$

$$\therefore P(D) = \frac{19}{100} \cdot \frac{2}{100} + \frac{19}{200} \cdot \frac{98'49}{100}$$

$$= \frac{967}{1000} = 0.0967$$

$$\therefore Probability that both owlets disagree = 0.0967$$
b) We need to find, $P(A|C_1nC_2)$

$$i.e., Probability that dist different is wird given both owlets distagree, in the probability of the probability $P(A|C_1nC_2)$

$$i.e., Probability The point owlets distagree = 0.0967$$$$

where we partition on \$A,BS

Now $\mathbb{P}((1 \cap (2 \mid A)) = \text{ probability that both ones claim$ he's a Wizord given that heis indeed a Wizord.

Since owlets detect independents,

$$= \frac{90}{100}, \frac{90}{100}, (given)$$

$$= \frac{90}{100}, \frac{90}{100}, (given)$$

$$= \frac{90}{100}, \frac{90}{100}, \frac{5}{100}, (given)$$

$$\therefore P(Al(1n(2)) = \frac{90}{100}, \frac{90}{100}, \frac{2}{100}, \frac{90}{100}, \frac{2}{100}, \frac{98}{100}, \frac{96}{100}, \frac{90}{100}, \frac{2}{100}, \frac{98}{100}, \frac{96}{100}, \frac{9}{100}, \frac{2}{100}, \frac{98}{100}, \frac{9}{100}, \frac{9}{10}, \frac{9}{10}, \frac{9}{10}, \frac{9}{10}, \frac{9}{10}, \frac{9}{10}, \frac$$

. Probability of citizen being a wizond given that

both owlets claim he's a wizers = 324. 373 ≈ 0.86863

al First, we find $f_{x}(u)$ the marginal density function of X. Now, we know $f_{x}(u) = \int_{-\infty}^{\infty} f(u, v) dv$ (textbook) => $f_{x}(u) = \int_{0}^{1} \frac{2}{4+\tau c} (v+sinu) dv$ if O<X<JU since f(n,y) = O otherwise. $= f_{x}(u) = \frac{2}{4+\pi} \left(\frac{v^{2}}{2} + V \sin v \right)_{0}^{\prime}$ $= \frac{2}{4+\pi} \left(\frac{1}{2} + \sin n \right)$ $\therefore f_{x}(u) = \begin{cases} (2/4+\pi)(\frac{1}{2}+\sin u) & \text{if } 0 < u < \pi \\ 0 & \text{otherwise} \end{cases}$ Then, we know $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{f(x,y)}{f_X(x)} = \frac{f(x,y)}{f_X(x)}$ => $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$ if $0 < x < \tau = \frac{f(x,y)}{f_X(x)}$ since two $f_y(x) \neq 0$

Now if $Ozy = 1 \le y$, f(n,y) = 0

=> fyix (ym) = 0 if ozy or yzi and if 0 < y < 1, $f(n,y) = \frac{2}{4\pi t} (y + sinn)$ => $f_{y|x}(y|x) = \frac{2}{y_{4\pi}}(y+sinn)$ $\frac{2}{\sqrt{4\pi}} \left(\frac{1}{2} + \sin n \right)$ $= \frac{2(y + \sin k)}{1 + 2\sin k}$ => $f_{y|x}(y|n) = \begin{cases} \frac{2(y+sinn)}{1+2sinn} & \text{if } 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$ for O<X<st ushere it's defined. b) We show that they are uncorrelated i.e., cov(x,y) = 0

Now, Cov(X,Y) = 任[XY] - 任X·臣Y

=> fyix (ym) = 0 if ozy or yzi and if 0 < y < 1, $f(n,y) = \frac{2}{4\pi t} (y + sinn)$ => $f_{y|x}(y|x) = \frac{2}{y_{4\pi}}(y+sinn)$ $\frac{2}{\sqrt{4\pi}} \left(\frac{1}{2} + \sin n \right)$ $= \frac{2(y + \sin k)}{1 + 2\sin k}$ => $f_{y|x}(y|n) = \begin{cases} \frac{2(y+sinn)}{1+2sinn} & \text{if } 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$ for O<X<st ushere it's defined. b) We show that they are uncorrelated i.e., cov(x,y) = 0

Now, Cov(X,Y) = 任[XY] - 任X·臣Y

Now,
$$\mathbb{E}[x] = \int_{-\infty}^{\infty} u f_x(u) du$$

$$= \int_{0}^{\pi} \frac{2\pi}{4\pi\tau} \left(\frac{1}{2} + \sin u\right) du \quad \sin u f_x(u) = 0$$
Otherwise

$$= \frac{2}{4\pi\tau} \left[\int_{0}^{\pi} \frac{n}{2} du + \int_{0}^{\pi} n \sin u du \right]$$

$$= \frac{2}{4\pi\tau} \left[\frac{n^2}{4} \right]_{0}^{\pi} + \left[-\pi \cos u \right]_{0}^{\pi} + \int_{0}^{\pi} \cos u du \right]$$
(They radius by Pars)

$$= \frac{2}{4\pi\tau} \left[\frac{\pi^2}{4} + \pi + \left[\sin u \right]_{0}^{\pi} \right]$$

$$= \frac{2}{4\pi\tau} \left[\frac{\pi^2}{4} + \pi \right]$$
Now, $f_y(y) = \int_{-\infty}^{\infty} f(u, y) du$

$$= \int_{0}^{\pi} \frac{2}{4\pi\pi} (y + \sin u) du \quad \text{if } 0 < y < 1$$

$$= \frac{2}{4\pi\tau} \left[\left[yu \right]_{0}^{\pi} + \left[-\cos u \right]_{0}^{\pi} \right]$$

$$= \frac{2}{4\pi\tau} \left[\pi y + \left[1 - (-1) \right] \right] = \frac{2}{4\pi\tau} (2 + \pi y)$$

=> $f_{y}(y) = \begin{cases} \frac{2}{4+\pi}(2+\pi y) & \text{if } 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$

Then, $\mathbb{E}[Y] = \int_{-\infty}^{\infty} y f (y) dy$ $= \int_{0}^{1} y\left(\frac{2}{4+\pi}\left(2+\pi y\right)\right) dy$ since fy cs) =0 othernise $= \frac{2}{4+\pi} \int_0^1 (2y + \pi y^2) dy$ $= \frac{2}{4+\pi} \left(\begin{array}{c} y^{2} + \frac{\pi y^{3}}{3} \end{array} \right)^{\prime} \\ = \frac{2}{4+\pi} \left(\begin{array}{c} 1 + \frac{\pi}{3} \end{array} \right)^{\prime} \\ +\pi \end{array} \right)^{\prime} \\ \end{array}$ Finally, $E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} ny f(n,y) dn dy$ by law of subconcises Statistican $= \int_{0}^{\pi} \int_{0}^{1} ny \left(\frac{2}{4+\pi}\right) (y + \sin n) dy dn$ since f(nyy) = 0 $= \frac{2}{4+\pi} \int_{0}^{\pi} \mathcal{X} \int_{0}^{1} (y^{2} + y \sin x) dy dx$ otherwise $= \frac{2}{4+\pi} \int_{0}^{\pi} n \left(\frac{y^{3}}{3} + \frac{y^{2}}{2} \operatorname{sinn}\right)' dn$

 $= \frac{2}{4+\pi} \int_{3}^{\pi} \chi \left(\frac{1}{3} + \frac{1}{2} \operatorname{sinn}\right) dm$ $= \frac{2}{4\pi \pi} \left[\left(\frac{\pi^2}{6} \right)^{T} + \frac{1}{2} \int_{0}^{T} n sin \pi dn \right]$ $= \frac{2}{4\pi} \left[\frac{\pi^2}{6} + \frac{1}{2} \left[\left(-\pi \cos n \right)^{\frac{\pi}{6}} + \int_{0}^{\frac{\pi}{6}} \cos n \, dn \right] \right]$ $= \frac{2}{4\pi} \left(\frac{\pi^2}{6} + \frac{1}{2} \left(\pi + \left[\sin n \right]^{\frac{\pi}{6}} \right) \right)$ $= \frac{2}{4\pi} \left(\frac{\pi^2}{6} + \frac{\pi}{2} \right)$ Then, $\operatorname{cov}(X,Y) = \frac{2}{4+\pi} \left(\frac{\pi^2}{6} + \frac{\pi}{2} \right) - \left(\frac{2}{4+\pi} \right) \left(1 + \frac{\pi}{3} \right)$ $\left(\frac{2}{4\pi}\right)\left(\frac{\pi^2}{4}+\pi\right)$ $=\frac{2}{4+\pi}\left(\frac{\pi^{2}}{6}+\frac{\pi}{2}-\left(\frac{\pi^{2}}{4}+\pi\right)\left(\frac{2}{4+\pi}\right)\left(\frac{1+\pi}{3}\right)\right)$ $=\frac{2}{4\pi}\left(\frac{\pi^{2}}{6}+\frac{\pi}{2}-\left(\frac{\pi^{2}}{4}+\pi\right)\left(\frac{2}{4+\pi}+\frac{2\pi}{3(4+\pi)}\right)\right)$ $=\frac{\pi}{4+\pi}\left(\frac{\pi}{3}+1-\left(\frac{\pi}{4}+1\right)\left(\frac{4}{4+\pi}+\frac{4\pi}{12+3\pi}\right)\right)$ $=\frac{\pi}{4+\pi}\left(\frac{\pi}{3}+1-\left(\frac{\pi+4}{4}\right)\left(\frac{4}{4+\pi}+\frac{4\pi}{3(4+\pi)}\right)\right)$

$$= \frac{\pi}{4\pi} \left(\frac{\pi}{3} + 1 - \left(\frac{4}{4} \right) \left(1 + \frac{\pi}{3} \right) \right)$$
$$= \frac{\pi}{4\pi} \left(\frac{\pi}{3} + 1 - 1 - \frac{\pi}{3} \right) = 0$$

:. Since cov(XIY) = 0, X, Y are uncorrelated.

Next. note that since

$$f_{YIX}(y|u) = \begin{cases} \frac{2(y+sinu)}{1+2sinu} & \text{if } 0 \le y \le 1 \\ 1+2sinu \\ 0 & \text{otherwise} \end{cases}$$

for $0 \le u \le \tau t$ where it's defined.
and, $f_Y(y) = \begin{cases} \frac{2}{y+rt}(2+rt(y)) & \text{if } 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$
then, clary $f_{YIX}(y|u) \ne f_Y(y)$
which implies X,Y are not
independent.
(contropositive)

Since SAig independent, we have

 $TP\left(\bigcap_{i=1}^{n}A_{i}\right) = \lim_{n \to \infty} IP\left(\bigcap_{i=1}^{n}A_{i}\right) = \lim_{n \to \infty} \frac{n}{1} IP(A_{i})$ $= \prod_{i=1}^{\infty} P$ i=1 $Since IP(A_{i}) = P \forall i=1,2,$

Now, if p = 1, $P(\bigcap_{i=1}^{\infty} A_i) = \prod_{i=1}^{\infty} 1 = 1 \quad (tividly)$ if $0 \le p < 1$ (since $pn \models$. as non-negative) $=> P(\bigcap_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \prod_{i=1}^{n} p = \lim_{n \to \infty} p^n$ Since, $0 \le p < 1$, we know that $\lim_{n \to \infty} p^n = 0$ (from analysis) $=> P(\bigcap_{i=1}^{\infty} A_i) = 0$

 $\therefore \operatorname{IP}\left(\widehat{\bigcap}_{i=1}^{n} A_{i}\right) = \begin{cases} 1 & i \neq p = 1 \\ 0 & o \text{ there is } \end{cases}$