
Math 167-1, Winter 2021
Mathematical Game Theory

Final Exam

Instructions:

1. The test is conducted online through Gradescope. You have 24 hours, Wed Mar 17
08:00 AM (PT) to Thu Mar 18 08:00 AM (PT) to complete and submit the test in
Gradescope. There are five questions worth a total of 50 points.

2. For full credit, show all of your work legibly and always justify your answers.

3. The test is an open book, notes, and the internet. However, the usage of these resources must
be conducted according to Academic Honesty Principles. In particular, collaborations are
not allowed, and the submission must be your individual work, just as it would be the case
with an in-person exam. Posting parts of the test or their solutions anywhere and
seek or provide assistance is not allowed.

4. Together with the test, everyone must sign and submit the following statement:

”I certify on my honor that I have neither given nor received any help, or used any non-
permitted resources, while completing this evaluation.”

5. Everyone must comply with the rules above and other principles of the Student Conduct
Code https://www.deanofstudents.ucla.edu (see in particular Section 102.01 on academic
dishonesty). Deviation from the rules may render tests void.

1



Academic Honesty Statement. Please sign and submit the statement below.

”I certify on my honor that I have neither given nor received any help, or used any non-permitted
resources, while completing this evaluation.”
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Question 1. 10pts.
Suppose that Alice and Bob play a two-round game. Each round is a zero-sum game that does

not affect the other round. Prove that the value of the game is the sum of the values in each round.
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Question 2. 10pts.
Consider a k-player general sum game with finite strategy spaces {Si}i∈[k] and payoff functions

{ui}i∈[k] for player. Assume that there exists f : S1 × S2 × · · · × Sk → R such that f(si, s−i) <
f(ŝi, s−i) if and only if ui(si, s−i) > ui(ŝi, s−i) for all si, ŝi, s−i. Does this game have a pure Nash
equilibrium? Justify your answer.
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Question 3. 10pts.
A marketing company has 100 sales representatives that have to advertise a new product to

100 potential customers. Initially, the sales representatives did not coordinate their calls and
ended up placing 25 calls each. A post-advertisement survey revealed that the customers were
unhappy with the advertisement campaign because they received 25 calls each. Can the marketing
company manager reduce the calls’ volume while maintaining the same level of outreach for the
new product? Justify your answer.

Note: Sales representatives can reach customers only from their initial list of 25.
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Question 4. 10pts.
Consider n students and n colleges with preference profiles given by a compatibility matrix

A = (aij). Anna and Yuval play a find-a-better-match game as follows. Anna names a student
s1, and Yuval names a college c1. Next, Anna names a student s2 that has a higher compatibility
score with c1 than s1. Afterward, Yuval names a college c2 that is more compatible with s2 than
c1, and so on. The player that can no longer name a college or student loses. Does any of the
players have a winning strategy? Justify your answer.
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Question 5. 10pts.

• Discuss the similarities and differences between the core and Shapley value.

• Discuss the similarities and differences between the Shapley value and Nash bargaining so-
lution.
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21W-MATH167-1 Final
DAVID DAVINI

TOTAL POINTS

48 / 50

QUESTION 1

1  10 / 10

✓ + 10 pts Full credit - need to use some formal

definition of the "value" of a game for full credit here.

For instance: call the players $$A$$ and $$B$$, and

suppose that player $$A$$'s safety strategies are

$$x_1$$ and $$x_2$$ for the first and second

rounds respectively. Let the matrices of the two

games be $$R_1$$ and $$R_2$$ respectively.

That means $$x_1 R_1 y_1 \geq v_1$$ and $$x_2

R_2 y_2 \geq v_2$$ for any strategies $$y_1, y_2$$

of player $$B$$.

So, if player $$A$$ adopts the strategy of $$x_1$$

then $$x_2$$, their payoff is at least

$$\mathbb{E}[x_1 R_1 y_1 + x_2 R_2 Y_2] \geq v_1 +

v_2$$

no matter what player $$B$$ chooses, even though

$$Y_2$$ may depend on what happened in round 1.

(that's why it's written as a random variable - the

inequality still holds though since

$$\mathbb{E}[x_2R_2 Y_2]$$ is a weighted

average). Likewise, player $$B$$ can guarantee a

payoff of at least $$-(v_1 + v_2)$$ by an analogous

strategy.

   + 7 pts Says that the best strategy is to play the

successive best strategies without really getting

mathematically into why.

Yes, this is true but it is what you are being asked to

prove. Note that it isn't enough just to show that

playing the best strategy both times gives an

expected payoff of $$v_1 + v_2$$; we also need to

show that this is safety (or similar).

QUESTION 2

2  10 / 10

✓ - 0 pts Correct

QUESTION 3

3  10 / 10

✓ + 10 pts Full credit; the intended solution is that

this describes a 25-regular bipartite graph. Thus, by

problem 3.2 from Homework 4 [a direct

consequence of Hall's marriage theorem] there must

be a perfect matching, which is the best possible

solution.

QUESTION 4

4  10 / 10

✓ + 10 pts Full credit: Yuval has a winning strategy.

By the theorem in class (lecture 3/3/21) - there exists

a unique stable matching $$M$$ between the set of

students and the set of colleges. Yuval can adopt

the strategy of, whenever Anna plays a student

$$s$$, to play the college $$M(s)$$.

To show that this is a winning strategy, we have to

show two things:

(1) that this is always a legal play. Suppose that the

game so far has gone $$s_1, M(s_1), s_2, M(s_2),

\dots, s_k$$.



Then, for Yuval's play to be legal, we need student

$$k$$ to prefer $$M(s_k)$$ to $$M(s_{k - 1})$$. But

we know from the fact that Anna was allowed to play

$$s_k$$ that college $$M(s_{k - 1})$$ prefers

student $$s_k$$ to student $$s_{k - 1}$$. So if

student $$s_k$$ preferred $$M(s_{k - 1})$$, then

this would be an instability (as $$s_k$$ and $$M(s_{

k - 1})$$ would have incentive to defect). That means

Yuval's play is always legal.

(2) that the game terminates. But by the structure of

the game, the compatibility $$a_{t}$$ always strictly

increases; since it only has a finite number of

possible values, the game must terminate.

So Yuval has a winning strategy.

[Note: if we don't assume that all the values are

distinct, then neither (1) nor (2) hold and there may

be a winning strategy for Anna].

   + 8 pts Names the correct strategy, and shows (or

effectively shows) only part (1) of the above; that Yuval

cannot lose.

Note that we also need to justify that Yuval eventually

does win (that is, that the players don't end up in an

endless loop). There is no assumption that players are

not allowed to repeat students or colleges: Piazza

@29_f2

Of course, the structure of the game makes it

_impossible_ to repeat student / college pairs

anyway, which is why this is not an assumption!

   + 4 pts Suggests the strategy in which Yuval simply

names the largest entry in each row (i.e. the college

that is most preferred by the named student.) This

does not result in a win for Yuval. Suppose the

preference matrix is as follows:

$$ \begin{bmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9

\end{bmatrix}$$

Then if Anna picks student 1, the strategy calls for

Yuval to respond with college 3; but then Anna can

pick student 3 and win. (In fact, Yuval's winning

strategy here is to respond with college 1).

There's no assumption that the ranks are 1 through

$$n$$ in each row. See the lecture from March 3.

QUESTION 5

5  8 / 10

✓ - 0 pts Correct

- 2 Point adjustment

1. A principal difference between a Shapley

value and the core is that the latter is defined

for a single instance of a cooperative game

whereas the former is defined as a mapping

from the set of characteristic functions to the set

of shares. In particular, cores of two different

characteristic functions are independent of one

another whereas the Shapley values are not:

see the Additivity axiom.

2. Similarly, both the Shapley value and Nash

bargaining solution are not merely instances of

fair shares or values for the players -- they are

functions from the space of instances of

cooperative games to the set of shares. Again,

solutions for various configurations are

connected to one another: see Independence

of Irrelevant Alternatives axiom for Nash

bargaining.

QUESTION 6

6 Academic honesty statement 0 / 0

✓ - 0 pts Correct
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1  10 / 10

✓ + 10 pts Full credit - need to use some formal definition of the "value" of a game for full credit here.

For instance: call the players $$A$$ and $$B$$, and suppose that player $$A$$'s safety strategies are

$$x_1$$ and $$x_2$$ for the first and second rounds respectively. Let the matrices of the two games be

$$R_1$$ and $$R_2$$ respectively.

That means $$x_1 R_1 y_1 \geq v_1$$ and $$x_2 R_2 y_2 \geq v_2$$ for any strategies $$y_1, y_2$$ of

player $$B$$.

So, if player $$A$$ adopts the strategy of $$x_1$$ then $$x_2$$, their payoff is at least

$$\mathbb{E}[x_1 R_1 y_1 + x_2 R_2 Y_2] \geq v_1 + v_2$$

no matter what player $$B$$ chooses, even though $$Y_2$$ may depend on what happened in round 1.

(that's why it's written as a random variable - the inequality still holds though since $$\mathbb{E}[x_2R_2

Y_2]$$ is a weighted average). Likewise, player $$B$$ can guarantee a payoff of at least $$-(v_1 + v_2)$$ by

an analogous strategy.

   + 7 pts Says that the best strategy is to play the successive best strategies without really getting

mathematically into why.

Yes, this is true but it is what you are being asked to prove. Note that it isn't enough just to show that playing the

best strategy both times gives an expected payoff of $$v_1 + v_2$$; we also need to show that this is safety (or

similar).
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2  10 / 10

✓ - 0 pts Correct
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3  10 / 10

✓ + 10 pts Full credit; the intended solution is that this describes a 25-regular bipartite graph. Thus, by problem

3.2 from Homework 4 [a direct consequence of Hall's marriage theorem] there must be a perfect matching,

which is the best possible solution.
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4  10 / 10

✓ + 10 pts Full credit: Yuval has a winning strategy.

By the theorem in class (lecture 3/3/21) - there exists a unique stable matching $$M$$ between the set of

students and the set of colleges. Yuval can adopt the strategy of, whenever Anna plays a student $$s$$, to

play the college $$M(s)$$.

To show that this is a winning strategy, we have to show two things:

(1) that this is always a legal play. Suppose that the game so far has gone $$s_1, M(s_1), s_2, M(s_2), \dots,

s_k$$.

Then, for Yuval's play to be legal, we need student $$k$$ to prefer $$M(s_k)$$ to $$M(s_{k - 1})$$. But we

know from the fact that Anna was allowed to play $$s_k$$ that college $$M(s_{k - 1})$$ prefers student

$$s_k$$ to student $$s_{k - 1}$$. So if student $$s_k$$ preferred $$M(s_{k - 1})$$, then this would be an

instability (as $$s_k$$ and $$M(s_{ k - 1})$$ would have incentive to defect). That means Yuval's play is always

legal.

(2) that the game terminates. But by the structure of the game, the compatibility $$a_{t}$$ always strictly

increases; since it only has a finite number of possible values, the game must terminate.

So Yuval has a winning strategy.

[Note: if we don't assume that all the values are distinct, then neither (1) nor (2) hold and there may be a

winning strategy for Anna].

   + 8 pts Names the correct strategy, and shows (or effectively shows) only part (1) of the above; that Yuval

cannot lose.

Note that we also need to justify that Yuval eventually does win (that is, that the players don't end up in an

endless loop). There is no assumption that players are not allowed to repeat students or colleges: Piazza @29_f2

Of course, the structure of the game makes it _impossible_ to repeat student / college pairs anyway, which is

why this is not an assumption!

   + 4 pts Suggests the strategy in which Yuval simply names the largest entry in each row (i.e. the college that is

most preferred by the named student.) This does not result in a win for Yuval. Suppose the preference matrix is

as follows:

$$ \begin{bmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$



Then if Anna picks student 1, the strategy calls for Yuval to respond with college 3; but then Anna can pick

student 3 and win. (In fact, Yuval's winning strategy here is to respond with college 1).

There's no assumption that the ranks are 1 through $$n$$ in each row. See the lecture from March 3.
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5  8 / 10

✓ - 0 pts Correct

- 2 Point adjustment

1. A principal difference between a Shapley value and the core is that the latter is defined for a single

instance of a cooperative game whereas the former is defined as a mapping from the set of characteristic

functions to the set of shares. In particular, cores of two different characteristic functions are independent

of one another whereas the Shapley values are not: see the Additivity axiom.

2. Similarly, both the Shapley value and Nash bargaining solution are not merely instances of fair shares or

values for the players -- they are functions from the space of instances of cooperative games to the set of

shares. Again, solutions for various configurations are connected to one another: see Independence of

Irrelevant Alternatives axiom for Nash bargaining.
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